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Abstract

The bending moduli and line tension of bilayer membranes self-assembled from di-

block copolymers was calculated using the self-consistent field theory. The limitation

of the linear elasticity theory (Helfrich model) was evaluated by calculating fourth-

order curvature moduli in high curvature systems. It was found that in highly curved

membranes, the fourth-order contributions to the bending energy becomes compa-

rable to the low-order terms. The line tension (γL) of membrane pores was also

investigated for mixtures of structurally different diblock copolymers. The line ten-

sion was found to depend sensitively on the diblock chain topology. Addition of short

hydrophobic copolymers was found to reduce the line tensions to negative values,

showing that lipid mixtures may be used as pore stabilizers.
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Chapter 1

Introduction

The cell membrane is what separates the internal content of a biological cell from the

external environment. In recent years, much attention has been focused on the role

played by the cell membrane in cellular mechanisms such as fusion, protein integration

and endo/exocytosis [1–5]. Cell membranes are mainly composed of amphiphilic lipid

molecules which have hydrophilic head groups and hydrophobic tail groups, allowing

for self-assembly when mixed with water [6,7]. This self-assembly can lead to a variety

of morphologies such as spherical and cylindrical micelles as well as bilayer vesicles

(liposomes), where two lipid monolayers oppose each other and encase the solvent

inside its volume (Fig. 1.1). In real biological systems the lipid bilayer does not exist

in isolation. The bilayer itself may contain a variety of different lipid molecules as well

as cholesterol and a wide array of surface bound and transmembrane proteins [7, 8].

The environment in which the bilayer exists in is also highly diverse. For instance, ion

concentration differences between the inside and outside of the membrane can lead

to potential gradients, or action potentials [8]. Beyond this, there are differences in

lipid composition between bilayer leaflets caused by both production rates of lipids
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Figure 1.1: Various morphologies of self-assembled lipid molecules in solvent. De-
pending on properties such as lipid concentration, bending rigidities and solvability,
different configurations are stable (Original image by Mariana Ruiz Villarreal).

within the cell (lipogenesis) and the relatively slow rate of inter-leaflet switching of

lipids (flip-flop rate). All of these factors make the membrane a vastly complex and

important structure. As such, much effort has gone into understanding the physics

of these systems from a theoretical and experimental viewpoint.

Due to the extreme complexity of biological membranes, simplified models have

been used to understand their basic properties. One such approximation is that of

a pure lipid bilayer which contains no proteins and only a single type of lipids. In

order to understand the physical characteristics of these systems research has been

conducted utilizing experimental, computational and theoretical methods [9–15]. A

fundamental understanding of the basic mechanical properties of these membranes

is of great practical importance in drug development and delivery [5], understanding

disease through knowledge of protein mediation [1, 2], lipid raft formation [16, 17]

and a variety of other large scale cellular functions such as membrane budding [17],
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fission/fusion [3,4] and endo/exocytosis [5]. Intra-cellular structures such as organelles

are also composed of membranes. For example, the cell nucleus is surrounded by a

porous double membrane known as the nuclear envelope. Other organelles such as the

endoplasmic reticulum, the Golgi apparatus, and the mitochondria are all membrane

bound systems [7, 18]. It is clear that from a biological perspective, understanding

the basic properties of the bilayer membrane will lead to a large array of applications.

A commonly used method for modelling the bilayer is the continuum model which

treats the lipid bilayer as a thin elastic sheet. This was first proposed by Canham [19]

where the shape of red blood cells was determined by modelling the membrane with

the beam equation. An expansion of this work was done by Helfrich [20], where he

modelled the bilayer as a nematic liquid crystal, which was first studied by Frank [21].

The theory assumes no internal structure and simplifies the system to depend on

just a few geometric parameters. Using the mathematics of differential geometry,

the surface is described by its two principle curvatures, c1 and c2. Combinations of

these principle curvatures are used to parameterize the surface, which are the mean

curvature M = (c1 + c2)/2 and the Gaussian curvature G = c1c2 [22]. Through

the derivation performed by Canham and later Helfrich, the energy for curving a

membrane away from its equilibrium can be represented as,

F =

∫
[2κM(M − c0)2 + κGG+ σ0]dA+

∫
γLdl (1.1)

where κM , κG, σ0 and γL are the bending modulus, the Gaussian bending modulus,

the surface tension and the edge tension, respectively. Calculations of these bending

moduli are useful for understand the mechanical properties of bilayer systems. A

linear expansion of the curvature about the equilibrium (spontaneous) curvature c0

3
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is used to obtain Eq. 1.1. This model is known to be valid in cases of small curva-

ture deformations, however there has been limited work regarding the validity of this

model in highly curved systems. For example, Harmadaris et al. [9] tried to test this

using a two bead approximation for the lipid tails and found that the linear elastic

model was valid for curvatures up to the bilayer thickness. However, the two bead

approximation limits the contributions from the lipid tails and calls into question the

accuracy of the study. It has also been shown that fourth-order moduli can stabilize

intermediate states in the disk-to-vesicle transition of bilayer membranes [23]. Accu-

rate calculations are crucial in understanding what processes are biologically relevant.

For example, a review by Nagle [24] outlines how within the current literature, the

value of the experimentally measured bending modulus κM varies by a factor of two

depending on the method used. Since the free energy is carried into the exponential

when calculating the probability of certain biological processes, this disagreement be-

tween studies can be significant. It is this reason that the calculation of high-order

curvature terms are important. Small changes in the calculated moduli and free en-

ergy can have a profound effect on the chances of seeing certain structures/processes

in nature. For this reason, as well as its wide used in the literature [3–5, 10, 12, 13],

an understanding of the limitations of the Helfrich model is important.

This thesis presents an investigation on the contribution of higher-order correction

terms in the Helfrich free energy (Eq. 1.1), and outlines a systematic method for

determining the bending moduli using the self-consistent field theory (SCFT). The

expression used for the higher-order corrections, henceforth referred to as the modified

4
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Helfrich free energy is given as,

F =

∫
[2κMM

2 + κGG+ κ1M
4 + κ2M

2G+ κ3G
2 + σ0]dA+

∫
γLdl (1.2)

where κ1,κ2 and κ3 are the fourth-order bending moduli. In Eq. 1.2, it is assumed

that the bilayers are symmetric, thus eliminating odd order terms as well as sets

the spontaneous curvature to c0 = 0 . Recently a similar model has been used

to investigate the energetics of bolaamphiphilic membrane systems [24–27]. These

studies show that the high-order terms become important for the stability of various

morphologies. Even though the systems studied in Refs. [24–27] are different from

the one presented here, it shows that higher-order terms can be significant in some

cases and serves as further motivation for the current work. To calculate the bending

moduli, a theoretical description, the Self-Consistent Field Theory (SCFT), was used.

The SCFT is a widely utilized statistical description of polymeric melts that allows

for the computation of the free energy and detailed properties such as the morphology

(concentration distributions) [28–30]. By modelling a lipid bilayer immersed in solvent

as a blend of AB diblock copolymers (lipids) mixed with C homopolymers (solvents),

a bilayer can be stabilized in a variety of geometries (planar, cylindrical, spherical).

The free energy as a function of the bilayer curvature is then determined. By fitting

the free energy as a function of curvature to the modified Helfrich expression (Eq.

1.2), the bending moduli are obtained. A critical curvature is calculated depending

on the relative change in free energy between the standard and modified Helfrich

models. This analysis is vital for understanding the bending energetics of systems

that exhibit curvature on the order of the bilayer thickness, found in membrane fusion

and fission, endo/exocytosis and membrane budding.
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Armed with a systematic method for finding the bending moduli, a study on the

effect of the molecular parameters, such as the hydrophilic chain fraction (fA) and

interaction parameters (χN), on the system was performed. Modification of solvent

conditions and their effect on membrane properties was also analyzed. Solvents are

known to play a role in certain cellular functions such as creating potential gradients

across the membrane due to differential ion concentrations [8]. Understanding the ef-

fect of mixing lipids (diblocks) of different chemical types in a solvent (homopolymer)

has been studied in the past [17], however a systematic description over an array of

parameters has not been carefully investigated. Mixing of chemically different lipid

types have been shown to induce large scale morphological changes in vesicles, and

to promote budding transitions [31]. For this system, the bending modulus κM for a

range of lipid compositions is studied for mixtures of lipids that have a hydrophobic

mismatch between their tail sections.

Using the SCFT, the line tension of membrane pores was also calculated. The

line tension γL present in Eqs. (1.1, 1.2) plays an important role in pore formation.

Sakuma et al. [32] have shown that mixtures of lipids (diblocks) of different conical

shapes (hydrophobic tail lengths) can lead to induced spontaneous curvatures through

pore mediated inter-leaflet lipid transfer and reduced line tensions, allowing for stable

pore formations as well as complex morphologies to occur. These conical lipids may

therefore be used as edge stabilization agents in biological systems [33]. This report

ends with a qualitative description of pore edge phase separation in two-component

membrane systems and what effect it has on the edge line tension.

Through a deeper understanding of the effects that various system parameters

play on the mechanical properties of bilayer membranes, it is hoped that the results

6
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presented here can prove as a useful guide for future work. Having a more accu-

rate understanding of the bending energetics of such systems can help experiments

elucidate the mechanisms that drive cellular processes.

7



Chapter 2

Model and Methods

In this section, a description of the systematic methods used to determine the various

bending moduli of the bilayer membrane is presented. Since the theoretical derivation

of the Self-Consistent Field Theory (SCFT) is rather long and involved, only the main

results are shown in this chapter. A more detailed description is found in standard

texts [34]. In the following sections, a description of the SCFT is given and the excess

free energy of a bilayer system is defined. The difference between the free energy

of a flat bilayer, found by SCFT and the bulk free energy gives a measure of the

surface tension σ0 of the membrane. In the systems considered here, it is convenient

to find a zero surface tension condition (σ0 = 0) by careful adjustment of the relative

chemical potentials between all components of the system. This eliminates the energy

contribution from changing the membrane area and is also a condition satisfied in real

biological membranes. The later section describes how different geometries can be

used to simplify the Helfrich free energy (Eq. 1.2) and how this model compares to

the free energies determined by the SCFT calculations.

8
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2.1 Self-Consistent Field Theory (SCFT)

Much research has recently been focused on understanding the properties of the lipid

bilayers, and these have taken the form of experiments [12,32,35,36], theory and sim-

ulations [2,9–11,15]. For an understanding of the physics of membrane deformations,

as well as large scale shape transitions, for example endo/exocytosis, there is a need

for large system scales as well as a very large number of particles. For these reasons,

there is a large numerical cost associated with these methods, and constrains the

effectiveness of some numerical calculations. Work has been done in the past using

atomistic, coarse grained molecular dynamics (MD) and dissipative particle dynamics

(DPD) to study the bilayer membrane [17, 37]. The major limitation that impacts

these methods is the computational cost to simulate the many particles needed to

accurately describe a bilayer membrane. Simulations exploring the bending moduli

often have to measure the modes of bilayer shape fluctuations which can be fit with a

power law [9, 38]. However, this method is limited to low curvature fluctuations due

to small gradient expansions about the equilibrium shape [38]. The SCFT method

used in this thesis is a statistical model, which replaces all interactions between the

large number of polymers with an effective field acting on a single polymer chain.

This eliminates the limitation of simulation size, and also allows for direct calculation

of the system free energy, which has proved challenging in particle based simulations.

The SCFT starts with a microscopic representation of the polymer or polymer

blend, which is composed of individual statistical segments of a certain size. A

simple description of the polymer is given using the Gaussian chain model, which

represents the polymer as a series of spherical segments connected by freely rotating

springs [34,39]. Using the Flory-Huggins description to model the chain interactions,

9
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a grand canonical system is written, which is needed to describe the bilayer where

the membrane must remain in a tensionless self-assembled state. A mean-field ap-

proximation is used to calculate the critical points of the free energy landscape with

respect to the fields. This chooses a single dominant configuration that is assumed

to be the only contributing state in the partition function [34]. With this, a set of

self-consistent equations are found that can be solved numerically. These solutions

are then used to calculate the free energy of the bilayer system.

2.2 Excess Free Energy of the Bilayer Membrane

The methods described here can be applied to a variety of model systems with little

modification to the theory. The simplest system studied is a mixture of AB diblock

copolymers, which model the lipids of the biological membrane and C homopolymers

acting as the solvent. The SCFT calculation gives the free energy density of a grand

canonical ensemble for this system to be,

NFSCFT
R3
gρ0V

=
1

2V

∑
α 6=α′

Nχαα′

∫
d~rφα(~r)φα′(~r)− 1

V

∑
α

∫
d~rωα(~r)φα(~r)

+
1

V

∫
d~rNη(~r)(

∑
α

φα(~r)− 1)

+
1

V

∫
d~rNξ(~r)δ(~r −R)(φA(~r) + φC(~r)− φB(~r))

− e∆µ1Q1 − eκ∆µ2
Q2

κ
(2.1)

where ρ0 is the segment density, N is the degree of polymerization of the AB diblock,

Rg =
√
N/6b is the radius of gyration of the AB diblock, ∆µp are the chemical

10
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potentials of each polymer type (p = 1 for diblock, p = 2 for homopolymer), κ is the

relative homopolymer length and Qp are the single chain partition functions. φα(~r)

and ωα(~r) are the concentration and auxiliary fields of the α = A,B,C type polymer.

Here, η(~r) and ξ(~r) are the incompressibility and the pinning conditions, respectively.

As described in detail in Ref. [33], the ξ(~r) constraint field is needed to stabilize the

bilayer for the various geometries.

In order to calculate Eq. 2.1, the various fields (φ, ω, η, ξ) and single chain partition

functions (Qp) must be found. The single chain partition functions are calculated as,

Q1({ωα}) =
1

V

∫
d~r1d~r2d~r3QA(~r1, NA|~r2, 0)QB(~r2, NB|~r3, 0) (2.2a)

Q2({ωα}) =
1

V

∫
d~r1d~r2QC(~r1, NC |~r2, 0) (2.2b)

where Q(~r, s|~r′, 0) are the chain propagators that take the form,

Q(~r, s|~r′, 0) =

∫ ~R(s)=~r

~R(0)=~r′
D[~R(s)]e

−
∫N
0 ds

(
3

2b2

[
d~R(s)
ds

]2
+ω(~R(s))

)
(2.3)

The chain propagators are found by solving a modified diffusion equation,

∂

∂s
Qα(~r, s|~r′) =

b2

6
∇2Qα(~r, s|~r′)− ωα(~r)Qα(~r, s|~r′) (2.4)

with an initial condition of Qα(~r, 0|~r′) = δ(~r − ~r′). These can also be used to define

11
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the end-integrated propagators,

qα(~r, s) =

∫
d~r′Qα(~r, s|~r′) (2.5)

q+
α (~r, s) =

∫
d~r′d~r′′Qα(~r, s|~r′)Qβ(~r′, Nβ|~r′′) (2.6)

which satisfy the same modified diffusion equation. These are then used to calculate

the fields of the system through a set of self-consistent field equations,

φα(~r) = e∆µ1

∫ fα

0

dsqα(~r, s)q+
α (~r, fα − s) α = A,B (2.7a)

φC(~r) =
eκ∆µ2

κ

∫ κ

0

dsqC(~r, s)q+
C (~r, κ− s) (2.7b)

ωα(~r) =
∑
α 6=β

χαβNφβ(~r) + η(~r) + ξ(~r) α = A,C (2.7c)

ωB(~r) =
∑
B 6=β

χBβNφβ(~r) + η(~r)− ξ(~r) (2.7d)

∑
α

φα(~r) = 1 (2.7e)

φA(R) + φC(R) = φB(R) (2.7f)

The free energy is found by solving the self-consistent field equations via commonly

used numerical methods [40]. The solutions are then substituted into Eq. 2.1 to find

the free energy. For comparison, the homogeneous (bulk) free energy density for the

same system was used. In the case of homogenous systems, the spatial dependence

of the fields is no longer present and the field variables become scalar. The self-

consistent equations can be solved analytically to determine the homogenous polymer

concentrations and free energy of the homogenous phase. With the spatial dependence

12
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eliminated the free energy becomes,

NFbulk
R3
gρ0

=
1

2

∑
α 6=β

χαβNφαφβ −
∑
α

ωαφα − e∆µ1Q1 − eκ∆µ2
Q2

κ
(2.8)

The excess free energy difference per unit area between the equilibrium SCFT solu-

tions (FSCFT ) and the bulk free energy (Fbulk) is,

F =
N(FSCFT −Fbulk)

R3
gkBTρ0A

(2.9)

where A is the area of the bilayer membrane, kB is the Boltzmann constant and T is

the temperature.

2.3 Geometric Considerations

As mentioned in the introduction, the overall goal is to create a systematic method

to determine the various bending moduli in the system. Ideally, each of the bending

moduli in Eq. 1.2 should be determined independently, however the calculations in

this study are limited to a small number of geometries that can be used to measure

the bending moduli, which are the planar (P ), cylindrical (C), spherical (S) and in

later applications the pore geometry (Pore). For each geometry, a different form of

the modified Helfrich free energy (Eq. 1.2) is found. In this model there are seven

coefficients and only four geometries, therefore the system of equations is underdeter-

mined and it becomes impossible to extract all moduli independently. Some of these

coefficients can be neglected by using assumptions and physical reasoning. The first

13
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modification that can be done is to assume a closed, tensionless membrane (σ0 = 0,

dl = 0). The zero surface tension condition is found by careful adjustment of the

chemical potentials (∆µ) between the components of the system. First, a bilayer in

a planar geometry is stabilized, giving a reference state which lacks any curvature

terms (M = G = 0). This reduces Eq. 1.2 to,

F P =

∫
σ0dA (2.10)

where the superscript P denotes the planar geometry. Since the bilayer has a finite

area, this means that if the condition F P = 0 is found then the surface tension

term σ0 must be zero. Eq. 2.9 requires that FSCFT = FBulk for this condition to

be true. This is easily determined using any root finding method, such as the secant

method, to determine the correct chemical potentials that satisfy the condition. Once

this condition is met, Eq. 1.2 can be written for a cylindrical geometry where the

principle curvatures are c1 ≡ C = 1/R, c2 = 0 and R is the radius of the cylinder.

The mean curvature becomes M = C/2 and the Gaussian curvature G = 0. After

substituting these parameters into the free energy, the free energy calculated for the

cylindrical geometry yields,

FC =
κM
2
C2 +BCC

4 (2.11)

In Eq. 2.11, the fourth-order curvature terms have been combined into a single term

called the cylindrical fourth-order bending modulus Bc = κ1/16. In the spherical case

the principle curvatures are c1 = c2 ≡ C, and M = C, G = C2, leading to a free

energy,

14
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FS = (2κM + κG)C2 +BSC
4 (2.12)

where the spherical fourth-order modulus is defined as BS = κ1+κ2+κ3 . Finding the

solutions at low curvatures give a quadratic response in the free energies which can be

fit to a quadratic polynomial to extract κM and κG independently. To determine the

fourth-order moduli, bilayers of high curvatures are used, which show an additional

fourth-order response in the free energy. These are fit to a fourth-order polynomial

to extract BC and BS.

Up to this point there has not been a definition of the length and energy scales

of the system. To define the length scale, a tensionless planar bilayer is used as a

reference state. The thickness of the planar bilayer for symmetric diblocks (fA =

fB = 0.5); which was found to be d = 4.3Rg, was used as the length scale for the

system curvatures. The energy scale is defined as the interfacial energy between two

chemically distinct homopolymers of type A and B (diblock components). The strong

segregation limit of such an interface is given as γint =
√
χN/6(kbTbρ0)/

√
N [41]. The

bending moduli of the system are now rescaled as,

κ̃M =
κM
γintd2

(2.13a)

κ̃G =
κG
γintd2

(2.13b)

B̃C =
κ1

16γintd4
(2.13c)

B̃S =
κ1 + κ2 + κ3

γintd4
(2.13d)
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The edge line tensions γL of membrane pores were also calculated. γL refers

to the energy penalty for exposing a broken edge of the membrane to the solvent.

To measure the edge line tension, a cylindrical coordinate system was used in the

SCFT calculations. In this model, angular symmetry is assumed, while the spatial

dependence in the radial (r) and axial (z) directions can vary. The condition of a

closed surface was also relaxed. The edge line tensions were calculated by comparing

the free energy of different pore radii produced with the SCFT with the theoretically

expected results from the Helfrich description. Since the pore radius is related to the

edge length as l = 2πR, where R is the radius of the pore, a calculation of the edge

line tension is simply,

F PoreA = 2πγLR (2.14)

The slope of a linear fit will give the edge line tension γL. The edge line tension is

rescaled as,

γ̃L =
γL
γintd

(2.15)

which can be used to understand the effect microscopic system parameters have on

pore formation.

The methods described in this chapter were applied to a variety of system con-

figurations to elucidate how the microscopic system properties effect the macroscopic

properties. In the next chapter, the results for an AB diblock copolymer, C homopoly-

mer system is presented and discussed. In later chapters, a more complicated system

is employed using a blend of two chemically distinct diblock copolymers (AB/CD)

mixed with an E homopolymer solvent. The last chapter is dedicated to calculating

the edge line tension γL of two-component diblock bilayer systems.
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Chapter 3

Single-Component Bilayers

This chapter is focused on the calculations of the bending moduli for a system of AB

diblock copolymers and C homopolymers (AB/C). To begin, a description of how the

moduli are attained is presented, then the results for the low-order moduli (κM , κG)

are shown. After the second-order terms are determined for a variety of system

parameters, the high-order moduli (Bc, Bs) are calculated. A condition is defined

for the validity of the linear Helfrich model for systems exhibiting high curvatures

and comparisons are made between the low-order and the high-order models. A

critical curvature phase diagram is presented which gives a reference for what set of

microscopic system parameters require a higher order model to describe the bending

energetics.

To determine the bending moduli of the bilayer system, the first step is to stabilize

a bilayer membrane in the computation cell. The computation cell is typically 12Rg

in size for the one-dimensional case, with a discretization grid of 120 points. This

gives a spatial resolution of dx = 0.1Rg which is enough to capture all the details

of the bilayer. By careful adjustment of the chemical potentials and initial fields, a
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stable bilayer membrane is created, as depicted in Figure 3.1.
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Figure 3.1: A typical concentration profile for a curved bilayer membrane. The
hydrophobic tail regions (φB) are shielded from the solvent (φC) by the hydrophilic
head groups (φA). The average thickness of the bilayer is typically d = 4.3Rg, which
is used as the curvature length scale in the system. The vertical (red) line shows the
maxima of the hydrophobic concentration, used to define the bilayer neutral plane.

To calculate the various bending moduli, the free energy as a function of the system

curvature is calculated. This is done by maintaining the simulation cell size (12Rg)

while adjusting the distance between the centre of the geometry and the calculation

cell inner edge, denoted as r0 (Fig. 3.2).

To study cases with high curvatures, a consistent measure of the bilayer radius

must be used. In all cases, the maximal concentration of the hydrophobic groups

(φB), which defines the centre of the hydrophobic core was used. In the case of an
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Figure 3.2: Diagram showing the radius of a cylindrical geometry to the inner edge
of the computation cell (shown in red). This distance r0 can be adjusted to allow for
a wide variety of curvatures without the need to change the computation cell.

AB diblock system, the condition can be written as ∂φB(r)/∂r = 0, which is shown

as the vertical (red) line in Figure 3.1. Using the results calculated with the SCFT,

the free energy as a function of curvature is found. An example of such data is shown

in Figure 3.3. The free energies found from the SCFT are then used to calculate the

bending moduli of the system by fitting the data to the low and high-order bending

models.
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Figure 3.3: Free energy as a function of the scaled curvature for the cylindrical (FC)
and spherical (F S) geometries. At cd = 0 the bilayer is essentially flat, regardless of
the geometry, and attains the planar value of zero energy. For cases of low curvature
cd ≈ 0.0−0.5, there is a quadratic relationship between the curvature and free energy.
In systems of high curvature cd > 0.5, fourth-order terms enter the free energy and
deviations away from the linear Helfrich model occur.

3.1 Second-Order Moduli (κM , κG)

To determine the bending modulus κM and the Gaussian bending modulus κG, a

quadratic function was fit to the free energy curves shown in Figure 3.3 in the low

curvature regions (Cd < 0.5). It is assumed that at low curvatures, the high-order

bending contributions have an insignificant contribution to the free energy, and that

the lower order terms dominate. These fits were done over a large parameter space in

order to understand the effects of hydrophilic length fraction fA, interaction strengths
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χN and solvent length κ, on the bending moduli of the system. The first results pre-

sented show the effect of chain fraction length of the hydrophilic group (fA) and the

interaction strength (χABN = χBCN = 25, 30, 35). For these results, the homopoly-

mer length was the same as the AB diblock (κ = 1), and the interactions between

the hydrophilic groups and solvent are neutral (χACN = 0).
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Figure 3.4: Bending modulus (κM) for chain fractions of fA = 0.3−0.7, for interactions
of χABN = χBCN = 25, 30, 35. The results show that the chain fraction does not
have a dramatic effect on κM , while an increase in interaction strength reinforces the
mechanical strength of the bilayer.

The results in Figure 3.4 show that the bending modulus depends only slightly on
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the chain fraction length fA, but increases with the interaction parameter χN . The

results also show that the modulus is maximized for symmetric or almost symmetric

chains (fA ≈ 0.5). This slight asymmetry is due to the solvability of the various

groups. It is much more difficult for the C homopolymers to hydrate the hydrophobic

chains compared to the hydrophilic head groups. In the short head case (fA < 0.5),

a high degree of homopolymer overlap occurs between the hydrophobic core and the

homopolymer solvent. When this occurs, the overall reduction in the packing density

of the chains leads to a more flexible membrane, which lowers the rigidity. In the

long head region (fA > 0.5), a shorter hydrophobic chain length causes a reduction

in the hydrophobic core thickness, which has been shown to reduce the rigidity [42].

By increasing the interaction parameter, the solvability of the hydrophobic core is

reduced and allows for more densely packed chains which thickens the membrane and

increases the bending modulus.

The Gaussian bending modulus κG was calculated for the same set of parameters

shown in Figure 3.4. The results presented in Figure 3.5 shows interesting behaviour

when the length fraction (fA) changes.

The first feature is that κG is a monotonically decreasing function of the chain

fraction fA, and at fA ≈ 0.4 the modulus crosses zero. Another result is that an

increase in χN increases the magnitude of the Gaussian modulus. The free energy

contribution from the Gaussian curvature goes as,

FG = κG

∫
dAG = 2κGπχ(g) = 2κGπ(2− 2g) (3.1)

where the Gauss-Bonnet theorem was used. This shows that for a fixed topology, the

free energy contribution is invariant. The χ(g) = 2 − 2g is the Euler characteristic,
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Figure 3.5: Gaussian modulus (κG) for chain fractions of fA = 0.3− 0.7, for interac-
tions of χABN = χBCN = 25, 30, 35. A transition from positive modulus values to
negative occurs at fA ≈ 0.4, which signifies a change in the preferred topology.
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where g is the genus (number of handles) of the surface. In the case of spheres, g = 0

and FG = 4κGπ which is independent of the overall configuration of the surface. This

is why in many studies, the Gaussian modulus is treated separately. Experimental and

theoretical studies have been performed to calculate this value in the past, however

due to the complex nature of the system, experimental work has been limited [10,12].

In the region where κG < 0, it is clear that the spherical geometry reduces the free

energy of the system by making FG < 0. After the transition from negative to

positive, the Gaussian curvature term favours the formation of handles (perforations)

in the surface, which can be related to pore formation, fission/fussion events and

other biological processes.

A value commonly quoted in the literature is the ratio κG/κM . A plot of this

ratio is shown in Figure 3.6. It has been shown that in biological systems, the ratio

κG/κM ≈ −1 [24]. Comparing to the calculations, this value is found at fA ≈ 0.57,

which allows for a rough comparison of the simplified model to real biological systems.

It may be useful to draw conclusions for system parameters that match this condition

if comparisons to real membranes are to be made.

The homopolymer solvent has thus far been the same size of the AB diblock (κ =

1), and has the same chemistry as the hydrophilic portion of the diblock (χACN =

0). This means the above discussion was focused on an AB diblocks mixed with A

homopolymers. The effect of the solvent is well known to have important implications

on both the membrane and biology of living systems. For example, in biological

systems a chemical potential gradient across the membrane drives many processes

such as muscle contractions and neural signalling [8]. Therefore, understanding the

effects that the solvent has on the membrane is important. The first step is to
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Figure 3.6: Ratio of the Gaussian modulus κG relative to the bending modulus κM .
Biological membranes have been shown to take on a value close to κG/κM = −1.
This result can be used to compare the simplified model presented with biological
membrane systems.
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understand the effect that immiscible solvents have on the bending modulus κM

and the Gaussian modulus κG. This is performed by increasing the Flory-Huggins

interaction parameter between the hydrophilic A block of the AB diblock and the C

homopolymer (χACN 6= 0). In all cases, the interactions between the hydrophobic B

chains are χABN = χBCN = 30. The first result in Figure 3.7 shows the effect of

solvent interactions on the bending modulus (κM).
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Figure 3.7: Bending modulus (κM) as a function of the hydrophilic chain fraction
fA for different solvent interaction values. Increasing χACN causes a decrease in the
rigidity of the chain.
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As χACN increases, the immiscibility between the solvent and head groups in-

creases. Figure 3.7 shows that as χACN increases, a significant decrease of the bend-

ing modulus occurs even for relatively small parameter values (χACN). This is due

to new packing constraints on the A chains. Since the solvent is no longer able to

hydrate the head groups as efficiently, this causes the head groups to pack more

closely and increase the lateral area occupied by the chains. This causes an overall

reduction in the rigidity. This phenomenon has also been seen by the Oversteegen

group, where a similar effect due to the solvent interaction occurred. Oversteegen et

al. [14] found that along with the reduction in the bending modulus for a given set

of system parameters (fA, χN, κ), an increase in the Gaussian modulus κG was also

present. Comparing the results of Ref. [14] with those in this study, it is clear that a

similar trend occurs. Figure 3.8 shows the results for the Gaussian bending modulus

κG. Similar to the results of Overteegen et al., an increase in the interaction χACN

leads to an increase in the Gaussian modulus. The results presented show that small

changes in the solvent parameters can have a drastic effect on the stability of certain

morphologies. For modest interaction strengths (χACN ≈ 3), it is seen that at all val-

ues of fA, the Gaussian modulus is positive. As discussed previously, κG > 0 means

that it is energetically more favourable to form handles in the membrane rather than

have a closed spherical bilayer. This can also make the formation of pores and necks

more favourable, as these topological changes reduce the overall free energy.

Another solvent property studied is the homopolymer relative length fraction κ.

The main effect the length of the solvent has on the membrane bending moduli is

the ability for the solvent to penetrate the bilayer. When the solvent is smaller than

the diblock length (κ < 1), the solvent can more easily penetrate the head groups of
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Figure 3.8: Gaussian bending modulus (κG) as a function of the hydrophilic chain
fraction fA for different solvent interaction values. Small changes in the solvent
chemistry leads to an upwards shift in κG. For χACN > 3, the Gaussian modulus is
strictly positive which may promote non-spherical topologies.
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the bilayer, while the opposite effect occurs for κ > 1. The results for the bending

modulus κM are shown in Figure 3.9. When the solvent can more readily hydrate the

bilayer, an increase in the rigidity of the membrane occurs. The physical arguments

are similar to those discussed above where a reduction in solvent penetration caused

an overall reduction in the strength of the bilayer. Another interesting result is

the increase in the asymmetry of the rigidity maximum across the range of fA. As

mentioned before, this was thought to be due to the solvability of the homopolymer

with the head groups of the bilayer, and these results support that claim.

The results for the Gaussian bending modulus (κG) follow the same expected

trend (Fig. 3.10). When the hydration of the head groups is greater, κG shifts to

more negative values. The opposite effect is also seen when the solvent length is

increased, leading to less stable bilayers.

The results show that solvent conditions play a very important role in the mechan-

ical properties of the bilayer membrane, perhaps even comparable to the membrane

structure itself. Solvent conditions in biological membranes are known to have impor-

tant roles in various biological functions. Even with the simplified model used in this

work, the solvent has been shown to have very important effects on the membrane

strength and structure. Exploring the effect of solvent gradients, composition and

concentrations using this model in the future could have novel applications, such as

exploring the effect protein inclusions have on the bilayer.

3.2 Fourth-Order Moduli (BC, BS)

The bending modulus κM and the Gaussian modulus κG found in the previous section

are used to describe the bending energetics of low curvature membranes. In many

29



M.Sc. Thesis - Kyle Pastor McMaster - Physics & Astronomy

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

g M
/a

in
td

2

fA

g=0.5
g=1.0
g=1.5

Figure 3.9: Bending modulus (κM) for a variety of homopolymer length fractions κ.
When the homopolymer is longer than the AB diblock it is unable to hydrate the
hydrophilic head groups leading to a decrease in the bending rigidity. The solvent
also has an effect on the position of the maximal bending rigidity, leading to a more
pronounced asymmetry.
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Figure 3.10: Gaussian bending modulus (κG) for different homopolymer length frac-
tions κ. An increase in the homopolymer length shifts κG to more positive values and
shifts the zero crossing transition.
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biological systems and processes, regions of high membrane curvature are present. In

highly curved membranes it is not known whether the Helfrich model can be used to

accurately predict the bending energetics. In order to address this question, higher

order moduli shown in Eq. (1.2) have been added to the bending free energy. Per-

forming the SCFT calculations in high curvature systems allows for an understanding

of the effect high-order terms have on the membrane energetics. As discussed ear-

lier, there are not enough easily accessible geometries to determine the high-order

moduli independently. Instead, linear combinations of the moduli are presented as

BC = κ1/16 for the cylindrical fourth-order modulus and BS = κ1 + κ2 + κ3 for the

spherical fourth-order modulus. The goal is to be able to understand the limitations

of the standard Helfrich model. A systematic study of the bilayer membrane is done

to outline where the linear elastic theory is able to accurately describe the energetics

of the system. Calculations for an AB diblock, A homopolymer blend with solvent

length κ = 1 and interaction parameters of χABN = χBCN , and χACN = 0 for a

variety of chain fraction lengths fA is shown in Figures 3.11 and 3.12.

The results clearly shown that for highly curved membranes, the fourth-order

moduli take on non-zero values. This means that higher order contributions to the

free energy have a non-negligable effect on the system. The positive contribution is

expected from BC since it is just a scaled version of the fourth-order mean curvature

contribution. The negative values found for BS are interesting since they lead to a

reduction in the free energy of the system at high curvatures. BS contains both the

fourth-order contributions of the mean curvature and the Gaussian curvature, and also

the coupling between them. Understanding the importance of these contributions on

the bending energy must also be addressed. Section 3.3 defines a condition to compare
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Figure 3.11: Fourth-order cylindrical bending modulus (BC) for the AB/A system.
Positive values are found for BC which are expected since BC is simply a high-order
mean curvature scaling factor. A negative linear trend with fA is also observed.
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Figure 3.12: Fourth-order spherical bending modulus (BS) for the AB/A system. The
negative values show that the combination of the bending moduli cause a lowering of
the free energy at high curvatures. It should be noted that BS contains the coupling
term κ2 between the mean curvature M and the Gaussian curvature G.
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the low and high-order models, and a critical curvature phase diagram is presented.

3.3 Limitation of the Helfrich Free Energy

Using the results for the bending modulus κM , Gaussian bending modulus κG, and

the two fourth-order moduli BC and BS, the boundary separating the region where

the fourth-order corrections are negligible can be determined. To determine this

boundary, a physically relevant condition must be satisfied. In the current case, it is

required that the absolute relative difference between the fourth-order free energy F4

and the second order (Helfrich) free energy F2 must be less than some critical energy.

The relative free energy difference is written as,

∆E =
|F4 − F2|

F2

(3.2)

and must not exceed a critical value ∆E∗. Using the free energy expressions for the

two models Eqs. (1.1,1.2), critical curvature values can be determined in both the

cylindrical and spherical geometries. These critical curvatures are,

c∗C =

√
κM∆E∗

2BC

(3.3)

c∗S =

√
(2κM + κG)∆E∗

BS

(3.4)

which can be solved using the moduli found in the previous sections. As an example,

it is assumed that the critical energy must not exceed ∆E∗ = 2%. In Figure 3.13, a

critical curvature phase diagram is shown for the fA-cd plane.
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In the filled regions, the system is accurately modelled using the linear elasticity

theory (Helfrich model), while in unfilled regions one must apply the higher order

correction terms to accurately calculate the system energetics. The results shown

are meant to act as a guide for those studying relevant membrane systems of specific

geometry and parameters. For example, if a calculation of the bending energy of a

cylindrical tether is to be theoretically determined, it is likely that since this system

exhibits high curvature, fourth-order moduli will contribute non-negligible energy to

the system. The scale of the corrections depend on the accuracy needed, however

the results show that consideration must be taken when applying these models to

biological systems.

The results developed a systematic method for determining the bending moduli

of diblock bilayer membranes in the framework of SCFT. This has been used to

understand how the microscopic properties of the membrane effect the mechanical

(macroscopic) properties. By utilizing this method, high curvature systems have been

shown to be more accurately described using a higher order elastic model. Using

these results, a validity region of the linear elasticity model has been determined.

While this simple system has given many useful results, more complex systems can be

easily evaluated using the SCFT framework. There is also interest in understanding

the effect of mixtures of lipids within the membrane. The majority of biological

membranes contain more than one type of lipid [43], and the role of these mixtures

can give rise to interesting physics and mechanisms such as raft formation, curvature

induced spontaneous curvatures, and edge stabilization of pores. The next chapter

studies the effect of mixing two diblock species within the membrane.
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Figure 3.13: Critical curvature phase diagram for the hydrophilic chain fractions (fA)
and scaled curvature (cd). The filled regions show the parameter space where the
bending energy is accurately described by the standard Helfrich description. In the
unfilled fourth-order region, the high-order moduli must be added to describe the
energetics of bending the bilayer membrane.
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Chapter 4

Two-Component Bilayers

A system that has received some attention in the literature is the two-component

lipid bilayer [11, 15, 16, 32, 44]. In Section 3.3, a simple description using a single

diblock copolymer was used to model the lipid membrane, however in nature, lipid

bilayers are composed of a large variety of different types of lipid molecules [43]. The

system explored in this section is that of a mixture of AB and CD diblock copolymers

blended with E homopolymers. Two-component membrane systems have a variety

of interesting properties. Studies have shown that mixed bilayers can give rise to

new stable morphologies in two-component giant unilamellar vesicles (GUVs) [32].

Lipid mixtures also allow for the possible formation of lipid rafts, as well as pore

stabilization of highly curved membranes [8, 32,33].

The goal is to understand how the bending moduli respond to mixing of two dif-

ferent types of diblocks within the membrane. This is done in the grand canonical

ensemble by adjustment of the chemical potentials between the two diblock species.
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To characterize the amount of each type of diblock in the membrane, an order pa-

rameter Ψ is defined as,

Ψ =
φ1 − φ2

φ1 + φ2

(4.1)

where φp are the concentrations of the AB diblock (p = 1), and CD diblock (p =

2). A study on the effect of mixing two diblock with the same hydrophilic head

length, but different hydrophobic tail lengths is performed. This system is similar to

the one studied in Ref. [32], where the diblocks take on a cylinder (AB), and cone

(CD) geometry. It is also argued that mixtures of different diblock geometries can

lead to edge stabilization of membrane pores, which will be discussed later in this

thesis. These types of systems may lead to phenomenon such as phase separation

and raft formation, however in the current one-dimensional model, these details are

not attainable. Using the same methods outlined in Chapter 2, the bending modulus

κM is determined for the system.

4.1 Hydrophobic Mismatched Lipids

The system studied is a mixture of n1 AB diblock copolymers of length fractions

fA = fB = 0.5, and n2 CD diblock copolymers with a hydrophilic length of fCκ1 = 0.5

and variable hydrophobic tail length fD, where fC + fD = 1. In this definition, the

relative length of the diblock is κ1 = (NC+ND)/(NA+NB). This states that the length

of the head groups of both blocks are the same, however the D tail of the CD diblock

reduces its overall length. In all cases studied, the length of the homopolymer solvent

is the same as the AB diblock. The interaction parameters of the system are kept

as χN = 30 between all hydrophobic and hydrophilic blocks and neutral otherwise.
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This study is focused on short tail secondary polymers (fD < 0.5), meaning that

the CD diblock takes on a conical shape of various sharpness (Fig. 4.1). By careful

adjustment of the chemical potentials between the diblocks, the relative concentration

Ψ can be changed from Ψ = 1 for pure AB diblock bilayers, and Ψ = −1 for pure

CD diblock bilayers. Any intermediate value of Ψ is a mixed system.

f=0.5D f=0.4 f=0.3 f=0.2

Figure 4.1: Diagram depicting the various conical shapes taken by the CD diblock
copolymer. Smaller tail fractions (fD), shown as hashed (blue) segments, give the
diblock a more conical geometry.

The results for the bending modulus κM are presented in Figure 4.2 for a variety

of length fractions (fD). For pure AB diblock systems (Ψ = 1), all bending moduli

have the same value, which are identical to those found for the symmetric (fA = 0.5)

system in Chapter 3. As the conical CD diblocks are added to the system, the

bending modulus decreases monotonically until κM reaches the pure values for the

CD system. For calculations with smaller fD, the reduction is more pronounced. This

is due to a reduction in the overall hydrophobic core, which is known to reduce the
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Figure 4.2: The effect of the mixing of short tail (CD) diblocks into a symmetric
diblock (AB) bilayer, on the bending rigidity (κM) of the membrane. The result is
shown for a variety of chain lengths (fD). The values of Ψ = 1 correspond to pure
symmetric diblock (AB), and Ψ = −1 are pure short tail (CD) dibocks.
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bilayer stiffness. Similar results have been found in Szleifer et al. [15]. It should be

noted that work by both Imparato (Ref. [11]) and Szleifer (Ref. [15]) have shown non-

monotonic behaviour for mixtures membranes. In both cases, a minimum of κM was

found for intermediate mixing (−1 < Ψ < 1) in systems where the chain density on

each side of the bilayer was kept constant. This is known as the constant area model.

Szleifer also looked at the effect of different monolayer interactions. It was shown

that blocked exchange of lipids between the inside and outside monolayer, as well as

free exchange (as done in this thesis) have the same qualitative behaviour, however

the rigidity (κM) for blocked exchange was much larger. Therefore it is expected that

the rigidity calculations in this thesis may be underestimated when compare to real

systems. The results show that the bending modulus of the bilayer membrane can be

continuously tuned by addition of diblocks of different bending moduli.

One interesting problem is the effect that mixed membranes have on the stability

of pore formation. Chapter 4 is motivated by the work of Sakuma et al. [32], where

they find interesting morphologies in two-component GUV mixtures of conical and

cylindrical polymers.
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Chapter 5

Line Tension of Bilayer Membrane

Pores

In this chapter, the role of the microscopic structure of the diblocks on the edge line

tension (γL) of bilayer pores is determined. In the past, experimental work on tran-

sient pore formation has been used to determine the line tension of pore formation

in GUVs [45]. Calculations of the pore edge tensions have also been performed using

molecular dynamics simulations [46], however direct calculation of the free energy is

not available in these methods. From an industrial and biological stand point, it is im-

portant to have good understanding and control of pore formation in membranes. For

example, polymeric nano reactors and artificial organelles depend on proper segrega-

tion between the interior and exterior environments [36]. In this section, a calculation

of the edge line tension (γL) of the bilayer pore is done using the SCFT in a two-

dimensional cylindrical coordinate system. The calculation uses the same methods as

the previously presented results, however an increase in the geometric radius (r0) is

associated with the pore perimeter, as is depicted in Figure 5.1. Calculating the free
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Figure 5.1: Schematic of pore formation in the cylindrical geometry. The radius from
the centre of the geometry to the innermost edge of the computation cell is shown.
Varying r0 allows for pores of different sizes to be created, and their free energy
calculated. Also shown is the typical concentration profile of the membrane pore,
where the computation cell is the (red) box surrounding the profile.
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energy of a pore system for a variety of geometries, gives a linear relation with the

line tensions (Eq. 2.14). A representative free energy profile is shown in Figure 5.2.

The line tension for a mixture of AB diblocks and C homopolymers as a function

-0.5
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Figure 5.2: Free energy of the membrane pore as a function of pore radius (r/d).
Depending on the length of the secondary diblock in the bilayer, the free energy can
take shallower slopes. The linear relationship is used to extract the edge line tensions
γL.

of the hydrophilic chain length fA is first presented. This system is the same as in

Chapter 3. The scaled line tension (γ̃L) as a function of the hydrophilic chain fraction

fA is shown in Figure 5.3. A clear monotonically decreasing trend of γ̃L with chain

fraction fA is shown. The most striking result is that at fA ≈ 0.6, a crossover from

positive to negative line tension occurs. This suggests that large head lipids lead to
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Figure 5.3: Scaled line tension (γ̃L) as a function of the hydrophilic chain fraction
(fA). The line tension is a monotonically decreasing function with chain fraction and
has a zero transition at fA ≈ 0.6. Negative line tensions can lead to stable pore
formation in the bilayer membrane.

46



M.Sc. Thesis - Kyle Pastor McMaster - Physics & Astronomy

stable pore formation and can be used as edge stabilizing agents. By extending the

system to include a second diblock into the bilayer (AB/CD diblock system), the

effect of mixing the large head diblocks can be studied.

This final section studies the effect of mixing geometrically different diblocks (con-

ical vs. cylindrical), and how they effect the edge line tension of membrane pores. It

is expected that the addition of large headed (conical) diblocks into the membrane

should reduce the edge line tension leading to a more stable pore. The results for this

are shown in Figure 5.4.
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Figure 5.4: Edge line tension (γ̃L) as a function of relative diblock concentration (Ψ)
for a variety of secondary diblock geometries. More conical shaped diblock correspond
to smaller hydrophobic tail segments (fD). The addition of conical diblocks reduces
the line tension of the pore. For very short tailed diblocks (fD < 0.3), mixtures can
lead to negative line tensions, making pore formation favourable.
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The results show that as fD is reduced, the line tension of the system is also

lowered. For the CD diblocks of fD < 0.3, negative line tensions are found. In general,

the smaller the fD, to achieve the same reduction in line tension, less concentrated

mixtures are needed for more conical secondary diblocks. The mechanism behind

this is rationalized by looking at the concentration profiles of the membrane pore. A

density profile from the SCFT solutions is shown in Figure 5.5. The image shows the

concentration of the conical diblock (CD) as if forms a membrane pore. The density

profile shows that there is a large concentration of these diblocks near the pore edge,

which shows that pore edge phase separation is occurring in the system. A clear view

of this is shown in the 3D image representation where the dark (blue) region show

an increase in the CD diblock (cone) concentration.

The ability for the pore to phase separate is driven by the complimentary geometry

taken by the CD diblock. Naturally, such conical diblocks would try to from a micellar

morphology, however since they are mixed in the bilayer, this cannot be achieved. To

minimize the free energy, they aggregate to the regions of complementary curvature,

in this case the pore edge, which results in a reduction of the system free energy as

well as the line tension of the pore. This also has a relieving effect on the cylindrical

blocks, as they no longer are penalized by high curvature at the membrane edge.

To quantify the amount of edge separations, Figure 5.6 shows the concentration of

each diblock type as a function of the radial coordinate. It is clear from the plot

that edge separation is occurring. These results show that simply by mixing different

polymer lengths, a drastic reduction in the edge line tension can be observed. From

a biological stand point, this is perhaps a reason that cell membranes contain many

different lipid components. Reordering of the lipid bilayer in certain situations to
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Figure 5.5: Concentration profile of the secondary conical CD diblock forming a mem-
brane pore. The diblocks at the edge are represented as cones. The 3D representation
shows edge phase separation of the conical diblock (dark/blue).
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Figure 5.6: Total concentration of each polymer species as a function of the radial
direction. The increase in the CD concentration quantifies the amount of separation
in the system.
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accommodate the geometric constraints, for example around proteins, could be one

application of highly diverse lipid bilayers.
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Chapter 6

Summary

In the work presented, the SCFT was used to study the mechanical properties of

bilayer membranes by modelling the lipids as diblock copolymers. The mechanical

properties explored were the bending modulus κM , Gaussian bending modulus κG,

as well as higher order moduli denoted as the cylindrical, and spherical fourth-order

bending moduli BC and BS, respectively. Another property calculated was the edge

line tension of a bilayer pore (γL). All of the above parameters play an important

role in the mechanical strength, morphology and function of lipid bilayers, therefore

accurate calculation and understanding of the underlying physics is important. The

first system modelled the lipid bilayer as a mixture of AB diblock copolymers and C

homopolymers. The interaction parameters were set to allow for the AB diblocks to

act as the amphiphilic phospholipids, while the homopolymers modelled the solvents.

The geometry of the system was modified to measure the energy penalty of curving a

cylindrical and spherical closed bilayer membrane. The results show that the length

fraction of the head chains (fA) had little effect on the bending modulus κM of the

membrane, however the Gaussian bending modulus κG had a zero crossing transition
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at fA ≈ 0.4, which can lead to topologically unstable systems. An increase in the

interaction parameter (χN) between the hydrophobic and hydrophilic regions saw an

increase in both κM and the magnitude of κG.

The effect of solvent in the system was also analyzed. By making the hydrophilic

head groups and the homopolymer solvent slightly immiscible, a dramatic variation

in the membrane moduli occurred. As the interaction increased, a large reduction

in κM was found. The Gaussian bending modulus κG also saw a large increase with

the interaction parameter. For relatively small changes to the solvent conditions, κG

takes on globally positive values, which means that the spherical topology is much

less stable. Another solvent parameter explored was the homopolymer length fraction

κ. When the homopolymer took on larger lengths than the diblock, it was less able

to hydrate the bilayer, which reduced the bending modulus of the system. This is a

similar consequence as an increase in the solvent interaction. The Gaussian bending

modulus κG also saw an increase with the homopolymer length fraction κ, although

not as dramatic as with the interaction case. These results show that the solvent

environment plays a large role in the membrane properties, and should be the focus

of future research.

The moduli were calculated by comparing the free energy as a function of curvature

to the Helfrich model. The Helfrich model is known to be accurate for low curvature

systems, however an understanding of the model’s limitations for high curvature has

not been extensively studied. To addressed this, the SCFT was used to calculate the

bending energy for bilayers that have a curvature on the order of the bilayer thickness

d. In this regime, fourth-order energy terms enter the Helfrich model, and these

moduli were calculated. This was done for an AB diblock, A homopolymer blend,
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and the fourth-order moduli were calculated for various hydrophilic chain fractions fA

and interaction parameters χN . The results found non-zero values of these bending

moduli, showing that higher order terms are non-negligible at high curvature in simple

bilayer systems. Depending on the system parameters, the importance of these terms

was studied. By defining a criteria for the accuracy as the relative energy difference

between the Helfrich and high-order model, a critical curvature phase diagram was

created. This phase diagram shows that at low curvature, the Helfrich model is an

accurate representation of the bending energetics of the system, however for regions

of high curvature, the fourth-order moduli become important and must be used for

proper calculation. These conclusions show that in most cases, the Helfrich free energy

can successfully model the bending energy of the system, and therefore validates its

usage in the current literature. However, for systems exhibiting extreme curvature,

as is found in certain cellular processes, the higher order model must be used.

The next set of studies focused on the effect of mixing two different types of

diblock copolymers in the bilayer membrane. In biological systems, there is a large

variability in the kinds of lipids present in various membrane bound systems, such as

the organelles in the cell. This work focused on the mixing of variable lipid geometries

and their effect on the bending modulus of the system. In this study, the secondary

diblock (CD) was set to have the same chemistry as the primary diblock (AB), with

the same head length (fA = κ1fC = 0.5), however a reduced hydrophobic core. The

bending modulus κM was calculated for different relative diblock compositions (Ψ).

The rigidity was calculated for different conical shapes of the secondary diblock. The

bending modulus κM shows a nearly linear transition from one diblock type to the

other. These results are similar to the work of Szleifer et al. [15] for the free exchange
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model.

The last set of calculations focused on understanding the effect that mixing dibocks

has on the edge line tension of membrane pores. The same two-component bilayers

were used, and the edge line tension of the system was calculated using the SCFT.

For conical secondary diblocks (CD), a large drop in line tension was found as the

concentration of CD increased. In cases of very short tail length (fD < 0.3), mixtures

were able to reduce the line tension to negative values, which means that these systems

can have a stabilizing effect on membrane pores and can be used as edge stabilization

agents. Interestingly, upon addition of the conical diblocks, phase separation of these

secondary blocks at the pore edge occurred. This is because the cone geometry is

more suited to high positive curvature regions. These results may shed light on the

reasons why high variability of lipids in biological membranes are present.

This thesis has given a systematic method to study the bilayer membrane using

SCFT and has proven to be a novel approach to studying these interesting and com-

plex systems. The framework developed can be easily extended and modified to study

many other systems such as charged polymers, protein system and systems of more

complex chain topologies. Since many industrial, medical and biological system have

use for bilayer membranes, this research has wide potential applications.
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Appendix A

Numerical Methods

The majority of the numerical cost of the SCFT comes from the calculation of the

propagators, and the many iterations for needed convergence of the fields. Each

step involves finding the solutions of the modified diffusion equations along the chain

contour in order to calculate the propagators. The propagators are used to determine

the fields and free energy of the system. The fields are updated self-consistently until

a saddle point solution is reached. In many cases, this can be done using a spectral

method if the final structure is known a priori and a suitable number of basis functions

can be used in the calculation. In the cases where the outcome profile is not known,

as such in the case of finding new morphologies, a real space method is commonly

chosen [34]. The problem becomes more complicated in non-planar geometries, as

the diffusion operator takes a different form in cylindrical and spherical coordinates.

While having a planar geometry allows for the use of a variety of real space and

pseudo-spectral (collocation) methods, the use of these different coordinate systems

causes the numerics to be more complex.
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For one-dimensional systems, the modified diffusion equation can be solved by fi-

nite difference methods using a Crank-Nicolson scheme [47], however in two-dimensions

and higher, this becomes numerically intractable. For two-dimensional systems, the

alternating direction implicit method (ADI) is used in order to solve the diffusion

equations in two dimensions. A description of the Crank-Nicolson method in all

three geometries considered (planar, cylindrical and spherical) will first be given,

which will create a general framework for the ADI method description in cylindrical

coordinates.

A.1 Crank-Nicolson Method

The Crank-Nicolson method [47] is a finite difference scheme, originally used to solve

heat diffusion systems. It consists of using a simple trapezoidal rule in the time

domain, and a weighted central difference for the spatial coordinate. This is the

method used to solve the modified diffusion equations,

∂q(r, s)

∂s
= C∇2q(r, s)− ω(r)q(r, s) (A.1)

where the coordinate system and dimension will be subject to change.

The first and simplest geometry described is the planar case. With this shown, the

major highlights and changes needed to accommodate the cylindrical and spherical

geometries will be discussed.

A.1.1 Planar Coordinate System

In the planar coordinate system, the Laplace operator reduces to,

57



M.Sc. Thesis - Kyle Pastor McMaster - Physics & Astronomy

∇2 =
∂2

∂x2
(A.2)

which greatly simplifies the problem. The Crank-Nicolson method is a combination

of time-step and spatial averaging which is represented as,

qs+1
i − qsi

∆s
= C[C2

NK(qs+1
i )]− wi

2
(qs+1
i + qsi ) (A.3)

where the spatial coordinate is indexed on a discrete grid by the subscript i, and

C2
NK(qs+1

i ) represents a second-order central difference equation given as,

C2
NK(qs+1

i ) =
1

2(∆x)2
(qs+1
i+1 − 2qs+1

i + qs+1
i−1 + qsi+1 − 2qsi + qsi−1) (A.4)

This definition can be applied to the above equations. Isolating terms of the same

time-step (s or s+ 1) to separate sides yields,

−C∆s

2∆x2
qs+1
i+1 +

(
1 +

C∆s

∆x2
+

∆sωi
2

)
qs+1
i − C∆s

2∆x2
qs+1
i−1 (A.5)

=
C∆s

2∆x2
qsi+1 +

(
1− C∆s

∆x2
− ∆sωi

2

)
qsi +

C∆s

2∆x2
qsi−1

Simplification is done by using scalar constants in the equation as,

αqs+1
i+1 + βqs+1

i + αqs+1
i−1 (A.6)

= −αqsi+1 + γqsi − αqsi−1

where the constants are defined as,
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α =
−C∆s

2∆x2
(A.7a)

β =

(
1 +

C∆s

∆x2
+

∆sωi
2

)
(A.7b)

γ =

(
1− C∆s

∆x2
− ∆sωi

2

)
(A.7c)

This can now be put into a matrix form and then solved using a tridiagonal matrix

algorithm (Thomas Algorithm/TDMA), however this step will be left for the more

complicated case of a two-dimensional system, as the same methods apply in a more

general scope. The same description can be applied to the cylindrical and spherical

geometries.

A.1.2 Cylindrical Coordinate System

The one-dimensional Laplace operator in the cylindrical coordinates can be defined in

a similar way to the planar, however since axial (z-coordinate) and angular symmetry

are assumed, only the radial component of the operator is defined,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
(A.8)

As above, the differential equation can be written as,

qs+1
i − qsi

∆s
= C[C2

NK(qs+1
i ) +

1

r
CNK(qs+1

i )]− ωi
2

(qs+1
i + qsi ) (A.9)

where once again C2
NK(qs+1

i ) is defined as in Eqn. A.4, CNK(qs+1
i ) and r are defined

as,
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CNK(qs+1
i ) =

1

4∆r
(qs+1
i+1 − qs+1

i−1 + qsi+1 − qsi−1) (A.10)

r = r0 + i∆r (A.11)

where r0 is the distance from the centre of the geometry to the innermost edge of the

computation cell, and r is defined as the radial position within the boundaries of the

cell. By separating the contour steps, a set of equations is found that can easily be

placed into matrix form and solved using the TDMA. The equations in this case are

slightly modified from that of the planar geometry and is given as,

(
−C∆s

2∆r2
− 1

r

C∆s

4∆r

)
qs+1
i+1 +

(
1 +

∆s

2
ωi +

C∆s

∆r2

)
qs+1
i +

(
−C∆s

2∆r2
+

1

r

C∆s

4∆r

)
qs+1
i−1

=

(
+
C∆s

2∆r2
+

1

r

C∆s

4∆r

)
qsi+1 +

(
1− ∆s

2
ωi −

C∆s

∆r2

)
qsi +

(
C∆s

2∆r2
− 1

r

C∆s

4∆r

)
qsi−1

A.1.3 Spherical Coordinate System

The spherical Laplace operator in the case of spherical symmetry is defined as,

∇2 =
∂2

∂r2
+

2

r

∂

∂r
(A.12)

When a comparison is made between the cylindrical and spherical Laplace operator

it is clear that the only difference is that the first order derivatives are multiplied by

a factor of 2. Using the same methods as in the planar and cylindrical systems, the

system of equations for the spherical geometry become,
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A.1.4 Crank-Nicolson Boundary Conditions

In the previous sections, a system of equations was derived to solve the diffusion equa-

tions, which can easily be represented in matrix form. As mentioned, this process

will be described in detail in the following section describing the alternating direc-

tion implicit method (ADI) method. As a preamble, the effect of different boundary

conditions in the Crank-Nicolson method is discussed. For this purpose, the focus

will be on the planar geometry, as it is the simplest to write and understand, how-

ever the method is easily applied to the cylindrical and spherical systems with small

modifications of the variable definitions.

The first step is to represent Eq. A.7 in a matrix form. The matrix will be in

tridiagonal form, however at the bounding points for i = 0 and i = Nx, a value must

be determined for the propagators corresponding to q−1 and qNx+1, respectively. How

to define these points is the core to the boundary condition question. In the following,

the three most common types of boundary conditions are discussed, and a simplified

matrix representation of the system of equations will be shown.

Periodic Boundary Conditions

While the periodic boundary condition (PBC) is not used in the work presented,

it may prove useful to the curious reader. In general, the PBC is used to represent
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systems that are infinite in space or are expected to have some underlying periodicity.

In molecular dynamics (MD) simulations, this is used to simulate an infinite bilayer

system and evaluate the fluctuation spectra to extract bilayer properties such as the

bending modulus κM [9, 38]. In the context of the SCFT, the PBC assumes that the

form of the solution to the system of equations has some periodicity. How this relates

to the values of the propagators is as follows,

q−1 = qNx (A.13)

qNx+1 = q0 (A.14)

where the first equation is for the lower boundary and the second for the upper. With

this in mind, the system of equations can be written in matrix form for the given set

of boundary conditions as,



β −α 0 · · · −α

−α β −α · · · 0

...
. . . . . . . . .

...

0 · · · −α β −α

−α · · · 0 −α β





qs+1
0

qs+1
1

...

qs+1
Nx−1

qs+1
Nx


=



γ α 0 · · · α

α γ α · · · 0

...
. . . . . . . . .

...

0 · · · α γ α

α · · · 0 α γ





qs0

qs1
...

qsNx−1

qsNx


The system of equations is in tridiagonal form with the exception of the first

and last equations where the periodic conditions take place. In this situation, effi-

cient methods of finding the solution, such as the TDMA, can be used with slight

modification. The TDMA method can be used in all interior points, however separate
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solutions for the boundaries must be put in by hand before application of the method.

Dirichlet Boundary Conditions (Fixed Point BC)

The next common set of boundary conditions is the Dirichlet, or fixed point boundary

condition. For example, when solving the heat equation across some region where one

side is held constant due to contact with a heat reservoir, one may apply this boundary

condition so that the solution is fixed at that point. In terms of the propagators,

q0 = a (A.15)

qNx = b (A.16)

This means that the exact value of the first and last equation at all contour steps

are known. This manifests itself in matrix form as,



1 0 0 · · · 0

−α β −α · · · 0

...
. . . . . . . . .

...

0 · · · −α β −α

0 · · · 0 0 1





a

qs+1
1

...

qs+1
Nx−1

b


=



1 0 0 · · · 0

α γ α · · · 0

...
. . . . . . . . .

...

0 · · · α γ α

0 · · · 0 0 1





a

qs1
...

qsNx−1

b


Neumann Boundary Conditions (Zero-Derivative BC)

The final boundary condition to discuss has been exclusively used in the work pre-

sented. The Neumann boundary conditions, also referred to as the zero-derivative, or
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zero-flux condition, is used when it is assumed that at the boundary, the change (or

slope) of the solution is zero. In this framework, it can be thought that the values

of the solutions at the boundary are extended and maintained at whatever constant

value it has admitted. The form of this condition is given as,

∂q0

∂x
=
∂qNx
∂x

= 0 (A.17)

Focusing on one of these conditions, the first order derivative in a central difference

scheme gives,

∂q0

∂x
=
q1 − q−1

2∆x
= 0 (A.18)

which leads to the conclusion that q−1 = q1. The same calculation for the upper

boundary gives qNx+1 = qNx−1. Writing in matrix form,



β −2α 0 · · · 0

−α β −α · · · 0

...
. . . . . . . . .

...

0 · · · −α β −α

0 · · · 0 −2α β





qs+1
0

qs+1
1

...

qs+1
Nx−1

qs+1
Nx


=



γ 2α 0 · · · 0

α γ α · · · 0

...
. . . . . . . . .

...

0 · · · α γ α

0 · · · 0 2α γ





qs0

qs1
...

qsNx−1

qsNx


Both the Dirichlet and Neumann conditions can use the TDMA without any

modification to the standard method.
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A.2 Alternating Direction Implicit Method (ADI)

In Cylindrical Coordinates

The alternating direction implicit (ADI) method was first developed by Peaceman

and Rachford [48] to solve the two-dimensional head diffusion equation. The ADI

method is a type of operator splitting method that works by first solving a system

of equations along one dimension, and then using these intermediate solutions as the

initial conditions for solving the second dimension. In this work, this method is used

to solve the modified diffusion equations of the chain propagators in the cylindrical

geometry. As a reminder, the modified diffusion equation is,

∂q(r, s)

∂s
= C∇2q(r, s)− ω(r)q(r, s) (A.19)

where q(r, s) is the chain propagator that depends on the positions defined by r

and the chain segment number s. C is the diffusion coefficient, which in the case of

polymeric systems is given as R2
g, however for this work, the system has been scaled

such that Rg = 1 and therefore C = 1. The ω(r) term is the auxiliary field that

mediates the interactions between the polymers. This term is a modification of the

standard diffusion case and must be treated with care. The initial condition for this

system is,

q(r, 0) = 1.0 (A.20)

At this point, a definition of the Laplacian operator must be determined. In

the next two subsections, a description of the two coordinate systems used (planar
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and cylindrical) is given and a system of equations is derived that can be solved

numerically to yield a solution to the modified diffusion equation.

In the cylindrical geometry, the Laplacian operator takes the form,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(A.21)

where angular symmetry of the cylinder is assumed. To perform the ADI method, the

radial direction is solved first (explicit), while keeping the z-direction fixed (implicit).

The solution of this first pass will constitute a half-step in the chain variable, taking

it from q(r, s) to q(r, s + 1/2). Once this is complete, the q(r, s + 1/2) solutions are

used as inputs to solve the z-direction while keeping the radial variables fixed. This

final step will take the chain variable from q(r, s+ 1/2) to the final q(r, s+ 1), which

is the desired result. Continuing this process from s = 0 to s = N , will give the

solution.

In numerical calculations, methods are limited to a discrete number of points to

represent continuous functions in both the spatial (r, z) and contour (s) dimensions.

Therefore, a finite spatial grid denoting the radial values as the subscript i and the

z-direction variables by the subscript j is used. The contour variables are placed as

superscripts for clarity, so all future descriptions will represent the propagator as qsi,j.

The first step of the method is written as,

q
s+1/2
i,j − qsi,j
(∆s/2)

=

(
δ2
rq
s+1/2
i,j +

1

r
δrq

s+1/2
i,j + δ2

zq
s
i,j

)
− ωi,j

(q
s+1/2
i,j − qsi,j)

2
(A.22)

The δ2
r , δr, and δ2

z represent the second, and first order central difference equations
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in both the radial and z-directions as formulated,

δ2
rq
s+1/2
i,j =

1

(∆r)2
(q
s+1/2
i+1,j − 2q

s+1/2
i,j + q

s+1/2
i−1,j ) (A.23)

δrq
s+1/2
i,j =

1

2∆r
(q
s+1/2
i+1,j − q

s+1/2
i−1,j ) (A.24)

δ2
zq
s
i,j =

1

(∆z)2
(qsi,j+1 − 2qsi,j + qsi,j−1) (A.25)

The auxiliary field term ωi,j is split between the time-steps q
s+1/2
i,j and qsi,j, which

essentially evaluates the variable at q
s+1/4
i,j . By substituting the above values into Eqn.

A.22 and arranging all qs+1/2 terms on the left hand side, and the qs terms on the

right hand side,

α1q
s+1/2
i+1,j + α0q

s+1/2
i,j + α−1q

s+1/2
i−1,j = β1q

s
i,j+1 + β0q

s
i,j + β−1q

s
i,j−1 (A.26)

where the left side variables are defined as,

α1 ≡ −
C∆s

2(∆r)2
− 1

r

C∆s

4∆r
(A.27a)

α0 ≡ 1 +
C∆s

(∆r)2
+

∆s

4
ωi,j (A.27b)

α−1 ≡ −
C∆s

2(∆r)2
+

1

r

C∆s

4∆r
(A.27c)

and the right hand side variables are defined as,
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β1 ≡
C∆s

2(∆z)2
(A.28a)

β0 ≡ 1− C∆s

(∆z)2
− ∆s

4
ωi,j (A.28b)

β−1 ≡
C∆s

2(∆z)2
(A.28c)

The zero-derivative (Neumann) boundary conditions is used at i = 0, Nr and

j = 0, Nz, where Nr and Nz are the upper indices for the radial and z-coordinate

directions, respectively. The mathematical form of the boundary conditions is,

∂q0,j

∂r
=
∂qNr,j
∂r

=
∂qi,0
∂z

=
∂qi,Nz
∂z

= 0 (A.29)

Taking q0,j as an example, the derivative is represented by the central difference

method,

∂q0,j

∂r
=
q1,j − q−1,j

2∆r
= 0 (A.30)

which leads to q−1,j = q1,j.

In this example, for i = 0, the system of equations at this boundary become,

(α1 + α−1)q
s+1/2
1,j + α0q

s+1/2
0,j = β1q

s
0,j+1 + β0q

s
0,j + β−1q

s
0,j−1 (A.31)

where the boundary has been enforced on the left side of the equation. The last

consideration is the case where the boundary conditions must be applied in both

directions, which makes up the four corners of the computation cell. As an example,
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the system of equations when i = j = 0 is,

(α1 + α−1)q
s+1/2
1,0 + α0q

s+1/2
0,0 = (β1 + β−1)qs0,1 + β0q

s
0,0 (A.32)

Now that all boundary conditions have been properly considered, the system is ex-

pressed in matrix form. For the system of equations at the boundary i = j = 0,



α0 (α1 + α−1) 0 · · · 0

α−1 α0 α1 · · · 0

...
. . . . . . . . .

...

0 · · · α−1 α0 α1

0 · · · 0 (α1 + α−1) α0





q
s+1/2
0,0

q
s+1/2
1,0

...

q
s+1/2
Nr−1,0

q
s+1/2
Nr,0


=



(β1 + β−1)qs0,1 + β0q
s
0,0

(β1 + β−1)qs1,1 + β0q
s
1,0

...

(β1 + β−1)qsNr−1,1 + β0q
s
Nr−1,0

(β1 + β−1)qsNr,1 + β0q
s
Nr,0


For all the interior points j = 1, Nz − 1,



α0 (α1 + α−1) 0 · · · 0

α−1 α0 α1 · · · 0

...
. . . . . . . . .

...

0 · · · α−1 α0 α1

0 · · · 0 (α1 + α−1) α0





q
s+1/2
0,0

q
s+1/2
1,0

...

q
s+1/2
Nr−1,0

q
s+1/2
Nr,0


=



β1q
s
0,j+1 + β0q

s
0,j + β−1q

s
0,j−1

β1q
s
1,j+1 + β0q

s
1,j + β−1q

s
1,j−1

...

β1q
s
Nr−1,j+1 + β0q

s
Nr−1,j + β−1q

s
Nr−1,j−1

β1q
s
Nr,j+1 + β0q

s
Nr,j

+ β−1q
s
Nr,j−1


The system of equations can be solved using the tridiagonal matrix algorithm (TDMA)

[49,50], where the TDMA is a combination of back substitution and Gaussian elimi-

nation.

The solutions (qs+1/2) are used as the initial conditions for the second step of the

69



M.Sc. Thesis - Kyle Pastor McMaster - Physics & Astronomy

ADI method. The derivation for this is the same as above,

γ1q
s+1
i,j+1 + γ0q

s+1
i,j + γ−1q

s+1
i,j−1 = σ1q

s+1/2
i+1,j + σ0q

s+1/2
i,j + σ−1q

s+1/2
i−1,j (A.33)

with the constants on the left hand side matrix,

γ1 = − C∆s

2(∆z)2
(A.34a)

γ0 = 1 +
C∆s

(∆z)2
+

∆s

4
ωi,j (A.34b)

γ−1 = − C∆s

2(∆z)2
(A.34c)

and right hand side,

σ1 =
C∆s

2(∆r)2
+

1

r

C∆s

4∆r
(A.35a)

σ0 = 1− C∆s

(∆r)2
− ∆s

4
ωi,j (A.35b)

σ−1 =
C∆s

2(∆r)2
− 1

r

C∆s

4∆r
(A.35c)

With a final application of the TDMA, the solutions are propagated from s to

s + 1. Performing the same calculations for s = 0, Ns, where Ns is the number of

segments, leads to the final solutions. With the chain propagators determined, the

concentration and free energies can now be calculated.
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