
A DOCUMENT DRIVEN APPROACH TO CERTIFYING SCIENTIFIC COMPUTING
SOFTWARE

By
NIRMITHA KOOTHOOR, B.ENG.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the degree

Master of Applied Science in Software Engineering

McMaster University
c©Nirmitha Koothoor, May 2013

MASTER OF APPLIED SCIENCE (2013) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: A Document Driven Approach to Certifying Scientific Computing Sofware
AUTHOR: Nirmitha Koothoor, B.Eng.
SUPERVISOR: Dr. Spencer Smith
NUMBER OF PAGES: viii, 142

ii

Abstract
With the general engineering practices being followed for the development of scien-

tific software, scientists are seemingly able to simulate real world problems successfully
and generate accurate numerical results. However, scientific software is rarely presented in
such a way that an external reviewer would feel comfortable in certifying that the software
is fit for its intended use. The documentation of the software development - Requirements,
Design and Implementation, is not being given the importance it deserves. Often, the re-
quirements are improperly and insufficiently recorded, which make the design decisions
difficult. Similarly, incomplete documentation of design decisions and numerical algo-
rithms make the implementation difficult. Lack of traceability between the requirements,
design and the code leads to problems with building confidence in the results.

To study the problems faced during certification, a case study was performed on a
legacy software used by a nuclear power generating company in the 1980’s for safety anal-
ysis in a nuclear reactor. Unlike many other scientific codes of that time, the nuclear power
generating company included a full theory manual with their code. Although the theory
manual was very helpful, the documentation and development approach still needed sig-
nificant updating. During the case study, 27 issues were found with the documentation of
the theory manual, 2 opportunities to update the design and 6 programming style issues
were found in the original FORTRAN code. This shows room for improvement in the
documentation techniques in the development of scientific software based on a physical
model.

This thesis provides a solution to the certification problem, by introducing software
engineering methodologies in the documentation of the scientific software. This work pro-
poses a new template for the Software Requirements Specification (SRS) to clearly and
sufficiently state the functional and the non-functional requirements, while satisfying the
desired qualities for a good SRS. Furthermore, the proposed template acts as a checklist
and helps in systematically and adequately developing the requirements document. For de-
veloping the design and implementation, this thesis introduces Literate Programming (LP)
as an alternative to traditional structured programming. Literate Programming documents
the numerical algorithms, logic behind the development and the code together in the same
document, the Literate Programmer’s Manual (LPM). The LPM is developed in connection
with the SRS. The explicit traceability between the theory, numerical algorithms and im-
plementation (code), simplifies the process of verification and the associated certification.

iii

Acknowledgments
With profound gratitude I would like to acknowledge the support and help of my Su-

pervisor Dr. Spencer Smith. His academic, research expertise, experience, understanding,
motivation and encouragement have been invaluable to me in completing my graduation on
time. I learnt self confidence, taking initiative and a positive approach towards finding out
solutions for many problems I have encountered during this thesis.

I would like to express my sincere thanks to Dr. Ned Nedialkov for his generous sup-
port and guidance during Literate Programming, and to Dr. John Luxat for helping me to
understand the reactor physics. I would also like to thank Dr. Ned Nedialkov and Dr. Alan
Wassyng for their valuable suggestions while reviewing my thesis.

I immensely thank my parents Vasanth Kumar and Rajini and other family members
for their un ended support throughout my academic career without which I would not have
finished this thesis. I will ever remain grateful for their care, sacrifices, unconditional love
and affection.

I would like to acknowledge School of Graduate Studies and McSCert of Computing
and Software department of McMaster University for the magnificient financial assistance
provided without which this research would not have been possible.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 2
1.1 Research Context . 2
1.2 Motivation of this Research . 4
1.3 Research Problem and Scope . 5
1.4 Organization of Thesis . 6

2 Background 8
2.1 Software Requirements Specification (SRS) 8
2.2 Desirable Qualities for an SRS . 9
2.3 Literate Programming . 12
2.4 Certification . 13

3 Requirements Documentation by SRS Template 15
3.1 N286.7 Standard’s Expected Documentation of Requirements and Theory . 15
3.2 Proposed SRS Template . 16

3.2.1 Table of Symbols . 19
3.2.2 Goals . 20
3.2.3 Assumptions . 20
3.2.4 Theoretical Models . 21
3.2.5 General Definitions . 21
3.2.6 Data Definitions . 22

3.3 An Introduction to our Case Study . 23
3.4 Evaluation of the Template . 26

3.4.1 Issues in Documentation of R1 (Effective Thermal Resistance Be-
tween T1 and T2) . 26
3.4.1.1 Context from the Original Theory Manual 26
3.4.1.2 Problems . 27
3.4.1.3 Quality Improvements by the Proposed Template 28
3.4.1.4 Excerpt 1 Showing the Documentation of R1 Using the

Proposed Template . 29
3.4.1.5 Comments on the Excerpt 32

3.4.2 Issues in Documentation of R2 (Effective Thermal Resistance Be-
tween TB and T2) . 33
3.4.2.1 Context from the Original Theory Manual 33
3.4.2.2 Problems . 33
3.4.2.3 Quality Improvements by the Proposed Template 34

v

3.4.2.4 Excerpt 2 Showing the Documentation of R2 Using the
Proposed Template . 35

3.4.2.5 Comments on the Excerpt 39
3.4.3 Issues in Documentation of Numerical Algorithm for Solving T2

Quadratic Equation . 39
3.4.3.1 Context From the Original Theory Manual 39
3.4.3.2 Problems . 40
3.4.3.3 Quality Improvements by the Proposed Template 40

3.4.4 Issues in Documentation of Dryout Requirements 41
3.4.4.1 Context . 41
3.4.4.2 Problems . 41
3.4.4.3 Quality Improvements by the Proposed Template 42
3.4.4.4 Excerpt 3 Showing the Documentation of Dryout and

Heat Out (q′out) Using the Proposed Template 42
3.5 List of Issues Uncovered From the Original Theory Manual 44

4 Implementation of the SRS using Literate Programming 45
4.1 N286.7 Standard’s Expected Documentation of Design and Implementation 45
4.2 Design and Implementation Using LP . 46

4.2.1 Numerical Algorithm for Solving ODEs 48
4.2.2 Overall Algorithm and Function of fuel temp 48
4.2.3 Naming Convention of Variables for fuel temp 52

4.3 Evaluation of LP . 55
4.4 Design and Implementation of Instance Models 56

4.4.1 Steady State Computation . 56
4.4.2 Transient State Computation . 60

5 Conclusions 62
5.1 Summary . 62
5.2 Future work . 64

Bibliography 66

A Software Requirement Specification for FP 69
A.1 Reference Material . 70

A.1.1 Table of Symbols . 70
A.1.1.1 Quantities related to Thermal Analysis 70
A.1.1.2 Quantities related to Nuclear Physics 71

A.1.2 Abbreviations and Acronyms . 71
A.2 Introduction . 72

A.2.1 Purpose of Document . 72
A.2.2 Scope . 72
A.2.3 Organization of Document . 72
A.2.4 Intended Audience . 72

A.3 General System Description . 73
A.3.1 System Context . 73
A.3.2 User Characteristics . 73
A.3.3 System Constraints . 73

A.4 Specific System Description . 73
A.4.1 Problem Description . 73

A.4.1.1 Background . 74
A.4.1.2 Terminology and Definitions 77

vi

A.4.1.3 Physical System Description 78
A.4.1.4 Goal Statements . 78

A.4.2 Solution Characteristics Specification 79
A.4.2.1 Assumptions . 79
A.4.2.2 Theoretical Models . 80
A.4.2.3 General Definitions . 80
A.4.2.4 Data Definitions . 84
A.4.2.5 Instance Models . 98
A.4.2.6 Data Constraints . 102
A.4.2.7 System Behavior . 104

A.4.3 Nonfunctional Requirements . 105
A.4.3.1 Accuracy . 105
A.4.3.2 Maintainability . 105
A.4.3.3 Solution Validation Strategies 106

A.5 Other System Issues . 106
A.5.1 Open Issues . 106
A.5.2 Off-the-Shelf Solutions . 106
A.5.3 Waiting Room . 106

A.6 Traceability Matrix . 106
A.7 Auxillary Constants . 108

B LP Manual 109
B.1 Overview . 109
B.2 Numerical Algorithm . 110
B.3 Algorithm . 111
B.4 Overall function . 111
B.5 Naming Conventions . 112
B.6 Initialization section . 117

B.6.1 Computing q′N , T2 and kc . 117
B.6.2 Computing hc, hg and TS . 119
B.6.3 Computing TCL and kAV . 120
B.6.4 Computing T1 . 122
B.6.5 Computing ∆H(Tabs) . 123
B.6.6 Computing C1, cp,1 . 123
B.6.7 Computing C2, cp,2 . 124
B.6.8 Computing CCL, cp,3 . 125
B.6.9 Computing δox, Rox and q′MWR . 125
B.6.10 Computing q′out and initializing fp 127

B.7 Dynamic section . 127
B.7.1 Checking for Dryout . 128
B.7.2 Computing q′N,k+1 and kc,k+1 . 128
B.7.3 Computing hc,k+1 and hg,k+1 . 129
B.7.4 Computing R1,k+1 and R2,k+1 . 129
B.7.5 Computing T2,k+1 . 130
B.7.6 Computing T1,k+1 . 130
B.7.7 Computing TCL,k+1 . 131
B.7.8 Computing TS,k+1 . 131
B.7.9 Computing ∆H(Tabs) and PF,SUM . 132
B.7.10 Computing C1,C2,C3,cp,1,cp,2,cp,3 132
B.7.11 Computing kAV . 133
B.7.12 Computing q′out . 134

vii

B.7.13 Computing rate of oxidation . 134
B.7.14 Computing metal water reaction heat (qMWR) 135
B.7.15 Computing oxidation layer thickness 135
B.7.16 Computing Integrated metal water reaction heat (q′MWRI) 135

C Checklist 137

D makefile 138

viii

MASc Thesis - author - McMaster - Computing and Software

1

Chapter 1

Introduction

The scientific computing software used for the analysis of the safety systems such as those
for a nuclear reactor, should be certified before being used, especially given the importance
of having confidence in the computed results. However, in the scientific computing field,
due to a lack of proper documentation of theory and improper structuring of requirements,
certification relevant activities, such as verifiability can be problematic. In particular, there
is often a disconnect between the theory and the software code for the researchers, which
leads to problems with building confidence in the results. This thesis attempts to address
this issue by presenting a document driven approach to certifying scientific computing soft-
ware. The new approach is supported through a case study on presenting the documentation
of requirements, design and the code of a software program for thermal analysis of a nu-
clear fuel rod.

The organization of this chapter is as follows: Section 1.1 points out the problems
arising from the general development of scientific software, explains the need for improving
the documentation techniques, gives the role of safety analysis software in the nuclear
power plants and then gives a brief introduction to the software that this research uses
for the case study. Section 1.2 presents the motivation of this research while Section 1.3
clarifies the research problems and scope. The organization of the thesis is given in Section
1.4.

1.1 Research Context
Scientific computation consists of using computer tools to analyze or simulate continuous
mathematical models of real world systems of engineering or scientific importance, so that
we can better understand and predict the system’s behavior. Scientific computation is an
option when the problems are too complex, large, dangerous or expensive to explore by
traditional forms, like theoretical studies and laboratory experiments [28, 22]. Examples
of scientific computing problems include the following: weather prediction, understanding
natural disasters like tsunamis, earthquakes etc. analyzing the flow of blood in the body
and other problems relating to the areas of health, safety, manufacturing and the environ-
ment. To tackle these kinds of problems, where there is no possibility of validating the
numerically calculated results against reality, scientists construct mathematical models and
develop quantitative analysis techniques. They then use computers to simulate the models
and solve the analysis problems. The scientists run the simulations and analysis problems
with various sets of input parameters to understand and predict the system’s behavior [31].

With the general development approaches common in scientific computing software,
the certification process is difficult for the following reasons:

2

MASc Thesis - author - McMaster - Computing and Software

• The documentation of requirements and theory is often given lower priority than
other development activities, with most of the time and efforts dedicated to the im-
plementation. The documentation of all the necessary functional and non functional
requirements of the software is often neglected. This makes the achievement of qual-
ities like completeness, correctness and verifiability difficult.

• Many scientific computing softwares based on a physical model are documented
in a “reverse engineering manner”. That is, first the code is developed and then
the theory behind it is documented. Starting from computer code, it is a difficult
task to develop the manual, since proper documentation requires understanding the
assumptions made and the way the mathematical models have been manipulated to
best fit into the code.

• Due to the frequent lack of traceability between theory and implementation, certifi-
cation can become time consuming and complex.

• Any inconsistencies in the documentation confuse the reader, making verification
and maintainability difficult.

• If traceability between the requirements and the implementation is not complete,
then a conservative recertification process needs to reproduce most of the work of
the initial certification exercise. This means that without proper documentation, re-
certification can be very expensive and time consuming, as every line of the code has
to be verified right from the beginning along with the requirements and the numerical
algorithms.

• The justification of the choice of numerical algorithms and explanation of their im-
plementation are often lacking, which makes the task of verification challenging.

The above mentioned problems emphasize the importance of documentation, and sug-
gests that there is room for improvement in the general documentation practices. We need
the requirements, design and the code to be documented in a proper manner. The theme
of this research is to simplify the task of certification by introducing a document driven
approach for developing scientific computing software.

Due to the vastness of scientific computation field, we restrict ourselves to computa-
tional physics problems and in our case study, we further narrow our domain to nuclear
physics. We chose certification of safety analysis software that is used at nuclear power
plants as our research context. At nuclear power plants, safety analysis software is devel-
oped to justify the design and analysis of safety-related equipment, systems, structures and
components [3]. The regulators make their decision to approve the reactor design based on
the safety analysis conducted by this software. So, it is necessary that the safety analysis
software is certified to provide adequate confidence in its correctness and to achieve the
essential qualities of verifiability, completeness, correctness, maintainability and depend-
ability. These qualities are discussed in detail in Section 2.2.

In this research, we do a case study on a legacy nuclear safety analysis software that
was used by a nuclear power generating company in the 1980’s. For the purpose of this
thesis, the software under study is referred to by the name FP. Although FP is not being
used anymore, it was developed to perform thermal analysis of a single fuelpin in the re-
actor. FP is used to simulate simplified reactor physics, fuel management calculations and
simulations that can be used for reliability studies at the nuclear power generating stations.
The FP software was provided to us with a developed code and a theory manual, which
includes the requirements, numerical algorithms, assumptions, constraints and the mathe-
matical models as developed by the nuclear power generating company. The inclusion of

3

MASc Thesis - author - McMaster - Computing and Software

a theory manual with the code represents a commitment to documentation that would have
been rare at the time of development.

Our goal is to rebuild the FUELTE subroutine of FP software using the documentation
techniques introduced by this thesis. The design and development of the documentation
was done to be consistent with clause 11.2 of N286.7, where N286.7 forms the standard
set for the quality assurance of analytical, scientific, and design computer programs for
nuclear power plants [3]. These standards apply for the design, development, maintenance,
modification and use of the software at nuclear power plants.

1.2 Motivation of this Research
In many cases, scientific software developers are the scientists themselves. Developers of
this kind are called the professional end user developers. Typically they have little or no
education or training in software engineering [26]. Due to the complex science and the the-
ory behind the software, an average developer does not understand the application domain
and hence the scientists prefer to become the developers. With this group of developers,
especially given the importance of the software they are writing, it is desirable to provide
explicit instructions and guidelines for the process, including documentation standards.

The importance of documentation is first apparent when considering requirements. Of-
ten scientists do not know exactly what they are building while developing the software.
They may lack a proper idea of the requirements of the final product and they may have
an incomplete understanding of what they want to achieve. By running simulations they
continue to learn and refine the requirements, as their understanding of the domain pro-
gresses. Therefore, they can sometimes fail to structure the requirements properly. This
triggers problems during the development and maintenance phases [20]. Failure to docu-
ment accurate, precise and adequate requirement specifications leads to the development of
unreliable, undesirable products, delayed completion of the project and many other misun-
derstandings [19]. This motivates us to adopt existing software methodologies for require-
ments documentation to improve the quality aspects like correctness, verifiability, maintain-
ability, modifiability, consistency, traceability, completeness and unambiguity. Following
a template that defines the content and structure makes the writing of a document easier
and more effective. Therefore, in this research we employ SRS, a standard template for
requirements specification for scientific software (discussed in detail in Chapter 3).

Even if the requirements are documented accurately, if adequate information about the
design is not presented, the verification of the implementation with the numerical algo-
rithms can become very complicated. The verifier of the software is not necessarily from
the same domain as the developer. So, it is the responsibility of the end user developer to
provide all the necessary information about the design of the software. The verifier needs
to know the decisions made during the implementation phase, the numerical algorithms
used, the assumptions made and the techniques selected for developing the models to vali-
date and check the correctness of the software. Even if a single piece is missing, it makes
the task of certification very difficult. So completeness is a very important quality which
has to be achieved while documenting the design and development for the software to be
certified. However the documentation of numerical algorithms, solution techniques and the
rationale for selecting these techniques are not always given the value they need, making
the traceability between the code and the numerical algorithms difficult. This motivates
us to adopt a documentation technique that helps the scientists to record the design and
implementation of the code according to their thought flow. A literature review on Literate
Programming (LP) given in chapter 2 suggests the use of LP for developing the code, as
LP helps in achieving completeness, traceability and verifiability between the theory, de-

4

MASc Thesis - author - McMaster - Computing and Software

Real
World

Model &
NFRs

Numerical
Algorithm

Code

error due to physical modelling,
previous computations, measured
data, sensitivity of the problem

numerical error
& error due to
stability of the
algorithm

computer round-off
& programming
errors

compare
numerical
results with
experimental
data

Derivation
Validation
Experimental Validation

compare
numerical
results
with
known
results of
model

Figure 1.1: Procedure for Development of Scientific Software

sign and the implementation. Moreover, LP has been used previously for software quality
assurance [1, 16, 17].

By introducing Software Requirements Specification (SRS) and Literate programming
into the scientific field, the quality of documentation can be improved. The use of an SRS
and LP together will help to increase the confidence in correctness of the software and
make verifiability, reliability, reusability and maintenance easier. This way, the software
engineering methodologies are being introduced into developing the nuclear safety analysis
software, following the refined procedure shown in Figure 1.1. In this figure the term
validation is used to denote a check that the downstream stage has produced an artifact that
matches the needs of the upstream stage. This terminology is not standard in the industry.
In some cases, like at the nuclear power generating company that used the FP software, this
process would be termed verification.

Figure 1.1 which is taken from [28] gives the typical model of the scientific software
development. There is a similarity between the workflow of scientific software develop-
ment and the software methodologies, as both the methods recommend the same procedure
for developing the software. The first phase of scientific software development, in which
the Non functional Requirements (NFRs) are collected and mathematical models (nothing
but the functional requirements) are developed, is similar to the requirements phase of the
waterfall model. Similarly, the second and third phases of scientific software development
in which the numerical algorithms and code are developed are similar to the design phase
and implementation phase of the waterfall model respectively. So we apply the software
methodologies in developing the scientific software. That is, we use Software Requirement
Specification (SRS) to document the NFRs, mathematical models and Literate Program-
ming to design and implement the numerical algorithms of the scientific software.

1.3 Research Problem and Scope
Due to the breadth of the domain of scientific software, we have decided to restrict our re-
search domain to software solving computational physics problems. Since we are given an

5

MASc Thesis - author - McMaster - Computing and Software

existing theory manual and code, as mentioned in the research context, we chose documen-
tation of requirements as our starting point. We are not going to deal with the requirements
elicitation in this research. Also testing of the software is out of the scope of this thesis, as
the theme of this research is to emphasize verification of the software by human experts,
rather than building exhaustive test cases for machine processing. Testing is still an impor-
tant part of the overall certification process, but is not emphasized in the current work. We
have narrowed our scope to documentation related problems and accordingly address the
following questions as our research problems:

1. How to improve the requirements documentation, capturing all the necessary infor-
mation for developing scientific software.

2. How to achieve the desirable qualities of a good requirements document for scientific
software.

3. How to develop the code with traceability to the numerical algorithm choices.

4. How to achieve traceability between the theory, design and the implementation.

5. How to facilitate certification of scientific software via documentation techniques.

To provide solutions to these questions, our research performed the following ac-
tivities:

• We studied existing standards and templates used for documenting require-
ments.

• We proposed a systematic approach for requirements documentation by adapt-
ing an existing template for scientific computing software.

• We applied the existing software methodology of Literate Programming (LP)
for developing the design and the code of the scientific software simultaneously.

• We evaluated our proposed requirements template and programming approach
by doing a case study on a specific example of safety analysis software: FP.

• We strengthened our arguments by:

– Demonstrating how the desired quality attributes of an SRS, as mentioned
in Section 2.2, are achieved by using our proposed template.

– Showing how the code is developed in connection with the SRS and design
following the programming approach introduced by this research.

• We used the results of our case study to support the proposed documentation
practice for achieving the goals of certification.

1.4 Organization of Thesis
This thesis is organized in five chapters and four appendices as follows:

• Chapter 1 provides an introduction on the problems faced with the general engineer-
ing practice of developing scientific software. Furthermore, it presents the context,
motivation, problem and scope of this research.

• Chapter 2 reviews the literature of certification and the two techniques (SRS and
LP) proposed by this research for documentation purpose. We discuss the qualities
that are to be possessed by a good SRS and define the expectations of the standard

6

MASc Thesis - author - McMaster - Computing and Software

(N286.7), set for the quality assurance of design and development of software for
nuclear power plants. We go further showing the connection between the documen-
tation and certification and explaining why we have chosen a documentation driven
approach for certification.

• Chapter 3 presents our approach towards the documentation of requirements. We
introduce a new template for documenting the requirements and give an overview
of our case study. We evaluate the proposed template by discussing the issues faced
with the original requirements document of the software under case study and then
show how we have resolved those issues by following the proposed template. With
the help of excerpts from Appendix A, we show how the desirable qualities of a good
SRS were achieved by documenting requirements following the proposed template.

• Chapter 4 presents our approach towards the documentation of the design and im-
plementation. First the information to be documented about the design and program-
mer’s manual according to N286.7 standard is discussed. Then it is shown how the
proposed technique can be used for documenting design and implementation in the
same document satisfying both the expectations of the N286.7 standard and the de-
sirable qualities of a good document, discusssed in Chapter 2. Furthermore, it is
shown how the requirements, design and implementation are documented in connec-
tion with each other using excerpts from Appendix B.

• Chapter 5 presents the concluding remarks of this thesis as well as recommendations
for future research work.

• Appendix A shows a case study of using the proposed requirements template for
documenting FP software.

• Appendix B shows a case study of using the Literate Programming for documenting
the design and implementation of FUELTE subroutine of FP software.

• Appendix C gives a checklist of the conditions that are to be satisfied for achieving
the correctness and completeness of documentation.

• Appendix D is the make file created to link, compile and run the literate C function
and the original FORTRAN code together.

7

Chapter 2

Background

This chapter provides background information on Software Requirements Specification
(SRS) and Literate Programming (LP). These are the two documentation techniques used
in the new approach proposed by this thesis for certification of scientific computing soft-
ware for safety analysis. Section 2.1 discusses the details about Software Requirements
Specification (SRS), its role in the software development and the importance of using a
requirements template in developing an SRS. The qualities a good SRS should possess
are detailed in Section 2.2. Section 2.3 gives the details about what LP is, how a literate
program is developed, different LP tools and the advantages of LP. Section 2.4 provides a
literature review on certification and shows the connection between certification and docu-
mentation, by discussing the N286.7 standards set for developing nuclear software.

2.1 Software Requirements Specification (SRS)
Requirements analysis and documentation is the first phase of developing software in a
rational way. Requirements record all the expected characteristics and behaviour of the
system. The document that records the requirements is called the Software Requirements
Specification (SRS). This document describes the functionalities, expected performance,
goals, context, design constraints, external interfaces and other quality attributes of the
software [10, 11].

The advantages provided by SRS during software development are listed as follows [4, 20,
23, 28, 29]:

• An SRS acts as an official statement of the system requirements for the developers,
stakeholders and the end-users.

• Creating the SRS allows for earlier identification of errors and omissions. Fixing
errors at the early stages of development is much cheaper than finding and fixing
them later.

• The quality of software cannot be properly assessed without a standard against which
it should be judged. Verification and Validation (V&V) efforts cannot be fully suc-
cessful without explicit requirements. Moreover, some requirements documents ex-
plicitly address the validation strategies against which the compliance of the software
results are to be measured.

• An SRS facilitates the estimation of cost and time involved in the development pro-
cess.

8

MASc Thesis - author - McMaster - Computing and Software

• An SRS aids in making decisions regarding design and coding of the software by
serving as a starting point for the software design phase.

• The SRS aids the software lifecycle by facilitating incremental development. That is,
a new version of the software can inherit features of the previous version to upgrade
the system by improving the features.

To write an SRS, a common approach that is adopted is the use of a requirements template,
which provides guidelines for documenting the requirements. It uses a framework that
suggests an order for filling in the details. There are many advantages of using a template
in writing an SRS [23, 28]. One advantage is that a template increases the adequacy of
an SRS by providing a predefined organization that aids in achieving completeness and
modifiability. Moreover, a template with a well organized format acts like a checklist for
the writer, thus reducing the chances of missing information. Another benefit is that an
SRS facilitates the communication between the stakeholders, developers and maintenance
staff. A template aids in achieving information hiding through specific guidelines on the
appropriate level of abstraction and makes the document more understandable by showing
the connections between different sections. Furthermore, templates provide the advantage
of facilitating comparison of two SRSs that conform to the same template. Finally, as each
section in the template is filled systematically, it helps in information handling. That is,
the specifier can organize large quantities of information by systematically locating the
contents into respective sections.

There are several existing templates that have been designed for business and real time
applications. These templates contain good suggestions on how to avoid complications
and how to develop an SRS to achieve qualities of good documentation [7, 11, 15, 23,
28, 30]. There is no universally accepted template for an SRS. This research adapts the
SRS template developed for scientific computing software in [28]. In accordance with the
research scope (Section 1.3), we focus on requirements documentation in the domain of
computational physics.

2.2 Desirable Qualities for an SRS
According to IEEE recommended practice, the qualities that a good SRS should possess are
correctness, completeness, consistency, modifiability, degree of importance and/or stability,
traceability, unambiguity and verifiability [11]. These qualities along with the additional
quality of abstraction, considered as important for this current research, are defined below:

• Completeness: An SRS is said to be complete only when it satisfies all of the follow-
ing conditions:

– All the requirements of the software are detailed. That is, each and every goal,
functionality, attribute, design constraint, value, data, model, symbol, term
(with its unit of measurement if applicable), abbreviation, acronym, assump-
tion and performance requirement of the software is defined.

– The software’s response to all classes of inputs, both valid and invalid and for
both desired and undesired events is defined.

– The system’s external behaviour and external interfaces are included. Every
external requirement laid by a superior specification, such as a system specifi-
cation, must be considered and dealt with.

9

MASc Thesis - author - McMaster - Computing and Software

– Every figure, table, model, assumption and definition is properly labelled and
referenced throughout the document.

– The problem statement, context, scope and purpose are clearly stated.

• Consistency: An SRS is said to be consistent when no subset of individual require-
ments specified are in conflict with each other [11]. That is, a specification of an
item made at one place in the document should not contradict the specification of
the same item at another place. An SRS is said to be consistent when the following
conditions are satisfied:

– There are no two different specifications for the requirement of the same real
world object. For instance, if a requirement about a real world object states that
the shape of a plate is rectangular, then there should not exist another require-
ment in the SRS stating the shape of the plate is elliptical.

– The specification of the functions to be performed by the software must not
conflict logically or temporally. For example, if one requirement says that the
program must first increment the input A and then multiply with input B, then
another requirement should not state that the input A should be multiplied by
input B first and then incremented.

– Each term in the document has a unique symbol and definition.

• Modifiability: An SRS should be developed in such a way that it is easily modifiable
so that likely changes in future do not destroy the structure of the document. Also it
should be easy to reflect the change wherever needed in the document maintaining
consistency, traceability and completeness. For an SRS to be modifiable, its format
must be structured in a way that fulfills the following:

– Repetition should be avoided. Every statement should be specified only once in
the SRS. Redundancy makes maintenance difficult, because when a statement
has to be changed, the change has to be reflected wherever the statement ap-
pears in the document. If by mistake the statement or information dependent
on the statement is changed at its first occurrence and its second occurrence is
not altered, then the SRS would become inconsistent.

– If a portion of a requirement has to be repeated, cross-referencing should be
used to keep track of this occurrence to make the task of alteration and mainte-
nance easier.

– Every requirement should be specified individually without mixing with other
requirements.

– A well structured template should be used with explicit cross referencing and a
table of contents.

• Degree of Importance and/or Stability: In an SRS, all the requirements may not be
of the same importance. Some might be essential while others might be desirable.
Some requirements might change over the course of time. So, the degree of impor-
tance or stability of a requirement should be documented by associating an identifier
with that particular requirement. The identifier indicates the rank of importance of a
requirement as either essential (or) conditional (or) optional. Similarly the stability
can be expressed in terms of number of likely changes to a requirement based on
experience or knowledge of forthcoming events.

The quality of degree of importance is not emphasized in this research. The feeling
is that for the certification of nuclear safety analysis software, all the requirements
are essential and are given equal importance.

10

MASc Thesis - author - McMaster - Computing and Software

• Traceability: An SRS should be traceable, as this facilitates maintenance and review.
If a change is made to the design or code of the software, then all the requirements
relating to those segments have to be modified. Hence it is important to have trace-
ability to every component of the SRS. This can be achieved by giving a unique label
to every component and developing the SRS in a hierarchical way so that we can
trace back to the first occurrence of each component.

• Unambiguity: As the SRS is used in design, implementation, verification, validation
and maintenance phases, it is very important that the requirements are adequate,
precise, consistent and understandable to the reader. To make the requirements clear,
they should be recorded in a way that there is no ambiguity in their specification. An
SRS is said to be unambiguous only when every requirement’s specification has a
unique interpretation. If the term being used has two different meanings and its use
in the interpretation is unavoidable, then the term should be included in a glossary
with the different meanings of the term, along with their units (if appropriate). Each
different meaning should be clearly connected to the appropriate context. The SRS
should be unambiguous to all audience, including both the developers and users.

• Correctness: There is no direct tool or method for measuring the correctness of an
SRS. One way of building confidence in the correctness is by reviewing to ensure
that each and every requirement stated in the SRS is the one that the stakeholders
and experts desire. By maintaining traceability, consistency and unambiguity, we
can reduce the occurrence of errors and make the goal of reviewing for correctness
easier. The assessment of correctness is an iterative process, since the users of the
developed software will provide feedback and corrections, which can be incorporated
into later versions of the code and its associated documentation.

• Verifiability: Every requirement in the SRS must be the one fulfilled by the imple-
mented software. Therefore all the requirements in the SRS should be clear, unam-
biguous and testable so that a person or a machine can verify whether the software
product meets the requirement. For an SRS to be verifiable, it is necessary that there
be no ambiguity in the specification of the requirement. For example,

– If a requirement is stated as “The amount of efforts put into maintaining the
software should be low”, this is an ambiguous statement since we cannot quan-
tify the term ‘low’. Instead, if it is specified as “The amount of efforts put into
maintaining the software should be 1

4
th

of the effort put into developing the
software”, then it is verifiable as it uses measurable quantities to compare and
check.

– If a requirement states that the output of software A should be as accurate as
the output of software B, then the verifier will not be in a position to verify
this requirement, as it is impossible to define the term ‘as accurate as’ in an
unambiguous way. So, this requirement should be modified to make it more
precise as “The relative difference between the output of software A and the
output of software B should not be more than 0.05%”.

• Abstract: Another quality an SRS should possess is being abstract. It should tell us
what the software must do and the properties it must possess, but should not speak
about how these are to be achieved. For example, a requirement can specify that an
Ordinary Differential Equation (ODE) must be solved, but it should not mention that
Euler’s method should be used to solve the ODE. How to accomplish the requirement
is a design decision, which the developer makes during the design phase.

11

MASc Thesis - author - McMaster - Computing and Software

2.3 Literate Programming
Literate Programming (LP) is a programming approach introduced by Donald Knuth, in
which the source code is developed along with the logic behind it, using both formal and
informal methods. According to Knuth, LP mainly concentrates on explaining to the reader
what we want the computer to do, instead of imagining the main task to be instructing a
computer on what to do [6]. The developer strives to make the program understandable to
the reader, by introducing the concepts in an order that is best for human comprehension
[6]. In the case of software quality assurance, the main concern of LP is to deliver a
document of publishable quality that can improve the certifier’s confidence in the program’s
validity.

While developing a literate program, the algorithm is divided into smaller modules
which contain explanation, definitions and implementation. In each module, the imple-
mentation is done as small pieces of code called chunks or sections [6]. This way, the
program is developed as an uninterrupted exposition of logic with scattered snippets of
macros and source code [32]. Macros are simple title like phrases that hide the chunks
of code, abstractions and any lower level macros. In literate programming, both logic and
code are written in the same source file. The chunks of code which are interconnected as
a “web” can be assembled into a compilable program in a tangle process. The extraction
of the logic from the LP source is called a weaving process. The ouput in this case is a
nicely formatted document [6]. The reader uses the logic document for understanding the
theory and for verification purposes, while the compiler uses the tangled code to compile
and execute the program.

To obtain the two representations from the source file, LP tools like WEB, NOWEB,
CWEB, FunnelWeb etc. are to be used. WEB was introduced by Donald Knuth and uses
Pascal as its underlying programming language and TeX for typesetting of the documen-
tation [5]. NOWEB is programming language independent and uses HTML for text for-
matting [2]. The tool that has been used in this research is ‘CWEB’, which was written by
Donald Knuth and Silvio Levy. It uses C / C++ for programming and TeX for typesetting
of the documentation [12].

The CWEB tool provides two utilities ‘CWEAVE’ and ‘CTANGLE’ which are used to
extract the logic and the code respectively from the source file [12]. CWEAVE intertwines
the TeX and C portions of each module of the CWEB file and knits them into a structured
document. It also takes care of page layout, indentation, fonts, pretty printing of C/C++
code, and generates extensive cross-index information [6, 17]. CTANGLE extracts the
code sections from the CWEB file and arranges the sections in the order required by the
C file. It also includes line information of the CWEB source file in the generated C/C++
files. Hence, if warnings or errors are detected during compile time or runtime, then the
compiler and debugger can give the line number of the CWEB file [17].

The LaTeX CWEB is a bundle that allows us to use LATEX for marking up the CWEB
file thus allowing us to have chapters, sections, subsections, environments, figures, graphics
etc in the weaved output file [25]. The cweb-hy class, an extension of CWEB, enables
automatic generation of hyperlinks making the navigation through the code in the resulting
output file convenient [17].

The advantages in developing a literate program are as follows [17]:

• The process of verification by a human reader is made easier, since the reviewer
needs only one document for evaluation.

• As all the necessary information about the theory and the logic behind the program
are in the same document along with the code, even a person without any background
knowledge on the theory can verify the program.

12

MASc Thesis - author - McMaster - Computing and Software

• As every line of the code can be traced back to either the theory or to the numer-
ical algorithms (design), it helps in increasing the confidence in correctness of the
implementation.

• The amount of efforts required for the maintenance of the program can be reduced,
as the design and code are kept in sync maintaining consistency.

• A high quality, well structured LP document reduces time for debugging and testing,
as errors are detected through proof reading.

• As the code is developed by implementing each requirement as an independent
chunk, reusability and modifiability can be achieved.

Due to all the above mentioned reasons, LP eases the process of certification.

2.4 Certification
According to Roache, Certification is an engineering management activity towards Quality
Assurance (QA) [21]. Software is said to be certified when an authority or regulatory body
gives it an official recognition of meeting certain standards [22]. Its often a misconception
that certification means Verification and Validation (V&V). But in the true sense, V&V are
just a part of certification, while the process of certification includes many other aspects
of the software like documentation of requirements, version control, and the QA system
itself [21]. The aim of certification is to ensure that the characteristics of the product be-
ing certified are appropriate [14]. Hence the goal of software certification should be to:
“...systematically determine, based on the principles of science, engineering and measure-
ment theory, whether a software product satisfies accepted, well-defined and measurable
criteria” [9].

As mentioned in the research context, the certification of the FP code is done using
N286.7, which is the standard set for QA of design and development of computer programs
for nuclear power plants. According to these standards, the software must be developed
following the steps given below [3]:

• Documentation: The documentation for design and development of the computer
programs must be complete and include the following:

– The problem definition along with an explanation of the nomenclature or any
conventions used.

– A theory manual with the description of the theoretical and mathematical foun-
dations of the computer program.

– Requirements specification.

– A design description demonstrating how the specified requirements have been
met. It should provide information on identification of the algorithms, com-
puter program structure, data structures, program flow, description of modules,
module interfaces and library functions.

– programmer’s manual including information on program flow and structure,
how the theory is translated into coding, how to modify and maintain the com-
puter program and conventions on programming practices, such as variable
naming and computer program commentary.

13

MASc Thesis - author - McMaster - Computing and Software

As stated in page 13 of [3], if the same information appears in two documents at
different levels of detail, then it should be documented consistently. For instance,
the information about program flow and structure is provided in the so-called Design
Description document (See Chapter 4) before the coding is done and the same infor-
mation is presented in the Programmer’s Manual, which is prepared after the coding
is complete. In these cases, the information should be consistent and wherever pos-
sible, the information should be contained in one document and referred to in the
other. This makes the maintenance part easy, as any inevitable changes that are to
be made in future shall be made only to one document but gets reflected in the other
too.

• Verification: The verification will be performed by one or more suitably qualified
persons who were not in the development team for checking the completeness and
correctness of the software. For verification purpose, the clause 6 of the standards
([3]) require the following steps to be conducted:

– The requirements document should be verified to ensure that the specifications
are complete and address the problem.

– The theoretical background and mathematical basis for the solution of the prob-
lem provided by the theory manual should be verified to ensure that it is appro-
priate to the intended application of the computer program.

– The design should be verified to confirm compliance (correctness) with require-
ments.

– Verification of coding must be done by conducting walkthroughs, independent
review of computer program text, mathematical analysis of the computer pro-
gram functions, and testing.

Although not explicitly stated in N286.7, the standard makes it clear that the qualities
required by a nuclear safety analysis software to be certified are as follows:

• Completeness in documentation

• Consistency in documentation

• Modifiability of the software

• Traceability between the requirements specifications, theory, design and implemen-
tation

• Correctness of requirements specifications, design models and the code

As the process of certification is required to be a measurement based activity according to
[9], the characteristics of the software must be measurable entities (similar to quality of
verifiability of an SRS).

From the above mentioned points, it is evident that the qualities required by a safety
analysis software to get certified are analogous to the desirable qualities for an SRS. So,
we chose a documentation driven approach to certify the software. In the new documen-
tation approach, we are going to develop the requirements document and theory manual
as one document, SRS. The design document, programmers manual and code are together
developed in another document, called the LP Manual, using LP.

14

Chapter 3

Requirements Documentation by
SRS Template

As discussed in Chapter 2, requirements analysis and documentation is the first phase of
software development. However, since we were provided with a developed theory man-
ual and code for our case study, as mentioned in Section 1.1, we started our work from
the documentation of requirements. Even though the N286.7 standard suggests two doc-
uments to record the requirements and theoretical background, we are going to combine
both documents into one document. This combination is done because the contents of the
theory manual, according to N286.7 standard as described in Section 3.1, can be consid-
ered as functional requirements in the adopted SRS template. This chapter introduces the
proposed template for recording the requirements and theoretical background.

The organization of this chapter is as follows: First, the essential requirements, mathe-
matical equations and other theoretical information that are required to be documented as
per N286.7 standard are discussed in Section 3.1. Second, the new template for the SRS
is introduced in Section 3.2. Third a brief introduction is given about the case study in
Section 3.3 and finally in Section 3.4, it is shown how the desirable qualities for an SRS
(given in Section 2.2) are achieved by the proposed template.

3.1 N286.7 Standard’s Expected Documentation of Require-
ments and Theory

According to clause 11.2.4 of N286.7 standard, the requirements specifications for a com-
puter program should be prepared in such a way that they include the following:

• the name of the computer program

• the functions of the computer program

• hardware, computer program, and user interface requirements

• operating system requirements

• computational speed requirements

• file size and type requirements

• input and output requirements

15

MASc Thesis - author - McMaster - Computing and Software

• data structure and data flow requirements

• programming language

• imposed physical or mathematical models or numerical algorithms

• error detection and handling requirements

• accuracy targets

• requirements on programming practices

• portability requirements

Similarly, the standard requires the theory manual to describe the theoretical and math-
ematical foundations of the computer program. The theory manual should be developed in
such a way that it includes the following:

• the theory and mathematical equations

• assumptions and constraints

• solution techniques and the rationale for selecting these techniques such as accuracy
requirements and other limitations;

• any empirical correlations, their range of application, and associated uncertainties

• applicable existing references

As mentioned in the introduction, the current work proposes combining these two docu-
ments into one SRS document. This is done to avoid repetition and to make the documenta-
tion more in keeping with standard software engineering practice. However, the SRS tem-
plate being proposed, does not include solution techniques as expected by N286.7 standard.
Solution techniques are excluded to achieve the quality of abstraction. The development
of solution techniques (algorithms) is handled in the design process and is included in the
design manual (see Chapter 4). Also, documenting the non functional requirements such
as portability, computational speed are out of the scope of our work. Although nonfunc-
tional requirements and other system isssues would normally be in the SRS, they were not
included in the documentation provided by the nuclear power generating company. Rather
than inventing nonfunctional requirements without any basis, the decision was made to
simply exclude them from the SRS at this time.

3.2 Proposed SRS Template
It is necessary to develop a specific template for requirements documentation of nuclear
safety analysis software, as it is unrealistic to expect the documentation of all kinds of sci-
entific software to be the same. The objective is to construct a correct, complete, reusable,
maintainable and traceable SRS. For developing the new template for an SRS, we studied
the following templates that have been developed earlier for different domains and appli-
cations:

• B. Sanga’s Proposed Template [23]

• Lei Lai’s Proposed Template [28]

• The IEEE Standard 830-1998 [11]

16

MASc Thesis - author - McMaster - Computing and Software

We borrowed the template developed by Lei Lai, Dr. Spencer Smith and Dr. Ridha Khedri
[28] for engineering mechanics and adapted it to suit the nuclear physics domain by adding
a few new sections. We have chosen Lei Lai’s template because it is an example SRS
tailored to scientific software systems.

The proposed requirements template, which is given in Figure 3.1, is systematically
developed by decomposing the problem into smaller tasks. That is, we try to achieve the
goals of the problem by considering the theoretical models and then developing the in-
stance models from them to solve the problem. During this refinement from goals to theory
to mathematical models, we apply different assumptions, build general definitions and data
definitions, which are also to be documented. The proposed template aids in documenting
all the necessary information, as each section has to be considered even if it is inappro-
priate for the given problem while developing the SRS. This facilitates the achievement of
completeness by providing a checklist for the questions that are to be asked and for the
information that is to be filled in. However, it is not enough to just fill in the sections of the
template for achieving completeness and correctness. One has to make sure that the list of
conditions given in the checklist (Appendix C) are satisfied by the SRS. For instance, the
template does not document derivation of equations. Yet, for checking the correctness of
the data definitions, it is a good idea to include the derivations. Hence both the template
and the checklist are to be considered while developing the SRS.

17

MASc Thesis - author - McMaster - Computing and Software

1. Reference Material:
a) Table of Symbols
b) Abbreviations and Acronyms
2. Introduction:
a) Purpose of the Document
b) Scope of the Software Product
c) Organization of the Document
d) Intended Audience
3. General System Description:
a) System Context
b) User Characteristics
c) System Constraints
4. Specific System Description:
a) Problem Description:
i) Background Overview, ii) Terminology Definition, iii) Physical
System Description, iv) Goal Statements
b) Solution Specification:
i) Assumptions, ii) Theoretical Models, iii) General Definitions,
iv) Data Definitions, v) Instanced Models, vi) Data Constraints,
vii) System Behavior
c) Non-functional Requirements:
i) Accuracy of Input Data, ii) Sensitivity of Model, iii) Tolerance of
Solution, iv) Solution Validation Strategies, v) Look and Feel
Requirements, vi) Usability Requirements, vii) Performance
Requirements, viii) Maintainability Requirements, ix) Portability
Requirements, x) Security Requirements
5. Other System Issues:
a) Open Issues
b) Off the Shelf Solutions
c) Waiting Room
6. Traceability Matrix
7. List of Possible Changes in the Requirements
8. Values of Auxiliary Constants

Figure 3.1: Contents of SRS

18

MASc Thesis - author - McMaster - Computing and Software

All of the sections of Lei Lai’s template are borrowed for the current work. Although as
mentioned previously, not all of the details are fleshed out for Section 4.c, Non-functional
Requirements and Section 5, Other system issues in the present case study. Furthermore,
the following additions were made: A new subsection called General Definitions under
Specific System Description and new contents for the Table of Symbols. These changes
were helpful for the current case study. The important sections of this template that are
used to improve the desired qualities of an SRS are presented below with an introduction
to their motivation and content [28].

3.2.1 Table of Symbols

Motivation
To summarize the symbols used in the document and to give a quick reference for the sym-
bols specifically defined in the SRS.

Content
The symbols used in the SRS are explained along with their units. The section is again
divided into subsections to record the quantities related to thermal analysis separately from
quantities related to nuclear physics. This is to make the context in which the symbol
is used clear. Example of table of symbols used in the SRS of FP is included below, as
Figure 3.2.

19

MASc Thesis - author - McMaster - Computing and Software

Quantities related to Thermal Analysis:
Ci - thermal capacitance terms indexed

by i (kWs
moC)

hb - coolant film conductance (kW
m2C)

hc - convective heat transfer coef-
ficient between clad and coolant
(kW

m2C)
hdry - convective heat transfer coef-

ficient between fuel surface and
coolant at dryout (kW

m2C)
hg - effective heat transfer coefficient

between clad and fuel surface (kW
m2C)

.

.

.
Quantities related to Nuclear Physics:
Ak - value of trip parameter at tk
Ki - response fraction
q′MWR - metal water reaction heat (kW

m)
q′MWRI - integrated metal water reaction

heat (kW
m)

.

.

.

Figure 3.2: Excerpt from the SRS showing the Table of Symbols

3.2.2 Goals

Motivation
To collect and document the objectives of a system in the requirements process.

Content
A goal statement should specify the target of the system. The goal must be abstract. That
is, it should be a specification indicating what the system is expected to perform, but not
the ways of achieving the objective. For instance, a goal from our case study is:

G2: Given the neutron flux versus time as input, predict transient reactor fuel and clad
temperatures.

3.2.3 Assumptions

Motivation
To record the assumptions that have to be made or have been made while developing the
software.

Content
An assumption is a specification showing the approximation to be made while solving a

20

MASc Thesis - author - McMaster - Computing and Software

problem. We suggest that assumptions are documented with the forward references made
to the data using them. An example of documenting assumptions is given below:

A9: The spacial effects are neglected in the reactor kinetics formulations [IM5].

3.2.4 Theoretical Models

Motivation
To develop an understanding of the theory or principles relevant to the problem [28].

Content
The theoretical models are sets of governing equations or axioms that are used to model the
problem described in the problem definition section. Theoretical models give an introduc-
tion of the theory. In the context of nuclear physics, the theoretical models can be physical
laws (include relevant equations), constitutive equations, etc. Given below is an example
of a theoretical model from our case study.

Number T1
Label Conservation of energy
Equation −∇q+q′′′ = ρC ∂T

∂t
Description The above equation gives the conservation of energy for a time

varying heat transfer in a material of specific heat capacity C and
density ρ where q is the thermal flux vector, q′′′ is the volumetric
heat generation, T is the temperature and ∇ is the gradient opera-
tor.

The conservation of energy equation is the most important theoretical model of our case
study as it forms the foundation for the derivation of the mathematical models of FP. How
the symbolic equation of conservation of energy is used in deriving the instance models for
FP is shown in Appendix A. The theory must be given as abstractly as possible to make
it reusable for other problems. The theory will be later refined to instance models by ap-
plying assumptions and definitions. For example, in the theoretical model given above, the
coordinate system is not assumed. So it can be used for solving other problems, as it is
not specific to one context. In the current case study, shown in Appendix A, a cylindrical
coordinate system is assumed, but the general notation usually means that T1 can be used
in a different context, say with a cartesian coordinate system.

3.2.5 General Definitions

Motivation
This is the new section included in the template to gather and document all the necessary
data that will be repetitively used in deriving different data definitions.

Content
General definitions constitute the laws and equations that will be used indirectly in devel-
oping the mathematical models. That is, general definitions are those that will not directly
model the problem but will be used in deriving the data definitions, which in turn are used
to build the instance models. The general definitions are suggested to be documented using
tabular and textual descriptions. The definition includes the following fields:

21

MASc Thesis - author - McMaster - Computing and Software

• Number- This gives the number of the general definition

• Label- This gives the name of the term being defined

• Symbol- This gives the symbol of the term

• Units- This gives the units of the term. The units are mentioned in the MLTt sys-
tem, where M represents Mass, L represents Length, T represents temperature and t
represents time.

• SI equivalent- This gives the units of the term in SI system. That is, in terms of
kilograms (kg), meter (m), Kelvin (K) and seconds (s).

• Equation- This gives the definition of the term

• Description- This gives the description of the terms being used in the definition and
the information related to the definition.

Example of a general definition is given below:

Number GD1
Label Cylindrical coordinate system
Units -
SI equivalent -
Equation ∇ = r̂ ∂

∂r + θ̂
1
r (

∂

∂θ
)+ ẑ ∂

∂z where r̂, θ̂ and ẑ are unit vectors.
In matrix notation, this appears as:

∇ =

 ∂

∂r
1
r

∂

∂θ
∂

∂z


The divergence ∇A is calculated as:
∇A = ∂(Ar)

∂r + 1
r

∂Aθ

∂θ
+ ∂Az

∂z
Description The spatial location in a cylindrical coordinate system is expressed

in terms of r̂, θ̂, ẑ. The gradient operator is defined as shown above.
Sources [8, page 12];

3.2.6 Data Definitions

Motivation
To collect and organize all physical data needed to solve the problem [28].

Content
All the symbols that are used in developing the mathematical models of the system are
defined using a tabular representation. The symbol should be defined with the meaning of
the physical data they represent and needs to be given a unique label to support traceability.
If any equation is defined in this section, then it is recommended to include the derivation
of that equation under the table of the definition. The data definition includes the same
fields as that of the general definitions with an additional source field which gives the main
source from which the definition was taken. Example of data definition is given below:

22

MASc Thesis - author - McMaster - Computing and Software

Number DD3
Label Integrated fuel power
Symbol PF,SUM
Units FPS
SI equivalent -
Equation PF,SUM(ti)=

∫ ti
0 q′NFRAC(t)dt

Description The above equation gives the integrated fuel power at ti, where
q′NFRAC is the relative fuel power and PF,SUM(ti) is the integrated
fuel power at ti

Sources [8, page 12];

3.3 An Introduction to our Case Study
In this section, we give a brief introduction of our case study so that the reader can have a
better understanding of what this research is based on. The full SRS for this case study is
presented in Appendix A. Our case study is on a safety analysis software, referred to as FP,
that has been developed by a nuclear power generating company in 1980’s. The purpose of
FP is to perform thermal analysis of a single fuelpin in the reactor. Each fuelpin includes
the following elements as presented in Figure 3.3:

• A fuel pellet made of Uranium dioxide (UO2).

• The clad material zircaloy covering the pellet.

• Coolant surrounding the clad material.

The software is used for running safety analysis cases. The analysis of one fuelpin by FP
is used to give insight into the use of multiple pins. The goals of FP are stated as follows:

G1: Given fuel power versus time as input, predict transient reactor fuel and clad temper-
atures.

G2: Given the neutron flux versus time as input, predict transient reactor fuel and clad
temperatures.

G3: Given the reactivity transient as input, predict transient reactor fuel and clad temper-
atures.

G4: Given the trip set points, number of trips to initiate shutdown, shutdown reactivity
transient as inputs, simulate reactor trip and shutdown.

FP uses point neutron kinetics, decay heat equations, lumped parameter fuel mod-
elling techniques, temperature dependent thermodynamic properties, a metal water reaction
model, fuel stored energy, integrated fuel power calculations and trip parameter modelling
to do the thermal analysis.

23

MASc Thesis - author - McMaster - Computing and Software

Figure 3.3: Fuel pellet representation

TCL T1 T2 TBTS

qin qout

RCLAD/2RFUEL/2 RFUEL/2 RCLAD/2RGAP RFILM

qmwr

CCL C1 C2

Figure 3.4: Electrical Circuit Analogue

24

MASc Thesis - author - McMaster - Computing and Software

The electrical circuit analogue of fuelpin representation is given by the Figure 3.4. This
figure will be discussed further in Section 3.4. A summary of the variables for Figure 3.3
and Figure 3.4 is given below with their interpretation:

TS - surface temperature (oC)
T1 - average fuel temperature (oC)
T2 - average clad temperature (oC)
TB - coolant temperature (oC)
TCL - centreline temperature (oC)
rc - clad radius (m)
r f - fuel radius (m)
τc - clad thickness (m)
qin - input heat (kW

m2oC)
qout - output heat (kW

m2oC)
q′MWR - metal water reaction heat (kW

m)
RFUEL - thermal resistance of fuel (moC

kW)
RCLAD - clad resistance (moC

kW)
RGAP - gap resistance (moC

kW)
RFILM - coolant film resistance (moC

kW)
C1 - thermal capacitance of the fuel (kWs

moC)
C2 - thermal capacitance of the clad (kWs

moC)
CCL - thermal capacitance at the centerline (kWs

moC)

25

MASc Thesis - author - McMaster - Computing and Software

The mathematical models for this problem are the ordinary differential equations of
different temperatures that are to be predicted, with appropriate initial conditions (see Ap-
pendix A for more details). For instance, the instance model for predicting transient fuel
temperature is given below:

Number IM1
Label Rate of change of average fuel temperature
Equation C1

dT1
dt = q′N−

T1−T2
R1

Description T1 is the average fuel temperature
T2 is the clad temperature
R1 is the effective resistance between fuel and clad temperatures
C1 is the thermal capacitance of the fuel
q′N is the linear element power
t is the time

Sources [8, page 6];

To achieve the goal of predicting transient fuel temperatures, we considered some theo-
retical models and developed the above instance model by making necessary assumptions
and using required general definitions, data definitions. The derivation of IM1 is shown in
the Appendix A. The functional requirement of FP software is to solve this instance model
along with the other instance models.

3.4 Evaluation of the Template
Even though the original FP documentation was better than other software documentations
that were developed in 1980’s, there were a few issues with the theory manual. This section
assesses the proposed template by showing how the desired qualities of a good SRS, as
mentioned in Section 2.2, are achieved. To do this, we show the issues faced with the
original documentation of requirements in the theory manual and then present our solution.
Each issue is organized as follows:

• First, the context under which the issue has occurred is explained by giving details
about the goal of the specification, mathematical equation of the specification, com-
ponents of specification and definitions of the components.

• Second, we discuss how the issue has not met the desired qualities of a good SRS
and the problems faced as a result.

• Third, we present the solution provided by the proposed template using an excerpt
extracted from the SRS given in Appendix A.

• Finally, comments are made on the excerpt.

3.4.1 Issues in Documentation of R1 (Effective Thermal Resistance Be-
tween T1 and T2)

3.4.1.1 Context from the Original Theory Manual

One of the goals of FP, as mentioned in Section 3.3 is to find the transient fuel temperature.
The instance model representing this goal is an ODE as given by IM1, with R1 being the
effective resistance between fuel and clad temperatures.

26

MASc Thesis - author - McMaster - Computing and Software

In the original theory manual, the equation for R1 is documented as,

R1 =
RFUEL

2
+RGAP +

RCLAD

2
(3.1)

R1 =
f

8πkAV
+

1
2πrhg

+
τc

4πrkc
, (3.2)

with kAV being the average thermal conductivity,
r being the fuel radius,
hg being the gap conductance,
RFUEL being the thermal resistance of fuel,
RCLAD being the clad resistance,
RGAP being the gap resistance,
τc being the clad thickness,
kc being the clad conductivity.

3.4.1.2 Problems

1. Incompleteness
As per the definition of completeness in Section 2.2, every term in the document
should be defined. However, the term RGAP that was used in Equation 3.1 was not
defined in the manual. So, the original specification of R1 has failed to achieve the
quality of completeness

2. Deficiencies in checking correctness
From Figure 3.4, it is evident that the effective resistance R1 between T1 and T2 is:

R1 =
RFUEL

2
+RGAP +

RCLAD

2
, (3.3)

Hence Equation 3.1 is correct. However, to check the correctness of Equation 3.2,
we need the derivations of RFUEL, RGAP and RCLAD. As the derivation for RGAP was
not given in the manual, checking the correctness of Equation 3.2 became difficult,
as we had to derive the equation of RGAP for the new SRS.

3. Inconsistencies
The inconsistencies in the use of symbols for the terms gap conductivity and fuel
radius in the manual are as follows:

• The fuel radius was symbolized as ‘r’ in the RCLAD equation while it was rep-
resented by ‘r0’ in the derivation of average fuel temperature (kAV).

• The term hg has been used for representing gap conductance in the R1 equation
while the same hg denotes effective heat transfer coefficient between clad and
fuel surface in the fuel surface temperate (TS) equation , which is given in the
theory manual as,

TS = T2 +
q′N

2πrhg
(3.4)

The above two issues show that there are inconsistencies in the terms of the R1
equation.

27

MASc Thesis - author - McMaster - Computing and Software

4. Verifiability problem
As per the definition of verifiability in the Section 2.2, every specification in the doc-
ument must be the one fulfilled by the software. However, in the original FORTRAN
code, R1 was solved as,

R1 =
f

8πkAV
+

1
2πr f hg

(3.5)

This clearly shows that there is a disconnect between the original theory and the
code.

5. Lack of traceability:
The problems regarding traceability are as follows:

• There was no traceability shown between the figure representing the electrical
circuit analogue of the fuel pellet and the derivation of R1. The figure is re-
quired at the time of verifying R1 as it gives an insight into the derivation of
the equation. However, the figure was given at the end of the manual and there
was no referencing to it while defining R1. This made the task of checking for
correctness difficult.

• As mentioned previously, there was no traceability to the term RGAP from R1 as
there was no definition for it in the manual. The lack of traceability leads to a
modifiability problem as well, since managing changes requires knowledge of
the impact of the changes.

3.4.1.3 Quality Improvements by the Proposed Template

To achieve the qualities of a good SRS, the template applies the principle of “separation of
concerns” by including different sections so that focus can be on one thing at a time. By
dividing the problem into smaller steps and considering each section, it is easier to docu-
ment all the necessary information completely and correctly. The sections like Theoretical
Models, General Definitions, Data Definitions are included before the instance models sec-
tion for the purpose of systematically solving the problem in a hierarchical way. This way
of developing the concrete models from abstract ones helps in achieving completeness,
consistency, traceability and verifiability in the documentation. The purpose of including
these sections is to document all the background information, physical laws, constitutive
equations, rules, principles and physical data required to solve the problem.

To tackle the inconsistency problem, the template includes a section called ‘Table of
Symbols’ where all the symbols used in the document are summarized along with their
units.

To deal with the problem of traceability, and modifiability, we use cross referencing be-
tween the components. The template requires the use of a unique label to each component
and the development of models in a hierarchical manner. This aids in making references
back and forth, thus achieving traceability.

To solve the problems with completeness and correctness, the template uses the As-
sumptions, Theoretical models, General definitions and Data definitions sections as shown
in the below Excerpt 3.4.1.4. These sections collect all the necessary data needed to build
the equations, mathematical models and define them using tabular representation as well
as textual description. The mathematical models are built from the theoretical models con-
sidering the approximations and using the data definitions. The data definitions are derived
from the General definitions. This way of developing the concrete models from the ab-
stract ones, maintaining traceability between them will aid in achieving correctness. As the
derivations of the equations are also included in these sections, it makes the checking of

28

MASc Thesis - author - McMaster - Computing and Software

correctness easier. Hence the completeness as well as the correctness can be achieved at
the same time by documenting every equation, assumption, definition and model in the re-
spective sections. Once the requirement is specified completely, correctly with traceability
to its components, then the task of verifiability becomes easier.

3.4.1.4 Excerpt 1 Showing the Documentation of R1 Using the Proposed Template

The following is an excerpt from the SRS given in Appendix A, highlighting the portions
relevant for the definition of R1. The information not relevant in the current context has

been removed. The locations where this has occurred are indicated by vertical ellipses
(...).

NOTE: To allow the presentation focus on the main points and to keep the length rea-
sonable, the derivations of the data definitions used in deriving R1 are not included in the
excerpt and can be found in Appendix A.

hg - effective heat transfer coefficient between clad and fuel surface (kW
m2C)

hp - initial gap film conductance (kW
m2C)

kc - clad conductivity (kW
moC)

kAV - average thermal conductivity (kW
moC)

rc - clad radius (m)
r f - fuel radius (m)
RFUEL - thermal resistance of fuel (moC

kW)
RCLAD - clad resistance (moC

kW)
RGAP - gap resistance (moC

kW)
τc - clad thickness (m)
...

Figure 3.5: Table of Symbols

Assumptions:
A6: Approximation for ln ro

ri
as τc

r [DD7].
...

29

MASc Thesis - author - McMaster - Computing and Software

General Definitions:

Number GD3
Label Effective thermal resistance
Symbol REFF
Units ML3Tt−3

SI equivalent moC
kW

Equation REFF = ∆T
q

Description In some cases at steady state, the relation between the tempera-
ture change (∆T) and the thermal flux (q) is modelled as ∆T be-
ing directly proportional to q. The proportionality constant can be
derived using thermodynamic theory and then relabelled as REFF.
This is analogous to the electric circuit equation of V =IR.
As for the case of electric resistors in series, if n resistors
(R1,R2.....Rn) are connected in series between two temperatures
and if constant heat is flowing between those temperatures, then
REFF = R1 +R2 ++Rn

...
Data Definitions:

Number DD6
Label Effective thermal resistance of fuel
Symbol RFUEL
Units ML3Tt−3

SI equivalent moC
kW

Equation RFUEL = f
4πkAV

Description RFUEL is the effective thermal resistance between the temperatures
TCL and TS.
RFUEL

2 is the effective thermal resistance between TCL and T1 and
between T1 and TS.

Sources [8, page 3];

Derivation of RFUEL:
...

Number DD7
Label RCLAD
Units M−1L−1Tt3

SI equivalent moC
kW

Equation RCLAD = τc
2πrckc

Description The clad resistance is a function of the clad thermal conductivity.
It is obtained from the expression for heat transfer by conduction
through a hollow cylinder with inner radius ri and outer radius ro

where kc is the clad conductivity (kW
moC) and is given as, ∆T

q =
ln ro

ri
2πkc

Taking A6 into consideration, we get ∆T
q = τc

2πrckc
Comparison to GD3, shows that effective thermal resistance
RCLAD = τc

2πrckc
Sources [8, page 4], [18, page 5] ;

30

MASc Thesis - author - McMaster - Computing and Software

Derivation of RCLAD:
...

Number DD8
Label RGAP
Units M−1L−1Tt3

SI equivalent moC
kW

Equation RGAP = 1
2πrchp

Description RGAP is the gap resistance where rc is the clad radius (m), and hp

is the initial gap conductance (kW
m2oC), which is an input parameter

Sources source code

Derivation of RGAP:
...

Number DD10
Label R3
Units ML3Tt−3

SI equivalent moC
kW

Equation R3 = 1
2πr f hg

Description R3 is the effective thermal resistance between TS and T2 where r f
is the fuel radius (m) hg is the gap film conductance (kw/m2oC),
which is given by DD19

Sources [8, page 5];

Derivation of R3:
...

Number DD19
Label hg

Units Mt−3T−1

SI equivalent kW
m2◦C

Equation hg = 2kchp
2kc+τchp

Description hg is the gap conductance
τc is the clad thickness
hp is initial gap film conductance
kc is the clad conductivity

Sources source code

Derivation of hg:
...

31

MASc Thesis - author - McMaster - Computing and Software

Figure 3.6: Thermal circuit between T1 and T2

Number DD11
Label R1
Units ML3Tt−3

SI equivalent moC
kW

Equation R1 =
f

8πkAV
+ 1

2πr f hg

Description R1 is the thermal resistance between the average fuel temperature
(T1) and sheath temperature (T2) (see Figure 3.6)

Sources [8, page 4];

Derivation of R1:
From the Figure 3.6, the effective resistance R1 between T1 and T2 is:

R1 =
RFUEL

2
+RGAP +

RCLAD

2
(3.6)

Substituting the values of RFUEL, RCLAD and RGAP from DD6, DD7, DD8 respectively into
the above equation, it can be written as,

R1 =
f

8πkAV
+

1
2πr f hp

+
τc

4πrckc
, (3.7)

3.4.1.5 Comments on the Excerpt

The derivation shows that the documentation in the theory manual was incorrect due to
the inconsistent use of hg. If the hg in Equation 3.2 had been documented as hp, then the
equation would have been correct.

Since R3 is the effective resistance of the gap and half of the clad, the Equation 3.6 can
be rewritten as,

R1 =
RFUEL

2
+R3 (3.8)

Substituting the values of RFUEL and R3 from DD6 and DD10, respectively, into Equa-
tion 3.8 gives:

R1 =
f

8πkAV
+

1
2πr f hg

(3.9)

This new derivation clearly shows that the effects of RGAP and RCLAD are combined through
the calculation of hg. The newly derived equation matches with the code’s implementation
of R1. The incompleteness and inconsistency of the original documentation initially led to
the incorrect conclusion that either the theory or the implementation was wrong.

32

MASc Thesis - author - McMaster - Computing and Software

3.4.2 Issues in Documentation of R2 (Effective Thermal Resistance Be-
tween TB and T2)

3.4.2.1 Context from the Original Theory Manual

One of the goals of FP, as mentioned in Section 3.3 is to find the transient clad temperature.
The instance model representing this goal is an ODE showing the rate of change of clad
temperature (T2) which is given as:

Number IM2
Label Rate of change of average clad temperature
Equation C2

dT2
dt = T1−T2

R1
+q′MWR−

T2−TB
R2

Description T1 is the average fuel temperature (oC)
T2 is the clad temperature (oC)
TB is the coolant temperature (oC)
R1 is the effective resistance between fuel and clad temperatures
(moC

kW)
R2 is the effective resistance between clad and coolant tempera-
tures (moC

kW)
C2 is the thermal capacitance of the clad (kWs

moC)
qMWR is the Metal-Water reaction heat (kW

m)
Sources [8, page 6];

In the theory manual, the equation for R2 is documented as,

R2 = [2πro(hc +2kc/τc)]
−1 (3.10)

where, ro is the outer clad radius and hc is the convective heat transfer coefficient between
the clad and the coolant

3.4.2.2 Problems

1. Incompleteness
The term hc used in Equation 3.10 is not defined in the manual. So, the original spec-
ification of R2 failed to satisfy the completeness condition, as every term is required
to be defined for completeness to be achieved.

2. Deficiencies in checking correctness
From Figure 3.4, it is evident that the effective resistance R2 between T2 and TB is:

R2 =
RCLAD

2
+RFILM, (3.11)

To check the correctness of Equation 3.10, we need the derivations of RFILM and
RCLAD. As the derivation for RFILM was not given in the manual, checking the cor-
rectness of Equation 3.10 became difficult.

3. Verifiability problem
In the original FORTRAN code, R2 was solved as,

R2 =
1

2πrchc
(3.12)

33

MASc Thesis - author - McMaster - Computing and Software

This shows that there is a disconnect between the original theory and the code. As
every specification in the document must be the one fulfilled by the software for
verifiability to be achieved, it can be concluded that the verifiability condition has
been violated.

4. Lack of traceability
The problems regarding traceability are similar to that of R1’s problems, as follows:

• There was no traceability shown between the figure representing the electrical
circuit analogue of the fuel pellet and the derivation of R2.

• As mentioned previously, there was no traceability to the term RFILM from R2,
as there was no definition for it in the manual.

5. Ambiguity
The assumptions necessary to derive R2 were not documented. This made the task of
deriving the definition for R2 very difficult, as we were trying to get the theory man-
ual’s equation of R2 making our own assumptions. Due to the lack of assumptions,
several approximations were made, leading to a state of ambiguity.

3.4.2.3 Quality Improvements by the Proposed Template

To provide a solution to the problems encountered with the original documentation of R2,
we followed the same procedure that was used to deal with problems of R1. The complete
procedure is summarized as follows:

• Completeness and correctness problems were solved using the theoretical models,
general definitions and data definitions sections.

• The problem of traceability, and modifiability, were dealt with, by giving a unique
label to each component and by providing cross references between the components.

• The verifiability problem was tackled by developing the data in a hierarchical man-
ner, that is, from abstract to concrete. Verifiability has been facilitated by ensuring
the data is completely, and correctly documented with traceability to its components.

• The problem of ambiguity was solved by documenting all the necessary assumptions
required to derive the terms in the Assumptions section with a forward reference
given to the definition or model using it.

The following Excerpt 3.4.2.4 shows how the proposed SRS template solves the prob-
lems encountered with the original documentation of R2. As for the previous excerpt, the
derivations of the data definitions used to develop R2 are not included in the excerpt and

can be found in the Appendix A. Also as before, vertical ellipses
(...) are used to indicate

material removed from the excerpt. Some of the assumptions, general definitions and data
definitions that R2 uses are not defined in Excerpt 3.4.2.4, as they have already been defined
in Excerpt 3.4.1.4. So, to avoid redundancy, we just refer to the previous definitions.

34

MASc Thesis - author - McMaster - Computing and Software

3.4.2.4 Excerpt 2 Showing the Documentation of R2 Using the Proposed Template

hc - effective heat transfer coefficient between clad and coolant (kW
m2C)

hb - coolant film conductance (kW
m2C)

kc - clad conductivity (kW
moC)

rc - clad radius (m)
RFILM - coolant film resistance (moC

kW)
RCLAD - clad resistance (moC

kW)
τc - clad thickness (m)
...

Figure 3.7: Table of Symbols

Assumptions:

A7: Assume isotropic thermal conductivity [T2].
A11: Newton’s law of convective cooling applies between the clad surface and the coolant
film [DD9].
...

35

MASc Thesis - author - McMaster - Computing and Software

Theoretical Models

Number T2
Label Constitutive Equation (Fourier’s Law)
Equation q=−k(T)∇T
Description Fourier’s law states that the heat flux is propositional to slope or

the gradient of temperature, where k is a function of temperature.
This law is based on the assumption that the material is isotropic
A6.

...

General Definitions

Number GD5
Label Newton’s law of cooling
Equation qnewt = hA∆T (t)
Description Newton’s law of cooling describes the convection cooling and is

stated as “rate of heat loss of a body is proportional to the differ-
ence in temperatures between the body and its surroundings.”
qnewt is the thermal flux.
h is the heat transfer coefficient (assumed independent of T here)
(W

m2K)
A is the surface area of the heat being transferred (m2)
∆T (t)= T (t)−Tenv is the time-dependent thermal gradient between
environment and object. Newton’s law of cooling can be derived
from Fourier’s law (T2)

Number GD6
Label Effective heat transfer coefficient
Equation hEFF = q

A∆T (t)
Description q is the thermal flux.

hEFF is the effective heat transfer coefficient (W
m2K)

A is the surface area of the heat being transferred (m2)
∆T (t)= T (t)−Tenv is the time-dependent thermal gradient between
environment and object.
The heat transfer coefficient is modelled after Newton’s law of
cooling. It takes into account all relevant modes of heat transfer.

...

36

MASc Thesis - author - McMaster - Computing and Software

Data Definitions

Number DD7
Label RCLAD
Units M−1L−1Tt3

SI equivalent moC
kW

Equation RCLAD = τc
2πrckc

Description The clad resistance is a function of the clad thermal conductivity.
It is obtained from the expression for heat transfer by conduction
through a hollow cylinder with inner radius ri and outer radius ro

where kc is the clad conductivity (kW
moC) and is given as, ∆T

q =
ln ro

ri
2πkc

Taking A6 into consideration, we get ∆T
q = τc

2πrckc
Comparission to GD3, shows that effective thermal resistance
RCLAD = τc

2πrckc
Sources [8, page 4], [18, page 5] ;

Number DD9
Label RFILM
Units M−1L−1Tt3

SI equivalent moC
kW

Equation RFILM = 1
2πrchb

Description RFILM is the coolant film resistance where rc is the outer clad radius
(m), hb is the coolant film conductance (kW

m2C) (see Figure 3.8)
Sources source code

Derivation of RFILM
Taking A10 into consideration, we use Newton’s law of cooling to derive RFILM. The area
of the clad (Ac) is

Ac = 2πrc (3.13)

Substituting Equation 3.13 into GD6, and considering hb as the coolant film conductance,
we get,

qcoolant = 2πrchb∆T (3.14)

From GD3, the coolant film resistance (RFILM) can be given as,

RFILM =
∆T

qcoolant
(3.15)

Substituting Equation 3.14 in Equation 3.15 and simplifying gives,

RFILM =
1

2πrchb
(3.16)

37

MASc Thesis - author - McMaster - Computing and Software

Number DD18
Label hc

Units Mt−3T−1

SI equivalent kW
m2oC

Equation hc = 2kchb
2kc+τchb

Description hc is the effective heat transfer coefficient between the clad and the
coolant
τc is the clad thickness
hb is initial coolant film conductance
kc is the clad conductivity

Sources source code

Derivation of hc:
...

Figure 3.8: Thermal circuit between T2 and TB

Number DD12
Label R2
Units ML3Tt−3

SI equivalent moC
kW

Equation R2 = 1
2πrchc

Description R2 is the effective thermal resistance between TB and T2
rc is the outer clad radius (m)
hc is the effective heat transfer coefficient between clad and
coolant (kw

m2oC) which is given by DD18
Sources [8, page 5];

Derivation of R2:
Taking A10 into consideration, we use GD6 to derive R2. Substituting Equation 3.13 into
GD6, and considering hc as the effective heat transfer coefficient between clad and coolant,
we get,

q = 2πrchc∆T (3.17)

From GD3, R2 can be given as,

R2 =
∆T
q

(3.18)

Substituting Equation 3.17 into Equation 3.18 and simplifying gives,

R2 =
1

2πrchc
(3.19)

38

MASc Thesis - author - McMaster - Computing and Software

3.4.2.5 Comments on the Excerpt

The newly derived equation for R2 matches with the code’s implementation of R2. The
incompleteness and inconsistency of the original documentation led to the conclusion that
either the theory or the implementation was incorrect.

From Figure 3.8, R2 is the effective thermal resistance of the coolant film and half of the
clad. Adding the RFILM from DD9 with half of the value of RCLAD from DD7, we get

R2 =
1

2πrchb
+

τc

4πrckc
(3.20)

Taking the common terms out and rewriting the above equation we get,

R2 =
1

2πrc

(1
hb

+
τc

2kc

)
(3.21)

The derivation shows that the specification of R2 in the theory manual was incorrect due
to the inconsistent use of hc and due to the incorrect documenting of the RCLAD

2 part . If
the hc in Equation 3.10 had been documented as 1

hb
and 2kc

τc
term as τc

2kc
, then the equation

would have been correct. However, we need further simplification of the equation to make
the specification match the code. That is, Equation 3.21 should be simplified as follows:

R2 =
1

2πrc

(2kc + τchb

2kchb

)
(3.22)

=
1

2πrc

(
2kchb

2kc+τchb

) (3.23)

As 2kchb
2kc+τchb

is hc from DD18, substituting hc in the RHS of the equation gives,

R2 =
1

2πrchc
(3.24)

3.4.3 Issues in Documentation of Numerical Algorithm for Solving T2
Quadratic Equation

3.4.3.1 Context From the Original Theory Manual

The ODE for predicting transient clad temperature T2 is given by IM2. In steady state, the
average clad temperature is determined by setting the time derivative terms to zero in IM1
and IM2 and neglecting the metal water heating term in IM2. The resulting equation is
given as,

T2 = TB +q′NR2 (3.25)

Substituting value of R2 from the Equation 3.24 into Equation 3.25 and further simplifying
the resulting equation by substituting the value of kc, the clad conductivity (as given by
DD15 of Appendix A) in it, gives a quadratic equation in T2 as,

4πroa
τc

T 2
2 +2πro[hc +

2(b−aTB)

τc
]T2−TB2πro[hc +

2b
τc

]−q′N = 0, (3.26)

39

MASc Thesis - author - McMaster - Computing and Software

where a and b are constants obtained by a least squares fit to tabulated data, which are given
as,

a = 1.43×10−5 (3.27)

b = 1.17×10−2 (3.28)

On further simplifying Equation 3.26 we get the quadratic equation in T2 as,

4πroaT 2
2 +

(
4πrob−4πroaTB +2πrohcτc

)
T2

−(4πroTBb+2πrohcτcTB +q′Nτc) = 0
(3.29)

In steady state, the average clad temperature is found by solving the above quadratic
equation. The root of this equation gives the initial clad temperature.

3.4.3.2 Problems

1. Incompleteness
The term hc that was used in Equation 3.26 was not defined in the manual.

2. Incorrectness
From the issues in documentation of R2 as mentioned in 3.4.2, it is shown that R2 has
been defined incorrectly. As the incorrect R2 is used in the derivation of the quadratic
equation in T2, the resulting equation too is incorrect.

3. Verifiability problem
As per the definition of verifiability in the Section 2.2, the equation must match with
the one being solved in the code. However, in the original FORTRAN code, the
quadratic equation in T2 being solved is,

4πrchbaT 2
2 +

(
4πrchbb−4πrchbaTB−2aq′N

)
T2

−(4πrchbTBb+2q′Nb+q′Nhbτc) = 0
(3.30)

This clearly shows the disconnect between the equation documented in the theory
manual and the one being solved in the code.

4. Failing to be abstract
Being abstract is one of the qualities that a good requirements document must pos-
sess. According to the definition of Abstraction given in the Section 2.2, the specifi-
cation must tell us what to do but not how to do it. That is, the numerical algorithms
used for solving the equations should not be discussed in the requirements docu-
mentation, as it is a design decision which should be taken during the design phase.
Discussing the quadratic equation in T2 for getting the value of clad temperature
in steady state violates the condition for being abstract. Hence the original theory
manual failed to achieve the quality of abstraction.

3.4.3.3 Quality Improvements by the Proposed Template

As the documentation of numerical algorithms is not supposed to be done in the SRS, the
problems with quadratic equation of T2 have been dealt with in the implementation part
using Literate programming (see Chapter 4). However, for correctness and completeness,
we ensured that all the terms used in the development of the quadratic equation are defined
correctly in the SRS using the Data Definitions section. The improvement in documentation
of R2 using the proposed template has been shown in 3.4.2.4.

40

MASc Thesis - author - McMaster - Computing and Software

To ease modification of the value of auxiliary constants, we used the Auxiliary con-
stants section of the template. In this section, the symbols, values, constraints and units
of different constants that are required in solving the problem are recorded using tabular
representation. Each table in the section corresponds to one particular term and contains
all the constants required to define that term. The constants used for defining clad conduc-
tivity (kc), which is used to develop the quadratic equation are documented in the auxiliary
constants section as shown below:

TB2 Clad Conductivity
Constant Value Constraint Units
a 1.43×10−5 T2 ≤ 1000oC -

2.73×10−5 T2 > 1000oC -
b 1.17×10−2 T2 ≤ 1000oC -

−1.27×10−3 T2 > 1000oC -

The way the algorithm has been developed using the correct R2 is shown in the Chap-
ter 4. For facilitating traceability and verifiability, we have given unique labels to data
definitions, auxiliary constants tables in the SRS and developed the algorithm in the LP
Manual making references to the data definitions and auxiliary constants in the SRS, as
shown in the Chapter 4.

3.4.4 Issues in Documentation of Dryout Requirements
3.4.4.1 Context

When the reaction heat that is being sent into the coolant (q′out) exceeds a critical value
(pdry), the coolant flow gets reduced. As the contact between the coolant and the fuel re-
duces, the heat transfer from the fuel surface into the coolant deteriorates. At one stage the
coolant gets dried out and there will be no more contact between the fuel surface and the
coolant. This is called dryout and when it occurs, the fuel surface temperature drastically
increases. These intense high temperatures damage the fuel cladding. To avoid excessive
fuel temperature, the knowledge of the onset of the dryout phenomena is absolutely neces-
sary. When the dryout occurs, the value of heat transfer coefficient between the fuel and
coolant changes due to the changing physics of the clad-coolant interaction. That is, the
coolant conductance (hb) is assigned the value of dryout heat transfer coefficient (hdry).

NOTE: The theory manual does not discuss dryout and the context written above is
from the knowledge acquired by reverse engineering.

3.4.4.2 Problems

1. Incompleteness
All the information regarding dryout is missing from the theory manual. Neither the
condition for checking dryout nor the actions to be taken when dryout occurs were
given. Also the output heat to the coolant (q′out), based on which the dryout occurs is
not defined.

2. Lack of traceability
As there is no theory documented about dryout and heat out, there is no traceability
to those requirements for checking the correctness of their specifications.

3. Lack of verifiability
There was no means to check the correctness of the implementation of dryout and

41

MASc Thesis - author - McMaster - Computing and Software

output heat.

4. Modifiability
Due to the lack of completeness and traceability, the task of modifying the imple-
mentation in future (if necessary) becomes difficult.

3.4.4.3 Quality Improvements by the Proposed Template

As the theory about dryout and heat out (q′out) was missing, we had to develop the q′out
definition using the Theoretical Models, General Definitions and Data Definitions section.
For the dryout, as we had no external means to know about the condition and actions to be
taken. So, we applied the reverse engineering process to document the specification based
on the code implementation. That is, we have taken the condition for dryout from the code
and developed a data definition with it, as shown in the following excerpt:

3.4.4.4 Excerpt 3 Showing the Documentation of Dryout and Heat Out (q′out) Using
the Proposed Template

The information not relevant in the current context has been removed. The locations where

this has occurred are indicated by vertical ellipses
(...).

Table of Symbols:

hb - coolant film conductance (kW
m2C)

hdry - convective heat transfer coefficient between fuel surface and coolant at dryout (kW
m2C)

pdry - dryout threshold power
q′out - output heat to the coolant (kW

m2C)
q′Nmax

- linear element power at full power (kW
m)

TB - coolant temperature (oC)
...

Figure 3.9: Table of Symbols

Data Definitions:

42

MASc Thesis - author - McMaster - Computing and Software

Number DD27
Label q′out
Units Mt−3T−1

SI equivalent kW
m2oC

Equation q′out =
1

q′Nmax

(
T2−TB

R2

)
Description q′out is the output heat from the reaction that is sent into the coolant

R2 is the effective resistance between the coolant film and the clad
(moC

kW)
q′Nmax

is the linear element power at full power (kW
moC)

T2 is clad temperature (oC)
TB is coolant temperature (oC)
NOTE: Equation taken from the original FORTRAN code

Derivation of q′out:
From Figure 3.8, the effective resistance R2 between T2 and TB is given by DD12. Accord-
ing to GD3, the R2 between T2 and TB can be given as,

R2 =
∆T
q′out

, (3.31)

where q′out is the heat generated between T2, TB and

∆T = T2−TB (3.32)

Substituting Equation 3.32 and DD12 in Equation 3.31 and rearranging gives,

q′out =
(T2−TB)

R2
(3.33)

Normalizing the above equation by q′Nmax
(standard presentation) gives,

q′out =
1

q′Nmax

(T2−TB)

R2
(3.34)

Number DD28
Label dryout
Units −
SI equivalent −
Equation if(q′out ≥ pdry)

hb = hdry
Description We compare the power sent to the coolant (q′out) with the dryout

threshold power (pdry) and once it exceeds this maximum permis-
sible power, dryout occurs. When the dryout occurs, the coolant
film conductance (hb) becomes equal to the heat transfer coeffi-
cient between the fuel surface and the coolant at dryout (hdry).
NOTE: The meaning of hb is given through the definition of RFILM
(DD9)

...

43

MASc Thesis - author - McMaster - Computing and Software

3.5 List of Issues Uncovered From the Original Theory
Manual

There are some other issues with the original theory manual, but they are not being dis-
cussed in detail here. This is because some of the issues are fairly trivial and the prob-
lems encountered with the rest of the issues are similar to those mentioned above. A total
of 27 issues that have violated the desired qualities of a good SRS including those dis-
cussed above, were uncovered by systematic documentation approach and using the check-
list given in the Appendix C. The list of issues with the the theory manual, excluding the
issues with R1, R2, T2, dryout is provided in the Figure 3.10.

1. The derivation of the basic governing equation for temperature rate of change equa-
tions is not given.

2. The parabolic law used in determination of oxidation rate is not stated and its relation
in determining oxidation rate is not given.

3. The derivation of RCLAD expression from heat transfer through a hollow cylinder is
not given.

4. Information about dryout, saturation is not given.

5. The value of the constant A in the temperature feedback reactivity is missing.

6. Units for temperature feedback reactivity are not given.

7. Inconsistent use of term T for average fuel temperature in the Fuel stored energy
equation.

8. The last term of Fuel stored energy equation does not match the code as it is given as
-(ED/R)T1 in manual but code says it is -(ED/(RT1)).

9. Functional forms of cp,2 and cp,3 were not stated.

10. Condition of qMWR when δox > τc is not given in the manual.

11. The unit mk given for the temperature feedback reactivity is ambiguous.

12. Mismatch with the values of constants K0,ED/R between the code and the theory.

13. The T used in the Fuel stored energy equation is not average fuel temperature. It
is the absolute temperature equivalent of T1. That is, T = T1 + 273. This is not
mentioned in the theory manual.

14. References to the electrical circuit analogue of the fuel pellet representation figure
were not given.

Figure 3.10: List of Issues with the Original Theory Manual

44

Chapter 4

Implementation of the SRS using
Literate Programming

Once the requirements are completely documented, the next stage in the software devel-
opment is design. The design phase includes selection of the solution techniques, data
structures, programming language and full development of the numerical algorithms. In
this stage of software development, a plan on how to develop the computer program to
meet the requirements is made. At this point, in traditional software engineering, the pro-
gram structure is divided into modules, such that each module deals with a set of functional
requirements. Then the modules are designed by preparing interfaces for them. After all
the decisions are made, certified software should document the design decisions in such a
way that it is clear how the requirements have been met.

After the design is complete, the next step in the waterfall model of a software devel-
opment process is implementation. In the implementation stage, the design is translated
into a computer program. That is, the coding is done for each module individually accord-
ing to the design, and all the pieces of code are integrated into one main program. While
developing the program, the program flow and naming conventions of the variables are
often documented in a programmer’s manual, so that the maintenance and modification of
the program becomes easy. The programmer’s manual is also helpful in verification of the
implementation with the design and the requirements.

This chapter is about the design and implementation of the requirements mentioned
in the SRS using Literate Programming (LP). The chapter is organized as follows: First,
Section 4.1 discusses the information to be documented in the design manual and program-
mer’s manual according to N286.7 standard. Second, Section 4.2 explains how Literate
Programming has been used for designing and implementing the overall structure of the
function being developed. Third, Section 4.3 gives the advantages of using LP for de-
sign and implementation and shows how the desirable qualities of a good document are
achieved. Finally, Section 4.4 shows the design and implementation of instance models
from the SRS using LP.

4.1 N286.7 Standard’s Expected Documentation of Design
and Implementation

According to N286.7 standard, the design description manual should be documented in
such a way that it includes the following [3]:

45

MASc Thesis - author - McMaster - Computing and Software

• identification of the algorithms

• computer program structure, including data structures and program flow

• description of modules and module interfaces

• library functions

The N286.7 standard require the programmer’s manual to be developed in such a way that
it includes the following [3]:

• program flow and structure

• how the theory is translated into coding

• how to modify and maintain the computer program

• conventions on programming practices, such as variable naming and computer pro-
gram

Although the standard requires two different documents for documenting design and im-
plementation, we are going to combine both documents into one document: Literate Pro-
grammer’s Manual (LPM). This is done because we are going to do the design and im-
plementation simultaneously using LP. So the document generated by LP can act as both
design manual and as a programmer’s guide.

The division of the program into modules and specification of their interfaces is out of
the scope of our work. We instead focus on one subroutine from the original FORTRAN
program from developed by the nuclear power generating company. Their code has already
been subdivided into subroutines. Our goal is to have the numerical outputs of the new
literate program match the output of the original FP code. Keeping the output in sync is
more manageable if we restrict our scope to one subroutine at this time. Hence, the division
of modules and description of module interfaces is not included in the LPM. Our goal is
to redevelop the existing code and document its implementation achieving the qualities of
verifiability, traceability and correctness.

4.2 Design and Implementation Using LP
Although in the standard engineering practice, design and implementation are done in two
different phases, we can document both the phases together using LP. This can be achieved
because the source code is developed along with the logic behind it in LP. That is, first
the design of each instance model is done by developing the numerical algorithms required
to solve it. Second, the information behind the implementation of the instance model is
given. Third, the data definitions required to develop the instance model are implemented
as a small pieces of code called chunks. Finally, all the chunks are integrated into one main
chunk. This way, all the instance models are designed and implemented as an intercon-
nected web.

In our case study, we have restricted our scope to designing and implementing only
those instance models that model the prediction of transient temperatures (both fuel and
clad). That is, we are going to develop only the FUELTE subroutine of the original FOR-
TRAN program using LP. As mentioned in Section 2.3, we used CWEB as our LP tool and
C as the programming language. The literate C code is implemented in a function named
fuel temp . We had to make a few changes to the original FORTRAN function, to make it
run and generate the same results as that of the original code. The changes are summarized
below:

46

MASc Thesis - author - McMaster - Computing and Software

• All the arguments (whether input or output values) to the C function (fuel temp) had
to be passed by pointer in C, as FORTRAN by default passes all the arguments by
reference.

• The common block variables of the FUELTE subroutine have been passed as input
arguments to fuel temp , since the C implementation does not have access to the
common block.

• Hardcoding of values was avoided and constants were used to denote them.

• The developed C function, fuel temp was called in the place of FUELTE subroutine
from the original FORTRAN program to make the code run as one program.

• In the original FORTRAN code, the local variables were not declared under the save
statement. So, once the subroutine ended, the local variables of that subroutine did
not retain their previous value and hence became undefined. As a result, NaN’s and
infinities were generated in the output files. To deal with this problem, we have
included the -fno-automatic option to the gfortran command while compiling the
FORTRAN program, as shown in the make file (Appendix D). The -fno-automatic
option specifies that all local variables and arrays are to be treated as if they were
named in SAVE statements.

Calling of the C function from the FORTRAN code was verified by checking that the code
generates the same results as that of the original nuclear power generating company’s code.
The complete implementation of the FUELTE subroutine using LP is shown in Appendix
B.

A list of the changes made to the original FORTRAN code is given in Figure 4.1.

1. The open commands of input and output files are uncommented to make the code
run.

2. Changed QN0 of the code to q′N,max to make more sense.

3. Changed qN,est equation by adding flux depression factor (f) to match the theory.

4. Added a new variable, pi instead of hardcoding the value 3.1416.

5. Added a new variable, t std for stored energy calculation instead of hardcoding the
value 298 in it.

6. Declared the stored energy constants in the dynamic section too instead of declaring
them as global constants.

7. Added variables for RFILM,RGAP,R1,R2,R3 instead of hard coding their values and
to make the implementation match the data definitions from the SRS.

Figure 4.1: List of changes to the original FORTRAN code

For designing and implementing fuel temp , we will first discuss in Section 4.2.1, the
numerical algorithm that has been developed to provide the transient solution to the ODEs
represented by the instance models. Second, the algorithm and the overall function for

47

MASc Thesis - author - McMaster - Computing and Software

developing the subroutine have been designed in Section 4.2.2. Third, the naming conven-
tions of the input, output and local variables is given in Section 4.2.3. Finally, the design
and implementation of the instance models representing the ODEs of different temperatures
is done in Section 4.4. Excerpts from the LP document have been used to demonstrate the
design and implementation of requirements from the SRS.

4.2.1 Numerical Algorithm for Solving ODEs
All the ODEs of the FP, which are given by instance models IM1, IM2 and IM3 of the
SRS are solved using the same generic framework. This framework was originally given
in the theory manual provided by the nuclear power generating company. However, as the
numerical algorithms should not be discussed in the requirements document, the material
about this framework has been removed from the SRS with the intent of keeping it abstract.
Instead, the framework is described in the LP document as a numerical design decision.
The framework shown in the Figure 4.2, is an excerpt from the LPM which gives the time
stepping algorithm for solving ODEs of FP. The algorithm uses the subscript k to indicate
the current time step.

Figure 4.2: Excerpt from LPM showing the numerical algorithm for solving ODEs

4.2.2 Overall Algorithm and Function of fuel temp
This section first discusses the overall algorithm of fuel temp , which is designed to get a
clear idea of how to implement the instance models of the SRS. Next, it gives a high level

48

MASc Thesis - author - McMaster - Computing and Software

view of the overall function structure.
The algorithm of the fuel temp function is designed to take both the input parame-

ters as well as the common block parameters of the FUELTE subroutine from the original
FORTRAN code, as inputs for the reason mentioned in Section 4.2. For making the algo-
rithm understandable, we use the scientific notation of the variables in LATEX. The overall
algorithm of the fuel temp function is divided into two sections depending on the value of
init flag, which is an input, as follows:

• Initialization section: In this section, the initial values of the variables are found.
That is, the values of variables in steady state are calculated.

• Dynamic section: In this section, the transient values of the variables are found.

Under each section, the inputs that are given to that section, the processing of inputs and
the outputs from that section are detailed. That is, the algorithm gives a clear statement of
the inputs and outputs. Figure 4.3 is an excerpt from the LPM, giving the overall algorithm
of of fuel temp . The subscript k in the algorithm plays the same role as it did in Figure 4.2;
it denotes the current time step.

Figure 4.3: Excerpt from LPM showing the overall algorithm of fuel temp

After the algorithm has been developed, the next step is development of the function,
in which the mathematical notation of the algorithm is converted into computer code. The
development of the function is done as a stepwise refinement. That is, first, the over-
all function is developed in an abstract way, by calling the chunks which implement the
initialization and dynamic sections. Later, the two sections are implemented in detail, as

49

MASc Thesis - author - McMaster - Computing and Software

designed in the algorithm, in the chunks that are numbered beside the names of the sections,
respectively.

In the coding phase, the scientific notation of the variables is changed to programming
notation following the naming conventions which are given in the Section 4.2.3. The input
parameters are passed by reference, as FORTRAN by default, uses pass by reference. Since
the C function, fuel temp , has to be called from the FORTRAN code, it is necessary to
declare the variables as pointers to make the C function compatible with the FORTRAN
code and to make the variables retain their previous values even after exiting the function.

The function fuel temp calls two FORTRAN code subroutines: calpro and dryout .
calpro calculates material properties while dryout outputs a message when dryout occurs.
Hence, the overall function includes the declaration of these two subroutines. An excerpt
from the LPM, showing the refinement from the abstract view of overall function to the
concrete development of initialization and dynamic sections is given in the Figure 4.4.

50

MASc Thesis - author - McMaster - Computing and Software

Figure 4.4: Excerpt from LPM showing the overall function and the implementation of
initialization and dynamic sections of fuel temp

51

MASc Thesis - author - McMaster - Computing and Software

4.2.3 Naming Convention of Variables for fuel temp
This section summarizes all the relevant parameters of the function. Excerpts from the
LPM are used to show the naming conventions of the input, output and local variables.
That is, the excerpts show how the scientific notation of the parameter is changed into
the programming notation. In the excerpts from the LPM, the items under the parameter
column give the variables used in the computer code while the items under store column
give the mathematical notation of their respective variables (See Figure 4.5). Some of the
material has been removed from the excerpts to keep their size small enough to fit in one

page.The locations where this has occurred are indicated by vertical ellipses
(...). The full

list of naming conventions is given in the Appendix B.

Some of the variables that are passed as arguments to the fuel temp function are input
variables while the others are in-out variables. That is, the former case variables are pure
inputs while in the later case the variables act as both inputs, as well as outputs. So, the
in-out variables store one value when taken as input and a different value when given as
output at the same time step. This makes the verification of the implementation with the
design difficult. The reader might find it difficult to understand, which value a variable
possesses at a particular time step. So, to deal with this problem, the naming convention of
the parameters has been divided into three lists as follows:

• Input parameters

• Output parameters

• Local variables

In the input parameters list, first the naming conventions of pure inputs are stated and
then the naming conventions of the in-out variables, when acting as inputs are given. The
value stored by the input variable during the dynamic section, at time step k is also given.
The value for initialization section is not mentioned, because the input variables can have
any value as they are not used in the calculations during initialization. Figure 4.5 is an
excerpt from LPM showing the naming convention of input parameters.

The output parameters list is again subdivided as:

• output parameters from the initialization section

• output parameters from the dynamic section

This is done because the output variable x stores the initial value xk at time step k = 0 while
it stores the value xk+1 at time step k > 0. That is, when coming from the initialization
section, the output variable stores value at the current time step, while it stores value of
the next time step when coming out of the dynamic section. So, to make the concept of
explicit methods clear, the output list has been subdivided. Figure 4.6 is an excerpt from
LPM showing the naming convention of output parameters.

The local variables, which are used for the calculation of effective thermal resistances,
are given as a separate list. The list is divided on the basis of the sections in the same way
as done for output parameters and for the same reasons as specified for output parameters.
Figure 4.7 is an excerpt from LPM showing the naming convention of local variables.

52

MASc Thesis - author - McMaster - Computing and Software

Input Parameters
parameter stores
*delta ∆t
*q NFRAC qNFRAC
*r f r f
* f f
*rho 1 ρ1
.
.
.
*q N q′N,k, k ≥ 0, if ¬*init f lag
*k c kc,k, k ≥ 0, if ¬*init f lag
*q MWR q′MWR,k, k ≥ 0, if ¬*init f lag
* f p PF,SUM,k k ≥ 0, if ¬*init f lag
*t 1 T1,k, k ≥ 0, if ¬*init f lag
*t 2 T2,k, k ≥ 0, if ¬*init f lag
.
.
.

Figure 4.5: Excerpt from LPM showing the naming convention of input parameters

53

MASc Thesis - author - McMaster - Computing and Software

Output Parameters from the Initialization section
if *init f lag == 1,

parameter stores
*n 1
*h b hib
*q N q′N,0
*k c kc,0
*q MWR q′MWR,0
* f p PF,SUM,0
*t 1 T1,0
.
.
.

Output Parameters from the Dynamic section
If ¬*init f lag,

parameter stores
*n 1 or 2
*h b hib or hdry
*q N q′N,k+1
*k c kc,k+1
*q MWR q′MWR,k+1
* f p PF,SUM,k+1
*t 1 T1,k+1
.
.
.

Figure 4.6: Excerpt from LPM showing the naming convention of output parameters

Local Variables for the Effective thermal resistance in the Initialization section

parameter stores
r 1 R1,0
r 2 R2,0
r 3 R3,0
r f uel RFUEL,0

Local Variables for the Effective thermal resistance in the Dynamic section

parameter stores
r 1 R1,k+1
r 2 R2,k+1
r 3 R3,k+1
r CL RCL,k+1

Figure 4.7: Excerpt from LPM showing the naming convention of local variables

54

MASc Thesis - author - McMaster - Computing and Software

4.3 Evaluation of LP
Even though LP is a programming technique, its main idea is to make the design and
logic behind the code understandable to the human reader. Documenting the design and
program flow using LP achieves most of the qualities of good documentation (mentioned
in Section 2.2) and at the same time meets the expectations of the N286.7 standard for the
design and programmer’s manuals. In this section, we discuss the advantages of LP, by
showing the steps we have taken to achieve the desired qualities of a good document as
follows:

1. Completeness: While developing the LP source file, the main algorithm of the pro-
gram is divided into smaller parts which contain explanation, definitions and imple-
mentation. As all the theory and numerical algorithms necessary for the implemen-
tation are presented before the coding is done, the quality of completeness can be
achieved.

2. Correctness: As LP is developed in connection with the SRS, checking the correct-
ness becomes easier. That is, before implementing each term, the definition of the
term is taken from the SRS and given again in the LP document. This way of imple-
menting each term as a chunk in connection with SRS aids in checking whether the
program is implementing the right requirement. Confidence in correctness is built by
verifying that every line of code either traces back to a description of the numerical
algorithm (in the LPM) (or) to a data definition (or) to an instance model (or) to an
assumption (or) to a value from the auxiliary constants table in the SRS.

3. Consistency: The following steps were taken to ensure consistency:

• The naming conventions of the variables have been given during the design of
the algorithm. As the code was developed following the naming conventions,
the probability of inconsistencies has been reduced.

• Each term was developed as an individual chunk only once and has been reused
wherever necessary. Hence the definition and implementation of the same term
is consistent throughout the document.

4. Traceability: For achieving the quality of traceability, the following two cases must
be satisfied:

• Traceability between the components of LP.

• Traceability between the SRS and LP.

For traceability between the components of LP, we have taken the following mea-
sures:

• Each equation, definition, table has been labelled and referenced, wherever nec-
essary in the document.

• In LP, the program is developed as a web of interconnected chunks. LP auto-
matically assigns a number to each chunk. When a chunk is used somewhere
in the development of an algorithm or in the implementation of an instance
model, LP automatically generates a hyperlink to the place where the chunk is
being used. Also, at the place where the chunk is being called, LP mentions the
number of the chunk that gives the code of the definition. So, the reader will
know where the chunk is being used and also where it has come from during
the implementation. This makes the traceability between the chunks very easy.

55

MASc Thesis - author - McMaster - Computing and Software

For traceability between LP and SRS, cross referencing was done between the two
documents to achieve traceability. That is, while implementing each term, it was
referred back to the data definitions section of SRS from where we got the definition
of the term. This way of development of LP in connection with SRS, made the
traceability between them possible.

As the numerical algorithm is designed to solve the instance models of the SRS, and
as the code of the function is developed from the numerical algorithm developed
in LPM and the data definitions from the SRS, the traceability between the theory,
design and implementation can be achieved.

5. Verifiability: The quality of verifiability has been achieved due to the following rea-
sons:

• As all the necessary information behind the implementation like development
of numerical algorithms, solution techniques, assumptions and the program
flow is given, the verification of the implementation against the design has been
made easier.
• As traceability between the SRS and LP has been maintained, compliance of

the design and implementation with requirements can be checked.
• As documentation of the design and code is made together in the same doc-

ument, it is sufficient for the verifier to have the SRS and LP to confirm the
correctness of the software.

6. Unambiguity: As each term or model is developed only once as a chunk and reused
where ever necessary, there is no chance of having two different implementations for
the same definition. Also as everything behind the implementation is provided in
detail, the chances of having two different interpretations can be reduced. Hence the
quality of unambiguity can be achieved.

7. Modifiability: As each term is being implemented only once, the task of modification
becomes easier. If in future, the implementation has to be changed, only that chunk
consisting of the code has to be modified. As repetition is avoided, consistency
will not be affected by the modification. Also as traceability and consistency are
maintained, the modifiability becomes easier.

4.4 Design and Implementation of Instance Models
This section shows how the design and implementation have been made together using
LP. That is, how numerical algorithms have been developed in connection with SRS, how
the logic has been given, how the code was developed as chunks and how the chunks are
interconnected. From the excerpts used in the explanation of design and implementation
of instance models, the achievement of desired qualities of a good documentation become
evident.

Before the design of the instance models from the SRS is done, the mathematical mod-
els are summarized by giving their equations, so that they can be referred back while de-
veloping the numerical algorithms to solve them. Figure 4.8 shows how the IMs from the
SRS were summarized.

4.4.1 Steady State Computation
After giving an overview of the instance models, first the design of the numerical algorithms
for solving each instance model in the steady state is done. While developing the numerical

56

MASc Thesis - author - McMaster - Computing and Software

Figure 4.8: Excerpt from LPM showing the summary of instance models from the SRS

algorithms, the logic and concepts behind the development are given in an order that is
best for human understanding. When a concept is introduced, the data definition equation
used in it is given with the chunk of implementation, to make verification easier. When the
equations of the data definitions and the code implementing them are presented together, the
lines of code can be compared to the definition and the correctness of the implementation
can be easily checked. An example, showing how the verification of the code with the
design is achieved, is given by Figure 4.9.

Figure 4.9: Excerpt from LPM showing the implementation of q′NFRAC in the steady state

While introducing the concepts, references are made to the relevant data definitions,
assumptions and auxiliary constants defined in the SRS. Thus the traceability between the
concepts being introduced during design and the SRS can be achieved. For instance, while
finding the initial value of T2, we need to calculate R2, which introduces the concept of
clad conductivity (kc), as the determination of R2 depends on kc. So, when concept of kc
is introduced, references are made to the SRS where the definition of kc and the values
of its constants are given. Figure 4.10 is an excerpt from the LPM, where the traceability
between the SRS and the definition of kc is shown.

57

MASc Thesis - author - McMaster - Computing and Software

By introducing the concepts in connection with SRS, and making the necessary as-
sumptions, the numerical algorithms necessary to find the initial values of the instance
models are developed. Once the algorithm is developed, it is immediately implemented
as a chunk. Figure 4.10 is an excerpt from the LPM, showing the development of the nu-
merical algorithm for solving T2 in steady state. The full design is not given in the excerpt
to keep its size small enough to fit on a page. However, the detailed development of the
algorithm can be found in Appendix B. The excerpt shows how the algorithm is developed
in connection with the SRS and how the code is developed in accordance with the design,
making verification easier. Also, the excerpt shows how the numbering of the chunks is
done and how LP mentions the place where the chunk can be used, achieving traceability.

Once a chunk is developed, it is called from the main function. In this way, each
chunk is implemented and the initialization section is built by calling all the chunks that
are developed, to find the initial values as shown in the Figure 4.4.

58

MASc Thesis - author - McMaster - Computing and Software

Figure 4.10: Excerpt from LPM showing the design and implementation of T2 in the steady
state

59

MASc Thesis - author - McMaster - Computing and Software

4.4.2 Transient State Computation
After the initial values are computed in the initialization section, the next step is to de-
sign and implement the dynamic section. That is, we determine transient values (subscript
k > 0) for the instance models and the data definitions. In this section we do not develop
any numerical algorithms, as we have already discussed the algorithm that has to be used
for finding the transient values in Section 4.2.1. Figure 4.2 gives the numerical algorithm
designed for solving the instance models of the SRS. So, in the dynamic calculations sec-
tion, the flow of logic is given and the ODEs are solved using the developed numerical
algorithm.

When the data definitions are to be implemented, their definitions are summarized with
the help of subscript k. This is done with the intention of clarifying which time step value
is being used by the variable in the definition. While the definition is given, references
are made to the SRS in the same way as done in the initialization section, for achieving
traceability. Then, the data is implemented under the definition to make the verifiability
easier. If the definition of the data is the same for both steady state as well as transient state
calculations, then the chunk that has been developed in the initialization section is reused
in the dynamic section to maintain consistency and achieve unambiguity. As mentioned in
the Section 4.3, each data definition is implemented only once to avoid any confusions and
to make the tasks of maintainability and modifiability easier.

Figure 4.11 is an excerpt from LPM showing the design and implementation of T2 in
transient state. From the figure it can be seen, how the subscript k was used in the data
definitions to indicate the time step value of the variables and how the chunks from the
initialization section were reused. For the calculation of q′N in the dynamic state, the chunk
which calculated q′N in the initialization section was reused as both the states uses the same
piece of code (same data definition).

For implementing the instance models, first each instance model is rearranged to match
the differential equation form given in the numerical algorithm of Section 4.2.1 (See Fig-
ure 4.2). Then the transient solution is given by comparing the modified instance model
equation and the ODE being solved by the numerical algorithm. The implementation of
the algorithm is done as chunks immediately. In this way, each data definition and instance
model is implemented and the dynamic section is built by calling all the chunks that are
developed, to find the transient values as shown in the Figure 4.4.

Figure 4.11 shows the development of the transient solution for T2 by rearranging and
comparing it with the ODE of the numerical algorithm discussed in Section 4.2.1. Also it
can be seen, how the implementation of chunks was done achieving verifiability, correct-
ness and completeness.

60

MASc Thesis - author - McMaster - Computing and Software

Figure 4.11: Excerpt from LPM showing the design and implementation of T2 in transient
state

61

Chapter 5

Conclusions

With the general engineering practices being followed for the development of scientific
software, the documentation of requirements and design are not being given the importance
they deserve. The introduction of software engineering methodologies into the scientific
field will reduce this problem. The goal of this research is to make the scientists understand
the gravity of the problems that arise for software that is poorly documented. By the intro-
duction of the new template for the SRS, we hope that the people from the scientific field
will learn how to document all the requirements and avoid problems of inconsistency and
incompleteness. Also, by introducing Literate Programming for documenting the design
and implementation, we wish that the developers will find it easy to maintain the traceabil-
ity between the theory, design and code, thus making the verification part easier during the
certification. The summary of this thesis is provided in Section 5.1 and future work is given
in the Section 5.2.

5.1 Summary
In this section, we are going to summarize how the research problems stated in Chapter 1
are solved through this research by considering each problem in turn.

1. How to improve the requirements documentation capturing all the necessary infor-
mation for developing scientific software?

This thesis proposes a template for the SRS, which helps in systematically devel-
oping the requirements document. The template helps in achieving completeness, as
sections of it act as a checklist to the developer and force him to fill in the neces-
sary information. As the template is developed following the principle of separation
of concerns, each and every section can be dealt with individually and the docu-
ment can be developed in detail by refining from goals to mathematical instanced
models. This way, the proposed template provides guidelines for documenting the
requirements by suggesting an order for filling in the details, thus reducing chances
of missing information.

2. How to achieve the desirable qualities of a good requirements document for scientific
software?

The proposed template helps to divide the problem into smaller parts and develop
each part completely, correctly and consistently with other parts by maintaining

62

MASc Thesis - author - McMaster - Computing and Software

traceability and unambiguity. How the desired qualities are achieved by the tem-
plate are summarized below:

• Documenting all the background information, physical laws, assumptions, con-
stitutive equations, rules, principles, physical data, constraints and constant
values in different sections like Theoretical models, General Definitions, Data
Definitions, Assumptions, Data Constraints, and Auxiliary constants, aids in
achieving completeness.

• The sections for Assumptions, Theoretical models, General Definitions and
Data Definitions, aid in developing the functional requirements systematically
in a hierarchical manner. This way of development from abstract to concrete
helps in achieving correctness, as the application of assumptions to the right
governing equations results in correct definitions, and the use of these correct
definitions with correct assumptions will result in deriving the correct instanced
models.

• The qualities of traceability and modifiability have been achieved by giving a
unique label to each component and using cross referencing between the com-
ponents of the SRS. The hierarchical development of the models also helps in
achieving traceability and modifiability, because several concrete models can
be developed from the same abstract model by applying different assumptions
and data definitions. So, when a concrete model has to be changed, only the
assumptions and data definitions part will be affected, while the rest of the de-
velopment remains the same making the modifications easier.

• By encouraging the hierarchical development of models in the SRS, the soft-
ware qualities like maintainability and reusability can be achieved, thus pre-
venting the cost of recertification from becoming too large.

• The Table of Symbols section is used to achieve consistency, as it summarizes
all the symbols used in the document along with their units. By making clear
which symbol represents which term right at the beginning and by following
the naming convention, the problem of inconsistency can be tackled.

• By including the derivations of the equations under their definitions, complete-
ness as well as correctness can be improved.

• The SRS can achieve the quality of being abstract by not discussing the numer-
ical algorithms and other design decisions within it.

• By defining each term only once in the data definition section and by develop-
ing the functional requirements individually, without mixing with others in the
instance models section, the quality of unambiguity can be achieved. Also in
the future, if a requirement has to be changed, then the change can be made
in only one place, thus helping the maintainers in putting less effort and time
towards reflecting that change everywhere in the software.

• As the requirements are specified completely, correctly with traceability to their
components, the task of verification can be facilitated.

3. How to develop the code with traceability to the numerical algorithm choices?

LP develops the code and design in the same document while maintaining trace-
ability between them. Also, as the lines of code in the chunks are developed making
references to the numerical algorithms and other definitions used in the design, trace-
ability between the code and design can be achieved.

63

MASc Thesis - author - McMaster - Computing and Software

4. How to achieve traceability between the theory, numerical algorithms and the imple-
mentation?

As the LP Manual develops the design and the code together, it is easier to main-
tain traceability between the numerical algorithms and the implementation. While
using a term (or) a constant (or) a model in the design, it is referred back to the data
definitions section, auxiliary constants section, instance models section of the SRS
respectively from the LP Manual. This way of developing the LP Manual in connec-
tion with the SRS by making cross referencing between the two documents helps in
achieving traceability between the theory, numerical algorithms and the implemen-
tation.

5. How to facilitate certification of scientific software via documentation techniques?

As the expected qualities of software (according to N286.7 standard) to be certified
are similar to the desirable qualities for a good SRS, the certification of the soft-
ware can become easier by developing the requirements, design and implementation
documents achieving the desirable qualities. As the SRS and the LP Manual are de-
veloped in such a way that they satisfy the conditions of a good documentation, the
tasks of certification like verification, maintenance, and checking for modifiability
became easier, thus facilitating the certification process.

5.2 Future work
This section suggests the following work to encourage further research in the documenta-
tion of scientific software and to enhance the effectiveness of our research:

1. Documentation of Non-functional Requirements:
The Non-functional Requirements mentioned in Section 4.c and Other System Issues
mentioned in Section 5 of Figure 3.1 are not documented in the Appendix A, as the
original theory manual did not contain information on them. So, these requirements
should be elicited and documented in the SRS to enhance it and make it complete.

2. Development of tools:

• In the LP Manual, while implementing the data definitions from the SRS, the
definitions of the data were again given in the LP Manual to make verification
easier. Currently, redefining the definition was done manually by copying and
pasting between the documents, and only backward references were given from
the LP Manual to the SRS. Tools can be developed for transclusion between the
SRS and the LP Manual. That is, for automatic generation of information in
the LP Manual that is to be reused from the SRS. The tool should be able to
facilitate bidirectional traceability by generating hyperlinks in the SRS and the
LP Manual at the places where the information is being shared.
• Tools can be developed to have multiple views of documentation, with each

showing the level of detail required. For instance, the reader might not want to
look at the derivations while verifying the implementation against the require-
ments. In this case the tool should be able to temporarily hide these details.
• Tools can be developed to automatically generate graphical views of intercon-

nections between different sections (Goals, Theoretical models, Data Defini-
tions etc) of the SRS. Currently, we have manually produced the traceabil-
ity matrix for analyzing the interconnections between different sections of the

64

MASc Thesis - author - McMaster - Computing and Software

SRS. This work can be done by a developing a tool which scans the document
to identify the labels and references and automatically produces the matrix and
its graphical visualization.

3. Redesign of code:
The original FORTRAN code is not properly modularized. That is, the principle of
information hiding was not applied during its development. For example, the numer-
ical algorithm used for solving the ODEs is not developed as a seperate subroutine.
This leads to modifiability problems, as the entire subroutine performing the calcu-
lations has to be modified, if the numerical algorithm needs to be changed. Instead,
if the independent changeable system details are developed as separate modules, the
maintenance and modifiability become easier, as we have to change only the module
we are concerned with. Hence, it is a good idea to redesign the entire FORTRAN
code in a way that it applies the information hiding principle, keeping the implemen-
tation details of each module as a secret from the rest of the program.

4. Implementation of all the subroutines using LP:
As we have constricted our scope to developing only the FUELTE subroutine of the
original FORTRAN code, the future work can be designing and implementing the
rest of the subroutines of FP using LP.

5. Explore the use of the SRS and the LP Manual for vendor supplied software:
In many cases, nuclear power generating companies uses software developed by third
parties, rather than in-house developed software. The methodologies developed in
this thesis should be examined to determine how they can be adapted to this context.

6. Testing:
This thesis does not deal with testing, as the emphasis was on verification of software
by human experts. Yet, as testing is an important part of the certification process,
test cases should be built for sensitivity, uncertainity and correlation analysis of the
software.

65

Bibliography

[1] A. P. Moore and C. N. Payne, Jr. Increasing assurance with literate programming
techniques. pages 187–198, 1996.

[2] Andrew L. Johnson and Brad C. Johnson. Literate Programming Using Noweb. j-
LINUX-JOURNAL, 42:64–69, October 1997.

[3] CSA. Quality assurance of analytical, scientific, and design computer programs for
nuclear power plants. Technical Report N286.7-99, Canadian Standards Association,
March 1999.

[4] Alan M. Davis. Software Requirements: Objects, Functions, and States. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1993.

[5] Donald E. Knuth. The web system of structured documentation. Stanford Com-
puter Science Report STAN-CS-83-980, Stanford University, Stanford, CA, Septem-
ber 1983.

[6] Donald E. Knuth. Literate Programming, volume 1 of CSLI Lecture Notes Number
27. pub-SUCSLI, pub-SUCSLI:adr, 1992.

[7] ESA. ESA software engineering standards, PSS-05-0 issue 2. Technical report, Eu-
ropean Space Agency, February 1991.

[8] FPManual. FP Manual. Nuclear Studies and Safety Department, March 1982.

[9] John Hatcliff, Mats Heimdahl, Mark Lawford, Tom Maibaum, Alan Wassyng, and
Fred Wurden. A software certification consortium and its top 9 hurdles. Electronic
Notes in Theoretical Computer Science, 238(4):12, 2009.

[10] Kathryn L. Heninger. Specifying software requirement for complex system: New
techniques and their application. IEEE Transactions on Software Engineering,
6(1):2–13, January 1980.

[11] IEEE. Recommended practice for Software Requirements Specifications. IEEE, June
1998.

[12] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documentation,
Version 3.0. pub-AW, pub-AW:adr, 1993.

[13] Lei Lai. Requirements documentation for engineering mechanics software: Guide-
lines, template and a case requirements documentation for engineering mechanics
software: Guidelines, template and a case studycase study. Master’s thesis, McMas-
ter University, Hamilton, Ontario, Canada, September 2004.

66

MASc Thesis - author - McMaster - Computing and Software

[14] T. Maibaum and A. Wassyng. A product-focused approach to software certification,
2008.

[15] NASA. Software requirements DID, SMAP-DID-P200-SW, release 4.3. Technical
report, National Aeronautics and Space Agency, 1989.

[16] Nedialko S. Nedialkov. VNODE-LP — A Validated Solver for Initial Value Problems
in Ordinary Differential Equations. Technical Report CAS-06-06-NN, Department of
Computing and Software, McMaster University, 1280 Main Street West, Hamilton,
Ontario, L8S 4K1, 2006.

[17] Nedialko S. Nedialkov. Implementing a Rigorous ODE Solver through Literate Pro-
gramming. Technical Report CAS-10-02-NN, Department of Computing and Soft-
ware, McMaster University, 2010.

[18] M. Ortuno, A. Marquez, S.Gallego, C.Neipp, and A. Belndez. An experiment in heat
conduction using hollow cylinders. European Journal of Physics, 32:3–6, 2011.

[19] D. L. Parnas, R. Janicki, and J. Zucker. Tabular representation in relational docu-
ments. Technical Report CRL 313, McMaster University, February 1996.

[20] David L. Parnas and P.C. Clements. A rational design process: How and why to fake
it. IEEE Transactions on Software Engineering, 12(2):251–257, February 1986.

[21] Patrick J. Roache. Verification and Validation in Computational Science and Engi-
neering. Hermosa Publishers, Albuquerque, New Mexico, 1998.

[22] Gonzalo Sanchez, Spencer Smith, and Ned Nedialkov. Certification of Scientific
Computing Software. Technical Report 2, McSCert, July 2011.

[23] B. Sanga. Assessing and improving the quality of software requirements specification
documents (SRSDs). Thesis for M.Sc. program, Computing and Software Depart-
ment, McMaster University, Hamilton, ON, August 2003.

[24] G. S Sawhney. Heat and Mass Transfer. LK International Publishing House Pvt. Ltd,
S-25, Green Park Extension, Uphaar Cinema Market, New Delhi- 110 016(India),
second edition, 2010.

[25] Joachim Schrod. CTAN, the Comprehensive TEX Archieve Network, 2013.

[26] Judith Segal and Chris Morris. Developing scientific software. IEEE Software, 25(4),
July/August 2008.

[27] W. Spencer Smith and Lei Lai. A new requirements template for scientific com-
puting. In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors, Proceedings of the First
International Workshop on Situational Requirements Engineering Processes – Meth-
ods, Techniques and Tools to Support Situation-Specific Requirements Engineering
Processes, SREP’05, Paris, France, August 2005. In conjunction with 13th IEEE In-
ternational Requirements Engineering Conference.

[28] W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineer-
ing computation: A systematic approach for improving software reliability. Reliable
Computing, Special Issue on Reliable Engineering Computation, 13, 2007.

[29] I. Sommerville and P. Sawyer. Requirement Engineering: A Good Practice Guide.
John Wiley & Sons Ltd., 1997.

67

MASc Thesis - author - McMaster - Computing and Software

[30] R. H. Thayer and M. Dorfman, editors. IEEE Recommended Practice for Software
Requirements Specifications. IEEE Computer Society, Washington, DC, USA, 2nd
edition, 2000.

[31] Wikipedia. Computational science, June 2013.

[32] Wikipedia. Literate programming, May 2013.

68

Appendix A

Software Requirement
Specification for FP

Table of Units
Throughout this document SI (Système International d’Unités) is employed as the unit sys-
tem. In addition to the basic units, several derived units are employed as described below.
For each unit, the symbol is given followed by a description of the unit with the SI name in
parentheses.

m - for length (metre)
kg - for mass (kilogram)
s - for time (second)
K - for temperature (kelvin)
oC - for temperature (centigrade)
J - for energy (joule, J= kgm2

s2)

cal - for energy (calorie, cal ≈ 4.2 kgm2

s2)
mol - for amount of substance (mole)
W - for power (watt, W= kgm2

s3)

69

MASc Thesis - author - McMaster - Computing and Software

A.1 Reference Material
This section records the information of the SRS in a form that allows easy reference
throughout the document.

A.1.1 Table of Symbols
The table that follows summarizes the symbols used in this document along with their units.
The choice of symbols was made with the goal of being consistent with the nuclear physics
literature and that used in the FP manual. The SI units are listed in brackets following the
definition of the symbol.

A.1.1.1 Quantities related to Thermal Analysis

Ci - thermal capacitance terms indexed by i (kWs
moC)

hb - coolant film conductance (kW
m2C)

hc - convective heat transfer coefficient between clad and coolant (kW
m2C)

hdry - convective heat transfer coefficient between fuel surface and coolant at
dryout (kW

m2C)
hg - effective heat transfer coefficient between clad and fuel surface (kW

m2C)
hp - initial gap film conductance (kW

m2C)
kc - clad conductivity (kW

moC)
kAV - average thermal conductivity (kW

moC)
N - Neutron flux
pdry - dryout threshold power
q - heat flux (kW

m2)
q′′′ - volumetric heat generation (kW

m3)
rc - clad radius (m)
r f - fuel radius (m)
R - resistance (moC

kW)
RFUEL - thermal resistance of fuel (moC

kW)
RCLAD - clad resistance (moC

kW)
RGAP - gap resistance (moC

kW)
RFILM - coolant film resistance (moC

kW)
TCL - centreline temperature (oC)
TS - surface temperature (oC)
T1 - average fuel temperature (oC)
T2 - average clad temperature (oC)
TB - coolant temperature (oC)
t - time (s)
ρ1 - fuel density (kJ

kgoC)
ρ2 - clad density (kJ

kgoC)
τc - clad thickness (m)
cp,1 - specific heat corresponding to fuel average temperature (kJ

kgoC)
cp,2 - specific heat corresponding to clad average temperature (kJ

kgoC)

70

MASc Thesis - author - McMaster - Computing and Software

cp,3 - specific heat corresponding to fuel centerline temperature (kJ
kgoC)

A.1.1.2 Quantities related to Nuclear Physics

Ak - value of trip parameter at tk
Ki - response fraction
q′MWR - metal water reaction heat (kW

m)
q′MWRI - integrated metal water reaction heat
q′N - linear element power (kW

m)
q′NFRAC - relative fuel power
q′Nmax

- linear element power at full power (kW
m)

qin - input heat (kW
m2C)

qout - output heat (kW
m2C)

q′out - output heat to the coolant (kW
m2C)

Wi - relative decay heat amplitude for ith group
αi - ith delay fraction for incore flux detector signal
βi - delayed neutron fraction
γi - decay fraction
λi - delay constant (s−1)
τA - amplifier time constant (s)
ψi - ith decay constant for incore flux detector signal (s−1)∫

- integration
5 - gradient operator
UO2 - uranium dioxide
ρ - reactivity
f - average flux depression factor
1∗ - prompt generation time (s)
∆H(Tabs) - fuel stored energy (J

kg)

Prefixes

∆ - finite change in following quantity
d - infinitesimal change in the following quantity

A.1.2 Abbreviations and Acronyms
SRS - Software Requirements Specification
TFR - Temperature Feedback Reactivity
MWR - Metal Water Reaction
NOP - Neutron Over Power
IM - Instance Model
TM - Theoretical Model
A - Assumption
PS - Physical System Description
G - Goal

71

MASc Thesis - author - McMaster - Computing and Software

A.2 Introduction
This introduction provides an overview of the Software Requirement Specification (SRS)
for fuelpin analysis within a nuclear reactor. The requirements are based on an existing
theory manual and an existing code developed by a nuclear power generating company,
henceforth called FP. This section explains the purpose of this document, the scope of the
system, the organization of the document and the characteristics of the intended readers.

A.2.1 Purpose of Document
The main purpose of this document is to assist in the certification process for the FP code.
This document provides the requirements that the FP code should implement. In particu-
lar, the goals and theoretical models used in the FP code are detailed and refined with an
emphasis on explicitly identifying assumptions and unambiguous definitions. The relevant
theory for FP that is presented in this SRS includes:

• the lumped parameter fuel modelling technique

• temperature dependent thermodynamic properties

• point neutron kinetics

• decay heat equations

• trip parameter modelling

• metal water reaction model

• fuel stored energy and integrated fuel power calculations.

A.2.2 Scope
The scope of the product is limited to thermal analysis and reactor physics relevant to
modelling a single fuelpin. It does not include mechanical analysis or fluid dynamics. The
fuelpin is modelled in isolation with no interaction between adjacent fuelpins. Given the
appropriate inputs, the code for FP is intended to do the following:

• Predict temperature histories for the reactor fuel and clad.

• Calculate the integrated fuel power and the change in UO2 enthalpy from room tem-
perature to the average fuel temperature.

• Model the dynamic response of signal amplifiers and trip logic.

• Model dynamically compensated self-powered in-core flux detector signals that form
part of the neutron overpower trip systems.

A.2.3 Organization of Document
The organization of this document follows the template for an SRS for Scientific Comput-
ing Software proposed by [13] and [27].

A.2.4 Intended Audience
This document will be helpful to Nuclear Safety Analysts to build confidence in the theo-
retical model and associated code implementing it. This document will also be used as part
of the certification process for FP.

72

MASc Thesis - author - McMaster - Computing and Software

A.3 General System Description
General System Description provides general information about the system, identifies the
interfaces between the system and its environment, describes the user characteristics and
the system constraints.

A.3.1 System Context
1. FP in a larger context of reactor analysis is used for the following:

• running safety analysis cases.

• model one pin to give insight into the use of multiple pins.

• iterative part of design and safety analysis (separation of concerns so that focus
can be on one thing at a time).

2. The system takes either fuel power versus time or neutron flux versus time or the
reactivity transient as input and predicts the output transient reactor fuel temperature
and average clad temperature as follows:

• If neutron flux versus time is given as input, the transient fuel power is gener-
ated from fission power and decay heat components.

• If the reactivity transient is given as input, the point neutron kinetics model is
used to generate the neutron flux transient.

3. The system takes either the neutron flux or the flux detector signal and the shutdown
reactivity characteristic, log rate, linear rate and NOP as trip set points to simulate
the reactor trip and shutdown.

A.3.2 User Characteristics
The end user of FP should have at least an undergraduate degree in Engineering or Science.
Moreover, to understand the theory behind this project, the user should have the equivalent
knowledge to an introductory course on each of thermodynamics and reactor physics.

A.3.3 System Constraints
None present.

A.4 Specific System Description
The specific system description includes all of the SRS software requirements in sufficient
detail to enable design and testing of a system that will satisfy the requirements [27].

A.4.1 Problem Description
FP is a computer program developed to simulate the reactor trip and shutdown by predict-
ing transient reactor fuel and clad temperatures based on a lumped parameter modelling
approach, by incorporating a point neutron kinetics model and flexible transient control
logic.

73

MASc Thesis - author - McMaster - Computing and Software

Figure A.1: One dimensional heat conduction through a volume element

A.4.1.1 Background

Many concepts are important for understanding the theory behind FP. As a brief summary,
the topics include the following: thermodynamics, point neutron kinetics, flexible transient
control logic, trip logic, oxidization, enthalpy, lumped parameter modelling, heat transfer,
integration and differentiation, flux depression, linear element power, thermal resistance,
capacitance and conductivity, fuelpin configuration, specific heat, neutron flux, delayed
neutron and prompt generations and linear interpolation.

Understanding the thermodynamic model of a fuelpin requires a basic understanding of
heat transfer. To illustrate the rational behind the thermal model of the fuelpin, the heat
transfer in one dimension is shown below. Following this, the analogy between heat and
electrical conduction is described as it is helpful in understanding the instance models.

Heat transfer in one dimensional Cartesian coordinate system

The general heat transfer equation in 1D Cartesian coordinates can be obtained from an
energy balance on a volume element in Cartesian coordinates [24, page 34–36]. Figure A.1
shows a thin element of thickness ∆x on a large plate.
Energy balance on this element during small time interval ∆t is given as:

(Rate of heat transfer at x)− (Rate of heat transfer at x+∆x)+ (Rate of heat
generation inside the element)=(Rate of change of energy content of the element)

(A.1)

Using Q for the rate of heat transfer and E for the heat energy content, this equation can be
rewritten as:

Qx−Qx+∆x +Qg =
∆E
∆t

, (A.2)

where Qx is the rate of heat transfer in the x direction, Qg is rate of heat generation inside
the element and ∆E is the energy content of the element. If the volumetric heat generation
in the element is q′′′ and the area of the plate is A, then the heat generated

Qg = q′′′A∆x (A.3)

The change in energy content of the element in time ∆t is ∆E = Et+∆t −Et
The temperature (T) can be introduced through the relation that E = ρCV T , where ρ is the

74

MASc Thesis - author - McMaster - Computing and Software

density, C is the specific heat capacity and V is the volume of the element. In this case,
V = A∆x.

∆E = ρCpA∆x(Tt+∆t −Tt) (A.4)

Substituting A.3, A.4 in A.2,

Qx−Qx+∆x +q′′′A∆x = ρCA∆x
Tt+∆t −Tt

∆t
(A.5)

Dividing by A∆x gives,

− (
Qx+∆x−Qx

A∆x
)+q′′′ = ρC

Tt+∆t −Tt

∆t
(A.6)

Taking the limit as ∆x→ 0 and ∆t→ 0 yields

− 1
A

∂Q
∂x

+q′′′ = ρC
∂T
∂t

(A.7)

According to Fourier’s law,

Q =−kA
∂T
∂x

(A.8)

substituting A.8 into A.7,

− 1
A

∂

∂x
(−kA

∂T
∂x

)+q′′′ = ρC
∂T
∂t

(A.9)

∂

∂x
(k

∂T
∂x

)+q′′′ = ρC
∂T
∂t

(A.10)

If k is temperature independent, then the above equation simplifies to:

k
∂2T
∂x2 +q′′′ = ρC

∂T
∂t

(A.11)

Analogy between heat conduction and electrical conduction

Figure A.2 shows the flow of current in a circuit. From Ohm’s law, we know that volt-
age (V) is directly proportional to resistance (R) when current (I) is kept constant;
that is,

V = IR (A.12)

When there are n resistors connected in series with resistances R1,R2,R3,Rn, the current
(I) is same through each resistor. The, voltage drop across all of the resistors is directly
proportional to the effective resistance (Re).

V = IRe, (A.13)

where
Re = R1 +R2 +R3.....+Rn (A.14)

75

MASc Thesis - author - McMaster - Computing and Software

R1

I

IV1 V2

Figure A.2: Electric circuit

Figure A.3 shows the heat flow in a slab. The thermal analogue of Ohm’s law is written
as,

∆T = QRe (A.15)

That is, the temperature drop between the surfaces of a slab is directly proportional to the
thermal resistance between the surfaces, where Q is the rate of heat conduction. From
Fourier’s law,

Q =−kA
dT
dx

(A.16)

dT =− Q
kA

dx (A.17)

Integrating LHS of A.17 from T1 to T2 and RHS of A.17 from x1 to x2,∫ T2

T1

dT =− Q
kA

∫ x2

x1

dx (A.18)

∫ T1

T2

dT =
Q
kA

∫ x2

x1

dx (A.19)

∫ T1

T2

dT =
Q
kA

(x2− x1) (A.20)

Since x2− x1 is the length of the element,

T1−T2 = Q
L

kA
(A.21)

∆T = Q
L

kA
(A.22)

Comparing A.15 with A.22, the resistance between the surfaces is defined as,

Re =
L

kA
, (A.23)

where A is the effective area of the resistance and k is the thermal conductivity.

76

MASc Thesis - author - McMaster - Computing and Software

q

T1

T2

L

Figure A.3: Diagram representing heat flow in a slab

Analogy between thermal capacitance and electrical capacitance
For electrical circuits, we have:

C
dV
dt

= Iin− Iout, (A.24)

where C is the capacitor,
V is the voltage of the circuit,
Iin and Iout are the currents coming in and going out of the circuit respectively.
Equation A.24 is analogous to the heat transfer equation:

C
dT
dt

= qin−qout , (A.25)

where C is the capacitor,
T is the temperature,
qin and qout are the heats coming in and going out of the circuit respectively.

A.4.1.2 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning. This is provided with the purpose of reducing ambiguity and making it easier to
correctly understand the requirements:

• Decay heat: The heat released as a result of radioactive decay.

• Delayed neutron: Neutron emitted by one of the fission products anytime from a few
milliseconds to a few minutes later.

• Delayed neutron precursors: Neutron-emitting fission fragments that undergo a stage
of radioactive decay and yield an additional neutron called a delayed neutron.

• Fuel pellet: a piece of nuclear fuel usually in the shape of a sphere or cylinder.

• Flux depression: The lowering of the particle’s flux density in the neighbourhood of
an object due to absorption of particles in the object.

• Heat Flux: The rate of heat energy transfer per unit area.

• Linear Element power: The power generated per unit length of the fuelpin.

77

MASc Thesis - author - McMaster - Computing and Software

Figure A.4: Fuel pellet representation

• Prompt neutron: A neutron immediately emitted by a nuclear fission event.

• Reactor trip: Emergency shutdown in the nuclear reactors.

• Specific heat: heat capacity per unit mass

• Thermal Capacitance: The amount of heat required to change a substance’s temper-
ature by a given amount.

• Thermal Conduction: the transfer of heat energy through a substance.

• Thermal Diffusivity: The thermal conductivity divided by density and specific heat
capacity at constant pressure.

• Thermal Resistance: Measure of a temperature difference by which an object or
material resists a heat flow through it.

• Transient: Changing with time.

A.4.1.3 Physical System Description

The physical system of the FP, as shown in Figure A.4 includes the following elements:

PS1: Fuel pellet made of Uranium dioxide (UO2).

PS2: The clad material zircaloy covering the pellet.

PS3: Coolant surrounding the clad material.

NOTE: The temperatures TCL, T1, TS, T2, TB in the Figure A.4 will be discussed later in this
document.

A.4.1.4 Goal Statements

The goals of FP are as follows:

G1: Given fuel power versus time as input, predict transient reactor fuel and clad temper-
atures.

78

MASc Thesis - author - McMaster - Computing and Software

G2: Given the neutron flux versus time as input, predict transient reactor fuel and clad
temperatures.

G3: Given the reactivity transient as input, predict transient reactor fuel and clad temper-
atures.

G4: Given the trip setpoints, number of trips to initiate shutdown, shutdown reactivity
transient as inputs, simulate reactor trip and shutdown.

A.4.2 Solution Characteristics Specification
This section specifies the solution characteristics of the intended software product. The
purpose is to reduce the physical problem described in Section A.4.1 to one expressed
in mathematical terms. The section starts with description of the assumptions that are
made, and then describes the theoretical models that are relevant for the FP problem. Data
definitions, instanced models, data constraints, and the expected system behaviour are also
given.

A.4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model
by filling in the missing information for the physical system. The numbers given in the
square brackets refer to the data definition or the instance model in which the respective
assumption is used.

A1: Axial conduction in the pellet is ignored [GD2].

A2: The pellet has radial symmetry [GD2].

A3: Averaged thermal conductivity value is considered [DD6].

A4: The Urbanic, Heidrick model is used in modelling metal water reaction [DD5].

A5: Approximation of ln ro
ri

as τc
r and ro as ri [DD7].

A6: Assume isotropic thermal conductivity [T2].

A7: Cylindrical coordinate system is used [GD2].

A8: The spacial effects are neglected in the reactor kinetics formulations [IM5].

A9: Newton’s law of convective cooling applies in the gap between the pellet surface and
the clad [DD8].

A10: Newton’s law of convective cooling applies between the clad surface and the coolant
film[DD9, DD12].

A11: Unit length of fuel rod is being modelled [GD2].

A12: Initially, the average clad temperature (T2) is less than 1000oC.

A13: The clad thickness (τc) is constant even if the zircaloy is consumed in the metal water
reaction.

79

MASc Thesis - author - McMaster - Computing and Software

A.4.2.2 Theoretical Models

This section focuses on the general equations, laws used to model a fuelpin.

Number T1
Label Conservation of energy
Equation −∇q+q′′′ = ρC ∂T

∂t
Description The above equation gives the conservation of energy for a time

varying heat transfer in a material of specific heat capacity C and
density ρ where q is the thermal flux vector, q′′′ is the volumetric
heat generation, T is the temperature and ∇ is the gradient opera-
tor.

Number T2
Label Constitutive Equation (Fourier’s Law)
Equation q=−k(T)∇T
Description Fourier’s law states that the heat flux is propositional to slope or

the gradient of temperature, where k is a function of temperature.
This law is based on the assumption that the material is isotropic
(A6).

Number T3
Label Space-Time kinetics
Equation Beyond the scope of this document.
Description Space-Time kinetics give the relative distribution of the neutrons

over space and time.

Number T4
Label Decay Heat Equations
Equation Beyond the scope of this document.
Description Decay heat equations are used in finding the fuel power when neu-

tron flux is given. It is a summation of the fuel power generated
by prompt fissions and the fuel power generated by delayed decay
heat components due to fission product decay.

A.4.2.3 General Definitions

This section collects the laws and equations that will be used in deriving the data definitions,
which in turn are used to build the instance models

80

MASc Thesis - author - McMaster - Computing and Software

Figure A.5: Cylindrical coordinate system

Number GD1
Label Cylindrical coordinate system
Units -
SI equivalent -
Equation ∇ = r̂ ∂

∂r + θ̂
1
r (

∂

∂θ
)+ ẑ ∂

∂z where r̂, θ̂ and ẑ are unit vectors.
In matrix notation, this appears as:

∇ =

 ∂

∂r
1
r

∂

∂θ
∂

∂z


The divergence ∇A is calculated as:
∇A = ∂(Ar)

∂r + 1
r

∂Aθ

∂θ
+ ∂Az

∂z
Description The spatial location in a cylindrical coordinate system is expressed

in terms of r̂, θ̂, ẑ as shown in the Figure A.5. The gradient operator
is defined as shown above.

Sources [8, page 12];

Number GD2
Label Average temperature of a hollow cylinder
Units M0L0t0T
SI equivalent oC
Symbol TAVG

Equation TAVG = 1
A
∫

A T (r)dA, with T (r) satisfying 1
r

d
dr (kr dT (r)

dr)+q′′′ = 0
Description TAVG is the average temperature of the cylinder, A is the area of the

cylinder and T (r) is the temperature at radius r.

Detailed derivation of average temperature:
Applying the Fourier’s law from TM2 to Conservation of energy equation in TM1, gives

∇k∇T +q′′′ = ρC
∂T
∂t

(A.26)

In steady state, the transient features die and (29) changes to

∇k∇T +q′′′ = 0 (A.27)

81

MASc Thesis - author - McMaster - Computing and Software

Applying A7 and writing the above equation in cylindrical coordinate system (GD1),

k[
1
r

∂

∂r
(r

∂T
∂r

)+
1
r2

∂

∂θ
(

∂T
∂θ

)+
∂

∂z
(

∂T
∂z

)]+q′′′ = 0 (A.28)

Ignoring axial conduction (A1), makes 1
r2

∂

∂θ
(k ∂T

∂θ
) = 0 and having radial symmetry (A2)

makes ∂

∂z (k
∂T
∂z) = 0

So, applying A1 and A2 to (31), it simplifies to:

1
r

d
dr

(kr
dT
dr

)+q′′′ = 0 (A.29)

Average temperature of the hollow cylinder is found by taking the volume averaged value
of the temperature at radius r. Let r1 be the inner radius and r2 be the outer radius of a
hollow cylinder. Then the average temperature of the cylinder is given by

TAVG =

∫
V T (r,z,θ)dV

V
(A.30)

Taking A1 and A2 and A11 into account,

TAVG =
1
A

∫
A

T (r)dA (A.31)

Number GD3
Label Effective thermal resistance
Symbol REFF
Units M−1L−2Tt3

SI equivalent moC
kW

Equation REFF = ∆T
q

Description In some cases at steady state, the relation between the tempera-
ture change (∆T) and the thermal flux (q) is modelled as ∆T be-
ing directly proportional to q. The proportionality constant can be
derived using thermodynamic theory and then relabelled as REFF.
This is analoguos to the electric circuit equation of V =IR.
As for the case of electric resistors in series, if n resistors
(R1,R2.....Rn) are connected in series between two temperatures
and if constant heat is flowing between those temperatures, then
REFF = R1 +R2 ++Rn

Number GD4
Label Rate of change of temperature
Equation C dTAVG

dt = qin−qout +qg
Description The basic equation governing the rate of change of temperature

with time.
where C is the thermal capacitance (kWs

moC)
qin,qout are the linear in and out heat transfer rates respectively
(kW

m) and qg is the rate of internal heat generated.

Detailed derivation of Rate of change of temperature :
Integrating T1 over the volume (V),

−
∫

V
∇qdV +

∫
V

q′′′dV =
∫

V
ρC

∂T
∂t

dV (A.32)

82

MASc Thesis - author - McMaster - Computing and Software

Applying Gauss’s Divergence theorem to the first term over surface S,

−
∫

S
q · n̂dS+

∫
V

q′′′dV =
∫

V
ρC

∂T
∂t

dV (A.33)

Taking A11 into consideration, the volume average gets changed to area average.

−
∫

S
q · n̂dS+

∫
A

q′′′dA =
∫

A
ρC

∂T
∂t

dA (A.34)

Consider a hollow cylinder as in Figure A.6. The integral over the surface can be summa-
rized as qin−qout . The integral of q′′′ over the area becomes the generated thermal energy
q′g. Hence (A.34) can be written as,

qin−qout +qg =
∫

A
ρC

∂T
∂t

dA (A.35)

Taking the time derivative of GD2.

dTAVG

dt
=

1
A

∫
A

dT
dt

dA (A.36)

Rearranging the above equation,

A
dTAVG

dt
=

∫
A

dT
dt

dA (A.37)

Assuming there are representative values of specific heat (cp) and density (ρ) and multiply-
ing the above equation with ρCrep:

ρCrepA
dTAVG

dt
=

∫
A

ρCrep
∂T
∂t

dA (A.38)

Replacing the RHS of (A.35) with the LHS of (A.38),

ρCrepA
dTAVG

dt
= qin−qout +qg (A.39)

Number GD5
Label Newton’s law of cooling
Units MLt−3T 0

SI equivalent kW
m

Equation qnewt = hA∆T (t)
Description Newton’s law of cooling describes the convection cooling and is

stated as “rate of heat loss of a body is proportional to the differ-
ence in temperatures between the body and its surroundings.”
qnewt is the thermal flux.
h is the heat transfer coefficient (assumed independent of T here)
(W

m2K)
A is the surface area of the heat being transferred (m2)
∆T (t)= T (t)−Tenv is the time-dependent thermal gradient between
environment and object. Newton’s law of cooling can be derived
from Fourier’s law (T2)

83

MASc Thesis - author - McMaster - Computing and Software

Figure A.6: Heat transfer in a hollow cylinder

Number GD6
Label Effective heat transfer coefficient
Units M−1L2t−3T−1

SI equivalent W
m2K

Equation hEFF = q
A∆T (t)

Description q is the thermal flux.
hEFF is the effective heat transfer coefficient (W

m2K)
A is the surface area of the heat being transferred (m2)
∆T (t)= T (t)−Tenv is the time-dependent thermal gradient between
environment and object.
The heat transfer coefficient is modelled after Newton’s law of
cooling. It takes into account all relevant modes of heat transfer.

A.4.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models. The
dimension of each quantity is also declared.

84

MASc Thesis - author - McMaster - Computing and Software

Number DD1
Label Relation between linear element power and volumetric heat

generation
Symbol q′N
Units MLt−3T 0

SI equivalent kW
m

Equation q′N = πr2
f q′′′

Description q′′′ is the volumetric heat generation and r f is the fuel radius. The
linear element power (q′N) is found by multiplying the volumetric
heat generation by the cross-sectional area of the fuel element.

Sources [8, page 2–3];

Number DD2
Label Fuel stored energy
Symbol ∆H(Tabs)

Units M0L2t−2T 0

SI equivalent J
kg

Equation ∆H(Tabs) = K0(K1θ((e
θ

Tabs − 1)−1 − (e
θ

298 − 1)−1) + K2(T 2
abs −

2982)+K3e
−ED

RDTabs)
Description The stored energy (∆H(Tabs)) calculated is the change in fuel en-

thalpy from room temperature (298oK) to the absolute value of the
average fuel temperature T1 (Tabs). The values of the constants are
given by the Table TB5

Sources [8, page 12];

Number DD3
Label Integrated fuel power
Symbol PF,SUM
Units FPS
SI equivalent -
Equation PF,SUM(ti)=

∫ ti
0 q′NFRAC(t)dt

Description The above equation gives the integrated fuel power at ti, where
q′NFRAC is the relative fuel power and PF,SUM(ti) is the integrated
fuel power at ti

Sources [8, page 12];

85

MASc Thesis - author - McMaster - Computing and Software

Number DD4
Label Temperature feedback reactivity
Symbol ρTFB,i
Units -
SI equivalent mk
Equation ρTFB,i = A(T1,i−T1,0)

Description A is a constant (mk
oC) and T1,0 as the initial average temperature

(oC)
Sources [8, page 11];

Number DD5
Label Metal water reaction
Symbol q′MWR
Units MLt−3T 0

SI equivalent kW
m

Equation Rox = [A
1.56δox

]e
−B

R(T2+273)

if (δox ≥ τc)
q′MWR = 0
else
q′MWR= Rox2πrcρ2qr

Description δox is the reacted zircaloy thickness (m)
Rox is the rate of oxidization
q′MWR is the metal water reaction heat (kW

m)
ρ2 is the clad density (kg

m3)
rc is the clad radius
τc is the clad thickness
T2 is the average clad temperature
qr is the heat of reaction (kJ

kg) and its value is given in (TB1)
A, B/R are constants with their values given in (TB1)
The Urbanic, Heidrick model is used to predict the oxidation rate
from the parabolic rate law (A4)

Sources [8, page 11];

Number DD6
Label Effective thermal resistance of fuel
Symbol RFUEL
Units M−1L−2t3T
SI equivalent moC

kW
Equation RFUEL = f

4πkAV
Description RFUEL is the effective thermal resistance between the temperatures

TCL and TS.
RFUEL

2 is the effective thermal resistance between TCL and T1 and
between T1 and TS
f is the flux depression factor
kAV is the average fuel conductivity

Sources [8, page 3];

Detailed derivation of RFUEL:

86

MASc Thesis - author - McMaster - Computing and Software

From Equation A.29 of (GD2),

1
r

d
dr

(kr
dT
dr

)+q′′′ = 0 (A.40)

Integrating and rearranging the above equation gives:

kr
dT
dr

=−
∫ r

0
rq′′′dr (A.41)

⇒ kr
dT
dr

=
−q′′′r2

2
(A.42)

⇒ k
dT
dr

=
−q′′′r

2
(A.43)

⇒ kdT =
−q′′′r

2
dr (A.44)

For a fuel pellet with outer radius r f , integrating the RHS of (A.44) from 0 to r f and LHS
of (A.44) from TCL to TS, ∫ TS

TCL

dT =
−q′′′

2

∫ r f

0

r
k

dr (A.45)

⇒ TS−TCL = ∆T =−q′′′
r2

f

4k
(A.46)

Multiplying both sides of (A.46) by minus sign,

TCL−TS = ∆T = q′′′
r2

f

4k
(A.47)

Applying A3 to (A.47),

TCL−TS = ∆T = q′′′
r2

f

4kAV
(A.48)

Replacing the volumetric heat generation by the linear element power using the relation
from DD1, removes the dependence of ∆T on the pellet radius. Rewriting (A.48),

TCL−TS =
q′N

4πkAV
(A.49)

Taking flux depression factor (f) of the fuel pellet into consideration, (A.49) can be written
as,

TCL−TS = ∆T = (
f

4πkAV
)q′N (A.50)

Comparing the above equation to (GD3) shows that the effective thermal resistance, RFUEL
in this case, is:

RFUEL =
f

4πkAV
(A.51)

87

MASc Thesis - author - McMaster - Computing and Software

Number DD7
Label RCLAD
Units M−1L−2t3T
SI equivalent moC

kW
Equation RCLAD = τc

2πrckc
Description The clad resistance is a function of the clad thermal conductivity.

It is obtained from the expression for heat transfer by conduction
through a hollow cylinder with inner radius ri and outer radius ro

where kc is the clad conductivity (kW
moC) and is given as, ∆T

q =
ln ro

ri
2πkc

Taking A5 into consideration, we get ∆T
q = τc

2πrckc
Comparission to GD3, shows that effective thermal resistance
RCLAD = τc

2πrckc
Sources [8, page 4], [18, page 5] ;

Number DD8
Label RGAP
Units M−1L−2t3T
SI equivalent moC

kW
Equation RGAP = 1

2πrchp

Description RGAP is the gap resistance where rc is the clad radius (m), hp is the
initial gap conductance (kW

m2oC) which is an input parameter
Sources source code

Derivation of RGAP
Taking A9 into consideration, we use Newton’s law of cooling to derive RGAP. The area of
the clad (Ac) is

Ac = 2πrc (A.52)

Substituting Equation A.52 into GD5, and considering hp as the initial gap conductance
(heat transfer coefficient), we get,

qgap = 2πrchp∆T (A.53)

From GD3, the gap resistance (RGAP) can be given as,

RGAP =
∆T
qgap

(A.54)

Substituting Equation A.53 into Equation A.54 and simplifying gives,

RGAP =
1

2πrchp
(A.55)

Number DD9
Label RFILM
Units M−1L−2t3T
SI equivalent moC

kW
Equation RFILM = 1

2πrchb
Description RFILM is the coolant film resistance where rc is the outer clad radius

(m), hb is the coolant film conductance (kW
m2C) (Figure A.8)

NOTE: Equation taken from the code
Sources source code

88

MASc Thesis - author - McMaster - Computing and Software

Derivation of RFILM
Assuming that Newton’s law of convective cooling applies between the clad and the coolant
(A10), we use Newton’s law of cooling to derive RFILM. The area of the clad (Ac) is

Ac = 2πrc (A.56)

Substituting Equation A.56 into GD5, and considering hb as the coolant film conductance,
we get,

qcoolant = 2πrchb∆T (A.57)

From GD3, the coolant film resistance (RFILM) can be given as,

RFILM =
∆T

qcoolant
(A.58)

Substituting Equation A.57 in Equation A.58 and simplifying gives,

RFILM =
1

2πrchb
(A.59)

Figure A.7: Thermal circuit between T1 and T2

Number DD10
Label R3
Units M−1L−2t3T
SI equivalent moC

kW
Equation R3 = 1

2πr f hg

Description R3 is the effective thermal resistance between TS and T2 (Fig-
ure A.8) where r f is the fuel radius (m) hg is the gap film con-
ductance (kw/m2oC) which is given by DD19

Sources [8, page 5];

Detailed derivation of R3:
From the Figure A.7, the effective resistance R3 between TS and T2 is:

R3 = RGAP +
RCLAD

2
(A.60)

From GD3, the heat flux between the fuel surface and clad can be given as,

q =
∆T
R3

, (A.61)

89

MASc Thesis - author - McMaster - Computing and Software

Taking hg as the effective heat transfer coefficient between fuel surface and clad, we get the
heat flux between the fuel surface and clad from GD6 as

q = hgA f ∆T, (A.62)

where A f is the area of the clad given as

A f = 2πr f (A.63)

Comparing Equation A.62 and Equation A.61,

∆T
R3

= hgA f ∆T (A.64)

Replacing A f with its value from Equation A.63 and further simplifying, we get,

R3 =
1

2πr f hg
(A.65)

Number DD11
Label R1
Units M−1L−2t3T
SI equivalent moC

kW
Equation R1 =

f
8πkAV

+ 1
2πr f hg

Description R1 is the thermal resistance between the average fuel temperature
(T1) and sheath temperature (T2) (Figure A.7)
kAV is the average fuel conductivity
r f is the fuel radius (m)
hg is the gap film conductance (kw/m2oC) which is given by DD19

Sources [8, page 4];

Derivation of R1:
From the Figure A.7, the effective resistance R1 between T1 and T2 is:

R1 =
RFUEL

2
+RGAP +

RCLAD

2
(A.66)

From Equation A.60, since R3 is the effective resistance of gap and half of the clad, the
above equation can be rewritten as,

R1 =
RFUEL

2
+R3 (A.67)

Substituting the values of RFUEL, R3 from DD6 and DD10 respectively into Equation A.67
gives:

R1 =
f

8πkAV
+

1
2πr f hg

(A.68)

Number DD12
Label R2
Units M−1L−2t3T
SI equivalent moC

kW
Equation R2 = 1

2πrchc
Description R2 is the effective thermal resistance between TB and T2

rc is the outer clad radius (m)
hc is the effective heat transfer coefficient between clad and
coolant (kw

m2oC) which is given by DD18
Sources [8, page 5];

90

MASc Thesis - author - McMaster - Computing and Software

Figure A.8: Thermal circuit between T2 and TB

Derivation of R2
Assuming that Newton’s law of convective cooling applies between the clad and the coolant
(A10), we use GD6 to derive R2. Substituting Equation A.56 into GD6, and considering hc
as the effective heat transfer coefficient between clad and coolant, we get,

q = 2πrchc∆T (A.69)

From GD3, R2 can be given as,

R2 =
∆T
q

(A.70)

Substituting Equation A.69 into Equation A.70 and simplifying gives,

R2 =
1

2πrchc
(A.71)

Number DD13
Label RCL
Units M−1L−2t3T
SI equivalent moC

kW
Equation RCL = f

8πkAV
Description RCL is the effective thermal resistance at the centerline, where

f is the flux depression factor
kAV is the average fuel conductivity

Sources [8, page 5];

Detailed derivation of RCL:
At some radius r, the temperature Tr is given by,

Tr = TCL−q′′′
r2

4kAV
(A.72)

= TS +q′′′
r2

f − r2

4kAV
(A.73)

From GD2, the average fuel temperature T1 is defined as the area averaged value of Tr and
is given by,

T1 = TS +
q′′′

4kAVπr2
f

∫ r=r f

r=0
(r2

f − r2)2πrdr (A.74)

Performing the integration of (A.74) and rearranging, we get,

T1−TS = q′′′
r2

f

8πkAV
(A.75)

91

MASc Thesis - author - McMaster - Computing and Software

Comparing the above equation to (GD3) shows that the effective thermal resistance be-
tween T1 and TS (RCL)in this case is:

RCL =
f

8πkAV
=

RFUEL

2
(A.76)

Number DD14
Label Thermal capacitance terms
Units ML2t−2T−1

SI equivalent kWs
moC

Equation C1 = πr2
f cp,1ρ1

C2 =2πrcτccp,2ρ2
CCL = πr2

f cp,3ρ1

Description cp,1,cp,2 and cp,3 are the specific heats corresponding to the fuel
average, clad and fuel centreline temperatures respectively (kJ

kgoC).
ρ1 and ρ2 are the fuel and clad densities respectively (kJ

kgoC).
r f and rc are the fuel and clad radius (m)
τc is the clad thickness

Sources [8, page 5];

Number DD15
Label kc

Units ML1t−3T−1

SI equivalent kW
moC

Equation kc =aT2 +b
Description kc is the clad conductivity where a and b are constants obtained by

a least squares fit to tabulated data (TB2).
Sources [8, page 6];

Number DD16
Label KAV as a polynomial
Units ML1t−3T−1

SI equivalent kW
moC

Equation k =x1T + x0
Description kAV is a temperature dependant non-linear variable and is repre-

sented as a first order polynomial function of temperature.
The values of x0 and x1 are given in the (TB3).

Sources -

92

MASc Thesis - author - McMaster - Computing and Software

Number DD17
Label cp,1 as a polynomial
Units M0L2t−2T−1

SI equivalent kJ
kgoC

Equation cp =y2T 2 + y1T + y0
Description cp,1 is a temperature dependant non-linear variable and is repre-

sented as a second order polynomial function of temperature.
The values of y0, y1 and y2 are given in the (TB4).

Sources

Number DD18
Label hc

Units ML0t−3T−1

SI equivalent kW
m2oC

Equation hc = 2kchb
2kc+τchb

Description hc is the effective heat transfer coefficient between the clad and the
coolant
τc is the clad thickness
hb is initial coolant film conductance
kc is the clad conductivity
NOTE: Equation taken from the code

Sources source code

Derivation of hc:
From Figure A.8, R2 is the effective thermal resistance of the coolant film and half of the
clad. Adding the RFILM from DD9 with half of the value of RCLAD from DD7, we get

R2 =
1

2πrchb
+

τc

4πrckc
(A.77)

Taking the common terms out and rewriting the above equation,

R2 =
1

2πrc

(1
hb

+
τc

2kc

)
(A.78)

=
1

2πrc

(2kc + τchb

2kchb

)
(A.79)

=
1

2πrc

(
2kchb

2kc+τchb

) (A.80)

But from DD12, R2 is given as,

R2 =
1

2πrchc
(A.81)

Comparing Equation A.80 and Equation A.81 and rearranging gives hc as,

hc =
2kchb

2kc + τchb
(A.82)

93

MASc Thesis - author - McMaster - Computing and Software

Number DD19
Label hg

Units ML0t−3T−1

SI equivalent kW
m2◦C

Equation hg = 2kchp
2kc+τchp

Description hg is the gap conductance
τc is the clad thickness
hp is initial gap film conductance
kc is the clad conductivity
NOTE: Equation taken from the code

Sources source code

Derivation of hg:
From the Figure A.7, the effective thermal resistance between T2 and TS is, the effective
resistance of the gap film and half of the clad. Adding the RGAP from DD8 with half of the
value of RCLAD from DD7, we get

R3 =
1

2πrchp
+

τc

4πrckc
(A.83)

where R3 is the effective resistance
Taking the common terms out and rewriting the above equation,

R3 =
1

2πrc

(1
hp

+
τc

2kc

)
(A.84)

=
1

2πrc

(2kc + τchp

2kchp

)
(A.85)

=
1

2πrc

(
2kchp

2kc+τchp

) (A.86)

But from DD10, R3 is given as,

R3 =
1

2πr f hg
(A.87)

Comparing Equation A.87 and Equation A.86 and rearranging gives hg as,

hg =
2kchp

2kc + τchp
(A.88)

Number DD20
Label Incore flux detector signal
Units -
SI equivalent -
Equation D= (1− α̂)N +Σ5

i=1di
di = ψ̂i(α̂iN−di)

Description D is the relative detector signal amplitude
α̂i is the ith delay fraction
α̂ is the total delayed fraction
ψ̂i is the ith decay constant (s−1)
di is the relative amplitude of delay group i
N is the neutron flux

Sources [8, page 10];

94

MASc Thesis - author - McMaster - Computing and Software

Number DD21
Label Compensated detector signal
Units -
SI equivalent -
Equation D′(s) = D(K1 +

K2
1+T2s +

K3
1+T3s)

Description The compensated signal D′ is given by using the Laplace transfor-
mation of D(s)
D is the relative detector signal amplitude
K1 is the prompt response fraction
K2,K3 are the delayed response fractions
T2,T3 are the delay times (s)

Sources [8, page 10];

Number D22
Label Signal amplifier response
Units -
SI equivalent -

Equation A∗K = A∗K−1e
−∆t
τA +(1− e

−∆t
τA)AK

Description AK is the value of the trip parameter at tk
A∗K is the filtered value of the trip parameter at tk
τA is the amplifier time constant(s)
The delay introduced by the signal amplifier is simulated for each
trip parameter by the above first order filter.
The log rate signal is filtered by two cascaded first order filters.

Sources [8, page 11];

Number DD23
Label Fuel surface temperature
Units M0L0t0T
SI equivalent oC
Equation TS= T2 +

T1−T2
R1

R3

Description TS is the surface fuel temperature
T1 is the average fuel temperature
T2 is the average clad temperature
R1 is the effective resistance between average fuel and average clad
temperatures (moC

kW)
R3 is the effective resistance between the clad and the fuel surface
temperatures (moC

kW)
Sources [8, page 6];

Derivation of TS:
From GD3, the heat flux generated between TS and T2 can be given as,

qsurface =
TS−T2

RGAP +
RCLAD

2

, (A.89)

where RGAP +
RCLAD

2 is the effective resistance between TS and T2 and TS−T2 = ∆T .
Replacing effective resistance between TS and T2 by R3 (DD10), Equation A.89 simplifies

95

MASc Thesis - author - McMaster - Computing and Software

to,

qsurface =
TS−T2

R3
, (A.90)

Similarly the heat flux generated between T1 and T2 can be given as,

qavgfuel =
T1−T2

R1
, (A.91)

where R1 is the effective resistance between T1 and T2 and T1−T2 = ∆T .
By the continuityof thermal flux, Equation A.90 becomes equal to Equation A.91. That is,

TS−T2

R3
=

T1−T2

R1
(A.92)

Rearranging the above equation gives,

TS = T2 +
T1−T2

R1
R3 (A.93)

Number DD24
Label Linear and Log rates
Symbol RLIN,RLOG
Units M0L0t0T−1

SI equivalent: s−1

Equation RLIN = Nk−Nk−1
∆t

RLOG = lnNk−lnNk−1
∆t

Description RLIN is the linear rate (s−1)
RLOG is the log rate (s−1)
Nk is the relative neutron flux at tk
∆t is the solution interval tk− tk−1

Sources [8, page 10];

Number DD25
Label Relation between linear element power and relative fuel power
Units MLt−3T 0

SI equivalent kW
m

Equation q′N = q′NFRACq′Nmax
Description q′NFRAC is the relative fuel power

q′N is linear element power (kW
m)

q′Nmax
is the full power linear element power (kW

m)
Sources [8, page 9];

Number DD26
Label q′MWRI
Units -
SI equivalent -
Equation q′MWRI(ti) =

1
q′Nmax

∫ ti
0 q′MWR(t)dt

Description q′MWRI,N gives the integrated metal water reaction heat at tN . It is
a summation of q′MWR normalized by q′Nmax

at each time step
q′MWR,i is the metal water reaction heat at ti

96

MASc Thesis - author - McMaster - Computing and Software

Number DD27
Label q′out
Units Mt−3T−1

SI equivalent kW
m2oC

Equation q′out =
1

q′Nmax

(
T2−TB

R2

)
Description q′out is the output heat from the reaction that is sent into the coolant

R2 is the effective resistance between the coolant film and the clad
(moC

kW)
q′Nmax

is the linear element power at full power (kW
moC)

T2 is average clad temperature
TB is coolant temperature
NOTE: Equation taken from the code

Derivation of q′out:
From the Figure A.8, the effective resistance R2 between T2 and TB is given by DD12.
According to GD3, the R2 between T2 and TB can be given as,

R2 =
∆T
q′out

, (A.94)

where q′out is the heat generated between T2, TB and

∆T = T2−TB (A.95)

Substituting Equation A.95 and DD12 in A.94 and rearranging gives,

q′out =
(T2−TB)

R2
(A.96)

Normalizing the above equation by q′Nmax
(standard presentation) gives,

q′out =
1

q′Nmax

(T2−TB)

R2
(A.97)

Number DD28
Label dryout
Units −
SI equivalent −
Equation if(q′out ≥ pdry)

hb = hdry
Description We compare the power sent to the coolant (q′out) with the dryout

threshold power (pdry) and once it exceeds this maximum permis-
sible power, dryout occurs. When the dryout occurs, the coolant
film conductance (hb) becomes equal to the heat transfer coeffi-
cient between the fuel surface and the coolant at dryout (hdry).
NOTE: The meaning of hb is given through the definition of RFILM
(DD9)

97

MASc Thesis - author - McMaster - Computing and Software

TCL T1 T2 TBTS

qin qout

RCLAD/2RFUEL/2 RFUEL/2 RCLAD/2RGAP RFILM

qmwr

CCL C1 C2

Figure A.9: Electrical Circuit Analogue

A.4.2.5 Instance Models

This section reduces the problem defined in the problem description into one which is
expressed in mathematical terms. It uses concrete symbols defined in section “Data Defi-
nitions” to replace the abstract symbols in the models identified in the section “Theoretical
Models” and “Genenral Definitios”.

Number IM1
Label Rate of change of average fuel temperature
Equation C1

dT1
dt = q′N−

T1−T2
R1

Description T1 is the average fuel temperature
T2 is the average clad temperature
R1 is the effective resistance between average fuel and average clad
temperatures
C1 is the thermal capacitance of the fuel

Sources [8, page 6];

Derivation of Rate of change of average fuel temperature:
To find the rate of change of average fuel temperature, we use GD4. Consider cp,1 as the
specific heat evaluated at T1, ρ1 as the density of the fuel and A f as area of fuelpellet which
is given as,

A f = πr2
f (A.98)

Now substituting cp,1, ρ1 and Equation A.98 in Equation A.39 gives,

ρ1cp,1πr2
f
dT1

dt
= qin−qout +qg (A.99)

From DD14 the capacitance term C1 is given as,

C1 = πr2
f cp,1ρ1 (A.100)

Rewriting Equation A.99 and substituting Equation A.100 in Equation A.99 gives

C1
dT1

dt
= qin−qout +qg (A.101)

The amount of qin is zero at T1. That is,

qin = 0 (A.102)

98

MASc Thesis - author - McMaster - Computing and Software

The value for qout is given by the flux between T1 and T2. From the Figure A.9,

qout =
T1−T2

R1
, (A.103)

where T2 is the average clad temperature and R1 is the effective thermal resistance between
T1 and T2 as given in DD11.
The integral of heat generation is,

qg = q′N (A.104)

Substituting Equation A.102, Equation A.103 and Equation A.104 in Equation A.101 and
rearranging gives,

C1
dT1

dt
= q′N−

T1−T2

R1
(A.105)

Number IM2
Label Rate of change of average clad temperature
Equation C2

dT2
dt = T1−T2

R1
+q′MWR−

T2−TB
R2

Description T1 is the average fuel temperature
T2 is the average clad temperature
TB is the coolant temperature
R1 is the effective resistance between average fuel and average clad
temperatures
R2 is the effective resistance between clad and coolant tempera-
tures
C2 is the thermal capacitance of the clad
qMWR is the Metal-Water reaction heat

Sources [8, page 6];

Derivation of Rate of change of average clad temperature:
Similar to the rate of change of average fuel temperature, to find the rate of change of av-
erage clad temperature, we use GD4. Consider cp,2 as the specific heat evaluated at T2, ρ2
as the density of the clad and Ac as area of clad which is given as,

Ac = 2πrcτc (A.106)

Now substituting cp,2, ρ2 and Equation A.106 in Equation A.39 gives,

ρ2cp,22πrcτc
dT2

dt
= qin−qout +qg (A.107)

From DD14 the capacitance term C2 is given as,

C2 = 2πrcτccp,2ρ2 (A.108)

Rewriting Equation A.107 and substituting Equation A.108 in Equation A.107 gives

C2
dT2

dt
= qin−qout +qg (A.109)

qin at T2 is the amount of qout at T1 (A.103). That is,

qin =
T1−T2

R1
(A.110)

The value for qout is given by the flux between T2 and TB. From the Figure A.9,

qout =
T2−TB

R2
, (A.111)

99

MASc Thesis - author - McMaster - Computing and Software

where R2 is the effective thermal resistance between T2 and TB as given in DD12.
The integral of heat generation is,

qg = q′MWR (A.112)

Substituting Equation A.110, Equation A.111 and Equation A.112 in Equation A.109 and
rearranging gives,

C2
dT2

dt
=

T1−T2

R1
+q′MWR−

T2−TB

R2
(A.113)

Number IM3
Label Rate of change of centerline temperature
Equation CCL

dTCL
dt = q′N−

TCL−T1
RCL

Description T1 is the average fuel temperature
TCL is the centerline temperature
RCL is the effective resistance t the centerline
CCL is the thermal capacitance at the centerline
q′N is the linear element power

Sources [8, page 6];

Derivation of Rate of centerline temperature:
Similar to the rate of change of average fuel temperature, to find the rate of change of cen-
terline temperature, we use GD4. Consider cp,3 as the specific heat evaluated at TCL, ρ1 as
the density of the fuel and A f as area of fuel pellet which is given by Equation A.98. Now
substituting cp,3, ρ1 and Equation A.98 in Equation A.39 gives,

ρ1cp,3πr2
f
dTCL

dt
= qin−qout +qg (A.114)

From DD14 the capacitance term CCL is given as,

CCL = πr2
f cp,3ρ1 (A.115)

Rewriting Equation A.114 and substituting Equation A.115 in Equation A.114 gives

CCL
dTCL

dt
= qin−qout +qg (A.116)

From the Figure A.9, qin at TCL is the linear element power q′N . That is,

qin = q′N (A.117)

The value for qout is given by the flux between TCL and T1. From the Figure A.9,

qout =
TCL−T1

RCL
, (A.118)

where RCL is the effective thermal resistance between TCL and T1 as given in DD13.
The integral of heat generation is,

qg = 0 (A.119)

Substituting Equation A.117, Equation A.118 and Equation A.119 in Equation A.116 and
rearranging gives,

CCL
dTCL

dt
= q′N−

TCL−T1

RCL
(A.120)

100

MASc Thesis - author - McMaster - Computing and Software

Number IM4
Label Initial thermal conditions
Equation dT1

dt = 0 (IM1)
dT2
dt = 0 (IM2)

kc = aT2 +b (DD15)
q′MWR = 0
q′N,est = 4π

∫ TCL,est
TS

kdT = q′N
Description The initial values that are needed to start the simulation are calcu-

lated using the above conditions.
T1 is the average fuel temperature
T2 is the average clad temperature
TS is the surface temperature
TCL,est is the estimate of centerline temperature
kc is the clad conductivity which is given by DD15
a,b are constants with their values given by Table TB2
q′MWR is the Metal-Water reaction heat
q′N,est is the estimate of linear element power
k is the fuel conductivity

Sources [8, page 6];

Number IM5
Label Point neutron kinetics
Equation Ṅ = [ρ−β

l∗]N +Σ6
i=1λici

ċi =−λici +(βi
l∗)N

Description N is the neutron flux
ρ is the reactivity
βi is the fraction associated with the ith group of delayed neutron
precursors
β is total delayed neutron fraction
l∗ is the prompt generation time(s)
λi is the decay constant associated with the ith group of delayed
neutron precursors (s−1)
ci is the delayed neutron precursor for the ith group
To make the relative distribution of the neutrons uniform, the space
effects on the kinetics equations are to be eliminated. Hence tak-
ing A8 into consideration, i.e considering only time effects, the
space-time kinetics equations of T3 is reduced to the point kinetics
equations. If the reactivity transient is given as input, the transient
neutron flux is obtained by solving the point kinetics equations.

Sources [8, page 6];

101

MASc Thesis - author - McMaster - Computing and Software

Number IM6
Label Decay Heat Equations
Equation q′NFRAC = (1− γ)N +Σ3

i=1λh,iWi
Ẇi =−λh,iWi + γiN

Description N is the neutron flux
q′NFRAC is the relative fuel power
γi is the power fraction associated with the ith decay heat group
λh,i is the decay constant associated with the ith decay heat group
(s−1)
γ is the total delayed power fraction
Wi is the relative decay heat amplitude for the ith group
The decay equations are used in generating fuel power. The total
fuel power is a summation of a prompt neutronic power component
(the prompt fission power) and three delayed decay heat compo-
nents due to fission product decay. If the neutron flux transient is
given as input or from the point kinetics routine, the transient fuel
power is obtained by solving the decay heat equations.

Sources [8, page 6];

A.4.2.6 Data Constraints

This section is to clarify the environmental and system limitations imposed on admissible
data. It gives the system constraints on the data to validate the models identified in the
section “instance Models”. These constraints are listed in the table below. The column
physical constraints gives the physical limitations on the range of the values that can be
taken by the variable and are given by the domain expert while the column system con-
straints gives the system limitations on the range of values that can be taken by the variable
and are given by the developer.

102

MASc Thesis - author - McMaster - Computing and Software

Variable Type Unit Physical Con-
straints

System Con-
straints

Typical value Property

λh,1 Real s−1 −∞ < λh,1 < ∞ 0.10368 IN
λh,2 Real s−1 −∞ < λh,2 < ∞ 0.000142 IN
λh,3 Real s−1 −∞ < λh,3 < ∞ 0.00476 IN
γ1 Real - −∞ < γ1 < ∞ 0.0226 IN
γ2 Real - −∞ < γ2 < ∞ 0.02311 IN
γ3 Real - −∞ < γ3 < ∞ 0.02078 IN
N Real to be discussed IN-OUT
ρ1 Real kg

m3 −∞ < ρ1 < ∞ 10600 IN
ρ2 Real kg

m3 −∞ < ρ2 < ∞ 6570 IN
ρ(reactivity) Real to be discussed 0 IN-OUT
τc Real m −∞ < τc < ∞ 0.00042 IN
τg Real m −∞ < τg < ∞ 0.00004 IN
τA Real - −∞ < τA < ∞ 0.015 IN
∆T Real s 0 < ∆T ≤ 0.0001 0.01 IN
f Real - −∞ < f < ∞ 1.0 IN
l∗ Real s −∞ < l∗ < ∞ 0.893×10−3 IN
β1 Real - −∞ < β1 < ∞ 1.769×10−4 IN
β2 Real - −∞ < β2 < ∞ 11.498×10−4 IN
β3 Real - −∞ < β3 < ∞ 10.191×10−4 IN
β4 Real - −∞ < β4 < ∞ 21.057×10−4 IN
β5 Real - −∞ < β5 < ∞ 7.726×10−4 IN
β6 Real - −∞ < β6 < ∞ 1.962×10−4 IN
β7 Real - −∞ < β7 < ∞ 1.61×10−7 IN
β8 Real - −∞ < β8 < ∞ 3.23×10−7 IN
β9 Real - −∞ < β9 < ∞ 1.03×10−6 IN
β10 Real - −∞ < β10 < ∞ 7.48×10−6 IN
β11 Real - −∞ < β11 < ∞ 6.61×10−6 IN
β12 Real - −∞ < β12 < ∞ 1.080×10−5 IN
β13 Real - −∞ < β13 < ∞ 2.240×10−5 IN
β14 Real - −∞ < β14 < ∞ 6.52×10−5 IN
β15 Real - −∞ < β15 < ∞ 2.080×10−4 IN
λ1 Real s−1 −∞ < λ1 < ∞ 12.778×10−3 IN
λ2 Real s−1 −∞ < λ2 < ∞ 31.535×10−3 IN
λ3 Real s−1 −∞ < λ3 < ∞ 122.197×10−3 IN
λ4 Real s−1 −∞ < λ4 < ∞ 32.282×10−2 IN
λ5 Real s−1 −∞ < λ5 < ∞ 1389.289×10−3 IN
λ6 Real s−1 −∞ < λ6 < ∞ 3778.336×10−3 IN
λ7 Real s−1 −∞ < λ7 < ∞ 6.26×10−7 IN
λ8 Real s−1 −∞ < λ8 < ∞ 3.63×10−6 IN
λ9 Real s−1 −∞ < λ9 < ∞ 4.37×10−5 IN
λ10 Real s−1 −∞ < λ10 < ∞ 0.117×10−3 IN
λ11 Real s−1 −∞ < λ11 < ∞ 0.428×10−3 IN
λ12 Real s−1 −∞ < λ12 < ∞ 0.150×10−2 IN
λ13 Real s−1 −∞ < λ13 < ∞ 0.481×10−2 IN

Table A.1: Table showing Data Constraints

103

MASc Thesis - author - McMaster - Computing and Software

Variable Type Unit Physical Con-
straints

System Con-
straints

Typical value Property

λ14 Real s−1 −∞ < λ14 < ∞ 0.169*10−1 IN
λ15 Real s−1 −∞ < λ15 < ∞ 0.277 IN
q′N,max Real kW

m 35≤ q′N,max ≤ 65 62.9540 IN
hb Real kW

m2oC −∞ < hb < ∞ 50 IN
hp Real kW

m2oC −∞ < hp < ∞ 10 IN
TB Real oC −∞ < TB < ∞ 305.0 IN
r f Real m −∞ < r f < ∞ 0.00612 IN
pdry Real f p −∞ < pdry < ∞ 1.176 IN
hdry Real kW

m2oC −∞ < hdry < ∞ 2.0 IN

Table A.2: Table showing Data Constraints

A.4.2.7 System Behavior

This section gives a detailed description of the system’s functionalities based on the in-
formation in the sections“Data Constraints” and “Instance Models”. It formally specifies
the flow of processing the data. That is, from getting the input, applying the models and
producing the output. The responses to undesired situations such as the errors that are to
be generated if the data constraints are not satisfied are also stated. The contents of this
section are used in design and testing.

Step 1: Read data from the Input file

1. Read the driving transient data
If the driving transient is reactivity, then
Read the reactivity transient data (ρ(t))

Else if the driving transient is neutron flux, then
Read the Neutron flux transient data (N(t))

Else
Read Fuel power transient data (q′NFRAC(t))

2. Read the inputs
Read the inputs ∆t,τc,τg,hg,hb,ρ1,ρ2,ri
If the driving transient is ρ(t), then
Read l∗, βi, γi

If the driving transient is ρ(t) or N(t), then
Read the inputs γh,i, λi

Step 2: Process/Output:
For each time step,

1. If the driving transient is ρ(t), then
Determine reactivity based on current time
Else if the driving transient is N(t), then
Determine neutron flux based on current time
Else if the driving transient is q′NFRAC(t), then
Determine fuel power based on current time

2. If the driving transient is ρ(t), then

104

MASc Thesis - author - McMaster - Computing and Software

(a) Generate the Neutron flux solving Point kinetics equations from IM5

(b) Output Neutron flux (N)

Else if the driving transient is ρ(t) or N(t), then

(a) Generate the relative fuel power by solving Decay heat equations from IM6

(b) Output the relative fuelpower (q′NFRAC)

Else if the driving transient is ρ(t) or N(t) or q′NFRAC(t), then

(a) Change the relative fuel power to linear element power using DD25

(b) Use the linear element power to determine average fuel temperature, average
clad temperature and centerline temperature by solving IM1, IM3 ,IM2 respec-
tively

(c) Output T1,T2,TCL

(d) Use T1, T2 to determine Surface temperature (TS) by solving DD23

(e) Output TS

(f) Using the generated T1, find the fuel stored energy (∆H(T1)) using DD2 and
the power to the coolant (q′out) using DD27

(g) Find the fuel power (fp) using DD3
If Metal water reaction’s calculations are desired, then

(h) Read pdry, hdry, δox

(i) Calculate the Metal water reaction heat using DD5 and DD26

A.4.3 Nonfunctional Requirements
This section specifies system requirements that consider the quality and behaviour of the
system as a whole. It provides different specifications for the system, so that it is found
acceptable and pleasant to use.These include: Accuracy/performance requirements, main-
tainability requirements.

A.4.3.1 Accuracy

The relative error between FP code and HOTSPOT code for the test cases specified in the
FP Engineer’s manual should not be more than 0.05

A.4.3.2 Maintainability

The effort put in maintaining the product should be less than 1/4th of the amount of efforts
put in building, developing the software.

105

MASc Thesis - author - McMaster - Computing and Software

A.4.3.3 Solution Validation Strategies

This section establishes the strategies for validating the software product, and the specific
tests to be performed to assert it complies with the requirements specification defined in
the previous section. To validate the solution produced by the software,

1. Results of the FP code are compared with those of the HOTSPOT code for a test
transient.

• An idealized transient involving severe overpower, combined with step changes in
coolant temperature and an order of magnitude reduction in convective heat transfer
to coolant, should be run with both codes.

• Runs are to performed both with and without average flux depression factor.

A.5 Other System Issues
This section provides additional information on the side” about FP

A.5.1 Open Issues
None present

A.5.2 Off-the-Shelf Solutions
None present

A.5.3 Waiting Room
None Present

A.6 Traceability Matrix
The purpose of this matrix is to provide an easy reference on what has to be additionally
modified if a certain component is changed. Every time a component is changed, then the
items in the column of that component which cross into an “X” should be modified as well.

NOTE: Traceability Matrix of a subset of the components is developed to keep the ma-
trix fit in one page. The references between the other items would be documented in a
similar manner. Building a tool to automatically generate the graphical representation of
the matrix by scanning the labels and references can be a future work.

106

MASc Thesis - author - McMaster - Computing and Software

T1 T2 T3 A1 A2 A3 GD1 GD2 GD3 GD4 GD5 DD6 DD7 DD8 DD9
GD1
GD2 X X X
GD3
GD4 X X
GD5 X
GD6 X
DD1
DD2
DD3
DD4
DD5
DD6 X X
DD7 X
DD8 X X
DD9 X X
DD10 X
DD11 X
DD12 X
DD13 X X
DD14
DD15
DD16
DD17
Dd18 X X
DD19 X X
DD20
DD21
DD22
DD23 X X
DD24
DD25
DD26
DD27 X
DD28 X
IM1 X
IM2 X
IM3 X
IM5 X

Table A.3: Traceability Matrix Showing the Connections Between Items of Different Sec-
tions

107

MASc Thesis - author - McMaster - Computing and Software

A.7 Auxillary Constants
TB1 Metal Water Reaction
Constant Value Constraint Units
A 6.48×10−8 T2 ≤ 1580oC -

1.0×10−6 T2 > 1580oC -
B/R 13586.0 T2 ≤ 1580oC -

16014.0 T2 > 1580oC -
qr 6500.0 - kJ

kg

TB2 Clad Conductivity
Constant Value Constraint Units
a 1.43×10−5 T2 ≤ 1000oC -

2.73×10−5 T2 > 1000oC -
b 1.17×10−2 T2 ≤ 1000oC -

−1.27×10−3 T2 > 1000oC -

TB3 Coefficients for polynomial KAV

Coefficient Value Constraint Units
x0
x1

TB4 Coefficients for polynomial cp,1

Coefficient Value Constraint Units
y0
y1
y2

TB5 Fuel Stored Energy
Constant Value Constraint Units
K0 15.496 - -
K1 19.145 - cal

moleK
K2 7.84733×10−4 - cal

moleK2

K3 5.64373×106 - cal
mole

θ 535.285 - K
ED/R 1.8971×104 - K

108

Appendix B

LP Manual

B.1 Overview
Given relative fuel power (q′NFRAC) as input, the function fuel temp calculates the follow-
ing:

1. Average fuel temperature (T1),

2. Average Clad temperature (T2),

3. Centerline temperature (TCL),

4. Surface temperature (TS), and

5. Stored fuel energy (∆H(Tabs)).

6. Integrated fuel power (fp).

7. Power to the coolant (q′out).

8. Metal water reaction heat (q′MWR).

This function uses

• the material properties of the clad and fuelpellet

• lumped parameter methods and

• initial conditions

It solves the ODEs from the SRS given by IM1, IM3 and IM2 with the initial conditions
defined in IM4, which are summarized below:

C1
dT1

dt
= q′N−

T1−T2

R1
(B.1)

C2
dT2

dt
=

T1−T2

R1
+q′MWR−

T2−TB

R2
(B.2)

CCL
dTCL

dt
= q′N−

TCL−T1

RCL
(B.3)

where

109

MASc Thesis - author - McMaster - Computing and Software

• TB is the coolant temperature

• q′N is the linear element power (kW/m)

• q′MWR is metal-water reaction heat (kW/m)

• C1 is the thermal capacitance of the fuel (kWs/(m◦C))

• C2 is the thermal capacitance of the clad (kWs/(m◦C))

• CCL is the thermal capacitance at the centerline (kWs/(m◦C))

• R1 is the effective thermal resistance between T1 and T2 (m◦C/kW)

• R2 is the effective thermal resistance between coolant and half of the clad (m◦C/kW)

• RCL is the thermal resistance between TCL and T1 (m◦C/kW)

• t is time

B.2 Numerical Algorithm

For solving the instance models of the SRS, an explicit method has been used because
smaller time steps were used while predicting transient temperatures and because explicit
methods are easy to understand during verification by a human reader.
Equations B.1–B.3 are of the form:

dx
dt

= a(x)x+b(x)u(x, t), (B.4)

where x is the variable under consideration. Taking the Laplace transform of Equation B.4,

x(s) =
x0

s−a
+

bu
s(s−a)

(B.5)

with x0 being x(t0). To obtain the closed form solution, a(x), b(x) and u(x, t) are assumed
to be constant in the interval [t, t +∆t]. The solution to the above ODE is found by taking
the inverse Laplace transform of Equation B.5

x(t) = xoe−at +bu
∫ t

0
e−atdt (B.6)

Denoting an approximation of x(tk) at tk by xk and denoting ∆t = tk+1− tk, k≥ 0, we have:

xk+1 = xke−ak∆t +(1− e−ak∆t)
−b(xk)u(xk, tk)

a(xk)
(B.7)

The following table summarizes the values of a(x), b(x) and u(x, t) for Equations B.1, B.2
and B.3:

Equation x a(x) b(x) u(x, t)

B.1 T1 − 1
R1C1

T2+q′N R1
R1C1

1

B.2 T2 − (R1+R2)
R1R2C2

T1R2+q′MWRR1R2+TBR1
R1R2C2

1

B.3 TCL − 1
R3CCL

T1+q′N R3
R3CCL

1

Table B.1: Table of functions for ODEs representing different instance models

110

MASc Thesis - author - McMaster - Computing and Software

B.3 Algorithm
fuel temp (∆t,qNFRAC,k,q′Nmax

,r f , f ,ρ1,ρ2,hib,hp,τg,τc,Tb, pdry,hdry, time, init f lag,MW f lag,n,
hb,k,q′N,k,kc,k,kAV,k,q′MWR,k, fp,k,T1,k,T2,k,TCL,k,TS,k,hc,k,hg,k,C1,k,C2,k,CCL,k,cp,1,k,cp,2,k,cp,3,k,∆H(Tabs,k),

δox,k,Rox,k,q′out,k,q
′
MWRI,k)

1. Initialization section (∗init f lag == 1):

• Input: ∆t, qNFRAC,0, q′Nmax
,r f , f , ρ1, ρ2, hib, hp, τg, τc, Tb, init flag.

• At t0 compute y0

• Output: y0,

where y0 = {hb,q′N ,kc,kAV,q′MWR, fp,T1,T2,TCL,TS,C1,C2,CCL,cp,1,cp,2,cp,3,hc,hg,
∆H(Tabs),δox,Rox,q′out,q

′
MWRI}.

All elements of the set y0 are evaluated at the 0th time step.

2. Dynamic section (∗init f lag == 0):

At tk+1, k ≥ 0,

• Input:∆t, qNFRAC,k+1, q′Nmax
,r f , f , ρ1, ρ2, hib, hp, τg, τc, Tb, pdry, hdry, time,

init flag, MW flag, n, yk.

• compute yk+1, update n when necessary.

• Output: yk+1, n,

where yk+1 = {hb,q′N ,kc,kAV,q′MWR, fp,T1,T2,TCL,TS,C1,C2,CCL,cp,1,cp,2,cp,3,hc,hg,
∆H(Tabs),δox,Rox,q′out,q

′
MWRI}.

All elements of the set yk+1 are evaluated at the k+1th time step.

B.4 Overall function

〈 fuel temp function 2〉 ≡2
void calpro (float ∗t, int ∗i, int ∗iflag,float ∗prpval, int ∗icnt);
void dryout (float ∗htout,float ∗time);
void fuel temp (const float ∗delta,float ∗q NFRAC,float ∗q Nmax,float ∗r f ,float

∗ f ,float ∗rho 1,float ∗rho 2,float ∗h ib,float ∗h p,float ∗tau g,float
∗tau c,float ∗t b,float ∗p dry,float ∗h dry,float ∗time,short int
∗init flag, int ∗MW flag, int ∗n,float ∗h b,float ∗q N ,float ∗k c,float
∗k AV ,float ∗q MWR,float ∗f p,float ∗t 1,float ∗t 2,float ∗t CL,float
∗t S,float ∗h c,float ∗h g,float ∗c 1,float ∗c 2,float ∗c CL,float
∗c p1,float ∗c p2,float ∗c p3,float ∗deltaHT abs,float ∗delta ox,float
∗rate ox,float ∗q out,float ∗q MWRI)

{
if (∗init flag) { 〈 initialization section 15〉}
else { 〈dynamic section 53〉}
}

This code is used in chunk 94

The following sections show the connections between the theory and the numerical
algorithm to the implementation.

111

MASc Thesis - author - McMaster - Computing and Software

B.5 Naming Conventions
Input Parameters

void fuel temp (const float ∗delta,float ∗q NFRAC,float ∗q Nmax,float ∗r f ,float ∗ f ,float3
∗rho 1,float ∗rho 2,float ∗h ib,float ∗h p,float ∗tau g,float ∗tau c,float ∗t b,float
∗p dry,float ∗h dry,float ∗time,short int ∗init flag, int ∗MW flag, int ∗n,float ∗h b,float
∗q N ,float ∗k c,float ∗k AV ,float ∗q MWR,float ∗f p,float ∗t 1,float ∗t 2,float
∗t CL,float ∗t S,float ∗h c,float ∗h g,float ∗c 1,float ∗c 2,float ∗c CL,float ∗c p1,float
∗c p2,float ∗c p3,float ∗deltaHT abs,float ∗delta ox,float ∗rate ox,float ∗q out,float
∗q MWRI)

On input,
parameter stores
∗delta ∆t
∗q NFRAC q′NFRAC
∗q Nmax q′Nmax
∗r f r f
∗ f f
∗rho 1 ρ1
∗rho 2 ρ2
∗h ib hib
∗h p hp
∗tau g τg
∗tau c τc
∗t b TB
∗p dry pdry
∗h dry hdry
∗time time
∗init flag 0 or 1
∗MW flag 0 or 1
∗n 1 or 2
∗h b hib or hdry
∗q N q′N,k, k ≥ 0, if ¬∗init flag
∗k c kc,k, k ≥ 0, if ¬∗init flag
∗k AV kAV,k, k ≥ 0, if ¬∗init flag
∗q MWR q′MWR,k, k ≥ 0, if ¬∗init flag
∗f p PF,SUM,k k ≥ 0, if ¬∗init flag
∗t 1 T1,k, k ≥ 0, if ¬∗init flag
∗t 2 T2,k, k ≥ 0, if ¬∗init flag

112

MASc Thesis - author - McMaster - Computing and Software

parameter stores

∗t CL TCL,k, k ≥ 0, if ¬∗init flag
∗t S TS,k, k ≥ 0, if ¬∗init flag
∗h c hc,k, k ≥ 0, if ¬∗init flag
∗h g hg,k, k ≥ 0, if ¬∗init flag
∗c 1 C1,k, k ≥ 0, if ¬∗init flag
∗c 2 C2,k, k ≥ 0, if ¬∗init flag
∗c CL CCL,k, k ≥ 0, if ¬∗init flag
∗c p1 cp,1,k, k ≥ 0, if ¬∗init flag
∗c p2 cp,2,k, k ≥ 0, if ¬∗init flag
∗c p3 cp,3,k, k ≥ 0, if ¬∗init flag
∗deltaHT abs ∆H(Tabs,k), k ≥ 0, if ¬∗init flag
∗delta ox δox,k, k ≥ 0, if ¬∗init flag
∗rate ox Rox,k k ≥ 0, if ¬∗init flag
∗q out q′out,k k ≥ 0, if ¬∗init flag
∗q MWRI q′MWRI,k, k ≥ 0, if ¬∗init flag

For ∗init flag = 1, that is, when time step k = 0, all the input variables with subscript k can
have any value, as they are not used in any calculations during the initialization.

113

MASc Thesis - author - McMaster - Computing and Software

Output Parameters from the Initialization section

void fuel temp (const float ∗delta,float ∗q NFRAC,float ∗q Nmax,float ∗r f ,float ∗ f ,float5
∗rho 1,float ∗rho 2,float ∗h ib,float ∗h p,float ∗tau g,float ∗tau c,float ∗t b,float
∗p dry,float ∗h dry,float ∗time,short int ∗init flag, int ∗MW flag, int ∗n,float ∗h b,float
∗q N ,float ∗k c,float ∗k AV ,float ∗q MWR,float ∗f p,float ∗t 1,float ∗t 2,float
∗t CL,float ∗t S,float ∗h c,float ∗h g,float ∗c 1,float ∗c 2,float ∗c CL,float ∗c p1,float
∗c p2,float ∗c p3,float ∗deltaHT abs,float ∗delta ox,float ∗rate ox,float ∗q out,float
∗q MWRI)

On output,
if ∗init flag ≡ 1,

parameter stores
∗n 1
∗h b hib
∗q N q′N,0
∗k c kc,0
∗k AV kAV,0
∗q MWR q′MWR,0
∗f p PF,SUM,0
∗t 1 T1,0
∗t 2 T2,0
∗t CL TCL,0
∗t S TS,0
∗h c hc,0
∗h g hg,0
∗c 1 C1,0
∗c 2 C2,0
∗c CL CCL,0
∗c p1 cp,1,0
∗c p2 cp,2,0
∗c p3 cp,3,0
∗deltaHT abs ∆H(Tabs,0)
∗delta ox δox,0
∗rate ox Rox,0
∗q out q′out,0
∗q MWRI q′MWRI,0

114

MASc Thesis - author - McMaster - Computing and Software

Output Parameters from the Dynamic section

8

On output,
If ¬∗init flag,

parameter stores
∗n 1 or 2
∗h b hib or hdry
∗q N q′N,k+1
∗k c kc,k+1
∗k AV kAV,k+1
∗q MWR q′MWR,k+1
∗f p PF,SUM,k+1
∗t 1 T1,k+1
∗t 2 T2,k+1
∗t CL TCL,k+1
∗t S TS,k+1
∗h c hc,k+1
∗h g hg,k+1
∗c 1 C1,k+1
∗c 2 C2,k+1
∗c CL CCL,k+1
∗c p1 cp,1,k+1
∗c p2 cp,2,k+1
∗c p3 cp,3,k+1
∗deltaHT abs ∆H(Tabs,k+1)
∗delta ox δox,k+1
∗rate ox Rox,k+1
∗q out q′out,k+1
∗q MWRI q′MWRI,k+1

NOTE: The fuel temp function calls two fuelpin15.f functions- ‘calpro ’ which calcu-
lates material properties and ‘dryout ’ which outputs a message when dryout occurs. The
interfaces for these functions are not specified in this document, but the relevant terms that
they define are explained as they arise in the documentation.

115

MASc Thesis - author - McMaster - Computing and Software

Local Variables for the Effective thermal resistance in the Initialization section

11
parameter stores
r 1 R1,0
r 2 R2,0
r 3 R3,0
r fuel RFUEL,0

Local Variables for the Effective thermal resistance in the Dynamic section

13
parameter stores
r 1 R1,k+1
r 2 R2,k+1
r 3 R3,k+1
r CL RCL,k+1

116

MASc Thesis - author - McMaster - Computing and Software

B.6 Initialization section
In this section, we determine initial values (subscript k = 0) for:

hb,q′N ,kc,kAV,q′MWR, fp,T1,T2,TCL,TS,hc,hg,C1,C2,CCL,cp,1,cp,2,cp,3,∆H(Tabs),δox,Rox,q′out,q
′
MWRI

〈 initialization section 15〉 ≡15
∗n = 1;

/∗ n is used to keep track of the dryout output message in the dynamic section ∗/
float pi = 3.1416;
〈Calculation of q′N 17〉;
〈 initialization of average clad temperature T2,0 18〉;
〈Calculation of kc 19〉;
〈Calculation of heat transfer coefficient (hc) and the gap conductance (hg) 21〉;
〈 initialization of surface temperature (TS,0) 22〉;
〈convergence routine to determine kAV,0 and TCL,0 28〉;
〈Calculation of R1 30〉;
〈 initialization of average fuel temperature T1,0 31〉;
〈declaration of constants for stored energy 32〉;
〈∆H(Tabs) 33〉;
〈Calpro function for C1 and cp,1 35〉;
〈Calculation of C1 and cp,1 36〉;
icnt = 10;

/∗ icnt is given as an argument to the calpro() function for calculating the specific
heats and the integrals of polynomials∗/

〈Calpro function for C2 and cp,2 38〉;
〈Calculation of C2 and cp,2 39〉;
〈Calpro function for CCL and cp,3 41〉;
〈Calculation of CCL and cp,3 42〉;
〈 initialization of constants for Rox 44〉;
〈Calculation of Rox 45〉;
〈Calculation of q′MWR 46〉;
〈 initialization of q′MWRI 47〉;
〈Calculation of δox 48〉;
〈Calculation of q′out 50〉;
〈 initialization of fp,0 51〉;

This code is used in chunk 2

B.6.1 Computing q′N , T2 and kc

The input relative fuel power (q′NFRAC) is changed to linear element power (q′N) by multi-
plying it with the initial linear element rating (q′Nmax

) as given by DD25 of the SRS.

q′N = q′NFRACq′Nmax ; (B.8)

This q′N is used to determine the relevant temperatures for the fuelpin. We evaluate linear
element power as
〈Calculation of q′N 17〉 ≡17
∗q N = ∗q NFRAC ∗ (∗q Nmax);

This code is used in chunks 15 and 57

117

MASc Thesis - author - McMaster - Computing and Software

Now, we evaluate T2 in steady state by first setting the time derivative term of Equa-
tion B.1 to zero as follows,

T1−T2

R1
= q′N (B.9)

Next we set the time derivative term of Equation B.2 to zero and neglect the metal water
heating term to get,

T1−T2

R1
=

T2−TB

R2
(B.10)

Substituting Equation B.9 in Equation B.10 and rearranging the equation, we get the steady
state case as:

T2 = TB +q′NR2, (B.11)

where R2 is given by DD12 of the SRS as,

R2 =
1

2πrchc
(B.12)

From DD18 of the SRS, we have the equation for hc as,

hc =
2kchb

2kc + τchb
(B.13)

Substituting Equation B.13 into Equation B.12, we get,

R2 =
1

2πrc

(
2kchb

2kc+τchb

) (B.14)

=
1

2πrc

(2kc + τchb

2kchb

)
(B.15)

The above equation cannot be evaluated directly in steady state, because R2 is dependent
on T2 through the clad conductivity (kc) as given by DD15 of SRS. That is,

kc = aT2 +b, (B.16)

where a and b are given constants obtained by a least squares fit to tabulated data. Accord-
ing to the Assumption A12 of the SRS, since T2 is less than 1000oC in the initial state, the
values of a and b are given by the Table TB2 of the SRS as,

a = 1.43×10−5 (B.17)

b = 1.17×10−2 (B.18)

So, taking the expression for kc from Equation B.16, substituting it into Equation B.15
gives

R2 =
2(aT2 +b)+ τchb

4πrchb(aT2 +b)
, (B.19)

On further simplification, Equation B.19 becomes,

R2 =
2aT2 +2b+ τchb

4πrchbaT2 +4πrchbb
, (B.20)

where rc is the outer clad radius and is obtained by the sum of fuel radius (r f), gap thickness
(τg) and clad thickness (τc).

rc = r f + τg + τc (B.21)

118

MASc Thesis - author - McMaster - Computing and Software

Substituting Equation B.20 into Equation B.11 and rearranging gives an equation quadratic
in T2:

4πrchbaT 2
2 +

(
4πrchbb−4πrchbaTB−2aq′N

)
T2− (4πrchbTBb+2q′Nb+q′Nhbτc) = 0

(B.22)
The above equation has to be solved to find the positive root which gives T2 in steady state.
Simultaneously the value kc from Equation B.16 is also calculated.

〈 initialization of average clad temperature T2,0 18〉 ≡ /∗declaration of constants ∗/18
float a = 1.43 ·10−05;
float b = 1.17 ·10−02;

/∗ computation of clad radius B.21 ∗/
float r c = ∗r f +∗tau g +∗tau c;

/∗ initializing coolant film conductance ∗/
∗h b = ∗h ib;

/∗ computation of T2 in steady state ∗/
float C10 = 2.0∗pi ∗ r c ∗ (∗h b);
float C11 = 2.0∗C10 ∗a;
float C12 = C10 ∗ (2.0∗b− (2.0∗a∗ (∗t b)))− (∗q N ∗2.0∗a);
float C13 =−C10 ∗ (∗t b)∗2.0∗b−∗q N ∗ (2.0∗b+((∗h b)∗ (∗tau c)));

/∗ solving quadratic equation ∗/
∗t 2 = (−C12+ sqrt(C12 ∗C12−4.0∗C11 ∗C13))/(2.0∗C11);

/∗computation of initial clad conductivity B.16 ∗/
This code is used in chunk 15

〈Calculation of kc 19〉 ≡19
∗k c = a∗ (∗t 2)+b;

This code is used in chunk 15

B.6.2 Computing hc, hg and TS

Using this clad conductivity (kc), we compute the heat transfer coefficient (hc) and the gap
conductance (hg) as DD18 and DD19 of the SRS, respectively. That is,

hc =
2kchb

2kc + τchb
, (B.23)

hg =
2kchp

2kc + τchp
(B.24)

〈Calculation of heat transfer coefficient (hc) and the gap conductance (hg) 21〉 ≡21
/∗ calculation of heat transfer coefficient ∗/

∗h c = (2∗ (∗k c)∗ (∗h b))/((2∗ (∗k c))+(∗tau c ∗ (∗h b)));
/∗ calculation of gap conductance ∗/

∗h g = (2∗ (∗k c)∗ (∗h p))/((2∗ (∗k c))+(∗tau c ∗ (∗h p)));
This code is used in chunks 15 and 60

119

MASc Thesis - author - McMaster - Computing and Software

At each time step, the surface temperature (TS) is calculated based on the clad and average
fuel temperatures as given by DD23 of the SRS as:

TS = T2 +
T1−T2

R1
R3, (B.25)

where R3 is calculated as given by DD10 of the SRS.

R3 =
1

2πr f hg
(B.26)

The surface temperature in steady state (TS,0) is evaluated using T2,0 and by setting Equa-
tion B.1 to zero as shown in Equation B.9. Substituting Equation B.9 in Equation B.25
gives the steady state case of TS as:

TS,0 = T2,0 +q′N,0R3,0, (B.27)

where R3,0 is calculated based on hg,0.
〈 initialization of surface temperature (TS,0) 22〉 ≡ /∗ calculation of R3 ∗/22

float r 3 = 1/(2∗pi ∗ (∗r f)∗ (∗h g));
/∗ calculation of TS,0 ∗/

∗t S = ∗t 2 +(∗q N ∗ r 3);
This code is used in chunk 15

B.6.3 Computing TCL and kAV

Given this TS and q′N , the centerline temperature (TCL) is calculated as given by Equa-
tion A.50 of the SRS. That is, in steady state,

TCL = TS +RFUELq′N , (B.28)

where RFUEL is given by DD6 of the SRS as,

RFUEL =
f

4πkAV
, (B.29)

where f is the flux depression factor (constant obtained from the input file) and kAV is the
average fuel conductivity.
〈computation of TCL 24〉 ≡24

float r fuel;
r fuel = ∗ f/(4.0∗pi ∗ (∗k AV));
∗t CL = ∗t S +(r fuel ∗ (∗q N));

This code is used in chunk 28

The above computation requires the average thermal conductivity (kAV), but this value is
not initially known.. Since kAV is a temperature-dependent, non-linear variable, an iterative
procedure converging on mutually consistent values for kAV and TCL is needed. An initial
estimate of kAV (kAV,est) fixes the TCL,est. To update kAV, we need an estimate of linear ele-
ment power (q′N,est) which is computed from the current TCL,est. Rewriting Equation A.45
of the SRS in terms of q′N by using DD1 of the SRS and taking flux depression factor into
consideration gives, ∫ TS

TCL

dT =
− f q′N
2πr2

f

∫ r f

0

r
k

dr (B.30)

120

MASc Thesis - author - McMaster - Computing and Software

Integrating the RHS we have, ∫ TS

TCL

dT =
− f q′N
4πk

(B.31)

Rearranging Equation B.31 and integrating the LHS of the equation from TS to TCL,est
generates the estimate of linear element power (q′N,est) as,

q′N,est = 4π

∫ TCL,est

TS

kdT
f

(B.32)

where k is a first order polynomial function of temperature and is given by DDL-pkav of
the SRS as,

k = x1T + x0 (B.33)

Let
K(T) =

∫
kdT, (B.34)

Hence,

q′N,est =
4π

f
[K(T)]TCL,est

TS
, (B.35)

=
4π

f

(
K(TCL,est)−K(TS)

)
(B.36)

〈estimation of q′N 25〉 ≡25
float q NEST ;
q NEST = ((4.0∗pi)∗ (t e− t a))/(∗ f); /∗ te and ta are K(TCL,est) and K(TS)

respectively which are evaluated by calpro function ∗/
This code is used in chunk 28

Substituting Equation B.29 in Equation B.28 and rearranging gives,

kAV =
f q′N

4π(TCL−TS)
(B.37)

The estimate of the element power from Equation B.36 is compared to the actual value and
used to update kAV. The relationship between kAV and and q′N is given by the first order
Taylor series expansion of kAV with respect to q′N as,

kAV,i+1 = kAV,i +
dkAV

dq′N
∆q′N (B.38)

Differentiating Equation B.37 with respect to q′N gives,

dkAV

dq′N
=

f
4π(TCL−TS)

(B.39)

The change in q′N (∆q′N) is the difference between the estimated and actual values.

∆q′N = q′N,est,i−q′N (B.40)

Substituting Equation B.39 and Equation B.40 in Equation B.38,

kAV,i+1 = kAV,i +
(f q′N,est,i− f q′N)

4π(TCL−TS)
(B.41)

〈update kAV 26〉 ≡26
∗k AV = ∗k AV +(((∗ f ∗q NEST − (∗ f ∗ (∗q N))))/(4.0∗pi ∗ (∗t CL−∗t S)));

This code is used in chunk 28

121

MASc Thesis - author - McMaster - Computing and Software

We compute the relative error (normalized difference between the actual and estimated
values) of q′N as a condition for convergence.
〈 relative error computation 27〉 ≡27

re = (∗q N −q NEST)/(∗q N);
This code is used in chunk 28

Now we can put the above together to evaluate kAV,0 and TCL,0 using the described conver-
gence routine.
〈convergence routine to determine kAV,0 and TCL,0 28〉 ≡28

float t a, t e;
int i, iflag;
int icnt; /∗ icnt is given as an argument to the calpro() function for calculating the

specific heats and the integrals of polynomials∗/
i = 1;
iflag = 1;
icnt = 0;
float ts = ∗t S;
calpro (&ts,&i,&iflag,&t a,&icnt); /∗ function calpro evaluates ta which is the

integral of polynomial for kAV at TS (K(TS)) ∗/
int idnt = 4;

/∗ initial estimate of kAV ∗/
∗k AV = 0.00255;

/∗ initial estimate of relative error for convergence ∗/
float re;
do {
〈computation of TCL 24〉;

/∗ function calpro evaluates the integral of polynomial for k (te) at TCL ∗/
float tcl = ∗t CL;
calpro (&tcl,&i,&iflag,&t e,&idnt); /∗ function calpro evaluates te which is

the integral of polynomial for kAV at TCL (K(TCL)) ∗/
〈estimation of q′N 25〉;
〈 relative error computation 27〉;

if (fabsf (re)≤ 0.0004) break;
〈update kAV 26〉;

} while (1);
This code is used in chunk 15

B.6.4 Computing T1

With kAV determined from the above routine, we can determine the average fuel temper-
ature (T1) by setting the time derivative term of Equation B.1 to zero. That is, in steady
state,

T1 = T2 +q′NR1, (B.42)

where R1 is the effective thermal resistance between T1 and T2. The value of R1 is given by
DD11 of the SRS as:

R1 =
f

8πkAV
+

1
2πr f hg

(B.43)

〈Calculation of R1 30〉 ≡30
float r 1 = (∗ f/(8∗pi ∗ (∗k AV)))+(1/(2∗pi ∗ (∗r f)∗ (∗h g)));

This code is used in chunks 15 and 62

122

MASc Thesis - author - McMaster - Computing and Software

〈 initialization of average fuel temperature T1,0 31〉 ≡31
∗t 1 = ∗t 2 +(∗q N ∗ r 1);

This code is used in chunk 15

B.6.5 Computing ∆H(Tabs)

Now we compute the stored fuel energy, which depends on the average fuel temperature.
It is the change in fuel enthalpy from standard room temperature (Tstd = 298K) to the
absolute value of the average fuel temperature T1 and is given by DD2 of the SRS as:

∆H(Tabs) = K0

(
K1θ

((
eθ/Tabs −1

)−1−
(
eθ/Tstd −1

)−1
)
+K2(T 2

abs−T 2
std)+K3e−ED/(RDTabs)

)
,

(B.44)

where K0,K1,K2,K3,θ,ED,RD are constants whose values are given by the TB5 of SRS as:

Constant Value Units
K0 15.496 -
K1 19.145 cal/moleK
K2 7.84733×10−4 cal/(moleK2)
K3 5.64373×106 cal/mole
θ 535.285 K
ED 37.6946×103

RD 1.987

〈declaration of constants for stored energy 32〉 ≡ /∗ declaration of constants ∗/32
float K0 = 15.49 ·10−03;
float K1 = 19.145;
float K2 = 7.84733 ·10−04;
float K3 = 5.64373 ·1006;
float THETA = 535.285;
float E_D = 37.6946 ·1003;
float R_D = 1.987;
float t std = 298;

This code is used in chunks 15 and 75

Evaluation of the stored energy
〈∆H(Tabs) 33〉 ≡33

float t abs;
t abs = ∗t 1 +273.0;
∗deltaHT abs = K0 ∗ (K1 ∗ THETA ∗ ((1/(exp(THETA/t abs)− 1))−

(1/(exp(THETA/t std)− 1)))+ K2 ∗ (t abs ∗ t abs− t std ∗ t std)+ K3 ∗
exp(−E_D/(R_D ∗ t abs)));

This code is used in chunks 15 and 75

B.6.6 Computing C1, cp,1

We initialize the thermal capacitances C1, C2, CCL which will be used later in determining
the transient temperatures in the dynamic section.
C1 is the thermal capacitance of the fuel (kWs

moC) and is given by DD14 of the SRS as,

C1 = πr2
f ρ1cp,1, (B.45)

123

MASc Thesis - author - McMaster - Computing and Software

where
ρ1 is the fuel density (kJ

kgoC)
r f is the fuel radius (m)
cp,1 is the specific heat corresponding to the fuel average temperature (kJ

kgoC)
cp,1 is represented as a second order polynomial function of temperature and is given by
DD17 of the SRS as,

cp,1 = y2T 2 + y1T + y0 (B.46)

The average value of cp,1 is explicitly obtained by finding the average cp,1 by integrating
Equation B.46 from TS to TCL,est and dividing by TCL−TS. That is,

cp,1AV =
1

TCL−TS

∫ TCL

TS

cp,1dT (B.47)

Let
Cp(T) =

∫
cp,1dT, (B.48)

Hence,

cp,1AV =
1

TCL−TS
[Cp(T)]

TCL
TS

, (B.49)

=

(
Cp(TCL)−Cp(TS)

)
TCL−TS

(B.50)

〈Calpro function for C1 and cp,1 35〉 ≡35
float t c, t d;

/∗ function calpro evaluates Cp(TS) ∗/
int j = 2;
int jflag = 3;
ts = ∗t S;
float tcl = ∗t CL;
calpro (&ts,& j,&jflag,&t c,&idnt);

/∗ function calpro evaluates Cp(TCL) ∗/
calpro (&tcl,& j,&jflag,&t d,&idnt);

This code is used in chunk 15

〈Calculation of C1 and cp,1 36〉 ≡ /∗ calculation of specific heat of the fuel ∗/36
∗c p1 = (t d− t c)/(∗t CL−∗t S);

/∗ calculation of C1 ∗/
∗c 1 = pi ∗ (∗r f)∗ (∗r f)∗ (∗rho 1)∗ (∗c p1);

This code is used in chunks 15 and 78

B.6.7 Computing C2, cp,2

C2 is the thermal capacitance of the clad (kWsec
moC) and is given by DD14 of SRS as,

C2 = 2πrcτcρ2cp,2, (B.51)

where rc is the outer clad radius (m)
τc is the clad thickness (m)
cp,2 is the specific heat corresponding to the clad temperature (kJ

kgoC)
ρ2 is the clad density (kJ

kgoC)
We evaluate capacitance C2 for T2 as:

124

MASc Thesis - author - McMaster - Computing and Software

〈Calpro function for C2 and cp,2 38〉 ≡38
int k = 3;
int kflag = 2;

/∗ function calpro evaluates the specific heat of the clad (cp,2) at T2 ∗/
float t2 = ∗t 2;
float cp2;
calpro (&t2,&k,&kflag,&cp2,&idnt);

This code is used in chunk 15

〈Calculation of C2 and cp,2 39〉 ≡39
∗c p2 = cp2;

/∗ calculation of C2 ∗/
∗c 2 = 2∗pi ∗ r c ∗ (∗tau c)∗ (∗rho 2)∗ (∗c p2);

This code is used in chunks 15 and 79

B.6.8 Computing CCL, cp,3

CCL is the thermal capacitance at the centerline (kWs
moC) and is given by DD14 of SRS as,

CCL = πr2
f cp,3ρ1, (B.52)

where r f is the fuel radius(m)
cp,3 is the specific heat corresponding to the fuel centreline temperature (kJ

kgoC).
ρ1 is the fuel density (kJ

kgoC).

We evaluate capacitance CCL for TCL as:
〈Calpro function for CCL and cp,3 41〉 ≡41

/∗ function calpro evaluates the specific heat at the centerline (cp,3) at TCL ∗/
int l = 2;
int lflag = 2;
tcl = ∗t CL;
float cp3;
calpro (&tcl,&l,&lflag,&cp3,&idnt);

This code is used in chunk 15

〈Calculation of CCL and cp,3 42〉 ≡42
∗c p3 = cp3;

/∗ calculation of CCL ∗/
∗c CL = pi ∗ (∗r f)∗ (∗r f)∗ (∗rho 1)∗ (∗c p3);

This code is used in chunks 15 and 80

B.6.9 Computing δox, Rox and q′MWR

The zircaloy clad material oxidizes exothermically when exposed to high temperature
steam, resulting in additional heat input (q′MWR) to the clad. The rate of oxidization (Rox)
depends on the average clad temperature (T2) and the thickness of the reacted zircaloy (δox)
and is given by DD5 of the SRS as,

Rox =
A

1.56δox
e

−B
R(T2+273) , (B.53)

125

MASc Thesis - author - McMaster - Computing and Software

where the values of constants A, B/R are given by Table TB1 of the SRS. According to the
Assumption A12 of the SRS, since T2 is less than 1000oC in the initial state, the values of
A and B/R are given as,

A = 6.48×10−8 (B.54)
B/R = 13586.0 (B.55)

The thickness of the reacted zircaloy (δox) is initialized to 1.0×10−6.
〈 initialization of constants for Rox 44〉 ≡ /∗ initialization of δox,0 ∗/44
∗delta ox = 1.0 ·10−06;

/∗ initialization of constants A and B/R ∗/
float A = 6.48 ·10−08;
float BbyR = 13586.0;

This code is used in chunk 15

〈Calculation of Rox 45〉 ≡45
∗rate ox = (A/(1.56∗ (∗delta ox)))∗ exp(−(BbyR)/(∗t 2 +273.0));

This code is used in chunks 15 and 86

Now using this Rox, the metal water reaction heat (q′MWR) can be calculated as given by
DD5 of the SRS.

q′MWR = Rox2πrcρ2qr, (B.56)

where qr is the heat of reaction and its value (6500.0) is given by Table TB1 of the SRS.
The integrated metal water heat (q′MWRI) is initialized to zero.
〈Calculation of q′MWR 46〉 ≡46

float q r = 6500.0;
∗q MWR = ∗rate ox ∗2∗pi ∗ r c ∗ (∗rho 2)∗q r;

This code is used in chunks 15 and 88

〈 initialization of q′MWRI 47〉 ≡47
∗q MWRI = 0.0;

This code is used in chunk 15

As the reaction takes place, the clad material is oxidized and the thickness of the reacted
zircaloy clad material is found by using Euler’s method for solving an ODE.

δox,i+1 = δox,i +
dδox

dt
∆t (B.57)

Since the derivative of oxidized material with respect to time is rate of oxidization, that is,

dδox

dt
= Rox (B.58)

Substituting (B.58) in (B.57),

δox,i+1 = δox,i +Rox∆t (B.59)

〈Calculation of δox 48〉 ≡48
∗delta ox = ∗delta ox +∗rate ox ∗ (∗delta);

This code is used in chunks 15 and 90

126

MASc Thesis - author - McMaster - Computing and Software

B.6.10 Computing q′out and initializing fp

The output heat from the reaction is sent into the coolant. This heat to the coolant which
is given by DD27 of the SRS is normalized by q′Nmax

for easier understanding and compar-
ission purposes. In other words the normalization is done since this is a standard form for
presenting this information. Hence, the heat out is given as,

q′out =
1

q′Nmax

(T2−TB

R2

)
, (B.60)

where R2 is the effective resistance between coolant film and the clad and is given by DD12
of the SRS as,

R2 =
1

2πrchc
(B.61)

〈Calculation of q′out 50〉 ≡50
float r 2 = 1/(2∗pi ∗ r c ∗ (∗h c));
∗q out = (∗t 2−∗t b)/(r 2 ∗ (∗q Nmax));

This code is used in chunks 15 and 84

The Integrated fuel power (fp) as given by DD3 of the SRS, is a summation of the
fuel powers at each time step. At t0, no reaction takes place and hence no fuel power is
generated. So, initially the integrated fuel power is set to zero.
〈 initialization of fp,0 51〉 ≡51
∗f p = 0.0;

This code is used in chunk 15

B.7 Dynamic section
In this section, we determine transient values (subscript k > 0) for

q′N ,kc,kAV,q′MWR, fp,T1,T2,TCL,TS,hc,hg,C1,C2,CCL,cp,1,cp,2,cp,3,∆H(Tabs),δox,Rox,q′out,q
′
MWRI

〈dynamic section 53〉 ≡53
float pi = 3.1416;
int icnt = 10; /∗ icnt is given as an argument to the calpro() function for calculating

the specific heats and the integrals of polynomials∗/
〈Check for dryout 55〉;
〈Computing q′N,k+1 57〉;
〈Computing kc,k+1 58〉;
〈Computing hc,k+1 and hg,k+1 60〉;
〈Computing R1,k+1 and R2,k+1 62〉;

〈Computing exponential term e
−∆t

R1,k+1C1,k for T1 67〉;

〈Computing exponential term e
−∆t(R1,k+1+R2,k+1)

R1,k+1R2,k+1C2,k for T2 64〉;

〈Computing exponential term e
−∆t

RCL,k+1CCL,k for TCL 70〉;
〈Computing T2,k+1 65〉;
〈Computing T1,k+1 68〉;
〈Computing TCL,k+1 71〉;
〈Computing TS,k+1 73〉;

127

MASc Thesis - author - McMaster - Computing and Software

〈Computing ∆H(Tabs,k+1) 75〉;
〈Computing PF,SUM,k+1 76〉;
〈Computing C1,k+1 = πr2

f ρ1cp,1,k+1 78〉;
〈Computing C2,k+1 = 2πrcτcρ2cp,2,k+1 79〉;
〈Computing CCL,k+1 = πr2

f ρ1cp,3,k+1 80〉;
〈Computing kAV,k+1 82〉;
if (∗MW flag ≡ 1) {
〈Computing q′out,k+1 84〉;
〈Computing Rox,k+1 86〉;
〈Computing q′MWR,k+1 88〉;
〈Computing δox,k+1 90〉;
〈Computing q′MWRI,k+1 92〉;

}
This code is used in chunk 2

B.7.1 Checking for Dryout

We check for dryout using the condition given in DD28 of the SRS. If the dryout occurs,
we output a message notifying the time and heat out at which it occured and assign the heat
transfer coefficient between the fuel surface and the coolant at dryout (hdry) to the coolant
film conductance (hb).
〈Check for dryout 55〉 ≡ /∗check for dryout ∗/55

if (∗q out ≥ ∗p dry∧∗n≡ 1)
{

float qout, tym;
qout = ∗q out;
tym = ∗time;

/∗ calling fuelpin15.f subroutine ‘dryout ’ to write out fuel sheath dryout time
and q′out ∗/

dryout (&qout,&tym);
}
if (∗q out ≥ ∗p dry)

{
∗n = 2;

/∗ assigning dryout heat tranfer coefficient to the coolant conductance ∗/
∗h b = ∗h dry;
}

This code is used in chunk 53

B.7.2 Computing q′N,k+1 and kc,k+1

The transient linear element power and clad conductivity are determined in the same way
as done in B.6.1. At time tk+1, the q′N is calculated based on relative fuel power (q′NFRAC)
at tk+1 and is given by DD25 of the SRS as,

q′N,k+1 = q′NFRAC,k+1q′Nmax ; (B.62)

We use the same chunk which calculates q′N in the initialization section to compute q′N,k+1,
as the piece of code is same for both steady state and the transient state calculations.
〈Computing q′N,k+1 57〉 ≡57
〈Calculation of q′N 17〉;

This code is used in chunk 53

128

MASc Thesis - author - McMaster - Computing and Software

The value of clad conductivity (kc) at time tk+1 depends on the average clad temperature
(T2) at tk and is given by DD15 of the SRS as,

kc,k+1 = aT2,k +b, (B.63)

where a and b are constants obtained by a least squares fit to tabulated data and are given by
Table TB2 of the SRS, where Table TB2 used different values for a and b if the temperature
is greater than 1000oC. We evaluate value of kc at tk+1 as,
〈Computing kc,k+1 58〉 ≡58

float a, b;
if (∗t 2 > 1000.0)

{
a = 2.727 ·10−05;
b =−1.2727 ·10−03;
}
else
{
a = 1.43 ·10−05;
b = 1.17 ·10−02;
}
∗k c = a∗ (∗t 2)+b;

This code is used in chunk 53

B.7.3 Computing hc,k+1 and hg,k+1

Now using the kc,k+1, we compute the heat transfer coefficient (hc) and the gap conductance
(hg) at tk+1 in the same way we did in B.6.2 as,

hc,k+1 =
2kc,k+1hb

2kc,k+1 + τchb
. (B.64)

hg,k+1 =
2kc,k+1hp

2kc,k+1 + τchp
. (B.65)

Hence, reusing the chunk that has calculated hc and hg in the initialization section, hc,k+1
and hg,k+1 are computed as,
〈Computing hc,k+1 and hg,k+1 60〉 ≡60
〈Calculation of heat transfer coefficient (hc) and the gap conductance (hg) 21〉;

This code is used in chunk 53

B.7.4 Computing R1,k+1 and R2,k+1

R1 at tk+1 is computed in the same way we did in B.6.4 by taking the value of hg at tk+1
and kAV at tk as,

R1,k+1 =
f

8πkAV,k
+

1
2πr f hg,k+1

(B.66)

So, for computing R1,k+1, we reuse the same piece of code that computes R1 at steady
state.
R2 at tk+1 is computed taking the value of hc,k+1 and is given by DD12 of SRS as,

R2,k+1 =
1

2πrchc,k+1
. (B.67)

129

MASc Thesis - author - McMaster - Computing and Software

〈Computing R1,k+1 and R2,k+1 62〉 ≡62
〈Calculation of R1 30〉; /∗ computation of clad radius ∗/
float r c = ∗r f +(∗tau g)+(∗tau c);
float r 2 = 1.0/(2.0∗pi ∗ r c ∗ (∗h c));

This code is used in chunk 53

B.7.5 Computing T2,k+1

We solve Equation B.2 for T2,k+1. The value of T2 at time tk+1 is computed using R1,k+1,
R2,k+1 and the values of C2, T1, T2, q′MWR at tk. By taking C2 of Equation B.2 to the RHS
and rearranging, it simplifies to,

dT2

dt
=− (R1 +R2)

R1R2C2
T2 +

T1R2 +q′MWRR1R2 +TBR1

R1R2C2
(B.68)

Comparing (B.68) with (B.4) using the Table B.2, the solution to Equation B.2 is given as,

T2,k+1 =T2,ke
−∆t(R1,k+1+R2,k+1)

R1,k+1R2,k+1C2,k +
(

1−e
−∆t(R1,k+1+R2,k+1)

R1,k+1R2,k+1C2,k
)T1,kR2,k+1 +q′MWR,kR1,k+1R2,k+1 +TBR1,k+1

(R1,k+1 +R2,k+1)
(B.69)

〈Computing exponential term e
−∆t(R1,k+1+R2,k+1)

R1,k+1R2,k+1C2,k for T2 64〉 ≡64
float g = exp((−(∗delta)∗ (r 1 + r 2))/(r 1 ∗ r 2 ∗ (∗c 2)));

This code is used in chunk 53

〈Computing T2,k+1 65〉 ≡65
∗t 2 = ∗t 2 ∗ g+((1.0− g) ∗ (((∗t 1 ∗ r 2)+ (∗q MWR ∗ r 1 ∗ r 2)+ ((∗t b) ∗

r 1))/(r 1 + r 2)));
This code is used in chunk 53

B.7.6 Computing T1,k+1

We solve Equation B.1 for T1,k+1. The value of T1 at time tk+1 is computed using R1,k+1,
T2,k+1, q′N,k+1 and the values of C1, T1 at tk. By taking C1 of Equation B.1 to the RHS and
rearranging, it simplifies to,

dT1

dt
=− 1

R1C1
T1 +

T2 +q′NR1

R1C1
(B.70)

Comparing Equation B.70 with Equation B.4, using Table B.2, the solution to Equa-
tion B.1 is given as,

T1,k+1 = T1,ke
−∆t

R1,k+1C1,k +
(

1− e
−∆t

R1,k+1C1,k
)
(R1,k+1q′N,k+1 +T2,k+1) (B.71)

〈Computing exponential term e
−∆t

R1,k+1C1,k for T1 67〉 ≡67
float j = exp(−(∗delta)/(r 1 ∗ (∗c 1)));

This code is used in chunk 53

〈Computing T1,k+1 68〉 ≡68
∗t 1 = j ∗ (∗t 1)+((1.0− j)∗ (r 1 ∗ (∗q N)+(∗t 2)));

This code is used in chunk 53

130

MASc Thesis - author - McMaster - Computing and Software

B.7.7 Computing TCL,k+1

Now we solve Equation B.3 for TCL,k+1. The value of TCL at time tk+1 is computed using
T1,k+1, q′N,k+1 and the values of CCL, TCL and kAV at tk. By taking CCL of Equation B.3 to
the RHS and rearranging, it simplifies to,

dTCL

dt
=− 1

RCLCCL
TCL +

T1 +q′NRCL

RCLCCL
, (B.72)

where RCL is the one half of the fuel resistance (RFUEL) and is given by DD13 of the SRS
as,

RCL,k+1 =
f

8πkAV,k
(B.73)

Comparing Equation B.72 with Equation B.4 and using the Table B.2, the solution to Equa-
tion B.3 is given as,

TCL,k+1 = TCL,ke
−∆t

RCL,k+1CCL,k +
(

1− e
−∆t

RCL,k+1CCL,k
)
(RCL,k+1q′N,k+1 +T1,k+1) (B.74)

〈Computing exponential term e
−∆t

RCL,k+1CCL,k for TCL 70〉 ≡70
float r CL = ∗ f/(8.0∗pi ∗ (∗k AV)); /∗ calculation of RCL,k+1 ∗/
float m = exp(−(∗delta)/(r CL ∗ (∗c CL))); /∗ calculation of exponential term ∗/

This code is used in chunk 53

〈Computing TCL,k+1 71〉 ≡71
∗t CL = m∗ (∗t CL)+((1.0−m)∗ (r CL ∗ (∗q N)+(∗t 1)));

This code is used in chunk 53

B.7.8 Computing TS,k+1

The value of TS at time tk+1 is calculated based on T1,k+1, T2,k+1 and is given by DD23 of
the SRS as,

TS,k+1 = T2,k+1 +
T1,k+1−T2,k+1

R1,k+1
R3,k+1, (B.75)

where R3,k+1 is calculated as given by DD10 of the SRS as:

R3,k+1 =
1

2πr f hg,k+1
(B.76)

〈Computing TS,k+1 73〉 ≡73
float r 3 = 1/(2∗pi ∗ (∗r f)∗ (∗h g)); /∗ calculation of gap resistance ∗/
∗t S = ∗t 2 +((∗t 1−∗t 2)/(r 1)∗ (r 3));

This code is used in chunk 53

131

MASc Thesis - author - McMaster - Computing and Software

B.7.9 Computing ∆H(Tabs) and PF,SUM

Now we compute the transient stored fuel energy in the same way we did in the initializa-
tion section (B.6.5). The stored fuel energy at time tk+1 depends on the value of absolute
value of T1 at tk+1 and is given by DD2 of the SRS as:

∆H(Tabs,k+1) = K0

(
K1θ

((
eθ/Tabs,k+1 −1

)−1−
(
eθ/Tstd −1

)−1
)
+K2(T 2

abs,k+1−T 2
std)+K3e−ED/(RDTabs,k+1)

)
,

(B.77)

where the values of the constants are given in the initialization section. Reusing the chunks
that initialize the constants and compute ∆H(Tabs) in the initialization section, we can com-
pute ∆H(Tabs,k+1) as,
〈Computing ∆H(Tabs,k+1) 75〉 ≡75
〈declaration of constants for stored energy 32〉;
〈∆H(Tabs) 33〉;

This code is used in chunk 53

The integrated fuel power (PF,SUM) at each time step tk+1, is based on the relative fuel power
(q′NFRAC,k+1) and is given by the numerical approximation of the integral version shown in
DD3 of the SRS as:

PF,SUM,k+1 =
i=k+1

∑
0

q′NFRAC,i∆ti, (B.78)

where qNFRAC,i is the relative fuel power at ti.
〈Computing PF,SUM,k+1 76〉 ≡76
∗f p = ∗f p +(∗q NFRAC ∗ (∗delta));

This code is used in chunk 53

B.7.10 Computing C1,C2,C3,cp,1,cp,2,cp,3

We evaluate the thermal capacitances and the specific heats in the same way we did in the
initialization sections B.6.6, B.6.7 and B.6.8. So we reuse the chunks that have imple-
mented the capacitances C1, C2, C3 and their respective specific heats in the initialization
section to compute the thermal capacitances and the specific heats at tk+1.
At time tk+1, the average fuel specific heat (cp,1) is computed based on TCL,k+1 and TS,k+1.
Taking this cp,1,k+1, we evaluate C1,k+1 as given in Equation B.45.
〈Computing C1,k+1 = πr2

f ρ1cp,1,k+1 78〉 ≡78
float t c, t d;
int i, iflag;
i = 2;
iflag = 3;
float ts = ∗t S;
float tcl = ∗t CL;

/∗ function calpro evaluates Cp(TS,k+1) ∗/
calpro (&ts,&i,&iflag,&t c,&icnt);

/∗ function calpro evaluates Cp(TCL,k+1) ∗/
calpro (&tcl,&i,&iflag,&t d,&icnt);
〈Calculation of C1 and cp,1 36〉;

This code is used in chunk 53

132

MASc Thesis - author - McMaster - Computing and Software

At time tk+1, the specific heat of the clad (cp,2) is computed based on T2,k+1. Taking this
cp,2,k+1, we evaluate C2,k+1 as given in Equation B.51.
〈Computing C2,k+1 = 2πrcτcρ2cp,2,k+1 79〉 ≡79

/∗ calculation of specific heat of the clad (cp,2,k+1) at T2 by calpro ∗/
i = 3;
iflag = 2;
float t2 = ∗t 2;
float cp2;
calpro (&t2,&i,&iflag,&cp2,&icnt);
〈Calculation of C2 and cp,2 39〉;

This code is used in chunk 53

At time tk+1, the specific heat at the centerline (cp,3) is computed based on TCL,k+1. Taking
this cp,3,k+1, we evaluate CCL,k+1 as given in Equation B.52.
〈Computing CCL,k+1 = πr2

f ρ1cp,3,k+1 80〉 ≡80
/∗calculation of specific heat cp,3,k+1 at TCL by calpro ∗/

i = 2;
iflag = 2;
tcl = ∗t CL;
float cp3;
calpro (&tcl,&i,&iflag,&cp3,&icnt);
〈Calculation of CCL and cp,3 42〉;

This code is used in chunk 53

B.7.11 Computing kAV

Since kAV is represented as first order polynomial function of temperature, at time tk+1, the
average fuel conductivity is explicitly obtained by integrating that expression from TS to
TCL. That is,

kAV =
∫ TCL

TS

kdT
(TCL−TS)

(B.79)

=
1

(TCL−TS)
[K(T)]TCL

TS
, (B.80)

where
K(T) =

∫
kdT, (B.81)

Hence,

kAV =
K(TCL)−K(TS)

(TCL−TS)
(B.82)

〈Computing kAV,k+1 82〉 ≡82
float t a; /∗evaluation of K(T) at TS by calpro∗/
i = 1;
iflag = 1;
ts = ∗t S;
calpro (&ts,&i,&iflag,&t a,&icnt);
float t e; /∗evaluation of K(T) at TCL by calpro∗/

133

MASc Thesis - author - McMaster - Computing and Software

tcl = ∗t CL;
calpro (&tcl,&i,&iflag,&t e,&icnt);

/∗ calculation of average fuel conductivity ∗/
∗k AV = (t e− t a)/(∗t CL−∗t S);

This code is used in chunk 53

B.7.12 Computing q′out

We calculate the heat out (q′out) in the same way as done in the initialization section
(B.6.10). The heat out at time tk+1 depends on the value of T2 and hc at tk+1 and is given
by DD27 of the SRS as:

q′out,k+1 =
1

R2,k+1

(T2,k+1−TB

q′Nmax

)
, (B.83)

where R2,k+1 is the effective resistance between the clad and the coolant film and is given
by DD12 of the SRS as,

R2,k+1 =
1

2πrchc,k+1
(B.84)

Reusing the chunk calculating q′out from the initializing section, we can calculate q′out,k+1

〈Computing q′out,k+1 84〉 ≡84
〈Calculation of q′out 50〉;

This code is used in chunk 53

B.7.13 Computing rate of oxidation

We calculate the rate of oxidation (Rox) in the same way as we did in the initialization
section (B.6.9). The Rox at time tk+1 depends on the value of T2 at tk+1 and δox at tk and is
given by DD5 of the SRS,

Rox,k+1 =
A

1.56δox,k
e

−B
R(T2,k+1+273) , (B.85)

where the values of constants A, B/R are given by Table TB1 of the SRS. Table TB1 uses
different values for A and B/R if the temperature is greater than 1580oC. We evaluate value
of Rox at tk+1 using the same chunk which calculates Rox during the initialization section.
However, before the chunk is called, the assignment of values to the variables A and BbyR
is done based on the value of T2 as given by Table TB1 of the SRS.
〈Computing Rox,k+1 86〉 ≡86

float A, BbyR;
if (∗t 2 ≤ 1580.0) {

A = 6.48 ·10−08;
BbyR = 13586.0;
}
else {

A = 1.0 ·10−06;
BbyR = 16014.0;
}
〈Calculation of Rox 45〉;
if (∗t 2 ≥ 1850.0) {
∗rate ox = (A/(1.56∗ (∗delta ox)))∗ exp(−(BbyR)/(1850.0+273.0));
}

This code is used in chunk 53

134

MASc Thesis - author - McMaster - Computing and Software

B.7.14 Computing metal water reaction heat (qMWR)

We calculate the metal water reaction heat in the same way as we did in the initialization
section (B.6.9). The qMWR at time tk+1 depends on the value of Rox at tk+1 and is given by
DD5 of SRS as:

q′MWR,k+1 = Rox,k+12πrcρ2qr, (B.86)

So, for evaluating q′MWR,k+1, we reuse the chunk that calculates q′MWR in the steady state.
Taking assumption A13 of the SRS into consideration, when all the clad material gets
oxidized, that is, when the thickness of the reacted zircaloy (δox) becomes equal to or
greater than the clad thickness (τc), then there will not be any more metal water reaction
taking place and hence no more q′MWR will be generated. That is,

δox ≥ τc⇒ q′MWR = 0 (B.87)

〈Computing q′MWR,k+1 88〉 ≡88
〈Calculation of q′MWR 46〉;
if (∗delta ox ≥ ∗tau c) {
∗q MWR = 0.0;
}

This code is used in chunk 53

B.7.15 Computing oxidation layer thickness

We calculate the oxidation layer thickness in the same way as we did in the initialization
section (B.6.9). The δox at time tk+1 depends on the value of Rox at tk+1 and is given as:

δox,k+1 = δox,k +Rox,k+1∆t (B.88)

So, for evaluating δox,k+1, we reuse the chunk that calculates δox in the steady state. But
once the δox becomes equal to or greater than the clad thickness (τc), as there will not be
anymore metal water reaction taking place, the rate of oxidation of the clad becomes zero.
That is,

δox ≥ τc⇒ Rox = 0 (B.89)

〈Computing δox,k+1 90〉 ≡90
if (∗delta ox ≥ ∗tau c) {
∗rate ox = 0.0;
}
〈Calculation of δox 48〉;

This code is used in chunk 53

B.7.16 Computing Integrated metal water reaction heat (q′MWRI)

The integrated metal water reaction heat is a summation of q′MWR normalized by q′Nmax
at

each time step. At time tk+1, the q′MWRI is based on q′MWR,k+1 and is given by the numerical
approximation of the integral form given in DD26 of the SRS as,

q′MWRI,k+1 =
1

q′Nmax

k+1

∑
i=0

q′MWR,i∆ti (B.90)

〈Computing q′MWRI,k+1 92〉 ≡92
∗q MWRI = ∗q MWRI +((∗q MWR/(∗q Nmax))∗ (∗delta));

This code is used in chunk 53

135

MASc Thesis - author - McMaster - Computing and Software

We store the program into the C file
〈fuel_temp.c 94〉 ≡94

#include <math.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
〈 fuel temp function 2〉;

136

Appendix C

Checklist

1. All the goals of the software are defined.

2. The problem statement, context, scope and purpose are clearly stated.

3. All the required background information is given.

4. All the abbreviations and acronyms are defined.

5. All the abbreviations and acronyms given are used.

6. All the constraints are mentioned.

7. Every term is defined with its unit of measurement.

8. All the laws and equations needed to build the mathematical models are given.

9. All the mathematical models are developed.

10. Derivations of all the models and necessary data definitions are given.

11. Every assumption is recorded, labelled and referenced at least once.

12. Every figure and table is labelled and is referenced.

13. Every symbol is defined with its unit of measurement.

14. Every defined symbol is used.

15. Values of all the constants are given.

16. Cross referencings are made throughout the document.

17. Each term in the document has a unique symbol and definition.

18. Each requirement is specified only once.

19. Every line of the code must trace back to either the definitions or assumptions or
models or constants of the SRS or to the numerical algorithm or assumptions used in
the LP Manual.

20. Each data definition and instance model is implemented only once and the chunks
are reused where necessary.

21. Every data definition or model mentioned in the LP Manual should be referenced
back to the SRS.

137

Appendix D

makefile

FC= gfortran
CC= gcc
CFLAGS = -g -c -Wall -ansi
FFLAGS = -g -c -Wall -fno-automatic

fp:
ctangle fuel temp
gcc $(CFLAGS) fuel temp.c
gfortran $(FFLAGS) fp.f
gfortran -o test fp.o fuel temp.o

pdf:
cweave fuel temp.w
pdflatex fuel temp

clean:
@-$(RM) *.aux *.idx *.out *.scn *.toc *.c *.log fuel temp *.o

138

Index

A: 44 86.
a: 18 58.
b: 18 58.
BbyR: 44 45 86.
c CL: 2 3 5 8 11 42 70.
c p1: 2 3 5 8 11 36.
c p2: 2 3 5 8 11 39.
c p3: 2 3 5 8 11 42.
c 1: 2 3 5 8 11 36 67.
c 2: 2 3 5 8 11 39 64.
calpro : 2 11 28 35 38 41 78

79 80 82.
cp2: 38 39 79.
cp3: 41 42 80.
C10: 18.
C11: 18.
C12: 18.
C13: 18.
delta: 2 3 5 48 64 67 70 76 92.
delta ox: 2 3 5 8 11 44 45 48

86 88 90.
deltaHT abs: 2 3 5 8 11 33.
dryout : 2 11 55.
E_D: 32 33.
exp: 33 45 64 67 70 86.
f : 2 3 5.
f p: 2 3 5 8 11 51 76.
fabsf : 28.
fuel temp : 1 2 3 5 11.
g: 64.
h b: 2 3 5 8 11 18 21 55.
h c: 2 3 5 8 11 21 50 62.
h dry: 2 3 5 55.
h g: 2 3 5 8 11 21 22 30 73.
h ib: 2 3 5 18.
h p: 2 3 5 21.
htout: 2.
i: 2 28 78.
icnt: 2 15 28 53 78 79 80 82.
idnt: 28 35 38 41.
iflag: 2 28 78 79 80 82.

init flag: 1 2 3 5 8 11.
j: 35 67.
jflag: 35.
k: 38.
k AV : 2 3 5 8 11 24 26 28

30 70 82.
k c: 2 3 5 8 11 19 21 58.
kflag: 38.
K0: 32 33.
K1: 32 33.
K2: 32 33.
K3: 32 33.
l: 41.
lflag: 41.
m: 70.
MW flag: 2 3 5 53.
n: 2 3 5.
p dry: 2 3 5 55.
pi: 15 18 22 24 25 26 30 36 39

42 46 50 53 62 70 73.
prpval: 2.
q MWR: 2 3 5 8 11 46 65 88 92.
q MWRI : 2 3 5 8 11 47 92.
q N : 2 3 5 8 11 17 18 22 24

26 27 31 68 71.
q NEST : 25 26 27.
q NFRAC: 2 3 5 17 76.
q Nmax: 2 3 5 17 50 92.
q out: 2 3 5 8 11 50 55.
q r: 46.
qout: 55.
r c: 18 39 46 50 62.
r CL: 14 70 71.
R_D: 32 33.
r f : 2 3 5 18 22 30 36 42 62 73.
r fuel: 12 24.
r 1: 12 14 30 31 64 65 67 68 73.
r 2: 12 14 50 62 64 65.
r 3: 12 14 22 73.
rate ox: 2 3 5 8 11 45 46 48 86 90.
re: 27 28.

139

MASc Thesis - author - McMaster - Computing and Software

rho 1: 2 3 5 36 42.
rho 2: 2 3 5 39 46.
sqrt: 18.
t: 2.
t a: 25 28 82.
t abs: 33.
t b: 2 3 5 18 50 65.
t c: 35 36 78.
t CL: 2 3 5 8 11 24 26 28 35 36

41 71 78 80 82.
t d: 35 36 78.
t e: 25 28 82.
t S: 2 3 5 8 11 22 24 26 28 35

36 73 78 82.
t std: 32 33.
t 1: 2 3 5 8 11 31 33 65 68 71 73.
t 2: 2 3 5 8 11 18 19 22 31 38 45

50 58 65 68 73 79 86.
tau c: 2 3 5 18 21 39 62 88 90.
tau g: 2 3 5 18 62.
tcl: 28 35 41 78 80 82.
THETA: 32 33.
time: 2 3 5 55.
ts: 28 35 78 82.
tym: 55.
t2: 38 79.

140

List of Refinements

〈∆H(Tabs) 33〉 Used in chunks 15 and 75.
〈Calculation of C1 and cp,1 36〉 Used in chunks 15 and 78.
〈Calculation of C2 and cp,2 39〉 Used in chunks 15 and 79.
〈Calculation of CCL and cp,3 42〉 Used in chunks 15 and 80.
〈Calculation of R1 30〉 Used in chunks 15 and 62.
〈Calculation of Rox 45〉 Used in chunks 15 and 86.
〈Calculation of δox 48〉 Used in chunks 15 and 90.
〈Calculation of kc 19〉 Used in chunk 15.
〈Calculation of q′N 17〉 Used in chunks 15 and 57.
〈Calculation of q′MWR 46〉 Used in chunks 15 and 88.
〈Calculation of q′out 50〉 Used in chunks 15 and 84.
〈Calculation of heat transfer coefficient (hc) and the gap conductance (hg) 21〉 Used in

chunks 15 and 60.
〈Calpro function for C1 and cp,1 35〉 Used in chunk 15.
〈Calpro function for C2 and cp,2 38〉 Used in chunk 15.
〈Calpro function for CCL and cp,3 41〉 Used in chunk 15.
〈Check for dryout 55〉 Used in chunk 53.
〈Computing C1,k+1 = πr2

f ρ1cp,1,k+1 78〉 Used in chunk 53.
〈Computing C2,k+1 = 2πrcτcρ2cp,2,k+1 79〉 Used in chunk 53.
〈Computing CCL,k+1 = πr2

f ρ1cp,3,k+1 80〉 Used in chunk 53.
〈Computing PF,SUM,k+1 76〉 Used in chunk 53.
〈Computing R1,k+1 and R2,k+1 62〉 Used in chunk 53.
〈Computing Rox,k+1 86〉 Used in chunk 53.
〈Computing T1,k+1 68〉 Used in chunk 53.
〈Computing T2,k+1 65〉 Used in chunk 53.
〈Computing TS,k+1 73〉 Used in chunk 53.
〈Computing TCL,k+1 71〉 Used in chunk 53.
〈Computing ∆H(Tabs,k+1) 75〉 Used in chunk 53.
〈Computing δox,k+1 90〉 Used in chunk 53.
〈Computing hc,k+1 and hg,k+1 60〉 Used in chunk 53.
〈Computing kAV,k+1 82〉 Used in chunk 53.
〈Computing kc,k+1 58〉 Used in chunk 53.
〈Computing q′N,k+1 57〉 Used in chunk 53.

〈Computing q′MWRI,k+1 92〉 Used in chunk 53.

〈Computing q′MWR,k+1 88〉 Used in chunk 53.

〈Computing q′out,k+1 84〉 Used in chunk 53.

〈Computing exponential term e
−∆t(R1,k+1+R2,k+1)

R1,k+1R2,k+1C2,k for T2 64〉 Used in chunk 53.

〈Computing exponential term e
−∆t

R1,k+1C1,k for T1 67〉 Used in chunk 53.

141

MASc Thesis - author - McMaster - Computing and Software

〈Computing exponential term e
−∆t

RCL,k+1CCL,k for TCL 70〉 Used in chunk 53.
〈computation of TCL 24〉 Used in chunk 28.
〈convergence routine to determine kAV,0 and TCL,0 28〉 Used in chunk 15.
〈declaration of constants for stored energy 32〉 Used in chunks 15 and 75.
〈dynamic section 53〉 Used in chunk 2.
〈estimation of q′N 25〉 Used in chunk 28.
〈 fuel temp function 2〉 Used in chunk 94.
〈fuel_temp.c 94〉
〈 initialization of fp,0 51〉 Used in chunk 15.
〈 initialization of q′MWRI 47〉 Used in chunk 15.
〈 initialization of average clad temperature T2,0 18〉 Used in chunk 15.
〈 initialization of average fuel temperature T1,0 31〉 Used in chunk 15.
〈 initialization of constants for Rox 44〉 Used in chunk 15.
〈 initialization of surface temperature (TS,0) 22〉 Used in chunk 15.
〈 initialization section 15〉 Used in chunk 2.
〈 relative error computation 27〉 Used in chunk 28.
〈update kAV 26〉 Used in chunk 28.

142

	Abstract
	Acknowledgments
	Contents
	Introduction
	Research Context
	Motivation of this Research
	Research Problem and Scope
	Organization of Thesis

	Background
	Software Requirements Specification (SRS)
	Desirable Qualities for an SRS
	Literate Programming
	Certification

	Requirements Documentation by SRS Template
	N286.7 Standard's Expected Documentation of Requirements and Theory
	Proposed SRS Template
	Table of Symbols
	Goals
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions

	An Introduction to our Case Study
	Evaluation of the Template
	Issues in Documentation of R1 (Effective Thermal Resistance Between T1 and T2)
	Context from the Original Theory Manual
	Problems
	Quality Improvements by the Proposed Template
	Excerpt 1 Showing the Documentation of R1 Using the Proposed Template
	Comments on the Excerpt

	Issues in Documentation of R2 (Effective Thermal Resistance Between TB and T2)
	Context from the Original Theory Manual
	Problems
	Quality Improvements by the Proposed Template
	Excerpt 2 Showing the Documentation of R2 Using the Proposed Template
	Comments on the Excerpt

	Issues in Documentation of Numerical Algorithm for Solving T2 Quadratic Equation
	Context From the Original Theory Manual
	Problems
	Quality Improvements by the Proposed Template

	Issues in Documentation of Dryout Requirements
	Context
	Problems
	Quality Improvements by the Proposed Template
	Excerpt 3 Showing the Documentation of Dryout and Heat Out (q'out) Using the Proposed Template

	List of Issues Uncovered From the Original Theory Manual

	Implementation of the SRS using Literate Programming
	N286.7 Standard's Expected Documentation of Design and Implementation
	Design and Implementation Using LP
	Numerical Algorithm for Solving ODEs
	Overall Algorithm and Function of fuel_temp_
	Naming Convention of Variables for fuel_temp_

	Evaluation of LP
	Design and Implementation of Instance Models
	Steady State Computation
	Transient State Computation

	Conclusions
	Summary
	Future work

	Bibliography
	Software Requirement Specification for FP
	Reference Material
	Table of Symbols
	Quantities related to Thermal Analysis
	Quantities related to Nuclear Physics

	Abbreviations and Acronyms

	Introduction
	Purpose of Document
	Scope
	Organization of Document
	Intended Audience

	General System Description
	System Context
	User Characteristics
	System Constraints

	Specific System Description
	Problem Description
	Background
	Terminology and Definitions
	Physical System Description
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	System Behavior

	Nonfunctional Requirements
	Accuracy
	Maintainability
	Solution Validation Strategies

	Other System Issues
	 Open Issues
	 Off-the-Shelf Solutions
	 Waiting Room

	Traceability Matrix
	Auxillary Constants

	LP Manual
	Overview
	Numerical Algorithm
	Algorithm
	Overall function
	Naming Conventions
	Initialization section
	Computing q'N, T2 and kc
	Computing hc, hg and TS
	Computing TCL and kAV
	Computing T1
	Computing H (Tabs)
	Computing C1, cp,1
	Computing C2, cp,2
	Computing CCL, cp,3
	Computing ox, Rox and q'MWR
	Computing q'out and initializing fp

	Dynamic section
	Checking for Dryout
	Computing q'N,k+1 and kc,k+1
	Computing hc,k+1 and hg,k+1
	Computing R1,k+1 and R2,k+1
	Computing T2,k+1
	Computing T1,k+1
	Computing TCL,k+1
	Computing TS,k+1
	Computing H (Tabs) and PF,SUM
	Computing C1, C2, C3, cp,1, cp,2, cp,3
	Computing kAV
	Computing q'out
	Computing rate of oxidation
	Computing metal water reaction heat (qMWR)
	Computing oxidation layer thickness
	Computing Integrated metal water reaction heat (q'MWRI)

	Checklist
	makefile

