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ABSTRACT

A large thermal reactor operating at sufficiently high flux
levels is susceptible to oscillations in the power distribution that
are associated with a periodic redistribution of xenon poison.

The particular perturbation method, A-mode approximation, is
presented in this report. A detailed description of the A-mode
mathematical formalism and the computer program XIPOLML and its

application to Pickering reactors are reported.
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1. INTRODUCTION

Let us suppose that into a reactor operating at constant total
power, for a sufﬁiciently long time to have established an equilibrium xenon
distribution, we introduce a flux tilt. Let us further suppose that the tilt
is a side to sidé tilt, such that the average flux in the left half is incrcased and
in the right half decreased to maintain constant total power. This tilt will
cause the xenon to burn out more rapidly in the left half and less rapidly in
the right half, while the local rates of formation of xenon from iodine decay
remain nearly constant for some time. The reactivity increases then in the left
half of the reactor and decreases in the right half. If no spatial flux control
is imposed on top of bulk reactivity contrél the tilt will be amplified.
Ultimately the growth of the xenon from the iodine that is forming moré rapidly
in the left half,and the decay of xenon together with lower production in the
right half, reverse the reactivity distribution and the power will peak in the
right half of the reactor. These oscillations may persist or grow-unless spatial

flux control is imposed.

Xenon induced oscillations can occur only at sufficiently high flux
levels, at which rate of xenon burnout is important relative to the rate of
xenon decay. Further, they can occur only in thermal reactors since the neutron
energy spectrum, in a fast or intermediate reactor is such that the corresponding
absorption cross section of xenon-135 is quite small. Furthermore, it is
necessary for the reactor to have dimensions, which are large compared to
neutron migration length, because only in such systems can the spatial harmonics

of the flux be excited to an appreciable extent.

Xenon poisoning in reactors was discovered when the first production
reactor operated at Hanford, and xenon instability was first observed when local
hot spots were detected in the Hanford reactors. The first clear demonstration
of flux-tilt oscillations was obtained at Savannah River and reported by
Haefner(l). In December 1955 an undamped axial flux oscillation occured and
persisted for 14 days in a reactor held at constant power. The period of the

oscillation was 28 hours. Only later was this identified as a xenon-induced

oscillation.



For Pickering power reactors, instability of the first azimuthal
mode was observed in Unit #1 in early Juhe, 1971 while operating at full
power. Although‘the source of the perturbation as well as when it occured
remain unknown, tﬁe side to side oscillation in the flux distribution grew
steadily with a period of approximately twenty hours until control action

(2

was initiated to terminate the oscillation ).

In this report the technique of W.M. Stacey, Jr.(B)is presented,
and it is used in the computation of the threshold value for Pickering
reactors. W.M. Stacey, Jr. makes use of possibly the most computationglly
tractable method appropriate for the analysis of realistic reactor models.
He utilizes a spétial expansion in A-modes, which are the eigenfunctions of
the standard equation‘for the static neutron flux, with equilibrium xenon.
and temperature feedback effects implicit in the cross sections. This
analysis proceeds by linearizing the appropriate neutron balance eqﬁations,
Laplace trandforming, and expanding the spatial dependence in eigenfunctions
associated with the steady-state reactor model. This results in a transfer
function type relation, and a stability criterion is derived from the
requirement that the real part of the poles of the transfer function be

negative, which ensures an exponentially decaying power oscillation.

Although a linear analysis is inadequate when the magnitude of the
power oscillation is comparable with the mean power level, it should be
sufficient to predict the tendency of a small oscillation to grow or decay,
i.e. yield a stability criterion. Furthermore, power oscillations éf a few

percent might be acceptable, and a linear analysis should describe these.

2, MATHEMATICAL FORMALISM

It is well known that the fission product xenon-135, with a half-life
of 9.2 hours, has a very large absorption cross section for thermal neutrons,
about 2.6 x 10 barns(4). A small fraction of this nuclear species is formed
directly in fission, but the major portion results from the decay of iodine-135,

with a half-life of 6.6 hours. Iodine-135 is itself a decay product of



tellurium-135, which has a half-life of less than 1 minute. Consequently,
for all practicél purposes, it may be assumed that the production of
xenon-135 is determined almost solely by the decay of iodine-135, and
that the rate of formation of the latter is proportional to the fission

rate.

The fission~product-decay chain is shown below.

135 . 2 L .
Te (<1 min) U 35 fission yield =~ 6.4%

135
1 (6.6h)

135 235 . .
Xe (9.2h) 4] fission yield =~ 0.2%

135
Cs (2.3 x 106 yr)

135
Ba {(stable)




A flux tilt, induced by a random reactivity perturbation, is at
first enhanced by the tilted xenon burnup rate distribution and later compensated
by the tilted xenon production rate. Under certain conditions the compensation

is excessive, and diverging spatial power oscillations are induced.

Because of the time scale of the iodine and xenon dynamics, prompt
and delayed neutron dynamics may be neglected, i.e. changes in the neutron flux
are assumed to occur instantaneously, and the delayed neutron precursors are
assumed to be always in equilibrium. Moreover, as mentioned earlier, iodine-135
can be assumed to be formed directly from fission. As xenon feedback,is assumed
to affect only the thermal neutron balance; the two-group neutron balance
equations and the xenon and iodine equations, using the standard notation may

be written as
Dlvzﬁl(r,t) —-{Ea,l(r) + ZR(r)} ﬂl(r,t) + iz'zfrz(r)ﬂ2(r,t) = Q . (D)
o -

Dzvzgz(r,t) - {Zalg(r) + oxx(r,t)} golr,t) + ZR(r)ﬂl(rrt) =90 . . .. (2)

SI(r,t)

5t --(3)

Yilg, (0P, (x, ) - A I(x,t) =

SX(xr,t)

szf,z(r)¢2(r't) + AII(r,t) = AX{x,t) = oy X(x,t)gy(x,t) = e .. (4)



The eigenfunctions, M-modes, satisfy the equilibrium neutron

balance equations, which in matrix form are

_D]_V2 +{Za,l(r) + ZR(r)} 0
- Ig(x) - D2V2 +{Za’2(r) + cxxo(r%

0 \)Zf,2(r) “bn,l(r)

1

- S =90 B .. (5)

kn .
0 0 ¥y 2(x)
L~ -3 = o ' .. (6)

or P n = ..

where L and M may be regarded as the destruction and production matrices

respectively.

The adjoint eigenfunctions w; 1(r), ¢; 2(r) satisfy the adjoint

equation of (6).

(L - M ) P =0 . (7)



where
NS ]
- + -
D,v +{a,1 x) ZR(r)} Zo(r)
=%
L 2
0 -D_.V" + T (r) + 0 x (r)
2 a,2 X O
0 0
—%
and =
M
vZfrz(r) 0.
The A-modes are biorthogonal with respect to the production matrix
M, and may be normalized such that: ) ,

% . : .
,lz’nul(r), vEf'Z(r) wn,Z(r) av = ém,n . (8)

An equivalent normalization condition can be obtained, taking the
neutron balance of fast flux and its adjoint, after premultiplying the

former with w*n l(r) and the latter with wn l(r) and integrating. over the volume:
r ’

* 2 * .
fd) n,l(r) DlV lpn'l(r)dv - /ll) n,l(r) (Za,l(r) + )IR(r)) lbn’l(r)dv +

L* b ey Ay =
k n, (r) vZflz(r) wn,2(r)dv =0

f\b (xr) DV w L{x)av - / b 4 (®) ((Za’l(r) + Z‘R(r))tp*n’l(r)dv +

NEDN (r)w ,(x)av =0

Subtracting (10) from (9), we have

* *
.}fw rl’1(J:‘)\)Zf,z(r)l‘bnlz(r)dv = knJ/; n'2(r)XR(r)wn,l(r)dV

From this equation (11) and the normalization condition (8), it can be seen that
an equivalent normalization condition is:

*
knd/ﬁw m,2(r) ZR(r) lPn,l(r)dv = ém,n

(9)

(10)

(11)

(12)



The solution of Equations (1) to (4) by analytical methods is
difficult because of the non-linearity introduced by the xenon absorption
term. Implicit non-linearities are also introduced by the dependence of the

cross sections of the flux via the temperature feedback.

Linearizing these equations reduces their complexity, but also
reduces their applicability to a small region about the equilibrium point.

The linearized equations are used principally for investigations of stability.

The linearized equations are obtained by expanding about the

equilibrium point, denoted by a zero subscript:

¢l(r,t) = Qio’l(r) + 6551 (r,t) . - L. (13)
¢2(r,t) = ﬁo,z(r) + 6g2(r,t) .. (14)
I(r,t) = Io(r) + 8I(r,t) .. (15)
X(x,t) = Xo(r) + 8X{r,t) .-(16)

The effect of temperature feedback should be taken into account at

this stage:

The fission cross section may be flux-dependent:

Lo o) = o 8 ) [1 + @, - 4 ] .- (A7)



where o is the power coefficient and #_ , is a reference flux distribution.

I

This reference flux distribution may have a single value throughout the core.

Both sides of Equation (17) are multiplied by ¢2(=¢O 5 F 5¢2) to get:

Lo, 8,00, zf,2(¢0,2)[1 g, - B ) oz] [go,Z + 6;52]

= Zf'z(ﬁ )¢ + Ef’2(¢0'2)6¢2+a e (B, )8 25¢2+u z

0,2° 70,2 12 0,2" 70, £,2 7o,
——————— S—— Semmen— e
A B C D
where A steady-state term, ’
B the effect of the perturbation ngwithout feedback,
C the temperature feedback term, and
D can be neglected as being very small.

2
(8, ) (88))

{(18)

The linearized equations (13) to (16) are imposed on equations (1) to (4).

Use is made of the fact that the steady-state solutions satisfy the‘tiﬁe—independent

version of equations (1) to (4). The terms that are non-linear in Gﬁl, éﬂz, and
8X are neglected. The temperature feedback term(C) is added to the thermal neutron

balance equation, according to equation (18). The four equation system (1) to (4)

finally becomes

2

D_V 6ﬁl(r,t) - {Za

1 l(r) + ZR(r)} Gﬂl(r,t) + v I 2(r) 6¢2(r,t) = 0]

k £
(o]

’

2 .
ZR(r) dgl(r,t) + D,V76g, (r,t) - {za (r) + Oxxo<r)} 6¢2(r,t) -

r2

- Oxgo 2(r) §X(x,t) + aZf

r

2(r) ¢0I2(r) 5¢2(r,t) = 0

14

(19)

(20)



_ 98I(r,t)
ysz'z(r) 88, (x,£) = A8I(r,t) = 5= (21)

- - - ; +
szf’z(r) 6¢2(r,t) oxXo(r) 6¢2(r,t) Ax5x(r,t) Oxﬂo,z(r)ﬁA(r't)

36X (xr,t)

+ AIGI(r,t) = 3t (22)

Equations (19) to (22) are Laplace transformed according to:

L { fr,t) }
L {% (r,t)}

where f stands for ﬂl, ﬂz, X and I, and the dot denotes the first derivative

(e o]

/ e Pt £(r,t) dt = F(r,p) (23)
[¢]

pF(r,p) - f(xr,t = 0) . (24)

with respect to time. At this stage, the iodine concentration term 8I(r,p) is
eliminated between equations (21) and (22), and a three-equation system is

obtained:

2 \Y
(—Dlv + Za,l(r) + ZR(r)> 6¢l(r,p) -(i:—— Zflz(r)) 6¢Z(r,p? 4] (25)

o
2
(—ZR(r)> Gﬂl(r,p) + <-—D2V + Zalz(r) + Oxxo(r) - aZflz(r) ﬂo'z(r))d.ﬂér,p) +

oxﬂo'z(r) 8X{(r,p) = O {26)

A
- I .
(p + AX + Uxﬁolz(r)> SX(x,p) = Yy (r) +(p " XI)YIfoz(r) oxxo(r)] Gﬂz(r.p) +

Le,
[(p - \ 8I(r,t = 0) + 8X(r,t = 0)} ‘ (27)
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Expansion in A-Modes

The flux and Xenon perturbations are expanded in A-modes as defined

N
E D, (p) d)nll(r) ..(28)
n=1

by equation (5).

5,@1(1’:?) =
N

8g2(x,p). = E A (p) Yy, 2(x) .. (29)
n=1 ,

8% (x,p) = Bn(p) Zg o(r) p o(x) L - (30)
n=1

If it is assumed that the first harmonic is adequate to. represent
the variations in the flux and xenon from the equilibrium distributions, thus

only the first term is retained in the expansions of equations (28) to (30):

887 (r,p) = Dy (p} ¥1,1(x¥) ... (3D

8@, (r,p) = Aj(p) ¥y,5(x) . .. (32)

$X(r,p) =~ B3 (p) Zfrz(r) ll)llz(r) .. (33)
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For simplicity the subscript "1" refering to the mode is omitted. Using the
expansion of eguations (31) to (33), the three-equation system (25) to (27)

becomes:

<—D1V2 + I,,1(0) + ZR(r)>D(p) ¥y (x) =<é Zf,z(r)) A(p) ¥p(r) -- (34)

<-ZR(I))D(P)~\P]_(1’) + <—D2V2 + Ih,200) + 0yX,(r) - oZg o(x) ¢0,2(r)) A(p)t,bz(r) +

Fl

+ ol L (x) To L (r) B(p) ¥(r) = 0 .. (35)
)\I
(P AL °x¢o,2(r)) Le,o(r) B dy(r)  ={y, e o) + prag Y17g,2(0)
A .
- oxxo(r)>A(p) ll'z(r) +<p+iI §I(r,t = 0) + 6X{r,t = O)) ‘ ..(36)

Using the definition of A-eigenfuctions, the L.H.S. of equation (34) can be’

written as:

2 v
(—DIV +Za,l(r) + ZR (r)) D(p) wl(r) = E_Zfrz(r) D(p) ‘]Jz(r) .. (37)

i.e. Zf,z(r) D(p) 1P2(r)

x| <

v

O

k
or D(p) k—l- A(p) .. (39)
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Using equation (39) and the definition of A-eigenfunctions, equation (35)

becomes

?\"l?"
f

A(p) (1.— ) ZR(r) wl(r) - A(p) aZf 2(r) ﬁo 2(r) wz(r) +
O !’
+ B(p)OXZf 2(r) ﬂo 2(r) wz(r) =0 (40)

*
Multiplying every term of equation (40) by wz (r), integrating over the whole
core and employing the normalization condition (12), the following expression

’

*
is obtained, after dividing each term by.fwz (xr) Zf 2(r) wz(r) av:

1 1 * '
il fv.})z(r) af. (0B (D), (x)av
A (p; " -7 * ; ' ) +
v, (@) I (), (n)av fwz (r) Zp ()9, () av

*

v, (r)o_ =% (r) @& (x)p, (r)yav '
N B(p)z ffz 0,2 0,2 7% . . (a1
1/ ,

5 (r) Zfrz(r)wz(r) av

or B(p) = - A(p) (42)
A_n
X
11 %
K,k Jv, ez, L) g ()0, av
where Q = 3 - < (43)
Jo, @ I, av ()T Lr) V() av
*
1 jbz (r)cszlz(r)ﬁolz(r)wz(r) av
n =3 (44)

/\X *
fnp2 (£)E, ()Y, (r) av

*
Finally, the xenon equation, (36), after multiplying each term by wz (r) and

integrating over the whole volume, becomes:



(p +

1!
<
+

and

involving initial values of

Dividing each term

1 + 8

§X and 6I.

AP [ * }
S o SV oz e, may
_A(p)§
AN
X
ALY
Ix
o A(p) j. b,
I
*
R =fs\p (r) av
)
I
S = p+>\I 81 (r,t =

*
Swz (r) Zf’z(r)ﬂolz(r) b, (r)av

+
YI Yy

the following equation is obtained:

or

where

*
.Swz (x) XxXb(r) wz(r)dv

) A
fwz () o 5L ,(0)F ()}, ()av =

0) + 6X(r,t = 0) is the inhomogeneous term

13

* * 1
(r) Zflz(r) wz(r) av - A(p).[db (x) oxxo(r)¢2(r)dV+R

(45)

%* . :
by o, 5 wz (r) Zf,Z(r)go,2(r) w2(r)dV and putting:

*
oxjwz (D)E, (D ()Y, () av

A + p+ —.Rl.
A(p) Y o+ 1’1 . h YX+Q+ A al=
)\Xn X p+>\I 1+8 Axn
A(p) = H(p) Axn R
H(p) _ 1 ~ 2 (P+XI)
A + +X - - _
Y+I'YI_nYIYX+Q+PxQ (P-P.) (P-P,)
X p+)\I 148 )\xn

Z: Constant with respect to p

(46)

(47)

(48)

is the transfer function relating the coefficient A(p)} with the inhomogeneous

term R.

=1



14

The poles of the transfer function H can be found from Equation (48)

which after some algebra becomes:

P, = -P + i(C-P 2)%
1 r r
P.=-P - i(Cc-P 2)li
2 r r
where
A A + )
P = X201+ L+nm - D I e - Tx (49)
r 2 A Q 1+ 8B
X s
(vy_. +7v)
I x 1 - n (50)
C = A + + l‘
IAx (1 n) n f 1 + B j
and the condition of stability is that
P >0 ' (51)
x .
i.e. the poles of the transfer function lie in the left half complex p-plane
and the period of oscillation is calculated from:
T = 27 (52)
2
(C-P )12
x

It is clear from the condition of stability (Pr > 0), that it is mostly
controlled by the physical parameters  and n. The quantity 9 defined by equation
(43) is primarily decided by the subscriticality of the perturbation mode under
study, and it is obvious that a reactor becomes less stable when reactor harmonics
become more easily excitable, i.e, when the amount of subcriticality of a mode
decreases. This occurs when the dimensions of the core are increased or when the
power distribution is flattened, A negative power coefficient (a<0) increases O,
thus making a reactor more stable. As for the quantity n defined by equation (44),
it is seen, that n is proportional to the thermal flux level, i.e. power level

and an increase in it is generally destablizing.



15

3. ANALYSIS AND RESULTS

In order to test the previous mathematical analysis, the stability
of the Pickering initial core to xenon induced power oscillations in the -
side-to-side mode was analyzed using XIPOIML} a program specifically created
for this purpose. The flux and xenon distributions at steady state, the
first azimuthal harmonic and its adjoint were dgenerated with the SORGHUM(5)
code. Feedback reactivity effects at various power levels were included in

the analysis.

The measure of stability of spatial oscillations in XIPOIML is

the peak-to-peak ratio

R = exp(-P,T)

P_-P
i.e. the ratio between maximum (or minimum) values of tilt (E——Erﬂ during

successive cycles of the oscillations where: -

T : period of oscillation
- Pr : damping factor
PL and PR : neutron production rates in the left and right

halves of the reactor respectively.

These power oscillations will be unstable if the peak-to-peak ratio (R) is
greater than 1, and will be damped if less than 1. At threshold, the peak-

to-peak ratio is equal to 1.

* See Appendices
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Analysis

Steady state conditions of the initial core, were calculated
using a coarse mesh 57.15 cm x 57.15 cm x 16.719 cm octant core model (Fig. 1).
The three adjuster rows of six rods each were located as follows: the central
row in the transverse mid-plane and the outer rows 91.95 cm on either side of
it. The material properties used in the study together with the AL for

a,2
adjuster rods and zone controllers are given in Tables I-IV and VI, VII.

The following steady state distributions were generated:

(a) distributions corresponding to 100% full power (1744 wa) with zone

controllers almost empty;

(b) distributions corresponding to 50% full power with zone controllers

almost empty; and

(c) distributions corresponding to 100% full power with zone controllers

35.5% full.

Next, the side-to-side mode and its adjoint were generated with

SORGHUM. Mode subcriticality for each of the above cases are given in Table V.

Having generated the fundamental, the side-to-side and adjoint

mode distributions, they were input into XIPOIML.

To examine the stability of the core at different power levels,
the input steady state distributions and the power coefficients were reduced
linearly and the xenon distributions according to the formula governing the

equilibrium xenon concentration.
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The behavior of peak-to-peak ratio and the period vs. percentage
of full power for the different cases are given in Figures 2 and 3. From
these figures the reactor power thresholds and the corresponding periods
were obtained and they are listed in Table together with the corresponding
values of the parameters

Next the study of spatial stability was extended to hypothetical
reactor operating levels up to 400% of full power, and the reactor was found
to tend to stabilize as the reactor power was raised above 200%. This is
due to the existence of large negative power coefficients at high power
levels (Figure 4).
(6)

A further step was undertaken , to investigate the effect of the
side-to-side mode subcriticality on the threshold. Using a value of
16.24 mk subcriticality found with the MONIC program, when calculating the
flux harmonics, the threshold was found to be at 527 of full power (Figure 5).
Finally, the subcriticality was changed to 18 mk based on first azimuthal
mode reactivity measurements of Pickering+ and the threshold was found to be
about 747 of full power (Figure 6). Note that in both of these cases where
the subcriticality of the side~to-side mode was 14.307 mk.

In conclusion, it can be stated that this approach is quite a

powerful tool in estimating the effect of various parameters on xenon

stability.

+ Memorandum to A. A. Pasanen from A. P. Dastur, 44-06000, June 71.
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(2)

(3)

(4)

(5)
(6)
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TABLES



(*)
TABLE I

Material Properties at Full Power

20

Reactivity Change

- - - -1
Material X , Cm X ,cm vZ ,Cm I _,cm From 100% to Hot
a1 a2 £,2 R Shutdown (mk), oc
Artificial lOlo 1010 0 0 0
-11 -4 -2 ’
Reflector 10 1.99821x10 0 1.01811x10 0
-4 -3 -3 -3 -3
Fresh Fuel | 7.86413x10 3.88496x10 4.64689x10 7.36792x10 -7.0x10

(*%)
TABLE II

Material Properties at 50% of Full Power

_ _ _ -1 Reactivity Change
Material )X yCm z . CI Ul s CI L_,cm From 50% to Hot
y 1 a,?2 £,2 R
Shutdown (mk), o
0
Artificial lOl 1010 0 0 0
~-11 -4 -2
Reflector 10 2.09379x%x10 o] 1.01811x10 0
-4 -3 -3 -3 -3
Fresh Fuel | 7.69735x10 3.92505x10 4.69337x10 7.39244x10 ~-4.04x10

*

* %

PPV-PKPBS-4

PPV-PKPBS~-6




TABLE 111

Xenon Parameters

-5 -1
AI = 2.94 x 10 sec
A = 2.10 x 10-5 sec—l
X -2
Yy = 6.44 x 10
Y. = 2.30 x 1073
% -18 2
OX = 1.219 x 10 cm
v = 2.43 peutrons/fission
(*) .
TABLE IV

Properties of Reactivity Devices

0.54468 x 10 ° cm

1.15776 x 10 > cm T

11.74280 x 10~ cm

AZa’z(central row)

it

AZa’z(outer row)

i

AZa 2(zone controllers)

14

(adjuster worth) 18.502 mk (zone controllers almost empty)

i

°apJ

TABLE V

Subcriticality of First Harmonic

Zone Controllers almost empty

o = 1.0
= 0.985894 (at 100% power), i.e. pl = -~14.307 mk
kl = (0.985848 (at 50% power), i.e. pl = =14.356 mk
Zone Controllers 35.5% full
= 1.0
o .
kl = 0.986156 (at 100% power), i.e. pl = -14.039 mk

*  PTB-20



TABLE VI

Materials used for generation of the modes

MAT* Type of llaterial
1 Artificial
2 Reflector
3 1/2 Reflector + 1/2 Core
4 3/4 Reflector + 1/4 Core
5 Core
6 Core + AZa (C.B.)
7 Core + 1/2 AZa (C.B.)
8 Core + Aa (0.B.)
9 ) Core + 1/2 AZa (0.B.)
TABLE VIL

Materials used in XIPOIML

MAT* Type of Material
1 ’ Artificial
2 Reflector
3 1/2 Reflector + 1/2 Core
4 3/4 Reflector + 1/4 Core
5 Core

* See Appendices.
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TABLE VIII

Threshold Power, Period and Physical Parameters for

100% and 50% of full power.

Distributions are created aﬁ Distributions are
100% of Full Power conditions created at 5UZ of
DATA full power
Zones almost Zones at conditions. Zones
empty . 35.0% almost empty.
Subcriticality 14.307 14.039 14.356
(mk)
Q 3.43 x 1072 3.37 x 1072 3.50 x 1072
n 5.62 5.69 5.54
Threshold 39.9 8.1 42
Power (7)
Period 26.1 26.02 25.93
(hrs.)
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APPENDIX 1

XIPO1ML: USER'S GUIDE



1.

XIPOIML PROGRAM

XIPOIML Program

APPENDIX-1

XIPOLML USER'S GUIDE

consists of:

(1) Main Program

- Handles
oscillat

(2) Three Subro
{(a) HEAD

{b) STDIZE
(c) PRINTS

DESCRIPTION OF T

the calculation of threshold power, and period of
ion.

utines
- prints heading,

- standardizes all input distributions, and
~ prints all input distributions.

ERMS

FUND(I,J,K)
XE(I,J,K)

FAZ1(I,J,K)
TAZ1(I,J,K)

FADJL(I,J,K)

TADJ1(I,J,K)

SF2(I)
SR(I)

ALFA(I)

NMAT

The fundamental (thermal) flux (ﬂo)

The xenon distribution (Xo)

The fast first harmonic (Wl)

The thermal first harmonic (WZ)

The fast adjoint first harmonic (Wl*)
The thermal adjoint first harmonic (Wz*)
The thermal production term (v )

£,2

The removal term (ZR)

The power coefficient which is associated with the
fission cross section for a decrease in power from
100% to zero, and it is defined as in SORGHUM by
the eguation:

af(¢~¢o)
szlz(ﬂ) = qu'Z(ﬁo) 1 + —"‘—B-‘——‘
o
Where: af: flux (power) coefficient
QO: reference flux distribution

Maximum number of materials used in the model

32



NRX,NRY,NRZ

NMAP

DX,DY,DZ
XNU
SIGXE

"ZLAMI, ZLAMX

33

The number of coordinates in the three dimensions (x,y,z)
0 - -~ - No input distributions printecd

1 -~ - ﬂo, printed ,

e ¢O + wz + wz , printed

The cell dimensions in the model used (cm)
Neutrons born per fission

\ . . . 2
The miscroscopic xenon thermal absorption cross section {cm )

The iodine and xenon decay constants (sec-l)

. . . s 1 ..
GAMI, GAMX Fractional yield of iodine (1135) and xenon (Xe 35) per fission
Cro,CK1 The fundamental (k ) and first harmonic mode (kl) .
criticality factors
FIN Input flux distribution level, in % ‘
FNT Initial flux level in %, at which the threshold calculations
start
FINCR Flux variation in %, for threshold calculations.
(+ve) :decrements ’
(~ve) :increments
NF Total number of flux steps for threshold calculations
3. Input Preparation

The input required for XIPOIML is described below.
must be in the order indicated below.

The input "data cards"
The formats are given in parentheses

immediately following the card description.

Card 1l: Title Card (18a4)

Columns 1-72 TITLE - The information punched on this card is printed at the

top of each page of output.

Card 2:

Problem Parameters Card (5I5)

Columns
Columns
Columns
Columns
Columns

1-5 NMAT
6-10 NRX
11-15 NRY
16-20 NRZ
21-25 NMAP
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Card 3: Threshold Calculations Card (1I10,3F10.4)

Columns 1-5 NF
Columns 6-10 FINCR
Columns 11-15 FIN
Columns 16-20 FNT

Card 4: Cell Dimensions Card (3F10,3)

Columns 1-10 DX
Columns 11-20 DY
Columns 21~30 DZ

Card 5: Xenon Parameters Card (6E10.3)

Columns 1-10 XNU
Columns 11-20 SIGXE
Columns 21-30 ZLAMI
Columns 31-40 ZLAMX
Columns 41-50 GAMI
Columns 51-60 GAMX

Card 6: Mode Criticality Parameters {(2F10.6)

Columns 1-10 CKO
Columns 11-20 CK1

Card 7: Remarks Card(s) (18A4)

Columns 1-72 SUBS - These remarks will be printed at the beginning of the
output. As many cards of remarks as may be desired may be used. Column 1 of
each card is a carriage control symbol and should be left blank. The last
remark card must have columns 1-4 inclusive blank, and no other remark card may
have these four columns blank.

Card 8: Material Locations (715)

These cards give the initial and final coordinate numbers in each dimension for
each material number. The overlay method is used, that is if the same volume
is specified by two or more cards, the material number assigned by the last
card read is used. The final coordinate numbers must exceed the initial
coordinate numbers.

Columns 1-5 Jl The initial x-coordinate number

Columns 6-10 J2 The final x-~coordinate number

Columns 11-15 J3 The initial y-coordinate number

Columns 16-20 Jé The final y-coordinate number

Columns 21-25 J5 The initial z-coordinate number

Columns 26-~30 J6 The final z-coordinate number

Columns 31-35 J7 The number of the material which will occupy the volume

bounded by the above coordinates., The maximum value of
this number is NMAT.

The last of these cards must be followed by a blank card.
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Card 9: Material Properties (3F10.3)

There are NMAT such cards in order of material number. The cross sections
are macroscopic in units of cm l.

Columns 1-10 SF2
Columns 11-~20 SR
Columns 21-30 ALFS

Flux Distributions (Unformatted) FUND, XE, FAZl, TAZl, FADJ1l, TADJ1

The fundamental, the first harmonic and its adjoint, all generated with
SORGHUM are read in on tape, in the following manner:

Fundamental on: unit TAPE3
First harmonic on: unit TAPE4

Adjoint First harmonic: unit TAPES

4. Standard Coding Changes

All common cards must be exactly the same for both the main program and all
the subroutines. Therefore all common cards within the program must be
dimensioned properly, i.e.

FUND, XE, Fazl, TAZ1l, FaDJ1l, TADJ1l, MAT, ARRAY must be dimensioned at
least (NRX-1) by (NRY-1l) by (NRZ-1)
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700

200

100

220

260
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PROGRAM XTRPOIML (TNPUT,OUTPUT, TAPELOSINPYT, TAPEI=UTPUT,
1TAPE 4, TAPFU, TAPER)

COMMUON  FUND(B AR, LAY, XE (K, 4,18, FALI(RB,A,18),TAZ1(H,B,18),
1 FADJ1(B,8,18),TADJLI(R,B,18),MAT(R,8,18),5F2(%0),5R(50),
2 ALFACSOY,AMAXC3) ,NSCALF(S), ASCALP(Y) ,ARRAY(B,B,18),
3 TTAZX, 1TAZY,ITAZZ,IFUNDX, IFUNDY, TFUNDZ, ITADJIX,11ADJY.1TADJ/
DIMFNSTION TITLEC18),SUBS(18)

DATA BLANK/UN /

REAP INPUY [CHARACTERISTICS,

RFEAD(10,99) TITLE

READ(10,1%) NMAT, NRX,NRY,NRZ,NYAP
READ(IO,9R) f‘lF:FINCQ,FINaF'\JY

READ(LI0,25) DX,DY,D2

READ(CI0,30) XNU,SIGXE,ZLAMI, 2LAMX,6AMI,GAMX
READ(10,35) CKu,(X1

NPAGE=OQ

CALL HEAD(TITLE,NPAGE)

REAN(10,99) SURS

WRITE [NPUT CHARACTERISTICS,

WRITE(Q,99) SuBS

STF(SURS (1) ME,BLANK)Y GO 1O 700
WRITE(Q,113)

WRITE(9,116)

WRITE(9,101)

WRITE(9, 102INMAT ,NRX,)NRY (NRZ,NMAP
WRITE(9,103)

WRITE(Q,104) DX,0Y,D2

WRITE(9,105)

WRITE(9»106) XNU,SIGXE,ZLAMT,ZLAMX,GAM],GAMX
WRITE(9,107)

WRITE(9,108) CKO,CK1

WRITE(9,109)

WRITE(Q,110) NF,FINCR,FIN,FNT

READ MATERIA| MAP

J2=J2=1

JazJu=1

Jbz=Jb~1

Do 100 I=J1,402

DO 100 J=J3,J4

DO 100 k=9, b

MAT(T,J,K)=7

1IF¢IY  NELO0) GO T 200

RFAD MATERTAL PRDPFRTIES

DO 220 I=3,NMAT

READ(10+48) SF2CIY,SR(IY,ALFA(])

WRITE MATERTAL PROPERTIES,

CALLL HEAD(CTITLE,NPAGE)

VRITE(9.94)

DD 260 I={,NMAT

wRITE(9,97) 1,SF2(1),SR(I),ALFA(I)
DIFF=FIM=FNT

NRX=NRX=]

NRY=MRY=1}

NRZ=NRZ =1

READ THE NISTRIBUTIONS FROM TAPES,

REAP(3) GARRAGE

READIR)Y (({FUNDIT,JeK),pI=1,NRX),J=1,NRY), K=t ,NRT)




300
290

3134

332

333

(@]

800

718

250

REAND(3) GARRAGE

READ(RY (C(XECL,J,K), =21, NRX),J=1,NRY), K21 ,NRZ)
READCUY (C(FAZYICT,JrK) Iz, NRX)»J=1WNRY) kT NRY)
READCA) (C(TAZL(LaJex) s Tx1 ) NRX)sJS1,NRY) KLy tRE)
READ(SR) (CCCFADJYCT,J,KY,121,NRX),Js1,NRY ) K1, VR2)
READ(S) (f(TANJL(TI ) J,K)p 151 )NRX) IS, NRY) K1 ,NRZ)
WRITE MATERTAL MAP

DN 290 K=91,MRZ

CALL MEAD(TITLE,NPAGE)

wRITE(9,90) K

D 300 J=Y,MRY

WRITE(9,95) (MAT(I,JsK)sIz]1,NRY)

WRITE(9,112)

CONTINLUE

CALL STDIZE(MRX,NRY,NRZ)

IF(NMAP, LT, 1) GO TO 800

M=t :

p0 331 K=1,NRZ

DU 339 J=1,NRY : ’
DO 331 T=1,NRX

ARRAY(TI,»J,KY = FUNDC(I,J,K)

CALL PRINYS(M,NRZyNRY,NRX,TITLE»NPAGE)
IF(NMAP,LF 1) GO TO 800

M=

DO 332 K=1,NRZ

DO 3342 J={,NRY

DO 332 I=1,NRX

ARRAY(I,J,K)Y = TAZ1(1,J.,K)

CALL PRINTS(M,NRZ,NRY,NRX,TITLE,NPAGE)

M=3

DO 333 K=1,NRZ

DN 333 J=1,NRY

DO 333 I=1,NRX

ARRAY(I,J,K) = TADJI(L,J,K)

CALL PRINTS(M,NRZ,NRY,NRX,TITLE NPAGE)

CONT INUE

DN 748 J=1,NRY

DN 718 1=1,NRX

DN 718 kK=t ,MRZ

FUND(T,JeK) = FUND(I,JeK)®ASCALP(Y)

TAZ‘(Y'-_"K) - TAZl(I'\JpK)*AS(ALP(P)

TADJECY,Juok) = TANJL(T,J,K)%ASCALP(3)

CONT TMUF

CALL HEAD(CTITLE,NPAGE)

CALCULATINN OF THE NORMALIZATION CIIISTANTS

CALCUI ATINN OF THE EFFECTIVF FLUX
SUMA=SUMP=SUMH=SUMB=SUMA=0,0

VOL =DXaDY%D2

DO 2%0 T=1,NRX

DN 230 J=1,NRY

DO 230 X=1{,NRZ

TF(SFP(MAT(T,JsK)) ,ER,0,0)GO T 250
SUMP=SUHMP4FUMD(T,JsK)xx}
SUMR=SUMUJHFUND(T ,J,K) k2

CONTINUE
SUMAZSUMASFANII (T oJsK)IASF2(MAT (1, Jor)IXTAZLI(rdsN)
SUMRZSIMB$TADIL ([, J,K)IASRIMAT(TJ,X))*FAZL(Y,J,K)
SUMKESIUMH+TADIL (T s, RKI*XE(T,J,K)I*TAZY (T, 0,K)

38




A0

230

500

240

600

15
25
30

CONT IMNUF 39
SUMAZSUMARVIL

SUMRSSUMR VN (K|

WETTE(9,114)

wWRITE(9,50) SUMA, SUMR

WRITE(Q,115)

WRITE (9,60) SUNP, SUMQ

EFFL=SUMP/SUMA

wRITE(9,05) EFFL

CALCULATINN OF THRESHIOWD

CALL HEAD(CTITLE,NPAGE)

DO 60D M=y, MF

FLUX=REDUCTINN PARAMETER,
C=FNT= (M=t ) xF [NLR

wRITE(9,111) C

SUMG=SUMD=SUMF=0,0

IF (M, ER,1,AND,UIFF,EQ,0,0) GO T S00
SUMK=0,0

CONTINUE

DO 240 I1=1,NRX

DN 240 J=1,MRY

N 240 x=1,NRZ .
SUMD=SUMD+YADJIL (T s JsK)IXSF2(MAT(T,J,RIDATAZI(I,J, kY /XNU
SUME=SUME+TADIL (T JsKI*SF2(MAT (1, JoK))#TAZL(Led /KIXFUND(TsJ,K)AC

1 (XNUXETIN)

SUMG=SUMG+TADIL (I, J,K)*SF2(MAT(I,Jd,X)1xTA21(], J KI*x1,0000000004C

ltALFA(MAT(I JrKI)Z(XNUXL J00XFIN)

IF(M.EW.l;AND.UIFF.EN.O.O) GO TO 240
SUMHZSUMH (GAMX+GAMIY*SF2(MAT(I, JoK)I A (CaFUND(T,,JpKIZCANURFTINY)

F*TaADJY () pdoKIXTAZA (T JpKY/Z(ZLAMXSSIGXEXCAFUND (L, J,K)/ZFIN)

CONTINUE

SUMD=SUMD »VOL

SUNF =SUME xVOL

SUMG=SUMG*VOL

IF(M,FN, 1, AND,DIFF,EQR,0,0) GO TO 600

SUMH=SUMR VL

WRITE(9,55) SUMD,SUME, SUMG, SUMH

CALCULATINN OF FTA=BETA=OUMEGA,

FTA=SIGXEASUME/ (ZLAMX25UMD)

UMEGA=( (1, /CK1I=1,/7CKO)ASUMA*]L 00=5UM;G)/8UMD
RETAZ(GAMT+6GAMX) XxSUME / (ZLAMX*SUMH) =1, 0

WRITE(9,70) FTA,HFTA,OMEGA

CALCULATINN OF THE PEAK=TO=PEAK=RATIO AND THE THE PERION
PR=z=REAL PARY 0OF 1IMEGA

COL=CNEFF

FR=IMAGINARY PART (F QOMEGA,

PR=(1, +ZLA'47/ZLAMX+FTA (ETA/DME(’A)*((GANI"’GAHX)hE’TA/(l +BETA) -

IFAHX))iZLAMX/Z

COL=ZL AMT*ZUAMX*( (|, +ETA)+(ETAX(GAMI+GAMX ) /OMEGAY* () ,~ETA/

1(1,48ETA)))

FR=SORT(ARS(COL=PR*PR))
WRITE(9,7S5) PR,COL,FR
PERTION=3,14159/(FRx1800)
GR=FXP(=PR*PERIND*3600,0)
WRITE(9,80) GR,PERLIODN
FUIRMAT(515)
FORMAT(3F1O, 3
FORMAT(AF10,3)
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40
4y
50
55

60
65
70
75
80
90
95
96

97
98
99

104

102

103

104

105

!

i

1

FORMAT(2F10,6) 40

FORMAT(TIN)

FORMAT(3E10,3)

FORMAT (I X, xSUIMAZ &, E12,6,5%, «SUMBzx,E12 6/7//7) .

FORMAT (1 X, aSUMD= R B12,d,5X, xSUMF=*, B 12 ,4,9X, xSUMG= ., F12,4,5X,

*SUMH=*, b 12,4//77)

FORMAT (11X, xSUMP=#,E12,6,5X, *SUMQ=*,E12,6///)

FORMAT(IX, »EFFL=x,1PE12,6/7/7)

FORMAT (1 X, aETA=Z &, OPF {2 ,7,5X,2BRETAS* , UPF12.7,5X,x1MEGASx, 1PEY6.T/)

FORMAT (I X, %PRza, JPEL6 75X, 2L 0| =%, 1PE1O, 7T +sSX s aFRz*{PEEbB, 1//7)

FORMAT (1 X, *PEAR=T(=PEAK RATIO=Z»,F10,d,5%,*PERIUIN=4,F10,3///)

FORMAT(6X,*MATERTIAL MAP AT LEVEL®,4X,a2=%,12,/) :

FORMAT (8X, 3513)

FORMAT (& MATERTAL CONSTANTS*/11X,*PRIID(2) REMUIVAL P

D COEFF»//)

FORMAT(18,1P3F14,4)

FORMAT(TL10,3F10,4)

FORMAT(18AU)

FORMAT (10X, aNMAT  NRX NR Y NRZ NMAP2//)

FORMAT(6X,516//7)

FORMAT(* CFLL DIMENSINNS*/1{X,*xDX DY YA YAND

FORMAT(7X,3F10,3//) .

FORMAT (& XENMNN PARAMETERS*/11X, »XNu SIGXE . ZLAMT
2L AMX GAM] GAMX%//) ’ :

106 FORMAT(TX,1PbEL3Y,3//) '
107 FORMAT(* MULTIPLTICATION CONSTANTS®/11X, xKEFF (FUND) KEFF(AZT

|

I*x//)

108 FORMAT(UX,P2F19,6/7)

109

1

FORMAT(* CHANGE IH POWER LEVEL*/12x, ANF INCREM INPUT
INITTAL®//) :

110 FORMAT(IX,T12,3F12,4)

111
112
113
114
115
| B )

400

10

20

1000

1

3

FORMAT (2X,aCALCULATION AT POWER LEVEL =%,F7,2,//7)

FORMAT(1H )

FORMAT(1HO)

FORMAT (IX, »NORHMALTZATION INTEGRALSx//)

FORMAT(IX,#FFFECTIVE FLUX CALCULATIONS*//)

FORMAT (%« PRINBLEM PARAMETERSH)

CALL HEAD(TITLE,NPAGE)

COMTINUE

STo0P

END

SURPODUTIMNE HEALCIT,NP)

DIMENSI{IN T(18)

IF (NP) 10,10,20

CALL  DATF(DAT)

TIMIMN=SECONN(A)

TN=SFCNND(A)=TIM]N

NPzNP 4

PRITE (9,1000) T,NP,DAT, TN

FORMAT (1H1,18A4,9H PAGE,14,5x,410,6R TIME,F6,2,4H SEC//)

RETURN

END

SUBROHTINE PRINTS(LIMRZSINRYS,NRXS, XTITLESNPAG)

COMMON  FUND(B,B8,18) ,XE(B8,8,18),FAZI(8,8,18),TA21(8,48,18),
FADJL(B8,8,18),TADJI(B,R,18),MAT1(8,8,18),3F2(50),5R(50),
ALFA(S0),AMAX(3),NSCALP(3),ASCALP(3),ARRAY(H,8,18),

TTAZX, TTAZY ITAZZ, TFUNDX, TFUNDY, TFUNDZ, ITANJIX, TTADJY, ITA

1MDICL = 0




77

616

618
614
617
615

619

20

10
11
12

741
740

22
719
718

5¢2
788

TMDTCR = 0 41

cCOunT = 0 )
TFINRYS,LF P8, AND NRX LE,17) INDICY = 1
DO 20 K=1,MRZS
IFCINDICT EQ, L AND , COUNT NEL0,0) 6O Tu 77
CALL HEAD(XTITLE,NPAG)

IF(1 ,Fu, 1Y WRITE(9,10) KsNSCALP({L)
IF(L,FN,2) wRITE(9,11) K,NSCALP(L)
IF(L,Fa,3) wWRITE(9,12) K,NSCALP(L)
COUNT=CHIUNT ¢+ 1}

NXY= 17

NCI= o

Mt = MINMO(NX1.NRXS)

IF(INDTIC2,EQ,1) WRITE(9,741)(7,1=NC1,NY)

“IFCTNDIC2 ,NE 1) WRITE(Q,740)(T,7=NC1,NY)

WRITE(9,22)

Jvi=zo

N 618 J2LH)NRYS

JY1 = Jvi o+ 1

1IFCINDIC2,NF 1) G T1) 618

WRITE(D,719) JVI,(ARRAY(TsJsK),I=aNCY NI

GO Ti) 614

WRITECO, 718 JVLI, (ARRAY(1ypJrn), 1=NCL,NL)

CONTINUE

IF (NRXS=NX1) 619,619,615

WRITE(9,718)

INDICZ2=1

NCYL = NCY + {7

NXY = NXI + {7

GO TO 6i6

CONTINUE

INDIC2 = 0O

WRITE(9,52)

IFCCOUNT FO,2,0) COUNT = 0,0

CONTIMUF

IF(L,Fn.l)wRITL(9;7GH)AMAX(1)'IFUNDZoIFUNnY.1FUNnx
IFILFN,2IANRITE(I,7BBYAMAX(2), TTAZZ, ITAZY,ITAZX
TF(L,FO,3YWRTTE(9,78B)AMAX(3), 1TANJIZ, TTADIY, 1TAD X

FORMAT (AX, *MAP TF FUNDAMENTAL FLUX AT LEVEL*ptdX, aZz%,12,50X,*(1,0!
l-t'ray*)*)/) .

FORMAT (66X, *MAP NF FIRST HARMUONIC FLUX AT LEVELA,UX, *.=x,12,50X,*(
{1, 0Emx,12,%)%,/)

FORMATLAX, #MAP OF ADJOINT FIRST HARMUNIC FLUX AY LEVEL*,U8X, 2 =%, 1.
1o50X, 2 (1, NE=x,12,%)%,/)

FORMAT(1IX,1717,7)

FORMAT(3X,1717,7)

FORMAT(IH )

FORMAT(I3,10X,17F7,2)

FORMAT(T13,2X,17F7,2)

FORMAT(IHO)

FOPMAT (20X s xMAXTIMUM FLUX VALUE =#,2X,1PF15,58 POX, AL NCATT.
IN IS PLANF NO,x,2X,12,2X,2R0Dw NOL*,2X,12,2X, ACLUMN NO,*,2X,]2./)
RETUHRM

END

SURRDUTINF STNIZE(NRXS,NRYS,NRZS)

COMMON  FUND(B By 18), XE(B,B,1B),FAZ1 (R, R, 18),TA21(n,8,1R),
] FADIY(8,8,18), TADJY (B, 4, 1A),"MAT(B,B,18),8F2(50),5R(50),

2 ALFACSD)Y,AMAXC3)Y,NSCALP(4)Y,ASCAY P(3),ARRAY(R,R,18Y,

-
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3 TTAZX T TAZY,  TVAZZ,,TFUNDX, JFUNDY,TFUNDZ ) TTADIX,1TADJY,ITADI,
AMAX (1Y = FUND(T, 1, 1)

AMAX (2) TAZI(L,1,1)

AMAXTY) TADJLI UL .1, 1)

DN 631 Ja1yNRYS

DO 631 I=1,NRXS

DD 631 K=1,NRZS

IF(FUNOCT,JoKY, LEAMAXCE)IGND TO 032

AMAY (1) = FUND(I,J,K)

1IFUNDY = 1
TFUMDY =
[FisnZ = K

632 1F(TAZILI,»JoX) LEAMAX(2))GCO TQ 633
AMAX(2) = TAZI(1,J,K)

ITAZX = 1
1TAZY = J
1TaZZ ="K

633 JF(TADJIC(T,J,K) LELAMAX(3))G) TU 631
AMAX(3) = TADJLIC(],J,K)
ITanJdX 1
1TADJY R .
ITADNZ K
631 CONTINUE
pn 650 I=1,3
NSCALP(I) INTLALOGIQCAMAX(TI)))~2
650 ASCALP(1) = 10,0%x*(NSCALP(]I))
DO 652 J=1,NRYS
DO 692 I=1,NRXS
DI 652 kK=t ,MRZS
FUNND(T,JaK) = FURNDLT,J»X)/ASCALP(1)
TAZIC(T,J,K)Y = TAZ1(T,J,K)ZASCALP(2)
TADJI(T+JsK) = TADJI(I,J,K)Y/Z/ASCALP(3)
652 CONTINUE
RETURM
" END

"o

1 1~
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