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ABSTRACT

A large thermal reactor operating at sufficiently high flux

levels is susceptible to oscillations in the power distribution t~at

are associated with a periodic redistribution of xenon poison.

The particular perturbation method, A-mode approximation, is

presented in this report. A detailed description of the A-mode

mathematical formalism and the computer program XIPO:e·IL and its

application to Pickering reactors are reported.
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1. INTRODUCTION

1

Let us suppose that into a reactor operating at constant total

power, for a sufficiently long time to have established an equilibrium xenon

distribution, we introduce a flux tilt. Let us further suppose that the tilt

is a side to side tilt, such that the average flux in the left half j~ increased and

in the right half decreased to maintain constant total power. This tilt will

cause the xenon to burn out more rapidly in the left half and less rapidly in

the right half, while the local· rates of formation of xenon from iodine decay

remain nearly constant for some time. The reactivity increases then in the left

half of the reactor and decreases in the right half. If no spatial fl~x control

is imposed on top of bulk reactivity control the tilt will be amplified.

Ultimately the growth of the xenon from the iodine that is forming more rapidly

in the left half,and the decay of xenon together with lower production in the

right half, reverse the reactivity distribution and the power will peak in the

right half of the reactor. These oscillations may persist or grow-unless spatial

flux control is imposed.

Xenon induced oscillations can occur only at sufficiently high flux

levels, at which rate of xenon burnout is important relative to the ra~e of

xenon decay. Further, they can occur only in thermal reactors since the neutron

energy spectrum, in a fast or intermediate reactor is such that the corresponding

absorption cross section of xenon-135 is quite small. Furthermore, it is

necessary for the reactor to have dimensions, which are large compared to

neutron migration length, because only in such systems can the spatial harmonics

of the flux be excited to an appreciable extent.

Xenon poisoning in reactors was discovered when the first production

reactor operated at Hanford, and xenon instability was first observed when local

hot spots were detected in the Hanford reactors. The first clear demonstration

of flux-tilt oscillations was obtained at Savannah River and reported by

Haefner(l). In December 1955 an undamped axial flux oscillation occured and

persisted for 14 days in a reactor held at constant power. The period of the

oscillation was 28 hours. Only later was this identified as a xenon-induced

oscillation.
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For Pickering power reactors, instability of the first azimuthal

mode,was observed in Unit #1 in early June, 1971 while operating at full

power. Although the source of the perturbation as well as when it occured

remain unknown, the side to side oscillation in the flux distribution grew

steadily with a period of approximately twenty hours until control action
(2)

was initiated to terminate the oscillation .

. (3) . t dIn this report the techn~que of W.M. Stacey, Jr. ~s presen e ,

and it is used in th~ computation of the threshold value for Pickering

reactors. W.M. Stacey, Jr. makes use of possibly the most computationqlly

tractable method appropriate for the analysis of realistic reactor models.

He utilizes a sp~tial expansion in A-modes, which are the eigenfunctions of

the standard equation for the static neutron flux, with equilibrium xenon,

and temperature feedback effects implicit in the cross sections. This

analysis proceeds by linearizing the appropriate neutron balance equations,

Laplace transforming, and expanding the spatial dependence in eigenfunctions

associated with the steady-state reactor model. This results in a transfer

function type relation, and a stability criterion is derived from the

requirement that the real part of the poles of the transfer function b~

negative, which ensures an exponentially decaying power oscillation.

Although a linear analysis is inadequate when the magnitude of the

power oscillation is comparable with the mean power level, it should be

sufficient to predict the tendency of a small oscillation to grow or decay,

i.e. yield a stability criterion. Furthermore, power oscillations of a few

percent might be acceptable, and a linear analysis should describe these.

2. MATHE~~TICAL FORMALISM

It is well known that the fission product xenon-135, with a half-life

of 9.2 hours, has a very large absorption cross section for thermal neutrons,

about 2.6 x 10
6

barns(4). A small fraction of this n~clear species is formed

directly in fission, but the major portion results from the decay of iodine-135,

with a half-life of 6.6 hours. Iodine-135 is itself a decay product of
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tellurium-135, which has a half-life of less than 1 minute. Consequently,

for all practical purposes, it may be assumed that the production of

xenon-135 is determined almost solely by the decay of iodine-l35, and

that the rate of formation of the latter is proportional to the fission

rate.

The fission-product-decay chain is shown below.

Te
135 «1- min) U

235
fission yield ~ 6.4%

235
U fission yield ~ 0.2%

135
Ba (stable)
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A flux tilt, induced by a random reactivity perturbation, is at

first enhanced by the tilted xenon burnup rate distribution and later compensated

by the tilted xenon production rate. Under certain conditions the compensation

is excessive, and diverging spatial power oscillations are induced.

Because of 'the time scale of the iodine and xenon dynamics, prompt

and delayed neutron'dynamics may be neglected, i.e. changes in the neutron flux

are assumed to occur instantaneously, and the delayed neutron precursors are

assumed to be always in equilibrium. Moreover, as mentioned earlier, iodine-135

can be assumed to be formed directly from fission. As xenon feedback,is assumed

to affect only the thermal neutron balance, the two-group neutron balance

equations and the xenOn and iodine equations, using the standard notation may

be written as

• • (1)

o • • (2)

or (r, t)

ot • • (3)

oX(r,t)

ot:
• . (4)



The eigenfunctions, A-modes, satisfy the equilibrium neutron

balance equations, which in matrix form are

5

2
+{La,l(r) + ER(r)} a-Dl\7

- ER(r) D \72 +{Ea ,2(r) + oxxo(r)}- 2

a vLf,2(r) IjJn,l(r)
1 a • • (5)
kn

a a IjJn,2(r)

or (L = a • • (6)

where Land M may be regarded as the destruction and production matrices

respectively.

The adjoint eigenfunctions 1jJ* l(r), 1jJ* 2(r) satisfy the adjointn, n,
equation of (6).

-*
(L 1 -* . ;r.*

-k M) 'l'n
n

a • • (7)
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where

-*
L 2

{~a,2(r) + a X (r)}0 -D \J +
2 x 0

0 0

-*and =
M

v~f,2(r) 0

The A-modes are biorthogonal with respect to the production matrix

M, and may be normalized such that:

r,/ 1 (r) \!~f 2 (r) 1/1 2 (r)} \ m, . I n, dV = <5 m,n (8)

An equivalent normalization condition can be obtained, taking the
neutron balance of fast flux and its adjoint, after premultiplying the
former with 1/1* l(r) and the latter with 1/1 l(r) and integrating. over the volume:

n, n,

Subtracting (10) from (9), we have

1 *
k 1/1 n,l (r) \!~f,2(r) 1/1 2(r)dV

n n,

*1/1 l(r)~R(r)1/I 2(r)dV 0n, n,

k ~* 2(r)~ (r)1/I l(r)dVnJ1t n, R n,

o (9)

(10)

(ll)

From this equation (11) and the normalization condition (8), it can be seen that
an equivalent normalization condition is:

k /1/1* 2(r) ~ (r) 1/1 l(r)dVn m, R n,
<5
m,n

.. ,-

(12)
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The solution of Equations (1) to (4) by analytical methods is

difficult because of the non-linearity introduced by the xenon absorption

term. Implicit non-linearities are also introduced by the dependence of the

cross sections of the flux via the temper~ture feedback.

Linearizing these equations reduces their complexity, but also

reduces their applicability to a small region about the equilibrium point.

The linearized equations are used principally for investigations of stability.

The linearized equations are obtained by expanding about the

equilibrium point, denoted by a zero subscript:

~1 (r,t) ~ 1 (r) + o~l (r,t) • • (13)
0,

~2(r,t) = ~ 2(r) + o~2(r,t) • • (14)
0,

I(r,t) = I (r) + OI(r,t) •• (15)
0

X(r,t) = X (r) + oX(r,t) •• (16)
0

The effect of temperature feedback should be taken into account at

this stage:

The fission cross section may be flux-dependent:

= • • (17)
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where a is the power coefficient and 0 2 is a reference flux distribution.
0,

This reference flux distribution may have a single value throughout the core.

Both sides of Equation (17) are multiplied by 0 (=0 + 002) to get:2 0,2

E (0 )0 + E
f

2(0 )002+a Ef (0 )0 00 +a Ef (0 ) (002)2 (18)
f,2 0,2 0,2 , 0,2 ,2 0,2 0,2 2 ,2 0,2-
ABC D

where A steady-state term,

B the effect of the perturbation 002without feedbac~,

C the temperature feedback term, and

D can be neglected as being very small.

The linearized equations (13) to (16) are imposed on equations (1) to (4).

Use is made of the fact that the steady-state solutions satisfy the" time-independent

version of equations (1) to (4). The terms that are non-linear in 001 , 002 , and

oX are neglected. The temperature feedback term(C) is added to the thermal neutron

balance equation, according to equation (18). The four equation system (1) to (4)

finally becomes

{E (r) + ER(r)} 00
1

(r,t) +
a,l

\i

k o

E
f

(r) 00
2

(r, t)
,2

o (19)

- {E (r) + 0 X (r)} 60
2

(r , t..)
a'2 x 0

- a 0 (r) oX(r,t) + aE
f

(r) 0 (r) 002 (r,t) == a
x 0,2 ,2 0,2

(20)
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ooI(r,t)
at (21)

=

Y Lf (r) o~2 (r,t) 
x ,2

o x (r) o02 (r,t) - A ox(r,t)
x 0 x

aOX(r, t)

at

- 00
0

(r)6X(r,t) +
x ,2

(22)

Equations (19) to (22) are Laplace transformed according to:

L { f(r,t).}

co

~ e-
pt

f(r,t) dt

o

= F(r,p) (23)

L {f (r,t)} pF(r,p) - f(r,t = 0) (24)

where f stands for 0
1

, O
2

, X and I, and the dot denotes the first derivative

with respect to time. At this stage, the iodine concentration term oI(r,p) is

eliminated between equations (21) and (22), and a three-equation system is

obtained:

(25)o(-n,0
2

+ Ea" (r) + ER(r») o¢, (r ,p) - (~o Ef ,2 (r») 6¢2 (r ,p)

(-LR(r») 601 (r,p) + (-02\72 + La,2(r) + 0 xXo (r) - uL f ,2(r) 0
0

,2(r») 60;jr,p) +

+ ° 0 (r) 6X(r,p) = 0
x 0,2

(26)

A + ° 0 (r)\ 6X(r,p) = fy Lf (r) + (
x x 0,2 ) ~ x,2 P

+[(1) / AI) 01(r,t "

>\) YIEf,2(r) -~XXO(r~0¢2(r,p) +

0) + oX(r,t " O)J (27)
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Expansion in A-Modes

The flux and xenon perturbations are expanded in A-modes as defined

by equation (5).

602(r,p).

6X(r,p)

· . (28)

• • (29)

• • (30)

If it is assumed that the first harmonic is adequate to. represent

the variations in the flux and xenon from the equilibrium distributiors, thus

only the first term is retained in the expansions of equations (28) to (30):

• • (31)

• • (32)

· • (33)
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For simplicity the subscript "1" refering to the mode is omitted. Using the

expansion of equations (31) to (33), the three-equation system (25) to (27)

becomes:

•• (34)

a • • (35)

(p ~(YX"f'2(r)
A+A +a ¢ 2 (r») "f (r) B (p) 1)J2 (r) I+ . Y I (r)x x 0, ,2 P+A 1 I f,2

oXXD(r) )A(P) ·2(r) +(e:~, oX(r,t ~ o~oI(r,t = 0) + • • (36)

Using the definition of A-eigenfuctions, the L.H.S. of equation (34) can be'

written as:

D (p) V1 (r)
v

= k If 2(r)
1 '

D(p) 1Jl
2

(r) ., (37)

i.e. .. (38)

or D(p) = A (p) • • (39)
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Using equation (39) and the definition of A-eigenfunctions, equation (35)

becomes

*Multiplying every term of equation (40) by W
2

(r), integrating over the whole

core and employing the normalization condition (12), the following expression

is obtained, after dividing each term by ~W2* (r) Lf ,2(r) w2 (r) dV:

~~)~(r) uL f ,2(r>.00 ,2(r)·w2 (r)dV

*~w2 (r) L f , 2 (r) 1/! 2 (r) dV
+

= 0 .(41)

B(p) r2
A(p)or (42)

A nx

1 1

Jr~2* (r)UL f ,2(r) 0 0 ,2(r)w2 (r)
- - -
k

l
k dV

where r2
0

(43)=

I1/!2 -A (r) Lf ,2(r)w2 (r) dV fW 2* (r) Lf , 2 (r) W
2

(r) dV

n
1,

"X

fW2*(r)~XLf,2(r)00,2(r)1/J2(r) dV

f1/!2*(r)L f ,2(r)1/!2 (r) dV
(44)

*Finally, the xenon equation, (36), after multiplying each term by 1/J
2

(r) and

integrating over the whole volume, becomes:
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( A) A (p) ~
- p + X A TJ

X

Lf ,2(r) l/J2(r) dV - A(p) f 1jJ/ (r) a xX
O

(r)!/J2(r)dV+R
l

(45)

dV

(
ArYr) S= Y + ---- A(p)

x P+A r

*
where R

l
=jSIjJ2.(r)

Ar
and S = -- or (r,t = 0) + oX(r,t·

P+A
r

involving initial values of OX and or.

,
0) is the inhomogeneous term

Dividing each term by ax S1jJ2* (r) L f ,2(r)0o ,2(r) 1jJ2(r)dV and putting:

1 + 8 ~l/J2*(r) Lf ,2(r)0o ,2(r) 1jJ2(r)dV

Yr+Yx Sl/J 2* (r) \X
o

(r) 1jJ2 (r)dV

the following equation is obtained:

A(p)
A TJx axS;jJ2 * (r) L f • 2 (r) 0

0
, 2 (r) 1jJ 2 (r) dV

(46)

=1

or A(p) H(p) A TJ R (47)x

where H(p) 1 Z (P+A r )
(48)

\ '(1 Y +y p+A (P-p1) (P-P
2

)
1 x + ~ + __x_ ~Yx

+ --- TJ
1+8pH A TJ

I x

z: Consta~t with respect to p

is the transfer function relating the coefficient A(p) with the inhomogeneous

term R.



14

The poles of the transfer function H can be found from Equation (48)

which after some algebra becomes:

PI = - P + i(C-p 2)~
r r

P
2

- P - i(C-p 2)~
r r

where
A {(1 A

(y~ o - Yx)}
+ Yxx I + n) np +-

r 2 A Q + 8
x

(y I + Y ) (1 - B)}c 1 1 {(l + oj x n
= + n

I x Q 1 +

and the condition of stability is that

P > a
r

i.e. the poles of the transfer function lie in the left half complex p-plane

and the period of oscillation is calculated from:

(49)

(50)

(51)

T 2 7T (52)

It is clear from the condition of stability (P > 0), that it is mostly
r

controlled by the physical parameters Q and n. The quantity Q defined by equation

(43) is primarily decided by the subscriticality of the perturbation mode under

study, and it is obvious that a reactor becomes less stable when reactor harmonics

become more easily excitable, i.e. when the amount of subcriticality of a mode

decreases. This occurs when the dimensions of the core are increased or when the

power distribution is flattened. A negative power coefficient «(«0) increases 0.,

thus making a reactor more stable. As for the quantity n defined by equation (44),

it is seen, that n is proportional to the thermal flux level, i.e. power level

and an increase in it is generally destablizing.
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In order to test the previous mathematical analysis, the stability

of the Pickering initial core to xenon induced power oscillations in the

side-to-side mode was analyzed using XIPOl~L~ a program specifically created

for this purpose. The flux and xenon distributions at steady state, the

first azimuthal harmonic and its adjoint were generated with the SORGHUM(5)

code. Feedback reactivity effects at various power levels were included in

the analysis.

The measure of stability of spatial oscillations in XIPOIML is

the peak-to-peak ratio

p -P
i.e. the ratio between maximum (or minimum) values of tilt (L R) during

P +P
successive cycles of the oscillations where: L R

T

- P
r

P and P
L R

period of oscillation

damping factor

neutron production rates in the left and right

halves of the reactor respectively.

These power oscillations will be unstable if the peak-to-peak ratio (R) is

greater than 1, and will be damped if less than 1. At threshold, the peak

to-peak ratio is equal to 1.

* See Appendices
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Analysis

Steady state conditions of the initial core, were calculated

using a coarse mesh 57.15 cm x 57.15 cm x 16.719 cm octant core model (Fig. 1).

The three adjuster rows of six rods each were located as follows: the central

row in the transverse mid-plane and the outer rows 91.95 cm on either side of

it. The material properties used in the study together with the ~I 2 for
a,

adjuster rods and zone controllers are given in Tables I-IV and VI, VII.

The foll~wing steady state distributions were generated:

(a) distributions corresponding to 100% full power (1744 MW
f

) with zone

controllers almost empty;

(b) distributions corresponding to 50% full power with zone controllers

almost empty; and

(c) distributions corresponding to 100% full power with zone controllers

35.5% full.

Next, the side-to-side mode and its adjoint were generated with

SORGHUM. Mode subcriticality for each of the above cases are given in Table V.

Having generated the fundamental, the side-to-side and adjoint

mode distributions, they were input into XIPOIML.

To examine the stability of the core at different power levels,

the input steady state distributions and the power coefficients were reduced

linearly and the xenon distributions according to the formula governing the

equilibrium xenon concentration.
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The behavior of peak-to-peak ratio and the period vs. percentage

of full power for the different cases are given in Figures 2 and 3. From

these figures the reactor power thresholds and the corresponding periods

were obtained and they are listed in Table together with the corresponding

values of the parameters

Next the study of spatial stability was extended to hypothetical

reactor operating levels up to 400% of full power, and the reactor was found

to tend to stabilize as the reactor power was raised above 200%. This is

due to the existence of large negative power coefficients at high power

levels (Figure 4).

A further step was undertaken (6) , to investigate the effect of the

side-to-side mode subcriticality on the threshold. Using a value of

16.24 mk subcriticality found with the MONIC program, when calculating the

flux harmonics, the threshold was found to be at 52% of full power (Figure 5).

Finally, the subcriticality was changed to 18 mk based on first azimuthal

mode reactivity measurements of Pickering+ and the threshold was found to be

about 74% of full power (Figure 6). Note that in both of these cases where

the subcriticality of the side-to-side mode was 14.307 mk.

In conclusion, it can be stated that this approach is quite a

powerful tool in estimating the effect of various parameters on xenon

stability.

+ Memorandum to A. A. Pasanen from A. P. Dastur, 44-06000, June 71.



.. 4. REFERENCES

18

(1) R.R. Haefner, "Flux Oscillations caused by Xenon Instability";

Nucl. Science Tech., 2 (3) :291, Dec. 1956.

..

(2)

(3)

(4)

(5)

(6)

O.A. Trojan, private communication.

W.M. Stacey, Jr., "Linear Analysis of Xenon Spatial Oscillations",

Nucl. Science Eng., 30, 453 (1967) .

N.E. Holden and F.W. Walker, Chart of Nuclides, KAPL

11th edition, April 1972.

O.A. Trojan, " SORGHUM", TDAI-88, to be published.

M. Mamourian. private communication.



TABLES



TABLE r(*)

Material Properties at Full Power

20

-1 -1 -1 -1
Reactivity Change

Material L l,cm L 2,cm UL f ,2,cm L ,cm From 100% to Hot
a, a, R

Shutdown (mk) , a
f

Artificial 10
10

10
10

0 0 0

10-11 1. 99821xlO- 4 -2 ,
Reflector O' 1.01811xlO 0

Fresh Fuel 7. 86413xlO-
4

3.88496xlO-
3

4.64689xlO-
3

7. 36792xlO-
3 -3

-7.0 xlO

TABLE II (**)

Material Properties at 50% of Full Power

-1 -1 -1 -1
Reactivity Change

Material L l,cm L 2,cm UL f ,2,cm L ,em From 50% to Hota, a, R
Shutdown (Ink) , a

f

Artificial 10
10

10
10

0 0 0

Reflector 10-11
2.09379xlO-

4
0 1. 01811xlO-

2
0

Fresh Fuel 7.69735xlO-
4

3.92505xlO-
3

4.69337xlO-
3

7. 39244xlO-
3 -3

-4.04xlO

* PPV-PKPBS-4

** PPV-PKPBS-6



TABLE III

Xenon Parameters

AI 2.94 10- 5 -1
x sec

A 2.10 x 10-5 -1
:= sec

X
10-2

YI
:= 6.44 x

YX
2.30 x 10-3

10-18 2
a 1. 219 x cm

X
U := 2.43 neutrons/fission

TABLE IV (*)

Properties of Reactivity Devices

21

6Ea ,2(central row)

6E 2(outer row)a,
~E 2 (zone controllers)a,
P J (adjuster worth)

AD

:=

-3 -1
0.54468 x 10 cm

-3 -1
1.15776 x 10 cm

11.74280 x 10-4 cm- l

18.502 mk (zone controllers almost empty)

TABLE V

Subcriticality of First Harmonic

Zone Controllers almost empty

k 1.0
0

k
1

:= 0.985894 (at 100% power), Le. PI
k := 0.985848 (at 50% power), Le. PI1

Zone Controllers 35.5% full

k 1. 0
o

-14.307 mk

-14.356 mk

:=

* PTB-20

0.986156 (at 100% power), i.e. P
1

:= -14.039 mk



TABLE VI

Materials used for generation of the modes

22

~1AT*

1

2

3

4

5

6

7

8

9

Type of Haterial

Artificial

Reflector

1/2 Reflector + 1/2 Core

3/4 Reflector + 1/4 Core

Core

Core + ~Ea (c.n.)

Core + 1/2 ~Ea (C.B.)

Core + ~Ea (O.B.)

Core + 1/2 6Ea (O.B.)

TABLE VII

Haterials used in XIPOU1L

HAT:': Type of Material

1 Artificial

2 Reflector

3 1/2 Reflector + 1/2 Core

4 3/4 Reflector + 1/4 Core

5 Core

* See Appendices.



TABLE VIII

Threshold Power, Period and Physical Parameters for

100;~ and 50% of full power.

23

Distributions ire created at Distributions are
100% of Full Pm-ler conditions created at 5U% of

DATA full power
Zones almost Zones at conditions. Zones

empty 35.5i. almost empty.

Subcriticality 14.307 14.039 14.356
(mk)

Q 3.43 x 10-2 3.37 x 10-2 3.50 x 10-2

n 5.62 5.69 5.54

Threshold 39.9 38.1 42
Power (i.)

Period 26.1 26.02 25.93
(hrs.)
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APPENDlX-l

XIPOlML USER'S GUIDE

1. XIPOlML PROGRAM

XIPOlML Program consists of:

(1) Main Program

Handles the calculation of threshold power, and period of
oscillation.

(2) Three Subroutines

(a) HEAD
{b) STOlZE
(c) PRINTS

prints heading,
standardizes all input distributions, and
prints all input distributions.

2. DESCRIPTION OF TERNS

FUND(I,J,K) The fundamental (thermal) flux (0 )
o

XE(I,J,K) The xenon distribution (X )
o

FAZI(I,J,K)

TAZI(I,J,K)

FADJl (I,J, K)

TADJ1(I,J,K)

The fast first harmonic (~l)

The thermal first harmonic (~2)

The fast adjoint first harmonic (~l*)

The thermal adjoint first harmonic (~2*)

SF2(I)

SR(I)

The thermal production term (UL
f

,2)

The removal term (L
R

)

(
af (0-~o) )

1 + 0
o

The power coefficient which is associated with the
fission cross section for a decrease in power from
100% to zero, and it is defined as in SORGIIUM by
the equation:

ALFA(I)

flux (power) coefficientWhere: a
f

:

~: reference flux distribution
o

NMAT Maximum number of materials used in the model



NRX,NRY,NRZ
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The number of coordinates in the three dimensions (x,y,z)

NMAP o - No input distributions printed

DX,DY,DZ

XNU

SIGXE

'ZLAMI,ZLAMX

~~lI,GAMX

Cl:~()fCKl

FIN

FNT

FINCR

NF

1 - 0 , printed
o *

>1· - - - 0
0

+ W2 + W2 ' printed

The cell dimensions in the model used (em)

Neutrons born per fission

The miscroscopic xenon thermal absorption cross section (cm
2

)
-1

The iodine and xenon decay constants (sec )
135 135

Fractional yield of iodine (I ) and xenon (Xe ) per fission

The fundamental (k ) and first harmonic mode (k
l

)
criticality factor~

Input flux distribution level, in %

Initial flux level in %, at which the threshold calculations
start

Flux variation in %, for threshold calculations.
(+ve) : decrements
(-ve) : increments

Total number of flux steps for threshold calculations

3~ Input Preparation

The input required for XIPOIML is described below.
must be in the order indicated below. The formats
immediately following the card description.

Card 1: Title Card (18A4)

The input-"data cards"
are given in parentheses

Columns 1-72 TITLE'- The information punched on this card is printed at the
top of each page of output.

Card 2: Problem Parameters Card (5I5)

Columns 1-5 NMAT
Columns 6-10 NRX
Columns 11-15 NRY
Columns 16-20 NRZ
Columns 21-25 NMAP

......
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Card 3: Threshold Calculations Card (II0,3FI0.4)

Columns 1-5 NF
Columns 6-10 FINCR
Columns 11-15 FIN
Columns 16-20 FNT

Card 4: Cell Dimensions Card (3FlO.3)

Colu~~s 1-10 DX
Columns 11-20 DY
Columns 21-30 DZ

Card 5: Xenon Parameters Card (6ElO.3)

Columns 1-10 XNU
Columns 11-20 SIGXE
Columns 21-30 ZLAMI
Columns 31-40 ZLAMX
Columns 41-50 GAMI
Columns 51-60 GAMX

Card 6: Mode criticality Parameters (2FlO.6)

Columns 1-10 CKO
Columns 11-20 CKI

Card 7: Remarks Card(s) (18A4)

Columns 1-72 SUBS - These remarks will be printed at the beginning of the
output. As many cards of remarks as may be desired may be used. Column 1 of
each card is a carriage control symbol and should be left blank. The last
remark card must have columns 1-4 inclusive blank, and no other remark card may
have these four columns blank.

Card 8: Material Locations (715)

These cards giv~ the initial and final coordinate numbers in each dimension for
each material number. The overlay method is used, that is if the same volume
is specified by two or more cards, the material number assigned by the last
card read is used. The final coordinate numbers must exceed the initial
coordinate numbers.

Columns 1-5
Columns 6-10
Columns 11-15
Columns 16-20
Columns 21-25
Columns 26-30
Columns 31-35

Jl
J2
J3
J4
J5
J6
J7

The initial x-coordinate number
The final x-coordinate number
The initial y-coordinate number
The final y-coordinate number
The initial z-coordinate number
The final z-coordinate number
The number of the material which will occupy the volume
bounded by the above coordinates. The maximum value of
this number is NMAT.

The last of these cards must be followed by a blank card.
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Card 9: Material Properties (3FIO.3)

There are NMAT such cards in order of material number. The cross sections
are macroscopic in units of em-I.

Columns 1-10 SF2
Columns 11-20 SR
Columns 21-30 ALFS

Flux Distributions (Unformatted) FUND, XE,FAZl, TAZl, FADJl, TADJI

The fundamental, the first harmonic and its adjoint, all generated with
SORGHUM are read in on tape, in the following manner:

Fundamental on: unit TAPE3
First harmonic on: unit TAPE4
Adjoint First harmonic: unit TAPES

4. Standard Coding Changes

All common cards must be exactly the same for both the main p~ogram and all
the subroutines. Therefore all common cards within the program must be
dimensioned properly, i.e.

FUND, XE, FAZl, TAZl, FADJl, TADJl, MAT, ARRAY must be dimensioned at
least (NRX-l) by (NRY-l) by (NRZ-l)

~-.
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p P f 1(:1-0/ HI X Tt-1 (j 14 L (I I'l P lH , I I U TP U 1 , 1 APr t f) =1N P I J T , 1 1\ P r_ 9 =IIU TfJ U T ,

tUN .~, TAPF4, TAPfljl
COM ~~ () '" F" I , rI n(A , Po , 1R ) , ,( f: ( ~ , ~ , 1 P. ) , ~ A l t ( R , H , t "\ ) , T h. I 1 ( H , 8 , 1H ) ,

1 F" ADJ 1 (t3, H, 18), TAOJ 1 (R, H, 18), MA T (P., 8,1 f'), SF 2 (':>0), SR (~O) ,
2 A,_ F A( 50) , AM AX( .5 ) , NSC A. L~' ( ~ ) , Asc Al. P ( ~ ) , II ~ RAY ( B, H, t I; ) ,

3 J TAZ X, I TAZ y , I TAZ7 , I F LI ~I f' X , I F UtI f) Y, H lJ NDl, 1 TAO.]X , I 1 AD J Y,IT 11.0 J i

f)J ,.'F" NS I (1111 T T TLf:. etA), StJF3S (18)
DATA .BlAIII~/QH I

C RFA~ INPUT CHAHAClrRISTICS.
RFAO(10,QQ) TITLE
READ(10,1~} NMAT,NR~,NRy,N4Z,N~AP

RfAO(10,QR) 4F,FINCR,FtN,F~T

REAO{10,2~) ~X,OY,DZ

READC10,30) xNU,SIGxt,lLAHI,lLAMX,GAMI,GAMK
RfAnCl0,3S) CKU,CKI
NPAGE:.=O
CALL HfAOCTfTLt,NPAGt)

700 R~An(tn.QQ) SU~S

c: wRITE {NPlIT CHARACTERISTICS.
~RI1E(Q,9Q) SUUS

. J F CS1I R S ( t ) • ~! E• Hl. 1\ NK) r; 1I T(l 700
\'oRIlE (Q, t t.3)
hRlTE.C9,11h)
wRITE: (Q,10l)
~RITECq,ln2'NHAT,IIIHX,NRy,NRZ,N~AP

WRITE(Q,HU,
ItIRITECQ,1l)/·n DX,l)Y,l)l
WPTTE:(Q,10S)
~RIT~(q,lnb' XNU,SIG~E,ZLb~J,2LAMX,GAMl,GA~~

W~ITE(q,107)

wRITECq,10R) (KO.eK1
WRTTE(Q,10q)
WRITECQ,110) NF,FINCR,FIN,~NT

C R~AD MATfRIAL MAP
200REAn(lO,40) Jl,J2,J3,J4,J5,J6,J7

J2=Jc?-1
JlJ=Jij-l
Jb=Jb-l
DO 100 T=.Jl,J2
DO '00 J =.13 , J 1.1
/)n Ion k=~J5,Jb

100 MAT(J,J,K'=,J7
TF(Jl.NE.O) Gn TU 200

C RFAr I'4ATt:. P IAL PRI)P~RTtES

00 22(1 I=',NMAT
220 RtAnCl0,4S) SF2(ll,SRCI),ALFACI)

C WRITF MATfRTAl PHnp~RTIFS.

tAll. H~AD(TITLt:.,NPAGE·)

lIlRJTE(Q,<H,J
nil 2hO I=l.N"'1AT

260 ~RITF(q,q7) t,SF2CI),SRCI),ALFACI)
nlFF=FPJ-nJT
NRX=NR~-l

NRY=NRY-l
NRZ=NR7-1

C R ~ AnT H l::: n 1 S TQ H) lJ Tl n NSF R() '-1 TH' E: S ~

~fA~(') GhQAAGf.
~ rAn { " (C ( F I) N I) r I , J , K ) , r=I , N R X ) , ..I:: t , N ~ Y ) , K:: \ , r" ~ 1. )



REAn(3) GARRAr.E 33
RfA~(3) «()~(1,J,K),t=\,N~X),J::l,~Ry),K=t,NR1)

P.fA~(4) «((~All(I,J,K),J=t,~~X),J=l,~Ry),K=I,~~I)

~ F AI) ( a) (C ( 1 A'- 1 ( 1 , J, to( ) , J :: 1 , '" RX ) , J:: 1 , .\, RY) , K:: 1 , ~li< l )
RfAn ( r:; ) « (F Ai) J 1 CJ , J , K) , I :: 1 , NwX ) , J :: 1 , NR Y ) , K:: 1 , 'IJ R l )
RfAO(S) «((TA~J1CI,J,K),I::l,NR.),J::l,NRY),~=1,NRl)

C ~RIT~ MATERtAL MAP
Dn 290 1<=1,""'RZ
CAI.L Hf-AL>(TTTLt.,NPAGf:)
wRJTE(9,Q() K

ofJ 300 J =1 , ~! R Y
WRITEC9,9S) (MATCI,J,K),I::l,NR~)

300 wRTH.(9,112)
290 CONTINUE

CAL l ~ TD! lI-. ( ~JRX, NRY, f\J Rl )
IFCNMAP.LT.l) GO 1U 800
rl:: t
(1(1 331 1<=1,NRZ
otl 331 J=1,NRY
00 331 l=l,t\;RX

331 ARRAYC!,J,K) :: FlJNP(I,J,K)
r. AL. L PRJ '\JT S ( M , I~ R l , NRY, /-.J RX, TIT LE, ~~ P AGr:. )
IFCNMAP.LF.l) GO TO ~oo

M=/?
00 3'3? K:l,NRl
DO 332 J=1,t\j~y

DO 332 I=l,NRX
332 ARRAYCI,J,K) = TA71(1,J,K)

CALL PRTNTSC~,NRl,NRy,NRX,TITLE,NPAG~)

~=3

Dn 3.53 l<=l,NRZ
Dn 333 J=I,NRV
1)(1 333 I=l,NRX

3'3 ARRAYCI,J,K) = TAOJ1CI,J,K)
CALL PRINTSCM,NPl,~Ry,NRX,TITlf,NPAGE)

800 C(lN1I"HJf
Dn 7 1A J =1 , ~J R Y
o0 11 A I =1 , ~J R X
DrJ 71f\ k=t,",RZ
F lJ N11 (J , .J, K) = HI N0 ( I , J , K ) .. ASeA l.P ( 1)
TAZ t ( T ,.J , K) = 1 Al1 ( I , .J , K ) .. ASc II LP (?)
TAOJ1(},J,K) = TAnJ1(I,J,K)*ASC ALP(3)

718 CnNTpll'F
CALL HEAOCTTTLE,NPAGE)

C CAL CUl. ATIn N n F THE N(l R '-16 LIZ ATTn N C1.11 J S TAN 1 S
C ("LeUI AliON OF THE EFF~CTtVF FLUx

SIIMQ=SU~P=SUMH=SUM6=SUMh=O, 0
Vr.1L =D l( .. oV*D Z
DO 230 T=1 , ~Ha
I) fl 2 3 (l J =1 , NR Y
DO 23(\ K =t , ~HH
r f- ( SF? CMAT ( T , J , K ) ) • E rJ • 0 • 0 ) GOT (I ~ c; 0
SU"'1P=SllMP +F U~Jf) ( r , J, k ) * It ~

SUMn=SUI-1IHf- UNO l I , J, K) **2
250 cnNTINIIE"

SII ~1 /I. =RUM A+F Af) J 1 ( 1 , J , K ) .. SFc(~ AT ( J , J , '" ) ) *TAl 1 ( I , J , 1\ )
S[I H R =~ IJ MIi TA(). T1 ( r , J , K ) • SR C11 A T ( t , J, 0< ) ) .. F- Al \ ( 1 , .J , K )
S U~, H=S I.J'" H TII {) ..T1 ( I , .J , K ) • X~ CI , J , K ) • , A I. 1 ( I , J , K )

•... -



230 (IH.T PlllF 39
S1I t-I A=S U!-' A .. vfA
SU~R=SU~H*V(1l.*Ll<t

Io/~TH(q,114)

wRITECQ,50) SUMA,SU~8

WRITECq,11~)

1'1 RITE Cq , 0 (» S1I n P, S lJ t-l (J

EFFL=SU~P/SUMQ

I'lRIlE(qn>l:)) EFFL
C CALCUl.AlION OF THRf-SHI1LD

CALL HEAnCTJTL~,NPAG~)

() () lJ 0 0 f-' =1 , ~J F
e FLLJX-REf)U(Tln~ PARA~~TER,

C=FNT· (1'-1 -, ) • F1 i~ CR
IltRIlECQ,1 \l) C
SlIMG=SUMD:SUHF=O,O
HC~.E(J~l~AfIID.LJIFF.E(J.O.O) GU TI) 500,
SUM~:O.O

~ 0 0 CD"JT J IIJ UE
DO 240 l=t,I'.RX
Dn ? lJ l) J =1 , ,.) R '(
I) (1 2 lJ 0 P< =t , NRZ .
SUMn=SUMO~lA[)JICI,J,K)*SF2(MAT(1,J,k»*TAZl(I,J,Kl/xNU

su~I E=S U~, E+TA[) J 1 ( I , J , K ) *SF 2. ( MAT ( [ , J , K ) ) *TAZ t ( 1 , J " K ) *F 1I ND ( J , J , K ) .. C
t (X I'll J*F r N )
SU~G=SUMG.TADJ1(1,J,K)*SF2.C~AT(I,J,K»)*TAZ\(I,J,K)*1.000000000*[

1*ALFA(MAT(I,J,K)/(XNU*1.00*FIN)
If' (M.EQ,l ~AND,I.JIFF,EfJ.O,O) G() TO 21W
S1I r~ H=Sill'" H+( r. A"" X+GAM I ) .. 5 F 2 ( •., AT ( I , J , K ) ) .. ( r. .. FUN [) ( r, .J , K ) I ( X NU... F- I .\) ) )

t *TAI) J 1 ( ] , .J, K) .. TAl \ ( I , J , K) I ( l LA"" X+S1GXE*r. .. FUN 1)( I "I , K) / F I ,'J )

2110 corn IIlJI.lE
SUr., D=SU,... () *v (J L
SUtlF=SU ME*Vf1L
SUHG=SUt-lG*vOL
IF(M.F.q.l,AN~.DIFF,En.o.O) GO TO 600
SlIMH=SIJMH*VOL

bOO 101 R J TE ( q , 5 C;) SU1"1 n , SIJ 1'1 f , SLH1 r. , SlJ MH

C CALCUlATIIlN OF F.TA-BETA-{J"'f:GA.
fTA=SIGXE*SU~E/(lLA~X*SUMD)

1I !-I EGA =( ( 1• / CKt - 1• I CK0 ) *S lJ MA• 1• 00- sU~1 (; ) / SLIM 0
RETA=(GAMT.~AMX)*SUM~/(ZLA~X*S0MH)-t.O

~RtH.(q,7n) FTA,HFTA,Ili"lF.GA
C CALClJLATlnlll OF THF;: PE.AK-TO-FJEAK-FATJO A1'li) THE THE Pf".RIlln
CPR=RtAL P AJ.< T IJ r ,)'1 £ (; A•
C COl:cn~FF C
C fR=JMAGJNARY PART UF OMEGA,

PR=rl.+ZLAMT/lLAMX+ETA-(ETA/OMEGA).(GAMt+GAMX)*~TA/(l.+BETA)

lGAMX»ilZLAMX/2.
COL=Zl AMr*ZLAMX.«l.+ETA)t(ETA*(GAMltGA~X)/OM~GA).(l.-~TAI

1 ( 1• tHt TA) ) )
Fp=gQRT(AHS(COL-~R*PR»

~RITErq.7~) PR,COL,FR
PFRTO~=3.\U\5ql(FR*'AOO)

&R=FXP(-PR*FJERIOD·3bnO,O)
wRJTE(q,~n) GR,PERlnn.

1':> F(IRMAT(c,lr;)
25 F(lPMAT(3Fl0.:~)

'0 FOPMAT(b~10.3)



PI

lLAM!

KEFF (All

1. N PU T

40

STGXE.

Oy

NRt.

"3 r; f- 0 R~' A1 ( 2 FlO. b )
l.l 0 F ( HH' AT( 7 I C; )
LJt; F-(lRMAT(3El11.3'
tio f-(lRMAT(IX,*S\IMA:*,~.1c..b,SX,*5U~i:'=.,E'2.hl/l)

5., r- 0 RMilT ( t x , • S I I /~ fJ:: " , Eli! • 4 , c:, X , *S U11 r=*, ~ 1 2 • LJ , ~ X , .. S IJM(.=,. , r. , 2 • 4 , , X ,

t " SU/'111 =.,. , ~. 12 • I! / / I )
b 0 FOR MilT ( 1 X, *SUM P;; * , E 12. t:> , t; x, I< SII ~l1J=*, E 12. b / / / )
05 FO~/'1AT(lX,*EFFL:",lP~12.0/1/)

7 0 FnR,.., AT ( 1 ;. , " ETA =* , 0 PF 12 • 7 , 5 X, *AETA =* , 0 PF 1 2 • 7 , I) X, • (1/'1!: (; A:: * , 1PI: 1 t> • 7 / I

75 FOR MAT Ct X , *P R =It , 1P t.. \ b • 7 , 5 X , *(, 0 l. =.. , , PI:' b, 7 , '5 X , It F 11:: It 1P t- 1f) • T I I I )
80 f nRMAT C1 X, *P t- At\ - 1 I) ... Pr. AK RII TJ () =* , f- to. t! , t; X, .. Pr.. RI (II)=• ,F 1(l • '5 I / / )
q 0 F(I P ~I AT Cb X, • M " TE:. ~ 1 AL MAP AT L~ Vl L • , I.! X, • l =• , 1 2 , I )
q~ FORMATC8X,~513)

q b FnR~, AT ( .. ~ ATPH ALe 0 P\J S TAN TS*11 1 X, *PR1.10 ( 2 )
to CDE-FFIt//)

q7 FORI'1ATC18,1P3Fl4.4)
q8 FORMATCIIO,5FI0.4)
qq FORp.4ATC1HAt.,

101 FnRMATC10x,.NMAT NRX
102 FOR""AT(oX,SJ6//)
103 FnRMATe* CF:LL OlMENSl f lNS'I11X,*nx
lOl! FnR~'AT(7X,3F'10.3/1}

lOS F-ORI-IAT(1t XENI1N PARAMF:Tr.RSlt/l1x,.X~11I

1 l LMl X GAM I GA/-1 X.. / n
lOb FORMATC7X,lpoEl'.'//)
107 FORp.4AT(* MlJLTIPL1CATION CONSTANTSff/l1X,1tKEFF(FUND)

1)*//)
lOB FOR~AT(l!X,?F1C;.b/l)

109 FQP~ATC* CHANGE IN POwER LEvEL*/12x,.N~

1 Jl'JITTAL.11)
110 FORMAT(lX,J12,j~12.a)

111 H1PMAT(2X,.CALl:ULATln N AT POwt\.l LEVf:.L =.,FT.2,/'/1)
112 F-ORMAT(IH }
113 FORMAT(1Hnl
l1Q FQ~MAT(1X,*NORMALIZATJQN INTEG~ALS*I/)

lIS FORMATetX,*f~F~C1IV~ FLUX CALCULATIUNS.//)
tlb FORMAT(* PRIlHLfH PARA"1ETERS.)

CALL HEAO(1ITu:.,~JrAGF)

400 COnTINUF-.
STOp
f.Nn
SUHPlJlJTI~jf- HEAl)(T,~jP)

OlMENSIfl1\t TC1R)
IF (NP) tn,tll,~o

10 CALL DATF(f'lAT)
T t M PI=SEC () N n ( A)

20 TN:SFrnNDCA)-TIMIN
NP=MP+l

WRITE (q,lOOOl T,NP,DAT,TN
1000 FOR~AT (lHl,18AQ,QH PAGE,Ia,Sx,A10,bH TIHE,Fb,2,4H SEC/I)

RETURN
f~D

S U8 P Illt TT"J E p \.l t r" TS ( L , ~l Rl S , III ~ Y5 , NRxS, XTIT U. , N P AG)
C11 M M() N f- II t~ n C~ , R, \ l\ ) , XE ( 8 , H, 18 ) , F Al J (R, H, 1 8 ) , TAli (tl, tI, 1~ ) ,

1 FAD ,1 1 ( 8 , H, 1A ) , TAD J I ( 8, A, 1H) , ~.\ A 1 (8, H, 18 ) , SF ~ ( 50 ) , :; t.I ( :, 0 ) ,
? AlFh(I)O},AMAX(3),NSCAlP(3),ASCALP(3),ARRAY(R,R,1~),

3 1 TAI 'j. , TTAL '( , J TAl. Z, I FUr-,. f) x , I F \J NnV,IF UI'J 11 l, I T~ n J x , T1 A().J y ,IT A
l'IDJCl = 0
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K,NSCALP(L)
K/NSelLP(L)
K,NSCAI.P(l)

INDIC2 = 0
Cfl \ II\J I :: 0
J f- ( ~I R YS • LF ,? ~ • A ~I f) • NR X , L E , 1 7 ) I N[) 1C t ::
(}P 20 K=l,~jRI.S

IF-(TNf)lCl.~rJ.1.hl\lO.C(lLuJT.f\jf-.o.O) GU Ttl 77
CALL HfAOCXT1TLF.,NPAG)

77 IF ('- • F lJ, 1 ) WRI TE ( 9 , 10 )
I~(l,r~.2) ~R!T~(q,11)

IFCl,EQ,5) wRIT~Cq,12'

COUNT:::Cf1U~T t 1
NX1:: 17

Net= 1
616 Nt :: MI~O(N~l,NRXS)

1~(JNDrC2.EQ.l) wR!TfC9,741)(1,I:NC1,Nt)
IFCTNDIC2.NF..1) WRlff(9,7LJU)CJ,T:NCt,Nl)
'o!i~ITE r9,2?)
JVt=o .
0(1 blLJ .J=l,"lRYS
JVl :; JVl + 1
1~CTNn.rC2.Nf.1) Gr:J TI) bl8
WRll£(Q,7tQ) JV1/(ARRAYCI,J,K),!=NCt,Nl)
Gn T/J 61 1.l

b18 ~RrTfrq,7t8) JV1,(AR~AY(1,J/~)'l=Ncl,Nl)
61t! COIHTNUE
b17 IF(NRXS~NXl) 619,619,bI5
btl;) .>JR1TE (9, 7tH)

1NDIC2=1
NC 1 ;; N( 1 + t 1
NXl :: Nxl + 17
r,o Tll blb

b 19 COl\IT I NLJE
IN01C2 :: 0
WRJTEC9,5?)
IF- (C 0 LJ III T • FlJ • 2 • \) c{)UN T ::: O. 0

20 C0 i'.! T J "I d r
1F (l • f I~. 1) wR1TL( 9 I 78 H) AMAX ( 1) , I FlJ NDZ, II- lJ III n YI 1FUN () x
IF(L.FQ.2)WRIT~(q,788lA~AxC2)/TTAzl,trAIY,IrAZX

1~(L.Fn.3)~~rlt(q,78R)AMA~(3),ITAnJl,IT'DJY,llAnJx

1 0 FnR~1 AT ( n)( , Hoi AP 11 F F U~J 0 AMI: N TAL r LII X AT LEV Eo. L* I LJ X, • l =.. , J 2 , 'j 0 X, • ( 1 • (\1

1-*,12 •• )*,/)
11 fnRMATcox,*MhP Dr F-'JRST HARM(lNIC FLUX AT If,,.VI:L*,t~x,*l:::*,r2,SOl(,*{

1.0E~*,y?,*)*,/)

1 2 F nR~ AT ( b X, *~ II P I}F An J () I !\I T FIR S T ~iA R~~ UNI C FL lJ x AT l f-. v~ L" I 4 X, *l =• rI '
1,~ox,.(1.nE-*,I?,*,*,/)

7Ul FORMAT(11X,17rl,/)
7ao FnR~AT{3X,1717,/)

22 F"ORMAT{1H )
l19 FORMAHI.>,tOX,lH7.2J
718 FORMAT(T.>,2 X,17F7,2)
5~ FII~MAT(1HO)

786 FOP""ATC?OX,*MAXIl'1UM FLUX VALUE =*,f?)(,tPFtr;.~ "X,*lIlCATT,
IN IS PLA~IF ~J!l,*/2x,I~,2)(,*ROw N[J.*,cX,I2,cx,*Cl)LU MN NO.*,2XrI2,/)
RfTlIR/I'
'EN!)
S!.:~QOllTTNF srnIZECNRXS,NRYS,NR1S)
ttl r-l M I) N f- 'J ~J n (H , H ,Iii) , xE ( H , !:I I 1~ ) • F "ll (Ii, J.\ , t t1 ) , TAit C~ , H, 1 ~ ) ,

1 r- Ar) " t (~, H , 18 ) , TAI),' I ( t\ , ~ , 1H ) , I" A T( H I H , 1H ) I ~F 2 ( C; 0 ) , S~ ( 5 0 ) ,
2 AI. f- A CC; I) ) , A1-\ AX ( .~ l , NseA LP ( .s ) , ASCA,. P ( 3 ) , AR!~ AY CA , A , 1B ~ ,

.. ",,'

~.
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J 1 Till x , TTAl '( , T1 AII , IF UN f'I )( ,IF UtJ f) V, IF UIV f) l , I T A!}.J )( ,IT AI) J '( • r TAD J I

A"'AX(l):: ~LrNn(J,1,1)

H11IX(?,) = TAll(t,1,1)
AMAX(3) = lADJlC1,\,t)
on 631 J=l,NIH~

DO h3\ l=t,NRXS
DO 631 K=t ,NRlS
IF(FUNO(I,J,Kl.L~.AMAX(1»GnTU 0,1-
AMAX(\) :: ~UNn(I,J,K)

I F II I-J D)( = I
IFU~!f)Y = J
I FU~IP l = K

&32 JF(TAZ1(1,J,K'.lE.AMAX(~l)GU TU b13
AMAX(21 = 1A2\(I,J,K)
ITAZX = 1
ITAlY = J
ITAZl ;:'K

b33 JF(TAn...rt(I"J,K),LF.AMAX(3')GI} 1U h-Sl
A~AX(3) ;: lADJ1(!,J,K)
nAOJX = T
ITADJY = .J
ITAnJl ;:' I<

631 cO"lTINUf
DO 650 1=1,1
NSCALPel) = JNT(ALOGI0(A~AX(I}»-2

650 ASCALP(Y) = 10.0**(NSCALP(1)}
Dn 652 ,J=t,NQYS
no f-S2 I=t ,NIHS
DO h5? I<=t ,WHS
~UNn(T,J,K) = fUwnCT,J,K)/ASCALP(tl
TAZ1(J,J,K) :: TAlt(I,J,Kl/ASCALP(?l
TAOJ111.J,K) = TADJ1cT,J,K)/ASCALP(3)

652 C(lNTINliE
HE T UR~,I

Et-II)


