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Abstract

An isotype heterojunction is a junction between two layers of dissimilar semiconductors

both of which are doped either n-type or p-type. These semiconductor structures are

found in a variety of optoelectronic devices, such as solar cells, semiconductor lasers,

and detectors. Motivated by the structure of third generation inorganic solar cells, this

thesis concentrates on the analytical modelling of isotype heterojunctions and its appli-

cation to the design optimization of these devices. The main development of this work

is the introduction of an analytical expression for the current density across an isotype

heterojunction valid for arbitrary doping concentration ratios. This result generalizes

the standard expression found in the literature, which is limited by the assumption

that the doping concentration ratio between the two sides of the heterojunction is

equal to one. The generalization is developed by employing the Lambert W function in

the solution of the electrostatic boundary condition associated with the heterojunction

interface. As done in the derivation of the standard expression found in the litera-

ture, the generalization only considers thermionic emission, but the same method can

readily be applied for other transport mechanisms. A key feature of this generalized

result is that it mathematically contains the expression for the current density across

a metal-semiconductor Schottky contact as a limiting case, thereby unifying the treat-

ment of these two heterointerfaces into a single general analytical description. This
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latter find is particularly significant from a theoretical perspective, considering that the

two heterointerfaces are traditionally described as separate topics in the presentation

of semiconductor device theory.
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Chapter 1

Introduction

1.1 Motivation

While the emphasis of this thesis is on the analytical study of a particular topic in the

physics of semiconductor heterojunctions, the problem has been motivated within the

context of multijunction solar cell design.

There is no question that developing efficient and readily available renewable en-

ergy technologies is one of the main priorities of current science and engineering re-

search. The prospect of higher efficiency and lower production costs for solar cells

has placed the field of solar photovoltaics as one of the most promising research av-

enues to tackle this issue, as evidenced by the emergence of a variety of commercially

feasible solar cell technologies leading to the global cumulative solar photovoltaic ca-

pacity surpassing the 100 GW installed electrical power benchmark in 2012 (European

Photovoltaic Industry Association (EPIA), 2013).

The different solar cell technologies tackle a variety of design goals and application
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needs (Fonash, 2010; Nelson, 2003). In the case of multijunction solar cells, the strat-

egy is to maximize efficiency by stacking individual solar cells in tandem. The cells

form a sequence of decreasing band gaps in the direction of light travel, connected via

tunnel junctions, and with the band gaps spread so as to cover as much as possible of

the solar spectrum. Selecting the appropriate band gap values, this design improves

cell efficiencies by expanding the energy range where photons can be absorbed from

the solar spectrum, while at the same time minimizing thermalization losses. These

solar cells have reached a 44.4% efficiency mark under 302 suns (Sharp Corporation,

2013) and recent work on multijunction device numerical modelling and optimization

has led to 3-junction designs expected to break the 50% benchmark (Leite et al., 2013).

A typical multijunction solar cell is illustrated in Figure 1.1.

Figure 1.1: A typical example of a multijunction solar cell. Individual cells are con-
nected in tandem through tunnel junctions, arrayed so that they form a sequence of
decreasing band gaps in the direction of light travel through the cell (Weisse, 2010).

2
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The standard set up for commercially available multi-junction cells is to use high

band gap materials like InGaP and InGaAs grown on germanium substrates, which

are much more expensive than silicon (Si) substrates. While very high efficiency may

be the dominant design goal in some niche applications, in the context of large scale

commercialization, a more important metric is the overall device cost to efficiency ratio.

Therefore, an interesting alternative to consider is the development of high-efficiency

silicon substrate multijunction cells. Figure 1.2 illustrates this concept for a double

junction device. Note that SC stands for an unspecified relevant semiconductor, which

would be determined according to an efficiency/cost optimization process and other

design variables. One important design consideration that arises here is the choice

of location for the tunnel junction, i.e., within the Si (n++Si/p++Si), within the SC

(n++SC/p++SC), or as a hetero tunnel junction between Si and SC (n++Si/p++SC),

leading to the following possibilities:

• Si tunnel junction on p-Si substrate: p-Si/p++Si/n++Si/n-SC,

• Si tunnel junction on n-Si substrate: n-Si/n++Si/p++Si/p-SC,

• SC tunnel junction on p-Si substrate: p-Si/p++SC/n++SC/n-SC,

• SC tunnel junction on n-Si substrate: n-Si/n++SC/p++SC/p-SC

• hetero tunnel junction on p-Si substrate: p-Si/p++Si/n++SC/n-SC,

• hetero tunnel junction on n-Si substrate: n-Si/n++Si/p++SC/p-SC.

Notice that in the structures that do not use the hetero tunnel junction, a het-

erojunction is formed between Si and SC where both semiconductors have the same

3
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Figure 1.2: An example of a double junction Si-substrate solar cell where SC is a rele-
vant semiconductor.

doping type, i.e., the highlighted elements p++Si/p-SC and n-Si/n++SC. This thesis

focuses on the analytical study of the I-V characteristics of these isotype heterojunctions.

Section 1.2 introduces previous relevant work on the analytical modelling of iso-

type heterojunctions, which, to the best knowledge of the author, has until now relied

on the assumption that the doping concentration ratio between the two sides of the

heterojunction is equal to one. The generalization of the existing result developed in

this thesis requires the use of the Lambert W function, which is not yet as well known

as other standard special functions of mathematical physics. A brief introduction to this

4
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function is presented in Chapter 2. This is followed by the full derivation of the gener-

alized results in Chapter 3, where it is also demonstrated that the work developed here

effectively unifies the treatment of isotype heterojunctions and metal-semiconductor

Schottky contacts into a single analytical framework. Chapter 4 returns to the original

motivation of this thesis and considers the behaviour of the differential resistance of a

general isotype heterojunction for low applied voltages. Lastly, concluding remarks are

presented in Chapter 5.

1.2 Existing Results in the Analytical Modelling of Iso-

type Heterojunctions

An isotype heterojunction is a junction between two layers of dissimilar semiconductors

both of which are doped either n-type or p-type. The analysis of the current-voltage

characteristic of these structures has led to the development of an energy band analyt-

ical model (Sze and Ng, 2007; Chang, 1965; Anderson, 1962), which was introduced

by Anderson (Anderson, 1962). Anderson’s model is formulated in analogy with the

emission theory for metal-semiconductor diodes. This model is based on a band dia-

gram with the general form given in Figure 1.3, where the specific barrier height and

width varies according to the material combination being considered.

Because of the form of the band diagram in Figure 1.3, the dominant current trans-

port mechanism is assumed to be thermionic emission. Anderson’s model also neglects

quantum mechanical transmission and reflection, diffusion across the barrier, bulk re-

sistance, carrier recombination, interface states, minority carrier transport, as well as

5
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Figure 1.3: Typical n-n heterojunction conduction band profile between two dissimilar
semiconductors SC1 and SC2, with associated conduction band energies, EC1

and EC2
,

respectively, and a Fermi level EF .

image force lowering (Sze and Ng, 2007). Anderson’s original derivation and the works

that followed (Sze and Ng, 2007; Chang, 1965; Anderson, 1962) also rely on the as-

sumptions that α ≡ ε1ND1/ε2ND2 = 1, where NDi and εi are the dopant concentration

and the electric permittivity of the semiconductor region SCi, respectively, and that

ψ≡ψ1+ψ2� kT/q, where q is the electron charge, k is the Boltzmann constant, and

T is the temperature. With these assumptions one can obtain the following expression

for the current density J(V ):

J1(V ) = J0

qψ

kT
e−qψ/kT

�

1−
V

ψ

�

�

eqV/kT − 1
�

, (1.1)

6
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where J0 ≡ qND2

p

kT/2πm∗2, m∗2 is the effective mass in semiconductor SC2, and V

is the applied voltage. Note that Equation 1.1 is qualitatively similar to the current

density for a diode.

The assumption that α≡ ε1ND1/ε2ND2 = 1 is a major limitation in the derivation of

Equation 1.1 and its applicability in the context of device modeling, since doping con-

centration levels are one of the key controllable design parameters in semiconductor

devices. Moreover, in Chapter 3 of this work, it will be demonstrated that the assump-

tion α = 1 is not supported by a physically meaningful observation, and is justified

only from the point of view of significantly simplifying the underlying mathematics.

More specifically, the α= 1 assumption allows the avoidance of a transcendental equa-

tion that results from the semiconductor electrostatic boundary conditions. Fortunately

however, such an equation belongs to a class of linear transcendental equations that

are solvable via the Lambert W function, introduced in Chapter 2. A generalization of

Equation 1.1 allowing for arbitrary values of α is derived in Chapter 3.

7



Chapter 2

The Lambert W Function

The Lambert W function is the major mathematical tool employed in the generaliza-

tion presented in this work. While it has recently become another important special

function in the toolkit of mathematical physics, its relatively recent rediscovery makes

it still somewhat unknown in many circles of physics and applied mathematics. For this

reason, and because of its crucial importance in the generalization developed by this

thesis, this chapter provides a short introduction to the Lambert W function and a brief

reference to some of its recent applications to physics. Unless otherwise specified, the

material in this chapter is found in the seminal work by Corless et. al (Corless et al.,

1996), which is an excellent reference for a thorough introduction to this function and

many of its applications.

2.1 A Brief History

The origin of the Lambert W function can be traced back to 1758 in relation to the

work of Lambert on the solution of trinomial equations of the form x = q+xm. Lambert

8
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provided a solution to these equations in terms of a series in powers of q. Later work by

Euler on a symmetric version of the equations and their special cases led to considering

equations of the form log x = vxα, the solution of which can be written in terms of the

series

log x = v+
21

2!
v2+

32

3!
v3+

43

4!
v4...

The series converges for |v| < 1/e and defines what is now known as the tree function

T (v), which satisfies T (v) = −W (−v), where W is the Lambert W function defined in

Section 2.2. The name inherits the term “Lambert” due to its connection to the work

of Lambert on trinomial equations, and the letter W refers to the work of E. M. Wright

(see Corless et al. (1996) and references there in). In this document, the terms ‘W ’, ‘W

function’ and ‘Lambert W function’, are all interchangeable.

2.2 Definition and Basic Properties

Given a map f : C→ C defined by z 7→ zez, the Lambert W function, W (z), is defined

as the multivalued inverse of f , i.e.,

W (z)exp(W (z)) = z , ∀z ∈ C . (2.1)

The defining equation always has an infinite number of solutions in C, given by the

complex branches of the Lambert W function, denoted by Wj, where j ∈ Z. If z ∈ R

there can be at most two real solutions, corresponding to the branches W0 (principal

branch) and W−1, which are plotted in Figure 2.1.

9
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Figure 2.1: Real branches of the Lambert W function.

The solid line represents W0, which is defined on x ∈ [−1/e,∞)with range [−1,∞),

while the dashed line represents W−1, defined on x ∈ [−1/e, 0) with range (−∞,−1].

An important observation is that real values of W (x) exist only for x ≥−1/e, and unique

real values exist only for x > 0. The possibility of a double solution (or even infinite

when the domain of applicability extends to C) can have important consequences in

applications where solutions to equations are expressed in terms of W . In particular,

we can see from Figure 2.1 that the behaviour of the two real branches is quite differ-

ent, so that special care must be taken when arguing for the selection of one branch

versus the other.

10
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2.3 Some Useful Mathematical Properties

From the point of view of applications, the calculus properties of W are especially

important. Applying implicit differentiation to Equation 2.1 one obtains an expression

for the derivative of W (x) that is implicitly defined in terms of W (x):

dW

dx
=

W (x)
x(1+W (x))

x 6∈ {0,−1/e} , (2.2)

where the restriction at x = −1/e corresponds to the location of the branch point

joining W0 and W−1 (See Figure 2.1). More generally, the n-th order derivatives of

W (x) are given as

dnW (x)
d xn =

exp (−nW (x)) pn(W (x))
(1+W (x))2n−1 , (2.3)

where the polynomials pn(w) are defined via the recursive relation

pn+1(w) =−(nw+ 3n− 1)pn(w) + (1+w)p′n(w) ,

with p1(w) = 1 and pn(0) = (−n)n−1/n!. Note that it is also possible to obtain another

expansion for n−th order derivatives in terms of second order Eulerian numbers. The

antiderivative of W (x) can also be obtained implicitly in terms of W (x):

∫

W (x)dx = eW (x)
�

W 2(x)−W (x) + 1
�

+ C = x
�

W (x)− 1+
1

W (x)

�

+ C . (2.4)

Equation 2.4 follows from the definition of W and the observation that

11
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∫

f −1(x)d x = y f (y)−
∫

f (y)d y ,

where x = f (y)⇔ f −1(x) = y . Another important and useful observation is that the

principal branch W0(x) is analytic at x = 0, with the series

W0(x) =
∞
∑

n=1

(−n)n−1

n!
xn = x − x2+

3

2
x3−

8

3
x4+ · · · , (2.5)

which has a radius of convergence of 1/e. Finally, one can obtain asymptotic expan-

sions for W0(x) and W−1, useful for large x and for negative x near zero, respectively,

in terms of the expression

A(a, b) = a− b+
∑

k

∑

m

Ckma−k−m−1 bm+1

= a− b+
b

a
+

b(−2+ b)
2a2 +

b(6− 9b+ 2b2)
6a3 + .... (2.6)

such that W0 = A(ln x , ln(ln x)) and W−1 = A(ln(−x), ln(− ln(−x))), where the coeffi-

cients Ckm are given in terms of the Stirling numbers of the second kind (Veberic, 2010;

Corless et al., 1996).

2.4 An Example of How to Use the Lambert W Function

Many transcendental equations can be solved via the Lambert W function, provided

one can transform the equation to the form xex = p, where x is the variable of interest

(or a particular function of the variable of interest) and p a quantity independent of x .

12
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Once in this form, the definition of W yields the solution x = W (p), where again,

the number of solutions can vary from zero to infinitely many, depending on whether

one defines the solution space over C, R, or any relevant subset.

As an example, suppose we wish to solve for x in the equation

eax + bx + c = 0 a, b 6= 0 . (2.7)

With a few algebraic manipulations we can transform it to

a

b
e−ac/b =−

�

ax +
ac

b

�

e−(ax+ac/b) ,

which is now in the canonical form. Applying W to both sides and solving for x we

obtain

x =−
W
�

a
b
e−ac/b

�

+ ac
b

a
. (2.8)

Other forms of transcendental equations and their solutions in terms of W are pre-

sented in Table 2.1.

2.5 Applications to Physics and Engineering

Since its rediscovery in the 1990s, the Lambert W function has been applied to a myr-

iad of problems in many different areas in physics, computer science, as well as applied

and pure mathematics. Corless et al. (1996) and references therein discuss applications

to jet fuel problems, combustion, enzyme kinetics, as well as the resolution of a para-

dox in the calculation of the exchange forces between two nuclei within the hydrogen

13
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molecule, among others. In addition, the Lambert W function has been recently ap-

plied to problems in classical and quantum statistical mechanics (Caillol, 2003; Valluri

et al., 2009; Tanguay et al., 2010; Chandrashekar and Segar, 2013; Starikov, 2010),

gravitation (Farrugia et al., 2007; Mann and Ohta, 1997; Germani and Liguori, 2009),

information theory (Jizba and Arimitsu, 2006), exact solutions to a type of Schrödinger

equation (Williams, 2005), chemical physics (Kast and Tomazic, 2012), classical me-

chanics (Morales, 2011), electromagnetics (Valluri et al., 2000; Jenn, 2002), thermo-

electrics (Molli et al., 2011), Fokker-Planck equations in the small noise limit (Lutz,

2005), and solar cells (Jain and Kapoor, 2005a,b; Jain et al., 2006).

The Lambert W function has been implemented on a number of commercially avail-

able scientific computing packages such as Maple, Matlab, and Mathematica, as well

as in the free, open-source, GNU Scientific Library (GSL), making the numerical evalu-

ation of the different branches a routine matter.

14
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Table 2.1: Some transcendental equations solved by the

Lambert W function.

Equation Solution

x bx = a x =
W (a log b)

log b

x d xa
= b x = exp

�

1

a
W
�a

d
log b

�

�

h(z) = zzzz..
.

h(z) =−
W (− log z)

log z
, for z ∈ [e−e, e

1
e ]

log(a+ b y) + c y = log d y =
1

c
W
��

cd

b

�

exp
�ac

b

�

�

−
a

b
, for a ≥ 0; b, d > 0

pax+b = cx + d x =−
W (− a ln p

c
pb− ad

c )

a ln p
−

d

c
, for p > 0 and c, a 6= 0

15



Chapter 3

An Analytical Expression for

Thermionic Transport through Isotype

Heterojunction Interfaces of Arbitrary

Doping Ratio

This chapter generalizes the analytical expression for the current density across an iso-

type heterojunction, allowing for arbitrary doping ratios between the two sides of the

heterojunction. By letting the parameter α ≡ ε1ND1/ε2ND2 vary over all positive real

numbers, the new expression significantly expands the space of isotype heterojunctions

that can be analytically described, thereby improving the modelling scope for a variety

of opto-electronic devices that rely on isotype heterojunctions, such as semiconductor

lasers, detectors, and solar cells (Milnes and Feucht, 1972; Casey and Panish, 1978;

Nelson, 2003). Besides the practical implications of the generalization, this new result

16



M.A.Sc. Thesis - Manuel Gil McMaster - Engineering Physics

is also of theoretical significance. As shown in Section 3.2.1, the generalized result

contains the expression for the current density across a metal-semiconductor Schottky

contact as the special case α → ∞ under a fixed barrier height ψ2 in the semicon-

ductor region SC2. It is important to note that isotype semiconductor heterojunctions

and metal-semiconductor Schottky contacts have been traditionally described indepen-

dently (e.g. Sze and Ng (2007)).

3.1 Derivation of the Generalized Current Density

The generalization starts by following the same physical arguments that Anderson pro-

vided in his original model. Recall that the relevant band diagram is assumed to be of

the form given in Figure 1.3. Assuming Maxwell-Boltzmann statistics for l < 0 and a

depletion region for l > 0, the electric displacement at the interface, l = 0, is

D=







Æ

2ε1ND1

�

kT
�

eU1/kT − 1
�

− U1

�

, l → 0− ,

p

2ε2ND2
U2 , l → 0+ .

(3.1)

where Ui ≡ q(ψi − Vi), Vi and ψi are the voltage drop and the barrier height in SCi,

respectively, q is the electron charge, k is the Boltzmann constant, and T is the tem-

perature (Anderson, 1962; Sze and Ng, 2007). Requiring the continuity of the electric

displacement in Equation 3.1 at the interface imposes a relationship between V1 and

V2, namely

ε1ND1

�

kT
�

eq(ψ1−V1)/kT − 1
�

− q(ψ1− V1)
�

= ε2ND2
q(ψ2− V2) .
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Since the applied voltage V = V1+ V2, we obtain the following relationship between V

and V1:

V = V1+ψ2−α
�

kT

q

�

eq(ψ1−V1)/kT − 1
�

− (ψ1− V1)
�

, (3.2)

where α≡ ε1ND1/ε2ND2.

From the point of view of understanding the physics of the isotype heterojunction,

we are interested in establishing the voltage distributions V1(V ) and V2(V ) for a given

applied voltage V . However, Equation 3.2 provides us only with the inverse relationship

in the case of V1, that is, knowing V1 determines V , and attempting to obtain the direct

dependence V1(V ) from Equation 3.2 we are faced with a transcendental equation in V1.

Not only is this an issue in terms of the analytical solutions for the voltage distributions

V1(V ) and V2(V ), but it also affects the derivation of the current density J(V ). When the

underlying model for current transport is formulated in terms of V1 and V2 directly, via

a particular mapping J(V1, V2), as opposed to the special case J(V1, V2) = J(V1 + V2) =

J(V ), it is necessary to explicitly provide V1(V ) and V2(V ) in order to arrive at a closed-

form analytical expression for J(V ). This is in fact the situation we encounter in the

derivation for the current density in an isotype heterojunction.

As done in Anderson’s derivation and subsequent works (Sze and Ng, 2007; Chang,

1965; Anderson, 1962), the dominant current transport mechanism is assumed to be

thermionic emission, neglecting quantum mechanical transmission and reflection, dif-

fusion across the barrier, conduction through the bulk, recombination, interface states,

as well as minority carrier transport. Thus, the current density is assumed to be of the
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form

J(V ) = J0e−qψ2/kT
�

eqV2/kT − e−qV1/kT
�

= J0e−qψ2/kT e−qV1/kT
�

eqV/kT − 1
�

, (3.3)

where J0 ≡ qND2

p

kT/2πm∗2 and m∗2 is the effective mass of the semiconductor in the

region l > 0. Because of the explicit dependence of the current transport model on V1

and V2 here, it is necessary to circumvent the limitation imposed by the transcendental

form of Equation 3.2. However, note that while Equation 3.2 is transcendental in V1

for general α, it ceases to be so in the special case α = 1, where it becomes easily

analytically solvable without the need of any special functions. This is precisely why

the works (Sze and Ng, 2007; Anderson, 1962; Chang, 1965) only consider that case.

As has been previously mentioned, this constitutes a major limitation of the ensuing

analytical solution, so it is desirable to find an alternate way to solve the problem.

Fortunately, the underlying form of Equation 3.2 is part of a class of transcendental

equations that can be solved with the Lambert W function, introduced in Chapter 2.

Note that Equation 3.2 can be rewritten in the form of Equation 2.7 with an ap-

propriate choice of parameters, hence the solution to Equation 3.2 can be derived in a

similar manner as Equation 2.8. More precisely, Equation 3.2 can be transformed into

(c− x)ec−x =−bec (3.4)

where x = q(ψ1 − V1)/kT , b = α/(α− 1), and c = [q(V −ψ)/kT (α− 1)]− b, and

the case α 6= 1 is treated separately. Applying W (z) to both sides of Equation 3.4, we
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obtain x = c−W (−bec). Reverting to the original variables and parameters this yields

V1(V ) =ψ1+
kT

q

�

Wj

�

−
α

α− 1
exp
�

1

α− 1

�

q(V −ψ)
kT

−α
���

−
1

α− 1

�

q(V −ψ)
kT

−α
��

, (3.5)

where at this point the solutions are still indexed in terms of the branches of W (z),

Wj(z). In the case α = 1 the relevant equation ceases to be transcendental and we can

easily get

V1(V ;α= 1) =ψ1+
kT

q
ln

�

kT/q
�

ψ+ (kT/q)− V
�

�

. (3.6)

3.1.1 Existence and Uniqueness of the General Solution

The derivation of Equation 3.5 gives the solution for V1(V ) in terms of undetermined

branches of the Lambert W function, leaving the question of existence and uniqueness

of real solutions to be addressed, which is rigorously done in this Section. The argu-

ments that follow are based on the properties of the Lambert W function introduced in

Chapter 2.

The fact that for α= 1 the solution in Equation 3.6 is expressed without the Lambert

W function already suggests that the mathematical behaviour of the general solution is

best understood by considering the cases 0< α < 1 and α > 1 separately. The relevant

aspect to analyze in Equation 3.5 is the behaviour of the term −bec appearing as the

argument of Wj(z) (with the definitions of b and c as in Equation 3.4).

For the case 0 < α < 1, b < 0, so that the positivity of −bec leads to a unique real

solution in terms of W0(x).
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Consider now the case α > 1. It is useful to write c = d − b with d ≡ q(V −

ψ)/kT (α− 1). Note that tacitly the physical model assumes V < ψ (see also Equa-

tion 1.1), so that d < 0 and ed < 1. But then, ec = ed e−b < e−b. Also, for α > 1,

b > 1, hence −bec > −be−b. Lastly, note that the function f (x) = xex has a global

minimum at the point (−1,−1/e). Therefore, we have 0 > −bec > −be−b > −1/e,

which is precisely the domain where the two real branches of W , W0 and W−1, are

simultaneously defined. In other words, the case α > 1 contains two mathematically

possible real solutions for V1(V ) in terms of W0 and W−1.

While the mathematical arguments prove existence in this case, we must turn to

the underlying physics to establish uniqueness. Choosing W0 leads to an unbounded

solution as α → 1+, since c → −∞ and −bec → 0−, leading to [W0(−bec) − c] →

0− (−∞). On the other hand, choosing W−1 we have α→ 1+ ⇒ [W−1(−bec)− c]→

−∞+∞, whose indeterminate form is not the most convenient for finding the limit.

Instead, noting that from the definition of W (x) we have eW (x) = x/W (x), then

exp[
�

W−1(−bec)− c
�

=
−bec

W−1 (−bec)
e−c =−

b

W−1(−bec)
.

As discussed in Chapter 2, for negative values of x near 0, W−1(x) can be approximated

by an asymptotic expansion, the first term of which is ln(−x) (Corless et al., 1996).

Thus,

lim
α→1+

�

−
b

W−1(−bec)

�−1

=− lim
α→1+

ln b+ c

b
=−

�

lim
b→∞

ln b

b
+ lim
α→1+

d − b

b

�

=− lim
α→1+

d

b
+ 1= 1− lim

α→1+

q(V −ψ)
kT (α− 1)

α− 1

α

= 1−
q(V −ψ)

kT
.
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Hence,

lim
α→1+

�

W−1(−bec)− c
�

= ln
�

1−
q(V −ψ)

kT

�−1

= ln
�

kT

kT + q(ψ− V )

�

.

Recalling that V1 =ψ1+ kT/q [W (−bec)− c], the W−1 branch solution leads to

lim
α→1+

V1 =ψ1+
kT

q
ln
�

kT

kT + q(ψ− V )

�

,

which is the solution obtained in Equation 3.6 for α = 1. Therefore, while W0 leads to

an unbounded solution as α→ 1+, the W−1 solution leads to continuity for α ∈ [1,∞),

providing us with a unique, physically sensible solution for α > 1.

3.1.2 The Complete Generalized Solution

The above observations allows us to construct the complete solution for all positive

values of α as follows:

V1(V ) =ψ1+
kT

q
γ(V ;α) , V2(V ) = V − V1(V ) ,

γ(V ;α) =























W0(−bec)− c 0< α < 1

ln

�

kT/q
�

ψ+ (kT/q)− V
�

�

α= 1

W−1(−bec)− c α > 1

(3.7)

with b and c defined as before.

We can see that the function γ(V ;α) is continuous in α on the entire domain (0,∞)

from the following observations. First of all, each of the W branches is continuous on
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its domain. Moreover, the arguments made in Section 3.1.1 already established that γ

is right-continuous at α = 1. To see left-continuity consider W0(−bec)− c as α→ 1−.

In this case, c →∞, b → −∞, and so [W0(−bec)− c]→ W0(∞)−∞ =∞−∞. The

indeterminacy here can again be resolved by arguing in the same fashion as we did for

the case of α → 1+, while replacing W0(x) with ln(x) instead of ln(−x) in the limit

x →∞, i.e.,

lim
α→1−

exp[W0(−bec)− c] = lim
α→1−

−
b

W0 (−bec)
=− lim

α→1−

�

W0 (−bec)
b

�−1

=−
�

lim
α→1−

ln(−b)
b

+
c

b

�−1

=−
�

lim
b→−∞

ln(−b)
b

+ lim
α→1−

d − b

b

�−1

=−
�

−1+ lim
α→1−

q(V −ψ)
kT (α− 1)

α− 1

α

�−1

=
�

1−
q(V −ψ)

kT

�−1

Taking logarithms and simplifying we have

lim
α→1−

V1 =ψ1+
kT

q
ln
�

kT

kT + q(ψ− V )

�

,

establishing the left-continuity of γ(V ;α) at α= 1.

Note also that while the approach taken in the derivation of Equation 3.7 was to

solve for V1(V ) first and obtain V2 = V − V1(V ), choosing to isolate V2(V ) would still

require the use of the Lambert W function in solving for V1(V2).

If we now employ the expression for J(V ) given in Equation 3.3, then the general-

ized current density becomes

JG(V ;α) = J0e−qψ/kT−γ(V ;α)
�

eqV/kT − 1
�

. (3.8)
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If we set α = 1 and apply the condition ψ � kT/q, then Equation 3.8 reduces to

Equation 1.1,

J1(V ) = J0

qψ

kT
e−qψ/kT

�

1−
V

ψ

�

�

eqV/kT − 1
�

,

i.e, the standard expression in the literature derived under the assumptions α = 1 and

ψ� kT/q (e.g. Sze and Ng (2007); Chang (1965)).

A somewhat curious property of both Equation 3.8 and Equation 1.1 is that despite

Equation 3.3 indicating the transport is dominated by ψ2, the final current density

expressions appear to depend only on ψ = ψ1 +ψ2. Note however that determining

any of the pairs (α,ψ1), (α,ψ2) or (α,ψ), completely determines the others. This is

a consequence of the inherent relationship between ψ1, ψ2 and α that arises from

considering Equation 3.2 under the condition V = 0, i.e.,

ψ2(ψ1,α) = α
�

kT

q

�

eqψ1/kT − 1
�

−ψ1

�

. (3.9)

Equation 3.9 providesψ2 explicitly in terms ofψ1, and the relationship can be inverted

with the Lambert W function to obtain ψ1 in terms of ψ2:

ψ1(ψ2,α) =−
kT

q

�

W−1

�

−e−y(ψ2)
�

+ y(ψ2)
�

, (3.10)

where y(ψ2)≡ (qψ2/αkT ) + 1.

The branch choice in Equation 3.10 is again determined by appealing to the physical

sensibility of the solution. Consider the case where ψ2 is fixed and we allow α to vary

in (0,∞). As α → 0+, y → ∞ and −e−y(ψ2) → 0−. On the other hand, as α → ∞,
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y → 1. Thus, the domain (0,∞) in α corresponds to (−1/e, 0) in the argument of W in

Equation 3.10, −e−y(ψ2), which ensures the expression stays real, but also a priori not

unique. However, a solution involving the branch W0 would be unphysical. Recall that

W0(x) > −1 for all x ∈ (−1/e,∞), hence W0

�

−e−y(ψ2)
�

+ y(ψ2) > −1+ y(ψ2) > 0,

since by definition y > 1, leading to negative values of ψ1 for any α > 0. On the

other hand, y > 1 ⇒ −ye−y < −e−y ⇒ −y > W−1(−e−y), since W−1 is a decreasing

function, which leads to the positivity of ψ1 for all values of α. Thus, there is a unique,

physically relevant solution expressing ψ1 in terms of ψ2, given by the W−1 branch.

Using ψ = ψ1 +ψ2 together with Equation 3.9 or Equation 3.10, we can rewrite

Equation 3.8 in terms of either (α,ψ1) or (α,ψ2), respectively, with each particular

form illuminating different physical aspects of the solution.

3.2 Contours of Constant Dominant Barrier ψ2

3.2.1 Semiconductor-Metal Schottky Contacts as a Special Limit

Consider the set of contours of Equation 3.8 where ψ2 is a fixed quantity and ψ is

expressed as ψ1(ψ2,α)+ψ2. Examining the high α behaviour of the built-in potential,

ψ=ψ1+ψ2, as well as the current density, J(V ;α), leads to an unexpected but phys-

ically very sensible result. As noted after Equation 3.10, α→∞⇒ −e−y(ψ2) → −1/e,

hence ψ1(ψ2)→ −kT/q[W−1(−1/e) + 1] = 0 for any value of ψ2. Also, considering

Equation 3.7, note that as α → ∞, b → 1 and c → −1. Then we have α → ∞ ⇒

γ(V ;α) =
�

W−1 (−bec)− c
�

→ W−1(−1/e) − (−1) = 0. Thus, for constant ψ2, we
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obtain,

lim
α→∞

JG(V ;α) = J0 e−qψ2/kT
�

eqV/kT − 1
�

. (3.11)

In a physical context, the definition α ≡ ε1ND1/ε2ND2 entails a bound on the values of

α, and Equation 3.11 is interpreted as an asymptotic behaviour. In the context where

the limit α � 1 is approached via ND1 � ND2 for a fixed value of ND2, this leads to a

very physically intuitive result. Letting φB be the barrier height in the semiconductor

SC2 with reference to the Fermi-level, so that qφB = qψ2+ EC − EF , then

exp(−qφB/kT ) = exp(−qψ2/kT )exp[−(EC − EF)/kT] = exp(−qψ2/kT )
n

NC
,

where n is the electron density, which can be replaced by ND2 in the semiconductor

region SC2. Thus, we can write Equation 3.11 as

lim
α→∞

JG(V ;α) = A∗T 2e−qφB/kT
�

eqV/kT − 1
�

, (3.12)

where A∗ = 4πqm∗2k2/h3 is the effective Richardson’s constant (Sze and Ng, 2007), and

h is Planck’s constant. Equation 3.12 is exactly the expression for the current density

across a Schottky metal-semiconductor contact (Sze and Ng, 2007). This result is not

surprising if we consider the associated band diagram. With ψ1 going to zero while

keeping ψ2 a constant quantity, such a band diagram is indistinguishable from that of

a metal-semiconductor Schottky contact.

However, we should not interpret Equation 3.12 in the context of the special case

where the two materials SC1 and SC2 are fixed and the doping is altered. The reason is
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that given a fixed set of materials SC1 and SC2, variations in α lead to variations in ψ2,

due to the fixed difference in their electron affinities. The limit is better interpreted as

being reached through a path in the space of all isotype heterointerfaces via the partic-

ular contour of fixedψ2, allowing us to include the description of metal-semiconductor

Schottky contacts as an asymptotic behaviour of a sequence of isotype heterojunctions.

3.2.2 Some Numerical Examples

Figure 3.1 shows the normalized current density JG/J0 as a function of V for a fixed

ψ2 = 0.3V, T = 300K, and different α−contours, which all have a diode-like behaviour.

Having fixed ψ2, the absence of a strong variation for lower values of V further illus-

trates that the transport is mainly determined by this barrier, but it is also interesting

to see that at higher voltages two asymptotic regimes in α start to be clearly identified,

with the crossover near α= 10.

Figure 3.2 explores the behaviour of JG(V ;α) normalized by the high α limit in

Equation 3.11, and Figure 3.3 considers the ratio V1/V , both as functions of α for fixed

ψ2 = 0.3V, T = 300K, and different values of V . Notice that lower α values lead to

larger values of V1, which decreases the current, as expected from Equation 3.3.
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Figure 3.1: Normalized current density JG/J0 as a function of V for several values of
the doping ratio α with fixed ψ2 = 0.3V and T = 300K. Two asymptotic regimes can
be identified for low and high values of α, with the crossover near α= 10.
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Figure 3.2: Generalized current density JG(V ;α) normalized by the high α Schottky
limit, as a function of α for several values of the applied voltage V , ψ2 = 0.3V and
T = 300K.
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Figure 3.3: The voltage drop V1 in SC1 normalized by the applied voltage V , as a
function of α for several values of the applied voltage V , ψ2 = 0.3V and T = 300K.
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3.2.3 Approximate Analytical Expression for Low α and fixed ψ2

In light of the high α results in Section 3.2.1, it is also interesting to consider the low α

behaviour of the barrier ψ1 and the generalized current density J(V ;α) under a fixed

ψ2. Consider again the expression for ψ1 as a function of ψ2 given in Equation 3.10,

ψ1(ψ2,α) =−
kT

q

�

W−1

�

−e−y(ψ2)
�

+ y(ψ2)
�

,

where y(ψ2)≡ (qψ2/αkT )+1. As α→ 0+, the argument of W−1 goes to 0−. Recall that

W−1(x) can be approximated for negative x near zero with the asymptotic expression

W−1 = ln(−x)− ln(− ln(−x)) .

Thus, near α≈ 0, we can approximate

ψ1(ψ2) =−
kT

q
�

−y(ψ2)− ln(y(ψ2)) + y(ψ2)
�

=
kT

q
ln
�

qψ2

αkT
+ 1
�

≈
kT

q
ln
�

qψ2

αkT

�

. (3.13)

Figure 3.4 shows a plot of ψ1(α) for ψ2 = 0.3V. Note the low α logarithmic behaviour

expected from Equation 3.13, as well as the fact that α → ∞ ⇒ ψ1 → 0 discussed

earlier.

Examining the low α behaviour of γ(V ;α) in Equation 3.7, we have

γ(V ;α < 1) =W0

�

−
α

α− 1
exp
�

1

α− 1

�

q(V −ψ)
kT

−α
���

−
1

α− 1

�

q(V −ψ)
kT

−α
�

≈W0

�

αexp
�

q(ψ− V )
kT

��

−
q(ψ− V )

kT
.
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Figure 3.4: ψ1(α) for ψ2 = 0.3V.

But now

q(ψ− V )
kT

≈
q

kT

�

ψ2+
kT

q
ln
�

qψ2

αkT

�

− V
�

,

leading to

γ(V ;α≈ 0)≈W0

�

αexp
�

q(ψ2− V )
kT

�

qψ2

αkT

�

−
q(ψ− V )

kT

=W0

�

qψ2

kT
exp
�

q(ψ2− V )
kT

��

−
q(ψ− V )

kT
. (3.14)

Applying this approximation to the generalized expression in Equation 3.8,

JG(V ;α) = J0e−qψ/kT−γ(V ;α)
�

eqV/kT − 1
�

,
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yields

JG(V ;α≈ 0)≈ exp
�

−W0

�

qψ2

kT
exp
�

q(ψ2− V )
kT

���

È

kT

2πm∗2
qND2

�

1− e−qV/kT
�

.

(3.15)

Recall that the current density for the high-α Schottky limit is

J(α� 1) =

È

kT

2πm∗2
qND2e−qψ/kT

�

eqV/kT − 1
�

.

Since it has already been shown rigorously that for fixed ψ2, ψ1 goes to zero in the

high α limit, ψ can then be replaced with ψ2. Then, for fixed ψ2, the ratio of the high

and low α asymptotic expressions for the current density becomes

J(α� 1)
JG(α� 1)

≈
e−qψ2/kT

�

eqV/kT − 1
�

exp
�

−W0

�

qψ2

kT
exp
�

q(ψ2−V )
kT

���

�

1− e−qV/kT
�

=
eq/kT (V−ψ2)

exp
�

−W0

�

qψ2

kT
exp
�

q(ψ2−V )
kT

��� (3.16)

Consider now the low and high V limits of the ratio in Equation 3.16. In the limit

V → 0, we have

W0

�

qψ2

kT
exp
�

q(ψ2− V )
kT

��

→
q(ψ2)

kT
,

since W is the inverse of the function x → xex . Hence,

lim
V→0

J(α� 1)
JG(α� 1)

=
e−qψ2/kT

e−qψ2/kT
= 1 .
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Thus, as V → 0 the high and low α asymptotic expressions converge to zero at the

same rate, as evidenced by the low V behaviour observed in Figure 3.1. In fact, Fig-

ure 3.1 also shows that below about 0.05V ≈ 2 kT/q (at 300K), the current density is

essentially constant in α.

At the other end, for higher voltages, V → ψ−2 (recall that the physical model

assumes V <ψ), we have

J(α� 1)
JG(α� 1)

= exp
�

W0

�

qψ2/kT
��

, (3.17)

which is greater than 1 by the positivity of W0(x) for x > 0. Thus, the closer the applied

voltage is to ψ2, the the more significant the increase in current in the high α regime,

as evidenced by Figure 3.1 for the particular case ψ2 = 0.3V. Note also that since W0 is

an increasing function, higher values of ψ2 lead to a higher ratio in Equation 3.17.

As seen in Figure 3.3, V1/V also exhibits asymptotic behaviours at both the high

and low α regimes, increasing with decreasing α and increasing applied voltage V .

It is therefore of interest to investigate the behaviour of V1 for low α as we vary ψ2

while keeping the applied voltage V = ψ2. Figure 3.5 plots the expression for V1(ψ2)

obtained by substituting Equation 3.10 into Equation 3.5 and setting α = 10−3 and

V =ψ2. Note that for all ψ2 < 1V, V1 < 0.07≈ 2.7 kT/q (at 300K).

It is also interesting to derive a low α analytical expression for V1. If we apply the

low α approximation to γ(V ;α) in Equation 3.14 to the V1(V ) solution in Equation 3.5,
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Figure 3.5: V1 as function of ψ2 (Equation 3.10 substituted into Equation 3.5) for fixed
α= 10−3 and the applied voltage V =ψ2.

we have

V1 ≈ψ1+
kT

q

�

W0

�

qψ2

kT
exp
�

q(ψ2− V )
kT

��

−
q(ψ− V )

kT

�

=
kT

q
W0

�

qψ2

kT
exp
�

q(ψ2− V )
kT

��

− (ψ2− V ) . (3.18)

Note that for V → 0, Equation 3.18 yields

V1→
kT

q
W0

�

qψ2

kT
exp
�

qψ2

kT

��

−ψ2 =ψ2−ψ2 = 0 ,
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which verifies the consistency of the expression. In the case V →ψ2, we obtain

V1(ψ2) =
kT

q
W0

�

qψ2

kT

�

. (3.19)

The accuracy of the low α approximation in Equation 3.18 is quite remarkable when

compared to the non-approximate general result plotted in Figure 3.5 (Equation 3.10

substituted into Equation 3.5), which is a significantly more complex expression. Fig-

ure 3.6 plots the error between the approximation in Equation 3.19 and the complete

expression plotted in Figure 3.5.
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Figure 3.6: Error between the low α approximation for V1 as a function of ψ2, with
the applied voltage V = ψ2 (Equation 3.19), and the complete expression plotted in
Figure 3.5 (Equation 3.10 substituted into Equation 3.5). Here the approximation very
slightly overestimates the value of the complete expression.
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3.3 A Simpler Approximate Analytical Solution for Low

Applied Voltage Valid for all α

Note that for low values of V we can arrive at a simpler approximate analytical expres-

sion for J(V ;α). Considering Equation 3.2, we can linearize the term exp(−qV1/kT )

to 1− qV1/kT , and rewrite

V = V1+ψ2−α
�

kT

q

�

eqψ1/kT �1− qV1/kT
�

− 1
�

− (ψ1− V1)
�

=
�

1+αeqψ1/kT −α
�

V1+ψ2−α
�

kT

q

�

eqψ1/kT − 1
�

−ψ1

�

=
�

1+αeqψ1/kT −α
�

V1 ,

since the term independent of V1 is identically zero by Equation 3.9. By rewriting the

term αeqψ1/kT −α also using Equation 3.9, an equivalent form is

V1

V
=
�

1+
q(ψ2+αψ1)

kT

�−1

,

which in turn leads to the current density

J(V ;α)= J0e−qψ2/kT
�

eqV/kT − 1
�

�

1−
V

kT/q+ψ2+αψ1

�

, (3.20)

where the ψ2 or ψ1 dependency can be removed using Equation 3.9 or Equation 3.10,

as previously discussed.

Equation 3.20 can be used to analytically estimate the crossover point, α∗, between

the low and high α asymptotic regimes. Before developing that point, we need to
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determine the behaviour of the limits αψ1(α) as α → 0,∞. From the low α ap-

proximation to ψ1(ψ2) given in Equation 3.13, we have ψ1(α) ∼ ln(1/α), hence

α → 0 ⇒ αψ1(α) → 0. Figure 3.7 shows a plot of αψ1(α) for ψ2 = 0.3V, which

also suggests that α → ∞ ⇒ αψ1(α) → ∞, which can be verified analytically. Recall

that in Section 3.2.1 it was shown that α → ∞ ⇒ ψ1(α) → 0. Thus, for large α we

may Taylor expand the term exp(qψ1/kT ) in Equation 3.9 so that

ψ2 = α

�

kT

q

�

1+
qψ1

kT
+

1

2

�

qψ1

kT

�2

− 1

�

−ψ1

�

=
α

2

qψ2
1

kT
⇔ψ1 =

r

2kTψ2

qα
.

Thus, for large α, αψ1(α)∼ αα−1/2 = α1/2, hence α→∞⇒ αψ1(α)→∞.
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Figure 3.7: αψ1(α) for ψ2 = 0.3V.
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Now that it has been established that for fixed ψ2, αψ1 → 0,∞ as α → 0,∞,

respectively, we can formulate an equation to estimate the crossover point, α∗, between

the high α and the low α regimes. This is done by demanding that JG(V,α∗) be the

average of the high α and low α behaviour of Equation 3.20. Thus α∗ must satisfy the

equation

1−
V

kT/q+ψ2+α∗ψ1
=

1

2

�

1−
V

kT/q+ψ2
+ 1
�

⇔ α∗ψ1(ψ2,α∗) =
kT

q
+ψ2 .

(3.21)

For ψ2 = 0.3V and T = 300K, the solution is α∗ ≈ 10.6, confirming the observation

regarding the crossover in Figure 3.1 and Figure 3.2. Figure 3.8 shows the behaviour

of α∗ as a function of ψ2, generated from the numerical solutions of Equation 3.21.

It is also interesting that for all values of ψ2, α∗ > 2.58, demonstrating that α = 1 is

never a crossover point. Moreover, as indicated by Figure 3.2 and Figure 3.3, the α= 1

case is not fully in the asymptotic low α regime even for α∗ = 10.6. These observations

suggest that the case α = 1 is not really a physically illuminating or central case, and

the assumption α= 1 is only justifiable from the simplicity of the ensuing mathematics.
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3.4 Other Relevant Contours

Besides the fixed ψ2 contours considered in the previous sections, it is also of interest

to examine the mathematical behaviour of JG(V ;α) for other contours. Figure 3.9

illustrates the behaviour of JG(V ;α)/J0 as a function of α when ψ = 0.35V. Note that

JG(V,α) has gone from being an increasing function of α under the fixed ψ2 contour

illustrated in Figure 3.1, where ψ = ψ1(ψ2) +ψ2, to a decreasing function of α in the

fixed ψ contour of Figure 3.9. In addition, for a fixed pair of α values, the separation

between different curves decreases with increases in V , which is also the opposite of

what was is observed in Figure 3.1. Figure 3.10 shows a plot of the ratio of JG(V,α) to

JG(V,α→∞), in analogy with Figure 3.2, but now on the fixed ψ= 0.35V contour.

The change in the dependence of JG(V ;α) on α can be explained by the behaviour

of the barriers under this contour. When fixing ψ, ψ1 and ψ2 are implicitly varying

to accommodate the variations in α while keeping the net ψ = ψ1 + ψ2 = 0.35V.

This can be seen in Figure 3.11, which is generated by solving for ψ1 in the equation

ψ2(ψ1) +ψ1 =ψ, using Equation 3.9, and then obtaining ψ2 =ψ−ψ1. The fact that

the dominant barrier ψ2 is now a monotonically increasing function of α explains the

behaviour observed above for JG(V ;α).

Another natural question to consider is whether we can “decompose” the depen-

dence on the barriers ψ1 and ψ2 into functions of the underlying material parameters

and the doping levels, and explore more specific contours that way. For example, one

could fix one of the semiconductors and vary the material properties of the other to

arrive at an optimized interface. This would be very useful from the point of view

of applications, since one could compile readily available data for the expected cur-

rent densities for a given combination of materials, removing the need to know the
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Figure 3.9: JG(V ;α)/J0 as a function of V for fixed values of α, with T = 300K and
ψ=ψ1+ψ2 = 0.35V.

quantitative details of each band diagram.

Unfortunately, the information about the band structure of each semiconductor is

not sufficient (Franciosi and de Walle, 1996). Considering an individual semiconductor,

SC, the band structure can be calculated in relation to a reference potential, which

is usually the average of the electrostatic potential in SC, V . The positions of the

valence and conduction bands can be measured as being a certain distance away from

V . Because of the reference to an underlying average potential, when we consider two

different semiconductors, it becomes necessary to be able to determine the reference

potential in each of the materials as measured by an absolute energy scale, otherwise

any given potential will not be comparable across the two semiconductors. However,

there is no absolute reference for the average potential in an infinite solid. This is
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a consequence of the long range nature of the Coloumb interaction, as explained in

Franciosi and de Walle (1996).

Nevertheless, the relative potential of two specific materials can be determined

experimentally, as in the classic case of the Ge-GaAs heterojunction, and used to deter-

mine the ψ values.
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Figure 3.10: JG(V ;α)/J0 as a function of α for fixed values of V , with ψ = ψ1 +ψ2 =
0.3V, and T = 300K.
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Chapter 4

An Application to Solar Cells

As discussed in Section 1.1, isotype heterojunctions play an important role in the design

of multijunction solar cells. Thus, understanding the resistance across these junctions

becomes a crucial step in the optimization of the entire device.

Referring back to Figure 1.2, we can model the device as the following series con-

nection: top cell–isotype heterojunction–tunnel junction–bottom cell. The particular

place of the tunnel junction and the isotype heterojunction (as well as its type) will

depend on which particular silicon multijunction cell design is implemented. However,

in all cases it is desirable that the voltage drop across both the isotype heterojunction

and the tunnel junction be as small as possible. While the analysis of the tunnel junc-

tion is outside the scope of this thesis, we can use the results obtained here for isotype

heterojunctions to identify parameter spaces that meet acceptable design guidelines.

In the context of multijunction solar cells, it is of particular interest to understand

the resistance under low applied voltage, which can be approximated by the differen-

tial resistance at zero applied voltage. We can therefore make use of the low voltage

analytical expression for J(V ) in Equation 3.20 to derive the near zero differential
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resistance. This leads to

R0 ≡
��

∂ JG(V ;α)
∂ V

�

V=0

�−1

=
h

q2ND2

�

NC2

2

�1/3

eqψ2/kT . (4.1)

Thus, for low V , the differential resistance has a straightforward exponential depen-

dence on the dominant barrier ψ2, and it is independent of α.

For a typical triple junction solar cell, at 1 sun, one can estimate the short-circuit

current Jsc ∼ 15mA/cm2 and the open-circuit voltage Voc ∼ 2.5V (King et al., 2007),

which results in a resistance of 166.7Ωcm2. The presence of the isotype heterojunction

resistance will lower the operating voltage to Voc− IscR0. If we require that the voltage

drop as a result of the resistance across the isotype heterojunction be no more than 1%

of the cell’s Voc, then we need R0 < 1.67Ω cm2. However, because the tunnel junction

will also provide additional resistance, a more conservative number may be 1Ωcm2. At

1000 suns, Jsc ∼ 15A/cm2 and Voc ∼ 3.0V, so that the isotype resistance must be kept

below 2 × 10−3Ω cm2, but again, the number must be reduced to account for extra

resistance from the tunnel junction, so 1× 10−3Ω cm2 is a better bound.

Figure 4.1 displays a plot of R0 as a function of ψ2 for ND2 = 1× 1016cm−3, T =

300K, and various values of NC2. The ‘1 sun’ and ‘1000 suns’ lines correspond to the

discussion above. We can see that for typical values of NC2, the threshold value for

the 1 sun requirement is ψ2 ≈ 0.3V, whereas for much higher concentrations even a

ψ2 as low as 0.2V may not satisfy the 1% efficiency drop bound. In order to obtain

a more precise bound one needs to know or estimate the resistance contribution from

the tunnel junction, which is not considered in this work.
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Figure 4.1: Differential Resistance at V = 0 as a function ofψ2 for ND2 = 1×1016cm−3,
T = 300K, and various values of NC2 (in cm−3).
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Chapter 5

Conclusion

This thesis has presented an analytical study of the I-V characteristics of isotype het-

erojunctions. The main contribution of this work is the derivation of a generalized an-

alytical expression for the current density J(V ;α) across an isotype heterojunction for

arbitrary doping concentrations parametrized via α≡ ε1ND1/ε2ND2. This result con-

stitutes a significant expansion to the expression originally introduced by Anderson

(Anderson, 1962), which relies on the assumption that the doping concentration ratio

α = 1. Such an assumption has been maintained even in recent well-known semicon-

ductor device physics references such as Sze and Ng (2007). The generalization pre-

sented here makes use of the recently rediscovered Lambert W function, which allows

for the analytical solution of the boundary conditions associated with the electrostatics

of isotype heterojunctions. It is worth noting that the voltage distribution determined

by Equation 3.7 depends only on these heterojunction interface conditions, and not

on the particulars of the current transport mechanism. Hence, the generalization can

be readily carried out for any current density J(V1, V2) derived under the assumptions
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of Figure 1.3 and Equation 3.1. Also, it has been shown that the generalized expres-

sion introduced here mathematically contains Anderson’s expression as the special case

α= 1.

Doping concentration is one of the crucial controllable design parameters in semi-

conductor devices. As such, the results in this work have important practical implica-

tions.

Moreover, the generalization presented here is also of theoretical significance. It has

been shown that the expression for the current density across a metal-semiconductor

Schottky contact also follows from the generalized current density for isotype hetero-

junctions in the limit α→∞ under a fixed barrier height ψ2, which is consistent with

the expected physics of this case. This demonstrates that metal-semiconductor Schot-

tky contacts and isotype heterojunctions are special cases of a general heterointerface,

whose I-V characteristic is now analytically modelled in an unified and mathemati-

cally consistent fashion. This finding is specially significant considering that isotype

semiconductor heterojunctions and metal-semiconductor Schottky contacts have been

traditionally described independently, e.g., (Sze and Ng, 2007).

Lastly, as shown in Chapter 4, the analysis developed here leads to a readily us-

able expression for the differential resistance of a general isotype heterojunction near

zero voltage, which is an important device optimization parameter when considering

multijunction solar cell designs that implement isotype heterojunctions.

Future Work

There are a few avenues to explore to further develop the ideas presented in this work,

as briefly suggested below.
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Additional transport terms in the generalized current density

As pointed out above, the derivation of the voltage distribution Equation 3.7 depends

only on the assumptions of Figure 1.3 and Equation 3.1. Having determined the voltage

drops across the interface, V1 and V2, for all applied voltages V , one can easily add

additional current transport terms to generate a more complete generalized expression.

This could be especially useful in applications where the band diagram has a barrier

that is neither too low nor too high for either diffusion or thermionic emission becoming

the dominant transport mechanism, or if one wishes to include additional terms related

to quantum mechanical tunneling and reflection, as for example in a high barrier that

starts to become thin enough for these to matter. Regardless of the particulars of the

transport mechanism, so long as assumptions Figure 1.3 and Equation 3.1 are met,

adding any transport function JT (V1, V2) will result in a generalized J(V ) from the

solutions V1(V ) and V2(V ) obtained in this work.

Coupling the generalized current density with an empirical charac-

terization of the barrier for a particular set of materials

Recall the discussion in Section 3.4 about the impossibility of predicting the barrier

ψ in the isotype heterojunction from only the knowledge of each material’s band pa-

rameters. However, considering a specific set of materials, it may be possible to have

empirical characterizations that formulate a mathematical relationship between the

barrier ψ and the doping concentration on each semiconductor. For materials of the

form Ax B1−x C , it may even be possible to obtain ψ also as a function of x . Such re-

lationships can then be coupled with the analytical results of this work to arrive at

a function J(V ), parametrized by variables that can in principle be optimized for a
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particular design goal.

Adding Fermi Dirac corrections

Since one of the assumptions in the derivation of the generalized current density is that

carriers follow Maxwell-Boltzmann statistics in the region SC1 (Figure 1.3), it may be

of interest to attempt the solution of V1(V ) and V2(V ) from the electrostatic conditions

at the isotype heterojunction with additional correction terms associated with Fermi-

Dirac statistics. One possibility is to express the relevant Fermi integrals as power series

(e.g. through the polylogarithm function), and try to carry out the inversion via the

Lagrange inversion theorem that led to the series derivation of the Lambert W function,

as discussed in Corless et al. (1996).
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