THE OXIDATION OF O-XYLENE IN AN

INTEGRAL PACKED BED REACTOR

THE OXIDATION OF O-XYLENE IN AN

 INTEGRAL PACKED BED REACTORby

KEHINDE OLUTUNMBI ADEGBESAN, B.Sc.Eng.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Master of Engineering
McMaster University
October, 1977

Master of Engineering (1977) McMaster University(Chemical Engineering)

TITLE: Oxidation of o-xylene in an integral packed bed reactor

AUTHOR: Kehinde Olutummbi Adegbesan, B.Sc.Eng. (The University of New Brunswick, Canada)

SUPERVISOR: Professor T.W. Hoffman

NO. OF PAGES: xiii, 211

ABSTRACT

The oxidation of o-xylene was investigated in an integral packed bed reactor using a $\mathrm{K}_{2} \mathrm{SO}_{4}$ promoted vanadium pentoxide catalyst on a TiO_{2} support.

Reaction products consisting of nine chemical components were analyzed by a new temperature-programmed gas chromatographic technique using three different colums to effect separation.

A kinetic model based on the REDOX (catalyst reduction and oxidation) mechanism was employed. The statistical method of experimental design for parameter estimation based on M.J. Box's modification [116] of the Draper and Hunter method [47] was used. Statistical analysis based on the eigenvalue-eigenvector method of Box et al. [45] indicated correlation among the responses and this method was used to transform the multiple response data for use in estimating the parameters in the kinetic model.

Since parameter estimates in the model were available from Wainwright's previous work [26], the method of Hoffman and Reilly [124] which is based on Bayes' theorem, was used to transfer this prior information on the parameters to the present experimental system.

The kinetic data obtained from using the new chromatographic technique developed in this study were faund to be consistent. The kinetic model of Wainwright [26] for this reaction system was fitted to the multiple response data obtained from this study. The adequacy of this model in representing the data was also tested. The use of the statistical techniques in experimental programs to develop kinetic models was found to be extremely effective. Some of the difficulties in using them are outlined.

The author would like to express his sincere gratitude to those who have contributed, in various ways, to the work embodied in this thesis.

He is particularly indebted to:
His research director, Dr. T.W. Hoffman, whose enthusiasm and guidance were invaluable.

Mr. R.W. Dunn and Mr. J. Newton for their help in carrying out repairs on the equipment.

His father, Olatumji, for his encouragement.
His wife, Susan, for her support. Her patience and understanding have contributed significantly to this work and it is to her that I dedicate this thesis.

His son. Olubamidele.
Debbie McCreath for her care and excellent typing of this
manuscript.

TABLE OF CONTENTS
Page

1. INTRODUCTION
1.1 General Introduction 1
1.2 Objectives of the Experimental Program 6
2. LITERATURE REVIEW
2.1 General Introduction 7
2.2 Reaction Mechanism and Kinetics 9
2.3 0-xylene Oxidation and Reaction Networks 14
2.4 Oxidation of the Intermediate Compounds 21
2.5 Homogeneous oxidation of $0-x y l e n e$ 25
2.6 Catalyst Properties 27
2.7 Influence of the Support Materials on O-xylene Oxidation 28
2.8 The Importance of SO_{2} Addition as Catalyst Promoter 30
2.9 The Role of $\mathrm{K}_{2} \mathrm{SO}_{4}$ as Catalyst Promoter 33
3. EXPERIMENTATION
3.1 Description of the Apparatus and the Flow System 36
3.2 Experimental Procedure 40
3.3 Reaction Product Analysis 41
3.4 Calibration of Gas Chromatograph 49
4. DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION 56

Page

5. EXPERIMENTAL RESULTS
5.1 Approach to Steady-State Operation 65
5.2 Initial Long Term Deactivation 69
6. REACTION MODEL
6.1 Equations for the reaction scheme 75
6.2 Reparameterization of Pre-exponential factors 79
7. PARAMETER ESTIMATION
7.1 Introduction 81
7.2 Parameter Estimation Technique 83
7.3 Transformation of the Observed Responses 86
7.4 Initial Parameter Estimates 92
7.5 Covariance Matrix of the Parameter Estimates 94
7.6 The Covariance Matrix of the Observations 96
7.7 Analysis and Results 97
8. EVALUATION OF THE REACTION MODEL 103
9. DISCUSSION OF RESULTS 117
10. CONCLUSIONS AND CONTRIBUTIONS TO KNONLEDGE
10.1 Contributions to Knowledge 121
10.2 Conclusions 121
10.3 Recommendation for Future Work 122
11. REFERENCES 124
Page
APPENDICES
A. EQUIPMENT SPECIFICATIONS 131
B. LISTINGS OF COMPUTER PROGRAMS 133
C. EXPERIMENTAL CONDITIONS AND DATA 210

LISTING OF TABLES

Page
3.4.1 Relative molar response factors, the retention times, the elution temperature of components 55
4.1 Experimental Program 62
4.2 Experimental runs dictated by the design program 63
4.3 Variance covariance matrix of the responses used for experimental design 64
5.1.1 Steady-State $\left(\mathrm{TiO}_{2}\right)$ Reaction Data 70
5.1.2 Steady-State Reaction Data (Conversions and Selectivities of Model Responses) 71
5.2.3 Comparison of Wainwright Center Point Runs with Those Obtained in this Study. 72
7.3.1 Covariance Matrix of the Five Measured Responses 89
7.3.2 Eigenvectors and the Eigenvalues of D D' Matrix 90
7.5.1 Prior Parameter Distribution 95
7.6.1 Covariance matrix of the Transformed Responses 98
7.6.2 Inverse Upper Triangular Matrix 98
7.7.1 Posterior Parameter Distribution 100

Page
7.7.3 Correlation Coefficient Between $\hat{\theta}_{12}$ and the Remaining Parameters of the Model 102

8.1 Observed and Predicted Values of the Transformed
Responses 105
8.2 Analysis for Lack of Fit 106
8.3 Final Parameter Estimates 107

Page
2.3.1-2.4.1 Reaction Networks for 0-xylene Oxidation and O-tolualdehyde Oxidation 15-23
3.1.1 A Diagramatic Sketch of the Flow System 37
3.3.1 Flow Diagram of the Analysis System 43
3.3 .2 Typical Chromatogram for the Fixed Gases and Water 46
3.3.3 Typical Chromatogram for the Organic Components 48
3.4.1 Apparatus for the Calibration of Gas Chromatograph 524.1 A Simple Algorithm Showing Steps Involved in theExperimental Design Program61
5.1.1 Approach to Steady-State Operation (intermediates) 66
5.1 .2 Approach to Steady-State Operation 67
5.2.1 Initial Long-Term Deactivation of the Catalyst 73
5.2 .26.1 .1Reaction Network for $0-x y l e n e$ Oxidation on TiO_{2}Supported Vanadia Catalyst75
8.1 Plot of Predicted/Measured Concentrations for 0-xylene 108
8.2 Plot of Predicted/Measured Concentrations forO-tolualdehyde109
8.3 Plot of Predicted/Measured Concentrations for Phthalic Anhydride 110

Page

8.4	Plot of Predicted/Measured Concentrations for	
	Phthalide	111

$\begin{array}{lll}8.5 & \text { Plot of Predicted/Measured Concentrations for } & \\ & \text { Carbon Oxides } & 112\end{array}$
8.6 Plot of Residuals/Run Number 113
8.7 Plot of Residuals/Reactor Temperature 114
8.8 Plot of Residuals/Inlet 0-xylene Concentrations

115
8.9 Plot of Residuals/Inlet Oxygen Concentrations 116

NOTATION

$\mathrm{C}_{\mathbf{i}} \quad$ Concentration of component \mathbf{i} in gm mole/liter
$C_{a} \quad$ Concentration of oxygen, gm moles/liter
E Activation Energy, calories/gm mole
$\mathrm{E}_{\mathrm{as}} \quad$ Active site parameter, calories/gm mole
k
k_{a}
n Stoichiometric coefficient gm-mole of oxygen consumed/gas mole of hydrocarbon reacted Gas constant, calories/gm mole ${ }^{\circ} \mathrm{K}$ Rate of reaction, gm mole/gm catalyst hr Rate of oxygen uptake either by reaction or adsorption liters/ gm catalyst hr

Temperature ${ }^{\circ} \mathrm{K}$
Mass of catalyst, grams
Fraction of catalyst surface sites in fully oxidized state at steady state.

Subscripts
denotes hydrocarbon reactants

Superscripts

* denotes transformation

NOTE: The prime symbol (') is used throughout to denote the transpose of a matrix.

NOTATIONS FOR STATISTICAL TECHNIQUES

n number of experiments
p
m
number of parameters
number of replicates
measured response
an rxl vector of the expected value of the responses
temperature at the center of design ${ }^{\circ} \mathrm{K}$
flowrate of o-xylene in cc/minute
flowrate of oxygen in cc/minute
flowrate of nitrogen in cc/minute
Reactor temperature in ${ }^{\circ} \mathrm{K}$
Variance-covariance matrix of the responses (Chapter 4)
determinant
the pxl prior parameter estimates
the pxl vector of parameter values at which the model is linearized
the value of on the $i^{\text {th }}$ iteration
the NxI vector of errors
the pxl vector of true parameter values; this
any pxl vector of possible values for $\underline{\theta}^{*}$ (Chapter 7)
the posterior mean with linearization at the posterior mean
standard deviation
the error covariance matrix equation 7.2.4
number of observations
vector of independent variables at the $u^{\text {th }}$ trial
the $n x p$ matrix of partial derivatives
the rxl vector of values of dependent variables at the $u^{\text {th }}$ trial
the nxl vector of deviations between the measured and the expected values
p the number of parameters

Subscripts

denotes matrix or vector

Abreviations

OX	o-xylene
OTA	o-tolualdehyde
PI	phthalide
PA	phthalic anhydride

CHAPTER 1

INTRODUCTION

1.1

In chemical engineering, the investigation of a chemical reaction generally involves a study of its kinetics and the underlying mechanism. This type of study often involve the formulation or the development of a kinetic or reaction model. A kinetic model can be described, in general terms, as a convenient and reasonable representation of the reaction rates which when used in conjunction with a reactor model will provide an estimate of the concentration of the reactants and products in the exit stream for any given operating conditions. It may not be unique, but should at least be consistent with known data and permit both interpolation and some extrapolation [69]. The form of a kinetic model is often suggested by the reaction mechanism. In heterogeneous catalysis, the mechanism of a solid-catalyzed reaction is often not adequately understood at the molecular level. A direct implication of this is that the mechanism upon which a kinetic model is developed is usually assumed without adequate proof. If the kinetic model fits the experimental data, no claim is made concerning the mechanism of the reaction or even the uniqueness of the model. The agreement may be held to support the assumed reaction mechanism and in addition may further provide some insights as to the direction in which further work is needed in elucidating the true reaction mechanism. Mechanistically based models are to be preferred over the empirical models not only because they can lead to fundamental scientific development, but
also because they are more parsimonious and hence provide better estimates of the response for a given experimental effort. A reaction model serves three main purposes:
i) Reactor design.
ii) Elucidation of the reaction network so that conditions and a suitably selective catalyst can be used to control yields of one or more of the intermediates in the reaction.
iii) For providing an understanding of the behaviour of an existing reactor.

Two types of mechanisms have become very popular for describing oxidation of o-xylene on vanadia catalysts.
i) The REDOX mechanism of Mars and Van-Krevelen [12] which assumes that a steady-state is reached in the catalyst when the rate of reaction between the hydrocarbon and the oxygen of the catalyst becomes equal to the rate of reoxidation of the catalyst by the oxygen in the feed.
ii) The Steady-State Adsorption Model [S.S.A.M.] of Shelstad, Downie and Graydon [3] which assumes that the reaction takes place between adsorbed oxygen and the gas phase hydrocarbon. Both these models yield the same overall rate equations and distinction cannot be made by taking kinetic measurenents. Honce support for one model based on kinetic measurements means support for both. In this study, the REDOX mechanism is assumed.

The gas phase catalytic oxidation of $0-x y l e n e$ occurs by a complex mechanism which involves a number of consecutive and parallel steps resulting in the formation of the desired material, phthalic anhydride,
which is an intermediate compound. It is well established that the best contacting pattern for this class of reactions, in which the desired product is an intermediate, is one in which the mixing of fluids of different composition is minimum. This normally requires operation in a packed bed reactor in which the flow pattern approximates that of plug flow. Hydrocarbon oxidation reactions are highly exothermic and due to inefficient heat exchange apparent in fixed bed-reactors, the formation of a hot spot is specially favoured. Hot spots are known to lower yield, reduce selectivity and increase hazards of operation. Moreover, due to deactivation of the catalyst, a packed bed is not suitable for long-term continuous operation, and it becones necessary for the catalyst to be regenerated or a new one installed. The difficulties of heat removal and catalyst deactivation encountered in the operation of a packed bed reactor has been surmounted by the use of a fluidized bed reactor. Hence fluidized bed reactors have become widespread for use in hydrocarbon oxidation [96]. The major disadvantage of this reaction is that large deviation from plug flow exists and there is significant backmixing. Furthermore, the flow patterns are difficult to define and hence it is not possible to predict performance to any degree of certainty [97, 98, 99]. It has also been noted that phthalic annydride has not been successfully produced from orthoxylene in a fluidized bed reactor. Sherwood [23] and Graham [24] have compared the operation of a fluidized bed reactor with that of a fixed bed in the industrial manufacture of phthalic anhydride from orthoxylene and naphthalene. The disadvantages of both the packed bed and the fluidized bed reactors may be overcome by the use of a transported bed reactor, in which the reactant and the product gases pneumatically convey the catalyst
particles in a vertical tube, by cocurrent transport. Transported bed reactors have been used successfully in catalytic cracking operations [25]. A pilot scale unit of this reactor has been built in this laboratory and previous studies $[41,26]$ have been carried out towards evaluating its performance for $o-x y l e n e$ oxidation. Furthermore, the studies of Wainwright and Hoffman [100] was the first to be reported in the literature on a pilot scale transported bed reactor in which a reaction was carried out in a reasonably defined condition of dense phase conveying. The following advantages of a transported bed reactor have been noted [26].
i) The flow pattern of the gas and solids approximates to plug flow. This means that the residence times of the reactant and product gases can be better controlled.
ii) The operation is continuous and regenerated solid catalyst is continuously being added while partially deactivated catalyst may be withdrawn.
iii) Good heat transfer rates exist between the particles and the gas and between the solid/gas slurry and the wall. In addition, because the solid is continuously added and removed, it becomes a significant heat sink for the heat of reaction; thus under large solid loadings the reactor is essentially isothermal.

The disadvantages include the following:
i) Since the solid is pneumatically conveyed, operation may be limited to dilute concentration of solids (catalyst). On the other hand Wainwright [26] has been able to demonstrate
smooth operation at very high solid loadings (voidage ~0.77). Whether other solid-gas systems on a large scale can operate at these loadings is yet to be demonstrated.
ii) High attrition rates of the catalyst may occur. Also the solids may cause erosion of the reactor internals. These phenomena will be determined by the catalyst and its support.
iii) The equipment is complicated especially the catalyst recovery system.

Any further attempt to evaluate the performance of the transported bed reactor requires that the behaviour of the catalyst be determined under well-defined reactor conditions. This nomally requires that a kinetic model be developed for the $0-x y l e n e ~ o x i d a t i o n ~ r e a c t i o n ~ i n ~ a ~ b e n c h-~$ scale packed bed reactor. Although the major problem associated with the packed bed reactor is that of inefficient heat removal, this is not too severe in small scale laboratory work and reactors can be designed to approach isothermal operation [126]. Also, Orlickas [127], Shaw [21] and Wainwright [26] have demonstrated that a small-scale reactor can be operated essentially isothermally and provide good integral data which may be used to estimate kinetic parameters in reaction models.

The present investigation is thus aimed at obtaining an adequate kinetic model for the $0-x y l e n e$ oxidation reaction using a packed bed reactor and it is directed towards providing useful information for further work on the transported bed reactor.

In order to carry out this investigation most efficiently a sequential statistically-designed experimental program was adopted. The sequential design procedure used was similar to that of M.J. Box [116].

In this approach, the operating conditions for a set of experiments having a number of runs equal to the number of parameters in the proposed model are established on the basis that the experimental responses should provide the minimum variance on the parameters. These experiments are carried out; the responses are then used with appropriate statistical techniques to reestimate the paraneters in the kinetic model. The entire procedure may be repeated if the more precise parameter estimates are required. Each set of experiments is determined on the basis of the location of all prior experiments and the current parameter estimates from those experiments.

Since preliminary work had been conducted on the reaction system being presently considered [26], the parameters in the model were estimated by using the statistical techniques of Hoffman and Reilly [124]. This technique employs Bayes' theorem to provide a criterion for the 'best' parameter estimates in situations where information on parameter values, together with their inherent uncertainty, are to be transferred from one experiment to another. The mathematical models describing the data in both experiments need only share some common parameters.

1.2 Objectives of the Experimental Program

The main aim of the project was to employ statistical experimental design techniques to develop a kinetic model for the $0-x y l e n e$ reaction, catalyzed by a titania-supported vanadium pentoxide catalyst, using the integral data from a bench-scale packed bed-reactor.

This study is directed towards providing useful information for further work on the pilot scale transported bed reactor.

CHAPTER 2

LITERATURE REVIEW

2.1 General Introduction

Phthalic anhydride production is a process of considerable importance. It is derived by oxidation of $0-x y 1$ ene or naphthalene

An examination of the stoichiometry of the reaction reveals that in the absolute sense $0-x y l e n e$ is the prefered raw material. The theoretical yields are as follows.

o-xylene (0.72 pounds $)$	\rightarrow	phthalic
Naphthalene (0.86 pounds $)$	\rightarrow	anhydride $(1.0$ pound) $)$

Other factors contributing to recent decisions to use o-xylene include availability of feed-stock, low price and low transportation costs. Other raw materials suitable for oxidation to phthalic anhydride are methylated naphthalene and phenanthrene. However, the partial oxidation of these hydrocarbons is accompanied by more heat of reaction than even the conversion of naphthalene and already difficult problems of thermal control are aggravated thereby. Moreover, these materials are not as abundantly available as o-xylene. The traditional outlets for phthalic anhydride
include plasticizers, alkyds and saturated polyesters. The specific uses of these products are discussed in [57].

Despite the importance of the o-xylene oxidation reaction, the kinetics and the reaction network have not yet been clearly established. Most of the early work on oxidation of o-xylene has been concentrated on studying the effects of variables such as the reaction temperature, air-to-o-xylene ratio in the feed, contact time, type of catalyst and type of reactor (fluidized bed, or fixed bed) on the yield of phthalic anhydride. These studies were directed towards optimizing the yield of phthalic anhydride $[29,48,50-55]$. Marek and Hahn [48] have reviewed the early studies up to 1931. Most of the references to o-xylene in this review deal mainly with patents. Dixon and Longfield [2] have provided an excellent review of the literature for work carried out in the period between 1931 and 1959. A review of the o-xylene oxidation publications until 1966 is contained in [12].

In spite of the large volume of work that has been published on o-xylene oxidation, a reaction mechanism that completely describes reaction rates and product distribution has not yet appeared in the literature. This can be ascribed to the following:
i) The hydrocarbon-catalyst interaction is very complex.
ii) Little was understood on the influence of the materials used to support the catalyst nor of the promoters used to affect reaction rates and selectivities. It is now well established [9, 10, 11, 15] that the product distribution depends upon the nature of the catalyst support.

The review of some of the papers which have appeared recently in the literature will be presented in the following sections.

2.2 Reaction Mechanism and Kinetics

Two types of mechanisms have been used to evaluate and describe much of the experimental heterogeneous catalytic data in the literature. These are
i) The Langmuir-Hinshelwood Mechanism, in which adsorption equilibrium is assumed to be established reactants and the molecules react while adsorbed.
ii) The Rideal mechanism in which equilibrium adsorption of only one of the reactants is assumed to be established. Reaction then occurs directly on collision of a gas molecule with an adsorbed molecule or atom.

However, these mechanisms have not been successfully applied to describe the o-xylene oxidation reaction. In 1954 Mars and Van Krevelen [12] applied the REDOX mechanism to the catalytic o-xylene oxidation reaction with encouraging results. The REDOX mechanism assumes that adsorption equilibrium is not established but that a steady state is reached in the catalyst when the rate of reaction between the hydrocarbon and the oxygen of the catalyst becomes equal to the rate of reoxidation of the catalyst by the oxygen in the feed stream. Hence the so-called catalyst is not really a catalyst in the chemical sense since in this proposed mechanism it actually enters into the reaction mechanism and does not merely promote the reaction by lowering the required activation energy. This mechanism was also used by Mars and Van-Krevelen [12] in their studies of the oxidation
of benzene, toluene, naphthalene, and anthracene in a fluidized bed of 200-300 micron catalyst particles. The reactor was made of pyrex and the catalyst contained 9 weight percent vanadium pentoxide and 21 weight percent potassium sulphate on a silica-gel support. Since the publication of their paper in 1954, the Mars and Van Krevelen approach has enjoyed considerable popularity; the recent paper of Mathur and Viswanath [78] contains many references to its uses.

In a paper published in 1961, Shelstad, Downie and Graydon [3] proposed the Steady State Adsorption Mechanism [S.S.A.M.]. This assumes that a steady state is established in the catalyst when the rate of adsorption of oxygen on the catalyst becomes equal to the rate of removal by reaction with hydrocarbon from the gas phase.

An example of the application of the REDOX mechanism is in the formulation of the basic rate equations involved in the o-xylene oxidation reaction. Here, this formulation is demonstrated by considering the simplest case in wich all the reaction products have been lumped together as one. Basically, there are two steps involved in the REDOX mechanism. Step 1:

Aromatic compound + oxidized catalyst \rightarrow oxidation product + reduced catalyst.

If the rate of hydrocarbon oxidation is considered to be first order with respect to hydrocarbon concentration and first order with respect to the fraction of active oxygen sites θ,

$$
r_{r}=k_{r} C_{r} \theta
$$

Then, if n moles of oxygen are required per mole of hydrocarbon, the rate
of oxygen removal from the catalyst surface becomes

$$
=n k_{r} C_{r}{ }^{\theta}
$$

Step 2:
Reduced catalyst + oxygen \rightarrow oxidized catalyst.
If the rate of catalyst oxidation is considered to be proportional. to the oxygen concentration in the gas phase and to the number of the reduced sites, then

$$
r_{a}=k_{a} C_{a}(1-\theta)
$$

At steady state, the rate of oxygen removal from the catalyst by reaction with the hydrocarbon becomes equal to the rate of oxygen supply to the catalyst from the gas in the reoxidation process.

$$
\text { i.e. } n k_{r} C_{r} \theta=k_{a} C_{a}(1-\theta)
$$

or

$$
\theta=\frac{k_{a} C_{a}}{k_{a} C_{a}+n k_{r} C_{r}}
$$

and from 2.2.1

$$
r_{r}=\frac{k_{a} k_{r} C_{a} C_{r}}{k_{a} C_{a}+n k_{r} C_{r}}
$$

It should be noted that this identical rate equation 2.2 .5 can also be derived by applying the S.S.A.M. mechanism of [3]. In fact agreement between the rate equation 2.2 .5 and the experimental data would not be a
proof of the correctness of the assumed reaction mechanism. It has been established that several postulated mechanisms yielding the LangmuirHinshelwood type of rate expression can often be fitted equally well to experimental data. Several examples of this have been considered in [69].

Both the S.S.A.M. and the REDOX mechanisms have become very popular for describing the $0-x y l e n e$ oxidation reaction on vanadia catalysts. It will be of interest to discriminate between these mechanisms using kinetic data. However this is not possible since the rate expression for the overall rate of reaction is identical in both cases. Distinction may be possible in initial rate studies, using 0^{18} in the catalyst or in the feed. If the mechanism is assumed to proceed through the REDOX mechanism, then the chemisorbed oxygen must be removed from the catalyst surface prior to reaction. A major difficulty may be that of removing the chemisorbed oxygen. Support for the S.S.A.M. has come from several studies $[6,17,7,3]$. This support may be considered weak due to considerable non-catalytic reactions and unstable catalytic activity evident in some of these studies. These can be ascribed to the fact that sulphur dioxide was not present in the feed. Simard et al. [16] studied the oxidation of o-xylene on vanadia catalyst. The feed contained only nitrogen and o-xylene. Their results showed that the amount of oxygen contained in the reaction products was in excess of that which could be obtained if only the chemisorbed oxygen participated in the reaction. It was then concluded that the catalyst oxygen contributes, at least in part, to the oxygen involved in the oxidation. Vrbaski and Mathews [36] also came to the conclusion on the basis of the results they obtained when o-tolualdehyde was oxidized over vanadia catalyst in a stream of nitrogen.

Some of the results of recent studies, especially from Russian workers in this field indicate that both the S.S.A.M. and the REDOX mechanism may be responsible for the oxidation reaction. Andreikov et al. [70] investigated the mechanism of the vapour-phase oxidation of naphthalene on a vanadia catalyst by a pulsed microcatalytic method. The results of their work were explained as follows
i) The initial attack on the aromatic molecule is always produced by the oxygen from the catalyst lattice.
ii) Further oxidation of the labile intermediate compounds can occur with the participation of the lattice oxygen and the participation of adsorbed forms of oxygen in the case when the rate of reoxidation of the catalyst is low.

Blanchard and Louquet [71] also carried out butene oxidation reaction on $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Ti}_{2}, \mathrm{~V}_{2} \mathrm{O}_{5}-\mathrm{M}_{0} \mathrm{O}_{3}$ and $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{M}_{0} \mathrm{O}_{3}$ catalyst systems with 0^{18} enriched oxygen in a circulating apparatus at $300^{\circ} \mathrm{C}$. They arrived at the following conclusions:
i) When a highly selective catalyst is employed only the oxide oxygen enters into the oxidation products.
ii) When catalysts are used which exhibit low or medium selectivity, the reoxidation of the reduced surface centers due to migration of oxide ions do not proceed effectively enough and that the adsorbed oxygen, or even the oxygen of the gas phase participates to varying degrees in this oxidation. With less selective catalyst, the participation of the oxygen of the gas phase becomes more significant.

2.3 O-xylene Oxidation Reaction Networks

It is valuable to have available a rate expression for the formation of phthalic anhydride which includes the rates of the individual steps in the reaction network. Most of the early studies on analysis of multistep reaction networks have traditionally been done by subjective interpretation of product distribution data, and there were no supporting rate studies carried out to test the proposed schemes. Hence these studies provide mainly qualitative information. Moreover, confusion existed as to the sequence of steps in the $0-x y l e n e$ oxidation reaction. This confusion can now be understood in view of the fact that different types of support materials were used in these studies. In general, there appears to be three main factors which tend to influence the product distribution in the catalytic o-xylene oxidation reaction. These are:
i) The nature of the catalyst support material. The results of Kakinoki et al. [10, 11] and Wainwright [26] strongly support this view. This will be discussed further in Section 2.7. These studies indicate the importance of including all information to describe the catalyst, support and promoters/ modifiers since the reaction network and products are determined by the composition and nature of the entire solid material.
ii) The extent of homogeneous oxidation reaction. This is further discussed in Section 2.5.
iii) The oxidation state of the catalyst. It has been shown [16] that the active oxides for partial oxidation are $\mathrm{V}_{2} \mathrm{O}_{5}$
and $\mathrm{V}_{2}{ }^{0} 4.34^{-}$Catalysts having lower oxidation states produce considerable amounts of total oxidation products [5].

Juusola [28] and Paetkau [41] have provided excellent reviews of most of the early literature pertaining to $0-x y l e n e$ reaction networks, covering the period between 1955 and 1966. Some of the more recent papers in the literature will now be discussed. Herten and Froment [4] studied the gas phase oxidation of $0-x y 1 e n e$ on a $\mathrm{V}_{2} 0_{5}$ (French synoxy) SiO_{2}-supported catalyst in a quasi-isothermal laboratory fixed bed reactor. The studies were conducted in the temperature range 325 to $402^{\circ} \mathrm{C}$. The following reaction scheme was postulated. In this scheme all

Figure 2.3.1 - Reaction Network of Herten and Froment
products were formed in primary reaction steps, but this conclusion was based on the slopes of selectivity curves extrapolated back to zero conversion from their lowest value of 25 percent. Also their data did not provide any direct support for the secondary reactions included in this scheme.

Juusola [28] proposed the network of Figure 2.3.2. from studies carried out on the oxidation of o-xylene and o-tolualdehyde on a SiO_{2}-supported catalyst. He concluded that o-tolualdehyde, p-benzoquinone and C02 were

Figure 2.3.2 - Reaction Products of o-tolualdehyde Oxidation Connected in a Plausible Sequence
formed in primary reaction steps. This conclusion was based on data obtained at very low conversions (less than 5 percent) of o-xylene. It should be noted that when reactions are carried out at very low conversions, changes in product distribution may not be noticeable and in addition conclusive identification of stable products cannot be made. Secondary reactions (as shown in Figure 2.3.2) were also considered to be occurring on the basis of studies carried out on the oxidation of
o-tolualdehyde. It is to be noted that in view of the interaction offects reported by Luybarskii et al. [76], the processes occurring when o-tolualdehyde is oxidized may not necessarily represent those taking place on the catalyst when the primary reactant together with some intermediates are also competing for catalytic sites.

Wainwright [26] studied o-xylene oxidation over a silica-gel
supported catalyst using a fixed bed reactor. The scheme of Figure 2.3.3 was proposed. This scheme was based on a qualitative evaluation of the selectivity data obtained on the catalyst. It retains the main features of the more complex reaction networks proposed by Herten and Froment [4] and Juusola [28]. Phthalic anhydride, phthalide,

Figure 2.3.3 - Reaction Network of Wainwright for Reaction on Silica gel Catalyst
and o-toluic acid have been lumped together since they were present in small quantities and were formed sequentially from o-tolualdehyde. A step
leading to tar formation from o-xylene was also evident in this scheme. The tar formation was considered to occur solely from the cracking of o-xylene. This scheme proposed by Wainwright is simpler and more practical, for reaction modelling purposes, than those of other workers reported earlier, in that it involves fewer parameters to describe it.

Boag et al. [72] applied quantitative modelling techniques to the o-xylene oxidation reaction data gathered in a recirculation reactor. The catalyst employed was vanadium oxide, potassium sulphate promoted, on a silica carrier. The following reaction network was found to be adequate for describing the oxidation process.

Figure 2.3.4 - Reaction Network of Boag et al.

This scheme is similar to that proposed by Herten and Froment [4]. The component mass balances for such a reactor are algebraic, rather than differential equations. This suggests that the estimation of parameters
in the kinetic model is greatly simplified.
Lyubarski et al. [76] also studied the catalytic oxidation of $0-x y l e n e$ and its partial oxidation products in a gradientless reactor by a flow circulation method on a high temperature vanadium silicon carbide catalyst. The following scheme was proposed.

Figure 2.3.5 - Reaction Scheme by Lyubarski et al. [76]

The model was based on a qualitative analysis of the product distribution data. However, in their study, o-xylene together with its oxidation products were used as feed in the oxidation process. In this way the mutual effect of the various components of the reaction mixture on the rate of the separate steps in the process was determined. It was established that the presence of phthalic anhydride in the gaseous mixture lowered the rate of maleic anhydride oxidation. A similar 'interaction effect' has also been reported by Roiter et al. [77].

Few studies have been carried out on o-xylene oxidation on titania-supported vanadia catalyst. .This is because titania-supported catalysts have only been developed relatively recently [31].

Vanhove and Blanchard [108] studied o-xylene oxidation at low conversions, on different amounts of vanadium pentoxide on titania from $0-100$ mole percent. The highest selectivity for phthalic anhydride formation was obtained on a catalyst which consisted of 12.5 mole percent $\mathrm{V}_{2} \mathrm{O}_{5}$ on Ti_{2}. Reactions were carried out at $450^{\circ} \mathrm{C}$ in a reactor made of pyrex. The reaction network of Figure 2.3 .6 was developed, based on a qualitative evaluation of the product distribution data. Further in their work [75] the reaction intermediates were then oxidized over this catalyst at $400^{\circ} \mathrm{C}$ for the purpose of defining the reaction paths of the intermediate compounds. In the case of o-tolualdehyde oxidation, it was observed that both the formation of phthalide and phthalic anhydride occurred with measurable rates, whereas in o-xylene oxidation the initial rates for the formation of these intermediates was found to be negligible. The reaction network of Figure 2.3.6 was proposed.

Figure 2.3.6. - Reaction Network of Vanhove and Blanchard for o-Xylene Oxidation and Titania Catalyst

Wainwright's network differs from that of Vanhove and Blanchard in that it does not consider the oxidation of phthalide and phthalic anhydride to carbon oxides to be significant (on the grounds of the more stable ring structure), nor does he consider the direct reaction of o-tolualdehyde to phthalic anhydride without going through the phthalide intermediate. This network will be discussed further in section 7.1.

Allen [123] proposed a reaction network similar to that of Figure 2.3.6 for o-xylene oxidation on titania-catalysts. His network contained, in addition to that of Figure 2.3 .6 a route leading the formation of phthalic anhydride directly from $0-x y 1$ ene.

It is important to note that all networks proposed for $0-x y l e n e$ oxidation on titania catalyst so far have been based on only qualitative evaluation of product distribution data; none has been suggested by experiments which were designed specifically to determine the actual mechanistic route.

2.4 Oxidation of the Intermediate Compounds

Besides the studies on o-xylene oxidation, several workers [36, $39,5,74,28,75,76]$ have also oxidized various intermediates for the purposes of defining the secondary reactions.

Two factors must be considered if secondary reactions are to be defined by oxidizing intermediate products (as feed) on o-xylene oxidation catalysts:
i) In view of the 'interaction effects' [76] rate constants observed for the secondary reaction when intermediates are oxidized may not represent those that are actually occurring
when the primary reactant ($0-x y 1 e n e$) is oxidized.
ii) The catalyst/reactant interaction may be such that the secondary reactions observed to be taking place when intermediates are oxidized may not necessarily represent those occurring when the primary reactant is also competing for catalytic sites.

With these in mind, some of the studies conducted on oxidizing the intermediates wi.ll now be discussed.

In the period between 1954 and 1967 some studies were carried out on oxidizing the products of o-xylene oxidation [36, 39, 5, 74], namely the following intermediates: o-methylbenzyl-alcohol, o-tolualdehyde, o-toluic acid, phthalide, and phthalic anhydride. Reaction have been carried out at low conversions using different vanadia concentrations and different support materials; moreover only products formed in significant amount have been included in the reaction schemes. Furthermore, the schemes have been based on qualitative interpretation of the data with a plausible sequence of reactions being guessed for the products. In view of these facts, most of these studies have resulted in different reaction schemes being proposed for the same oxidation reaction. Most of these studies have been reviewed in detail by Juusola [28]. A brief review of some of the more recent studies follows.

Oxidation of o-tolualdehyde

Vanhove and Blanchard [75] studied the oxidation of o-tolualdehyde in a tubular reactor (pyrex) over a $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TiO}$ 2 catalyst at $450^{\circ} \mathrm{C}$. They
concluded that phthalide and phthalic anhydride are formed from o-tolualdehyde according to the scheme of Figure 2.4.1, since the formation of these compounds occurred initially with measuratle rates. From the examination of their Figure 1 [75], the distribution curve for phthalic anhydride seems to have been extrapolated from the lowest conversion of 10 percent. The following reaction schemes was proposed.

Figure 2.4.1

Lyubarskii et al. [76] studied o-tolualdehyde oxidation using a high temperature vanadium pentoxide catalyst at $400-460^{\circ} \mathrm{C}$. A LangmuirHinshelwood type of rate expression was found to describe the overall rate of o-tolualdehyde oxidation. The proposed scheme is similar to the o-tolualdehyde reaction scheme presented in Figure 2.4.1. The concentration of o-tolualdehyde, oxygen, water-vapour and carbon dioxide was found to affect the rate of o-tolualdehyde oxidation.

Oxidation of o-toluic acid and phthaldialdelyde
Vanhove and Blanchard [75] oxidized solutions of o-toluic acid and phthaldialdehyde in o-xylene (methyl ${ }^{14} \mathrm{C}$) over $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Ti} 0_{2}$ catalyst. (The solution containing 80 to 90 percent of the compound to be oxidized.) 100 percent conversions were achieved in these cases thus suggesting that these intermediates are strongly adsorbed; hence their formation in the gas phase is expected to be negligible under all conditions. In the initial conditions where o-xylene yields only o-tolualdehyde, o-toluic acid yields phthalide together with phthalic anhydride. Phthaldialdehyde yields phthalic anhydride. The results are consistent with the observations reported in the early studies by Bernardini and Ramacci [74].

Oxidation of Phthalic Anhydride

Lyubarskii et al. [76] oxidized phthalic anhydride over a high temperature vanadium pentoxide catalyst in the temperature range $\left(440^{\circ} \mathrm{C}\right.$ to $500^{\circ} \mathrm{C}$). The oxidation was considered to occur by two parallel pathways; one to maleic anhydride and the other to carbon monoxide and carbon dioxide. The rate of phthalic anhydride to the carbon oxides was shown to be independent of the phthalic anhydride concentration. These results are consistent with those of Hughes and Adams [5]. Bernadini and Ramacci [74] also using a high temperature vanadium based catalyst, showed that at temperatures below $380^{\circ} \mathrm{C}$ only carbon oxides were formed.

Oxidation of Maleic Anhydride and Ph thalide
Maleic anhydride is generally considered to be oxidized to extensive oxidation products $\mathrm{C} 0, \mathrm{C} 02[76,74]$ while phthalide has been
oxidized, over $\mathrm{V}_{2} \mathrm{O}_{5}$ silica-gel supported catalyst, in the temperature range $420^{\circ} \mathrm{C}$ to $440^{\circ} \mathrm{C}$ with 98 percent, yields to phthalic anhydride [74].

2.5 Homogeneous Oxidation of o-xylene

The study of homogeneous oxidation of o-xylene (i.e. with no catalyst) is very important, not only because its slow combustion characteristics can be studied, but also because it can influence the results of catalytic reaction studies. Wright [27], Loftus and Satterfield [19] have carried out studies on homogeneous gas phase oxidation of 0 -xylene in quartz and borosilicate glass flow reactors at 1 atmosphere pressure. and at $650^{\circ} \mathrm{C}$ and $475^{\circ} \mathrm{C}$ respectively. The results in [19] show that the rate of reaction is first order with respect to $0-x y l e n e$. The rate constant was given by the following equation

$$
\ln \mathrm{k}=10.5-20,000 / \mathrm{RT}
$$

where k is the first order rate constant $\sec ^{-1}$ and the activation energy is $20,000 \mathrm{cal} / \mathrm{gm}$ mole. The results reported in $[27,19]$ also show that the oxidation reaction is very complex since a wide variety of products are formed which indicates that a large number of reactions are simultaneously taking place. In fact earlier studies [64, 75] were hampered by the lack of an adequate analytical method to analyze the product formed.

The mechanism of the homogeneous reaction is quite different from that of the catalytic reaction and it is only in the studies of Wright $[60,61]$ that a detailed analysis of reaction products arising from the
homogeneous reaction was first reported. The major products in the study of Wright [27] are methylvinyl-benzene, toluene, benzene, and o-tolualdehyde
 from these studies whether the material of the reactor internals made any significant contribution to the reaction. For example, Wainwright [26] found that silver solder significantly promoted the complete oxidation of all products from the $o-x y l e n e$ oxidation reaction even at relatively low temperatures.

It has been shown by several workers $[60,61,62,63]$ that the homogeneous reaction does not form phthalic anhydride so that the overall yield of phthalic anhydride in catalytic reactions will be reduced by homogeneous oxidation. Mann [14] has reported an uncommonly high reaction rate on work conducted on the homogeneous reaction in an aluninum reactor. It was stated in the report that the reaction rate was time dependent. However, it has been suggested that the aluminum reactor used might have contributed significantly to the reaction.

Bhalla [1] carried out studies on homogeneous oxidation of $0-x y l e n e$ in a stainless steel flow reactor. o-xylene oxide was the main reaction product. This result agreed with the studies of Loftus and Satterfield [19]. It was suggested that the temperature for the catalytic reaction study, depending on the catalyst, be maintained in the range $380^{\circ} \mathrm{C}$ to $430^{\circ} \mathrm{C}$ in order to minimize the contribution of the homogeneous reactions [1]. Juusola [28] also made a thorough examination of the temperature limit at which a non-catalytic or blank reaction becomes significant. It was found that at temperatures below $315^{\circ} \mathrm{C}$, in a stainless steel reactor, this reaction would be insignificant. This result does not agree directly
with those of Bernardini et al. [104] in which similar studies were conducted in a type 316 stainless steel reactor. It was observed that at temperature lower than $380^{\circ} \mathrm{C}$, the blank reaction was apparently insignificant.

These observations suggest that the homogeneous (blank) reaction should be studied in any particular reactor to ascertain the upper working temperature below which the homogeneous reaction may be considered negligible. With careful selection of materials this should not be a constraint on the study of the catalytic reaction.

2.6 Catalyst Properties

The type of catalyst traditionally used mainly for $0-x y l e n e$ oxidation is generally classified as the 'German' catalyst. A typical 'German-type' catalyst contains about 10 percent $\mathrm{V}_{2} \mathrm{O}_{5}$ and $20-30 \% \mathrm{~K}_{2} \mathrm{SO}_{4}$. Silica gel and titanium dioxide are the most common support materials.

Kakinoki et a1. [9] has described methods for preparation of these catalyst supported on silica ge1, gypsum and titanium dioxide. Vanadium pentoxide results from the oxidation of vanadium. It is a yellowish red. powder which is sparingly soluble in water [30].

Recently, a new catalyst was developed [31] for o-xylene oxidation. It is covered by Canadian Patent No. 873904 and has the following properties: Surface area: $\quad 5 \mathrm{~m}^{2} / \mathrm{gm}$ Bulk density: $\quad 1.2 \mathrm{gm} / \mathrm{cc}$ Average Particle Size: 65 microns Probable Composition (based on patent literature) percent by weight: $\quad \mathrm{V}_{2} 0_{5} \quad 6.0 \%, \mathrm{Sb}_{2} 0_{3} 6.0 \%$ $\begin{array}{llll}\mathrm{K}_{2} \mathrm{O} & 2.0 \% & \mathrm{Ti} 0 \\ 2 & 84 . & \%\end{array}$
$\mathrm{SO}_{3} \quad 2.0 \%$

This type of catalyst (with particle size $50 / 70$ mesh) was used in the current study. This was obtained from the research laboratories of W.R. Grace and Co., Baltimore, Maryland [26].

The nature of the support materials has been found to be most important in determining catalyst activity and selectivity [9, 26]. The influence of both the solid support materials (i.e. silica gel, titanium dioxide) and SO_{2} will be discussed briefly with reference to the literature.

2.7 Influence of the Support Material on o-xylene Oxidation

For o-xylene oxidation, Simard et a1. [16] have suggested that; a catalyst of small surface area and low sensitivity to promoter addition is to be preferred over one that is highly porous. A highly porous catalyst can lead to over-oxidation possibly because the intermediate oxidation products are caught in the pores and are further oxidized to undesirable products before they can diffuse out of the catalyst. The surface areas of silica gel supported catalysts are usually between 5 to 8 orders of magnitude greater than those supported by titanium dioxide. For o-xylene oxidation differences in product distributions exist for SiO_{2} and TiO_{2} supported catalyst. For instance higher yields of phthalic anhydride have been obtained using the Ti_{2} supported catalysts $[26,66,10]$. Several workers have also shown that the Si_{2} supported catalysts are highly selective for o-tolualdehyde formation while those supported on TiO_{2} are highly selective for phthalic anhydride formation. The major reasons for this and other differences observed in the product distribution are not completely understood. Kakinoki et al. [10] carried out a series of studies in which oxygen
was adsorbed on the following support materials (i) silica ge1, (ii) titanium dioxide, (iii) gypsum, (iv) carborundum. Langmuir-type isotherms were obtained for the adsorption of oxygen on all catalysts at $400^{\circ} \mathrm{C}$. The oxygen adsorbed, for each support was expressed as the equilibrium volume of oxygen adsorbed per unit area of the catalyst. o-xylene oxidation reactions were carried out on these catalysts at temperatures ranging from $320^{\circ} \mathrm{C}$ to $430^{\circ} \mathrm{C}$. Selectivities for the formation of phthalic anhydride, carbon dioxide and carbon monoxide were measured at these temperatures. The results indicated that the Ti_{2} supported catalyst had the highest selectivity for phthalic anhydride and the highest oxygen adsorption. The SiO_{2} supported catalyst had the lowest selectivity and the lowest oxygen adsorption. The other catalysts exhibited intermediate adsorptions and selectivities.

Finally, a factor of some significance is the type of interaction set up between the catalyst and the substance undergoing oxidation. High catalyst selectivity requires also that the catalyst system interact favourably with the substance undergoing oxidation. For instance, in naphthalene oxidation, excellent yields of phthalic anhydride have been obtained with catalysts supported on SiO_{2} but low yields have resulted when $o-x y l e n e$ was oxidized on the same catalyst system. Another point relating to the catalyst/reactant interaction is that tar formation has been reported when o-xylene was oxidized on silica gel supported catalysts [26] while the formation of tars was not observed using a titania support one.

2.8 The Importance of SO_{2} Addition as Catalyst Promoter

The importance of sulphur trioxide as a catalyst addition has been demonstrated by Kakinoki et al. [10]. In their investigation, they prepared catalysts supported on titanium dioxide, silica gel, and gypsum. They noticed that differences in catalyst activity occurred when 'hot press' naphthalene (containing some sulphur impurities) and pure naphthalene were employed as raw materials. The catalyst activity remained constant when 'hot press' naphthalene was fed but a gradual decrease in catalyst activity was observed when pure naphthalene was used as the feed. During this deactivation, which was allowed to continue for 100 days, the phthalic anhydride yield had dropped considerably. Sulphur dioxide was then added to the feed stream and within 48 hours, the original catalyst activity was restored. On the basis of these results, it was concluded that the sulphur level in the feed was important in determining the catalyst activity.

Once this fact was established it became necessary to determine the optimum sulphur level in the feed to maintain the catalyst activity at a particular operating condition. Since vanadium pentoxide is used commercially to oxidize sulphur dioxide, it should be noted that at high sulphur dioxide concentration the sulphur dioxide will be competing with the $0-x y l e n e$ for active oxidation sites. Mizushina et al. [1] investigated the effects of sulphur trioxide levels on the activity of a $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Ti}_{2} / \mathrm{K}_{2} \mathrm{SO}_{4}$ catalyst. The catalyst contained 0.5 moles of $\mathrm{K}_{2} \mathrm{SO}_{4}$ per mole of $\mathrm{V}_{2} \mathrm{O}_{5}$ and a large amount of sulphur trioxide. Several catalyst samples of this type were prepared. A sample was then placed in a reactor and the reactor was inmersed in a salt bath. Different sulphur trioxide levels were achieved in the catalyst by
varying the salt bath temperature and the duration of heat treatment. The amount of SO_{3} contained in the catalys,ts was observed to decrease with increasing treatment temperature. o-xylene oxidation was then carried out using these catalysts. No SO_{2} was added to the reactant feed stream. The results show that an optimum SO_{3} level of 5 percent by weight in the catalyst was needed for high selectivity in phthalic anhydride formation. However, Wainwright [26] points out that during the tests with this catalyst when the phthalic anhydride yield was the highest the o-xylene conversion was 100%. This suggests that the o-xylene was fully oxidized near the entrance of the bed; therefore the actual optimum concentration of S_{3} for maximum phthalic anhydride yield may be even higher.

Mizushina et al. [11] have also demonstrated that a certain amount. of SO_{3} is lost from the catalyst due to temperature effects. The amount of SO_{3} 'evaporated' from the catalyst was found to increase with increasing temperature. By carrying out naphthalene oxidation using 'hot press' feedstock at $410^{\circ} \mathrm{C}$ and $435^{\circ} \mathrm{C}$, this group observed that the rate of catalyst deactivation was much greater at 435° than at $410^{\circ} \mathrm{C}$. The catalyst activity was restored soon after S_{2} was introduced in the feedstream. Wainwright [26] observed a similar behaviour with another silica gel supported catalyst (American Cyanamide Aero PAA). He also observed that repeating an experiment at a lower temperature following reaction at an elevated temperature produced a loss in catalyst activity for a Ti_{2} supported catalyst. It is thus apparent that the sulphur dioxide present in the feed was not adequate to restore the amount of SO_{3} lost due to thermal decomposition. The relative rates of sulphur trioxide production (and then take-up by the catalyst) or loss from the catalyst appear to be a factor in determining the catalyst
activity.
Barishnikov et al. [68] studied the role of sulphur dioxide in the oxidation of naphthalene to phthalic anhydride on a fixed bed of $\mathrm{V}_{2} \mathrm{O}_{5}$ / $\mathrm{K}_{2} \mathrm{SO}_{4}$ silica gel supported catalyst. $\quad \mathrm{SO}_{2}$ (0.5 volume per cent) was added to the naphthalene/air feed stream before the catalyst bed; in the form of pulses of one minute duration. This case was then compared with that in which SO_{2} was introduced continuously to the feed stream. From their experiments, the following conclusions were drawn
i) Some sulphuric acid was formed in the period when SO_{2} was introduced continuously into the naphthalene/air feed stream over a prolonged period.
ii) The sulphuric acid formed was responsible for the marked fall in catalyst activity apparent in their study [Figures 2,3 , of 68]. The acid was active in blocking the active centers of the catalyst.
iii) The poisoning action of the acid was reversible as the catalyst exhibited its enhanced activity after the acid was removed.

In general there has not been agreement as to the optimum quantity of SO_{2} required to maintain the catalyst activity for a given reaction condition. This quantity, however, will depend on factors such as
i) The nature of the catalyst support and promoter material.
ii) The reactor temperature and flow conditions.

Considerable experimentation of the type conducted by Kakinoki et al. [10] will be necessary at lower conversions in order to know if there is a
narrow optimum SO_{3} level.
The mechanism by which SO_{2} promotes the catalyst activity has not been completely understood, but recently it is becoming generally accepted that $\mathrm{V}_{2} \mathrm{O}_{5} \cdot \mathrm{SO}_{3}$ is responsible for the catalyst activity. On the basis of studies of Kakinoki et al. [10], the following reaction steps occur when $o-x y l e n e ~ r e a c t s$ with the catalyst in the presence of air.
i) $\mathrm{V}_{2} \mathrm{O}_{5} \cdot \mathrm{SO}_{3} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{2}+20$ [used in hydrocarbon oxidation]
ii) $\mathrm{SO}_{2}+\mathrm{V}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$
iii) $V_{2} 0_{4}+0_{2}($ air $) \rightarrow V_{2} 0_{5}$

The action of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in the catalyst is considered to stabilize the amount of free SO_{3} in the system, thereby maintaining a constant amount of $\mathrm{V}_{2} \mathrm{O}_{5}$. SO_{3}. The rolr of $\mathrm{K}_{2} \mathrm{SO}_{4}$ as catalyst promoter will be reviewed in the following section.

2.9 The Role of $\mathrm{K}_{2} \mathrm{SO}_{4}$ as Catalyst Promoter

As early as 1940, Frazer and Kirkpatrick [82] and Kiyoura [83] reported that the pronoting action of the alkali metals in vanadium pentoxide catalyst was due to the formation of higher sul.phates known as the pyrosulphates. These materials have lower melting points than the corresponding sulphates and may form a eutectic mixture with sulphates. The pyrosulphates also have the ability to dissolve appreciable quantities of vanadium oxides. $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ on $\mathrm{Ti0}{ }_{2}$ or silica gel supports is a glassy anorphous substance [80]. The melting point of $\mathrm{V}_{2} 0_{5}$ is generally around $700^{\circ} \mathrm{C}$ but confusion exists as to the melting point of the potassium pyrosulphate.

It is desirable to determine whether the catalyst exists in the form of solid or melt under reaction conditions, since this may lead to a better understanding of the performance of a $\mathrm{K}_{2} \mathrm{SO}_{4}$-doped catalysts. For instance, a structural change in the catalyst, which may take place prior to melting can influence significantly the activity and selectivity of the catalyst. Riley [79] stated that the melting point of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ occurs at a minimum temperature of $370^{\circ} \mathrm{C}$. If this is the case, then the catalyst system would be liquid at reaction temperatures. Various other workers have also determined the melting point to be $210^{\circ} \mathrm{C}, 300^{\circ} \mathrm{C}, 360^{\circ} \mathrm{C}$ and $414^{\circ} \mathrm{C}[79,78]$. In the phase diagram of Kiyoura [83] for the $\mathrm{K}_{2} \mathrm{SO}_{4}-\mathrm{V}_{2} \mathrm{O}_{5}$ system, the melting point was shown to be $440^{\circ} \mathrm{C}$ which is far above the normal reaction temperatures. Tandy [84] also examined the systems of alkali metal sulphates in equilibrium with $\mathrm{SO}_{2}-\mathrm{SO}_{3}$-air mixtures. His experiment covered a temperature range of $380^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ with $\mathrm{V}_{2} \mathrm{O}_{5}$ and metal sulphates including $\mathrm{K}_{2} \mathrm{SO}_{4}$. He stated that in the range between $440^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$ a liquid is produced that is a vanadium compound dissolved in alkali pyrosulphate melt.

More recently, the role of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in the catalyst is generally considered to be that of supplying SO_{3} to $\mathrm{V}_{2} \mathrm{O}_{5}$ resulting in the formation of $\mathrm{V}_{2} \mathrm{O}_{5} \cdot \mathrm{SO}_{3}$ complex which is thought to be responsible for the catalytic activity. Kakinoki et al. [9] carried out a series of studies from $310^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ using a $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{Ti} \mathrm{T}_{2}$ supported catalyst and also with a similar catalyst, but containing no $\mathrm{K}_{2} \mathrm{SO}_{4}$. The results of these studies have led them to conclude that the role of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is merely to stabilize the free S_{3} content of the catalyst and thus ensure a constant $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{SO}_{3}$ complex.

Various patents suggest that the optimum S_{3} to $\mathrm{K}_{2} 0$ molar ratio is approximately 2.

3.1 Description of the Apparatus and the Flow System

A diagramatic sketch of the experimental apparatus, is shown in Figure 3.1.1. This system was similar to that used by Wainwright [26] in his packed bed studies. The flows of nitrogen and oxygen from high pressure cylinders (Canadian Liquid Air) were controlled by needle valves and measured by calibrated capillary flow meters. The nitrogen and oxygen flowed through a mixer into a three way ball valve which directed the gas either into the $0-x y l e n e$ saturator and then into the reactor or bypassed the saturator when the catalyst was to be regenerated. The saturator was a jacketted glass vessel, containing a coarse porous frit through which the oxygen-nitrogen mixture was admitted. Water from a constant temperature bath circulated through the jacket to maintain the vapour pressure of o-xylene at a desired level. A manometer was also used to measure the pressure at the exit of the reactor so that the required partial pressure of o-xylene in the feed could be attained by raising or lowering its vapour pressure. The pressure in the measurement section of the gas flow system was maintained at 80 cm of mercury by a back pressure regulatar and was measured by a U-tube manometer; this ensured a constant calibration for the gas metering system. A stream of sulphur dioxide was mixed with the main gas stream after the saturator and before the inlet gas sample valve. During all these experiments, the flow of a sulphur dioxide-nitrogen mixture

Figure 3.1.1: A Hiagramatic Shetch of the Flow System From [20]

Legend for Figure 3.1.1

B	Back pressure regulator
F	Capillary flowmeters
GC	Gas chromatograph
HC	Heater coil
MS	Stirrer
M	Manometer
N	Needle valves
NR	No return valves
P	Preheater
R	Reactor
SB	Salt bath
S	o-xylene Saturator
T	Three way ball valve
TC	Chromel/alumel thermocouple
V	Gas sample valves
W	Water flow through the saturator jacket

(0.502 mole percent SO_{2}) was adjusted to maintain 0.01 mole percent SO_{2} in the feed gas. This flow was measured by a capillary flowneter. The manometer on this meter contained Meriam fluid having a density of 2,95.

The reactor consisted of a 0.475 cm I.D. by 14 cm long, type 316 stainless steel tube. This tube was immersed in a well-stirred molten salt bath $\left(7 \% \mathrm{NaNO}_{3}, 40 \% \mathrm{NaNO}_{2}, 53 \% \mathrm{KNO}_{3}\right.$ eutectic mixture) which was heated by a coiled $5250 \mathrm{~W}, 230 \mathrm{~V}, 330.2 \mathrm{~cm}$ long chromalox heating element immersed in the bath (30.48 cm high $\times 30.48 \mathrm{~cm}$ diameter). Reaction temperature was measured by two chromel-alumel thermocouples silver soldered at two axial positions on the outer reactor wall. This temperature was controlled to within $\pm 0.5^{\circ} \mathrm{C}$ by adjusting a variable transformer on the heater system. The reactor was fitted with a preheater tube made from a 6 cm length of $1 / 8$ inch 0.D. stainless tubing.

The reactor was packed with 1.0 gram of $-50 /+70$ mesh catalyst particles which were sieved from a catalyst sample obtained from W.R. Grace (Baltimore, Md.). The packing depth was about 9 cm ; the catalyst was held in place by a loose packing of glass wool.

The pressure in the reactor was measured by a mercury manometer. The gas stream leaving the reactor passed to the gas chromatograph sample valve, via a two way vent valve. In order to prevent the condensation of reactants and products all lines after the saturator through to the reactor exit were maintained at approximately $200^{\circ} \mathrm{C}$ by two hot air guns (12A, 120V). The reactor exit valve was fitted with a $1 / 2$ inch 0.D. diameter, 8.9 cm long stainless steel tubing to direct the product gases into a cold trap, where most of the organic materials were condensed and
collected. The stainless steel tubing was heated by an electric heating tape $(2.0 \mathrm{~A}, 120 \mathrm{~V})$ to prevent the product materials from condensing before the cold trap. A thermocouple was installed in the sample valve compartment so that the temperature of the valves did not exceed $220^{\circ} \mathrm{C}$. These valves should not be subjected to temperatures above $250^{\circ} \mathrm{C}$.

3.2 Experimental Procedure

1.0 gram of $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{TiO}_{2}$ supported catalyst of the type described in section 2.6 .1 was placed in the reactor. The catalyst was conditioned by passing a mixture of nitrogen and oxygen containing 0.01 volume percent sulphur dioxide through the reactor for at least twelve hours. During catalyst oxidation (regeneration), the temperature, oxygen and nitrogen flowrates were set equal to those at which the next experiment was to be conducted.

After the catalyst had been oxidized, o-xylene was then introduced into the gas stream by switching the oxygen/nitrogen mixture to the saturator. At the end of the previous rum, the saturator was filled up to 80% its volume with o-xylene to ensure constant o-xylene level in the reactant gases during reaction; also the temperature of the saturator bath was set at a level such that when $0-x y l e n e$ was introduced into the gas stream it was of the desired concentration. Wainwright [26] had shown that the catalyst activity and selectivity decreased monotonically from an initial high value. It was determined in his and these experiments that approximately 24 hours were required to reach steady state activity and selectivity. In general several measurements were taken in the period 24 to 32 hours. It
was assumed that the steady-state was reached when three samples taken at one hour intervals had composition that differed by less than 5 percent.

Following the steady state experiments, the nitrogen, oxygen and the SO_{2} flowrates, the $0-x y l e n e$ concentration, and the reactor bath temperature, were changed to that desired for the next experimental run (inlet analysis were taken to ensure this). o-xylene flow was stopped and the reoxidation of the catalyst followed for the next twelve hours.

3.3 Reaction Product Analysis

Chemical reaction studies require knowledge of the composition of the feed and product streams entering and leaving the reaction zone. Gas chromatographic methods for the separation and analysis of mixtures containing the fixed gases and other aliphatic hydrocarbons in the literature have been reviewed in [102]. These techniques are often conplex and require special equipment to effect complete separation of the components.

The method employed in this study involves the use of a porapak Q (80/100 Mesh) column for the separation of water and the non-condensable products $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$, while the separation of the organic components was achieved by temperature programming a sílicone gum rubber column. The basic experimental set up was similar to that used by Wainwright [26] with some modifications.

The chromatographic conditions were as follows:
i) Carrier gas (Helium flowrate) $=85 \mathrm{mls}$ per minute at ambient conditions
ii) Filament current $=250 \mathrm{~mA}$
iii) Temperature of the injection port $=200^{\circ} \mathrm{C}$
iv) Temperature of the sample valve compartment $=200^{\circ} \mathrm{C}$

A diagram of the gas sampling valve system for feed and reaction product analysis is shown in Figure 3.3.1. To begin an analysis of the product stream, the gas stream leaving the reactor was passed to the gas chromatograph exit analysis sample valve. A sample (approximately 5 cc at S.T.P.) was initially passed to a 12.7 cm length by $1 / 8$ inch O.D. stainless steel column packed with $50 / 80$ mesh porapak Q . The materials passing through this column or retained by it can then be directed either to a 488.0 cm by $1 / 4$ inch O.D. stainless steel column packed with $80 / 100$ mesh porapak Q or to a similar column packed with silicone gum rubber (10% Se 52 on Chromosorb W, high performance, $80 / 100$ mesh) by the use of a Carle Switching valve.

The operating procedure for analysis of the product stream is as follows: A helium stream containing no sample is referred to as the reference gas while that carrying a sample is named the carrier gas.
i) The short porapak column (12.7 cm long) was cooled to near ambient temperature by the use of an air line. The column switching valve was in the position such that the carrier gas stream passed through the 488.0 cm porapak Q column which was immersed in a dry ice-trichloroethylene mixture at $-78^{\circ} \mathrm{C}$. This mixture was contained in a Thermos flask. The reference gas passed through the silicone gum rubber colum which was kept in the oven at $125^{\circ} \mathrm{C}$. The sample was then introduced through the exit analysis sample valve.

Figure 3.3.1: Flow diagram of analysis systems in position for the separation of $\mathrm{N} 2,02, \mathrm{CO}$.

Figure 3.3.1:
This figure shows the analysis system in position for the separation of $\mathrm{N}_{2}, 0_{2}, \mathrm{C} 0$. In order to separate $\mathrm{C}_{2}, \mathrm{H}_{2} 0$, the Porapak Q Column is transferred into a Thermos flask containing boiling water at $100^{\circ} \mathrm{C}$.

For the position corresponding to the separation of the condensable materials, following the elution of $\mathrm{H}_{2}{ }^{0}$, the colum valve is switched and the salt bath at $220^{\circ} \mathrm{C}$ is raised.

Legend for Figure 3.3.1.
1.

Carrier gas Helium
2.

Valve compartment must be kept at temperatures around $205^{\circ} \mathrm{C}$
3.

Inlet gas sample valve
4.

Gas from saturator
5.

Exit gas sample valve
6.

Reactor
7.
8.
9.

Column switch valve
10.
11.
12.
13.
14.
15.
16.
17.

Molten salt bath (lowered)
Reference gas Helium
Dry-ice trichloroethylene mixture
Porapak Q Colunn 80/100 Mesh
Thermos flask
Blank column
Silicone gum rubber column
Vent stream.

The short Porapak column at the ambient temperature trapped all the condensable materials except water while the fixed gases and water passed to the 488 cm Porapak column. The nitrogen, oxygen, and carbon monoxide were eluted in that order from the 488 cm Porapak column.
ii) Following the elution of carbon monoxide, the 488 cm Porapak Q column was transferred into a thermos flask containing boiling water at near $100^{\circ} \mathrm{C}$. Carbon dioxide and water were then eluted in that order. A typical chromatogram is shown in Figure 3.3.2.
iii) After the water had been eluted, the colunn switching valve was turned into its second position such that the carrier gas was switched to the silicone gum rubber column. About five minutes after the switching, the molten salt bath at $220^{\circ} \mathrm{C}$ was raised such that the short Porapak column (including the fittings) was completely immersed. The condensable products maleic anhydride, o-xylene, o-tolualdehyde, phthalic anhydride and phthalide were driven from the short colum into the silicone gum columm contained in the oven. The temperature of the oven was then programmed from $125^{\circ} \mathrm{C}$ at the rate of $6^{\circ} \mathrm{C}$ per minute for 16 minutes. Maleic anhydride, o-xylene, o-tolualdehyde, phthalic anhydride and phthalide were eluted in that order. After the elution of phthalide, the salt bath was lowered and the oven was cooled to $125^{\circ} \mathrm{C}$. Figure 3.3 .3 shows a typical chromatogram and Table 3.4 .1 gives a list of the retention times and the elution temperatures of the various components.

Figure 3.3.2: Typical chromatogram for the fixed gases and water.

Figure 3.3.3: Typical chromatogram for the organic components.

The whole procedure was then repeated to analyze another reactor sample. The blank colum (Figure 3.3:1) was a $488 \mathrm{~cm} \times 1 / 4$ inch outside diameter made of stainless steel. It contained no packing and was installed to control the base line drift due to the temperature programming of the silicone gum rubber colum.

3.4 Calibration of Gas Chromatograph .

The reaction products analyzed by the gas chromatograph can be grouped as follows
i) The fixed gases - nitrogen, oxygen, carbon dioxide, and carbon monoxide.
ii) Water vapour.
iii) Organic components -- o-xylene, o-tolualdehyde, phthalic anhydride and phthalide.

In order to obtain accurate analysis of the reaction products, it was necessary to calibrate the gas chromatograph. An internal standard technique was adopted. The molar response factors (fc) were determined for the product components, relative to nitrogen (internal standard). The molar response factor of nitrogen was taken as equal to one. The molar response factors were calculated from [42].

$$
\mathrm{fc}=\frac{\mathrm{Ac}}{\overline{A s}} \times \frac{\mathrm{Ws}}{\overline{W C}} \times \frac{\mathrm{Mc}}{\mathrm{Ms}} \times \mathrm{fs}
$$

where As is the area of the internal standard peak, Ac is the area of the component peak, Wc is the weight of the compound, Ws is the weight of the internal standard, Mc and Ms are the molecular weights of the component and standard respectively and $f s$ is the molar response factor of the internal standard.

Procedure

i) Fixed gases

The calibration apparatus is shown in Figure 3.4.1. The sample vessel was flushed (by evacuating and filling) several times with nitrogen to remove any impurities. The sample vessel and the lines leading to it were evacuated by the use of a vacuum pump. About 5 cc of water at room temperature were injected into the vessel through the septum. Enough time was allowed for the water vapour to attain saturation at the temperature of the thermostat. The vessel was then filled to a required partial pressure with each of the fixed gases ($02, \mathrm{C} 0, \mathrm{C} 02$ and N 2). When a particular component had been introduced into the vessel to a required pressure; all the valves were closed and the lines leading to the vessel were evacuated before the next gaseous component was introduced.

The gases in the vessel were then allowed to mix for several hours (in excess of 12 hours) before samples were analyzed by the gas chromatograph. The temperature of the thermostat was kept at or below room temperature, the sample line, the sample valve compartment and the lines leading to and including the short Porapak column were kept above the room temperature. This was necessary to prevent condensation of the water vapour.

Several samples were prepared in this way. The concentrations of components in the samples were varied to cover the ranges that were expected in the experimental program.

Table 3.4.1 includes the relative molar response factors obtained for the fixed components.

Figure 3.4.1: Apparatus for the Calibration

Legend for Figure 3.4.1.

1. Manometer
2. Thermometer
3. Thermostat
4. Bath water
5. Sample vessel
6. To gas chromatograph sample valve
7. Vacuum punp
8.

Injection septum
ii) Organic components

Calibration mixtures were made by mixing together known quantities, by weight of 0 -xylene, o-tolualdehyde, phthalic anhydride and phthalide in a 100 ml volumetric flask. The mixtures were diluted to volume by dioxane or acetone. Analysis of the samples by the gas chromatograph were then obtained by injecting a one micro liter sample into the injection port. The temperature of the colum oven was kept at $200^{\circ} \mathrm{C}$ during the injection period to ensure that no condensation of the organic materials occurred in the lines carrying the sample from the injection port, through the oven to the sample valves. The temperatures of the injection port, the sample valve compartment and that of the lines leading to the short Porapak colum were maintained a little above $200^{\circ} \mathrm{C}$.

Responses for these components were obtained relative to oxylene. Absolute calibrations were then made for 0 -xylene and nitrogen by injecting known quantities of these compounds, as a gas using the calibration apparatus shown in Figure 3.4.1. The molar response factors of all the organic components were then calculated relative to nitrogen.

Table 3.4.1 presents the relative molar response factors, the retention times and the elution temperature of all components.

Component	Retention time	Elution Temperature	Rel. Molar Resp. factors
Nitrogen	7.0	$-78^{\circ} \mathrm{C}$	1.00
Oxygen	9.1	$-78^{\circ} \mathrm{C}$	0.97
Carbon monoxide	12.2	$-78^{\circ} \mathrm{C}$	0.92
Carbon dioxide	19.2	$100^{\circ} \mathrm{C}$	1.17
Water	23.2	$100^{\circ} \mathrm{C}$	2.56
o-xylene	3.3^{*}	$150^{\circ} \mathrm{C}$	3.04
o-tolualdehyde	6.0	$165^{\circ} \mathrm{C}$	3.19
phthalic anhydride	12.1	$202^{\circ} \mathrm{C}$	3.34
phthalide	13.0	$206^{\circ} \mathrm{C}$	3.28

* The retention time for the organic components was taken as the period from the start of the temperature progranming to the elution of the component.

Table 3.4.1
The values of the molar response factors, reported in the literature, for these component are given in [101].

CHAPTER 4
DESIGN OF EXPERIMENTS FOR
PARAMETER ESTIMATION

If experiments are not carefully designed, the experimental responses may be such that the estimates which can be obtained for the parameters are not only imprecise, but also highly correlated. Statistical design of experiments for mechanistic models relies on expressing objectives mathematically and then optimizing this criterion with respect to the settings of the independent variables. The form of the theoretical model is either known or is 'tentatively entertained'. These designs are then used as a guide to determine where to locate the experimental points in the independent variable space in order to obtain the most precise estimates of the parameters in the model with a given precision in the measurement of the responses.

In this investigation, the criterion recommended by M.J. Box [48] and Draper and Hunter [47] was used. In the case under consideration, this criterion requires that

$$
D=\left|\begin{array}{ccc}
\sum_{u=1}^{n} & x_{u}^{\prime} & \underline{v}^{-1} \\
x_{u}
\end{array}\right|
$$

4.1
be maximized over the control variables: $0-x y l e n e$ and oxygen concentration, total flowrate (residence time) and reactor temperature. Here:

$$
\underline{X}^{\prime} \text { is the matrix transpose of } \underline{X} \text {; }
$$

$$
\frac{X_{u}}{\operatorname{rxp}}=\left[\begin{array}{ccc}
\frac{\partial n_{1}\left(\xi_{1}\right)}{\partial \theta_{1}} & \ldots \ldots \cdot & \frac{\partial \underline{n}_{1}\left(\xi_{1}\right)}{\partial e_{p}} \\
\vdots & & \vdots \\
\frac{\partial \eta_{r}\left(\xi_{1}\right)}{\partial \theta_{1}} & \ldots \ldots & \frac{\partial \underline{\eta}_{r}\left(\xi_{1}\right)}{\partial \theta_{p}}
\end{array}\right]_{\underline{\theta}}=\hat{\theta}
$$

\underline{V} is an estimate of the variance-covariance matrix of of the responses.
$\eta_{\mathbf{i}}$ is the expected value as calculated from the model of the $i^{\text {th }}$ response.

This criterion for a non-linear multi-response model is equivalent to minimizing the asymptotic joint confidence region of the estimated parameters. This criterion does not, however, guarantee that the confidence region is spherical. For cases in which it is required that the confidence region be spherical, the above criterion must be modified to provide a compromise design [43, 44, 110].

It is of importance to note that the derivatives $\frac{\partial \eta_{i}}{\partial \theta}$ can only be independent of the estimates of the parameter values if the response function $\underline{\eta}$ is independent of $\underline{\theta}$. For non-linear response functions, such as the case in this study, the values of the derivatives and hence the efficiency of any particular design will depend upon the current best estimates ($\hat{\theta}$) of the parameters. Poor estimates usually result in poor designs. For this reason, the logical sequence would be to use a sequential procedure. In this approach, parameter estimates from preliminary experiments would be used to plan a second set of experiments and the results of this set would then be used to reestimate the
parameters and plan a third set of experiments and so on [45, 46]. In this research program, initial parameter estimates of the reaction model were available from several preliminary experiments performed by Wainwright [26]. Initial estinates of the variance-covariance matrix (V) of the responses (Table 4.3) were also estimated using replicate data from this study, that is \underline{V} was estimated from the following relationship:

$$
v_{i j}=\frac{1}{m-1} \sum_{k=1}^{m}\left(y_{i k}-\bar{y}_{i}\right)\left(y_{j k}-\bar{y}_{j}\right)
$$

where m is the number of replicates

$$
\mathbf{i , j} \text { are number of responses }
$$

\bar{y}_{i} is the arithmetical average value for the $i^{\text {th }}$ response

Often, it is more practical from an exper imental point of view to design blocks of experiment in a sequential manner. This is only slightly less efficient [47] than the sequential approach of designing only one experiment at a time. If p parameters are to be estimated in a model, a block of experimentswill normally consist of at least p experiments.

The determinant D, of equation 4.1 was evaluated over the full range of control variables as indicated in Table 4.1. The experimental program of Table 4.1 is identical to that used by Wainwright [26] for o-xylene oxidation on the titanium dioxide supported catalyst in an integral packed bed reactor. A discussion on the limits of the experimental program is contained in the Ph.D. thesis of Wainwright [26]. Actually, the maximization of this determinant could be achieved by a direct grid
search, but because of the high computer time expenditures involved, a Monte Carlo technique was employed [55, 118]. This procedure, together with a criterion which ensured maximum spread in the experimental conditions, was also used by Shaw [21]. An algorithm of this technique is reported in Figure 4.1. A listing of the computer program used is shown in Appendix B. 150 trials were involved before choosing the operating conditions for the first set of experiments. These are presented in Table 4.2.

. . ./(cont'd.)

Figure 4.1: A simple algorithm showing steps involved in the experimental design program.

	$\%$ o-xylene leve1	\% oxygen leve1	Reactor temperature	Total gas flow (at N.T.P.)	Catalyst weight
Upper Design Limit	3.0	30.	390.	300.	1.0
Center of Design	1.5	20.	370.	200.	1.0
Lower Design Limit	1.0	10.	350.	100.	1.0

Table 4.1: Experimental Program

	\% o-xylene	$\%$ oxygen	Reactor temperature ${ }^{\circ} \mathrm{C}$	Total flow at N.T.P. $\mathrm{mLS} / \mathrm{min}$.
1.	2.3	27.3	350	267.6
2.	2.9	14.5	354	186.3
3.	2.8	11.2	383	232.2
4.	2.5	20.3	378	217.2
5.	1.2	26.3	356	118.0
6.	2.8	29.6	372	253.5
7.	3.0	23.6	357	101.9
8.	2.6	14.5	380	117.1
9.	2.9	11.1	371	143.6
10.	2.9	27.4	355	182.6
11.	2.5	27.0	357	185.4

Table 4.2: Experimental Runs Dictated by the Design Program

	OX	OTA	PI	PA	CO/CO2
OX	$.5659 \times 10^{5}$	$-.1174 \times 10^{4}$	$.5080 \times 10^{2}$	$.2383 \times 10^{4}$	$.3791 \times 10^{2}$
OTA	$-.1174 \times 10^{4}$	$.2697 \times 10^{4}$	$.1926 \times 10^{3}$	$.8628 \times 10^{4}$	$.1917 \times 10^{3}$
PI	$.5080 \times 10^{2}$	$.1926 \times 10^{3}$	$.1834 \times 10^{2}$	$.6688 \times 10^{3}$	$.1822 \times 10^{2}$
PA	$.2382 \times 10^{4}$	$.8628 \times 10^{4}$	$.6688 \times 10^{3}$	$.3186 \times 10^{5}$	$.6639 \times 10^{3}$
CO/CO2	$.3791 \times 10^{2}$	$.1917 \times 10^{3}$	$.1822 \times 10^{2}$	$.6639 \times 10^{3}$	$.1816 \times 10^{2}$

Table 4.3:
Variance-Covariance Matrix of the Responses Evaluated From [26]. This data is used for experimental design.

EXPERIMENTAL RESULTS

5.1 Approach to Steady-State Operation

An application of the REDOX mechanism in fommating the basic rate equations for o-xylene oxidation has been considered in detail in Section 2.2. The rate of hydrocarbon oxidation, considered to be first order with respect to hydrocarbon concentration is given

$$
r_{r}=k_{T} C_{r} \phi
$$

The parameter ϕ, representing the fraction of active sites available for oxidation, for a freshly oxidized catalyst is considered to have a value close to unity. When hydrocarbon oxidation is taking place on the catalyst, the value of ϕ decreases until a steady state value is reached. This value is given by equation 2.2.4,

$$
\phi=\mathrm{k}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} /\left(\mathrm{k}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}+\mathrm{n} \mathrm{k}_{r} \mathrm{C}_{\mathrm{r}}\right)
$$

and since the model has been formulated on the basis of ϕ achieving a steadystate value, the experimental responses used for estimating the parameters must pertain to the catalyst when it reaches its steady-state activity. In this study, the steady-state condition was reached by the catalyst after the reactor was on stream for approximately 24 hours at a given condition.

Figures 5.1.1 and 5.1.2 show the approach to the steady-state operation on the catalyst.

Figure 5.1.1: Approach to steady-state operation (This figure shows the unsteady-state behaviour of the intermediate compounds.)

Figure 5.1.2: Approach to the steady-state operation

In order to obtain a meaningful and consistent set of data on a catalyst, experimental runs should be conducted on a catalyst of constant activity. This implies that standard runs must frequently be carried out to monitor the steady-state catalyst activity. In this study, standard runs were conducted at the set of experimental conditions corresponding to midrange experimental conditions, (Table 4.1.1). A standard rum involved reoxidation of the catalyst and then on-stream oxidation until steady-state was achieved. In some cases this standard rum was carried out immediately after another experiment without reoxidizing the catalyst. These latter experiments indicated that:
i) A further 24 hours was required to achieve the steady-state operation following changes in operating conditions.
ii) The final steady-state activity of the catalyst was different from that reached when a standard run was carried out directly following the reoxidation of the catalyst.

Thus each of the steady-state experiments, including the standard runs, reported in this study was carried out after reoxidation of the catalyst following an experimental run according to Section 3.2.

One set of experiments consisting of eleven experimental runs was designed according to the statistical technique described in Section 4.1. A total of nine experimental runs at the different reaction conditions shown in Table 4.1 were carried out as it was not possible to carry out all the eleven experiments within the time allotted for taking experimental measurements. In all a total of 5 standard runs were carried out throughout the steady-state experimental program. It was expected to fit the model using the experimental data obtained from the current study and those available from Wainwright's study [26].

Tables 5.1.1 and 5.1.2 represent the steady-state data obtained in the current study. For an experiment, the steady-state data were taken in the period from 24 to 32 hours as described in Section 3.2.

5.2 Initial Long Term Deactivation

It is important to have a catalyst which did not exhibit any long term decrease in steady-state activity. Wainwright's experience suggested that some initial conditioning of the catalyst is required to stabilize its activity, that is a number of cycles of reduction and reoxidation are required. This deactivation seems to be related to the amount of free sulphur trioxide which is present in the catalyst. In turn, this amount seems to be determined by the amount of sulphur dioxide which is present in the gas stream (feed). Experience suggests that when a new batch of a TiO_{2} supported/ $\mathrm{K}_{2} \mathrm{SO}_{4}$ promoted catalyst is first placed in the reactor at a high temperature some of the free SO_{3}, which is known to exist in the catalyst, is lost due to evaporation (desorption). The addition of SO_{2} in the feed stream does compensate for some of the S_{3} which is lost, but an equilibrium must be reestablished; this establishment of the equilibrium level of the free SO_{3} also seems to require using the catalyst under reaction conditions. Hence, at the start of the experimental program, fresh catalyst was placed in the reactor and its activity was monitored, for several days by conducting standard runs.

The initial SO_{3} level of the fresh catalyst was reported to be 2.0 weight percent (Section 2.6). In this study, the amount of SO_{2} introduced in the feedstream was only 0.01 percent of the total gas flow. Under these conditions, the steady-state activity as indicated by the o-xylene reaction

	Reaction Conditions					Fxit Concentration gmoles/1iternio ${ }^{6}$							
Experimental Run Number	$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { o-Xylene } \\ \text { Concentration } \\ \text { gm moles/ } \\ \text { liter x } 104 \end{gathered}$	Oxygen Concentration gm moles/ liter x 104	Total flow at N.T.P. (cc/min)	$\begin{gathered} \text { Reaction } \\ \text { Rate } \\ \mathrm{gm} \mathrm{~mole} / \mathrm{hr} \mathrm{gm} \\ \times 103 \end{gathered}$	OX	OTA	PI	PA	CO2	CO	Carbon Balance	$\begin{aligned} & \mathrm{H} 2 * \\ & \text { Ba1. } \end{aligned}$
426	350	3.945	74.80	267.	3.55	223.6	12.92	9.543	80.57	111.22	14.38	1.00	1.00
428	370	3.758	51.64	200.	3.18	205.5	12.08	7.652	89.95	118.07	17.83	0.99	1.01
430	354	5.209	36.64	181.	3.57	327.5	15.52	12.04	111.7	155.53	12.77	1.04	0.94
501	370	3.837	51.38	200.	3.08	235.0	12.92	9.849	84.00	98.50	14.60	1.05	0.90
512	370	3.675	51.91	200.	2.93	219.5	11.59	6.514	87.11	105.76	17.45	1.04	1.16
515	378	6.489	50.29	212.	3.714	440.0	23.30	13.45	91.72	127.37	18.43	1.01	1.10
51.7	356	3.081	60.55	117.	2.68	132.6	6.253	5.286	176.4	240.43	59.77	1.08	0.98
523	357	6.460	50.87	99.	3.91	324.5	16.98	10.71	235.5	284.4	57.00	1.02	J. 82
524	370	3.501	53.58	200.	2.98	203.4	10.96	5.758	92.03	110.10	18.40	1.04	1.01
527	380	5.734	30.58	114.	2.644	379.8	18.11	7.443	128.7	159.34	24.95	1.02	0.94
52.)	355	5.798	25.76	140.	2.842	380.1	16.19	5.895	110.7	129.93	20.27	0.98	0.93
53」	355	7.055	75.45	177.	3.568	408.2	18.67	6.956	105.5	139.9	22.20	0.92	0.88
605	370	3.871	52.38	200.	3.150	226.3	11.91	6.573	93.80	120.59	20.01	1.02	1.07
610	383	5.980	26.90	226.	2.708	422.	19.12	4.35	45.60	85.4	50.70	0.94	0.92

[^0]Table 5.1.1:
Steady-state Reaction Data for the Oxidation of $0-\mathrm{Xy} 1 \mathrm{ene}$ on Titania-supported Vanadia (experimental measurements)

	Reaction Conditions					Conversions and Selectivities							
Experimental Rul Number	Temperature ${ }^{\circ} \mathrm{C}$	\% O-xylene Level	\% Oxygen Level	Total Flow $\mathrm{ml} / \mathrm{min}$ N.T.P.	$\begin{gathered} \mathrm{k}_{2} \times 10^{3} \\ \text { (Reaction Rate) } \end{gathered}$	OX	OTA	PI	PA	CO 2	CO	Carbon Balance	$\begin{aligned} & \mathrm{H} 2 * \\ & \text { Ba1. } \end{aligned}$
426	350	1.44	27.27	262.	3.55	34.7	10.9	8.04	67.90	11.70	1.51	1.00	1.00
428	370	1.55	21.33	200.	3.18	39.9	8.94	6.39	71.70	11.20	1.75	0.99	1.01
430	354	2.116	14.92	181.	3.57	32.9	9.68	7.51	69.70	12.1	1.00	1.04	0.94
504	370	1.582	21.25	200.	3.08	33.95	10.75	8.01	69.45	10.29	1.52	1.05	0.90
512	370	1.519	21.44	200.	2.93	35.47	9.61	5.40	69.83	10.93	1.81	1.04	1.16
515	378	2.620	20.52	212.	3.714	24.95	7.95	8.95	62.75	10.90	1.53	1.01	1.10
517	356	1.381	27.08	117.	2.68	62.95	2.78	2.35	78.25	13.35	3.305	1.08	0.98
523	357	2.977	23.45	99.	3.91	49.15	5.42	3.43	75.15	11.35	2.275	1.02	0.82
524	370	1.44	22.02	200.	2.98	38.38	8.693	34.598	74.05	10.80	1.858	1.04	1.01
527	380	2.68	14.303	114.	2.644	31.90	10.303	34.217	72.50	11.233	1.767	1.02	0.94
529	355	2.58	11.49	143.6	2.842	28.47	10.73	3.897	72.97	10.77	1.673	3 0.98	0.93
531	355	2.765	28.206	177.	3.568	26.0	13.13	4.207	68.60	12.30	1.793	. 0.92	0.88
605	370	1.583	21.47	200.	3.152	36.5	9.17	5.06	72.20	11.60	1.93	1.02	1.07
610	383	2.48	11.17	226.	2.708	16.8	21.5	5.25	53.30	12.20	7.76	0.94	0.92

[^1]Table 5.1.2:
Steady-State Reaction Data for the Oxidation of 0-Xylene on Titania-supported Vanadia (conversion and selectivities)
rate was found to decrease as shown in Figure 5.2.1. These results indicate that the catalyst activity declined gradually for a period of approximately five days, but after this time it stabilized.

The experimental program using the experimental conditions suggested by the design procedure was then begun. The catalyst activity was monitored at five times during the fifty day period of this experimental program and as shown in Figure 5.2.2 it remained constant during that time. Hence, it is expected that the catalyst activity was essentially constant during the time that the data was collected for the other experimental conditions employed. It is noted from the examination of the standard rums reported in. Tables 5.2 .1 and 5.2 .2 that the steady state data were quite reproducible and consistent. Also, a comparison of these standard rums with those of Wainwright (Figure 4.9 of [26]) indicates that the activity of the catalyst employed in the current study was higher than that of Wainwright. This information is presented in Table 5.2.3.

	Current study (Figure 5.2.2.)	Wainwright (Figure 4.9 of [26])
Average activity of catalyst as measured by standard rums. gm mole/gm.catalyst-hr	3.18	2.20
Ratio	$\frac{\text { Current study }}{\text { Previous study }}=\frac{3.18}{2.20}=1.45$	

Table 5.2.3

ligure 5.2.1: Initial long term deactivation of the catalyst

Figure 5.2.2: Shows the activity of the catalyst throughout the experiment al program

```
CHAPTER 6
REACTION MODEL
```


6.1 Equations for the Reaction Scheme

The reaction model in this study is similar to that proposed by Wainwright [26] for 0 -xylene oxidation on the $\mathrm{Ti} 0_{2}$-supported $\mathrm{V}_{2} 0_{5}$ catalyst. Figure 6.1.1 represents the reaction network.

Figure 6.1.1: Reaction Network for o-Xylene Oxidation on TiO_{2} Support

Wainwright [26] has demonstrated that the rate of $0-x y l e n e$ conversion had very little, if any, temperature dependence in the temperature range $350-390^{\circ} \mathrm{C}$. This was attributed to the loss of SO_{3} from the catalyst. This matter has already been discussed in Section 2.8. An active site parameter $\left(E s /\left\{R\left(\frac{1}{T}-\frac{1}{T^{*}}\right)\right\}\right)$ was included in the rate expressions to account for the loss of activity. The reaction model, in this study also includes this active site parameter.

The reaction model also includes a relative catalyst activity parameter, k_{s}. This parameter estimates the activity of a catalyst relative to
another. Because Wainwright's catalyst was found to be less active than the one used here, it was found convenient to introduce this additional relative catalyst activity parameter, k_{s}. This parameter is expected to account for the difference in catalyst activity from one catalyst to another and if correct, should mean that the remaining parameter values are essentially the same from one catalyst batch to another. This would have important ramifications for future studies on this catalyst system.

Equations for the reaction model are established as follows:
Rate of disappearance of o-xylene

$$
\begin{aligned}
-\frac{d C_{1}}{d t} & =\left(k_{12} C_{1} \theta+k_{5} C_{1} \theta\right) \\
& =\left(k_{12}+k_{5}\right) C_{1} \theta
\end{aligned}
$$

6.1 .1

Rate of formation of o-tolualdehyde

$$
\begin{align*}
\frac{\mathrm{dC}_{2}}{\mathrm{dt}} & =\left(\mathrm{k}_{12} \mathrm{C}_{1} \theta-\mathrm{k}_{5} \mathrm{C}_{2} \theta-\mathrm{k}_{23} \mathrm{C}_{2} \theta\right) \\
& =\left(\mathrm{k}_{12} \mathrm{C}_{1}-\mathrm{k}_{5} \mathrm{C}_{2}-\mathrm{k}_{23} \mathrm{C}_{2}\right) \theta
\end{align*}
$$

Rate of formation of phthalide

$$
\begin{aligned}
\frac{\mathrm{dC}_{3}}{\mathrm{dt}} & =\left(\mathrm{k}_{23} \mathrm{C}_{2} \theta-\mathrm{k}_{34} \mathrm{C}_{3} \theta\right) \\
& =\left(\mathrm{k}_{23} \mathrm{C}_{2}-\mathrm{k}_{34} \mathrm{C}_{3}\right) \theta
\end{aligned}
$$

$$
6.1 .3
$$

Rate of formation of phthalic anhydride

$$
\frac{\mathrm{dC}_{4}}{\mathrm{de}}=\mathrm{k}_{34} \mathrm{C}_{3} \theta
$$

Rate of formation of CO and CO2

$$
\begin{aligned}
\frac{d C_{5}}{d t} & =8\left(\mathrm{k}_{5} \mathrm{C}_{2} \theta+\mathrm{k}_{5} \mathrm{C}_{1} \theta\right) \\
& =8 \mathrm{k}_{5}\left(\mathrm{C}_{2}+\mathrm{C}_{1}\right) \theta
\end{aligned}
$$

Rate of oxidation of the catalyst

$$
r_{a}=k_{a} C_{a}(1-\theta)
$$

Rate of oxygen consumption (r_{a})

$$
\begin{align*}
& o-x y 1 e n e \rightarrow o \text {-tolualdehyde } \\
& r_{a_{12}}=k_{12} C_{1} \theta \\
& o-x y l e n e \rightarrow C 0 / C 02 \\
& r_{a_{15}}= n k_{5} C_{1} \theta \\
& o-\text { tolualdehyde } \rightarrow C 0 / C 02 \\
& r_{a_{25}}=(n-1) k_{5} C_{5} \theta
\end{align*}
$$

o-tolualdehyde \rightarrow phthalide

$$
\mathrm{r}_{\mathrm{a}}{ }_{23}=\mathrm{k}_{23} \mathrm{C}_{2}{ }^{\theta}
$$

phthalide \rightarrow phthalic anhydride

$$
\begin{align*}
& r_{a_{34}}=k_{34} C_{3} \theta \\
& r_{a}=r_{a_{12}}+r_{a_{15}}+r_{a_{25}}+r_{a_{23}}+r_{a_{34}} \\
& =k_{12} C_{1} \theta+n k_{5} C_{1} \theta+(n-1) k_{5} C_{2} \theta+k_{23} C_{2} \theta+k_{34} C_{3}{ }^{\theta} \\
& \therefore \quad k_{a} C_{a}(1-\theta)=k_{12} C_{1} \theta+n k_{5} C_{1} \theta+(n-1) k_{5} C_{2} \theta+k_{23} C_{2} \theta+ \\
& \\
& k_{a} C_{a}=\left(k_{34} C_{a}+k_{12} C_{1}+n k_{5} C_{1}+(n-1) k_{5} C_{2}+k_{23} C_{2}+\right. \\
& \text { i.e. } \left.\theta=\frac{k_{23} C_{2}}{}+k_{34} C_{3}\right) \theta \\
& k_{a} C_{a}+k_{12} C_{1}+n k_{5} C_{1}+(n-1) k_{5} C_{2}+k_{23} C_{2}+k_{34} C_{3}
\end{align*}
$$

$$
6.1 .13
$$

where n is the stoichiometric coefficient for the formation of carbon oxides. This coefficient is calculated from the experimental selectivity data as follows

$$
\mathrm{n}=\left(10.5 \mathrm{~S}_{\mathrm{CO}_{2}}+6.5 \mathrm{~S}_{\mathrm{C} 0}\right) /\left(\mathrm{S}_{\mathrm{CO}_{2}}+\mathrm{S}_{\mathrm{C} 0}\right)
$$

The logarithm of the catalyst activity parameter, k_{s} was used since this procedure would ensure that it remained positive during the parameter estimation procedure.

The reaction model thus becomes

$$
\begin{align*}
& \frac{d C_{1}}{d t}=\frac{-k_{a} C_{a}\left(k_{12}+k_{5}\right) C_{1} * e^{\left[k_{s}+\frac{s}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)\right]}}{\mathrm{k}_{\mathrm{a}} \mathrm{C}_{a}+\left(\mathrm{k}_{12}+n \mathrm{k}_{5}\right) \mathrm{C}_{1}+\left(k_{23}+(\mathrm{n}-1) \mathrm{k}_{5}\right) \mathrm{C}_{2}+\mathrm{k}_{34} \mathrm{C}_{3}} \\
& \frac{d C_{2}}{d t}=\frac{k_{a} C_{a}\left(k_{12} C_{1}-k_{5} C_{2}-k_{23} C_{2}\right) * e^{\left[k_{s}+\frac{E_{s}}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)\right]}}{k_{a} C_{a}+\left(k_{12}+n k_{5}\right) C_{1}+\left(k_{23}+(n-1) k_{5}\right) C_{2}+k_{34} C_{3}} \\
& \frac{d C_{3}}{d t}=\frac{k_{a} C_{a}\left(k_{23} C_{2}-k_{34} C_{3}\right) e^{\left[k_{s}+\frac{E_{s}}{R}\left(\frac{1}{T}-\frac{I}{T^{*}}\right)\right]}}{k_{a} C_{a}\left(k_{12}+n k_{5}\right) C_{1}+\left(k_{23}+(n-1) k_{5}\right) C_{2}+k_{34} C_{3}} \\
& \frac{d C_{4}}{d t}=\frac{k_{a} C_{a}\left(k_{34} C_{3}\right) * e^{\left[k_{s}+\frac{E_{s}}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)\right]}}{k_{a} C_{a}^{+}\left(k_{12}+n k_{5}\right) C_{1}+\left(k_{23}+(n-1) k_{5}\right) C_{2}+k_{34} C_{3}} \\
& \frac{d C_{5}}{d t}=\frac{8 k_{a} C_{a} k_{5}\left(C_{1}+C_{2}\right) * e^{\left[k_{s}+\frac{S_{R}}{R}\left(\frac{1}{T}-\frac{1}{T^{X}}\right)\right]}}{\mathrm{k}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}+\left(\mathrm{k}_{12}+n \mathrm{k}_{5}\right) \mathrm{C}_{1}+\left(\mathrm{k}_{23}+(\mathrm{n}-1) \mathrm{k}_{5}\right) \mathrm{C}_{2}+\mathrm{k}_{34} \mathrm{C}_{3}}
\end{align*}
$$

6.2 Reparameterization of Pre-exponential Factors

It must be noted that the rate constants were reparameterized according to a base temperature T^{*}. This procedure is the Hunter and Atkinson [129] reparameterization technique. This was necessary here, since we are interested in obtaining uncorrelated parameter estimates, etc.

$$
\text { i.e. } K_{a}=K_{a}^{*} e^{-\left[\frac{E}{R}\left(\frac{1}{T}-\frac{1}{T^{*}}\right)\right]}
$$

where T^{*} is the base temperature corresponding to the center of design. In

this study

$$
T^{*}=(370+273)^{\circ} \mathrm{K}=643^{\circ} \mathrm{K}
$$

where

$$
K_{a}^{*}=K_{a} e^{-E_{a} /(643 \times R)}
$$

This means that the values of $K_{a}^{*}, K_{12}^{*}, \ldots K_{5}^{*}$ were estimated instead of K_{a}, $K_{12}, \ldots K_{5}$.

CHAPTER 7

PARAMETER ESTIMATION

7.1 Introduction

In many instances in research, previous studies on a particular system have been carried out and reported in the literature. These studies provide prior information either as raw experimental data or as parameter estimates in a mathematical model. It therefore becomes useful to include this prior information or the estimates of parameters in the current analysis or model formulation given the new data from the experimental system at hand. In the present work prior information in the form of experimental data and parameter estimates for the proposed kinetic model were available from Wainwright's experiments on an integral packed bed reactor [26]. Because the experimental information was limited to that from nine runs, which were not designed for parameter estination, the parameter estimates were not of sufficient precision to really evaluate the adequacy of the model. Hence, it was required to estimate the parameters in the model using this prior information together with the experimental data obtained from the present study.

Before proceeding to estimate the parameters in the multi-response model using conventional methods, it was necessary to examine the two sets of data very carefully to ensure that one set was consistent with the other. That is, for the two sets of data, the following criteria must be satisfied,
i) The responses should be essentially the same from both experimental systems. In particular, it was important that both the catalyst activity as indicated by the o-xylene conversion or reaction rate from the standard runs (centerpoint experiments) was essentially the same.
ii) The variance-covariance matrix from the experimental responses should be essentially the same in both systems.

If the above conditions were not satisfied, the model predictions based on the resulting parameter estimates would be both biased and uncertain. It has already been established in Section 5.2 that the catalyst employed for the present study was more active than that used by Wainwright. The problem thus became that of finding an effective and correct method of transferring information from Wainwright's experiments to the current one. Many of the methods used in chemical engineering to transfer information from one experiment to another have been less than satisfactory.

Recently Hoffman and Reilly [124] have developed an efficient statistical technique for transferring information from one experiment to another. This method employs Bayes' theorem in which prior information on the parameters (best prior estimates and the variance-covariance matrix of those parameters) is combined with the current experimental information (multiresponse data and an estimate of the variance-covariance matrix for those responses) to provide posterior parameter estimates and information as to their precision. In this case (as described) the statistical inference is not subjective since this is what might be termed 'hard' information. This procedure also allows the researcher to include estimates of parameters
in a model which are not determined from experimental measurements but rather express his 'degree of belief' that a parameter has a certain value. When such estimates of parameter values and their variances are included in the analysis the resulting statistical inference is thus subjective.

Their recent paper considered the application of this technique to the hydrogenolysis of butane reaction. Kinetic parameters were determined from a bench scale, integral packed-bed reactor. These parameters were then transferred to a model for a fluidized-bed reactor in which the same chemical reaction occurred. The parameter estimates were updated and two additional parameters in the fluidized bed model were estimated from the data obtained from the fluidized bed reactor. A useful point about this technique is that the uncertainty in all sources of information is considered. Also a more realistic estimate of the uncertainty in all parameter values is contained in the posterior information of the parameters.

This technique was used in this study and its statistical background is reviewed below.

7.2 Parameter Estimation Technique

Let the mathematical mode1, for the measured responses obtained in the present study, be represented by the following expression

$$
y_{u}=\underline{n}\left(\underline{x}_{u}, \underline{\theta}^{*}\right)+\underline{\varepsilon}_{u}
$$

y_{u} is the vector of values of the measured r-responses for the $u^{\text {th }}$ experiment.
n is the vector of expected values predicted from the model responses at the $u^{\text {th }}$ trial given the vector of parameters $\underline{\theta}^{*}$ and the vector of independent variables x_{u} 。
ε_{u} is the error at the $u^{\text {th }}$ trial
By the use of Taylor's series, the model can be linearized in the neighbourhood of some vector \underline{y} of parameter values, that is

$$
\underline{z}=\underline{X}\left(\theta^{*}-\underline{\gamma}\right)+\underline{\varepsilon}
$$

where

$$
\begin{array}{ll}
\underline{z}=\left\{y_{u}-\underline{n}\left(\underline{x}_{u}, \underline{\gamma}\right)\right\} & u^{\text {th }} \text { element } \\
\underline{X}=\frac{\delta_{n}\left(\underline{x}_{u}, \underline{\theta}\right)}{\frac{\delta \theta}{j}^{j}} & u, j \text { element } \\
\underline{\varepsilon}=\left\{\varepsilon_{u}\right\} & u \text { element }
\end{array}
$$

There are n observations and p parameters.
The prior information about the parameter is expressed by

$$
\underline{\theta}^{*}: N(\underline{\alpha}, \underline{U})
$$

$\underline{\theta}^{*}$ is assuned to have a multivariate normal distribution with mean $\underline{\alpha}$ and covariance matrix \underline{U}. The error vector $\underline{\varepsilon}$ is also assumed to be normally distributed with mean $\underline{0}$ and covariance matrix \underline{V}

$$
\text { i.e. } \underline{\varepsilon}: N(\underline{0} ; \underline{V})
$$

The values of $\underline{\alpha}, \underline{U}$ and \underline{V} are known numerically. By applying the Bayes' Theorem, Hoffman and Reilly [124] have shown that the posterior distribution of θ^{*} is normal and symmetric and is expressed by

$$
\begin{aligned}
P(\underline{\theta} * / \underline{y}): & N\left[\underline{\gamma}+\left(\underline{U}^{-1}+\underline{X}^{\prime} \underline{V}^{-1} \underline{X}\right)^{-1}\left[\underline{U}^{-1}(\underline{\alpha}-\underline{\gamma})+X^{\prime} \underline{V}^{-1} \underline{z}\right]\right. \\
& \left.\left(\underline{U}^{-1}+\underline{X}^{1} \underline{V}^{-1} \underline{X}\right)^{-1}\right\}
\end{aligned}
$$

$$
7.2 .5
$$

It is clear from equation 7.2 .5 that the most likely set of parameter value is the posterior mean vector. This vector contains the best choice of $\underline{\gamma}$, the vector of values for $\underline{\theta}^{*}$ about which the modei is linearized. By setting the posterior mean in equation 7.2 .5 equal to \underline{Y} and simplifying, the following relationship is obtained

$$
\underline{U}^{-1}(\underline{\alpha}-\underline{y})+\underline{X}^{\prime} \underline{v}^{-1} \underline{z}=\underline{0}
$$

This is the condition for the most recent set of parameter values $\underline{\gamma}$ to become the posterior mean. Equation 7.2 .6 becomes difficult to solve as both \underline{X} and \underline{z} are functions of $\underline{\gamma}$. A better approach has been derived from equation 7.2 .5 by linearizing the model at the set of parameter values $\underline{\gamma}_{i}$. The posterior mean on the $(i+1)$ iteration, \underline{Y}_{i+1}, is given by equation

$$
\underline{\gamma}_{i+1}=\underline{\gamma}_{i}+\underline{T}_{i}
$$

where $\underline{T}_{i}=\left(\underline{V}^{-1}+\underline{X}^{\prime} \underline{V}^{-1} \underline{X}\right)^{-1}\left[\underline{U}^{-1}(\underline{\alpha}-\underline{\gamma})+\underline{X}^{\prime} \underline{V}^{-1} \underline{z}\right]$
\underline{X} and \underline{z} are calculated using \underline{Y}_{i}.

Equation 7.2 .7 is solved iteratively until the correction T_{i} between $\underline{\gamma}_{i+1}$ and $\underline{\gamma}_{i}$ becomes vanishingly small.

The following suggests the iterative method of solution

1) Guess a starting value for $\underline{\gamma}_{i}$
2) Calculate the correction T_{i}
3) Correct \underline{Y}_{i} to the best estimated value for $\underline{\theta}$. That is
find γ_{i+1} by adding T_{i} to $\underline{\gamma}_{i}$.
4) Recalculate T_{i} after using $\underline{\gamma}_{i+1}$
5) Repeat 3 and 4 until the correction T_{i} becomes vanishingly small.

If the converged values of $\underline{\gamma}$ is represented by $\underline{\gamma}$, the posterior mean with the model linearized at those values, the posterior distribution of $\underline{\theta}^{*}$ is given by (equation 7.2.5)

$$
P\left(\underline{\theta}^{*} / \underline{y}\right): N\left\{\underline{\hat{\theta}} ;\left(\underline{U}^{-1}+\underline{X}^{\prime} \underline{v}^{-1} \underline{X}\right)^{-1}\right\}
$$

7.3 Transformation of the Observed Responses

When several responses are observed, in each experimental run, the use of all the independent responses gives more precise estimates of the parameters $\underline{\theta}$ than just one response.

Box, Hunter, MacGregor and Erjavec [45] have pointed out that difficulties can be experienced in the application of some parameter estimation techniques, if linear relationships exist among the measured responses. Three types of dependencies were considered.
i) Linear dependencies among errors. This situation can occur when the method of multiresponse analysis does not satisfy
the assumption that the errors committed in an experimental rum are all uncorrelated.
ii) Linear dependencies among expected values of responses. This occurs when the material and energy balances, or the steadystate condition require that certain linear relationships exist among the expected values of the responses.
iii) Linear dependencies in the data. This occurs when the responses are not determined independently. An example of this is the normalization of chromatographic data.

An experimenter should determine each response independently, and having done so should refrain from forcing observed responses to satisfy theoretical relationships that be believes to be true.

In this study, the eigenvalue and eigenvector analysis, presented in their paper, was used to determine whether linear relationships were present among the data. The method considers a matrix

$$
\underline{D}=\left\{y_{i u}-\bar{y}_{i}\right\} \quad i=1 \ldots r
$$

of deviations from individual averages.
$y_{i u}$ is the value of the originally measured response i at the $\mathrm{u}^{\text {th }}$ experimental trial \bar{y}_{i} is the arithmetical average for response i for all the experimental runs
The eigenvalues λ_{k} and r-dimensional eigenvectors \underline{z}_{k} of $\underline{D} \underline{D}^{\prime}$ are such that if there are m_{1} independent exact linear relations in the data, there will be m_{1} zero eigenvalues. Also the size of the remaining $m_{2}=m-m_{1}$
eigenvalues will depend on the experimental errors, that is,

$$
E\left(\lambda_{k}\right)=(n \cdot 1) \underline{z}_{k}^{\prime} \Sigma \underline{z}_{k} \quad k=m+1, \ldots m_{1}+m_{2} \quad \text { 7.3.4 }
$$

where \sum is the rxr covariance matrix for the errors in the r responses. The sample estimate $\underset{\underline{E}}{ }$ for replicate runs (Table 7.3.1) was substituted in equation 7.3 .4 to yield estimates of all the λ_{k} 's.

Table 7.3.2 presents the eigenvectors and eigenvalues of $D D^{\prime}$. The expected values $\mathrm{E}\left(\lambda_{\mathrm{k}}\right)$ of these eigenvalues as calculated from equation 7.3.4 are also included on the Table 7.3.2. From Table 7.3.2, it is obvious that the values of λ_{2} and λ_{3} would have been zero were it not for the round-off errors. Hence there are only 3 independent responses in the data.

Before any meaningful analysis of data can be conducted the two dimensional singularity resulting in λ_{2} and λ_{3} being equal to zero must be removed. As it was not possible to pinpoint the true singularity relationships, the method of empirical eigenvectors was adopted in this study. Using this approach, the final analysis of data was conducted on three linearly independent combinations of all the five observed responses. Following Box et a1. [45], the transformation of the responses was carried out as follows

$$
\begin{align*}
y_{1 u}^{*} & =z_{1} y_{u} \\
y_{2 u}^{*} & =z_{-4} y_{u} \\
y_{3: x}^{*} & =z_{5} y_{u}
\end{align*}
$$

Table 7.3.1
Variance-Covariance Matrix of the Observed Responses

R 1	Rl	R 2	R 3	R 4	R 5
	$0.1824 \mathrm{E}-09$	$0.7235 \mathrm{E}-11$	$0.1356 \mathrm{E}-10$	$-0.2600 \mathrm{E}-10$	$-0.6462 \mathrm{E}-10$
R 3	$0.7235 \mathrm{E}-11$	$0.5287 \mathrm{E}-12$	$0.1106 \mathrm{E}-11$	$-0.1822 \mathrm{E}-11$	$-0.3217 \mathrm{E}-11$
R4	$-0.1356 \mathrm{E}-10$	$0.1106 \mathrm{E}-11$	$0.2535 \mathrm{E}-11$	$-0.4757 \mathrm{E}-11$	$-0.1020 \mathrm{E}-10$
R 5	$-0.6462 \mathrm{E}-10$	$-0.3217 \mathrm{E}-11$	$-0.1020 \mathrm{E}-10$	$0.3787 \mathrm{E}-10$	$0.1150 \mathrm{E}-09$

Table 7.3.2
Eigenvectors and the Eigenvalues of D D'Matrix

| i | λ_{i} | $E\left(\lambda_{i}\right)$ | | Eigenvectors (presented rowise) z_{i} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $0.1288 \mathrm{E}-06$ | $0.3041 \mathrm{E}-07$ | $0.9978 \mathrm{E}+00$ | $0.4442 \mathrm{E}-01$ | $-0.4906 \mathrm{E}-01$ | $0.2041 \mathrm{E}-02$ | $0.6713 \mathrm{E}-02$ |
| 2 | $0.3621 \mathrm{E}-23$ | $0.4326 \mathrm{E}-09$ | $0.6565 \mathrm{E}-01$ | $-0.5733 \mathrm{E}+00$ | $0.8162 \mathrm{E}+00$ | $-0.2652 \mathrm{E}-01$ | $0.9591 \mathrm{E}-02$ |
| 3 | $-0.8020 \mathrm{E}-16$ | $0.2168 \mathrm{E}-07$ | $0.7064 \mathrm{E}-02$ | $0.1017 \mathrm{E}-01$ | $0.8227 \mathrm{E}-02$ | $0.3540 \mathrm{E}+00$ | $0.9351 \mathrm{E}+00$ |
| 4 | $0.2706 \mathrm{E}-06$ | $0.4600 \mathrm{E}-09$ | $0.2687 \mathrm{E}-02$ | $-0.5376 \mathrm{E}-01$ | $-0.3479 \mathrm{E}-02$ | $0.9341 \mathrm{E}+00$ | $-0.3530 \mathrm{E}+00$ |
| 5 | $0.5991 \mathrm{E}-07$ | $0.3728 \mathrm{E}-09$ | $0.7927 \mathrm{E}-02$ | $0.8163 \mathrm{E}+00$ | $0.5756 \mathrm{E}+00$ | $0.3826 \mathrm{E}-01$ | $-0.2853 \mathrm{E}-01$ |

where for an experimental run at the $u^{\text {th }}$ trial,
$y_{u}^{\prime}=\left[y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right]$.
$=$ vector of the original 5 observed responses at the uth set of experimental condition,
and Y_{i}^{*} is the vector of linearly independent responses obtained by carrying out the transformation of equation 7.3.5. In order to obtain the point estimates of the parameters for a consistent set of experimental data, one should minimize the determinant $|V|$ where

$$
|V|=\left\{\left(\underline{y}_{i}^{*}-E\left(\underline{y}_{i}^{*}\right)\right)^{\prime}\left(\underline{y}_{j}^{*}-E\left(\underline{y}_{j}^{*}\right)\right)\right\} \quad i, j=1,2,3 \quad 7.3 .6
$$

and

$$
E\left(\underline{y}_{i}^{*}\right)=\underline{z}_{i}^{\prime} \eta
$$

where the notation ' denotes the matrix transpose operator.
This could be the case if prior information was not available. It is the Box and Draper [56] criterion and it is used if an estimate of the covariance matrix for the response is not available. Otherwise a least squares (multiresponse) criterion should be used.
i.e. for the least squares criterion (linearizing about parameter set $\left.\underline{\theta}^{*}\right)$, the best parameter estimates are given by

$$
\underline{\hat{\theta}}=\left(\underline{X}^{\prime} \underline{v}^{-1} \underline{X}\right)^{-1} \underline{X}^{\prime} \underline{V}^{-1}\left[\underline{y}_{i}^{*}-E\left(y_{i}^{*}\right)\right]
$$

The Hoffman and Reilly equation 7.2 .7 reduces to this if no prior information was available

$$
\text { i.e. } \underline{\alpha}=\underline{0}, \underline{U}^{-1}=\underline{0}
$$

Summary of Prior Information

The prior information required in equations 7.2.3, and 7.2.4 comprises the following:
i) The initial parameter estimates ($\underline{\alpha}$)
ii) The covariance matrix on the initial parameter estimates (U)
iii) The covariance matrix for the errors in the observed responses (V)

These will be considered in turn.

7.4 Initial Parameter Estimates (α)

Because the catalyst activity for the current experiments was shown to be higher than that in Wainwright's experiments, it was necessary to introduce a catalyst activity parameter into the model [Section 6.1]. The catalyst used in the previous study was assigned a unit activity, and the activity of the catalyst employed in this study would be estimated relative to this value.

In order to simplify analysis, the initial estimate of the activity parameter for the data gathered in this study was assigned a mit value. Since this parameter was assumed to be normally distributed and was to be estimated with wide variance; it became necessary to work with the logarithm of this parameter rather than the parameter itself to preclude the possibility of negative parameter values. An estimate of the variance on this parameter was based on the maximum and the minimim values that were expected for it. This value was expected to lie between $1 / 4$ and 4 with an expected value of $1.0\left(\ln \mathrm{k}_{\mathrm{s}}=0\right)$. Therefore,

$$
\begin{aligned}
& \quad \ln 4=2 * \sigma=1.3863 \\
& \text { i.e. } \sigma=0.69315 \\
& \rightarrow \sigma^{2}=0.48045
\end{aligned}
$$

where σ is its standard deviation. The initial estimate of the covariances between this parameter $\left(\alpha_{12}\right)$ and the remaining parameters in the model would be zero since its mean value estimate was independent of the others.

Parameters $\alpha_{1}, \alpha_{2}, \ldots{ }_{11}$ were estimated from the data of Wainwright using the technique of Box and Draper [56] which can be applied in the multiresponse situations. The best estimates of the parameters $\alpha_{1}, \alpha_{2}, \ldots \alpha_{11}$ are obtained when the posterior density function of the parameters is maximized or when the determinant $|\underline{S}|$ is minimized with respect to the parameters $\alpha_{1}, \alpha_{2}, \ldots{ }^{\alpha_{11}}$.

Here \underline{S} is arx matrix and its determinant is represented by

$$
\left.|\underline{s}|=\mid \sum_{u=1}^{n}\left\{y_{u}-\underline{n}_{\underline{x}_{u}}, \underline{\alpha}\right)\right\}\left\{y_{u}-\underline{n}\left(\underline{x}_{u}, \alpha\right)\right\}^{\prime} \mid
$$

and

$$
\begin{aligned}
\eta\left(\underline{x}_{u}, \underline{\alpha}\right)= & E\left(\eta_{i}\left(\underline{x}_{u}, \underline{\alpha}\right)+\varepsilon_{i u}\right) \\
& i=1,2, \ldots r \text { response } \\
& u=1,2, \ldots n \text { experiments } \\
& E \text { denotes the expectation operator }
\end{aligned}
$$

For a more detailed presentation of this parameter estimation procedure, the reader is referred to the Ph.D. thesis of Wainwright [26]. Table 7.5.1 Presents the parameter values $\underline{\alpha}$. It must be noted that in view of the linear dependencies found to exist in the data, (section 7.3) the parameter estimates $\alpha_{1}, \alpha_{2}, \ldots \alpha_{11}$ must be determined by applying the method
of empirical eigenvectors as discussed in Section 7.3. Hence the determinant $|V|$ in the expression 7.3 .6 must be miṇimized. This was not done by Wainwright; however, his parameter estimates were used directly.

7.5 ii) Covariance Matrix of the Parameter Estimates $\{\underline{U}(\underline{\alpha})\}$

In its present form, the Hoffman and Reilly method requires an estimate of the covariance matrix of the parameter estimates as determined by Wainwright. An approximation of this matrix can be obtained as follows. It is well known [128] that the variance-covariance matrix for the parameters for a linear model can be estimated from:

$$
\underline{U}(\underline{\alpha})=\left(\frac{1}{n-P / n}\right)\left[\sum_{u=1}^{n}\left(\underline{x}_{u}^{\prime} \underline{v}^{-1} \underline{x}_{u}\right)\right]^{-1}
$$

For a non-linear mode1, as is the case here, linearization of the model using the best estimates of the parameters can be used to obtain X, viz:

$$
{\underset{x}{u}}=\left[\frac{\delta \underline{n}(\underline{x}, \underline{u}, \underline{\theta}}{\delta \underline{\theta}}\right]_{\theta}=\underline{\alpha} ; \frac{V}{\operatorname{rxr}}=\sum_{u=1}^{n}\left[y_{u}-\underline{n}_{u}\left(x_{u}, \underline{\theta}\right)\right]\left[y_{u}-\underline{n}_{u}\left(\underline{x}_{u}, \underline{\theta}\right)\right]^{\prime}
$$

where $\underline{\alpha}^{\prime}=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{11}\right\}$ and \underline{x}_{u} refers to the $u^{\text {th }}$ trial. The use of equation 7.2 .7 requires knowledge of the variance-covariance matrix of the experimental responses. This method assumes that the model $\underline{\eta}$ is correct. Hence $\underline{U}(\underline{\alpha})$ represents the total uncertainty due to the kinetic model and the estimated parameters $\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{11}\right)$. Again, the covariances between α_{12} and all the other parameters in the model are zero.

The resultant 12×12 covariance matrix was evaluated and is presented in Table 7.5.1. It must be noted that in view of the dependencies

Table 7.5.1

Prior Parameter Distribution

Prior Mean ($\hat{\hat{\theta}}$)
$0.223 \mathrm{E}+01|0.185 \mathrm{E}+02| 0.350 \mathrm{E}+03|0.839 \mathrm{E}+03| 0.245 \mathrm{E}+01|-0.207 \mathrm{E}+05|-0.255 \mathrm{E}+05|-0.234 \mathrm{E}+05|-0.280 \mathrm{E}+05|-0.230 \mathrm{E}+05| 0.180 \mathrm{E}+05 \mid 0.000 \mathrm{E}+0$

Prior Covariance Matrix $\left\{V\left(\theta^{*}\right)\right\}$

$0.721 \mathrm{E}-02$	$0.201 \mathrm{E}-02$	$-0.490 \mathrm{E}-01$	$-0.887 \mathrm{E}+00$	$-0.228 \mathrm{E}+01$	$0.980 \mathrm{E}+08$	$-0.980 \mathrm{E}+08$	$-0.980 \mathrm{E}+08$	$-0.980 \mathrm{E}+08$	$0.980 \mathrm{E}+08$	$0.980 \mathrm{E}+08$	$0.000 \mathrm{E}+0$
$0.201 \mathrm{E}-02$	$0.251 \mathrm{E}-02$	$-0.381 \mathrm{E}-02$	$-0.852 \mathrm{E}-01$	$-0.441 \mathrm{E}+00$	$0.179 \mathrm{E}+08$	$-0.179 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$-0.179 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$0.000 \mathrm{E}+0$
$-0.490 \mathrm{E}-01$	$-0.381 \mathrm{E}-02$	$0.534 \mathrm{E}+00$	$0.112 \mathrm{E}+02$	$0.285 \mathrm{E}+02$	$-0.225 \mathrm{E}+09$	$0.225 \mathrm{E}+09$	$-0.255 \mathrm{E}+09$	$0.255 \mathrm{E}+09$	$-0.255 \mathrm{E}+09$	$-0.255 \mathrm{E}+09$	$0.000 \mathrm{E}+0$
$-0.887 \mathrm{E}+00$	$-0.852 \mathrm{E}-01$	$0.112 \mathrm{E}+02$	$0.260 \mathrm{E}+03$	$0.571 \mathrm{E}+03$	$0.925 \mathrm{E}+09$	$-0.925 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$-0.925 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.000 \mathrm{E}+0$
$-0.228 \mathrm{E}+02$	$-0.441 \mathrm{E}+00$	$0.285 \mathrm{E}+02$	$0.571 \mathrm{E}+03$	$0.231 \mathrm{E}+04$	$0.272 \mathrm{E}+10$	$-0.272 \mathrm{E}+10$	$0.272 \mathrm{E}+10$	$-0.272 \mathrm{E}+10$	$0.272 \mathrm{E}+10$	$0.272 \mathrm{E}+10$	$0.000 \mathrm{E}+01$
$0.980 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$-0.225 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.272 \mathrm{E}+10$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.000 \mathrm{E}+0($
$-0.980 \mathrm{E}+08$	$-0.179 \mathrm{E}+08$	$0.225 \mathrm{E}+09$	$-0.925 \mathrm{E}+09$	$-0.272 \mathrm{E}+10$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.000 \mathrm{E}+01$
$0.980 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$-0.225 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.272 \mathrm{E}+10$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.000 \mathrm{E}+0(0)$
$-0.980 \mathrm{E}+08$	$-0.179 \mathrm{E}+08$	$0.225 \mathrm{E}+09$	$-0.925 \mathrm{E}+09$	$-0.272 \mathrm{E}+10$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+10$	$-0.439 \mathrm{E}+19$	$0.000 \mathrm{E}+0($
$0.980 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$-0.225 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.272 \mathrm{E}+10$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+10$	$0.000 \mathrm{E}+0($
$0.980 \mathrm{E}+08$	$0.179 \mathrm{E}+08$	$-0.225 \mathrm{E}+09$	$0.925 \mathrm{E}+09$	$0.272 \mathrm{E}+10$	$-0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$-0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.439 \mathrm{E}+19$	$0.000 \mathrm{E}+0(0$
$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+19$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+0($								

in data discussed in Section $7.3 \eta_{u}$ and y_{u} must be transformed using the method of empirical eigenvectors. Also the parameters $\alpha_{1}, \alpha_{2}, \ldots \alpha_{11}$ used in estimating $\underline{U}(\underline{\alpha})$ must be those obtained by minimizing the determinant $|V|$ of equation 7.3 .6 . This was not done in obtaining the data presented in Table 7.5.1. This together with fact that the method used, in this section, for obtaining the $\underline{V}(\underline{\alpha})$ matrix assumes that the model is adequate may have resulted in very wide variances being associated with the activation energy parameters.

7.6 iii) The Covariance Matrix of the Observations

The five replicated data obtained in this study were used to estimate the covariance matrix $\underset{\Sigma}{ }$. The linear dependencies in the data were removed by transforming the observed responses according to the techniques discussed in Section 7.3 as follows:

$$
\underset{r \times r}{\hat{\Sigma}}=\frac{1}{m-1}\left(\underline{y}_{i}^{*}-\bar{X}_{\dot{1}}^{*}\right)^{\prime}\left(y_{i}^{*}-\bar{y}_{i}^{*}\right)
$$

where $\underline{y}_{\mathrm{i}}^{*}=\underline{z}_{\mathrm{k}} \underline{y}_{\mathrm{i}} \quad \mathrm{k}=1,4,5$ for all the replicate data ($\mathrm{m}=5$) and y_{i}^{\prime} is a vector of the originally measured responses given by

$$
y_{i}^{\prime}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}
$$

\underline{y}_{-i}^{*} is a mxr matrix of the transformed responses;
r is the number of linearly independent responses ($r=3$);
z_{k} is a 1×5 eigenvector $(k=1,4,5)$ of Table 7.3.1.
Σ was estimated and the matrix is presented in Table 7.6.1.

In the statistical technique of Hoffman and Reilley [124], the use of the coveriance matrix $\underline{\hat{\Sigma}}$ was simplified by factoring it into two triangular pairs of matrices.

$$
\text { i.e. } \quad \hat{\Sigma}=\underline{T}^{\prime} \underline{T}
$$

and equation 7.2 .1 was rewritten as

$$
\underline{T}^{1^{-1}} y_{u}=\underline{T}^{1^{-1}} \underline{n}\left(\underline{x}_{u^{\prime}}, \theta^{*}\right)+\underline{T}^{1^{-1}} \underline{\varepsilon}_{i} \quad i=1,2, \ldots \quad \begin{aligned}
& 7.6 .3
\end{aligned}
$$

The covariance matrix of the error term in this equation can be shown to be the identity matrix [125]. Hence, the model in the form of equation 7.6 .3 becomes easy to apply.

The computer program for obtaining the inverse of the upper triangular matrix \underline{T}^{1-1} from the covariance matrix $\underset{\sim}{ }$ of the transformed observations is presented in Appendix B. Table 7.6 .2 presents the $\underline{T}^{\text {1-1 }}$ matrix.

7.7 Analysis and Results

The parameters in the model were estimated using the iterative technique of equation 7.2 .7 . The computer program employed for the parameter estimation was developed by Hoffman and Reilly and was modified so that it could be used in this study. A listing of this program as applied to the present study is contained in Appendix B.

A total of 6 iterations were required before convergence was achieved. This required less than 4 minutes on the CDC 6400 computer.

Table 7.6.1
Variance-Covariance Matrix of the Transformed Responses ($\hat{\Sigma}$)
l
2
3

1. $0.17993 \mathrm{E}-09$
-0.14315E-11
$0.15807 \mathrm{E}-10$
2. $-0.14315 \mathrm{E}-11$
0.27167E-11
$-0.80452 \mathrm{E}-12$
3. $0.15807 \mathrm{E}-10$
$-0.80452 \mathrm{E}-12$
$0.26676 \mathrm{E}-11$

Table 7.6.2
Inverse Upper Triangular Matrix $\mathrm{T}^{1^{-1}}$

1

1. $0.74550 \mathrm{E}+05$
2. $0.000 \mathrm{E}+00$
$0.48370 \mathrm{E}+04$
$0.60798 \mathrm{E}+06$
$0.23829 \mathrm{E}+06$
3. $0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$0.94970 \mathrm{E}+06$

The final parameter estimates together with information as to their precision are presented in Table 7.7.1.

Table 6.8.3 indicates that the correlation coefficients of $\hat{\theta}_{12}$ with the remaining parameters are reasonable, considering the fact that the model was inadequate (Section 8.2). Also the normalized change in the activation energy parameters appear to be very small (Table 7.7.2). It is important to note that the prior covariance matrix of these parameters had very large variances (see Section 7.5).

Table 7.7.1
Posterior Parameter Distribution

Josterior Means ($\hat{\theta}$)

Josterior Covariance Matrix $\left\{V\left(\theta^{*}\right)\right\}$

2371-02	0.111--02	-0.130E-01	-0.287 +00	0.240E-03	$0.539 \mathrm{E}+00$	$0.393 \mathrm{E}^{+} 00$	-0.909E+01	-0.518E ${ }^{+} 01$	$0.740 \mathrm{E}+01$	$0.134 \mathrm{E}+02$	
111E-02	0.299E-02	$0.310 \mathrm{E}-02$	0.387E-01	0.654E-03	-0.130E+02		$-0.370 \mathrm{E}+01$		-0.137E+02		
-0.130E-01	0.310E-02	$0.148 \mathrm{E}+00$	$0.366 \mathrm{E}+01$	0.496E-03	-0.785E+02	-0.299E+03	$0.377 \mathrm{E}+02$	$0.937 \mathrm{E}^{+} 02$	-0.106E+03	-0.823E+02	
-0.287E+00	$0.387 \mathrm{E}+01$	$0.366 \mathrm{E}+01$	$0.105 \mathrm{E}+03$	-0.252E-01	-0.149E+04	-0.300E+03	$0.344 \mathrm{E}+03$	$0.189 \mathrm{E}^{+} 04$	-0.131E+04	-0.114E+04	0.6
U.240E+03	0.654E-03	0.496E-03	-0.252E-01	0.404E-02	-0.241E+02	$0.191 \mathrm{E}^{+} 02$	$-0.156 \mathrm{E}+02$	$0.232 \mathrm{E}^{+} 02$	-0.331E+02	-0.239E+02	0.
U.539E+00	-0.130E+02	-0.785E+02	-0.149E+04	-0.241E+02	$0.820 \mathrm{E}+06$	$-0.226 \mathrm{E}+06$	$0.436 \mathrm{E}+06$	$-0.106 \mathrm{E}^{+07}$	$0.500 \mathrm{E}+06$	$0.294 \mathrm{E}+06$	-0.
$0.393 \mathrm{E}+00$	-0.517E+01	$-0.230 \mathrm{E}+02$	-0.300E+03	$0.191 E+02$	-0.226E+06	$0.297 \mathrm{E}+06$	-0.278E+06	$0.252 \mathrm{E}+06$	-0.190E+	-0.274E+06	0.
-0.909E+01	-0.370E+01	$0.377 \mathrm{E}+02$	$0.344 \mathrm{E}+03$	-0.156E+02	$0.436 \mathrm{E}+06$	-0.278E+06	$0.554 \mathrm{E}+06$	$-0.506 \mathrm{E}^{+} 06$	$0.614 \mathrm{E}+05$	$0.986 \mathrm{E}+04$	-0.3
-0.518E+01	$0.730 \mathrm{E}+01$	$0.937 \mathrm{E}+02$	$0.189 \mathrm{E}+04$	$0.232 \mathrm{E}+02$	-0.106E+07	$0.252 \mathrm{E}+06$	-0.506E+06	0.1584 E	- $0.152 \mathrm{E}+06$	-0.219E+06	0.
$0.740 \mathrm{E}+01$	-0.137E+02	-0.106E+03	-0.131E+04	-0.331E+02	$0.500 \mathrm{E}+06$	-0.190E+06	$0.614 \mathrm{E}+05$	-0.512E+06	$0.754 \mathrm{E}+06$	$0.619 E+06$	
$0.134 \mathrm{E}+02$	$0.206 \mathrm{E}+01$	$-0.823 \mathrm{E}+02$	-0.114E+04	-0.239E+02	$0.294 \mathrm{E}+06$	-0.274E+06	$0.986 \mathrm{E}+04$	$-0.219 \mathrm{E}+06$	$0.619 \mathrm{E}+06$	$0.971 E+06$	
-0.637E-03	-0.205E-03	0.349E-02	0.623E-01	0.152E-02	-0.916E+01	$0.738 \mathrm{E}+01$	$-0.347 \mathrm{E}+01$	$0.130 \mathrm{E}+02$	-0.137E+02	-0.14 TE+02	0.880 E

Table 7.7.2
Normalized Change in Parameter Estimates

Parameter	Prior Mean	Prior Standard Deviation	Posterior Mean	Posterior Standard Deviation	Movement
\mathbf{i}	$\alpha_{\mathbf{i}}$	$\sqrt{V_{\mathrm{ii}}}$	$\hat{\theta}_{\mathbf{i}}$	$\left[\mathrm{V}\left(\theta^{*}\right)\right]_{\mathrm{ii}}^{1 / 2}$	$\left(\alpha_{\mathbf{i}}-\hat{\theta}_{\mathbf{i}}\right) / \sqrt{V_{\mathrm{ii}}}$
1	$0.223 \mathrm{E}+01$	$0.8490 \mathrm{E}-03$	$0.238 \mathrm{E}+01$	$0.486 \mathrm{E}-01$	$-0.1767 \mathrm{E}+02$
2	$0.185 \mathrm{E}+02$	$0.5008 \mathrm{E}-03$	$0.185 \mathrm{E}+02$	$0.478 \mathrm{E}-01$	$0.000 \mathrm{E}+00$
3	$0.350 \mathrm{E}+03$	$0.7309 \mathrm{E}-02$	$0.349 \mathrm{E}+03$	$0.384 \mathrm{E}+00$	$0.1368 \mathrm{E}+03$
4	$0.839 \mathrm{E}+03$	$0.1613 \mathrm{E}+02$	$0.822 \mathrm{E}+02$	$0.102 \mathrm{E}+02$	$0.1054 \mathrm{E}+01$
5	$0.285 \mathrm{E}+01$	$0.4803 \mathrm{E}+02$	$0.241 \mathrm{E}+01$	$0.636 \mathrm{E}-01$	$0.9161 \mathrm{E}-02$
6	$-0.207 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$-0.156 \mathrm{E}+05$	$0.905 \mathrm{E}+03$	$-0.2434 \mathrm{E}-05$
7	$-0.255 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$-0.280 \mathrm{E}+05$	$0.545 \mathrm{E}+03$	$0.1193 \mathrm{E}-05$
8	$-0.235 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$-0.202 \mathrm{E}+05$	$0.744 \mathrm{E}+03$	$-0.1575 \mathrm{E}-05$
9	$-0.280 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$-0.339 \mathrm{E}+05$	$0.126 \mathrm{E}+04$	$0.2816 \mathrm{E}-05$
10	$-0.230 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$-0.197 \mathrm{E}+05$	$0.869 \mathrm{E}+03$	$-0.1575 \mathrm{E}-05$
11	$0.180 \mathrm{E}+05$	$0.2095 \mathrm{E}+10$	$0.237 \mathrm{E}+05$	$0.985 \mathrm{E}+03$	$-0.2721 \mathrm{E}-05$
12	$0.000 \mathrm{E}+00$	$0.2095 \mathrm{E}+10$	$0.350 \mathrm{E}+00$	$0.297 \mathrm{E}-01$	$-0.1671 \mathrm{E}-09$

Table 7.7.3
Correlation Coefficient Between $\hat{\theta}_{12}$ and the Remaining Parameters of the Model

\mathbf{i}	\mathbf{j}	$\hat{\rho}_{i j}$
1	12	-0.44
2	12	-0.15
3	12	0.31
4	12	0.21
5	12	0.81
6	12	-0.34
7	12	0.46
8	12	-0.16
9	12	0.28
10	12	-0.53
11	12	-0.50
12	12	1

$\hat{\rho}_{i j}$ is the estimate of the correlation coefficient between the parameters i and j.

CHAPTER 8

EVALUATION OF THE REACTION MODEL

Once a model has been proposed and the parameters in it have been estimated from experimental data, there still remains the problem of testing its validity.

The following points are considered in the evaluation of the model:
i) It is important that the values of the parameter estimates bear some relationship to those obtained by other researchers on similar systems. In particular, the activation energies must be positive and approximately what have been found for this particular type of reaction with the catalyst used. In the literature, very few studies, if any, have published results of parameter estimation of $0-x y l e n e$ oxidation in tubular reactors using the TiO_{2} supported catalyst.
ii) Test for lack of fit:

To test for lack of fit the mean square lack of fit for each of the transformed responses was compared, through an appropriate F-test with the mean square pure error as determined from replicate experimental runs. This test was conducted using the expected values of the transformed responses, \underline{y}_{i}^{*} as calculated by the model at the experimental conditions for each experimental measurement. These data are presented in Table 8.1. The test for lack of fit is shown in Table 8.2. The model was found to be inadequate as the mean square lack of fit (MSLF) was too large compared to the experimental error variance (MSPE).

The values of the observed responses along with their predicted
values are plotted and presented in Figures 8.1 to 8.5. An examination of these plots indicates that o-xylene conversion was predicted fairly well (within 5%) but considerable error existed on o-tolualdehyde, phthalide, phthalic anhydride, and the carbon oxides (within 25\%).
iii) The plot of the residuals (the observed response-minus the expected value of the response) versus the independent variables and the run numbers are shown in Figures 8.6 to 8.9. It is demonstrated by these plots that the residuals do not show any appreciable correlation with the run numbers or with the independent variables.

Table 8.1
Observed and Predicted Values of the Transformed Responses

RUN						
No.	RESPONSE 1		RESPONE 2		RESPONSE 3	
	OBSERVED	PREDICTED	OBSERVED	PREDICTED	OBSERVED	PREDICTED
426	$0.224 \mathrm{E}-03$	$0.211 \mathrm{E}-03$	$0.308 \mathrm{E}-04$	$0.360 \mathrm{E}-04$	$0.173 \mathrm{E}-04$	$0.123 \mathrm{E}-04$
428	$0.206 \mathrm{E}-03$	$0.216 \mathrm{E}-03$	$0.359 \mathrm{E}-04$	$0.400 \mathrm{E}-04$	$0.155 \mathrm{E}-05$	$0.146 \mathrm{E}-04$
430	$0.328 \mathrm{E}-03$	$0.347 \mathrm{E}-03$	$0.449 \mathrm{E}-04$	$0.256 \mathrm{E}-04$	$0.217 \mathrm{E}-04$	$0.207 \mathrm{E}-04$
504	$0.235 \mathrm{E}-03$	$0.222 \mathrm{E}-03$	$0.384 \mathrm{E}-04$	$0.399 \mathrm{E}-04$	$0.181 \mathrm{E}-04$	$0.150 \mathrm{E}-04$
512	$0.220 \mathrm{E}-03$	$0.213 \mathrm{E}-03$	$0.379 \mathrm{E}-04$	$0.406 \mathrm{E}-04$	$0.148 \mathrm{E}-04$	$0.145 \mathrm{E}-04$
515	$0.441 \mathrm{E}-03$	$0.452 \mathrm{E}-03$	$0.341 \mathrm{E}-04$	$0.339 \mathrm{E}-04$	$0.296 \mathrm{E}-04$	$0.310 \mathrm{E}-04$
517	$0.135 \mathrm{E}-03$	$0.107 \mathrm{E}-03$	$0.588 \mathrm{E}-04$	$0.692 \mathrm{E}-04$	$0.740 \mathrm{E}-04$	$0.673 \mathrm{E}-05$
523	$0.327 \mathrm{E}-03$	$0.351 \mathrm{E}-03$	$0.994 \mathrm{E}-04$	$0.875 \mathrm{E}-04$	$0.219 \mathrm{E}-04$	$0.218 \mathrm{E}-04$
524	$0.204 \mathrm{E}-03$	$0.198 \mathrm{E}-03$	$0.405 \mathrm{E}-04$	$0.422 \mathrm{E}-04$	$0.137 \mathrm{E}-04$	$0.135 \mathrm{E}-04$
527	$0.381 \mathrm{E}-03$	$0.397 \mathrm{E}-03$	$0.547 \mathrm{E}-04$	$0.418 \mathrm{E}-04$	$0.217 \mathrm{E}-04$	$0.280 \mathrm{E}-04$
529	$0.381 \mathrm{E}-03$	$0.419 \mathrm{E}-03$	$0.505 \mathrm{E}-04$	$0.204 \mathrm{E}-04$	$0.196 \mathrm{E}-04$	$0.250 \mathrm{E}-04$
531	$0.409 \mathrm{E}-03$	$0.407 \mathrm{E}-03$	$0.414 \mathrm{E}-04$	$0.665 \mathrm{E}-04$	$0.219 \mathrm{E}-04$	$0.247 \mathrm{E}-04$
605	$0.227 \mathrm{E}-03$	$0.230 \mathrm{E}-03$	$0.379 \mathrm{E}-04$	$0.423 \mathrm{E}-04$	$0.149 \mathrm{E}-04$	$0.156 \mathrm{E}-04$
610	$0.423 \mathrm{E}-03$	$0.416 \mathrm{E}-03$	$0.269 \mathrm{E}-05$	$0.812 \mathrm{E}-05$	$0.197 \mathrm{E}-04$	$0.292 \mathrm{E}-04$

Table 8.2
Analysis for Lack of Fit

	Degrees of freedom	y_{1}^{*}	y_{2}^{*}	y_{3}^{*}
S.S.R.	42	$0.559 \mathrm{E}-08$	$0.224 \mathrm{E}-08$	$0.206 \mathrm{E}-09$
SSPE	12	$0.884 \mathrm{E}-09$	$0.486 \mathrm{E}-10$	$0.110 \mathrm{E}-10$
SSLF	30	$0.471 \mathrm{E}-08$	$0.239 \mathrm{E} \cdot 08$	$0.195 \mathrm{E}-09$
$\overline{\text { MSLF }}$	$\frac{30}{12}$	5.68	18.2	19.7
$\mathrm{~F}_{(30,12,0.95)}$		2.47	2.47	2.47

Table 8.3
Final Parameter Estimates

i	Parameter Symbol	$\hat{\theta}_{i}$ $(95 \%$ confidence interval)
1		
2	k_{a}	$0.4889 \mathrm{E}+06 \pm 0.2009 \mathrm{E}+05$
3	k_{12}	$0.5966 \mathrm{E}+11 \pm 0.3086 \mathrm{E}+09$
4	k_{23}	$0.2519 \mathrm{E}+10 \pm 0.5543 \mathrm{E}+07$
5	k_{34}	$0.2601 \mathrm{E}+15 \pm 0.6477 \mathrm{E}+12$
6	k_{5}	$0.1177 \mathrm{E}+08 \pm 0.6212 \mathrm{E}+06$
7	E_{a}	$15637 . \pm 1810$.
8	E_{12}	$27983 . \pm 1090$.
9	E_{23}	$20187 . \pm 1488$.
10	E_{34}	$33846 . \pm 2520$.
11	E_{5}	$19684 . \pm 1738$.
12	E_{AS}	23671.99 ± 1970

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

NOTATIONS
$\begin{array}{ll}\circ \text { - O-XYLENE } & \star \text { - PHTHALIC ANHYDRIDE } \\ \nabla \text { - D-TOLUALDEHYDE } & \star \text { - CARBDN DXIDES } \\ \therefore \text { - PHTHALIDE } & \end{array}$

Figure 8.6

Figure 8.7

INLET O-XYLENE CONCENTRATION (GM MOLES/LITER) X1000
Figure 8.8

NOTATIONS

Figure 8.9

CHAPTER 9

DISCUSSION OF RESULTS

An active site parameter was included in the model to account for the loss of activity with temperature probably due to loss of SO_{3} in the catalyst. This parameter was assumed to obey an exponential temperature dependency, as discussed in Section 7.1, and it may not model the thermal deactivation behaviour of the catalyst very accurately. It must be noted that precise estimates of the kinetic parameters can be obtained for the TiO_{2} catalyst model only when the catalyst has been adequately modelled. It will be necessary, in the future, to design experiments primarily to model the thermal deactivation behaviour of the catalyst.

The paper of Vanhove and Blanchard (discussed in Section 2.3) represent the report of very few studies, in the literature, in which radioactive tracers have been used for defining the reaction paths involved in o-xylene oxidation on vanadium pentoxide catalyst supported on titanium dioxide. It is important to note that of the sophisticated approaches that have been applied to the establishing of reaction networks (or mechanisms) for complex reactions such as the one considered in the present study, the use of isotropic tracer techniques has been most useful in providing unambiguous answers. It was demonstrated in their work that phthalic anhydride is formed directly from o-tolualdehyde and phthalide. In the present study, phthalic anhydride was considered to be formed only from phthalide. In addition the assumption made that the formation of C 0 and CO_{2} directly from the phthalic anhydride and phthalide was
insignificant, may not be valid. It may be necessary to oxidize o-tolualdehyde, phthalide and phthalic anhydride independently, to determine the significance of several of the reaction steps not included in the model of section 6.1. The most probable models can be set up and the information derived from oxidizing these intermediates, for instance, the relative rate of formation of carbon oxides from o-tolualdehyde, phthalic anhydride and phthalide, the rate constants and the activation energies of the significant steps will be useful in planning future experiments for o-xylene oxidation, designed to discriminate among posfulated models.

In addition Hughes and Adams [5] have observed that a lower oxidation catalyst increased the rate of oxidation of phthalic anhydride to CO_{2} and C0 and maleic anhydride. This suggests that sites of lower oxidation state in the catalyst, produced by partial oxidation of the aromatic compound, may be active for total oxidation. Perhaps, the rate of oxidation of o-xylene and o-tolualdehyde to $\mathrm{C} / \mathrm{CO}_{2}$ is not dependent on ϕ (the oxygen active sites) but on (1-ф).

The results of the center point experiments conducted in this study demonstrates that no long term deactivation was apparent in the catalyst, within the period of steady experimentation lasting a total of fifty days. This finding suggests that even when experimental design techniques are applied to this catalyst, consistent data can be ohtained. It must be noted that it has been demonstrated in [26] and [28] that some vanadia catalysts supported on silica gel exhibited long term decays that were dependent on the past temperature histories of the catalysts.

The temperature during the reoxidation period of the catalyst appears to determine the catalyst activity for the steady-state experiments. Wainwright[26]
had attempted to stabilize the catalyst activity by reoxidizing the catalyst at temperatures of at least $20^{\circ} \mathrm{C}$ higher than that at which the steady-state experiments were to be conducted. In the present work, the reoxidation temperature of the catalyst was set equal to that at which the steady-state experiments were to be conducted. The resulting catalyst was higher in activity and more stable than that of Wainwright. It has also been demonstrated elsewhere $[26,28]$ that catalysts of different stability and activity can be produced depending on the heat treatment or the reoxidation temperature of the catalyst.

It has been demonstrated in this study (Section 5.3) that the amount of S_{2} introduced in the feedstream may not have been enough to maintain the original activity of the fresh catalyst. This suggests that the S_{2} in the feedstream may be increased to a level such that the SO_{2} content of the catalyst during operation becomes equal to that of the original fresh catalyst. In this case, it is expected that a suitable catalyst of higher activity would result.

The ratio of the activity of the catalyst employed in the present study to that of the previous study was calculated to be 1.45 (see Section 5.2) as determined from the relative rates of reaction of the center point experiments. A value of 1.42 was estimated for the relative activity parameter, k_{s} by employing the statistical technique of Hoffman and Reilly [124] to transfer information from the previous experiment to that considered in this study. This demonstrates the effectiveness of this technique.

At a constant $o-x y l e n e$ saturator bath temperature and gas flowrate, the o-xylene concentration in the feed was observed to vary. This variation did not enable accurate control of the o-xylene concentrations in the feed.

Thus true replicate measurements could not be obtained and this resulted in an inflated estimate of the covariance matrix of the responses. It is important to note that true replicates are necessary for the accurate estimation of the covariance matrix which is necessary for testing for lack of fit in the model under consideration.

CONCLUSIONS AND CONTRIBUTION TO KNOWLEDGE

10.1 Contribution to Knowledge

1) A new chromatographic technique has been developed and applied successfully in this work.
2) This study has demonstrated the use of statistical techniques in reaction kinetics, - the following were demonstrated:
i) Design of experiments for parameter estimation;
ii) The use of Box et al. [45] technique for determining. the existence of linear relationships among the data;
iii) The application of the Hoffman and Reilley [124] technique for transferring information to a catalytic system when catalyst activity changes.
3) Useful information concerning the reaction model and the catalyst. activity have been obtained in this study.
4) The proposed reaction model (Wainwright's model) discussed in Chapter 5 was found inadequate and recommendation for future work is discussed in Section 10.3.

10.2 Conclusions

This study has demonstrated that the reaction model, for o-xylene oxidation on vanadium pentoxide catalyst supported on titanium dioxide, considered in this study is inadequate.

However, useful information has been obtained in this study and recommendations have also been made that will be helpful in planning future studies to develop more suitable reaction models.

10.3 Reconmendation for Future Work

Further attempt to elucidate the reaction network should include the oxidation of the intermediate compounds as discussed in Chapter 9. Probable reaction models should be set up and the statistical techniques of experimental design for model discrimination should be employed to develop a suitable kinetic model. The use of the Hoffman and Reilly [124] parameter estimation technique has been applied successfully in this work; also suitable computer programs for applying this technique in the current work have been developed. These together with the data gathered in this study may be of some use in obtaining precise parameter estimates when a suitable model has been developed.

Further studies need to be conducted to contribute more understanding to the catalyst behaviour. In particular, experiments should be designed primarily to model the thermal deactivation of the catalyst.

Further work on the development of a suitable reaction model will require accurate control of o-xylene in the feed. Results of tests carried out on the o-xylene saturator indicated that the reactant gas was not saturated with 0 -xylene at the operating bath temperature. It is suggested that the height of the saturator be increased to allow saturation of the gas with $0-x y l e n e$.

The hot air guns (12A, 120V) used for heating the sample valve compartment to prevent the condensation of the product material were not suitable for continuous operation as required in this study. These heaters often developed electrical noises which interfered with the voltage signals from the gas chromatograph. Accurate interpretation of peak areas from
the chromatograph by the integrator could not be made under such conditions.
Hence these heaters had to be replaced very often. It is important that
future work employs stronger, industrial type air guns.

REFERENCES

1. Bhalla, S.K., M.Eng. Thesis, McMaster University (1967).
2. Dixon, J.K., Longfield, J.E. in Emmett, P.H. Ed., 'Catalysis', Vol. VII, 212-217, Reinhold, N.Y. [1960].
3. Downie, J., Shelstad, K.A., Graydon, W.F., Can. J. Chem., Eng., Vol. 39, p. 201 [1961].
4. Herten, J., Froment, G.F., Ind. Eng. Chem. Process Des. ६ Development, 1, 516 [1968].
5. Hughes, M.F., Adams, R.T., J. Phys. Chem., 64, 781 [1960].
6. Jaswal, I.T., Mann, R.F., Juusola, J.A., Downie, J., Can. J. Chem. Eng., 47, 284 [1969].
7. Juusola, J.A., Mann, R.F., Downie, J., J. Catalysis, 17, 106 [1970].
8. Juusola, J.A., Bacon, D.W., Downie, J., Can. J. Chem. Eng., 50, 796 [1972].
9. Kakinoki, H., Sahara, N., Kamata, I., Aigami, Y., Shokubar, 4, 113 [1962].
10. Kakinoki et al., Gakkai, Shi, 7 [3], 164 [1964].
11. Muzushina F., et al., Sekiyu, Shi, 7 [11], 30 [1960].
12. Mars, P., Van Krevelen, D.W., Chem. Eng. Sci., Special Supplement, 3, 41 [1954].
13. Mann, R.F., Downie, J., Can. J. Chem. Eng., 46 [1969].
14. Mann, R.F., Ph.D. Thesis, Queen's University, Kingston, Canada [1966].
15. Suzuki et al., Sekiyu, Gakkai, Shi 7, [1], 15 [1964].
16. Simard, G.D., Steger, J.F., Arnott, R.J., Siegel, L.A., Ind. Eng. Chem., 47, 1424 [1955].
17. She1stad, K.A., Downie, J., Graydon, W.F., Can. J. Chem. Eng., 38, 102 [1960].
18. Satterfield, C.M., Loftus, J., J. Phys. Chem., 69, 909 [1965].
19. Satterfield, C.M., Loftus, J., J. Phys. Chem., 69, 090 [1965].
20. Shaw, I.D., Hoffman, T.W., Orlickas, A., Reilly, P.M., Can. J. Chem. Eng., 50, 637 (1972).
21. Shaw, I.D., Ph.D. Thesis, McMaster University [1974].
22. Sherwood, P.W., Oil In Canada, p. 24 (21212), October 1958.
23. Sherwood, P.W., Oil in Canada, p. 26 (21434), November 1958.
24. Graham, P.F., Chem. Eng. Prog., Vol. 58, No. 1, Jan. 1962.
25. Bumin et al., Chem. Eng. Progr., 65, (6), 88 [1969].
26. Wainwright, M., Ph.D. Thesis, McMaster University [1974].
27. Wright, J.F., J. Phys. Chem., 66, 2023 [1962].
28. Juusola, J.A., Ph.D. Thesis, Queen's University, Kingston, Ontario Canada [1971].
29. See reference 23 above.
30. Mellor, J.W., 'A Comprehensive Treatise on Inorganic and Theoretical Chemistry', Vol. 10, p. 445-446, Longmans, London [1930].
31. Maselli, J.M., Kim, G., Canadian Patent No. 873904, June 22 [1971].
32. Senseman, C.E., Nelson, O., Ind. Eng. Chem., 15, 521 [1923].
33. Weiss, J.M. et a1., Ind. Eng. Chem., 15, 965 [1923].
34. Tandy, G.H., J. Appl. Chem., 6, 68 [1956].
35. Farbar, L., Morley, M.J., Ind. Eng. Chem., 49, 1143 [1957].
36. Vrbaski, T., Mathews, W.K., J. Catalysis, 5, 125 [1966].
37. Kittrell, J.R., Mezaki, R., Watson, C.C., British Chem. Eng., Vol. II, No. 1, p. 15, January [1966].
38. Nowak, Manfield, Flock, W., Chem. Tech., 26, Heft, 4, p. 197, Apri1 [1974].
39. Levine, I.E., "The Chemistry of Hydrocarbons', Vol. 3, p. 1, Reinhold [1955].
40. Stobaugh, R.B., 'Hydrocarbon Process Petrol Refiner', 45 (4), 149 [1966].
41. Paetkau, T.R., M. Eng. Thesis, McMaster University [1966].
42. Beek, J., Advances in Eng. Chem., 59 (2), 18 [1967].
43. Kittre1, Hunter, W.G., Watson, C.C., A.I.Ch.E. Journa1, Vo1. 12, No. 1, p. 5, January [1966].
44. Box, G.E.P., Hunter, W.G., Proc. I.B.M. Sci. Computing Symp. Statistics, 113 [1965].
45. Box, G.E.P., Hunter, W.G., MacGregor, J.F., Erjavec, J., Technometrics, Vol. 15, No. 1, February [1973].
46. Box, G.E.P., Lucas, L.H., Biometrika, 46, 77-90 [1959].
47. Draper, N.R., Hunter, W.G., Biometrika, 53, p. 525 [1966].
48. Box, M.J., Technometrics, Vol. 13, No. 1, p. 119, [1971].
49. Manek, L.F., Halm, D.A., The Catalytic Oxidation of Organic Compounds in the Vapour Phase. The Chemical Catalog Co. [1932].
50. Gulati, I.B., Bhattacharryya, S.K., J. Sci. Ind. Res., India, 12B, 450 [1953].
51. Gulati, I.B., Bhatacharryya, S.K., Chem. and Ind. (London), p. 1425 [1954].
52. Gulati, I.B., Bhatacharryya, S.K., Ind. Eng. Chem., 50, 1719-1726 [1958].
53. Bhattacharryya and Krishnamurthy, Current Science (India), 28, 363 [1959].
54. Bhattacharryya and Gangully, Journ. India Chem. Soc., 38, 463 [1961].
55. Brooks, S.H., "A Discussion of Random Methods for Seeking Maxima", Operations Research, 6, p. 244-251 [1958].
56. Box, G.E.P., and Draper, N.R., Biometrika, 52, 355 [1965].
57. Ockerbloom, N.E., Hydrocarbon Processing, p. 162, Sept. 1971.
58. Tamura, A., Hudgins, R., Silveston, P.L., J. of Catalysis, p. 122 [1976].
59. Prichard \& Bacon, D.W., Chem. Eng. Science, 30, p. 567-574 [1975].
60. Wright, F.S., J. Phys. Chem., 66, p. 2023-2028 [1962].
61. Wright, F.S., J. Phys. Chem., 64, p. 1944-1949 [1960].
62. Satterfield, C.N., Loftus, J., I \& EC Proc. Des. \& Dev., 4, p. 102105 [1965].
63. Yabrov, A.A., Boreskov, G.K., Ivanov, A.A., II'inich, O.M., Kinetika-i-Kataliz, Vol. 16, No. 6, p. 1534-1537 [1975].
64. Bourgone, J.H., Proc. Roy. Soc. (London), A 175, 539 [1940].
65. Bourgone, J.H., Tang, T.L., Newitt, D., Proc. Roy. Soc. (London), A 174, 379 [1940].
66. Cherepkov, G.V., Mukhlenov, I.P., Shevijakov, A.M., Dobkina, E.I., Kinetika-i-Kataliz, Vol. 17, No. 4, p. 204-207, January-February [1976].
67. Boreskov, Kinetika-i-Kataliz, Vol. 14, No. 1, p. 7-24, JanuaryFebruary [1973].
68. Barishnikov, Y.N., Aleksandrov, G.A., Vesnovskaya, G.I., and Kaloshina, N.N., Kinetika-i-Kataliz, Vol. 15, No. 1, pp. 127-131 [1974].
69. Hulburt, H.M. "Chemical Reaction Engineering Reviews", Chapter 2, p. 26, (Advances in Chemistry Series, 148, American Chemical Society), Washington, D.C., p. 49 [1975].
70. Andreikov, E.I., Svenshnikova, Y.A, Rus'yanova, N.D., Kinetika-iKataliz, Vol. 11, No. 14, p. 794.
71. Blanchard, M., Louguet, G., Kinetika-i-Kataliz, Vol. 14, No. 1, p. 3034 [1973].
72. Boag, T.F., Bacon, D.W., Downie, J., Jour. of Catalysis, 38, p. 375384 [1975].
73. Novella, E.C. and Benlloch, A.E., Anales Real Soc. Espan. Fis. Quim., Series B58, 783 [1962].
74. Bernardini, and Ramacci, M., Chimica e Industria, 48 (1), 9 [1966].
75. Vanhove, D., and Blanchard, M., Journal of Catalysis, 36, p. 6-10 [1975].
76. Lyubarskii, A.G., Gorelik, A.G., Petroyan, V.P., Lyapin, E.V., Beskov, V.S., Kinetika-i-Kataliz, Vo1. 14, No. 2, p. 410-417 [1973].
77. Roiter, V.A., Kumeichuk, G.P., Ushakova, V.P., Stukanovskoya, N.A., An. UKr SSR, Kiev [1963].
78. Marthur and Viswanath; reference 58 of [69].
79. Riley, H.L., "Catalysis in Practice", Institute Chem. Eng., London [1963].
80. Kenney, C.N., Catal, Rev. Sci. Eng., 11 (2), p. 197-224 [1975].
81. Livbjerg, H., Jensen, F.K., Villadsen, J., Jour. of Catalysis, 45, p. 216-230 [1976].
82. Frazer , Kirkpatrick, W.J., J. Amer. Chem. Soc., 62, p. 1659 [1940].
83. Kiyoura, R., Kagaku (Tokyo), 10, p. 126 [1940].
84. Tandy, G.H., J. Appl. Chem., 6, 68 [1956].
85. Anderson, R.B., "Catalysis for Fisher-Tropsh Synthesis", Catalysis, Vol. IX, p. 29 [1956].
86. Herrman, R.H., Adlex, S.F., Goldstein, M.S., DeBaun, R., J. Phys. Chem., 65, p. 2189 [1961].
87. Mills, G.A., Boedeker, E.R., Oblad, A.G., J. Amer. Chem. Soc., 72, 1554 [1950].
88. Maxted, E.B., Adv. Catal., 3, p. 129 [1951].
89. Prater, C.D. and Lago, R.M., Adv. Catal, 8, p. 283 [1956].
90. Krylov, O.V., 'Catalysis by Non-Metals', Academic, N.Y., p. 225 [1970].
91. Laidler, K.J., "The Chemical Kinetics of Enzyme Action", Oxford, N. 欠., p. 336 [1958].
92. Wojeciechowski,B.W., Can. J. Chem. Eng., 46, p. 48 [1968].
93. Wojeciechowski, B.W., Cat. Rev. Sci. Eng., 9 (1), p. 79-113 [1974].
94. Levenspiel, 0., "Chemical Reaction Engineering", Wiley, N.Y. [1962].
95. Spie1man, M., A.I.Ch.E. JOurna1, 10, p. 496-501 [1974].
96. Zeng, F.A., Othmer, D.F., 'Fluidization and Fluid Particles', Reinhold, N.Y. [1960].
97. Davidson, J.F., Harrison, D., 'Fluidized Particles', Cambridge University Press [1963].
98. Marsheck, R.M., Gomezplata, A., A.I.Ch.E. Journa1, 11, p. 1670 173 [1965].
99. Murkherjee, S.P. and Doraiswanny, L.K., Brit. Chem. Eng., 10, p. 93-102 [1965].
100. Wainwright, M.S., and Hoffman, T.W., Advances in Chemistry, Series No. 133, Amer. Chemical Soc., p. 669 [1974].
101. Messner, A.E., Rosie, D.M., Argabright, P.A., Analytical Chemistry, Vol. 31, No. 2, p. 230, February [1959].
102. Jariswala, S.L., Wakeman, I.B., Journ. of Chromatographic Science, Vol. 8, p. 612-614, October [1970].
103. Wainwright, M., Hoffman, T.W., Journ. of Chrom. Sci., Vol. 14, p. 159 [1976].
104. Bernardini, F., et al., Chim. Ind. (Milan), 48, No. 1, p. 17 [1966].
105. Box, G.E.P., Cox, D.R., Journ. Roy. Stat. Soc., Series B, 26, p. 211 [1964].
106. Cherepkov, G.V., Mukhlenov, I.P., Sheryakov, A.M., Dobkina, Z.I., Kinetika-i-Kataliz, Vol. 17, No. 1, p. 204, January-February [1976],
107. Butakova, V.I., Skorokhod, V., Rus'yanova, N.D., Lyapkin, A.A., Kinetika-i-Kataliz, Vol. 16, No. 1, p. 144, January-February [1975].
108. Vanhove, D., Blanchard, M., Bull. Soc. Chim. de France, No. 9, p. 3291 [1971].
109. Wojeciechowski, Cat. Rev. Sci. Eng., 9 (1), p. 79-113 [1974].
110. Hosten, L.H., Chem. Eng. Sci., Vo1. 29, p. 2247-2752 [1974].
111. Enmett, P.H., Catalysis Reviews, 7 (1), p. 1-24 [1972].
112. Doraiswamy, L.K., Tajbl, D.G., Cat. Rev. Sci. Eng., 10 (2), p. 177210 [1974].
113. Boreskov, G.K., Kinetika-i-Kataliz, Vol. 3, No. 4, p. 470-480, JulyAugust [1962].
114. Andreikov, E.I., Sveshnikova, Rusyanova, Kinetika-i-Kataliz, Vo1. 17, No. 3, p. 635-643, May-June [1976].
115. Mikhov, V., Voronstov, V.F., Onitrenkoz, F., Kinetika-i-Kataliz, Vo1. 17, No. 2, p. 517-518, March-Apri1 [1976].
116. Box, M.J., Technometrics, Vo1. 13, No. 1, p. 19, February [1971].
117. Vlavacek, V., Ind. Eng. Chem., 62, No. 7, 8 [1970].
118. Hunter, W.G., Ind. Eng. Chem. Fundamentals, 6, 461 [1967].
119. Plackett, R.L., Biometrika, 34, 311 [1947].
120. Bartlett, M.S., J. Roy. Stat. Soc., Supp1., 4, 137, [1937].
121. Kenney, J.F., Keeping, E.S., Mathematics of Statistics, 1, D. Van Nostrand Co., Toronto [1960].
122. Vanhove, D., Blanckard, M., Bulletin de 1a Société Chimique de France, No. 9, p. 3291 [1971].
123. Allen, J.A., Chem. and Ind., 47, p. 1225 [1963].
124. Hoffman, T.W., Reilly, P.M., paper to be published in the Canadian Journal of Chemical Engineering.
125. Plackett, R.L., 'Regression Analysis', p. 2, 47, Oxford, Clarendon Press, London [1960].
126. Zahner, J.C., First International Symposium on Chemical Reaction Engineering, Washington, D.C., June [1970].
127. Orlickas, A.J., M.Eng. Thesis, McMaster University [1970].
128. Draper, N.R., Smith, H., Applied Regression Analysis, John Wiley \& Sons, Inc., New YOrk, Chapter 9 [1966].
129. Hunter, W.G., Atkinson, A.C., Journal of Chemical Engineering, p. 159, June 6, 1966.

APPENDIX A

Equipment Specification

Gas chromatographic technique

1. Gas chromatograph

Manufacturer : Varian Aerograph
Model : 1520
Features : Matrix temperature programmer
Detector : Thermal Conductivity
Filaments: Rhenium Tungsten (WX)
2. Integrator

Manufacturer : Hewlett Packard
Model : 3370B
3. Recorder

Manufacturer : Johns Scientific
Model : 291/MM
4. Gas Sample Valves

Manufacturer : Carle Instrument Inc.
Type : Micro volume switching valve with zero dead volume Catalogue No. : 2014

Chemicals-Liquid and Solid Components

1. Orthoxylene

Analytical and packed bed reactor
Manufacturer : Matheson, Coleman and Be11
Catalogue No. : XX17
Grade : Chromatographic quality purity: 99+\%
2. Orthotolualdehyde

Manufacturer : Aldrich Chem. Co.
Catalogue No. : 11,755-2
Purity : Gas chromatographic
3. Phthalic Anhydride

Manufacturer : J.T. Baker and Co.
Catalogue No. : 0272
Purity : Analytical
4. Phthalide

Manufacturer : Fisher Scientific Co.
Catalogue No. : 17827
Purity : Laboratory grade
5. Dioxane

Manufacturer : Fisher Scientific Co. Catalogue No. : D-111 Purity : Laboratory grade
6. Trichloro-ethylene

Manufacturer : J.T. Baker

Electric heaters

1. Air gun heater

Manufacturer : W.J. West Away Co. Ltd.
Catalogue No. : HAS-018K
2. Immersion heater

Manufacturer : VYCOR (120V, 500W)
Catalogue No. : 745601-7950
3. Refractory heater

Manufacturer : Fisher Scientific Co. Ltd.
Catalogue No. : 11-463-0100B
4. Reactor salt bath heater

Manufacturer : Canadian Chromalox Co. Ltd. Catalogue No. : 13045
5. Reactor exit block heater

Manufacturer : Canadian Chromalox Co. Ltd. Catalogue No. : C-202
6. Electrothermal heating tape

Manufacturer : Fisher Scientific Co. Ltd. Catalogue No. : HT 351

Gases

1. Helium: Canadian Liquid Air Limited
2. High Purity Nitrogen: Canadian Liquid Air Limited
3. Oxygen: Canadian Liquid Air Limited
4. Carbon dioxide: Canadian Liquid Air Limited
5. Carbon monoxide: Canadian Liquid Air Limited
6. Sulphur dioxide (0.5%), Nitrogen (99.5\%) - Calibrated standard. Matheson of Canada.

APPENDIX B

LISTINGS OF COMPUTER PROGRAMS

PROGRAM NO 1:

The following program converts raw chromatographic peak area data into experimental inlet and outlet concentration and to punch data for parameter estimation programs.

```
PRCGFAM YSTIINFUT, OUYPUT,PUNCH,TAPE5=INPUT,TAFEG=OUTPUT,TAPET=FUN
1%H)
FOLLCWING IS A PROGRAM TC CONVERY RAW DATA INYO EXPERINENTAL
INLET AND OUTLET CONCENTGATIONS AND TO PUNCH OATA FOR FAFAMETEF
ESJINATION AND EXPERIMENTAL DESIGN PROGRANS.
                    PHTHALIC ANHYORIOE REACTOR MOOEL.
                    STEAOY STATE AOSORPTICN MOOEL.
TOXA-ABSOLUTE TEMP (K)
YOX-TEMPEFAYURE OF O-XYLENE SATURATOR (C)
FOZ FLOWRATE OF DXYGEN CC/NIN.
FN2- FLOHRATE OF NITROGEN CC/HIN.
TA=TAM9+273.2
GAMG-AGSOLUTE FRESSURE AT HHICH FOZ,FNZ, ARE NEASURED, MM.HG.
TAMQ-TEMPERATUFE AT WHICH FOZ, FN2'ARE'MEASURED
KRUN-EXPERINENT RUA NUMBER
AGE-CONSYANTS IN OXYLENE VAFOUF PRESSURE CORRELATION
YGCX:VAPOUR PRESSURE GF CXYLENE 
YO2,YN2,YOX-11OLE FRACTIONS
TR,&F,-TEMP(C),ABSOLUTE PRESSURE AT REAGTOR INLEY
COX,CC2, CN2-CORCENTRATIONS OF COMPCNENTS (GM MOLES/LITER)
Y-CGNCEMTRATIQAS IN MERSON SUBROUTINEN (GM.MOLENLETER)
    FR-ROLE FRACTION OF EXIT
    YE-EXPERINENYAL EXIY CONCENTRATION (GM. MOLES/LITER)
    AI-AREA OF INLET AMALYSIS
    AO-AREA OF OUTLET ANALYSIS
    RN-RELATIVE RESPONSE
    RA-FATIO
```



```
W=WEIGHT CF CATALYSTOGRAMS
OELP=PRESSURE EROP ACROSS REACTOR ,MM. HG.
PY TOTAL ABSOLUTE PRESSURE IN REALTOR,MM.HG.
UN IS SIOICHIOFETRIC COEFFICIEAT FOR CARBON OXIOE FORMATION
```



```
DIMENSION Y(10)
```

DIMENSION Y(10)
OIMENSINN ARRAY(25{25),,AO(10),RA(10),YE(10),FR(10)
OIMENSINN ARRAY(25{25),,AO(10),RA(10),YE(10),FR(10)
REAL ANZME
REAL ANZME
RELATIVE FOLAR PESPONSES FOR ALL COMPCNENTS
RELATIVE FOLAR PESPONSES FOR ALL COMPCNENTS
OATA FM/3.04,3.17,3.28,3.34,1.20,0.97,1.0,2.57,1.06,1.8/
OATA FM/3.04,3.17,3.28,3.34,1.20,0.97,1.0,2.57,1.06,1.8/
MNEXP-EXPERIMENT SET HUHEER.ENT REACTION CONOITIONS
MNEXP-EXPERIMENT SET HUHEER.ENT REACTION CONOITIONS
REAO(5,997) NNEXP
REAO(5,997) NNEXP
REAC(5;997)MSETS
REAC(5;997)MSETS
00 500G KKK=1;NSETS

```
00 500G KKK=1;NSETS
```

C ZERO STORAGE ARRAY -ARFAY(IgJ) $\begin{array}{lll}00 & 11 & I=1,25 \\ 00 & 11 & j=1,25\end{array}$ ARGAY\{I, J $\}=0$
11
C
READ $(5,997)$
REAO 15,800$)$
READ (5,800) KRLN
C
C
C CALCLLATE COHCENTRATIONS ANO VOLUMETRIC FLCHRATE INTO REACTOF
$T A=T A M E+273.2$
DERF=24D0:*TA*760./(273.2*FANB)
$02=F C 2 / 0 E 1$
C REACTOR EXPERINENTAL CONCITIONS
GRAOF=DELF/W
$\mathrm{PT}=\mathrm{FF}$
C GALCULATE MOLE FQACTION CF O-XYLEME
$R A(1)=\{A I(1) / A I(7))+R M(7) / R M(1))$
RA(G) $=(A I(5) / A I(7)) *(R M(7) / R M(5))$
$Y O X=F A(1) /(1 .+F A(1)+R A(6))$
$R A A=F A(1)$
$R A D=F A(6)$
$0 X=(C 2+1+2) * Y O X /(1 .-Y O X)$
$T=T R+273.2$
FGAS=(02+N $2+0 X) * 22400 . * T * 760 . /(273.2 * P F)$
C CALCULATE GONCENTRATIONS IN REACTOR IN NOLES/CC.
$C O X=C X / F G A S$
CO2=C2/FGAS
CN2=N2/FGAS
WRITE (5,999) NNEXP,KRUN
WRITE (6.554)
WRTIE (6,558)
WRITE (6,555) AI(1), AI.(6), AI(7)
WRITE (S; 9 C) TOX,FC2,FN2;TAME,PAMB,FGAS
WRITE(6,995)TR,PR,W,OELP
FAC $=C X^{*} 60$.
$A=9998.5$
$\mathrm{B}=8 \mathrm{~g} \mathrm{X}^{147551}$
$\left.V P C X=10.0 * *\left(\left(-0.2185^{*} A\right) /(273.2+T O X)\right)+\theta\right)$
C MOA IS YHE MUMEER CF EXIT ANALYSIS CONOUCTEO AT EACH EXPERIMENTAL COND. READ(5,997)NDA
DO 300 III $=1,11 C A$
READ(5;800) (AO(I),I=1,10)
WRITE 6,557$)$
WRIIE 6,5 E0)
WRITE(6,556) (AO(I),I=1,10)
c^{-}
FCFMAT (10F12. CALCULATE EXPERIMENTAL EXIT CONCENTRATION
RA(I) $=\left(\frac{I}{=}=18(I)^{10} / A C(7)\right) *(R M(7) / R M(I))$
C 801 CALCULATE WATER RESPONSE
$R H 20=R A(2)+R A(3)^{* 2}+R A(4)+3 .+(R A(5)+R A(9)) * 5.180+R A(10) * 1.5$
CALCULAYE OXYGEN RESFONSE
$R A C=\hbar A(2)+R A(3) * 20+R A(4) * 30+R A(5) * 10.5 / 8.0+R A(9) * 5.5 / 8.0+R A(10) *$
1185
CALCULATE OVERALL STOICHIOMETRIC COEFFICIENT
CSN = (RAD-RA(6))/(RAA-RA (1))
CALCULATE OXYGEN BALAMCE (STOICHIOMETRIC O2 OUT-MEASURED O2 OUT)
$0 B=(R A D-R A C) / R A(E)$
COU= (RAD-AA (G)) 1 PAC
CALCULATE STOICHIOHETRIC NUHBEF FOR CARBON OXILES FORMED

WRR=aA(E) /RH2O
carecn salance
RAB $=R A(1)+R A(2)+R A(3)+R A(4)+(R A(5)+R A(9)) / 8.4 R A(10)$
1*0.5
$C B R=F A B / R A A$
HYOROGEN EALANCE
$R H R=F A(1) 4 R A(2) 4.0 / 5.0+R A(3) * 3.0 / 5.0+R A(4) * 2.0 / 5.0+R A(8) / 4.0+$
1RA (1E)/4.
C calculate conversicn and selectivities
CCHV=FAB-FA(1)
YIELC=CONV/RAG
SOTA=FA(2)/COHV
SPI=FA (3) 1 CON
$\operatorname{SFA} A=R A(4) / C O N V$
$S C O Z=R A(5) \prime\left(C O V^{*} 8:\right)$
$S C O=R A(g) /\left(C O N V^{*} 8:\right)$
SMAA=RA(10)/CONV
$S M A A=R A$
$S U K=0.0$
$\stackrel{C}{C}$
820
SUN
○OUT=FR-D
CONS=273. EFPOUT/(22.400*760.*T)
00 003 I $=1,10$

803 YE(T) OFR(I)*COAS FOR INTERGRATIOA
SET COHCENTRATIOMS FOR INTERGRATIO
CCHCENTRATIONS IN GH-MOLESILITER
FGASS=FGAS*1.0E-03
HRITE 6,975$)^{\circ}$ VFOX, YOX
$Y(1)=C 0 X^{*} 1.0 E 03$
$Y(2)=0$.
$\begin{array}{rl}Y(3) & =0 . \\ y & 0\end{array}$
$Y(4)=0$:
$\begin{aligned} & Y \\ & Y(5)=0 .\end{aligned}$
$\begin{array}{ll}Y(5)=0 \\ Y(6) & =002 * 1.0 E \quad 03\end{array}$

$Y(9)=0$.
$y(1 G)=0$
0
FGASS=FGASS/6Q
DO $A R A=1, G=Y(I)$
5
CONTINUE 0,18
$I I=k-9$
ATFAY(KZJ)=YE(II)
ADC CO ANO COZ CONCENTRATIONS FOR USE IN PARAMETER ESTIMATION

ARFAY $(19, j)=T$
ARRAY $(20 ; J)=0 E L P$
ARFAY $(21 ; J)=H$
ARRAY $\left(2 \frac{1}{2} ; j\right)=P T$
ARFAY $(22, J)=P T$
ARFAY $23, J)=F G A S S$
AFGAY $(23, J)=F G A S S$
ARGAY $(24, J)=G R A D O$
ARITE (6, 222)
GRITE 6,231
VRITE (6; 611$\}$ YIELD,SOTA,SPI,SPAA,SCOZ,SOO,SMAA
WRITE (G; 225)WFAO
WRITE (6,812)CBT
HRITE $(6,913)$ NFR
WRITE 5,942$)$ HER
WRITE $(6,223)$
WRITE 6,969$)$
WRITE $6 ; 810)$
WRITE (5, 230)
WRITE (6,311) (YE(I), $I=1,10)$
URITE (6,224)

WRITE (5, 232) (ARRAY(I,J), I=1,24)
RRATE=YIELO/WFAO
G
WRITE
WRITE (7,234 K KUl, NN

WRITE $(7,233)$ (ARR
WRITE 677) TIRE

CCN
8 CONIINUE
3 CONTINUE
3 CONTINUE
WRITE (6,291)
300
5008
CONTINUE
CCNTINUE
097 EORMAT (テ3)
240 FORHAT (F10.5)

1. OXYGEI FLORRATE = * FE. 2 *CCAMIN**/

4*AMEIENT PPESSURE=* FT. 1 *MM.HG**


```
    996 FORMAY(* REACYCR YEMPERAYURE = *FB.2.* DEG.C.*I
        1 * REACTOF PRESSURE = * Fa.2 * MM.HG.*/
        2 * HEIGHTGOF CATALYST = * F FG&Z
    FCRMATUG* YAOCUR PRESSURE OF NO*FS:1 **MM.HG.*/I
    *)
    O7% * NCLE FFACTICN OF O-XYLENE = *F7.5 /)
    ACCO* , OX * OXYGEH = * EG*, * GM MOLENE=*Eg.3*GM.MOLE ,
```



```
    810 ECRMAT(* EXFERIMENTAL EXIT CONCEITRATION (GM.MCLES/LITER) */)
    230 FORMAT(8X,*OX**, 10X *OTA*, 11X,*PI** 11X,*PA*,10X,*CO2*,11X,*O2*,
```



```
    32FORNAT(/'* ARRAY(I,N)-DATA FOR ESTIMATICN AND DESIGN FROGRANS*/)
    233 FORHAT (RG10.4)
    234 FORNAT (Y3,5X,3F8.4)
    999 FOFMAY(5F15:5)
    8OO FORMAT (1OF,%O)
    O1, EORMAI (10E{3.3)
    222 FORMAT (IX,*CONYERSION AN( SELECTIVITIES *)
    224 FORMAT (1X, EXPERIMENTAL EXIT MOLE FRACTIONS*)
    OG5 FORMOT(5E{5.5)
    612 FORNAT (/# CARBCN BALANCE RATIO =* E1OG3/)
    EgO FORMAT(1H1,20x,* NUMBER CF EXPERIMENTS*I3//)
    912 FORMAT (/,* HYCROGEN BALAMCE RATIO=*E10;3)
    913 FORNAT (/, WAIER RESSCISE RATIO=* EIO.3)
    2LE FORMAT(1X,*W/FAO = ** F&'S')
    1. FORMAT(1X,*FATE OF XYLENE CONVERSION = *,E10.4,1X,
432 FORMAT (/,EX,4KFUN=*I3,5X,*HM=*FB.4)
291 FORMAT (* 1*)* OLTLET PEAK AREAS ARE (*)
```



```
    1112*,10X,** 20*,10X,* CO*,1OX,**AA*)
555 FCRMAT (3F12.2)
554 FORMAT (2X,*IMLET PEAK AREAS ARE /*)
```



```
    GALL EXIT
        ENO
```

1TS--
$4{ }^{3} \mathrm{BB}$ INPUTE
$\begin{array}{llll}438 & \text { OLTPUTE } & 1038 & 154 日 \\ 103 日 & \text { PANCTE } & \text { TST }\end{array}$

PROGRAM NO. 2:
Program for the statistical design of experiments for parameter estimation.

```
ATTACH,FMSLTEO
ATTACHYSGFEFB:
FTN(RCUNO=*1+*,CPT=2%T,R=3)
OSEY(LIG=TMSLIE)
OSET(LIG=MACLIE)
OSET(LIQ=SSPLIE)
    GO(PL=8000)
    PROGRAM TST(INPUT, OUTFUT,PUNCH,TAFES=INPUT,TAFEG=OUTPUT,TAPET=PUN
    1(CH)
*********TIO2 SUPPORTEC CATALYST -REACTION MODEL******************C
****USING THE MONTE-CARLO SEARCH TECHNIQUES
    FIVE INDEPENOENT VARIABLES -FOX,FCZ,FNZ,TR,W
    FCX-FLONRATE OF OXYLENE IN CCMMIN
    FO2 -FLCHQATE OF OXYGEN IN CC/MIN
    FNZ FELCNRATE OF NITROGEN IN CC/MIN
    TR - TEMPERATURE AY REACTOR INLET IH OEG, CENTIGRAOE
    TAMB PAME -AMBIENT TEMFERATURE AND ABSOLUTE PRESSURE AT WHICH
    FCZ,FN2 AFE MEASUFED IN MH HG.
    MF- NUMEER OF PARAMETERS
    NEXP= NUMEEF OF EXPERIMENTS
    THERE NF NO. OF FURS IN DNE EXPERIMENT
    NR -NO OF INDEPENCENTGERESPONSES. REPARAMETERIZATION BY
    HUNTER /ATKIHSON METHOC.
    FGAS -IOTAL GAS FLOW IN CC/NIN.
    OELP -PRESSURE DROP IN FEACTOR IN MM HG
SIGMA - ELEMENTS OF THE VAFIANCE=COVARIAMCE FATRIX.
O2, N2, OX FLLOHPATES IN MOLES /HIN.
CCX, CQ2, CN2 - CONGEMTFATIOR OF COMPONENTS IN GM MOLE/LITER.
OELF-PRESSUPE DFOP ACFOSS REACTOR IN MM HG
FT-TOTAL ABSOLUTE PFESSURE IN REACTOR IN MM HG.
```



```
AS A FUNCTION OF TOTAL GAS FLOWRATE (FGAS)
NFQICR -NG OF PFIOF EXFEFIMENTS AVAILABLE FCR CESIGN.
```

```
CCMNON/ PARA1/KAI,KR12I,KR23I,KR34I,KR5I,EA,E12,EZ3,E34,E5
```

CCMNON/ PARA1/KAI,KR12I,KR23I,KR34I,KR5I,EA,E12,EZ3,E34,E5
COMMCN /PARA 3/EAS
COMMCN /PARA 3/EAS
CGMMONY MER/ T,W,OT,GRADP
CGMMONY MER/ T,W,OT,GRADP
CCMMON/CONSTA/ FANE,CO,C1,TAMB
CCMMON/CONSTA/ FANE,CO,C1,TAMB
COMMON /CONST/NN,F,INEX,NF,NC
COMMON /CONST/NN,F,INEX,NF,NC
QTMENSICN G(111\&\&11)
QTMENSICN G(111\&\&11)
OIMEIISICN AXTVX(11,11); EX
OIMEIISICN AXTVX(11,11); EX
OIMENSICN GVM(T),HVH(5)
OIMENSICN GVM(T),HVH(5)
DIMENSICN SIGMA (5,5)
DIMENSICN SIGMA (5,5)
CIMENSICN PP(11,11),PM(11,11)
CIMENSICN PP(11,11),PM(11,11)
CIMENSICN SXTVX(11,11)
CIMENSICN SXTVX(11,11)
OIMENSICN OXTVX(11,11,11)
OIMENSICN OXTVX(11,11,11)
OIMEHSION GXTVX(11;111)

```
OIMEHSION GXTVX(11;111)
```

DTMENSICN ASYM(66), ALU(E6)
OIMENSICN FOX(12), FO2(11),FH2(11); TR(11)

REAL KAI KR12I KR3AIENN KREIGKRZ3I
REAO IMITIAL PARAMETERESTIMATES ENITIALEESTMATES OF PRE ATKINSON HETHOD.
REAC $(5,13)$ NPICK
REAO $(5,13)$ NPRIOR
REAO (5,35) CO,C1
REAR (5, 1) KAI KF12I,KR23I,KR34I,KR5I
READ (5, 2) EA, E12,E23,E34, E5, EAS
$\mathrm{FEAO}(5,36) \mathrm{FT}$
$N R=5$
NEXP=11
NSIG $=\frac{1}{5}$
READ IN EXPERIMENTAL DATA
READ (5, 2) NN, TAMB, PAMB
WRITE (6, 17)
FEAD $(5,7\}^{\text {(}}$ (SIGMA (I, J) $\left.\left.J=1,5\right), I=1,5\right)$
WRITE (6,77) ((SIGMA $(I, J), J=1,5), I=1,5)$
INVERT THE VAFIANCE-COVARIANCE MATRIX.
CALE MINV (SIGMA, NSIG, DISIG, CVM, HVM)
WRITE (6,77) ((SIGMA (I, J), $J=1,5), I=1,5)$
USE AVAILABLE PFIOR INFCFMATICN - IF ANY
IF (MPRIOR.LT. 1) GO TO 50
$0049 \quad K=1, N P$

CO 39 I=1, NFRIOR
WRITE (6,134) I
WFITE (G, 116) NPFIOR
KEAD 5,390$\}(P M(M, N), N=1, N P)$
WRITE (6, 755)
WRITE $(6,570)$ (PM (M, $M), N=1, M P)$
Co $39 k=1, N P$
, $K)+P M(M, K)$
CONTINUE
WFITE (6,2239)

WRITE $(6,570)(P P(M, N), N=1, N P)$
CONTIMUE
CONTINUE

WRITE (5, 51
KAI,EA,KR12I,E12,KR23I,E23,KR34I,E34,KR5I,E5
WRITE $(6,52)$ KAI, EA,KR12I,E12,KR23I,E23,KR34I,E34,KRSI, E5
WFITE 6,81$) E A S$

WRITE(6, $8(1)$ PY
WR YE(6) 446) NFICK
WRITE $(6 ; 731)$
00131 LS=1, MP
AXTVX $K K S, 1, N P$
GXTVX(KS,LS $)=0$.
C
C
C
C
CONTINUE ${ }^{6} 1, N P$
$\operatorname{COX}(I)=\operatorname{RaNF}(A)$
FO? $(I)=F A A F(A)$
FNZ (I) = FAAF (A)
$W=1$. 0
FCX $(I)=F C X(I) * 11: 0+1.0$
$F C R(I)=F O R(I) * 110 .+10^{0}$
FN2 $\left.(I)=F N 2(I) * 200^{\circ}+1100,-\{F Q X(I)+F 02(I))\right)$
$T R(I)=T R(I) * 40 \cdot 0+350.0$
$21=F C X(I) /(F N 2(I)+F O 2(I)+F O X(I))$
22=FC2(I)/(FN2(I)+FO2(I)+FOX(I))

STORE THE INITIAL GUESS OF THE DESIGN EXPERIMENTS.
SXI
$S \times 2(T)=F C X(I)$
$S O R(T)$

$5 \times 4(I)=T R(T)$

61 CCNTINUE
USE AVATLABLE PFIOR INFCRMATION - IF ANY
IF (NPRIOR LT O 1) GO TO 216
$C C \quad 314$. IA $=1$, NP
$A X T V X(I A, J A)=A X T V X(I A, J A)+P P(I A, J A)$
$G X T V X(I A, J A)=A X T V X(I A, J A)$
314 CONTINUE

7 CyA $=0$.
$00 \mathrm{mAx}=0$.

$M C=1$
100
C

```
    FN2(1)=RANF(A)
    TR{j}=RANF(A)
    FOX(1)=FOX(1)*&2*0+1.0
    FCZ(1)=FO2(1)* 110.0 410.0
    FN2(1)=FFN2(1)*200.+(100.-(FCX(1)+FO2(1)))
    TR(1)=TR(1)*400+350.
    Z1=FOX(1)/(FN2(1)+FO2(1)+FOX(1))
    Z2=FC2(1)/(FN2(1)+FO2(1)+FOX(1))
    IF(Z1.LT. 0.01.OR.Z1 .GT.0.03) GO TO 100
    IFRZ2, IT:0.100:OR.Z2,GT:0.30,GOTO100
    COLL MATRIZ (FOX,FOZ,FN2,TR, CXTVX,SIGMA,1)
    00 14 N=1,NEXF
    00 3 J=1,NP
    OO 3 K=1,N
    OXTVX(J,K,MC)=EXTVX(J,K,MC)
    EXTVX(J,k,MC)=CXTVX(J,K)
    3 CCHTINUE
C
DC 339 I=1,NEXP
00 339 J=1,NP
AXTVX(J,K)=AXTVX(J,K)+EXTVX(J,K,I)
CONTIMUE
VCVTFS=STORAGE MODE GONVERSICN OF MATRICES
-FULL TO SYMMETRIC IMSL-LIBFARY.
CALL VCVTFSIAXTVX,11,11,ASYM)
LUDECP-CALCULATES THE DETERMINANT OF A POSITIVE DEFINITE MATRIX
IN SYMMETRIC ST-RAGE MOCE, ISML-IIBRARY,
CALLL LUDECP(ASYM,ALU,11,O1;D2,IER)
OET=01*2**02
KFITE(5,2009) DET
2009
FCRYAT(GX,*OEETX=* E15.5 )
COMAX=DET
MM=M
contimue
OC 4 J=1,NP
EXTV X(J,k,MC)=OXTVX(V,K,MC)
4 CCNIINUE
4 COMTSTME
WRITE(6,401) KT,MM,OOMAX
401 FCRMAT(#0士,5X,*KT=* I3,6X *MM=* I3,6X, *OOMAX=*,E15.5)
```



```
GC TO 999
34 CCNTINUE
ZOMAX=ODMAX
SX1(NM)=FCX(1)
SX2(\muM)=FC2(1)
SX3(MM)=FN2(1)
SX4 (MH1)=TR(1)
OC 388 I=1,MP
EXTVX(I,J,MM)=CXTVX(I,J)
388
CCiTInUE:NM)=CXTVX(I,N)
```



```
    9g9 CONTINOE SET OF EXPERIMENT HAS BEEN REPLACEO 
00000
    HFITE(6,607)
    507 FCRMATY#IZ, 6X, FTHE GESY SETTINGS, OF THE INOEPENOENT */
    6X%VARIAELES
    888 FORMAT(144X;FOX* 8X*FO2*&X*FH2*8X*TR*10X* W* 1)
        O 474 I=1,NEXP
        HRITE(5,470) I,SXI(I),SX2(I),SX3(I),SX4(I),W
    474 CONTINU
    470 FORMAT(EX,I2,4X,5F12.51/)
    GITE (6,569)
    FCRHATR &IZ,GX, *THE CRITERION MATRIX IS *///%
    FRINT*, FENOL
    WRTYE (6,75%
    755 FORMAT %/, 15
```



```
    WFITE(7,21201) (SXTVX(K,L),L=1,NP)
59G CONTINUE
```



```
    FCRMAT(/76X, EEAF,5
    579 FOQMAT(%/GX,*YHE DETERMINANT OF THE - O MATRIX IS * EI5.5 )
    11B FCRMAT(/1/2OX, *HE INVERSE VARIAICE -COVARIAACE MATRIX*///)
        FCDMAT (EE10.4)
        FCRMAT 6F10.5)
        FCRMAT (5E15.4)
        FCRMAT(5E15.5%/
    9
        FCQMAT (IJ)
        FORNAT(\not=1z,20X,* VA⿱口IANCE-COVARIAACE HATRIX*///)
        FORMAT (EF10.5)
        FCR&AT(5EJ5.5)
```



```
        FCRMAT (///,EX,* PRIOR MATRIX FOR ALL THE SETS OF EXPTS PERFORMEO*
        1)
    218 FORMAT (/1,GX, # PRIOR NATRIX FOR EXPT NO:* I2)
    31 FCRMAT{\not=1\not=///G; GX, *THIS EXPERIMENT WILL BE REPLACED BY THE *//GX
        1*OESIGH EXQERIMENT THAT MAXIMIZGS THE -D MATRIX *///1)
        21 FORKAT (EX, #ACTIVE SITE PARAMETER= * EX, E13:4)
    51 FCRHAT(////////21XX,*FRECUENCYFACTOPS*GX* ACTIVATION ENERGIES*//)
```



```
            OXYLENE-OTA *6X,*KR12I= *,E11.4,7X,*E12=**,F14*4/1
            FI-FA *GX,*KF34I= &,E11.4, FX,*E34= *,F14.4 // 
```



```
    1203 FORNAT(6X;*2DMAX=* E15.5
        SIOP
```

```
    SUGROUTINE MATRIZ GFOX,FOZ,FNZGTR,BXYVX,SIGMA,KK\
    CCMKON/ PARAI/KAYO
    GOMNON/CONSTA/ FAMG,CO,C1,TAMB
    CCMMCNKCONSTSNN,R,NEX,AF,HC
    GOMMCH/STRAY/ARQAY
    COMMCN/REFARITEASE,RT
    COMMON/ OER/ FGAS
    COMMON/DER/YY
    COHMCN /NER/T,WWW, PT,GRACP
    OTMENSICN ARRAY(25,50),YO(10),PO(15),Y(10),YY(10)
    OIMENSION XTVX(11;11);XTSIG(11;5);BXTUX(11,11);SIGMA(5,5)
    OIHENSION OELTA(11,11)
    DIMEMSFCN FOX(11);FOZ(11);FN2(11),TR(11)
    DIMENSICN XT (11,5),XM(5,11)
    REAL KAI,KR12I,KR34I,NK,KR5I,KR23I,N2
00000
    NEXP=11
    NF=5
    W=WWW
CALCULATE FLOWRATE OF CZ ANO N2 ALSO GAS FLOWRATE AT REACTOR
    CONCITICNS IN CC/MIN
    PF=PT
    TA=TAMB+273.2
    OEN=22400.* TA*750./(273.2*PAMB)
    02=FO2(KK)/OEN
    N2二FH2(KK)/DEN
    T=TR(KK)中273.2
    YOX=FOX(KX)/{FNZ(KK) +FOZ(KK) &FOX(KK))
    OX=(OZ+NZ)*YOX/(1-YOX)
    FGAS={02+N2+0X)*22430.*T*760.1(273.2*\rhoR)
    CALCULATE CONCENTRATIONS IN REACTCR IN MOLESICC
    COX=CX/FGAS
    CO?=02/FGA
    CN2=12/FCA
    SEYYGONGENTEATIONS IN GN -NOLES/LITER
    FGAS=FGAS*1.OE-03
    Y(1)=COX*1.DE O3
    Y(2)=0.0
    Y(3)=0.
    Y(4)=0.
    Y(5)=0.
    Y(0)=CO2*1.OE O3
    Y(T)=CN2* 1:OE OS
    Y(A)=0.
    Y(3)=0
    Y(10)=0.
    EXPRESS GAS FLOHFATE IA LITERS/SEC
    FGAS=FGAS/EO.
    GRAOP=CO+FGAS*C1
TBASE=370.n
```

```
    GASE=TEASE+27S.2
    R二~1.9872
    YSYAR=(TBASE-T)/(YEASE*Y)
    FT=TSTAE/R
SET UPTTCLERANCES,STEF LENGTH,BOUNDARY CONOITIONS
C FOR INTERGRATION:
x=0.
CX=0.005
YOLXH=1.OF-OE
OXMIN=0.OEO1
M=5
CELX=W
FO(1)=KAI
PO(2)=KR12I
FO(3)=KR23T
&0(5)=KR34
FO(5)=KR5I
FO(5)=EA
FO(7)=E12
FO(9)=E34
PO(10)=E5
FO(11)=年
00182 I=1,10
CALL MEGSCN(X,DELX,DX,OXMIN,TOLKH,N,PO)
YO(1)=YY(1)
YO(E)=YY(2)
YO(3)=YY(3)
YO(4)=YY(4)
YO(5)=YY(5)
SET UP THE (OIFFERENTIAL, X-MATRIX
OELTAP=1.0 E-DE
00 1B J=1,NP
FS=PO(J)
PG(J)=PQ(J)+DELTAF*PO(J)
CC 1T2 I I=1,10
CX=0.005
X=0.
GALL MEFSCN(X,OELX,OX,OXMIN,TOLKM,N,PO)
Y(1)=YY(1)
Y(2)=YY(2)
Y(3)=YY(J)
Y(4)=YY(4)
OC 18 K=1,NR
QELTAA(K{J)={YY(K)-Y((K))/(DELTAP*FS)
CONTINUE
SET UF [ETERMINANT FCR EXFTAL DESIGN CRITERION.
00 91 J=1,NR
CO
```

 XM? \(\mathrm{S}, \mathrm{K})=\) OELTA \((J, K)\)
    ```
COMTINUE
GMDRD-GENERAL MAYRIX PGCCUCY ROUTINE - SSP LIBRARY
```

CALL GMPRO(XT,SIGMA,XTSIG,HP,HR,NR)
CALL GMFRD(XISIG, XGYXIVXYNPNRZNF)
CCMFUTE THE XT
$00151 \quad J A=1, N P$

151
SUBROUTINE MEPSON (X,OELX,OX,OXMIN,TOLKM,N,FO)
INTEGRATES FFOM X TO ($x+D E L X$)
DX IS ESTIMATE FOR INTEGRATICN STEP NECESSAFY
OXHIN IS NINIMUM STEP LERGTH TO BE PEGMITTED
TCLKM IS REOUIREO ACCURACY
N IS NUMBER OF DEPETIOENT VARIABLES
CONTROL IRANSFERRED TO FIRST LABEL IF INTEGFATICN FALLS, X ANO Y(I)
THEN CONTAIN NEW Y ALUES
CCNTROL TRANSFEGREO TC SECOHO LABEL TF INTEGRATION FAILS, X ANO
Y(I) THEN CONTAIM MOST FEEENT CORFECT VALUES
IN EITHER CASE, DX CCNTAINS CURRENT STEP LENGTH
CCMMOH/ PARA1/KAI, KR12I, KR23I,KR34I,KF5I, EA, EIE,EZ3,E34,E5
CCMMOH/PARA उ/EAS
COMMONICEP Y
COMMON/CEA/
COMMCN/
COAOM
COMNCN/CONST/NN,R,NEX,NF,NC
CCMMCN/MERTT, H, PATT,GRAGF
CCHMCN/ OERI FFGAS
CCMMCH/EFROR/ERR
CCMMON/EEFAF/TBASE,RT
OIMENSICHY Y(10), YOLO (10), FK (5, 10), DY(10)
OIMENSICN PO(12)
REAL KAI,KR12I,KR34I,NN,KR5I,KR23I,N2

```
    FGAS=FFGAS
    PT=PFTT
    KAT=PO(1)
    KR12I=PO(:
    KQ23I=PO(3)
    KR34I=PO(4)
    KK5I=PO(5)
    EA=PO(G)
    E12=F017)
    C12=FO(%)
    E\3=P0% 
    E34=P0(9)
    E5=PO(10)
    EAS=FO(11)
    ISH=O
    XMAX=W
    TOLA=5.*TO:KM
    FINTS=DELXIOX+0.5
    TOL星OLA/32.
    INGSEFIMT
    IF(INTS.LT.1)INTS=1
```


60 TO
IFSERR GT TOLAS GO TO 20
INTEGRATICN SATISFACTORY, CALCULATE NEW POINTS

***** THEY CALCULATE THE VOLCME CHANGE DUE TO REACTION *****************
$2002 I=1$
$2 \quad Y(I)=Y O L G(I)+0.5 * F K(1, I)+2.0 * F K(4, I)+0.5 * F K(5, I)$
IF $(Y(1) \cdot L E \cdot 0.0) Y(1)=0.0$
IF $(Y(2)$ LE $0: 0$) Y ($\overline{2})=0: 0$
OXYGEN BALANCE O OXYGEN TO OCZ AN
$Y(6)=Y O L O(6)-(Y(2)-Y O L O(2))-(Y(3)-Y O L C(3)) * 2 .-(Y(4)-Y O L O(4)) * 3.0-$
1 (Y(5)-YOL(5)) $410.5 / 8.0$
$Y(3)=Y O L O(8)+(Y(2)=Y O L C(2))+(Y(3)-Y O L O(3)) * 2.0+(Y(4)-Y O L O(4))+3$.

FTN=FT GEAOF*OX
$Y C L D(7)=Y(7)$
$\checkmark C L F L U S=0$.
$00200 K K=1,8$
200 VOLFLUS $=$ VOLFLUS $+F G A S *(Y(K K)-Y O L O(K K))$
VMOLE E22.400*760.* $/$ (273.2*PTN)
VOLFLUSEVCLFLUS*VHOLE
FGASN = (FGAS*PT/FTN) +VCLPLUS
RATIC=FGAS/FGASK
c

FGAS=FGASA
PT=FTN
IF (ISN.LT.1) GO TO 101
RETURN (XNAX, GT, X $+D X$)
$60 T 0$
160
$0 X=X M A X-X$
IS $H=1$
160 CONTENUE
IF (INTS.EC.1) RETURN
6 INTS $=I N T S-1$
PRESERVE CURRENT VALUES
$4 \times C L=X$ CNAL RUNGE KUT
IN THE NORMAL RUNGE KUTTA MERSON THE 8 WOULO EE REPLACEO BY N

IF $\mathcal{I}(Y(1), L E, 0 \cdot 0)$ YOLO $(1)=0.0$
SKID STEF AEOUSTMENTY IF DX IS LAST STEF
IF (ISH.EQ.1) GO TO 510
IHALF=0
GOTO 9 EOR HALVE
2.0

INTS=INTS + INTS
IHALF=1
GTEFP LENGTH TOO SHALL, INTEGRATION FAILS

```
    19x=x040
    Y(r)=YOLEMO
    RETURN
C EFROR SHALLE STEP LENGTH MAY BE INCREASEO IF FOSSIBLE
21 IF\IHALF.EO.1) GO TO 3 GALVEO (PREVENTS CYCLING
21 IFSIHAGF.EO.1) GON
ICJELE=INTS/2
IF((IOUBLE*2). EQ&INTSI GO TO 22
GO To 3
OCUBLE STEP LENGTH
    22 INTS=IOUELE
0x=2:*0x
GO EACK TO LAST POINT, ANC INTEGRATE WITH NEW OX
    8 FNULT=OX/Z.
    7 YO(I)=Y=1&&
    X=XCLD
310 coNTINUE
MAIA INTEGRATION PROCESS STAFTS HERE ****
ACVANCE X GY OX
9 CALL OEPIVS(X,N)
CO 18 IS=1,5
    x=x+FMUL
    X=X+0.5.5FNULT
    GO TO 30
    33 X=XCLO+CX
    000,10 I=1,N
FK(IS,I)=FMULT*CY(I)
GC TO (11, 12, 13,14;10),IS
Y(T)=YOR A, (X+DXP3.
    IF(Y(1).LE. 0.0} Y(1)=0.0
    GC TO 10
    Y(I)=YOLO(I)+O.E4{FK(I;I)+FK(2,I)
    IF(Y(2) &E. 0.0 ; Y {怎}=0.0
    GC TC 10
    AOVANCE TC (X+0X/2.)
    GOTO 10
    ACVANCE TO{(X+OX)
    14 Y(I) YOLO
        IF(IS:EO.5) GO TO 15
        EVALUATE OEPIVAT
        GO TO 18
        CNOLAST INTEGRATION, EVALUATE ERRCR
        6
        CO 17'I=1,N
        EI=AES(FK}(1,I)-4,5*FK(3,I)+4,0*FK(4,I)-0.5*FK(5,I)
        IF(ERR,LT.EI) EFR=EI
```



```
    CONTMNE
```

```
            GOTO 1
END
```

 SUGROUTINE OERIVS(X,N)
    ```
        SUGROUTINE OERIVS(X,N)
    COMMCN/GRAO/OY
    COMMCN/GRAO/OY
    CCMMON/ PARA1/KAIZKR12I,KR23I,KR34I,KR5I,EA,E12,E23,E34,E5
    CCMMON/ PARA1/KAIZKR12I,KR23I,KR34I,KR5I,EA,E12,E23,E34,E5
    CCHMCN /PARA 3/EAS
    CCHMCN /PARA 3/EAS
    CCMMON/DEFIY
    CCMMON/DEFIY
    COMMONIEERIFGAS
    COMMONIEERIFGAS
    COMNCN/CCNSY/NN,RZNEX,NF,NC
    COMNCN/CCNSY/NN,RZNEX,NF,NC
    COMMCN/REFAR/TBASE;RY
    COMMCN/REFAR/TBASE;RY
    OIMENSICN Y(10),OY(10)
    OIMENSICN Y(10),OY(10)
    REAL KAI,KFI2I,KR3LI,NN,KREI,KR23I,N2
    REAL KAI,KFI2I,KR3LI,NN,KREI,KR23I,N2
    *** THIS`SUBROUTINE CALCALATES THE RATES OF ALL REACTIONS AT EACH STEP CW
    *** THIS`SUBROUTINE CALCALATES THE RATES OF ALL REACTIONS AT EACH STEP CW
    CALCULATE RATE CONSTANTS FRCM PRE-EXPONENTIAL FACTORS ANO
    CALCULATE RATE CONSTANTS FRCM PRE-EXPONENTIAL FACTORS ANO
    ACTIVATION ENERGIES
    ACTIVATION ENERGIES
        KA=KA1*EXF{EA*RT)
        KA=KA1*EXF{EA*RT)
        K{I2=KR12I*EXP(EI2*RT)
        K{I2=KR12I*EXP(EI2*RT)
    KR23=KR23I*EXP(E23*RT)
    KR23=KR23I*EXP(E23*RT)
    KR5=KRSI*EXP(EF#RT)
    KR5=KRSI*EXP(EF#RT)
    KR34=KR34I*EXP(E34*RT)
    KR34=KR34I*EXP(E34*RT)
        C +** IS FECIPROGAL GAS FLON (HOURS / LITRE)
        C +** IS FECIPROGAL GAS FLON (HOURS / LITRE)
    ASF=EXO (EAS*RT)
    ASF=EXO (EAS*RT)
    V=1.1FGAS*3S00. 
    V=1.1FGAS*3S00. 
        OEN=(KA*Y(6)+(KRI2+NN*KRE)*Y(1)+(KR23+(NN-1)*KR5)*Y(2)+KR34*Y(3))
        OEN=(KA*Y(6)+(KRI2+NN*KRE)*Y(1)+(KR23+(NN-1)*KR5)*Y(2)+KR34*Y(3))
        DY(1)={-V*KA*Y(6)*(KR124KR5)*Y(1))*ASF/DEN
        DY(1)={-V*KA*Y(6)*(KR124KR5)*Y(1))*ASF/DEN
        OY(2)=(V*KA*Y(6)* KRO1*Y(1)-(KR5+KR23)*Y(2)))**SSF/DEN
        OY(2)=(V*KA*Y(6)* KRO1*Y(1)-(KR5+KR23)*Y(2)))**SSF/DEN
        OY(3)=(V*KA*Y(6)*(KR23*Y(2)-KQ34*Y(3)))*ASF/DEN
        OY(3)=(V*KA*Y(6)*(KR23*Y(2)-KQ34*Y(3)))*ASF/DEN
    OY(4)=(V*KA*Y(E)*KRS4*Y(3))*ASF/OEN
    OY(4)=(V*KA*Y(E)*KRS4*Y(3))*ASF/OEN
    OY(5)=(8.\mp@subsup{C}{}{*}\mp@subsup{V}{}{*}KA*Y(6)*KRS*(Y(1)+Y(2)))*ASF/DEN
    OY(5)=(8.\mp@subsup{C}{}{*}\mp@subsup{V}{}{*}KA*Y(6)*KRS*(Y(1)+Y(2)))*ASF/DEN
        RETURN
        RETURN
    ENO
    ENO
150
150
-13.7130 34307.828
```

```
-13.7130 34307.828
```

```


```

```
1000.
```

```
1000.
5242 20.00
5242 20.00
            0.55590:00 0
            0.55590:00 0
            -0.1174E+05
            -0.1174E+05
        O:11744E+04
        O:11744E+04
        O:2383E+04
        O:2383E+04
            6440 ENO
            6440 ENO
            S400 ENO OF RECORO
            S400 ENO OF RECORO
            760.00
```

```
            760.00
```

```


```

```
                0.2383E+04
```

```
                0.2383E+04
                    M.6688E+03
                    M.6688E+03
        $,
        $,
        ll
        ll
        ll
        ll
                    0.3791E+02
                    0.3791E+02
#
#
```

 0.318EEE+05
    ```
        0.318EEE+05
        0. B625E+03
        0. B625E+03
        0.8628E+0
        0.8628E+0
            0.6639E+03
            0.6639E+03
                0:1917E+03
                0:1917E+03
            540O ENE OF RECORD
```

```
            540O ENE OF RECORD
```

```
CDTOT E50

PROGRAM NO. 3:
This program was used to estimate the (prior) variance-covariance matrix of the parameter estimates (U).
```

PROGRAM TSTYINPUY,OUTPUT,FUNCH, TAPES=INPUT,TAPEG=OUTPUT,TAPEY=PUN
\&*********YAR-COUAR MATRIX FCR PARAMETEO ESTTMATES*****************
**********METHOD ASSUMES MODEL ISRAMEGESATESTIMATESS*******************
*********TIO2 SUPPORTEC CATALYST -REACTION MOCEL******************C

```
NF NUMEER OF PARAMETERS
NEXP- NUMQEP OF EXPERIHENTS
NR -NO OF INOEPENOEIT FESPONSES.
HUMTEQ /ATKINSO: M=THOC
FGAS - TCTAL GAS FLON IN CC/MIN
CELF - PFESSURE OROP IN GEACTCR IN MM HG
SIGMA -ELEMENTS OF THE VARIANCE=COVARIANCE MATRIX.
CCX, CO2 CHZ -CGMCENIRATIOH OF COMPONENTS IN GM MOLE /LITER.
PT -TOTAL ABSOLUTE ACROSS REACTOR IN MH HG MM HG
YMPLICIT QOURLE PRECISICN(A-H,O-Z)
COUELE NNAT KR12I,KR23I,KR34I,KR5I
CCHMON/ FAFA1/KAI,KR12I,KR23I, KR \(34 I\),KQSI,EA,E12,E23,E34,E5
COMHON /PARA 3/EAS
COMMCN/EAT/T, DELP, W, PT,FGAS, GRADP
GOMMCN/FACTOR/FAC\}
CCMMON /CCNST/NN, F,NEX,NF,NC
QIMENSION \(\operatorname{AXTVX}(11,11)\), UTHE \((12,12)\) ARFAY \((25,25)\)
OIMENSICN SIGMA (5,5),TRES (5, 1), VV \((5,5)\), RES (5), RRES (1, 5)
OIMENSICN GVM(5), GVM(5)
QIMENSICN GIVM(12), H1VM(12)
CIMENSICN G2VM(12), 42
```

READ(5,1292) KAI,KR12I,KF23I,KR34I,KR5I,EA,E12,E23,E34,E5,EAS
WOITE(6,51)
WRITE (6,52) KAI,EA,KR1CI,E12,KR23I,E23,KR34I,E34,KR5I,E5
WRITE(G,81)EAS
NC=5
NF=11
NEXO=9
KF=1
L=1
CO 50 I=1,NP
SIGMA(I,J)=0.00
CONTIHUE
WRITE(G,52)
OC 6O I=1,NE
OCNT1,J=1, MP
RESG(J)=XV(J)-YV(J)

```
    CALL OGMPRO(TRES,RRES,VV,NR,KR,NR)
    FACT=5.000/(9.000*5.000-11.000)
    CO 80 II=1,NR
    O 80 JJ=1,MR
    SICMA(IT,JJ)=SIGMA(II,JJ)+VV(II,JJ)*FACT
    ComITNuE
r
    21 FDMAT (5015:511)
```



```
    2 FORMAT(* AOSORPTION *,5X,* KAI= *,011.4,7X,* EA= +,F14.4/l
        1* OXYLENE-OTA *GX,*KR12I=*,011:4,7X,*E12=**,F14:4%/,
```



```
    4* ORGANICS-CO2** XX,* KFSI=*,b11,4,7X,* ES=*,F14.4%/%
    RRESS (L,J)=RES(J)

```

FORHAY(*1*,20X*OESERUEO*,5X,*CALCULATEO*)
53 FORMAY(56x, 3(0,12.4,4x))
118 fcpmaY(202b.12}
*INYERSE VARIANGE-COYARIANCE MATRIX OF THE OBSERUAT
II
FCRMAT(13, 020.12)
99 FORMAT(9E10.4)
G81 FCRMAT(10x:*KRUN=*I4,5X,*NN=*F10.6)
991%
FCRNAT(10X,8E13.4
FCQNAT(4X,11E12.4)
STOP
SUPPOUTINE NATRIZ (COX,CO2,CN2,BXTVX,SIGMAS
INPLICIT DOUALE PREGISICN (A-H,O-Z)
BCUELE FRECISION KAI,KFIZI,KR2SI,KRJ4I,KRSI ,NN
COUBLE PRECYSION N?
CCHMC,GFARAI/KAI,KRI2I,KR23I,KR34I,KR5I,EA,E12,E23,E34,E5
CCMMCN/FARA 3/EAS
COMNON/CONST/NN,R,NEX,NF,NC
CCMNON/EEFAR/TBASE,RT
CCMMON/CAT/T, OELP,WNW,PT,FGAS,GRACP
COMNCN/FACTOR/FACT
COMMCN/DEE/YY
COPMCN/GEF/YY
OIMENSICN ARRAY(25,50),Y0(10), PG(15),Y(10) YY(10)
OIMENSICN XTVX(11, 11, ,XYSIG(11,5), BXTVX(11,11),SIGMA(5,5)
OI'ENSICN XT(11,5},XM{5,11)
CIMENSICH DELTA(11,11)
C
NEXP=9
NF=5
y(1)=COX
Y(2)=0.00
Y(3)=0.00
Y(4)=0.00
Y(5)}=0.0
Y(6) =CO2
Y(6)=CO2
y(7)=CN2
y(3)=0.00
Y(9)=0.00
TAASE=37%
TEASE=YBASE+273.2
F=-1.9872
TSTAR=(TGASE-T)/(TBASE*T)
RT=TSTARIR
C SET UPTTCLEPANCES,STEF LENGTH,BOUNDARY CONOITIONS
C SET UP TCLEPANCES,STEF LEMGTH,BOUNDARY CONOITIONS
x=0.00
Ox=0.00500
TOLKM=1.OC-CR
OXMIN=0.OOD120

```
```

 #=
 cetx=n
 FO{1}=KA:
 OO(i)=KRI2Y
 FO(3)=KR23I
 FO(4)=Kr34I
 FO(4)=KFFSI
 FO(E)=EA
 PO(7)=E12
 PO{8)=E23
 F0(9)=E34
 FO(10)=ES
 pO(i1)=EAS
 00 182 I=1,10
 1&2
 CALL MEFSCN(X,OELX,OX,OXMIN,TOLKM,N,PO)
 YO(1)=YY(1)
 YO(2)=YY(2)
 Y0(3)=YY(3)
 YO(4)=YY(4
 YO(5)=YY(5)
 SET UP THE CDIFFERENTIAL, X-MATRIX
 DELTAP=1,0,E-07
 PS=PO(J)
 PO(J)=PO(J)+DELTAP*DO(J)
 CC 17?2 I=1,10
 Ox=0.005
 x=0.
 CALL MERSSM(X,OELX,OX,OXMIN,TOLKM,N,PO)
 OO (J) 18 = NS K=1,N(
 CCYY(K,j)=YY(K)-YO{K
 CELTA(KQS)={YY(K)-YO(K))/(DELTAP*FS)
 CONTINUE
 C
91
00 91 J=1,MR
\M(K,J)=OELTA (J,K)
C CONTINUE GMM\&
ARINT* AXMZ XTVX- HATRIX FOR ONE EXPERIMENTS.
GOMPRD GENERAL NATRIX PACOUCT ROUTINERIMENTS.LISRRARY
FAINV=1.0/FACT
CALL OGHFGO(XT,SIGMA,XTSIG,NF,NR,NR)
CALL OGNFGO(XTZSIGMA,XTSIG,NF,NR,NR)
CO 151IA=1,NP
lol
ccNTIMUE
FCRMAT(2X,11010.4)

```
```

FCPMAT(5x,91010.4)
FCRNAT(5X,11010.4%
FETURN
END
SUGROUTINE MERSON (XX,OELX,OX,OXHIA,TOLKH,N,POS
INPLICIT OQURLE PRECISICN (A-H2O-2)
IATEGPATES FROM X TO (X+CELX)
OX IS ESTIMATE FOR INTEGRATICN SYEP NECESSAFY
OXMIN IS MINTMUM STEP LENGTH TO BE PERMITTED
TOLKM IS qEQUIREO ACGURACY
N IS NUNEER OF DEPEIDDENT VARIABLESS IF IRANSFEFREDNOLRST LASEL IF INTEGGATION FALLS,X AND Y(I)
CONTROL TRANSFEFREG TGESIRST LASEL IF INTEGRATION FALLS,X AND Y(I
THEM CONTAIN NEW VALUES
CONTROL TRANSFERRED TO SECONO LABEL IF INTEGRATION FAILS; X ANO
Y(I) THEN CONTAIN MOST FECEIT CORREGY VILLLES
IN ETTHER CASE,GX RONTAINS CURREAT STEP LENGTH, E23,E34,E5
COMMCN/ PARA1/KAIS
COMMCN /PARA
COMMCN/EEF/Y
COMNCN/CONST/NN,R,NEX,NF,NC
GOMMCN/DAT/T,DELP,W,PPTT,FFGAS,GRADP
CCMNCN/ERROR/ERF
COMMON/FEFAR/TBASE,DT
CIMEHSION Y(10), YOLO(10),FK(5,10),OY(10)
OIMENSION PO{12}
FGAS=FFGAS
PT=PFTT
KAT=PO(1)
KR1%I=PO82
KR34I=PO(4)
KF5I=PO(5)
EA=PO(E)
E12=P017
E23=PO(8)
E34=PO(O
EE=P0(10
EAS=PO(11)
ISN=0
XMAX=
TCLA=5**TOLKM
FIN1S=DELX/DX+0.5
TCLE=TOLA/32.
INTS=FINTS
IF(InTS.LT.1)INTS=1
OX=DELX/INTS
FNULT=DX/?.
GO TO 4
1 IF(EPR.GT.TOLA) GO TO 20
IF(EFP.LT:TOLB) GO TO 21
INTEGOATICN SATISFAGTORY, CALGULATE NEW POINTS

```

```

****THE NEXT 17 CAPOS ARE NCT PART OF THE STANOAFD MERSCN ********

```
    **** THEY CALCULATE THE VOLUME CHANGE DUE TO REACYION
        3
```



```
    IF(Y(1):LE:0.0)} Y({ 1 )=0.0
C CXYGEN BALANCEENOXYGENTOCCZ ANO H2O
    Y(6)=YOLO(6)-(Y(2)-YOLD(2))-(Y(3)-YOLD(3))*2.-(Y(4)-YOLD(4))*3.0-
    1(Y(5)-YCLO(5))*10.5/8.0
        Y(3)=YOLO(8)+(Y(2)-YOLD(2))+(Y(3)-YOLO(3))* E.O +(Y(4)-YOLD(4))*3.
    2+{Y(5) -YOLO(5)+*S*'3. FCR TACREASED FLON AND OEGREASED PRESSURE
    GTN=FT -GEROP*OX
    YOLD(7)=Y(7)
    VOLPLUS=0.
    CO 2OO KK* 1,8
    200 VOLPLUS=VOLPLUS +FGAS*(Y(KK)-YOLO(KK))
        MMOLE=22.400*760.*T/(273.2*PTN)
    VCLFIUS=VCLFLUS*VMOLE
    FGASN=(FGAS*PT/FTN)+VOLFLUS
    RATIC=FGAS/FGASN
O
    210
    COKE1OYKKK##苃ATIO
    FGAS=FGASA
    FT=FTN
    IF(ISW.LT.1) GO TO 101
    RETURN
    IF(XMAX:GT:X+DX) GO TO 160
        OX=XMAX-X
    160 CCMTINUE
        IF(INTS:EG:1) RETURH
        FRESERVE CURDENT VALUES
        *OLC=X
        IN iHE NORMAL RUNGE KUTTA MEFSON THE }8\mathrm{ WOULD bE REPLACED EY N
        YO,
        IF(Y(1) CLE:O.O), YOLO(1)=0.0
        SKIO STEFADJUSTMENT IF EX IS LAST STEP
        IF (ISN.EQ.1) GO TO 510
        IHALF=0
        ERRCR EXCESSIVE, HALVE STEP
    20 0x=0.5*0x
        IF(OX.LT.CXMIM) GO TO 19
        INTS=INTSINTS
        GO TO
        STEF LENGTH TOO SMALL, INTEGRATIOA FAILS
        19 X=XCLD
        OC23 I=1,8
    23 Y(I)=YOLC(I)
        EFRCR SMALL, STEP LENGTH NAY GE INCREASEO IF FOSSIBLE
        CHECK IF STEP FFEVICUSLY HALVED {PREVENTS CYCLING)
    21 IF(IHALF.EOP1)GOO TO 3
    CHECX IFONTS EVEN
```

```
        IF((IOUELEF2).EOQINTS) GO TO 22
        NCY FOSSIELE, INTS OOE
        GO TO 3
        22 INTBLE STEF LENGTH
        ON=0= - 人 
        GX=2&*OXTO LAST POIHT, ANO INTEGRATE WITH NEW OX
        FNULT=OX/3.
        Y0 7}=1=1%8, (I
        X=XCLO
    5 1 0 \text { COMTINUE}
G MAIN INTEGRATION PRDCESS STAFTS HERE ****
    MAIN INTEGRATION
        9 CALL DERIVS(X,N)
        00 18 IS =1,5
        GO TO (31,30,32,33,30),IS
    X=X+FMUL
    G0 T0 30 
    GO TO 30
    X=XOLC+CX
    UFOATE Y(I)
    FK(IS,I)=FMULT*OY(I)
    GCTCO(11,42,13,14,10),IS
    11 Y(T)=YO(O(I) +FK(1)
        IF(Y(1) LE. 0.0 % Y (1)=0.0
        GO TO 10
        CORAECTOR FOR (X+OX/3,)
        IF(Y(2).LE. 0.0 )}Y(\frac{1}{E})=0.
        GOUTONGOTO (X+DX/2.)
        Y(I) =YOLD(I)+0.375*FK(1,I)+1.125*FK(3,I)
        GOUTONCE TO (X+OX
        Y(I)=YOLD(I)+1.5*FK(1,I)-4.5*FK(3,I) +6.0*FK(4,I)
        CC:ITINUE
        IF(IS.EG*E)GOTOTOLG
        CALLOERIVS (X,N)
        GO TO LAST' INTEGRATION, EVALUATE ERROR
        6 EFR=0.0
        EI=DARS(FKN(1,I)-4.5*FK(I,I)+4.04FK(4,I)-0.5*FK(5,I))
        IF(ERR.LT.EIS EFR=EI
        17 CCNIINCE
        CCNTINUE
        GOTOT
    SUBROUTINE CERIVS(X,N)
    IMPLICIT DOUQLE PREFISICN (A-HZO-Z)
    OOURLE PRECISION KAI,KF12IGKR23I,KR34I
    COMMON/GROD/OY
```

```
SOMMCH/ PARA1/KAI,K212I,KR23IT,KR34I,KRSI,EA,E12,E23,E34,E5
CCNMON/OEPYY
CCMMCN/DAY/Y,DELP, H&PT,FGAS,GRADP
GOYKCN/CONST/NH,R,NEX,NF,NC
OIMENSICN Y(10),OY(iO
OIMENSICN Y(10)QDY(10% LHIS SUBPOUTINE CALCALATES THE RATES OF ALL REACTIONS AT EACH STEP OW
GALCULATE FAYE COHSTANTS FRCM PRE-EXPONENTIAL FACTORS AND
ACTIVATION ENERGIES
KA=KAI* EEXF(EA*RY)
KP1\hat{C=KR12I*OEXP(E12*RT)}
KF23=KR23I*DEXP(E23*RT)
KRS=KRSI*CEXP{ES*RT)
KR34=KR34I*OEXP(E34*RT)
ASF=DEXP (EAS*DT)
V=1./(FGAS* 3E00.)
OEN=(KA*Y(E)+(KF12+IN*KF5)*Y(1) + (KRZ3+(NN-1)*KR5)*Y(2) +KR34*Y(Z))
```



```
CY(1)=(-V*KA*Y(6)*(KR124KRS)*Y(1)+KRSF/OEN
OY(2)=(V*KA*Y(6)* (KR12*Y(1)-(KR5*KR23)*Y(2)))*AAS
OY(z)={V*KA*Y(6)*(KR23*Y(2)-KR34*Y(
OY(L)=(V*KA*Y(6)*KR34*Y(3))*ASF/OEN
RETURN
END
EURROUTINE CGMPRD(A,G&F,N,H,L)
IMPLICIT OOUBLE PRECGSION',}(A-H,O-Z
IIMENSICN A(1),E(1),V(1)
IF=0
IK=-M
00}10\quadK=1,
IK=IK+M NO 10 J=1,N
CO
IR=IR+1
JI=J-N
IE=IK
R(IR)=0
ROIR)=0 10 I=1,M
JI=JI+N
TR=IE+1
RETU
SUBROUTINE OMIHV(A,N,D,L,M)
OCURLE FRECISION A,G,GICA,HOLO
.....................................................................
IF A OCURLE PRECISION VERSION CF THIS ROUTINE IS OESIRED, THE
THE C MUST ALSO BE REMOVEC FRON DOUBLE PRECISICN STATEMENTS
AFPEARING IN OTHER RCUTIRES USED IN CONJUNCTION WITH THIS
ROUTINE.
```

C
25
J=L(k)
1F(CABS(EIGA)-DABS\A(IJ))) 15,20,20
BIGA=A(IJ)
L
20 CCNTINUE
INTERCHANGE ROWS
KI=K-N 3E,35,25
0 30I=1,N
KI=KI+N
HOLD=-A(KI)
I=KI-K+J
30 A(JI)}=A=HCL
Interchange columns.
35 I=H(K)
IF(I-K) 45,45,38
[C 40 J J=1),N
JK=NK+
J=JF+
HCLD=-A(JK)
A(JK)=A(JI)
O A(JI) = HOLO
OIUICE COLUMN EY MINUS PIVOT (VALUE OF PIVCT ELEMENT IS
CONTAINED IN BIGA)
45 IF(8IGA) 48,46,48
C=9•O
00 55 T=1,N
IF(I-K) 50,55,50
A(IK)=A(IK)/(-BIGA)
55 CCNTIHUE
REDUCE MATRIX
OO}65\mp@code{I=1,N
INK=NK+I

```
```

 00 55 J=1,N
 \varepsilon0 FF(I-K) 60,65,60
 F(v-K) E2,65,62
 KJ=IJ-I+!
 A(IJ)=A(IK)*A(KJ)+A{IJ)
 CCNTINUE
 C

```
            OIVIOE ROW BY PIVCT
```

 OIVIOE ROW BY PIVCT
 \(k J=k-N\)
 \(k J=k-N\)
 \(k J=k-N \quad, ~\)
 $0 C J=75=1, N$
$k J=k-N \quad, ~$
$0 C J=75=1, N$
IF (J-K) 70,75470
$A(K J)=A(K J) / B G A$
IF (J-K) 70,75470
$A(K J)=A(K J) / B G A$
$\begin{array}{ll}70 & \text { AKJ) } \\ 75 \\ \text { CONIINUE }\end{array}$
$\begin{array}{ll}70 & \text { AKJ) } \\ 75 \\ \text { CONIINUE }\end{array}$
FROOLCT OF PIVOTS
FROOLCT OF PIVOTS
$0=0 * \operatorname{EIGA}$
$0=0 * \operatorname{EIGA}$
REPLACE PIVOT BY RECIPROCAL
REPLACE PIVOT BY RECIPROCAL
$A(K K)=1.0 / 8 I G A$
$A(K K)=1.0 / 8 I G A$
80 COMTINUE
80 COMTINUE
C
C
C
C
C
C
FINAL FOW ANO COLUMN INTEFCHANGE
FINAL FOW ANO COLUMN INTEFCHANGE
$100 \begin{aligned} & K=N\end{aligned}$
$100 \begin{aligned} & K=N\end{aligned}$
$100 K=(K-1)$
$100 K=(K-1)$
IF (K) $150,150,105$
IF (K) $150,150,105$
$105 \mathrm{I}=1$ (K)
$105 \mathrm{I}=1$ (K)
$108 \begin{aligned} & J 0=N *(K-1) \\ & J F=N *(I-1)\end{aligned}$
$108 \begin{aligned} & J 0=N *(K-1) \\ & J F=N *(I-1)\end{aligned}$
$\mathrm{JR}=11^{*}(I-1)$
$00110 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{JR}=11^{*}(I-1)$
$00110 \mathrm{~J}=1, \mathrm{~N}$
$J K=J Q+J$
$H O L$
$=A$
$J K=J Q+J$
$H O L$
$=A$
HOLD=A (JK)
HOLD=A (JK)
$J I=J R+J$
$J I=J R+J$
$A(J K)=-A(J I)$
$A(J K)=-A(J I)$
$\begin{array}{ll}110 & A(J I) \\ 120 & \mathrm{~J}=\mathrm{M}(\mathrm{K})\end{array}$
$\begin{array}{ll}110 & A(J I) \\ 120 & \mathrm{~J}=\mathrm{M}(\mathrm{K})\end{array}$
125
125
=HCLD
=HCLD
$J=M(K)$
$J=M(K)$
$I F(J-K) \quad 100,100,125$
$K I=K-N$
$I F(J-K) \quad 100,100,125$
$K I=K-N$
$K I=K-N$
$K I=K-N$
OC $130 \quad I=1$, 1
OC $130 \quad I=1$, 1
$K I=K I+N$
$K I=K I+N$
HOLO =A(KI)
HOLO =A(KI)
$J I=K I \rightarrow K+J$
$J I=K I \rightarrow K+J$
$A(K I)=-A(J I)$
$A(K I)=-A(J I)$
$130 \mathrm{~A}(J I)=H O L D$
$130 \mathrm{~A}(J I)=H O L D$
A
GO YO 100
A
GO YO 100
150 PETURN
150 PETURN
- $2232000000000+01 \cdot 1849000000000+02$
- $2232000000000+01 \cdot 1849000000000+02$
$-284800000000+01-2169900000000+05$
$-284800000000+01-2169900000000+05$
$-2901200000000+05$
$-204300000000-03-2146000000000+05$
$-1255050450-03$
$-2901200000000+05$
$-204300000000-03-2146000000000+05$
$-1255050450-03$
$\begin{array}{rl}-290120000000+05 & -2296000000090+05 \\ -20430000000-03 & 2146548680450-03\end{array}$
$\begin{array}{rl}-290120000000+05 & -2296000000090+05 \\ -20430000000-03 & 2146548680450-03\end{array}$
$-1155000000000-04$
$-1155000000000-04$
-4592000000000-05
-4592000000000-05
$.6558010000000-04$
$.6558010000000-04$
$\begin{array}{rl}-2901200000000+05 & -2296000000000+05 \\ -204300000000-03 & 2146548680450-03\end{array}$
$\begin{array}{rl}-2901200000000+05 & -2296000000000+05 \\ -204300000000-03 & 2146548680450-03\end{array}$
-11920ヒ6タ39320-04
-11920ヒ6タ39320-04
5074919794600-05
5074919794600-05
-5510113049970-04
-5510113049970-04
C

```
\(C\)
\(C\)
```

```
    IF(I-K) 120,120,108
```

 IF(I-K) 120,120,108
 -3495000000000+03 -8389000000000+03
-.2552700000000+05 -. 2340800000000+05
-18012475900000+05

```
```

 .8877000000000-34
 - 55389000080000-03
 .4101000000000-05
 -4050000000000-05
 .4450000000000-04
 -31030000000000-03
 -2019000000000-04
 .553201000000C-05
 .581Ej000000000-04
 -5, 1E000000000-04
 -1065000000000-03
 -273510000000-03
 -1352300000000-04
 .54660300000000-05
 .4608900000000-04
 - 64930000000000-04
 :60320100000005-04
 -50313000000000-05
 -5031300000700-05
 -10190000000000-03
 .1652000000000-03
 .16530000000000-03
 -0914700000000-05
 -3914000000000-05
 -371E]
 -2716000000000-04
 -26609000000000-04
 .1305000900000-03
 .6500010000000-05
 -48110000000000-05
 .9295000000000-04
 -10640000000000-03
 -10940000000-03
 -220100000000-03
 -1265000000005-04
 .6978.10000000-05
 -14470000000000-03
 .2459010000000-03
 .4171000000000-03
 .14930000000000-04
 -149300000000-04
 -5210000000000-05
 -36403000000000-04
 .3577000000000-04
 305
.95454000000000+01
.3439000000000-03
0.
0.55550000000000-04
-27620000000000-03
:2762030900000-03
307
10001000000000+01
0:2837000000000-03
0:
:4950000000000-04
:21640000000000-03
-10005000000000+01
308.519524900000000+
.51i95249000070000+
0.
0:5816300000000-04
0.
.49890000000000-02
:20430000000000-03
-8377000000000-04
-8377000003000-04
:18960000000000-04
28394834000000000
-87750000000000-02
-1538000005000-03
-80220000000000-03
-8022000000000-04
-2039000000000-04
-11450000000000+04
0.
-7301000000000-02
-310650000000000-03

```

0
.1995000000000-01 -11550000000000-04 -3932000000000-02 -6432000000000t03 -5454000000000-02
0.
-2043000000000-01 - \(9566000000000=05\) . \(5597000000000-02\) .5232000000000403 \(.6920000000000-02\)
0.
.1944000000000-01 - \(5019000000000-04\)

\section*{\(0:\)}
. \(4692000000000-05\) \(1707000000000-01\) \(1460000000000+03\) -1460000000000+03

0 :
4101000000000-05 -1702000000000-01 - \(2040000000000+03\) . \(2040000000000+03\)
\(\begin{array}{ll}2723000000010-03 & -330000003000-04 \\ 1600000000000+01 & 25000000000+04\end{array}\) 309 \(.39=2000000000003+01\)
\(0: 39200000000000-02\)
- \(\quad .2735060000600=03\) \(.4508900000000-04\)-6493000000000-04 -1000. 11490000000000000000
\(.2114000000000-030\).
0.
: \(5518000000000-02\)
. 1019000000000-03 - 4 24000000000-03 \(.2575000000000-03\)
0.
-2716000000000-04 -1149300000000-03 313.95646000000000 \(.2534000000000-03\) 0.
-92950000000000-04 . \(3634000000000-03\) -1000000000000+01 \(314.9540200000000+0\) \(.4462000000000-030\).
 . 1447900000000-03 \(.6143300000000-03\) -1000010000000+01 315.0618700000000401 \(0.5650000000000-03\)
0. \(.3549000000000-04\) -1572000000000-03 . \(1000700000000+01\) ENOLISTING 5400 ENC OF RECORD 5400 END OF RECORD
5400 ENI OF RECORO

\section*{\(-6632000000000 \div 03\) \\ \(.7680000000000-02\)}
0.

1899000000000-01 \(1352000000000-04\)
-1780000000000-02
- \(6632000000000+03\)
\(.321800000000-02\)
0 .
. \(1495000000000-01\) \(5031000000000-05\) -5230000000000-02 - \(663200000000+03\) . \(3213000000000-02\)
0.
-2482000000000-01 -89140000000000-05 - \(2123000000000-02\) \(.6632000000000+03\)
\(.744500000000-02\)
0.

2016000000000-01
6500000000000-05
-1646000000000-02
\(6232000000000+03\)
3040000000000-02
0.

1563000000000-01 \(126500000000-04\) \(519 E 00000000-02\) \(623200000000+03\)
\(302800000000-02\) 0.
:2579000000000-01 -1493000000000-01 2090000000000-02 \(.623200000000+03\)
\(2250000000000+03\) -2250000000000+03
0.
-5466000000000-05
\(1725000400000-01\)
- \(9000000000000+0\)
. \(8000000000000+02\)
O.
-5630000000000-05
-1375000000000-01
\(8000000000030+02\)
\(800000000000+02\)
\(0:\)
3916000000000-05
\(2020000000000-01\) \(2190000000000+03\) -2190000000000403
0.
:4811000000000-35 \(1863000000000-01\) \(7200000000030+02\) \(.720000000000+02\)
0.
-6978000000000-05 \(1459000000000-01\) \(7200000000000+02\) \(.7200000000000+02\)
0. - \(5210000000000-05\) \(1780000000000+03\) -1780000000000+03

PROGRAM NO. 4 :
This program was used to estimate the inverse of the upper triangular matrix from the steady state replicate data obtained in the current study. The upper triangular matrix was formed by factoring the variancecovariance matrix on the observations into two triangular pairs.
```

ATTACH,IMSLIR.
FTN(ROUND=*++
LOSET(LI星THSLIG)
GO.
PROGRAM TST (INPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPEG=OUTPUT,TAPE7=PUN
C 1CH IHIS PROGRAM FACTORS A POSITIVE OEFINITE MATRIX INTOTYNO TRIANGULAR PAIRS
C THEFOLLOWING SUBROUTINES ARE USEO FROM HACMASTER UNIVERSITY
COMPUTING CENTER LIBRARYOO
matrix CC is the covariance matrix on the transformed responses.
OIMENSION CCC(3,3), AA (6), DO(3,3)

```

```

 OINENSICN SIS;3)
 DIMENSION AII(3,3), SIGMA(3,3)
 N=3
 (5,60) ((CC(I,J),I=1,3),J=1,3)
 00 33 I=1,N
 33 CONTINUE =1,N
CCNTINUE,60) ((CC(I,J),I=1,3), J=1,3)
00 50 I=1,3
00(I2JJ)=CC(I'J)
CONTINUE
CALL VCUTFS(CC,N,N,AA)
CALL LUOEGP(AA,UL,N,O1,O2,TER)
PRINT*, FTRIANGULAR RATKIX ELEMENTS:
WRITE(6,66) (UL(I), II=1,6)
k=0
00 2001 I=1,N
k=k+1, J=1,I
2000
K=K+1
2001 CONTINUE
NK=N-1
OO 2003 I=1,NK
II=I+1
202 A(T <O2
2003 CONTINUE.
DO}2004\quadI=1,
PRINT*, ALOHER TRIANGULARA
WRIME(G,GO) ((A (I J), J=1 N N),I=1,N)
PRINI* \#UPPER TRIANGULARF
00 500 I=1,N

```

```

 HKITE (6,60} ((S(I,J),J=1,N),I=1,N)
 IOIGT=0
 CALLL_LINV2F(SSN,NGAI,IOIGT, KKKK,IER)
 WRITE(G,7O) ((AI (I,J),J=1,N),I=1;N:
 IOIGT=0
 CALL, LINV?FSAI,N,N,AII,IOIGT,WKK,IER)
    ```

WRITE \((6,70),((A I I(I, J), J=1, N), I=1, N)\)
\(800 \quad 0 \mathrm{~S}\left(J, \frac{8}{1} \mathrm{~S}^{2}=A I I=1, N\right.\)
MSA \(=0\)
CALL MPRC (AII,S,SIGMA,N,N,MSA,MSA,N) WRITE \((6,70)((S I G M A(I, J), J=1, N), I=1, N)\) FORMAT ( 3 E15.5)
\(\begin{array}{ll}60 & \text { FORMAT } 3 E 15.5) \\ 70 & \text { FORMAT } 3 E 12.5) \\ 66 & \text { FORMAT } 20 X, E 12.5)\end{array}\) STOP
\(\begin{array}{rrr}0.17993 \mathrm{E}-09 & -0.14315 \mathrm{E}-11 & 0.15807 \mathrm{E}-10 \\ -0.14315 \mathrm{E}-11 & 0.27167 \mathrm{E}-11 & -0.80452 \mathrm{E}-12\end{array}\)
\(-0.14315 E-11\)
\(0.15807 E-10 \quad-0.80452 E-12\) \(-0.80452 E-12\)
\(0.26676 E-11\)
ENOLISTING OF RECORO
6400 END OF RECORD
6400 END OF RECORO
6400 OF

PROGRAM NO. 5:

This program provides information relating to linear dependencies in the measured multiresponse data.
```

FTN.
LGO(FL=2000%
PROGRAM YSTIINPUT, CUTPUT, PUNCH,TAFES=INDUT,TAPEG=OUTPUT,TAPET=PUNC
1H)
MHIS FROGRAM PFOVIOES IMFOPNATION RELATING TO CEFENOENGIES IN THE
MULTIRESPCNSE ANALYSIS
SEE TECHNOMETFICS VOL: 1F, HC.1, FEGRUARY 1973. (PAGE 33)
NEX IS THE NUMEER OF EXFERTMENTAL RUNS
NR IS THE NUNBER OF MEASURED RESPONSESOF THE MODEL.
INPLICIT COUBLE PRECISICN (A-H,O-Z)
COUGLE PRECISION NN
CIMENSICN ARPAY(25,50),Y(14,5)
CIHENSION YSUM(5)GYOAR(5)
CYMENSICN OT (14,5),D(5,14)
OIUENSTCN ODT(5,5)
OIMENSICN EVECT(5,5)
OIMENSION VECT (1,5),SIGNA (5,5), VSIG(1,5),VVECTT(5,1)
OEFINE OATA COMSTAITTS
NEX=14
NF=5
FEAO(5,555) ((SIGMA(I,J),I=1,5),J=1,5)
REAO(5,101) NEX
00 10, J=1,NEX
REAO(5,102)'KRUN,NN
READ(5,10}2) (ARRAY(I,J),I=1,24
HRITE(6,104)
WFITE(6,105) KRUNYNN,N),I=1,24)
CCNTINU
C
MO
II=I+9
Y (J,I)=AREAY(II,J)
QO 2 J=1,NF
OO =0:000
MO 3 J = = 1,NR

```

```

 YGQF(J)=YSUM(J)/14.000
 O0 5 L = 1,5
 CT(M,L)=Y(M,L)-YBAR(L)
 CONTINUET(M,L)
 CONTINUE
 MAL DGMPRD(D,DT,DOT,NF,NEX,NR)
 CALL DEIGEN(ODT,EVECT,NK,MV)
 HEITE (6,2CO)
 HFITE (G;2gg) ((EVECT(I,J),I=1,NR),J=1,MR)
 WFITE(6,201) (DCT(I,I),I=1,HFF)
 KV=1
 KS=5
 FACT = 14.000-1.000
 WEITE (6,144)
 CO 6 J=1,NF
 VECT(1, I, = = EVVECT(I, J)
    ```
```

VECT{\&I:=VECT(1QY}FFACY
GALL OGNFRORVECT,SIGMA,VSIG,KV,KS,KS
CALL DGMFRD(VSIG,VEGTY,EXVAL,KV,KS,KV)
HRITE(5,103) EXVAL
COHTINUE

```

```

FORMAT(5X, *EXPECTEO VALUES CF THE EIGENVALUES*)
FORMAT(I3)
oqnat (13,020.12)
FORMAT(4 020.12)
FCRNAT (2X, * EXFERIMENTAL DATA-ARFAY(I,J) *)
FORNAT (2X,*RUN NUMEER=*,I3,/,1X, *NN='*,F1G.5)
ECRMAT(2X,5(011:5 % 3x))
FCRMAT(1/,5X,*ETGENVALUES OF DOT*)
FCRMAT(11,EX,*EIGENVECTCRS OF ODT*)
FORMAT(5012.4)
Sypf
SUBROUTINE DEIGEN(A,R,N,MV)
SUEROUTINE EIGEN
PURPCSE
COMFUTE EIGENVALUES ANC EIGENVECTORS OF A REAL SYMMETRIC
METGIX
USAGE
CALL EIGEN(A,R,N,NV)
DESCRIFTION OF PARAMETERS
A - ORIGINAL MATGIX (SYMHETRIC), DESTROYED IN COMPUTATION.
FESULTANT EIGENVALUES AKE OEVELOPEO IN GIAGONAL OF
MATRIX A IN OESCENOING OROER.
R - FESULTAHT MATFIX OF EIGENVECTOPS (STOREO COLUMNWISE,
in samE sequence as eigenvaluess
N - OPDER OF MATRICES A ANO R
MV - INFUT COOE

```


```

REMAFKS
ORIGINAL MATRIX A MUST BE REAL SYMMETRIG (STORAGE MOOE=1)
SUBROUTINES ANO FUNCTION SUBPROGRAMS REQUIRED
NONE
METHOC
OIAGONALIZATION METHOD ORIGINATEO BY JACOBI AND AOAPTEO
GY VON NEUNANN FOF LARGE COMPUTERS AS FOUND IN \&MATHEMATICA

```

```

DINENSICN A(1),R(I)
15

```
        IF(MV-1) 10,25,10
```

 IF(MV-1) 10,25,10
 IO=-H
 IO=-H
 IO=IO+N=1,N
 IO=IO+N=1,N
 00 20 I=1,N
 00 20 I=1,N
 IJ=IQ+I
 IJ=IQ+I
 Q(IJ)=0.0 20,15,20
 Q(IJ)=0.0 20,15,20
 COMPUTE INITIAL ANO FINAL NORMS (ANORM AND ANOFMX)
 COMPUTE INITIAL ANO FINAL NORMS (ANORM AND ANOFMX)
 25 ANORM=0.0
25 ANORM=0.0
OC}35\mp@code{I=1,N.
OC}35\mp@code{I=1,N.
IF(I-J) 3 {,35,30
IF(I-J) 3 {,35,30
ANORM=ANCFM+A(IA)*A(IA)
ANORM=ANCFM+A(IA)*A(IA)
35 CCNTINUE
35 CCNTINUE
IF(ANORM) 165;165,40
IF(ANORM) 165;165,40
O ANORM=1.414*OSNRT(AINORM)
O ANORM=1.414*OSNRT(AINORM)
ANRMX=ANOFM*1.OE-E/FLCAT(N)
ANRMX=ANOFM*1.OE-E/FLCAT(N)
IHITIALIZE INOICATORS ANO COMPLTE THRESHCLC, THR
IHITIALIZE INOICATORS ANO COMPLTE THRESHCLC, THR
INO=0
INO=0
THR=ANORM
THR=ANORM
45 THR=THR/FLOAT(N)

```
```

 45 THR=THR/FLOAT(N)
    ```
```



```
```

 COMPUTE SIN ANO COS
    ```
```

```
        COMPUTE SIN ANO COS
```



```
        IF AA QCURLE FRECISION VERSIOHNCF THIS ROLTINE IS OESIREO, IHE
```

 IF AA QCURLE FRECISION VERSIOHNCF THIS ROLTINE IS OESIREO, IHE
 STATEMENT WHICH FCLLCWS.
 STATEMENT WHICH FCLLCWS.
 OCUBLE PRECISION A,R,ANCRM,ANRMX,THR,X,Y,SINX,SINX2,COSX,
 OCUBLE PRECISION A,R,ANCRM,ANRMX,THR,X,Y,SINX,SINX2,COSX,
 1 DOURLE PREGISION AOSXZ,SINCS
 1 DOURLE PREGISION AOSXZ,SINCS
 1 COSX2,SINOS
 1 COSX2,SINOS
 THE C MUST ALSO GE FEMOVEC FRON DOUBLE PFECISICN SYATEMENTS
 THE C MUST ALSO GE FEMOVEC FRON DOUBLE PFECISICN SYATEMENTS
 RCUTINE.
 RCUTINE.
 THE COUBLE PRECISICN VERSION OF THIS SUBROUTINE MUSY ALSO
 THE COUBLE PRECISICN VERSION OF THIS SUBROUTINE MUSY ALSO
 COIITAIN DOUBLE PRECISICN FORTRAN FUNCTIONS. SQRT IN STATEMENT
 COIITAIN DOUBLE PRECISICN FORTRAN FUNCTIONS. SQRT IN STATEMENT
 40, 68, TE, AND 78 MUST BE CHANGEO TO OSQRT. ABS IN STATEMENT
 40, 68, TE, AND 78 MUST BE CHANGEO TO OSQRT. ABS IN STATEMENT
 62 MUST BE CHANGEO TC DABS.
 62 MUST BE CHANGEO TC DABS.
 GENERATE IDENTITY HATRIX
 GENERATE IDENTITY HATRIX
 R(IJ)=1:0
    ```
    R(IJ)=1:0
```

```
0
    60 MG= KM#M-M:/2
        G=(L*L-Lj)Z
        LH=L&M力
    \varepsilon2 IF(JAGS(A (LM))-THR) 130,65,65
    6 IND=1
        LL= = +LQ
        x=0.5*(A(LL)-A(MM))
    Y=-A(LM), OSORT(A(LY)*A(LM) +X*X)
    IF (X) >0,75,75
    Y=-Y
    SINX=Y/OSORT(2.0* (1.0+(CSORT(1.0-Y*Y))))
    SINY2=SINX*SINX
    COSX=DSGRT(1.0-SINX2)
    cosx2=cosx*\operatorname{cos}x
    cosx2=cosx**\operatorname{cos}x
C
            ROTATE L ANO M COLUMNS
    ILQ=N* (L-1)
    MO=N*(M-1)
    00=125II=1,N
    IF(T=L) 80,115,80
    8
    G0 TO 95
    TN= +TO
    IF(T-L) 100,105,105
    IL=I+LQ
    GO TO 110
    IL=L+IO
    x=4(IL)*\operatorname{cos}X-A(IM)*SINX
    A(IM)=A(IL)*SINX+A(IN)* COSX
    A(IL)=X
    TF(MV-1) 120,125,120
    120
    ILR=ILO+
        IMR=INO+
        X=R(ILP)* cosx-R (IMR)*SINX
        R(INF)=R(ILR)*SINX+२(IMR)*\operatorname{COSX}
    R(ILR)=X
    125
    x=2.0*A (LM)*STNCS
    Y=A(LL)*CCSX2+A(MM)*SINX2-X
    X=A(LL)*SINX2+A(MM)*\operatorname{CCSX2+X}
    A(LM)=(A(LL)-A (MM))*SINCS+A(LM)*(COSX2-SIMX2)
    A (MM)=Y
            TESTS FOR COMPLETICN
            TEST FCR M = LAST COLUNN
    130 IF(M-N) 135,140,135
    M=M+1
    GO TO 60
TEST FCF L = SEGONC FROM LAST COLUMN
```

```
    140 IF(L-(N-1)) 145,250, 土45
    \45 L=1+1
        GOTO 55
    150 IF(IND-1) 160,155,160
    155
        GO TO 50
    C
    160 IF(THR-ANRMX) 165,165,45
    C
    1E5
        IO=-N
        CO 185 I= I,N
        IC=IO*N
        JO=11*(I-2)
        CO 185 J=I,N
        UQ=JG+N
        NH=J+(J*J-J)/2
        IF(A(LL)-A(MM)) 170,185,185
    1 7 0
        X=A(LL)
        A(MM) =X
        IF(MV-1) 175,185,175
        ILR=IQ+K
        I=R(ILR)
        R (ILR)=F(IMR)
    180
        gC?TINUE
        RETURN
        E N D
    SURROUTINE DGMPRD{AQB&R&NGM&E'
    OGMPRD -MATFIX PROOUCT KOUTINE 
    SSP GLIERAFY FOUTINE -MACMASTER UNIVERSITY COHPUTING CENTER.
        IMDLICIT DOUBLE FRECISION (A-H,C-Z)
    OIMENSICN A(1); E(1);R(1)
    IP=0
    IK=-M
    CO 10 K=1,L
    IK=IK+M
    CO 10 J=1,N
    IR=IR+1
    JI=J-N
    IG=IK
    R(IR)=0
    JI=JI+N
    10
        R(IR})=R(IR)+A(JI)*B(IB
        RETURN
    1&240-09 . 72350-11 . 13550-10 -. 25000-10 -.64620-10
```



```
            .57340000000000-03 0゙.
    0.
    .12820000000000-03
    .2473000000000-03
    .10000000000000+01
529
    5799E1600000000+01
    .5798000000000403 01.
    O.
        .1107900000000-03
        -1107000000000-83
    -2576000000000-02
    35010000000000-03
    -49020000000000-03
    -25270000000000-04
        -1000000000000-01
531.0.9950800000000+02
    .7055000000000-03 %
    0.
    .1055000000000-03
    -75450000000000-02
    .40820000000000-03
        .2546900000000-03 
505 .9930500000000+01
    .3871000000000-03
    0: %5238000000000-0%
    0: %2263000000000-03
        .9380900000000-04
        .5974:000900000-03
                            140E000000000-03
        .1000000070000+01
610.10039688000000000+01
    .5980000000000-03 0.
    0. .26930000000000-02
    0:5380000000000-04 :42206000000000-03
        000-84
        .1529000000000-03
    -1350400050000-03
    .50600000000000-04
        .1000000000000+01
517-97044400000000+01
    .3081000000000-030.
    0: :53550000000000-02
    0: :F3250000000000-0 3
        -17E40000000000-03
    :3%0年0000000000-02
        .44240000000000-03
    -3002000700000-02
        .10009000000000+01 : 87500000000000+03
            ENOLISTING
                    6400 END OF RECORD
                    G400 ENO OF RECORD
- \(3058000009000-02\) 3798000000030-03 \(-184300000030-03\) -2496000000coo-04 \(: 8720000000000+03\) \(.5798000000000 \times 03\).
```

0.

-1107000000000-03

- $90200000000-03$
- 21227000000000-04
$.879000000000+03$
$.70559000000000003+02$

0.

. $4082000000000-03$
-1521000000000-03
-2220000000000-a
-9920000000000+03
505
-5238000000000-0\%
$-140600000000=03$ - $2001000000030-04$
-9500000000000+03 5980000000000-03
Q. .2593000000000-02
$.5380000000000-04$
$.100000000000+01$
-9950000000000+03 $.30890440000000+01$

FECORD
\neq
\neq
7
G400 END OF RECORD
0.
$-1779000000000-01$ -1811000000000-04 -2560000000000-02 -6532000000000403 $.4015000000000-02$
0.
. 1930000000000-01 -1619000000000-04 - $5282000000000+03$ -4721000000000-02
0.
.1750000000000-01 -1867000000000-04 -4691000000000-02 - $5282000000000+03$ $.5344000000000-02$
0.
-1882000000000-01 -1191.000000000-04 -4223000000000-02 $.6432000000000+03$. $6200000000000-02$
0.
.2080000000000-01 1910001000900-04 -21700110000000-02 $.6562000000000+03$
$.7214000000000-02$
0.

1595000000000-01 -6253000000000-05 -5446000000000-02 -6292000000000+03 $-3875000000000-02$
0.

7443000000000-05
-7443040000000-05

- $\frac{15}{5} 505000000000-01$
$.5500000000090+02$
$-550000000000+02$

0.

-589500000000-05

- $5895000000000=05$
- $5500000000000 \mathrm{O}+02$
- $6500000000000+02$

0 .
-6956000000000-05

- $1658000000000-05$
$1600000030000-01$
$-100000000000+03$
$-1000000000000+03$
0 :
-6573000000000-05
- $17573000000000=05$
$1704000003000-01$
$.850000000000+02$
$\because 8500000000000+02$
0 .
. $4400000000010-05$
-4400000000000=05
- $1000000000000+03$
-1000000000000+03
0 .
:5286000000000-05
: $5286000000000-05$
- $5728000000000-01$
$.5500000000030+02$

PROGRAM NO. 6:

This program was employed to estimate the parameters in the model using the statistical technique of Hoffman and Reilley [124].

PRCGRAM YET (INPUT,OUTPUT,FUNCH,TAPES=INFUT,TAFEG=OUTPUT,TAPET=PUN
C WH***FYVE IMDEFEIDENT RESFCNSES-OX,OTA,PA, DI,CCZJCO IMPLICIT COUBLE PRECISION (A-H,O-Z)
OCUELE MN
CCNACN/STOIC/NN
COMMCN/EIGUT/Z
OINENSYON ARRAY (25,50)
INENSIOH X (14, 15), Y(14,3), GAN(12), ALFH(12), UM1(12, 12$), V M 1(12,12)$

OYMENEION YYY(3)
************ REAO IN EXPERIMENTAL OATA
DEAC(5, 10 1) NEX
70 10 J=1, NEX
REAO(5, 10 C)KPU N, INN
$\operatorname{REAO}(5,103)$ (ARRAY $(I, J), I=1,24)$
WRITE (6,104)
WRITE 5,105)KRUN, NM
CORTE $5 \cup E^{103)}$ (ARSAY(I, J), $\left.I=1,24\right)$
10
REAO IN PAPANETER VALUES
REAC(E,20) ALPH
ORINT* \neq ALPHF
WRITE $(5,20)$ ALFH
REAO 5,20$)$ UMI
RRINTH, ${ }^{H}$ UMIF
HRITE $(6,20)$ UM1
REAC(5,20) GAM
WFITE (6, 20) GAM
ISTARTHSTAQT+0.ODi
IENC=ENO O O.OD1
$N R=5$
NRT $=$?

ORIAT*, IINOEPENTENT ORTHORGONAL EIGENVECTORSA
WRITE ($6,6 \in 6)(X(I, J), J=1, N R), I=1, N R T)$
70 CO1 J=1, NEX

η
$I=I+0$
$\times(J, I)=A R F A Y(I I, J)$
$Y Y Y(1)=A F R A Y(10, J) * Z(1,1)+A R R A Y\left(1, j_{2} J\right) * Z(1,2)+A R R A Y(12, J) * Z(1,3)+$
1ARFAY $(13, J) * 7(1,4)+A R R A Y(14, J) * Z(1,5)$
YYY(2)=ARRAY $(10, j) * Z(2,1)+A R R A Y(11, j 1)^{*} Z(2,2)+A P R A Y(12, J) * Z(2,3) 4$
1ARFAY(13, J)*Z $(2,4)+A R R A Y(14, J) * 2(2 ; 5)$
YYY(Z) =ARRAY $(1, C, J) * Z(3,1)+A R R A Y(11, J) * Z(3,2)+A R R A Y(12, J) * 2(3,3)+$
1ARFAY $(13, J) * Z(3,4)+A R R A Y(14, J) * Z(3,5)$
CALL TRANSCYYY
OO 44 I

$$
\begin{aligned}
& \text { जMAN ISI } \quad 73 / 73 \text { TS FTA 4.84428 OAGE } \\
& 24 \quad Y\left({ }^{4} 4 \% \text {) }=Y Y Y(I)\right. \\
& 201 \text { CONTINUE } \\
& \text { } 1 F \triangle R=12 \\
& \text { MIND }=\frac{15}{3} \\
& \text { 1OEF=3 } \\
& \text { FACT=1.00-06 } \\
& \text { DO } 11 \text { I=ISTART, IEND } \\
& \text { CALL NEHALG (NEX, NAAR, MINO, NOEP, X,Y,GAN,FACT, ALPH, UM1, VH1,VH2,T,W1 } \\
& \left.1_{3} X C R C W, F, Q, F D, I R, I C\right) \\
& \text { SRINT* }{ }^{*} \\
& \text { WRITE(6,22) I } \\
& \text { WRITE }{ }^{*}{ }^{\neq}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WRITE(G,22) I WI } \\
& \text { WRITE(ह, 20) W1 } \\
& \text { WRITE }(b, 2 z) I \\
& \text { PRINT* } \neq \text { GAMZ } \\
& \text { WRITE(6,20) GAM GO TEND) GO TO } 400 \\
& 400 \text { WPITE (7,20) GAM } \\
& 1 \text { SCNTINUE } \\
& \text { ORINT*, IINITIAL VM2 MATRIXA } \\
& \text { WPITE (} 6, \text { ZZZ)VME } \\
& \text { CALL MINVRD UMZ, NPAR,NPAR,END,I,IF,IC) } \\
& \text { DPINT* }{ }^{*} \\
& \text { VH2 }= \\
& 222 \text { FORYAT(1X,12011.4) }
\end{aligned}
$$

CKS=-
3EE /EIGVT/ 2B /STCIC/

```
SUGRCUTINE TRANSIFS
MPLIEIT EDUBLE JRECYSION (A~H,O-Z)
OMENSION F(3)
BINENSION TR(6)
0ATA YO/0.745500405,0.482700+04,-0.815400+05,0.607980+060
10.238290+05,0.049740+061
F(1)=TR(1)*F(1)+TR(2)*F(2)+TR(3)*F(3)
F(2)=TR(4)*F(2)+TR(5)*F(3)
F(3)=TF(6)*F(3)
RETUFN
ENC
SURROUTINE MODELXXIYTHYF)
IMPLICIT COUBLE ORECISION (A-H,O-Z)
DCUELEKA,KAY,KR1Z, KR12I,KR23,KR2ZI,KF34,KR34I,KR5,KR5I
CCMNCN /EIGVF/R
CHMCN/OARA1/KA, KR12,KR23,KR34,KR5,ASITES
CCMMCN/DEF/Y
CCHMCN/COMST/RT
GCNMCN/MEF/T,OELD,W,PT,GRACP
SCNMCN/MEF/T,OERD,W,PT,GRACP
SCNMCN/ERFOR/EFR
IINENSION XI(15),TH(12),F(3),Y(10)
3INENSION Z(3,5)
R=1.4872000
OC:
Y(I)=XI(I)
T=XI(10)
#ELP=XI(11)
W=xI(12)
OT=XI(13)
FGAS=XI(14)
TRACF=XI(15)
TEASE=273.2+370.
TSTAR={TBASE*T)/(TEASE*T)
RT=TSTAR/R
KA=TH(1)* CEXP(TH&G)*RT}
KP12=TH(2)*DEXF(TH(T)*RT)
KR23=TH(3)*DEXF(TH(A)*RT
< 34=TH(4)*DEXF(TH(g)*RT)
KRF=TH(5)*OEXP(TH(10)*RT)
ASITES=DEXP(TH(12))*DEXP(TH(11)*CT)
x=0.
Ox=0.005
TOLKM=1.OC-08
OXNIN=0.0001
ij=5
DELX=W
CALL MERSCN (X,DELX,OX,CXMIN,TOLKN,N)
F(1)=Y(1)}4~{(1,1)+Y(2)*Z{1,2)+Y(3)*2(1, 3)+Y(4)*2(1,4)+Y(5)*Z(1, 5
```



```
OALL TRANS(F)
RETURN
RETUFN
END
```

C
SUERCUYKNE NEWALG\N\&F,NYNO,NCEP, XOATA,YOATA,GAM,FACT,ALPH,UM1,VM1,TEROOO10
IHFLICIT COURLEPRECISION (A-H,O-Z)
TEROOO60

```


```

 INGVE(P;P)
 H&(IFi)=ALGH(IP1) - GAM(IP1)
 OC, 隹1F2=1O1,P
 VM1(IP1,IF2)=UM1\&IP1,IP2)
CALL VCMPYD(UM1,P,F,P,F,W1,T)
C GOLYFOUGH OATA ONCE ÁCCUHULATING CONTRIGUTIONS TO VMI AND T
C DO FALUATE=MONES ANO ITS OERIVATIVES
C EVALUATE=MONEL ANO ITS DERIVATIVES
OO 2 IINO 1=1,NINO
XOFOH(IINC1)=XEATA(YN1,IINC1)
2 CALL VALUES(P,NINO,NDEF,FACT,XCROW,GAM,F,O,W1,FO)
C AOLCONTPIBUTGONS
OO 3 IOEP1=12NCED
OC 3 IP1=12P
x=0(IDEP1qIP1)
Y{IF1)}=T(1DI)+X*
T(IFI)=T(IDI)+X*Z
V|1(IF1,IF2)=PN1₹IF1,IF2)+X*O(TOEP1,IF2I

```

```

 FILLIN LCWE
 H1(IF1)=T({P1)
 004 IP2=IP1,P
 Z=VM1(IP1&IP2)
 VMVM1(IP1,&IP2)
 VM12(IFP1;IF2)=2
 VMZ(IFI,IF2)=Z
 4 CCNTINUEIFI)=2
C COALCCLATE CORRECTION ANO AFPLY IT
CALL LNEOAD(VM1,P,P,P,T,IR,IC,IER)
GO S IP1=1,P
QENUGN
EMD
TEROOO80
C INIIIALIZE VMI AND T
OO IP1EI,0
TEROOOQO
TEROO110
TERON110
TEQOO120
TEOOO130
TEROO140
TEROO140
TEROO150
TEQOOI70
TEROO18O
TEROO180
TEROO190
TEROO2OO
TEROO210
TEROO220
TEROO230
TEROOL240
TEROO240
TEOOOLSD
TERODZED
TERO0270
TERO\2\&O
TEROJZAO
TEROO290
TEROO300
TEROO310
TEROOS20
TEROO33O
TERROOS40
TEROOS40
TER00370
TEROO370
TEROO390
TEROO390
TEROO400
TEROO410
5 GAM(IF1)=GAM(IF1)+T(IF1)

```
    LNERNO
                values
                VCMPYO
LADELS--
\(: \frac{1}{5}\) ID
08
0.
```

 SUERCUYENE MYMVRN{ARYA,MAQQETAGTEF,IR,IC}
 DIMENSIONIR(IAA),IC(MA)
 IER=0
 O1I=1,MA
 IR(I)=0
 TEYA=1.000
 CALLSUGMXZOI,MA,IA,IA,HA,MA,IF,IC,I,J)
 PIV=A(I,J)
 TETA=FIV*CETA
 IF(PIV.EQ.D.D0)GOT017
 IR (I)=I
 PIV=1.00/FIV
 OO5K=1,MA
 A(I,K)=A(I,Y)*EIT
 A(I,J)=PIV
 DOgK=1,NA
 IF(K.EQ.I)rOTOQ
 OIV1=A (K,J)
 OCL=1,MA
 A(K,L)=A(K,L)=PIVI*A{I,L)
 A(K&J=PIVI
 CNIINUE
 PIVI=A(I,J)
 O11K=1,MA
 11 A (K,J)=-PIV*A (K,I)
123 CCATINUE
12
A(I'SJ)=PIV1
CCNTINUE
KO1EI=1,MA
K=IC(I)
IF(K.EO.IIGOTO16
DETA=-DETA
任位=1,MA
TEFF=A(K,B)
A(K,L)=A'(T,L)
A(I\&G)=TEMG
O156=1,MA
TENF=A(R,N)
A(L,I)=TENP
1 5
IF
CCNTINUE

```
, ER00610
TEROOG30
TEROOGLO
TEROOG40
TEROOG50
TEROOG50
TERDOS60
TERDO660
TEROO
TE
TEROO670
TEROO630
TEROO690
- EROOTO
-EROVTO
TEROO710
TEROOT20
TEROOT30
TEROO740
TEROOT50
TEROOT60
TERO 780
TEROOT70
TEROOT80
TERODT90
TEROO800
TEROO810
TEROO820
TEROOS30
TERODS40
TEROD840
TERODS50
TERDO860
TEROO870
TEROO830
TEROO890
TEROO900
TEROOG10
TEROOG10
TEROO920
TEROO930
TEROOGLO
TEROO940
TEROO950
TEROO960
TEROO980
IEROO980
TEROO990
TERO1000
TERO1010
TERO1020
TERO1030
TERO1040
TEROIO50
TERO1050
TERROIOSO
TERO1070
TERO1070
TERO1080
\(\begin{array}{r}\text { TERO1080 } \\ \text { TERO } \\ \hline\end{array}\)
TERO1090
TEROI:10
```

 SUURCUYYHEVCMEYUYAGA,SAGMAgNA,W,X)
    ```
```

SUQRCUTINE VALLES (FRNINONNEF,FACT;X,GAM,F,D,THETA,FO)

```
SUQRCUTINE VALLES (FRNINONNEF,FACT;X,GAM,F,D,THETA,FO)
OTNENSION X(NIND),GAH(P),F(NOEP), O (NOEP,P),THETA(P),FC(N[EP)
OTNENSION X(NIND),GAH(P),F(NOEP), O (NOEP,P),THETA(P),FC(N[EP)
C HCOELIS EVALUATEG UNOER'GIVEN CCNOITICNS
C HCOELIS EVALUATEG UNOER'GIVEN CCNOITICNS
1 OCGIA(IPI)=GAM(IPI)
C CALLNODEL(XATHETA,F)
C CALLNODEL(XATHETA,F)
0% 2 IP1=1,P
0% 2 IP1=1,P
DELTA=FACT*GAM(IDA)
```

DELTA=FACT*GAM(IDA)

```


```

THEFA(IPIOOTHETA(IFI)\&CELTA

```
THEFA(IPIOOTHETA(IFI)&CELTA
GALL MOOEL (X,THETA,FO)
GALL MOOEL (X,THETA,FO)
THETA{IPI)=GAN(IOI}
THETA{IPI)=GAN(IOI}
7O % IOEP=1,MOEP
7O % IOEP=1,MOEP
O(ICEP,IPI)=(FC(IDED) -F(IOEP)) /DELTA
O(ICEP,IPI)=(FC(IDED) -F(IOEP)) /DELTA
RETUEN
RETUEN
ENO
ENO
MODEL
1 IO 0e 2 IO 08
```



```
\begin{tabular}{|c|c|c|}
\hline DELTA & 0 & 1678 \\
\hline GAM & & OB \\
\hline IP 1 & & 1718 \\
\hline NCEP & I AU & 08
08 \\
\hline valles & & 1538 \\
\hline
\end{tabular}
VAR-OIM
17 SYMBOLS
```


LAEELS--

```
SUERCUYYNEGNETNOQA,IA,JA,MA,W,YR,ICYIEF%
```



```
    TOUELE SMALL,RIG,OETI;FACTOR
    DINENSIONIR(MA),IC(NA)
    R=NE
    S=0.
    S=0
    OET=1.000
    TET1=1.000
    )C}C2K=1,MA,
    RR(K)=0
    IC(K)=0
    \capO2OK=12MA
    BTGECAES(A (K,1))
MULTIFLY EY 1-- IGNCRED
    SMALL=QIG
    021J=2,M
    IEMF=CABS (A (K, J))
    F(TEND.GT-BTG)BTG=TEMO
21 TF(TEMP:CTSNALLSSALL =TEMF
    YEND=CABS (W\K))
    IF(TEMP.GT.BIG)BIG=TEMP
    IFITEMP.LY.SMALLISMALL=TEMP
    IF\SMALL.EO.O.ODDSSMALL=1.000
    TF(ETG EOEO.OUOSGOTO2L
    FACTER=1:OOO/DSORT(RIG*SNALL)
    OET1=OFTI/FACTOR
    DOEzJ=1 MA
    A{K,J)=A(K,J}*FACTOR
    W(K)=W(K)*FACTCR
30 GALLSUGMXO(A,IA,IA,MA,MA,IR,IC,I,J)
    GALLSU(I,J)(
    DET=FIV/DET
    IR(I)=J
    PIV=1.DO/PIV
    \CGK=1,MA
O A(I,K)=A(IGK)*PI
    N(IG=W(I) &SIV
    9C1GL=1,MA
    IF(IC(L).NE.0)GOTO10
    PIVI=A(I,L
a IF(K,AE,I)A(K,L)=A(K,L)-PIV1*A(K,J)
10 CCNTINUE
    PIV2=W(I)
12 IF{K,AE:INW(K)=W(K)-PIV2*A(K,J)
    S=S+1
    IF(SSLT,R)GOTOZ
    IF(SGL.PM
    K=IC(J)
    L=IF(J)
    TF(K.ED.j)GOTO15
    TEMP=:(J)
    IF(EIG.ET.0.000)COTO20
    =NA
```

20 CCKIIfUE
2
TERO1400
TERO160
TERO161
TERO1430
TERO1440
TERO1450
TERO1460
TERO147
TERO1470
TERO1480
TERO1490
TERO1490
TERO1590
TERO1510
TERO1520

TERO1540
TERO1550
TERO1550
TERO1570
TERO1580 TERO1590 TERO16JO TERO1610 TERO1620 TERO1620
TERO1630 TERO1630 TERO1640
TERO1650 TERO166 TERO1670
TERO1680
TERO1680
TERO1690
TERO1700
TERO1710
TERO1720
TERO1730
TERO1740
TERO1750
TERO1760
TERO1760
TERO1770
TERO1780
TEOD1790
TERO1850
TERO1810
TERO1820
TERO1330
TERO1840
TERO1850
TERO1860
TERO1880
TERO1890
TERO1900
TERO1910
TER01920
TERO1930
TERO1940

YERO1960
TERO1970
TERO1990
TERO1990
TERO2000
TERO2010
TERO2O30 TERO2O40
TERO2050

SURRCUTINESUBHXDRA IA, JA,MA,NA,IR,IC,I,J)
OCURLE A (IA, JA), TEST,
$I=0$
$1=$
TEST=0.000
$305 \mathrm{~K}=1$, MA
YF(YF (K), NE,0) GOTOS
OC4L=1, NA
IF(IC(L).NE, O) COTOL
$x=\mathrm{ABS}(A(K, L))$
EF(X.LT.TEST)GCTO4
$I=K$
$T=1$
$T E S T$

0
$\begin{array}{ll}4 & \text { CENTINUE } \\ 5 & \text { CCNTINUE }\end{array}$ RETURN
ENO
TERO1210
TERO1230
TERO1240
TERO1250
TERO1260
TERO1270
TERO12s0
TERO1390
TEROI310 TERO1320
TERO13 TERO1330 TERO1350 TERO1360 TERO1380 TERO1390
SUBROUYYAE DETGEN(A,R,A,MU)

```
SUEROUTINE EIT,EN
PURPOSE
    CCMFUTE EITENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
    USAGE
    CALL EIGEN(A,R,N,MV)
OESCRIPTION OF FARANETERS
    A - ORIGINAL MATFIX (SYMMETRIC) DESTROYED IN CCMPUTATICA.
                RESULTANT EIGENYALUES ARE OEVELOPEO IN OIAGCNAL OF
        - RESULTANT MATRIX OF EIGENVECTORS ISTCRED COLUMNNISE,
    N - OROEF OF MATRICESA ANDR
    NV. INOUT COOE
                                    COMPUTE ETGENVALUES ANO EIGENVECTORS
                                    COMPNTE EIEE EUI MUST STILL AFPEAR IN CALLING
                    SEQUENCES
    FEMARKS
    ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MCDE=1)
SLEROUTINES ANO FUNCTION SUPPFOGRAMS REQUIRED
    NONE
    METHOD
    DIAGONALIZATION METHCD ORIGINATED BY JACCBI AND ADAPTED
    GY VON NEUHANA FOR LARGE CONPUTERS AS FOUND IN ¥NATHEMATICA
    METHODS FOR OIGITALGCOMPUTERSA, EOITEGGBY A. FALSTON ANO,
DIMENSION A(1),R(1)
    IF A DCUBLE PRECISICN VERSION OF THIS RCUTINE IS DESIFED, THE
    C IN GCLUMN I SHOLLO RE REMOVEO FRON THE TOUBLE PRECISION
    statememt hmich follohs.
DCUGLE PRECISICN A,R,ANOFM,ANRNX,THR,X,Y,SINX,SINX2,COSX,
1 DOURLE PRECISICN A,AR,ANSINCS ANRNX,THR,X,Y,SINX,SINX2,COSX,
    THE C MUST ALSO EE REMCVED FRCM OOUELE PRECISION STATEMENTS
    gCUTINE.
```

1

```
C THE DOUBLE PRECTSTCN VERSTON OF THIS SURROUTINE MUST ALSO
        CONTAIA DOUBLE PRECISIOA FORTRAN FUNCTICNS: SORT IN STATEMENT
        40, GA, 75, AMO7B NUST EE CHANGEO TO OSQNT. ABS IN STATEMENT
        00000000000000000000000000
        EENERATE IDENTITY MATRIX
```



```
        CCMPUTE INITIAL AND FINAL NCRMS (ANORM ANO ANORMX)
    25 ANCEN=9.0
    OC 35 I= =1,N
    IF(T-J)=\frac{1}{30,N35,30}
    IA=I+(J*J-J)/2
    35 OCNTINUE
    IF(ARCRM) 165,165,40
    40 ANCRH=1.414*OSRRT (ANORN)
            INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR
        INC=O
        IHR=ANCPM
    45 THF=THR/FLCAT(M)
    50
            CCMPUTE SIN AMO COS
    60 MO=(N*M-M)/Z
    LG=\L*L
    IF(EAES(A (LM))-THR) 130,65,65
    INO=1
    ML=L+LO
    MN=M+MO
    68 Y=-A(LM)/ DSQRT(A(LM)*A(LM)*X*X)
    IF (X) 70,75,75
    70Y=-Y
    YESINX=Y/DSGRTI2.O*(1.O+(DSQRT(1.0-Y*Y))))
```

78 60Sx=CSORY(1.0.SENX2)
$\cos x 2=\cos x * \cos x$
SINCS =SIAX*COSX
C
C
C
gCTATE L ANO M COLUMNS
ILGEN*(L-1)
INGFA* (M-1)
90 $125 \times I=1, N$
IF $(1-1) 80,115,80$
80 TF (Y-N) 85,$115 ; 90$

- 0 - $5+05$
$90 I N=M+I 0^{2}$
95 IFIT-L) 100,105,205

105 IL=L+IO
$110 x=A(I L) * \operatorname{ces} X-A(I+4) * S I N X$
$A(I N)=A(I L) * S I A X * A(I H)+\cos X$
$A(I L)=x$
115 IF (NY-1) 120;125, 120
ILR=ILB+1
$\dot{x}=R(\bar{I}(R) * \cos x-R(I M F) * \operatorname{SIN} X$
$R(I N F)=R(I L Q) * S I N X+R(I M R) * \cos X$
$R(I T R)=X$
125 CCATINUE
$x=0$ O*A(LN)*SINCS
$y=A(L L) * C C S X 24 A(4 M\} * \operatorname{SINX2-X}$
$x=A(L L) * \operatorname{Sin} X 2+A(4 N) * \cos x^{2}+X$
$A(L N)=(A(L L)-A(M M)) * S I N C S+A(L M) *(C O S \times 2-S I N \times 2)$
$A(L L)=Y$
C
C
C
C
C

C
C
C
140 IF(L-(N-1)) 145,150,145
$145 \mathrm{~L}=1+1$
150 FF(INC-1) 160,155,160
155 INO二〇
50
C
C
C
CCMPARE THRESHOLO WITH FINAL NORM
160 IF(THF-ANAMX) $165,165,45$

```
C SCRT EIgENVALGES AND EIGENVECTORS
    15E r O=-N
        IC 185 I= I= 1,N
        LLI+(I*I-I)/2
        JG=N* (I-2)
        OO 18 8 J J=I,N
        JO=JG+N
                IF(A(LL)-A(MM)) 170,18E,185
    170
            A(LL)=A(MN)
            A(AN)=X
    175
        \
        ILR=IO+K
        X=A(ILR)
        R(ILR)=R(IMR)
    180 R(INFI=X
        CCNTINUE
        RETUEN
```

OSQFT.
LABELS--

108
66 E
1718
2218
357 E
433 E
5348
17468
1164 E
1164 E

| - 15 | | 358 |
| :---: | :---: | :---: |
| - 35 | 0 | 1178 |
| :6月 | | 2528 |
| .80 | | 4178 |
| - 100 | | 4378 |
| -120 | | 5378 |
| -140 | | 10468 10648 |
| 180 | IO | |

SURRCUTYNE MERSOM (X, DELX, OX, OXMIAY YOLKM, N)
YHFLICI DOIBLE PRECISTON (A-H, $O-Z$)
INTEGRATES FROR x TO $(X+D E L X)$
OX IS ESTIMATE FOR YNTEGRATION STEP MECESSARY
OXNIN IS NINIMUM STEP LENGTH TO EE PERMITTEO
TCLKN IS REDUIFED ACCURACY
N is RUMBEF OF OEPENDENT variagles
GOMYROL TRANSFERPEO TO FIRST LABEL IF INTEGRATION FALLE,X ANG Y(I)
THEN CONTAIN NEH VALUES
CCNTFOL TGANSFERSED TO SECCNC LABEL IF INTEGRATION FAILS, X AND
Y II GTHEN CONTAIN MOST PECENT CORRECT VALUES
CONACNJDEFY
CCNHCNIGPAOPOY
CCMNCNIDER/FGAS
GOMMCN/MER/T,DELP,H, PT,GRADP
CCMMCN/ERFOR/ERR
CCMNCN/REPAR/TEASE
DINENSION Y(10), YOLO (10), FK(5,10), CY(10)
0
I $\mathrm{X} M=0$
$\bar{x} A X=W$
TOLA $=5$ *TCLKM
FINTS=CELX/OX+0.5
TCLB=TOLA/32.
INTS=FTNTS
IF (INTS.LT, 1) INTS $=1$

FMULT=OXJZ,
C. $\mathrm{C} \mathrm{TC}_{4}$
EfFCR CHECK
1 IF (EFF.GT.TOLA) 50 TO 20
IFTERRATICNOLBATISFACTORY, CALCULATE NEW POINTS
$3-20 I=1, N$
2 Y(I) $=\mathrm{YOL} \mathrm{X}(I)+0.5 * F K(1, I)+2 \cdot 0^{*} F K(4, I)+0.5 * F K(5, I)$
C OXYGEN EALANCE-OXYFENTC CO2 ANO H2O
$Y(5)=Y O L D(5)-(Y(?)-Y O L O(2))-(Y(3)-Y O L D(3)) * 2 .-(Y(4)-Y O L O(4)) * 3 .-(Y$
1(5)-40L0(5) ${ }^{-10.518, ~}$
WATER ERCOUCED FFOM ALL REACTIONS

$1(5)-Y C L D(5))+5.18$.
C CORRECT CONGEMTRATIONS FOR IACFEASED FLOW AND DECREASEO PRESSURE
PTN=FT-GRAOP4[X
YCLE(7) $=Y(7)$
VCLFIUS=0.
$00 \quad \dot{C} 0 \quad k=1,8$
$200 \quad V C L F L U S=V C L P L U S F G A S *(Y(K K)-Y O L O(K K)$
VNCLE=2z.400+7EO*T1(273.2*FTN)
VCLFLUS=VCLPLUS\#MMOLE
$F G A S N=(F G A S * P T / P T N)+V C L P L U S$
RATIC=FGAS/FGASN
万C ${ }^{2} 10 \quad K K=128$
$210 Y(K K)=Y(K K) * Q A T I n$
FGASFGASA
PT=PTN
リーハンヅす
10110
FTN 4,6+428
$07 / 29 / 77 \quad 04.45 .54$
TFYISN.LT.1) GC TO 101
$10 \pm \underset{I}{R E}\left(X N A X \cdot G Y_{0} X+O X\right)$ GO TO 100
DX $=X$ MAX-X
160 CONINUE
ISW=1
6 CIFIINS.EC:1) RETURN
C ORESEFVE CURREAT VALUES
C INTHE NORMAL RUNGE KUTT
5 YOLO $5=1$
0 SKIF STEP ADJUSTMENT IF DX IS LAST STEP
SKIF SIEP EQU.JUSTMENT YFOD 510
IHACF=0
20 ORROR EXCESSIVE, HALVE STEP
$20 \quad 0 x=0.5 * 0 x$
IF (CXPTACMIN) ro TO 19
INTS=INTS+INTS
IHALF=1
C 19 STEF $=1$ LENGYH TOO SMALL, INTEGRATICN FAILS

RETUEN
C ERECR SMALGESTER LENGTH MAY RE INCREASEO IFPPCSSIBLE
C
21 IFIFALF.E日O1) GÑ

C VCTFOSSIELE, INTSTSD
$\begin{array}{ll}\text { MCTFOSSIELE, INTS } \\ C & \text { GCUTCSSSTEP LENGTH }\end{array}$
22 INTS=IQUELE
GO EACK TC last point, and integrate with new ex
8 F NULTシOX/

$x=x 010$
C 510 CONAN INEEGOATICN PROCESS STARTS HERE
- ACVAACE X B BY OX

$x=x+F M U L T$
$\hat{3} C T C 30$
$x=x+0.5 * F U L T$
$60+0^{\circ} 30$
$33 X=X C L E+D X$

- 30 UFCATE Y Y 10 (I)

BROUTINE MERSOY

$11 \mathrm{Y}(\mathrm{I})=Y O L O(I)+F K(I ; I)$
C 12 CCFFECTOR FOR $(X+0 \times 13$.

0 AOTCCTO $(x+[x)$
$\begin{aligned} & 14 \\ & 10 \\ & 0\end{aligned}(I)=Y C L O(I)+1.5 * F K(1, I)-4.5 * F K(3, I)+6.0 * F K(4, I)$
IFYIS.EO. 5) GO TO 16
C EVALLATE EERTVATIVES
C 16 ON LHST INTEGRATION, EVALUATE ERROR
16 ERRZO.

17
CCNTNUE
GONTCUE
OCxs.-

DERIVS GOTOER.
LABELS--

$: 4$
$: 8$
$: 12$
$: 17$
$: 21$
$: 31$
$: 160$
$: 31$

```
ID
```

551
671
84 E
741
556

SUARCUTME DERTVS（X）NA
 SMFLICTT COUBLE PRECYSYON（A－H，O－Z）

OCUELE KAI，KF12I，KR34I，KR5I，KR23I，KA，KR12，KR23，KR34，KR5
OOUELE NA
COMACN STOIC／NN
COMMCN／GRADIDY
GOMNCN／CONST／RT
COMMCN／DEF／Y
COHMCN／OEF／FGAS
COMMCN／PARA1／KA，KR12，KR23，KR34，KR5，ASITES
OINENSION Y（10），NY（10）
$V=A S I T E S /(F G A S * 3500$.
DEN二KA＊Y（E）＋（KR1Z＋NN＊KR5）＊Y（1）＋（KR23＋（NN－1．）＊KF5）＊Y（2）＋KR34＊Y（3） DY $(1)=-V^{*}(K R 12+K R 5) * K A * Y(1) * Y(6) / D E N$
$D Y(2)=V^{*} K A^{*} Y(G) \neq\left(K R 12^{*} Y(1)=K R 23^{*} Y(2)-K P 5^{*} Y(2)\right) / D E N$
OY\｛ 3 ）$\left.=V^{*} K A^{*} Y(6) * 1 K R 23^{*} Y(2)-K R 34^{*} Y(3)\right) / D E N$

0

```
RETURN
END
```

```
OCKS-- 
\begin{tabular}{|c|c|c|c|}
\hline 248 & 10EP\％ & \(2 B\) & ／DER／ \\
\hline & ／STOIC／ & & \\
\hline
\end{tabular}
24 B／GRAD／
\triangleAP=
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & \(C\)
0
0
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\) & \[
\begin{aligned}
& U \\
& U \\
& U \\
& U \\
& U
\end{aligned}
\] & \[
\begin{array}{r}
129 \\
332 日 \\
09 \\
359 \\
348 \\
3518 \\
353 日 \\
355 \\
363 E \\
0
\end{array}
\] & \begin{tabular}{l}
／PARA1／ \\
ENTEY \\
JCER／ \\
／STOIC／ \\
／DEP／
\end{tabular} \\
\hline
\end{tabular}
OO-426
10000-03
10000-04
1000n-03
10000+01
0.7480000000000-02
    -2236000000000-13
    -1256000000005-03
    *1432OCCOODOOO-04
    ARO99000000000+04
*
    1954000000000-01
    .1292000000000-04
    -5756000000000-02
    -6232000000000+03
    .7194000000000-02
```

0.
```
0.
.9543000000000-05
.9543000000000-05
    1711000000000-01
    1711000000000-01
    -1711000000000-01
    -1711000000000-01
    .1540000000000+03
```

```
    .1540000000000+03
```

```
```

=426
80
000c=03 0.

```
```

JGFAN-UNTT LENGTH

```
JGFAN-UNTT LENGTH
21 SYMPOLS
```

． 560 SECONDS

```
```

1 STCRAGE USED

```
1 STCRAGE USED
```

1 STCRAGE USED
.560 SECONOS
.560 SECONOS
.560 SECONOS
JGFAN－UNTT LENGTH

```
```

AL CATA - AFRAY(I,J)

```
```

AL CATA - AFRAY(I,J)

``` RCN MCMER \(=527\)
0.
－3058000000000－02 － 379800000000000 \(\because 1843000000000=03\) －2496000000000－04 \(-8720000000000+03\) －árray（I，J）
－1292070000000－03 2473000000000－03
－10000000000000＋01
EXPERIMENTAL OATA FLH NUMAE \(=529\)
NN \(=\)
\(.5798030000000-03\) 0 ．
：1107090000000－03
．2232000000000－03 －1090020000000＋01 EXPEFIMENTAL CATA FLN NU4EEP＝ 531
\(\mathrm{NN}=\)
c． 95080
\(.7055000000000-03\) \(0:\)
\(.1055000000000-03\) 2546010000000－03 \(-100000000000+01\) Expertmental oata \(N N=\) RU11 NUMEER \(=605\)
.3 271000000000－03 \(0^{\circ}\) \(.6330009000000-04\) －1000000000000401 EXPERTMENTAL CATA qUR NUMER＝E10
\(\mathrm{NH}=\)
－5990000000000－03 \(0:\)
：5380000000000－04 \(1529050000000=03\) －1000000000000101 EXPERIHEMTAL CATA RLN NUMGER＝E17
IN＝ 0.70440
\(.3081090000000-03\) 0.
－1764000000000－03 \(4424000000000-03\) －1000000000000＋01 ALPH
－？232000000000＋01 \(.2848000001000+01\) \(-280120000000 \mathrm{C}+05\) UM 1
－121398c782370＋05
0.

2576000000000－0 \(3801000000100-03\) － \(1502000000000-03\) －？ \(027000000000-04\) \(879000000060+03\) aphay（I，J）
0.
－7545000000000－02
－40820000000000－0
－1521000000000－03
－2220000000000－04
\(.992000000000+03\)
－aratar（I，j）

\section*{0.}
－5238000000000－02 \(.2253000000000-103\)
－14060000000c0－03 2001000000005－04
9月100000000000＋03
ARRAY（I，J）
0.
－2590000000000－02 \(.4220000000050-03\) － \(1350000000060-03\) \(-1350000000000-04\) －9850000000000＋03
－ARRAY（I，J）
0.
－1779000000000－01 181100000800C－04 －2560000000000－02 － \(6532000000000+03\) ． 401500000000002

\section*{\(0 \cdot\)}

7443000000000－05 \(1655000000000-01\) \(-5500000000000+02\) \(-5500000000000+02\)

刀。
1930000000000－01 －1519000000000－04 ．2390000000000－02 ． \(5282000000000+03\) .478100000000002
0.

1750000000000－01
－186700000000c－04 －4691000000000－02 －5282000000000＋03
－5344000000000－02
0.

1382000000000－01 \(1191000000000-04\) －4223000000000－02
\(6200000000000-02\)
\(B\).
2090000000000－01 － \(1910000000000-04\) \(-6562000000000+03\) \(.7214000000000-02\)
0.
－5895000000000－05
\(5895000000000-05\)
\(1753000000000-01\) \(1753000000000-01\)
\(650000000000+02\) \(.6500000000000+02\)

\section*{0.}

6956000000000－25 －1600000000000－01 \(.100000000000+03\)

\section*{0.}
－6573000000000－05 －1704000000000－01 \(: 8500000000000402\) \(.850000000000+02\)

\section*{0 ．}
\(.4400000000000-05\) \(1860000000000=01\) \(-1000000000000+03\)
\(-100000000000+03\)
0.

1595000000000－01 － 253000000000005 \(544600000000 D^{\circ}-0\) －6292000000000＋03 3976000000000－02
－ \(3495000000000+03\)
－． \(2552700000000+05\) －1801＜4759000c＋05

\section*{0.}

5285000000000－05 － \(1728000000000=01\) －5500000000000＋02 －5500000000000＋02
－． \(2340800000000+05\)
0.
\(-.4870787065880+02\)
\(m=\)
\[
0: 375800000000003
\]
\[
0:
\]
-2995991000900-04
: \(5: 64000000000-02\) -2055000000000-03 - \(135900000000-03\) \(3845000000005-03\) \(.100000000000 \mathrm{C}+01 \quad 9720000000000+03\) EXPERIMENTAL DATA - AFRAY(I,J) RUN NUMEER \(=430\)
\(N N=10.19630\)
\(\begin{array}{ll}0: 520900000000-03 & 0 \\ 0: & : 3654000000000-02 \\ 0275000000000-03\end{array}\)
-1117070000000-03
-1917090000000-03
\(1683000000000-03\)
-127700000000704 \(.1000000000000401: 9520000000000+03\) EXPERIMENTAL OATA - ARRAY(I,J)
RLN NUMEER \(=504\)
\(N A=\)
- \(383700000000 \mathrm{C}-03\) 0. 0.
- \(2400000000000-04\) -9249000000000-04 -1000093000000+01 EXPERIMEHTAL CAT \(N=R U N\) NUMBER \(=E 12\)
NN
0367509000000 C 03 0
\(0:\)
-8711030030000-04
- \(5191000000000-02\) \(.2195000000000-03\) -1231000000000-03 \(1745000000000-04\) - \(100000000000+01\) EXPERIMENTAL CATA QUN NUMBER = 515
\(\mathrm{NN}=10.10510\)
-6489000000000-03 0.
: \(0172090000005-04\) \(\because 4148071000005-03\) -1000093000000+01 EXPERIMETAL EATA RUN NUMEER = 523
\(\mathrm{NN}=9.83230\)
- E450000000000-03 3 :
-5097000000007-02 0.
-23550100000000-03 - 2004073100000-03 -100003000000cto1 EXPERIMENTAL CATA RLN NUMEER = 524
\(\mathrm{NH}=\)
 0.
:9203000007000-06 . \(2631000000000-03\)
. \(5359000000000-02\) -2034000000000-03 -1285000000000-03

\section*{\(0:\)}
-1204000000000-04 -1844000000000-01 - \(1000000000000+03\)
D.
-1973000000000-01 -12920000000000-04 \(.4090000000000-02\) -6432000000000+03
-6151000000000-02
\(0:\)
-9849000000000-05 -1683000000000-01 - \(1120000000000+03\) -1120000000000+03
0.
-1865000000000-01 . \(1159000000000-04\) \(: 4150000000000-02\) - E432000000000t03 \(-6220000000000-02\)
0.
-6514000000000-05 -1669000000000-01 \(.9700000000000+92\) -9700000000000+02
B.
-1909000000000-01 - 2330000000000004 -4122000000000-02 -5512000000000+03

\section*{0 .} -1345000000000-04 \(1714000000000-01\)
\(.9700000000000+02\) \(\because 9700000000000+02\)

\section*{ग.}

1597000000000-01 -1590000000000-04 - \(3908000000000-02\) - \(630200000000+03\)

0 .
-1071000000000-04
-15610000000000-01
\(.4100001000000+02\)
\(0:\)
\(: 5750000000000-05\)
\(175500000000-01\)
\(95000000000000+02\)
.18670000000000-01
-1096000000000-04 -4053000000000-02
-6432000000000+03

PROGRAM NO. 7:
This program was used to evaluate the predicted values of the transformed responses from the model, given the final parameter estimates obtained from program 5. NMAX, the number of the minimization of determinant criterion was set equal to zero. With NMAX specified, this program will estimate the parameters in the model according to the Box and Draper [56] Criterion as given by equation 7.36 on page 91 .
```

ATTACH,MACLIB.
FTN(POUNO=*/*-,OPT=2,T,F=3)
LOSET(LIS=MACLIE)
OROOO
C ICHI
C
SIMPLX
OBJECT
MEQSON
OERIVS
DETER

```

```

 #****FIVE INOEPENDENT RESPONSES-OX,OTA,PA,PI,COZ/CO
 COMMON/PARA1/KAI,KR12I,KR23I,KR34I,KR5I,EA,E12,E23,E34,E5
 COMMON/PAFAZ/EAS
 COMHON/CONST/NN,R,NEX,NP,NC
 COMHON/STRAY/ARRAY
 COMMON/GEFAF/TBASE
 COYMON/EIGEN/Z
 COMMON/ACTIV/ACTY
 C
OIMENSION ARRAY(25,50),XX(11)
OIMENSION Z(3,5)
OIMENSION RKO(5)
*********** CURRENT ESTIMATES OF PARAMETRRS **********
REAL KAI,KR12I_KR23I_KR34I,KR5I* NN
NR ---RESPONSES
TBASE =370.0
NR=5
TGASE IS TEMPERATURE USED FOR REPARAMETERIZATION BY HUNTER/ATKIASON
METHOD
R=-1.9872
NP NUMBER OF PARAMETERS
NP=11
NP=11
NGASX MAXIMUM NUMBER OF MINIMIZATICNS OF OETERMINANT CRITERION
NMAX=O
READ INITIAL PARAMETER ESTIMATES
NOTE THAT INITIAL ESTIMATES OF PRE EXPONENTIAL FACTORS ARE ALREADY
REPARAMETERIZEQ BY HUNTER/ATKINSON METHOO
REAO(5,113) KAI,KR12I,KR23I,KR34I,KR5I,EA,E12,E23,E34,E5, EAS, ACTY

```

```

 REAO(5,101)NEX
 O0 10 J=1,NEX
 REAO (5,102) KRUN,NN
 REAO(5,103) (ARRAY(I,J),I=1,24)
 WRITE (6,105)KRUN,NN
 HRITE (6,104)
 WRITE(6,103) (ARRAY(I,J),I=1,24)
 10 CONTINUE
 HRITE(6,9C4)
    ```
```

 WRITE(6,993) KAI,EA,KR12I,E12,KR23I,E23,KR34I,E34,KR5I,E5
 HRITE (6,108) EASS
 HOITE(5,905) ACTY
 FORMAT(IX,*ACTIVITY FACTOR=*,E12.5)
 FORMAT (4E20.12)
 ORMAT (6X%* ACTIVE SITE PARAMETER = *, F13.5)
 REAO(5,555) ((2(Y,J) J=1,5) {I=1,3)
 PRINT+, FOTHORGONAL EIGENVECTORS#
 FORMAT(5E15.5)
 NORMALISE PARAMETERS
 NORMALIZE INITIAL PARAMETER ESTIMATES
 OO 11 I=1,NP
 XX(I)=1.
 C
CONVERT INITIAL ESTIMATES OF REPARAHETERIZEO PRE EXPONENTIAL FACTORS FOR
PRINTING ACTUAL VALUES
RKO(1)=KAI* EXP(EA/(TGASE*R))
RKO(2)=KR12I*EXP(E12/(TEASE*R))
RKO(3)=KR23T*EXP(E23/(TBASE*R))
RKO(4)=KR34I*EXP(E34/(TBASE*R)
RKO(5)=KR5I*EXP(E5/(TBASE*R))
WRIYE(6,1000)(RKO(L),L=1,NR)
2=1.987%
CALL OPTIMISATION ROUTINE
CALL SIMPLX(NP,NMAX,XX)
*********** FORMAT STATEMENTS
FCRMAT(T3)
FORMAT(I3,5X,3F8.4)
FORMAT(BE10.4)
FORMAT (2X,* EXPERIMENTAL DATA,* ARRAY(I,J)**)
FORHAT (2X, * RUN NUMBER = *,I3,/,1X, *NH=*,F10.5)
FORMAT(8F10.0) FREOUENCY FACTORS* 6X *ACTIVATION ENERGIES *1,
FCRMAT(* AOSORPTION* 10X,E13.4,10X,F12.0,
1 * CXYLENE - OTA* 7X,E13,4,10X,F12:0%,
2 *OTA-PI*14X,E13.4,F22.0%
4 *PI -PA * E{6.4 F2, F.0,
4*ORGARNICS=CO2*EX,E13.4,F22.01)
SORMAT(1X,5E15.4)
SIOP
SUGROUTINE SIMPLX (ND NMAX XX)
PROGRAM IS BASED ON ALGORITM SHOW IH COMPUTER J.,VOL.7,308 (1965)
AND ON EXISTING PROGRAMS
OIMENSION U(12),PHI(11),X(11,12), PHIH(11),PHIS(11),PHIL(11),
1 PHIO(11),PHIR(11),PHIC(11),PHIE(11)
IMENSION XX(11)
C
EPS ERRROR TOLERAHICE
NMAX ERAX. NUMBER OF FUNCTION EVALUATIONS
NMAX NUMBER OF INDEPENCENT VARIAGLES INIONSJECTIVE FUHCTION

```
    ALPHA BETA GAMMA REFLECTION CONTRACTION EXPANSION COEFFICIENTS
    ALPHA=1:O
    MAM=0;5
    EPS=1.0E-O8
    OELTX=0.2
    K=NP
    KK=K+1
    NCOUNT=0
C VARIABLE INOICATING SIMPLEX METHOD NAS STOPPED
    CONVER=O. (NOT STOPPED),CONVER=1. (STOPPEC)
    ONVER=0.
    UH=US=UL=0.
CG POSNONLY ONE INITIAL ESTIMATE IS READ FOR EACH PARAMETER THE OTHER 
    POINTS IN THE SIMPLEX ARE SET UP E
    VAQIAGLES XX(I) ARE NORMALISED WITH RESPECT TO INITIAL VALUES
```



```
    CONTINUE
    OO 3 J=2,KK
        00 1 I=1,K
        1 X(II,J)=X(I, 1)
C
```



```
    EVALUATE FUNCTION INITIALLY AT K+1 FEASIBLE POINTS
    00 6 J=1,KK
        OOHI(I)=1 = { { I,J)
    4 CONTINUE
        NCOUNT=NCOUNT+1
        CALL OBJECT (PHI SUM NCOUNT)
        IF(NCOUNT.GT.NMAX) GG TO 48
    IF(CONVER.EQ.1.) GO TO 48
    U U(i)=SUM
    GOTO}
C
FINE RELATIVE ORDER OF FUNCTION VALUES
        UH=U(1)
        JH=1
        J10 J=2,KK
        IF(U(j).LYOUH)GO TO 10
        UH=U(J)
        JH= J
    10 CONTINUE
    UL=U(1)
    J=1
    00,12 J=2,KK
    IF(U(J).G}:UL) GO TO 12
    UL=U(J)
    J=3
    1 2
    CONTINUE
        US=UL
        OO 14 J=1,KK
        IF(J.EQ.JH)GO TO 14
        IF(U(J).LE.US)GO TO 14

CONTINUE
OBTAIN THE CORRESPONDING INDEPENDENT VARIABLES
\(0016 I=1, K\)
\(\begin{aligned} \text { PHIH }(I) & =X(I, J H) \\ \text { PHIS }(I) & =X(I, J S)\end{aligned}\)
16
WRILEI) \(=X(I, J L)\)
HR
FORMA (1X, *NO*, I4, *FUNCT, H S L*, ЗEI2.4; *LOW VAR*,10F7.4)
IF (NCOUNT. GE. NMAX) GO TO 48
IF (COHVER. EQ. 1 I)GOTO 48
CALCULATE THE CENTROID
\(0020 \quad I=1, K\)
SUM = O.
QO, \(18 \mathrm{~J}=1, K K\)
IF \(S \cup M=S U M+X(I) G O\) TO 18
SUM \(=\) SUM \(+X(I, J)\)
18
20
CONTINUE
PHEC(I) SESUM/(FLOAT(K))
\(0021 \quad I=1\)
PHIR(I) =PHIO(I) +ALP4A* (PHIO(I)-PHIH(I))
IF(PHIR(I).LE.0.05) PHIR(I) \(=0.05\)
NCOLNT =NCOUNT+1
CALL OBJECY (PHIR, UR, NCCUNT)
WRITE (6,19)
IF (US.GE.UR).AND. (UR.GE.UL))GO TO 28
IF (UR.LT.ULIGO TO 32
IF ( (UH.GT.UR) •AND. (UR.GT.US))GO TO 40
C
23 DO \(24 \mathrm{I}=1\), K
PHIC(I) =PHIO(I) +BETA* (PHIH(I)-PHIO(I))
IF(PHIC(I).LE.0.05) PHIC(I) \(=0.05\)
24
NCOUNT = NCOUNT + 1
CALL OBJECT (PHIC UC, NCOUNT)
C
25
HRTTE (6,25)
5 FORMÁ (IX,*CONTRACTION*)
IF (UC.LT.UH)GO TO 44
SHRINKING (I.E. CONTRACTION UHSUCCESSFUL)
DO \(26 J=1, K K\)
IF (J.EQ.JL)GO TO 26
\(0029 I=1, K\)
\(X(I+J)=5+(X(I, J)+P H I L(I))\)
29
26
CONTINUE
WRITE \((6,27)\)
27 FCRMAT (1X,*SHRINKING*)
GO TO 2 PLACE PHIH BY PHIR ANO RESTART
\(\begin{array}{ll}28 & 0030 \mathrm{I}=1, \mathrm{~K} \\ 30 \times(I, J H)=P H I R(I)\end{array}\)
\(U(3 H)=U R\)
GO TO \({ }^{8}\)
EXDANSION (I.E.UR.LT.UL)

```

IF(PHIE(I).LE.0.05) PHIE(I)=0.05

```

CONTINUE
CALL OBJECT (PHIE, UE, NCCUNT)
WRITE (6, 35 )
FORMAT ( \(1 \times\), \({ }^{*}\) EXPANSION*)

GO TO 28
SUCCESSFUL EXPANSION (REPLACE PHIH BY PHIE)
36
38
\(X(I, J H)=P H I E(I)\)
U (IH)=UE
GO TO 8 REPLACE PHIH BY PHIR AND CONTRACT
40
42
\(X(I, J H)=P H I R\)
PHIH(I) = PHIR (I)
\(U(J H)=U H=U R\)
GOTO 23
44
46
SUCCESSFUL CONTRACTION
\(X(I, J H)=P H I C(I)\)
\(U(J H)=U C\)
48 CONTINUE
RETURN
END
SUBROUTINE OBJECT (XXX, SUM, NCOUNT)
COYMON/REPAR/TBASE
COMMON/ CEP/ Y
COMMON/STRAY/ARRAY
COMMON /PARA1/KAI, KR12I,KR23I, KR34I,KR5I,EA,E12,E23,E34,E5
COMMON/PARA2/KA,KR12,KRZ3,KR34,KR5
COYNON/PARAL/ASITES
COMMON/PARAZ/EAS
COMMON/CONST/NN,R, NEX \(X_{2} N F\) HC
COMMON/MER/T, DELP, W, PT,GRADP
COMMON/EER/FGAS
COMMON/EIGEN/Z
COMMON/ACTIV/ACTY
DIMENSION ARRAY 25,50 )
DIMENSIONA (144)
OIMENSIGNY(10)
TIMENSICN YY(10)
DIMENSICN YY(10)
DIMENSICN XXX(11)
DIMENSION RES \((5,50)\)
OIMENSION
DIMENSION
TMENSTON SCR ( 50,50 )
OHENSTON ARR(10), RSS (10)
DIMENSION ARRA 25,50 YYY
DIMENSION YYY(3,
REAKKAI,KR12I,KR23I,KR34I,KR5I,NN
TOT \(=0\).
\(0025 \quad I=1,50\)
DO25J=1,5
\(\operatorname{RES}(J, I)=0\) 。
        SSR \((L M)=0.0\)
        RSS \((L M)=0.0\)
        CONTINUE
        nMAX \(=0\)
        \(N R=5\)
        CO \(4 \mathrm{I}=1,25\)
        \(A(I)=0\) 。
    4 COMTINUE
        \(00 \quad 3 \quad I=1\), NP

    3 CONTINUE
        RKA \(=K A I{ }^{*} \times X X(1)\)
        RK12 \(=\) KR12I* XXX (3)
        RK2 \(3=K R 231 * x \times x(5)\)
        RK \(4=\) KR \(341 * x \times x(7)\)

        EAC=EA* \(\times \times \times(2)\)
        E12C=E12+x \({ }^{+} \times(4)\)
        E23C=E23* \(\times \times \times(E)\)
        E34C=E \(34^{*} \times \times \times(8)\)
        E5C=E5* \(\times \times \times(10)\)
        EACEES*XXXXX(11)
        WRITE(6,777)
    777 FORMATC 11 21X *FREQUENCY FACTORS* \(6 \times\) *ACTIVATION ENERGIES + /

    776 FORMATI \({ }^{4}\) ADSORPTION* \(10 \mathrm{X}, \mathrm{E} 13.4,10 \mathrm{X}, \mathrm{F} 12.01\)
        12* OXYLENE OTAFTX,E13.4,10X,F12.0


    220 FORMAT ( \(1 \mathrm{X}, * \mathrm{AC}\)
مO \(201 \mathrm{~J}=1\), NEX
        \(0021=1=1\), NEX
    2 CONTINUE
        Y \(=A R R A Y(19,3)\)
OLP
        \(W=A R R A Y(21, J)\)
        PT=ARRAY(223)
        GGAS=ARRAY (23, 3 )
C ** \({ }^{*}\) REPARAMETERINE BY ATKISON-HUNTER METHOD-K=KO*EXP ((E/R* \((1 / T-1 / T O)\)
        TREPARAMETERIZE BY ATKISON
        RT=TSTAR/F
        \(K A=R K A^{*} E X P(E A C * R T)\)
        KR12=RK12*EXP (E12C*RT)
        KR2 \(3=R K 23 * E X P(E 23 C * R T)\)
        \(K R 23=R K 23 * E X P(E 23 C * R T)\)
\(K R 3\)
K R
K


    221 FORMAT (1X,* FRACTION OF ACTIVE SITES =*,E12.4)
    828 CONTINUE

    \(x=0\) 。
    \(0 X=.005\)

OXMIN \(=0.0001\)
\(N=5\)
\(O E L X=H\)
CALL MERSCN（X，OELX，DX，OXMIN，TOLKM，N）
TRANSFORH OBSERVED RESPCNSES（BOX，HWNTER，MACGREGOR，ERJAVEC－PAPER） FORF 3 INDEPENOENT LINEAR COMBINATIDNS OF THE EIGENVECTORS ANO THE FIVE
ORSERVED \(\quad\) RESPONSES \(j) * z(1,1)+\operatorname{ARRAY}(11, j) * Z(1,2)+\operatorname{ARRAY}(12, j) * 2(1,3\)
1）\(+\operatorname{ARRAY}(13, J) * Z(1,4)+A R R A Y(14, J) * Z(1,5), 2(1,2)+A R R A Y(12, J) * 2(1,3\)
ARRA \((11, J)=A R R A Y(10, J) * Z(2,1)+A R R A Y(11, J) * Z(2,2)+A R R A Y(12, J) * Z(2,3\)
1）\(+A R R A Y(13, J) * Z(2,4)+A R R A Y(14, J) * 2(2,5)\)
1）＋ARRAY \((13, J) * Z(3,4)+\operatorname{ARRAY}(14, J) * Z(3,5) J) * Z(3,2)+\operatorname{ARRAY}(12, J) * Z(3,3\)
TOT＝TOT＋ 1
TRANSFORM
TRANSFORM THE PREDICTED RESPONSES
15）
\(Y Y Y(2, J)=Y(1) * Z(2,1)+Y(2) * Z(2,2)+Y(3) * Z(2,3)+Y(4) * Z(2,4)+Y(5) * Z(2\),
\({ }_{Y}{ }^{5} Y(3, J)=Y(1) * Z(3,1)+Y(2) * Z(3,2)+Y(3) * Z(3,3)+Y(4) * Z(3,4)+Y(5) * Z(3\),
\(15)\)
KK＝0
\(\begin{array}{ll}00 \\ I=j & 201 \\ j+9 & J J=1,3\end{array}\)
II三S
\(\mathrm{J})=A R R A(I\)
CALCULATE THE RESIDUAL SUM OF SQUARE FOR EACH RESPONSE SSR \((J j)=S S R(J J)+R E S(J J, J)+R E S(J J, J)\) \(00201 \mathrm{~K}=1,3\)
III \(=K+9\)
KK＝Kく＋1
\(B=(\operatorname{ARRA}(I I, J)-Y Y Y(J J, J)) *(A R R A(I I I, J)-Y Y Y(K, J))\)
\(B=\mathrm{B}^{+} 100000000000\) ．
\(A(K K)=B+A(K K)\)
201 CONTINUE
IF（NEOUNT．LT．NMAX）GO TO 20
NCOUNT＝0
C CALCULATE PESIOUAL SUM OF SQUARES
SSR（4）\(=\) SSR（1）\(+\operatorname{SSR}(2)+S S R(3)\)
WRITE（6，9995）
9995 FORMAT（10X＊THE RESIOUAL SUMS OF SQUARES＊）

5698 FCPHAY（20x，＊RESP1＊，20X，＊RESP2＊，20X，＊RESP3＊）
6697 FORMAT（ \(8 \mathrm{X}, 3(1 \mathrm{x}, *\) OBS＊， \(10 \mathrm{x}, * \mathrm{CAL*}, 5 \mathrm{X})\) ）

\(006600 \quad J j=1,3\)
YY \(\left.\quad J_{j} j\right)=A R R A(I I, J)\)
5600 CONTINUE
WRIYE（ 6,6699 ）（YY（I）YYY（I，J），\(I=1,3\) ）
6599 FORMAT（1X，3（2E10．3，5X）
6601 CONTINUE
N二
CALL OETER（A，D，N）
WUITE \(\operatorname{SU}=0,301) 6\) ，NCOUNT

401 FORMAT (1X,5E15.L)
331 FOPMAT (1/1, IX, "CETEZMINAPT* E \(20.6,10 X, * N=*\), I3)
931 FOPMAT \(/ 1 /{ }^{*}\) *CONCENTRATIOR FPOM YERSON (GM.MOLES/CC.)*//


3 *ERROR*/1
Gロu FORMAT(F6.3,3X,8E13.3,F9.1,E13.3)
RETURN
EMT
SUZROUTINE MERSON ( \(X\), OELX \(X\) DXX OXMIN, TDLKM, \(H\) )
OX IS ESTIMATE FOF INTEGRATICH STEP NECESSAFY
OXMIN IS MINIMUM STEP LENGTH TO BE PEDMITTEO
TOLKM IS REQUIRED ACCURACY
II IS NUMBER OF DEFEJOEIT VARIABLES
THEN COMTANSFERRED YO
THEN COMTAIM NEW VALUES
CONTROL TRANSFERRED TO SECONC LABEL IF INTEGRATION FAILS, X ANO
IA EITHER CASE, DX CONTAINS CURRENT STEP LENGTH
COMMON/PARAL/ASITES
COMMOH/PARA2/KA,KR12,KR23,KR34,KR5
COMMON/OEP/Y
COMMCN/GRAOIOY
COYMON/CONST/NN,R,NEX,NP,NC
COMMON/DER/FGAS
COMMON/MER/T, OELP, H,PT,GRADP
COYMON/ERRORIERR
COMMON/REPAR/TBASE

\(I S W=0\)
XMA X=W
TOL \(A=5.4\) TOLKM
FINTS=0ELX/OX+0.5
TOLB=TOLA/32.
IMTS=FINTS
IF (INTS.LT•1)INTS \(=1\)
OX=OELX/INTS
FMULT=OX/3.
GOTO 4
\(c\)
IF (ERR. (T:TOLB) GO TO 2
3 INTE ERRATICN SATISFACTORY, CALCULATE NEW POINTS
3 IF \({ }^{2}(1=1, N(1) . L E, 0) \quad Y(1)=0.0\)
IF \(Y\) Y(2) :LE: 0.0\() \quad Y(2)=0.0\)
\(\mathcal{Z}^{Z} Y Y(I)=Y O L O(I)+0.5 * F K(1, I)+2,0 * F K(4, I)+0.5 * F K(5, I)\)
- CXYGEN BALANCE-OXYGEN TO COLAND HZO
\(Y(6)=Y O L O(6)-(Y(2)-Y O L O(2))-(Y(3)-Y O L O(3)) * 2 .-(Y(4)-Y O L O(4)) * 3 .-(Y\)
\(1(5)-Y O L O(5)) * 10.5 / \mathrm{A}\).
C WATER PRODUCED FQCM ALL \(A E A C T I O H S ~(3)-Y O L C(3)) * 2 .+(Y(4)-Y O L O(4)) * 3 .+(Y\)
\(1(5)-Y O L C(5)) * 5.18\).
\(\stackrel{C}{6}\)
C COPRECT CCNCENTFATIONS FOR INCREASEO FLOW ANO DECREASED PRESSURE

YOL \(\overline{0}(7)=Y(7)\)
Unl \(115=0\)
VOL PLUS \(=0\).
200 VOLFLUS \(=V O L P L U S ~+F G A S *(Y(K K)-Y O L O(K R))\) VMOLE \(=22.400^{4} 7600^{*} T /(273.2 * P T N)\)
VOLPLUS =VOLPLUS*UMOLE
FGASN=(FGAS*PT/PTN)+VOLFLUS
RATIO F FGASJFGASN
\(00210 K K=1\), \({ }^{8}\)
210
FGAS=FGASN
PT=FTN
IFIISN.
RETURN 1 GO ro 101
DX \(=\) XMAXX \({ }^{-1} \dot{X}^{X+D X)}\) GO TO 160
ISW=1
IF TNTS
6 IFTSNISEEQ:1) RETURA
PRESERVE CURRENT VALUES
- IN XOLDE NORNAL RUNGE KUTTA MERSON THE 8 WOULD bE REPLACEO bY N

IF \((Y(1): L E, 0\).\() YOLO (1)=0.0\)
IF \((Y)(2): L E: 0.1) Y O L O(2)=0: 0\)
5
SKIP STEPYADJUSTMENT IF OX IS LAST STEP
IF (ISW.EQ.1) GO TO 510 IF (ISW, EQ.1) GO TO 510
IHALF=0
GOTO 9 EXOR EXCSSIVE, HALVE STEP
20 OX=0.5*0X
IF (OX.LT:OXMIN) GO TO 19
INTS=INTS+INTS
\(I H A L F=1\)
\(G 0\)
STEP LENGTH TOO SMALL, INTEGRATION FAILS
\begin{tabular}{l}
\(x=X 0 L\) \\
0023 \\
\(Y O T\) \\
\hline
\end{tabular}
\(Y(I)=Y O L O(I)\)
RETURN
REPURN SHALL STEP LENGTH MAY BE INCREASEO IF FOSSIBLE
ERROR SHA
CHECK IF STEP PREVIOUSLY HALVEO PREVENTS CYCLINGI
21
CHECK IF INTS EVEN
IOUBLE=INTS/2
IF (IOUBLEF RI. EO.INTS) GO TO 22
NOT POSSIBLE, INTS ODO
GO TO 3
22 INTSEE STEP LENGTH
\(0 x=2.40 x\)
GO BACK TO LAST POINT, AND INTEGRATE WITH NEW DX
8 คNUT \(=0 \times 1\).
\(7 \forall(I)=Y \mathcal{O L O}^{8}(I)\)
\(x=x 0 \angle 0\)
E10 CONTINUE
MAIA INTEGRATION PROCESS STARTS HERE ****
GO TO \(18=1,50\),
    \(x=x+F M(31,30,32,33,30), 15\)
    \(X=X+F M U L Y\)
    GO TO 30
    \(2 x=x+0.5 *\) FMULT
    GOTO 30
UPDATE Y(I)
    \(11 \mathrm{Y}(\bar{I})=Y O L D(I)+F X(1, I)\)
    GOTO 10
    CORRECTOR \(F O R(X+C X / 3\).
    \(12 Y(I)=Y O L D(I)+0.5 *(F K(1, I)+F K(2, I))\)
    AOVANCE TO \((x+0 \times / 2\).
    \(13 \mathrm{Y}(I)=Y O L O(I)+0.375 * F K(1, I)+1.125 * F K(3, I)\)
    GO TO 10
    ADVANCE TO \((X+D X)\)
    \(14 \mathrm{Y}(I)=Y O L O(I)+1.5 * F K(1, I)-4: 5 * F K(3, I)+6.0 * F K(4, I)\)
10 CONTINUE
        IF IIS:EQ. 5) GO TO 16
    CALL OERIVS (X,N)
    GO TO 18
    ON LAST INTEGRATION, EVALUATE ERRCR
    6 ERR \(=0.0\)

    \(E I=A B S(F K(1, I)-4,5 * F K\)
\(I F(E R R \cdot L T \cdot E I) \quad E R R=E I\)
    17
18
    CONTINUE
    GO TOL 1
    END
    END
    SUBPOUTINE DERIVS \((X, N)\)
    COUMON/GRAD/DY
    COMMON/DEP/Y
    COMHON/CER/FGAS
    COMMON/CONST/NN,R, NEX, NF, NC
    COMMON/PARA2/KA,KR12,KR23,KR34,KR5
    COMMON/PARAL/ASITES
    OIMENSION Y (1O), DY (10)
    OIMENSION Y (10) OY KR KR12, KR23, KR 342 KF 5
    REALKAI;KRIZI,KR2\}I;KR34I, KR5I, NN
    \(V=A S I T E S /(F G A S * 3600\).
    \(D E N=K A * Y(6)+(K R 12+N N * K R 5) * Y(1)+(K R 23+(N N-1 。) * K R 5) * Y(2)+K R 34 * Y(3)\)
    \(D Y(1)=-V^{*}(K R 12+K R 5) * K A * Y(1) * Y(6) / D E H\)
    DY(2) \(=V+K A+Y(E)+(K R 12 * Y(1)-K R 23 * Y(2)-K R 5 * Y(2)) / D E N\)
    OY \(\left\{\begin{array}{l}3 \\ \hline\end{array}=V * K A * Y(E) *\left(K R 23^{*} Y(2)-K R 34 * Y(3)\right) / D E N\right.\)
    OY \((4)=V * K A * Y(E) * K R 34 * Y(3) / D E N\)
    \(O Y(5)=8 . * V * K A * K F 5 * Y(6) *(Y(1)+Y(2)) / D E N\)

```

 DETERMINANT PART C'. MCMASTER PROGRAM MINV
 DESCRIPTION OF PARAMETERS
 A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY
 N - OROERTANT INVERSE.
 N - ORDER OF MATRIX A
 O - RESULTANT DETERMINANT
 M - WORK VECTOREIEFMINANT
 METHOD
 HOD
 THE STANDARD GAUSS-JORDAN METMOD IS USED. IHE DETERMINANT
 PHE MATRIX IS. SINGULAR
 SEARCH FOR LARGEST ELEMENT
 O=1:0
 NK=-N
 OO 80 K=1,N
 NK=NK+N
 L(K)=K
 M(K)=K
 KK=NK+K
 IGA=A(KK)
 00 20, J=K,N
 IZ=N+(J-1)
 O0 20 I I=K,N
 IF(ABS(BIGA)-ABS(A(IJ))) 15,20,20
 15 BIGA=A(IJ)
 L(K)=I
 M(K)=j
 20 CONTINUE
INTEFCHANGE FOWS
J=L(K)
25
C
l
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A(JI)=HOLO
INTERCHANGE COLUMNS
I=M(K)
IF(I-K) 45,45,38
00 40 J=1,N
K=NK+
I= JP+
HOLO=-A(JK)
A(JK)=A(JI)
OIVIOE COLUMN: BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS

```
```

 45 IF(BIGA) 48,46,48
 D=0.0
 RETURN
 40 00 55 I=1,N
 IF(I-K) 50,55,50
 50 IK=NK+II
 55 CONTINUE
 REOUCE MATRIX
 OO 65 I=1,N
 IK =NK+I
 IJ=I-N
 OO 65 J=1,N
 IJ=IJ J+N
 IF(I-K) 60,65,60
 \epsilon0 IF(J-K) 62,65,62
 62 KJ=IJ=I+K
 A(IJ)=A(IK)*A(KJ) +A(IJ)
 6 5 \text { CONTINUE}
 --
 OIVIDE ROW BY PIVOT
 KJ=K-N
 OO 75 J=1,N
 IF(J-K) 70,75,7
 O A(KJ)=A(KJ}/ABGA
 75 CONIINUE
 PRODUCT OF PIVOTS
 D=0*BIGA
 REPLACE PIVOT GY RECIPROCAL
 O(KK)=1.0/BIGA
 RETURN
 ENH
 :237733297544E+01 - : 185248389895E+02 - % 348589563858E+03 - % % 21941610451E+03
 :241296152204E+01 -:156369136569E+05 -. 279826444459E+05 -. 201865710734E+05
 4
0.3945E-0 30.0438 0. O. O. 0. 0.7480E-020.1954E-010.
0.0445E-0, 2236E-030.1292E-040.9543E-050.8059E-040.1256E-030.5766E-020.1711E-01
0.2445E-030.1432EE-040.5232E+030.1540E +030.1000EE+010.1099EE+040.7194E-020.1540E+03
428753E-09.9803
0.3753E-030.0
O:3845E-0 30.205EE-030.1208E-040.7652E-050.8995E-040.1359E-0330.3960EE0120.1667E-01
0.3845E-030:1783EE-040:8432EE+030:1120EE+030:1000EE010:9720E+030:615BE-020.11120E+03
0.5209E-0\frac{10.19630.10. O. O. 0. 0.3664E-020.2042E-010.}{0}0

```


```

504

```




\section*{APPENDIX C}

EXPERIMENTAL CONDITIONS AND RESULTS

The following table (C.1) lists the experimental conditions used and the product composition measured for the packed bed experimentation. To simplify the presentation the following column headings have been adopted. The coding system is as follows.
1. Run number
2. Temperature of reaction \(\left({ }^{\circ} \mathrm{C}\right)\)
3. Total gas flow at inlet conditions (cc/min at N.T.P.)
4. Inlet o-xylene concentration (gm moles/liter) \(\times 10^{4}\)
5. Inlet oxygen concentration (gm moles/liter) \(\times 10^{4}\)
6. Total absolute pressure in reactor ( m m Hg )
7. Pressure drop across reactor ( m m Hg )
8. Carbon balance ratio
9. Hydrogen balance ratio
10. Exit o-xylene concentration (gm moles/liter) \(\times 10^{6}\)
11. Exit o-tolualdehyde concentration (gm moles/liter) x \(10^{6}\)
12. Exit phthalide concentration (gm moles/liter) \(\times 10^{6}\)
13. Exit phthalic anhydride concentration (gm moles/liter) x \(10^{6}\)
14. Exit carbon dioxide concentration (gm moles/liter) x \(10^{6}\)
15. Exit carbon monoxide concentration (gm moles/liter) \(\times 10^{6}\)

Table C. 1
Table of Experimental Conditions and Results

INLET CONDITIONS
\begin{tabular}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \multicolumn{1}{c}{7} & 8 & 9 \\
\hline 426 & 350 & 267. & 3.945 & 74.80 & 1099. & 154. & 1.00 & 1.00 \\
428 & 370 & 200. & 3.758 & 51.64 & 972. & 112. & 0.99 & 1.01 \\
430 & 354 & 181. & 5.209 & 36.64 & 962. & 100. & 1.04 & 0.94 \\
504 & 370 & 200. & 3.837 & 51.38 & 972. & 112. & 1.05 & 0.90 \\
512 & 370 & 200. & 3.675 & 51.91 & 970. & 97. & 1.04 & 1.16 \\
515 & 378 & 212. & 6.489 & 50.29 & 1005. & 97. & 1.01 & 1.10 \\
517 & 356 & 117. & 3.081 & 60.55 & 850. & 41. & 1.08 & 0.98 \\
523 & 357 & 99. & 6.460 & 50.87 & 977. & 95. & 1.02 & 0.82 \\
524 & 370 & 200. & 3.501 & 53.58 & 872. & 55. & 1.04 & 1.01 \\
527 & 380 & 114. & 5.734 & 30.58 & 879. & 65. & 1.02 & 0.94 \\
529 & 355 & 140. & 5.798 & 25.76 & 992. & 100. & 0.98 & 0.93 \\
531 & 355 & 177. & 7.055 & 75.45 & 980. & 85. & 0.92 & 0.88 \\
605 & 370 & 200. & 3.871 & 52.38 & 985. & 100. & 1.02 & 1.07 \\
610 & 383 & 226. & 5.980 & 26.90 & 875. & 55. & 0.94 & 0.92 \\
\hline
\end{tabular}

PRODUCT COMPOSITIONS
\begin{tabular}{cccccccc}
1 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline 426 & 223.6 & 12.92 & 9.543 & 80.57 & 111.22 & 14.30 & 10.0438 \\
428 & 205.5 & 12.08 & 7.652 & 89.95 & 118.07 & 17.83 & 9.9803 \\
430 & 327.5 & 15.52 & 12.04 & 111.7 & 155.53 & 12.77 & 10.1963 \\
504 & 235.0 & 12.92 & 9.849 & 84.00 & 98.50 & 14.60 & 9.984 \\
512 & 219.5 & 11.59 & 6.514 & 87.11 & 105.76 & 17.45 & 9.9326 \\
515 & 440.0 & 23.20 & 13.45 & 91.72 & 127.37 & 18.43 & 10.0051 \\
517 & 132.6 & 6.253 & 5.286 & 176.4 & 240.43 & 59.77 & 9.8323 \\
523 & 324.5 & 16.98 & 10.71 & 235.5 & 284.4 & 57.00 & 9.9271 \\
524 & 203.4 & 10.96 & 5.758 & 92.03 & 110.10 & 18.40 & 9.9548 \\
527 & 379.8 & 18.11 & 7.443 & 128.7 & 159.34 & 24.95 & 9.9616 \\
529 & 380.1 & 16.19 & 5.895 & 110.7 & 129.93 & 20.27 & 9.9508 \\
531 & 408.2 & 18.67 & 6.956 & 105.5 & 139.9 & 22.20 & 9.9305 \\
605 & 226.3 & 11.91 & 6.573 & 93.80 & 120.59 & 20.01 & 8.9688 \\
610 & 422.0 & 19.12 & 4.35 & 45.60 & 85.4 & 50.70 & 9.7044 \\
\hline
\end{tabular}```


[^0]:    * Hydrogen balance is not expected to have the same accuracy as carbon balance since the measurement of the water peak was found to have considerable variance (from replicated calibration rums).

[^1]:    * Hydrogen balance is not expected to have the same accuracy as carbon balance since the measurement of the water peak was found to have considerable variance (from replicated calibration runs).

