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SCOPE AND CONTENTS:

The resonant response of nonlinear dynamical systems
of one and two degrees of freedom subjected to parametric
external monofrequent periodic excitation is investigated.
The nonlinearities involved in the system arise from the
nonlinear restoring forces.

It is known that nonlinear systems subjected to
external parametric excitation are susceptible to resonances.
These are dependent upon the relationship of the natural
frequencies of the system and the external exciting freguency.
In addition to the study of resonant conditions, particular
emphasis is laid in the present study on the amplitude of
the oscillations once the system is excited into resonance.
The nonlinear restoring forces are divided into two groups,
those that can be represented by analytical expressions of
the co-ordinates and those that are multi-valued, non-
analytic, hysteretic functions of the co-ordinates.

Firstly, the phenomenon of internal resonance intexr-
acting with parametric resonance is studied. It is shown
that a transfer of energy between modes is possible due to
the nonlinear coupling between the modes and that the extent
of the interaction depends on the frequency and damping
relationships between the modes. The region of parametric

resonance, the steady-state amplitudes of oscillations, and
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the non-steady state time-history plots are presented.

A special feature of parametric resonance is that a
monofrequent external excitation may induce either a one
mode or two mode response. All previous studies in parametric
resonance have assumed that the ratio of the natural
frequencies of the system are such that a single mode resonance
and combination mode resonance do not occur simultaneously.

In Chapter III the interaction of these two forms of para-
metric resonance on a nonlinear system are investigated. The
destabilizing effect of viscous damping and it's effect on
the growth behaviour of the oscillations is discussed.

The force-deformation relationships of physical systems
under cyclic displacements often exhibit a hysteresis effect.
Using three common hysteretic models known as the bilinear,
double bilinear and the Ramberg-Osgood hysteretic models,
the response of a single degree-of-freedom oscillation para-
metrically excited is examined. The steady-state response
curves are given, the effect of the yield point, the effect
of initial conditions and the possibility of unbounded
response is discussed in Chapter 1IV.

The analysis is then extended to include the parame-
tric resonance of a two degree~of-freedom hysteretic system.
The destabilization effect as caused by the bilinear and the
Ramberg-Osgood relationships is shown. The steady-state
curves are verified by direct numerical integration. The
transient solutions proceeding steady-state provide a qualita-
tive behaviour of the meaning of destabilization in hysteretic
systems.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

The emphasis in modern structures in Civil, Mechanical

and Aerospace engineering is on light~-weight, complex
assemblies fabricated of thin-walled shells, plates or beams,
Many of these structures are exposed to complex dynamic
environments. For example, buildings are subjected to wind
and earthquake loading and machine vibrations, machine com-
ponents are subjected to alternating reciprocating action and
bridges and high speed track are subjected to moving loads.
To ensure proper performance of these structures, a study of
the response of structural systems to dynamic excitation is
necessary.
‘ Dynamic excitation can be classified into three main
groups: (a) transientAexcitation such as occurs through
wind gusts, ocean waves breaking on marine structures or
earthquake ground motion, (b) complex periodic motion in which
the excitation may consist of a multi-frequency input, and
(c) monofrequency periodic motion. Structures exposed to
periodic lcading may be excited into large amplitude oscil-
lations in the neighbourhood of certain critical frequencies
of the external excitation. This phenomenon of resonance
caused by periodic forces is one important area of the
response study of structures to dynamic excitation. It is
this phenomenon of resonance as caused by monofrequent

periodic loading that will be investigated in this thesis.

(a) Ordinary Forced Resonance v.s. Parametric Resonance

Structures subjected to a complex dynamic environment

1



can exhibit a large number of possible resonances. The
investigations in this thesis are concerned with parametric
resonance. As such it is necessary to distinguish between
parametric and ordinary forced resonance. The essential
observable differences of these two resonances are: (a) the
range of frequencies in which large amplitudes can occur,
and (b) the growth history of the response from some small
value to the steady-state amplitude.

As an example, consider a simple pendulum subjected
to periodic excitation at its support. The horizontal
component of the excitation leads to a forced resonance cof
the system while the vertical component of the excitation
leads to parametric resonance of the system. Forced
resonance occurs when the horizontal component excitation
frequency is equal to the natural frequency of the system.
-Parametric resonance occurs when the vertical component
excitation frequency is close to 2/n, (n =1, 2, 3, ...) times
the natural frequency of the system. Therefore the chance of
a system being excited into parametric resonance is more
numerous as compared to forced resonances. By comparing the
transient response before the steady-state response is
established, it is observed that the amplitude grows linearly
in the case of ordinary forced resonance and exponentially
for parametric resonance.

A practical example where a structure is parametrically
excited is in a strut under axial load. The strut may buckle
if the compressive load should exceed the buckling load.
However, if the applied load is pulsating, parametric resonance
may occur which leads to large amplitude flexural oscillations
even if the load is less than the buckling load. A similar
form of resonance can occur under the effect of periodically
varying thrust perturbations in propulsion systems. Such
thrust fluctuations have been encountered[l’ 10, 16]; other

examples of mechanical systems that are susceptible to para-
[12] [41

metric resonance are given by Evan-Iwanowski and Bolotin .



There is another essential difference between ordinary
forced and parametric resonance. An analysis of a linear
parametrically excited system predicts unbounded response.

In contrast to ordinary forced resonance the inclusion of
viscous damping terms in the analysis will not lead to
bounded response. Consequently, the linearized analysis can
"give only, the bifurcation points where the equilibrium posi-
tion becomes unstable. The resulting motion after the
initial growth can only be obtained by taking into account
the nonlinear behaviour. It is this fact that makes a

nonlinear analysis mandatory for the complete response analysis
of systems under parametric excitation.

(b) Multiple Degree of Freedom Systems

All engineering structures are continuous structures.
However, their dynamic behaviour can often be studied satis-
factorily by approximating that structural system into a multi-
degree of freecdom system, or even a single degree of freedom
system. Whether a structural system should be approximated
by a multi~degree of freedom system cr a single degree of
freedom system depends on the system and the external
excitation. If the excitation is such that only one mode of
the structure will be excited, then the structure can be
treated as a single degree of freedom system.

But, a number of examples of dynamic resonance cannot
be explainéd by the action of a one degree of freedom system.

A parametric resonance may occur when the exciting frequency is
near a combination of natural frequencies. With this type

of combination resonance multi-modal response occurs and the
physical system has to be analysed as a multiple degree of
freedom system. The importance of this type of resonance is
demonstrated by the fact that for some mechanical systems only
combination resonance is possible and single mode response

subjected to parametric excitation cannot occur[3l]. While



studies on the resonance of single degree of freedom nonlinear

(31

systems has been extensive , resonance, particularly parametric
resonance of multi~degree of freedom, nonlinear systems is

less understood. The reason for this is that during resonance,
it is possible that an interaction can occur between various
degrees of freedom and between the degrees of freedom and the
external excitation. Consequently, a wide variety of

resonances can occur in a multi-degree, nonlinear, dynamical

system.

(c) Area of Research

Traditionally each form of resonance is studied
separately assuming other forms of resonance do not occur at
the same time. There is however little research on the inter-
action of the different resonances in multiple degree of
freedom systems. Not only 1is it very possible that several
external resonances can occur simultaneously but the nonlinear
response can also cause a strong coupling effect between modes
of motion which causes an internal resonance condition to
develop. This is particularly important in structures where
two modes of motion have almost equal frequencies. One of
the main objects of the present work is to study parametric
resonance of nonlinear systems where more than one type of

resonance occur simultaneously.

1.2 Literature Survey

An extensive literature exists on the subject of
parametric resonance in a nonlinear single-degree of freedom
system. For a complete response analysis there are three
phases to be studied. First, it is necessary to determine the
conditions under which a dynamic resonance can occur. This
phase of study usually reduces to an examination of a set of
linear differential eguations with constant or periodic
coefficients. The second phase of study involves the deter-

mination of the steady-state amplitude of vibration if it



exists. If it does not exist it is necessary to examine the
time-history of the response to obtain quantitative and
qualitative information as to the type of response that
exists in lieu of the steady-state. The third phase of
study is concerned with the transient growth of the oscilla-
tions from some small initial value to the final steady-
state or quasi-steady response. Of particular interest in
this phase of study is the amount of overshoot of the tran-
sient amplitude of oscillation to the steady-state amplitude.
The literature survey will be presentéd under these three

phases of investigation.

(a) Condition for Resonance

A dynamical system with multiple degrees of freedom
and under parametric excitation is governed by a system of
ordinary differential equations with periodic coefficients.
The condition for parametric resonance is the condition under
which the original equilibrium configuration becomes unstable.
Extensive studies of parametric systems have been carried
out by Bolotin[4]. He however restricted his analysis to
single mode response and did not consider combination
resonance. Much of the earlier work done on combination
parametric resonance is due to Mettler[3']. However, he
analysed only systems where the loading forces can be derived
from potential functions. He also excluded the possibility of
an inter-action of external resonance zones. Piszeck[38]
extended Mettlers analysis to investigate the condition where
the external loading followed the deformation of the system
and first investigated the combination-minus resonance.

[44]

Schmidt and Weidenhammer included the effect of viscous

damping on the instability zone of combination resonance. In

a series of papers Heu 190 20]

, applied the method of
averaging and completed to the first approximation the insta-
bility study of parametrically excited systems including the

effect of viscous damping and the interaction of various



resonance zones.

(b) Nonlinear Analysis (Response Analysis)

To obtain the amplitudes of response of a parametri-
cally excited system it is necessary to carry out a nonlinear
analysis. The works on nonlinear vibration studies are
divided into two sub-sections, (i) nonlinear analytic systems

and (ii) nonlinear hysteretic systems.

(i) Nonlinear Analytic Systems

Studies of one degree nonlinear systems subjected to
ordinary forced and parametric excitation have been extensively

(3]

treated in the works of Bogoliobov and Mitropolsky and

Minorsky[36]. For multiple degree of freedom systems again

an extensive literature exists for the case of monofrequency
response. If the nonlinear terms cause a coupling effect
between several modes an internal resonance condition may be
possible. Where as an extensive literature also exists on the
free vibration of nonlinear coupled systems, only a small number
of papers have been written on the interaction effect as given

{351 [45,46]‘

by Miles and Sethna

Few studies exist on the nonliﬁear analysis, and
steady-state behaviour of parametric systems. Mettler[32]
investigated the response of a thin-walled beam where the
nonlinearity was introduced by the axial shortening affect,

Piszeck[38] [15]

and Hagedorn analysed a similar problem and
included the nonlinear affect due to torsion and nonlinear
damping respectively. All authors avoided the case of an
internal resonance condition and the coincidence of parametric
resonance zones.

Experimental results for combination resonance
involving a two mode response are also few in number. An
experiment to determine the instability zones of combination

[41]

resonance was carried out by Reckling for the case of an



I beam and plane section under pulsating end moments; for a

(2]

mechanical two degree-of-freedom system Benz carried out a
number of experiments on combination resonance. Close agree-
ment was observed with the experimental and theoretical

{21]

results. In the field of fluid mechanics, Hutton carried
out an experimental investigation in the nonlinear coupling
of modes. The experiment consisted of a liquid filled
cylinder excited in a planar mode of motion. The results
indicated that a nonlinear coupling can excite the non-planar

or swirling mode of motion of the liquid surface.

(1i) Nonlinear Hysteretic Systems

[171] [39]

Experimental results have shown, Hanson

Shiga[47], Yamada[SGI that for many engineering structures,

Popov

the force-displacement relationship shows a distinct,
hysteretic behaviour. To describe the behaviour of hysteretic
system under cyclic loading it is necessary to use non-
analytic functions. These functions are characterized by the
fact that the function and its derivatives may be discontinuous
and multi-valued. In general, the load~displacement relation
under cyclic loading beyond the elastic limit of the system
is highly complex. In order that such characteristics may be
incorporated into engineering analysis, there exists a variety
of hysteretic models which approximates the true hysteretic
load~displacement relation. Among the most common hysteretic
models used are the bilinear hysteretic model (the elasto-
plastic model is a special case of this), double bilinear
hysteretic model and the Ramberg-Osgood hysteretic model.
There are two motives for the study of hysteretic
systems: (a) As an accurate representation of the force
deformation characteristics that exist in real structures as
obtained in experiments. (b) As an alternate energy dissi-
pation mechanism as compared to viscous damping. By far, the
greatest effort has been expanded on the first motive, in

particular in the field of earthquake engineering. Research



in this arca has focused on ordinary forced resonance of one
degree of freedom structures subjected to transient and
sinusoidal excitation. The response of a simple oscillator

to sinusoidal excitation with bilinear hysteresis was carried
out by Caughey[7]. Sinusoidal excitation of+-system with dcuble
[22] and that with the

[27].J.Steady—

bilinear hysteresis was studied by Iwan
Ramberg—-0Osgood hysteretic function by Jennings
state response of-two degree of freedom system under sinusoidal

[24]

excitation has been obtained by Iwan and by Dokainish &

1 o7
Sahay[“ll

for the bilinear and double bilinear hysteretic modegls
respectively.

The second point concerns the use of the hysteretic
functions as a replacement of viscous damping as a possikle
mechanism to account for the dissipation of energy. Viscouo
damping is a suitable mod:sl to use in free and forced oscil-
lation studies becausc it provides the effect of damping out
the motion of the system in free vibration and limiting the
resonant response of the system to finite values in the case
of forced resonance. However, the viscous damping mcdel
appears inadeguate in many instances. A case in point is
associated in the stability problems with non-conservative
loads. It is known that there is a discontinuity of critical
load values from the undamped system to a system with small
viscous damping. Recently Jong[zs] has shown that if a bilinear
hysteretic damping model is used instead of the viscous
damping model, such a discontinuity in critical load values
of the system vanishes.

Another area where the viscous damping model appears
to be inadequate is in the area of parametric rescnance. It
is well known that the main effect of viscous damping is to
modify the sizes of the unstable regions only, Bolotin[%% Once
the system is excited into parametric recsonsnce the response
of the linearized system grows without bound. However, finite
steady-state response is possible if the dissipation of energy
is accredited to the hyvsteretic nature of the reztoring

*Note:This is not a published paper.



forces[SS].

For combination parametric resonance it was shown by
Schmidt and Weidenhammer[44] that viscous damping may cause
a widening of the instability zone as compared to the undamped
case. Using a nonlinear but analytic representation of
[15] showed that the additon of

nonlinear damping also causes widening of the resonance zone.

viscous damping, Hagedorn

No study has been made of the effect of hysteretic damping

model on the instability zone of combination resonance.

(c) Transient Response

The transient growth of oscillations once a system is
excited into resonance can be obtained by direct experimental
observations or by numerical integration of the governing
differential equations. An experimental investigation of the

transient motion of parametrically excited systems was

[2]

carried out by Benz . A numerical investigation of the

effect of initial conditions and the effect of viscous damping

[14] and Tso & Asmis[SS]. Additional

experimental results are given in Bolotin[4].

was carried out by Ghobarah

1.3 Review of the Mathematical Methods

Nonlinear mechanical systems subjected to periodic
excitation can be described mathematically by a system of
nonlinear ordinary differential equations with periodic
coefficients. The techniques necessary to solve such a system
requires a knowledge of the standard analysis of linear
ordinary differential equations with constant coefficients,
linear ordinary d.e. with periodic coefficients and nonlinear
o.d.e. with constant and/or periodic coefficients. The
method of analysis that is most widely used is the method of

[3]

averaging as developed by Bogoliubov and Mitropolsky

Malkin[30]. The popularity of this method is attested by the

fact that it has been used on almost all present works on

and
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. . . {7,
nonlinear as well as some linear dynamic resonance problems

15, 19, 24]. In addition, the smoothing effect of the
averaging process makes the method an ideal analytical tool to

study the behaviour of non-analytic hysteretic systems.

(a) The Method of Averaging

Consider a dynamical system with n degrees of freedom.

Let xj (3 = 1, 2 ... n) be the generalized coordinates of the
system. The equations of motion can be written as

2 » y

Xj + wj xj + afj (xl FTTXp e X

where €<<1], wj is the linear natural frequepcy and fj
represents a function of nonlinear terms. The system 1-1 is
weakly nonlinear and weakly perturbed (in the sense of linear
equations with periodic coefficients) whose perturbations can
'be considered small.

The method of averagiﬁg provides an approximate
solution to the system of equations 1-1. 1In essence, the
method transforms the equations 1-1 by a suitable change of

variables to the system

N e

= gF(z,t) ' ‘ 1-2

where z = {zl, -— 22n} is a vector of slowly varying variables
and F(z,t) is an almost periodic function of t. Once the
differential equations have been brought into standard form

the averaging principle is applied which consists of taking

the mean value of equations 1~2. The averaged equations are:

z = €Y(z) 1-3a
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where

Y(z) = Lim 1 JT F(z,t)dt 1-3b
T+ T o

where the variables z are assumed constant during the inte-
gration process. The difference between the exact solutions
of 1-2 and the approximate solutions represented by 1-3a have
been studieal3?],

Several transformations exist which can reduce the
system 1-1 to 1-2. A common method in dynamics is to use the

polar transformation where

X. = Qj(t) cos (wjt + ej(t))

J
= ., CO . 1-4
QJ s wj a
and x. = -Q.(t . si t + 0. (t
n x] QJ() w] sin (wj J())
Z -0. w. Sin . 1~-4b
QJ 3 (wj) |

This leads to n system of equations

a7 0 A
cos wj --Qj sin wj Q. o

4 1 = - 1-5
mw. sin ¥. -0.w. © 1. —ef, .
wy =in Yy Q44 cos ¥y j #t31 (3=1,---,n)

- - - o J

Applying the averaging principle to 1.5 the averaged equations
are
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. T
0.6, = lim 1 [ et cos vy at 1-6b
(o] w. -

j

(3 =1, -——, n)

Another transformation is the use of rectangular co-

ordinates and is more suitable to study the stability of the

trivial solution Qj = 0. The transformation takes the form
xX. = A.(t) cos .t + B.(t) si w.t : 1-7a
j = By(t) cos ey 5(8) sin oy
X. =-A.(t) w, sin w.t + B.(t) w. cos w.t 1-7b
J J J J J J J

Substituting 1-7 into 1-1 one obtains the n system of equations

A, = sfj sin w.t 1-8a
J w0 J
J
. -cf.
B, = — cos w,t 1-8b
J wj J i
(J =1, ---, n)

The rectangular and polar transformations are related by the

equations
A. = Q. cos 6. -
j QJ 3 1-9a
B. = -Q. sin 0. -
J QJ in j 1-9b
[191

Another transformation which was used by Hsu
[53]

and

Tondl is the complex transformation
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) i 1T
iw.t -jw.t
b4 e J e J A
J . J
. iw.t —iw.t
X, in.e I -iw.e 3 B.
J J J , J
- J b o L. J

Since the xj are by definition real, Aj and Bj must be complex
conjugates and it can be seen that the transformations 1-10 and
1-7 are identical. |

In practice, the polar transformation is used to
obtain the steady-state curves. For stability analysis

the use of the rectangqular transformation is more convenient,

(b) Structure of the Averaged Egquations

The method of averaging presents%nified mathematical
approach to dynamic resonance problems. On the basis of the
averaged equations the dynamic resonances can be classified
and the nature of the response obtained. In many cases it is
possible to obtain the regions of instability and steady-state
curves by algebraic means and the transient motion can be
obtained through step by step integration.

Resonance conditions can occur as a result of the
interaction of the system's natural frequencies with the
external excitation frequency or as a result of an interaction
of natural frequencies only. The former will be called
external resonance and the latter internal resonance. Internal
and external resonances may occur simultaneously in a given
dynamical system.

The number of first order equations of the type
necessary for the analysis is governed by the number of modes
that participate in the resonance conditions[45]. If M is
the number of modes 2M equations are necessary. However, if
only one resonance condition occurs the phase angles can be

combined and the number of equations reduced to M + 1. For
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each additional resonance condition the equations are increased
correspondingly up to 2M. Each additional resonance condi-
tion complicates the equations and can completely alter the
nature of the response. ‘

If the forces efj of Equation 1-1 are analytic, single
valued funct%ons of the co-ordinates xj and their time
derivatives xj and fj is periodic in gt then fj can be expanded

in the Taylor series.

N .
_ . 1m0t o
fj (T\l,nzr n2n,t) = E Q‘me fm(ﬂllnzr n2n)
m=-N
N . o
I c elmQt. [f (o0,0,~-)
m
m=-N
1-11
2
2n  Jf 2n 3 °f
™ 1 m
+ 2z () n + 5+ L ( ) n.n
k=1 Snk k 21 s anrans r's
o o
, n 33fm
+ 537 L (7———==—)n.n.n, + —---~-
1
3! r,s, Bnransanz r's %

where the nj representing displacements and velocity. They are
taken as small deviations from the equilibrium position. If
the variables nj are so small (throughout the motion of the
system) that higher order terms can be ignored, the problem is
linear. As the amplitudes increase the higher order terms
begin to take effect. Breaking off the series after the

third order term allows one to examine many of the important

non-linear effects in the system.
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Substituting 1-11 into 1-6 and carrying out the
averaging process, the constant terms are the only non zero
terms after the integration process. They have a long term
effect on the behaviour of the variables Qj and ej. As the
coefficients of the trigonometric terms in fj are stipulated
to be polynominals the terms under the integral signs can be

expanded and are of the form:

sin

cos {(mQ + njwy + n2w2 + —-—-=)t + nlel + n262 + } 1-12a
or

sin

cos {.(nlw.l + n2w2 + -—=)t + nlel + n262 + —— } 1-12b

integer

Al V [V

If the frequencies of these terms are zero, i.e.

(n + n,wy + nyw, + ...) = 0, the terms

sin
cos { B0y 00 + 7o } 1-13

will carry over into the averaged equations and cause an
external or internal resonance condition depending on the
presence of or absence of § the external excitation frequency.
Thus the resonance condition according to the first approxi-

mation is

B, + now. + ——m 1-14a
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If fj is limited to a single frequency external excitation

and m = 1, then
w, + nw, + —-—-— 1-14b

For the general system excited by several periodic forms

Malkin[30] gives the resonance condition as

2
kak = r n,w l1-14c

(c) Introduction of a Detuning

It is often desired to study the response in the
neighbourhood of a critical resonance zone. To do this,
a detuning is introduced either in the natural frequencies
or in the external frequency or both. By introducing this

detuning, the equations 1-1 can be written in the form

X, + (w°. + eA.)zx. + ef. = o 1-15a
J J J ] J

where wj = w°j + eAj and the w°j are chosen to satisfy
exactly the resonance condition which is being investigated.
The detuning now acts as an additional perturbation force

proportional to €

o 2 1-15b

I
0

Xx. + ef2w®.A.x. + f.]
J J J J
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and has an important effect on the response.

(d) Nature of Response

Depending on the resonance conditions, detuning,
damping, and nonlinear effects the response of the averaged
equations in terms of amplitude and phase can be classified

in the following four ways.

(a) Non—-Resonant Response Qj = o, ej = undetermined

The frequency of the external excitation is

outside the possible resonance zone. The response of the
system subjected to any initial disturbance will approach

zero if damping is present in the system.

(b) Resonant Steady-State Response Q'j = o, e'j = 0
The amplitudes Qj and phase Gj have constant

values., This is a fully synchronized state and the frequencies
of the response modes are entrained to their natural frequen-

cies for a finite amount of detuuing.

(c) Resonant, Partially Synchronized Response

Q'j = o0, (0; + ej)' = o

This state may occur in systems of two degrees

or higher where only one resonance condition occurs.
Individual freguency corrections are possible but the combined
effect of the frequency correction cancels so that the combined

phase angles of all participating modes remain constant.

(d) Resonant-Quasi-Steady-State Response
', o, 6'. 0
Qj?-‘, J#

This system is in a resonant state with high

modulated amplitude. This state can occur in a one degree of
freedom system with large excitation parameters[4]. In
multiple degree of freedom systems this modulated response can

also occur with damping present[45].
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Cases (a) and (b) are the usual response conditions
for the one degree of freedom system. For resonance to occur
the phase angle relationship given by 1~13 must reach a
constant state. This means that the detuning is restricted
to a range of values dependent on damping and the strength of
the excitation. Outside this allowable range of detuning, a
resonance condition can not occur.

Systems having more than one degree of freedom can
demonstrate a variety of phenomena that have no counterpart
in single degree systems, as the response may depend on the
interaction of modes. These systems may exhibit the type
of response indicated by case (c) and (d) as well as (a) and
(b).

(e) On the Classification of Resonances

Dynamic resonances in nonlinear systems can be
divided into two categories. The first category concerns
itself with systems in which a resonance condition can develop
in the linear eqguations. The interest is then to see how the
response is modified by the nonlinearities. The second
category concerns itself with those resonance conditions that
are only possible in nonlinear systems. Both categories have
received extensive classification[33'53’l3] based according
to the integers retained in 1-l4a. By restricting the
classification to only those resonances possible in linear
systems subjected to monofrequency excitation as described by
the averaged equations an external resonance can occur only
2w,

J
(c) @ =2 w. + w and (d) = w. - w_. The first case is
3 K 3 K

n

in the following four cases: (a) § = wj (b) @

called ordinary forced resonance, the second, parametric
resonance (type I), the third, parametric combination plus
resonance (type II), and the fourth parametric combination

minus resonance (type II).
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1.4 Scope of Investigation

The problems investigated in this thesis fall into
two groups. The first group concerns the inter-action of
dynamic resonances in nonlinear systems where the nonlineari-
ties can be expressed as analytic, single valued functions
of the generalized displacements. The second group concerns
the response of nonlinear systems where the nonlinear
functions are considered to be hysteretic and are non-analytic,
multi-valued functions of the generalized displacements.

The interaction of resonance zones is divided into
two chapters - Chapter 2 is devoted to the interaction of an
external and internal resonance zone. A thin-walled beam
excited by pulsating end-moments is considered. The
parameters of the beam are chosen in such a way that both an
external and internal resonance condition takes place
simultaneously. The interaction of two external resonance
zones is investigated in Chapter 3. The physical model used
in the investigation is the double-pendulum of Ziegler[SB]
subjected to a non-conservative Ehrust-type loading, where
it is assumed that the thrust has a sinusoidal time-varying
components. The interaction problem that is studied is the
simultaneous occurrence of two parametric resonances. The
effect of viscous damping is also included.

The response of a single degree of freedom hysteretic
system subjected to parametric excitation is investigated in
Chapter 4. A comparison is made on the parametric response
of the bilineaxr, double bilinear and the Ramberg-Osgood
hysteretic system. A detailed description of these hysteretic
modals is given in Appendix A. Finally, the parametric
response of two degree of freedom hysteretic systems is
presented in Chapter 5 and Chapter 6.

The purpose of the present study is twofold: firstly,
to examine new phenomena due to the interaction of resonances
and secondly, to investigate the effect of hysteretic damping

in parametrically excited dynamical systems.



CHAPTER II

COMBINATION RESONANCE AND- INTERNAL RESONANCE OF
THIN-WALLED STRUCTURES

2.1 Introduction

It is a modern feature of construction that more and
more emphasis is placed on structures with long slender, light-
welght members. In particular, thin-walled beams of open
section are the common elements used in such structures. If
these structures are exposed to periodic excitation the result
is that a large number of possible resonance zones may be
excited. Large amplitude vibrations will result if the
excitation is in a resonant or near resonant zone.

Concerning the forced vibration of thin-walled
structures, a distinction must be made between the forcing
functions which are independent of the response of the system
and those that are dependent upon the response. The former
falls in the category of ordinary forced vibration. The
latter is called parametric excitation and is the characteris-
tic loading condition studied in the Theory of Dynamic
Stability[4]. The purpose of this chapter will be to investi-
gate the latter loading condition. The majority of the work
in dynamic stability concerns itself with the case when the
frequency of the external excitation is approximately twice one
of the natural frequencies of the structure. These regions
are the principal unstable regions and the dynamic resonance
is called parametric resonance Type I. In addition, principal
regions of dynamic stability may occur if the external excita-
tion frequency is equal to a combination of natural frequencies.

Such resonance is called parametric resonance Type 1I. If the

21
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analysis is limited to parametric resonance Type I the analy-
sis can be based on a single nonlinear Mathieu-type equation.
The analysis becomes more complicated for the Type 1I parametric
resonances. If the frequencies of the problem are such that
only one resonance condition is satisfied, it is still possible
to obtain steady-state solutions in algebraic form. However,
when more then one resonance condition is present in the
system, the resulting analysis is not amenable to any simple
format. In fact there is no guarantee that a steady-state
solution is possible.

A special feature of nonlinear dynamical systems is
the possibility of transferring energy from one mode to
another mode within the system. Such transfer is possible
due to the nonlinear coupling between the modes. This ability
to transfer energy depends on the frequency relationship and
the structure of the nonlinear coupling befween the modes.
Such a phenomenon is called internal resonance. Internal

resonance in the absence of an external excitation has been

studied[49], the interaction of internal resonance and
ordinary forced resonance has been investigated by Miles[35]
and Sethna[46]. However, all studies of resonances in

parametrically excited systems have assumed that the ratios
of the natural frequencies in the system are such that an
internal resonance will not occur. If an internal resonance
condition does occur two things may happen.

(a) An otherwise dormant mode may begin large amplitude
vibrations which was not directly excited by the external
source.

(b) A non-linear interaction between two externally excited
modes may take place.

Case (b) will be investigated in this chapter. Both modes are
already externally excited and both amplitudes begin to grow
under the action of the dynamic loading. The amplitudes will

in general be different for the different modes. A number



of questions immediately come to mind. Will the amplitudes
influence themselves in such a way that the overall maximum
response will be more? Will there be a continual exchange
of energy between the modes with the result that a steady-
state motion can not exist? If such a modulated response
occurs, is it possible that the amplitudes of the modulated
response caused by the internal resonance condition may
exceed that if internal resonance had not been considered?

These are important guestions to be answered because
the response behaviour of a large class of structural systems
due to the existence of more than one dynamic resonance
condition is completely unknown. For design purposes it is
important to know the amplification factor caused by the
occurrence of an internal resonance condition. Bolotin[4]
and Mettler[32] have treated the nonlinear response of thin-
walled beams when only one resonance condition was possible.
Bolotin treated the parametric resonance case Type I and
Mettler the parametric resonance Type I1I.

It is the purpose of the present Chapter to examine
the nonlinear equations of a thin-walled beam subjected to
parametric excitation. The equations of motion are reduced
to a system of two nonlinear ordinary differential equations.
The parameters of the system are chosen such that both
parametric resonance and internal resonance occurs simul-
taneously. The effect of viscous damping is included in the
analysis. Only the parametric resonance type 1I (combination

resonance) is considered.

2.2 Derivation of the Eguations of Motion

Consider a thin-walled beam of uniform cross-section
area A and length L simply supported in flexural and rotational
deformation but restrained from axial shortening. The section
is symmetrical and warp free and loaded by a periodic end

moment M= Mo cos @ t, acting in the plane of largest
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rigidity[32}. The equations that describe the lateral and

[4]

torsional oscillations of the beam are:

BT, 340 + M cos (at) 8%¢ - AN 34 + m d%u = o 2-1a
3z 322 3z 3t
Mo cos (Qt) 82u - GI, 82¢ - ANp2 82¢ + mp2 82¢ = 0 2-1b
322 2 322 at?
oz
with the boundary conditions
2 .2, _ _ _ _ _
du =93¢ =o,u=o0, ¢ =0, Z =0, and z =L 2-2
2 2
3z 0z

EIy is the bending stiffness in 1lbs in2, GI4 is the torsional
stiffness in 1lbs inz; u is the lateral displacement of the
centroid (in), ¢ is the angle of rotation in radius, m is the

mass per unit lengths lbs se02 ’ p2 is the radius of gyration

in2
(in2), Mo is the amplitude of the external moment in in.lbs.
and @ is the frequency of the external excitation. The axial
force AN is not an inpressed axial force but is developed by
the axial tension caused when the beam is deflected from its
equilibrium position into lateral, torsional movement.

The periodic load can be expected to excite bending
vibrations in the plane of action of the load (Y-z plane).
This load also appears as a parametric load with respect to
the lateral bending and torsional modes of motion. The beam
is considered dynamically stable if small lateral and torsional

perturbations are damped out with time. But if small initial
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perturbations give rise to intensive bending-torsional
vibrationsg, the beam is considered dynamically unstable and
is parametrically excited by the end couples. The present
analysis is focused on the lateral bending and torsional
response of the system once it is parametrically excited into
resonance. For convenience, it is assumed that the frequency
of the load is far enough removed from one of the natural
frequencies of bending in the strong direction so that

little dynamical amplification of the inplane displacement

exists.

(a) Nonlinear Forces

When the beam is excited into lateral, torsional
movement a shortening effect takes place due to the twisting
and bending of the cross section. The shortening effect due

[4]

to lateral bending was examined by Mettler , the shortening

effect due to torsion was first explored by Cullimore[g].
The nonlinear force terms due to the shortening effect of

bending and torsion can be obtained as follow:

Shortening Effect Due To Bending: Let ds be a segment of the

centre line of the deformed beam as shown in Fig. 2-1la.
Let e denote the strain. Then

e = ds - dz 2-3a
dz

]
¢ﬂdzz + (ou 2 d22 ~dz
3z 2-3b

dz

1l

2
1 Ju
= 5 () 2-3¢
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The strain due to bending of the total length is

= +

ABending 2L 5z) 92 2-4

1 L - 2
2z

O

The axial force developed because the beam is restrained from

movement in the axial direction is

A EA A

NBending - B

L 2
EA u
+ -é—L— JO —é—Z—) dz 2-5

Shortening Effect Due to Torsion: Let ds be a segment of a

longitudinal fibre a distance r from the centroid as shown

in Fig. lc. Then the strain due to twist is approximately
1.2 (3¢)°
e = 7 r ('—@) 2-6

The strain at the centre-line if it is assumed that plane
sections remain plane can be obtained by equating forces over
the cross section. )

and
. _;(9_9)2;_ 24 .
centre = 2 \3z A A Y a
I 2
_ 1 p<8¢
=2 ® “—z) 2-17b

and the total shortening over the length of the beam is
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and the axial force developed is

AN, = Op EA 2-9a

E I L 2
= 4+ 1 o (gg dz 2-9Db
2 L o 9z

The combined axial force due to bending and twisting

is
2 2
_.1E (L du 3¢ i -
MW=+ g f Jo a(53) + 1, (52) 1ee 2710

Inserting the axial force AN into equations 2-1 there results:

BT, 3%u + M cos (2t) 3% - 1 E | (M fauy
Y —7 2 2 I~ az>
9z oz o
2 2 2 .
+ I (%ﬂ) }dz 38,28, 2-1la
P z Bzz 8t2
M_ cos (Qt) 3%u - GT, 3% - p° E L 3u V2
o du-GT 09 - p E a (&
2 2 2 L 9z
oz 0z o

2
+ I (39 )z}dz 24+ mp? 2% = o 2-11b
90z A
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This is the system of partial diffzrential eguations
which describes the lateral and torsional response of the
structure due to the pericdic moment. The axial forces cause

nonlinear forces to develop when the motions become large.

(b) Reduction to Ordinary Differential Equations

u(z,t) = x.{t) sin 7z 2-12
_L e
L

p(z,t) = xz(t) sin 7z 2-13
L

where we limit the expansion of u and ¢ to one mode in trans-
lation and one in rotation. Substituting 2-12,13 intoc 2-1la
and applying the Calerkin averaging technique, there is

obtained

d2x

3 (B g - S (E) o 9 %

4
) X L 7o w,Txy =0 2-14
j xS () 2

+
] bt
lm
s>
N
Hi=

2
d X, N GId<1)2 . M cos (Qt) (11)2 y
at? mp2 L 2 mp L 1
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2.3 Statement of the Problem

Equations 2-14 and 2-15 are a gquasi-linear system of

ordinary differential equations with periodic coefficients

which in matrix notation can be written as.

r . 7 y 5
1 0 xl el 0 xl wl 0 xl
4+ € - +
[ 2
0 1 x2 0 e2 x2 0 w2 x2
L J J J
r “ o 1 - -y r '
0 b 0 x. 3
1 %1 a3 1
- & cos{Qt) ‘ J > + € { 8
b 0 X 0 a X 3
2 2 2 2
L -t L - L -t L- -
. - A ( -
2
dl 0 xlx2 0
+ € 3 =1 r 2-16
2
0 dz—J xl XZJ 0
L L " J

where € <<1, Xl(t) and x2(t) represent the generalized co-ordi-
nates of the system. X1 represents the lateral deflection
in the minor axis direction and x., the rotation of the section

2
as specified by equations 2-12. The ej, w., (j =1,2) denote

the damping coefficients and natural frequgncies associated
with mode j. The fourth term represents the pair of equal
but‘opposite periodic moments applied to the end of the beam
in the plane of the major axis and consists of a monofrequent
parametric excitation. It should be noted that the matrix
associated with this term is antisymmetric and consequently
it can be shown that parametric resonance of the first kind

b

cannot occur in this system. With the coefficients bl’ 5
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taken to be positive only combination resonance of the sum
type can occur. The nonlinear terms in the system consist of
a cubic nonlinearily associated with each coordinate with

coefficients a, and a., and the last term in the eguation

1 2
represents the nonlinear coupling between X and X, with the
coefficients dl and d2. Mathematically, the coefficients are
defined as
wlz = EIy g;f 2-17a
= (1
w,? = %Tg (E )2 2-17b
2 \\L
mp
Moo 2
Ebl = _‘ﬁ(f) 2-17c
.M 2
= .2 (I -
eb, = 5 (L> 2-17d
mp
4
_ 1L EA/T
€31 "7 (L> 2-17e
1 EIp - 4
€82 T2 (E) 2-17f
1 EIp . 4
eay = 7w (%) 2-17g

> 2-17h
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Equation 2-16 is a homogeneous system and x z o0

= X
is a solution. The central problem in the present ;nalyiis is
to find the non trivial solutions.

Neglecting the nonlinear terms and the damping terms,
the equation 2-16 has been studied by Mettler[4] to determine
the condition under which non-trivial solutions exist. It was
found that a combination resonance condition exists provided the
external frequency @ and the natural frequencies wy and w,
satisfy the condition

Q = wl + mz 2-18

Including the uncoupled cubic nonlinearities in the
system Mettler further determined the steady-state amplitude
[4]

of xl(t) and x2(t) once combination resonance takes place

Schmidt and Weidenhammer[44]

neglected the nonlinear terms in
equation 2-16 to study the effect of viscous damping on the
conditions under which combination resonance is possible., It
was found that unegqual damping coefficients in the system

have a destabilizing effect. In other words, a system with
unequal damping coefficients is more susceptible to combination
resonance then the one with equal damping coefficients.

(15]

Hagedorn included nonlinear cubic velocity dependent
damping terms in the equation to find that the destabilizing
effect of damping is not only confined to linear viscous
damping. In all the above investigations, the non-linear

lzx2 and xlx22 were neglected and the

two co-ordinates were only coupled by the parametric excitation

coupling terms x

term. In this case, the problem of internal resonance does not

arise. In this chapter, equation 2-16 will be studied under

the conditions where both the combination resonance condition

and the internal resonance condition are approximately satisfied.
It is convenient to express equations 2-16 in terms of

nondimensional variables. Using the non-~dimensional time

variable 1 defined by
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T 2 Qt 2-19

equation 2-16 can be written 1s

" 2 2 3 _
Xq + Elxl' + Kl Xy + 2Kl (Al + A)xl + Alxl Bl cos (1) X,
+D.x.x.2 = o 2-20a
17172
x." + E.x.' + K 2x + 2K 2(A + A)x, + A.X 3. B, cos (1) X
2 =272 2 72 2 2 2 272 2 1
2 _ S
+ Dyx 7%, = © 2-20b
where Kj = w%/Q° 2-21a
A, = sa./(Q°)2 : 2-21b
J J
B. = eb./(0°)2 2-21c
J J
oy 2
D. = ed./(0°) 2-21d
J J
E. = ge./0° -
5 ]/ 2-2le
w. = ws (1L + AL o= 1,2 -
3 i ( J) (3 ¢ 2) 2-21fFf

and Q = Q° (1 - X) 2-21g
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Q°, w°l and w°2 represent the nominal value of the
parametric frequency and natural fregquencies of the system.
As Al’ and A2 are small quantities representing small detuning
of the actual frequencies from the nominal values. Primes
denote differentiation with respect to the nondimensional

time T.

2.4 Derivations of the Averaged Equations

An approximate solution of equations 2-20 can be
obtained by the method of averaging. Realizing that the
periodic excitation and the non-linear terms act as small
perturbations to the free vibration of the system, the

solutions can be approximated by

xj(r) Qj(T) cos (KjT + ej(f)) 2-22a

Qj cos wj (7 = 1,2) 2-22b

where Qj(T) and ej(T) can be considered as slowly varying
functions of time. Stipulating that

X', = - Qj(T) Kj sin wj 2-22c

the system of equations 2-20 can be replaced by the system of

first order equations.

cos wj —Qj sin wj Q." o)
J \ < 2-22d

"K- S. . - . K . ', — . i =
5 in wj QJ 5 cos wj 6 ef (3 1,2)

= - k. - e
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where
. 2
ef. = - E.Q.K. s1 . + 2K. A, + A . COs .

JQJ n lPJ J ( J )QJ w]

+ A.Q.3 cos3 Y. - B. cos (t) Q. cos ] 2-23
J73] J J m m

+ D.Q. cos Y. Q 2 cos2 v (j = 1,2, m = 1,2)
373 j “m m e '

J#Fm

Equations 2-22d are an exact representation of the
system 2-20. To obtain an approximate asymptotic solution of
equations 2-22d the method of averaging is applied. This
consists of taking the mean values of the terms occurring in

2-22d. These equations can be expanded into the format

ef.
Q‘j = —Ki sin wj 2-24a
(J = 1,2)
ef,
g, = __J -
Qj 3 % cos wj , 2-24Db

o', = 2im1 (T %5 sin vy, at 2-25a
J T+w lIi K- j
o 3
0.0', = lim 1 [T ff5 cos y. at 2-25b
J T->c0 T K. J
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where the variables Qj’ Oj ar~ considered as constants during
the averaging process. Only the terms that are constant can

be expected to have a long-term effect on the slowly varying
variables and it is these terms that will enter over into

the averaged equations. If the integrands of 2-25 are periodic
the integration can be carried over a specific period. In
general, however, the integrands are almost periodic functions
and the averaging process consist of taking the mean values of
each term after the integrand has been expanded.

Expanding 2-24 there is obtained

. B .
v,o= AL+ . . .- 3 .
Q 3 ZKJ[AJ Al QJ cos wj sin wj K% Qk cos wk sin w] cos T
‘ . J

Q.3 cos3 Y. sin wj 2-26a

. 2
- E.Q. sin . +
JQJ wJ J J

oV

Py 2 2
+ Eg Qj Qk cos wj cos wk sin wj

B. O
2 k*k
0. 2K.Q. [A. + X . -
QJ 3 ‘ij [ 5 ] cos wj Kj

Il

cos wk cos wj cos T

] J
D, .
_J 2 2 2
+ Kj Qk.Qj cos wj cOos wk 2-26b
(i # k)
(3 = 1,2)
(k = 1,2)
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(a) External Resonance: The external resonance terms are

those terms multiplied by the parametric coefficient Bj'

Expanding sin wj coSs wk cos 1T leads to terms.

. . _
sin {(Kj + Kk £ 1)t + ej + ek} 2-27a

it is seen that a resonance term will only occur if
K. £+t K. -1 =20 2-27b

similarily cos wj cos wk cos 1T will lead to terms.

cos {Kj K+ )T+ ej T 04}
and the same resonance condition [2-27b] applies.

(b) Internal Resonance: Internal resonance can be caused by

those terms multiplied by the nonlinear coupling coefficient

Dj' Expanding

=t

sin wj cos wj cos2 wk = 7 sin 2¢j + % [sin(zwj - 2wk)
+ 51n(2wj + 2¢k)] 2-29
it can be seen that only the term

SLn[ij - Zwk] = sin[(ZKj - 2Kk)T + 26j - 26k] 2-30
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can lead to an internal resonance conditicn, if
ZLj - ZKk = 0 2-31

or wg = %2. Consequently an internal resonance condition can

only occur if wj =~ w, .
by considering the term

A similar conclusion can be drawn

2 2 .
cos wj cos Wk 2-32

The prime purpose of this chapter is to investigate
the situation where both combination resonance and internal
resonance occurs simultaneously. Hence it will be assumed
in the derivation of the averaged equations that the nominal
values of the natural frequencies and the parametric frequency
satisfy the following relation.

K, + K2 = 1 (combination resonance condition) 2-35

Kl = K2 = K (internal resonant condition) 2-36

Equation 2-35 specifies that the parametric frequency
is approximately equal to the sum of the natural frequencies
while equation 2-36 states that the two natural frequencies
are approximately the same., It can be seen from equation
2-20 £ and g that A, and A = Al-— A2 are measures of how close
the actual frequencies of the system satisfy the combination
resonant and internal resonant condition. They shall be
referred to as external detuning and internal detuning respec-
tively in the subsequent analysis.

For thin-walled beams it is very possible that a
torsional frequency is approximately the same as a bending

frequency. Consequently the study of internal resonance in
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addition to external resonance should be of practical

interest.

The averaging technique is now applied to the

equations 2-26,

During the averaging procedure the conditions

imposed by the combination resonance 2-35 and internal

resonance 2-36 are borne in mind to obtain the non-zero terms

in the averaged equations.

it

Q' 1

4K

~B, 0, sin (6, + 0,) - E; @, + ; D; 0,0,° sin(26, - 20,)
)

11
8§ K

2-37a

2
| I : - - : -
0 2 Eg Ql s:.n(el + 62) EE_QZ 1 Eg Qle s1n(26l 262)
4K 2 8 K
. 2-37b
2
| I -
3] 1 = (Al + A)K El 83 cos (el + 62) + 3 él Ql
4K Ql 8 K
D. 0.2 + . D, 0° cos(26, - 20.) 2-37
N e B B S B I S ¢
4 K 8 K
o' = - 2
5 (A2 + MK EZ 8£ cos(el + 82) + 3 é& Q2
4K Q2 8 K
D, O 2 + D. Q os (26, - 26,) 2-374
+1.271 172 71 9%t 2
4 K 8 K
where Qj and Gj (j = 1,2) are now denoting the average value
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of the amplitudes and phase angles over one cycle of
oscillation.

Since it is the combination of phase angles that
determine the behaviour of equations 2-37 the equations

2-37c and 2-37d are rewritten as:

daod Q Q
1 _ 11 =2 -1
¢ = A+ (Al + A2)K 7 R (Bl Ql + B2 Q2) cos @l
2 2
Q Q
31 2 2 11 2 2
tggR By tA ) 7 F 7 (D) 5 D)0
9 Q
0.2
11 2 2 . -
+ TR (Dl — + D2) Ql cos @2 2-~37e
Q
ao Q Q
2 _ - A Vg - 1 2 _ 1
-d_“E = Z(Al AZ)K 5K (Bl Ql B2 Qz) COs @l
2 2
.. Q Q
31 2 2 11 2 2
TIR BB T2 g 0y T2 7P Y
Q 9
0.2
11 2 2
+ '21- _K (Dl —5 ~ D2) Ql CcoSs @2 2~37f
Q
where @l = el + 82
b. = 20, - 20
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It is observed that the external detuning A does not

appear in equation 2-37f and that if Al = —A2 the internal

detuuing will not appear in equation 2-37e. 1In the response

plots it will be assumed that Al = -A2 and the internal

detuning will be defined by the new detuning parameter

1t
N
>

2-37g

In equations 2-37a and 2~37b the first term on the
right hand side arises as a result of the fact that the
combination resonance condition 2-35 is satisfied, the second
term represents the viscous damping contribution, and the
third term arises due to the fact that the internal resonance
condition 2-36 is satisfied. Similarily, the first term on
the right hand side of equations 2-37c¢ and 2-37d is due to
detuning, the second term is due to combination resonance,
the third and fourth terms represent the contributions due to
the nonlinear restoring forces and the last term arises due
to internal resonance.

If the natural frequencies of the system are such that
internal resonance does not occur, (i.e. Kl # K2), then the
last terms in equations 2-37 do not arise as a result of the
averaging process. In this case it is convenient to combine
equations 2-37c and 2-37d to form a single equation relating
the amplitudes Ql’ Q2 and the sum of the phase angles (6l + 62).
The averaged equations for the system where the internal

resonance condition 2-36 is not satisfied can be written as

. E
Q2 sin ¢ - "1 Ql 2-38a

Q' = -
1 2

By
4Kl
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o'. = -B2 o sin o - £2 0 2-38b
2 =¥ =
IK 2
2
. B, Q B, Q
_ i rr2 271
o1 = [)\(Kl + K2) + AlK2 + A2K2] 4(K + X O ) cos
1% 2 %
A A D D
3- %1 2 2 2.1 ,°1 2 2 2 _
e G Y Q)T G g Q) 2738
1 2 1 2
where (1) = el (t) + GZ(T) 2-384

Therefore, the analysis of the system subjected to
combination resonance only is simplified, involving the
solution of three equation 2-38a, b, ¢ only, while the
analysis of the system with combination and internal resonances
interacting involves the solution of four equations 2-37a, b,
c, d.

The analysis of equations 2-38 is considerably simpler
than equations 2-37. It is to be expected that even if
W, =W

1 2
of the response of 2-37. It is evident from the nonlinear

equations 2-38 can provide certain important details

terms of 2-37 that the response of 2-38 and 2-37 are similar
for sufficiently small amplitudes. Consequently, the
boundaries of instability and behaviour at small amplitude
levels can be obtained from 2-38. For large amplitude motion
however it must be expected that the nonlinear resonance terms
will have a marked effect on the amplitude-frequency relation-
ship. It is also to be expected that the response of 2-37
passes over to the response of 2~38 as the detuning of the
natural frequencies Al’ A2 becomes large.

The study of 2-38 thus forms the background against
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which the more complicated anilysis of 2-37 will be compared
to illustrate the effect of internal resonance on a combina-

tion resonant system.

2-4 Steady-State Solutions

(a) Analysis Neglecting Internal Resonance

The steady-state amplitudes Q°l and Q°2 can be found
by setting the first derivative terms on the left hand side
of equations 2-38 to zero and solving the resulting set of
nonlinear algebraic equations. From equations 2-38a and

2-38b, the ratio of the steady state amplitude is found to be

2
and sin ¢° = 28 Ky 2-40a
By
Therefore,
2 1/2

ElKlﬂ
cos ¢° = = 1 - 4¢ ) 2~-40b

By

Substituting 2-39 and 2-40b into 2-38c and applying the

notation for the ratio of the amplitudes and coefficients.
_— ] ] — = —- -

v = Dl/Dz

the steady state response curves for Q°l is obtained, namely
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: B.B 1/2
2 1 172 1/2 1 )

o o 1 - 1 -
s =-0:7 | g - 4 BT, ((y) + () 2-41a
and § =X + MKy + A K 2-41b

A 2 D
=31 k6§ o S . 1 -
5“8K1(1+as)+42(v+3) 2-4lc

A plot of egquation 2-41 is given in Fig. 2-2 and
Fig. 2-3 for equal damping ratios and unequal damping ratios
respectively. The equation yields two branches, one stable
and one unstable branch. The unstable branch is shown in

dashed lines in the graphs.

(b) Analysis Including Internal Resonance

The steady-state amplitudes in this case can be
obtained by setting the first derivative terms on the left
hand side of equations 2-37 to zero. Due to the existance of
the additional internal resonance terms in equations 2-37a
and 2-37b, the ratio of the steady-state solutions cannot be

obtained as readily. From equations 2-37a and 2~-37b one

obtains
Y
. B 1+ =71
sin @l =-g T YT 2-42
1 v
1 + =
[ B]
E (1 - 1
sin ¢, = 2 L L Y nz 2-43
2 P1 (9°.)? 3
2 1 + 5 ]



where

cos @l

From equations 2-37c, d one obtains

4
(-1 + ¥ [-1 + v ,1. %]
Tr(Al + A) 'rr2 N 3 i\i (o° )277 ™ (F) oad
B1 (-1 +v) 2By "1 -1 + 2]
B B
m Vv
[(A, + v)(-1 + =)
v 1 2
Bl ("l + —B‘) ™
200 )%n, (-1 + 2 (-1—)4)]
2 Q 1 1 a
2
(L - =1
2(A2D+ ! o° é° % i : i 2-45a
L3 /em? - 1?/s)
Dy [-1/v + 1/8]
v 200, + A) (8 - 2 )
2
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i v [2(A2
Dl(\) - B) (Qol)

+ )
2

(8 - n%) + 3a (8/(ar’) = )]

For a given set of system parameters and excitation
condition eguations 2-42, 43, 44 and 45 are the equations to
determine the four unknowns Q°l, m, @l and ¢.,.

2
The algebraic equations must satisfy the condition

~

| sin ®j| <1 | cos ¢j] <1l (3 =1,2) 2-46
With these requirements the equations 2-43 to 2-46 can
be examined to determine the approximate limits of the steady-
state solutions. Firstly, considering 2-42, it is seen that
the parametric excitation represented by B, must have a certain
threshold value to overcome the effects of viscous friction

represented by E As the coefficients are positive sin ¢

l.
will always be negative. Equation 2-43 indicates that the

1

inequalities 2-46 can not be met for Q°2 << 1 unless the
numerator is zero and this suggests that a steady-state may
not be possible at low amplitude levels.

Equation 2-44 suggests that steady-state may not be
possible for large values of Q°l because of the free form
Q°12 and equation 2-46 again suggests that a steady state
value may not be possible for small values of Q°2 and Q°l.

The external detuning A can be eliminated between

2-37c and 2-37d to obtain

Al - A2 + Bl(-l/ﬂ + w/B) cos ®°l + % AﬁQ°l)2(l—lﬂdw)2)

Dy 2 2
+ ) (Q°l) (/7 - 1/v) (2 + cos ®°2) = 0 2-47
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The procedure for an algebraic trial and error solu-
tion is now as follows. A value of é°l is chosen and the
value of Q°2 is found which when substituted into 2-42 and
2-43 obeys the inequalities 2-46 and simultaneously satisfies
the equation 2-47. The corresponding frequency is then

found from equation 2-37¢ and 2-37d and is:

By 3 2
— =3 - o -~ o

(1 A) 1+ Al I cos d 1 + g AlQ 1t

2-48

1 o 12 °
T 8 Dl(Q 2) {2 + cos @ 2)
Plots of the steady state curves are shown in Figs. 2-2,

3, and 4). All calculations are based on the following data
A, = 0.05, A, = 0.08, B, = B2 = 0.05, Dl = 0.06, D2 = 0.09.

In Fig. 2~2 is shown the steady state curves of Q°l
as a function of the external detuning parameter A. It is
assumed that the damping coefficients of the system are the
same, namely, E, = E, = 0.01. Also the internal detuning

1 2
A=A, - A, is taken to be zero. It can be seen that by

neglecl:ting2 the effect of internal resonance, (solution of
equations 2-38), the steady-state amplitude is underestimated
by 30% or more. The unstable branch of the curve is shown
in dashed lines.

By changing the damping of the system El = 0.01,
E2 = 0.03, so that the damping coefficients are no longer
equal, the corresponding steady-state curves for Q°l and Q°2
are shown in Figs. 2-3 and 2-4 respectively. A number of
interesting features can be observed by comparing Figs. 2 and
3. First, the range of detuning frequencies over which

combination resonance becomes possible is increased for the
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case of unequal damping coefficients. In the case of

equal damping coefficients, the unstable range is |1 -A| < 4.8%
while the system with unequal damping coefficients has an
unstable detuning range of |1 - A| < 5.5%. This increase in
the combination resonant range, due to unequal damping
coefficients is evident from equation 2-41 and was first
pointed out by Schmidt and Weidenhammer[44]. Secondly, while
there is a substantial shift in the steady state curves with the
internal resonance effect neglected, (equation 2-38), the
steady state curves with internal resonance are essentially

the same in both figures.

The third point is that the steady-state curve with
internal resonance in Fig. 2-3 does not exist for small values
of Q°l. The same feature is observed in Fig. 2-4 where the
steady~-state response of Q°2 is shown. In other words, within
the unstable range of frequency detuning, a true steady-state
where the amplitudes of the generalized co-ordinates remain
constant does not always exist. In the present case, a steady-
state exists only when the detuning parameter (1 - i) is
larger than 0.985, or the external detuning A < 0.015. If the
influence of internal resonance is neglected, a steady-state
is always possible within the unstable detuning range. Also shown
in Figs. 2-3, 4 are the results obtained from the direct _
numerical integration of the equations 2-16. ‘It can be seen
that the solutions neglecting the internal resonance terms
always under estimate the steady state response of the system.
Also, by comparing the numerical integration results with the
steady-state response curve with internal resonance, it can
be seen that the solutions based on the method of slowly
varying parameters becomes increasingly inaccurate as the
external detuning (1 - )) increases.

Shown in Fig. 2-5 are time history plots to indicate
how the amplitudes Ql and Q2 grow from a small initial value
to the final steady-state value. These results were obtained
by integrating the set of equations 2-37. The initial values

have no effect on the final steady-state. Only the time at



which steady state is reached is affected by the initial

conditions.

2.5 Non-Synchronized Quasi-Steady Response

(a) Internal Detuning A1 = A? = 0

As indicated in the example with unequal damping

coefficients, a steady state cannot be reached for an external
detuning (1 - A) < 0.985., Since the unstable range of
detuning lies in the range 0.945 < (1 - A) < 1.055 it is

now necessary to investigate the type of response o the
system when the external detuning lies in the range

0.945 < (L - A) < 1.985. Shown in Fig. 2<% 1is the time
history response of Ql and Q2 where the system is in a combina-
tion and an internal rezsonance state with (1 - X)) = 0.97. The
plots were obtained by numerically integrating the set of
equations 2-37. It can be seen that the amplitudes Ql and Q2
initially have a rapid rate of rise and then oscillate about

some value which may be termed the "quasi steady-state value".

(b) Effect of Internal Detuning

To study the effect of internal detuning the frequencies
of free vibration wj = w® (1 + Aj) are separated by letting
A2 = - Al and A now represents 2Al. In terms of the
averaged equations this internal detuning has no direct effect
on 2-37e but has a very important effect on 2-37f, The
steady-state synchronized state becomes increasingly difficult
to obtain as the detuning is increased. If the detuning is
large enough no synchronized state can be reached.

Although the reasons for a synchronized state not
obtainable may-be difficult to explain in physical terms, an
explanation can ke based on the averaged eguaticns. By
including the internal resonance, an extra equation 2-37£%
describing the phase angle varieable @2 = 20, - 292 must be

1

considered. For a steady state condition to exist @'2 = o is

a necessary condition. From 2-37f it is difficult to say
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exactly when this state is possible but it is evident that
this condition is dependent at least in part on the detuning
parameter A. In Fig. 2-7 the effect of the internal detuning
on the threshold of steady-state response is plotted. Here

the viscous damping coefficients E E., are set equal to 0.01

’
and from Fig. 2-2 it is seen that iteaéy—state response 1is
possible for A = 0.0. As A is increased the range in which

a steady~state 1is possible changes. For A = 0.04, a steady
state is only possible for (1 - A) > .985. At A = 0.12 no
steady state is possible over almost the entire instability
zone. The synchronized state is dependent on the value of the
internal detuning. As A increases the condition @‘2 = 0 is

no longer possible. When this happens the trigonometric

terms sin ¢ cos ¢, in equations 2-37 will begin oscillatory

’
motion. Thz resulting cross~modulations between the ampli-
tudes and phases will be extremely complicaﬁed. But it can be
seen that as A increases, @2 increase more rapidly and the
influence of the trigonometric functions of ¢, will take on

the nature of a high frequency superposition gn the system

of equations 2-37 similar to the terms whose mean value were
calculated to be zero in the averaging process of the equations
2-26. Consequently, the equations with internal resonance

2-37 will pass over to the equations 2-38 where the internal
resonance effect is not included. However Kl = K2 = K must
then be substituted into 2-38.

Fig.2-8a shows the time history response of Ql and Q2
for A = 0.12, and (1 - A) = 1. From Fig. 2-7 it is seen that
these parameters are such that no steady-state is possible.
Following an initial disturbance the amplitudes grow rapidly
and reach a maximum at time T = 100. After this initial
overshoot the oscillations appear to become periodic for
T > 800 and a guasi-steady state motion exists. As the
detuning increases the frequency of the modulated motions

increase, and the amplitude of the modulations decrease.
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Fig.2-9a shows the effect of a large internal detuning on
the quasi steady state response of A = 0.24. By comparing
Fig.2-9a with Fig. 2-2 it is seen that the mean value of Ql
of the quasi-steady state mean coincides with the value of
Q°l of Fig. 2-2 for the steady-state curve where the
internal resonance effect had been neglected.

For A = .24, Kl = 0.56 and K2 = 0.44 and the internal
resonance condition 2-36 is no longer satisfied. This means
that equations 2-37 which have assumed the internal resonance
condition to be at least approximately satisfied are not
valid if A is extrapolated to large values. Then, the
equations 2-38 will provide a more accurate description of the
solutions of 2-16, the original equations. The problem
of deciding which set of equations to use can be approached
from two points of view. Qualitatively, an analysis of the
system of equations 2-38 will not reveal the high amplitude,
modulated motion as shown in Fig.2-8a. Quantatively, the
analysis of equations 2-38 will provide the correct mean values
of Ql and Q2 for large internal detuning only. To decide the
relative accuracy of the two sets of averaged equations the
solutions of the exact equation 2-16 were compared against
the solutions of 2-37 and 2-38 for increasing Al. Shown in
Fig. 2-8b and 2-8c are the solutions of 2-38 and 2-16
respectively for A = 0.12., In Fig. 2-9 b, c¢ are the
respective solutions for A = 0.24.

In Fig. 2-9a, the mean values of the quasi-steady
state response for both Ql and Q2 is equal to 0.54. This

value coincides to the value of the steady state response

neglecting internal resonance obtained in Fig. 2-2. This was
to be expected as K, = K2 = 0.5. But with A = 0.24,
K, = 0.56, K2 = 0.44 and the response of eguations 2-38 is

as shown in Fig. 2-9b. Here Q°l = 0,49 and Q°2 = 0.55.
Fig. 2-9c shows the response of the exact equations 2-16.
Examining the response it is seen that while a steady-state

has not been exactly obtained the mean value of the quasi-
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steady state amplitudes il = 0.50 and §2 = 0.56. Therefore
for A = 0.24 the equations 2-38 provide a more accurate
evaluation of the response then the equations 2-37. As A
is increased further the accuracy of equation 2-38 is

increased.

2.6 Observation and Discussion

On the basis of this investigation on the parametric
response of thin-walled beams the following observations are

made.

1. The method of averaging provides an accurate, approximate
mathematical analysis to nonlinear dynamic stability problems.
The solutions obtained by the averaged equations were

checked by direct integration of the exact equations and were
found to be in close agreement. In general, while the exact
integration would provide a small quantitative correction

the solutions were identical in a qualitative behaviour. This
would indicate that extending the averaging method to higher
order approximations would not introduce any gqualitative
change in the behaviour of the solutions in the neighbourhood
of the external combination resonance zone which was studied

in this chapter.

2. A resonant solution leading to large amplitude oscillations
upon a small disturbance from the equilibrium position, can
only occur if the external excitation is within the boundaries
of instability. The width of the instability zone in which
the trivial solution is unstable is governed by the size of

the parametric coefficients, the absolute value of damping,

the ratio of the damping terms and the distribution of

natural frequencies. The characteristics of the response
following the transient solution is primarily dependent upon the
damping ratio and the extent of the internal detuning.

Outside the instability zone in the region of the "overhang"

large amplitude resonant solutions may be excited by large
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initial values.

3. The system under investigation satisfies an internal
resonant condition when wy = W, This resonance has a very
important effect on the resonant response of the system.
First, the system with internal resonance leads to larger
steady-state responses than one without. The increase can
be up to 30%. Secondly, an internal resonance condition can
cause steady-state response in which the frequency of

motion of both co-ordinates is entrained to exactly 1/2 the
external excitation. Thirdly, the system with internal
resonance may have a resonant nonsynchronized solution where
the maximum amplitude of the modulated response exceeds the
steady-state. This modulated motion appears to be periocdic

and persists even under large values of damping,

4., It was the purpose of this analysis to compare the special
condition when the natural frequencies of lateral bending and
torsion coincide. It was shown that this condition leads to
an internal resonance and that the resonant response of the
system has marked differences over the response of the system
when the natural frequencies are not approximately equal.

The modulated response which may occur under these conditions
takes the form of a continual energy exchange between the
lateral and torsional modes of motion. The peak amplitudes of
these surges may exceed by 50% the value of the steady-state
amplitudes. Detuning of the natural frequencies by an

order of A > 0.16 will eliminate the internal resonance effect.
Consequently it is proposed that the structural system be

designed with this separation of freguencies in mind.

5. This theorecical investigation of the simultaneous
occurrence of an internal and external resonance condition
has shown that the resulting motion is sufficiently different

from the case when only an external resonance is considered.
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While the investigation was applied to a two mode approximation
of a simple thin-walled beam it may have far reaching
consequences in the dynamic stability study of other elastic
bodies where the natural frequencies of various modes of

motion may coincide.



CHAPTER III

THE INTERACTION OF TWO EXTERNAL PARAMETRIC RESONANCES IN
A TWO DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO
NON-CONSERVATIVE LOADING

3.1 Introduction

When a two~degree of freedom dynamical system is sub-
jected to an external parametric excitation, it may be excited
into resonance. A special feature of parametric resonance is
that a monofreguent external excitation may induce in a linear
system either a one mode or two mode response depending on
the relation between the external and natural frequencies. A
large number of possible resonance zones exist for both the
one mode and two mode response. The most important resonance
zones occur when the external frequency is in the neighbourhood
of twice the value of either of the natural frequencies
£ = 2 Wy, 2 and if the external frequency is close to the sum or

difference of the two natural frequencies Q = The

w, * ow,.
1 2
former is called parametric resonance Type I while the latter

is called combination resonance or parametric resonance

Type II[3l]. The study of parametric resonance Type I in non-

linear system has been carried out in the context of the
theory of nonlinear oscillations by Bogoliocbov & Mitropolsky[3]
and in the context of dynamic stability of structures by

[4) and Mettler[33]. The study of combination resonance

[38, 34, 15, 16]

Bolotin
in nonlinear system has been more recent.
All studies of parametric resonance in nonlinear
dynamical systems have assumed that the ratios of the
natural frequencies of the system are such that a single mode
resonance and a combination resonance do not occur simul-
taneously. However, it is possible to have both types of

parametric resonance occur simultaneously. It can be expected

67
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that if this happens the two resonances will reinfovce each
other to cause a greater response than each resonance
treated individually. Also it is to be expected that the
instability region of such a system will differ from the
individual zones of the uncoupled system.

By examining the resonance conditions it is clear that
an interaction of a parametric and combination resonance is possi-
ble say if w, =1, w

1 2

In this case, both the parametric resonance { = 2wl and the

combinational resonance condition = Wy = wlare satisfied.
It has been shown by Mettler[3l]

that a combination minus
resonance is not possible in systems where the forces are
[38]
has

= 3 and an external frequency § = 2.

derivable from potential functions. However Piszeck
proven that systems subjected to non-conservative forces such
as followers forces that change their direction of application
with the deformation of the system are suscéptible to the
combination minus resonance. In the present study a physical
system consisting of a double pendulum, subjected to a
follower's force P is considered. This model was first pre-

sented by Ziegler[58]

and formed the basis of the early studies
in the theory of non-conservative stability.

| For a constant thrust P this model is an example of a
self-excited system. At a certain critical load Pc, flutter
oscillations with increasing amplitude will result following
a small disturbance from its equilibrium position. Below the
critical load flutter oscillations can also occur if the thrust

force P has a periodic component

P=P + P, cos (0 t)

o t
for then a parametric instability will result when Q = 2wl 5
14
Or W, ~ Wy. The natural frequencies of the loaded system are

a function of the constant load component PO. Thus even if the

physical system is designed in such a way that the natural
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frequencies of the unloaded system are well separated from
the ratio wz/m:L ~ 3, the action of the external loading P
can cause this ratio to occur and cause the superposition of
the two external resonance zones.

It is the purpose of this chapter to investigate the
nonlinear response of a non-conservative two degree of freedom
system subjected to parametric excitation. The parameters
of the system are chosen such that both a type I and type I
resonance occurs simultaneously. The effect of the inter-
action on the linear instability zone is obtained and the
response of the coupled system is compared against the
response of each resonance treated on an individual basis.
First the general two degree of freedom systems will be examined
and the important features discussed. Then a specific
numerical example of the double pendulum will be investigated.
It is shown that the interaction effect has a strong qualita-

tive difference when compared to the uncoupled response.

3.2 The Equations of Motion

The equations of motion of a general two-degree of

freedom system, with cubic nonlinearities, can be written in

the form
2 2 2
¥. 4+ w.%x, +e{ e, % +cos(t) I b.x +g.} =0 3-1la
J J 3] m=1 Jmm n=1 Jmm J
_ 3 2 2 3 _
where gj = ajlxj + aj2xj X, + aj3xjxn + aj4xn 3-1b

(J =1,2 n=1,2)
(j # n)

where the xj represent the normal co-ordinates, wj the undamped
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natural frequencies, ejm the viscous damping coefficients,

bjm the parametric excitation parameter, ajK the coefficients

of the nonlinear terms and @ the frequency of the external
excitation. It is assumed that self-excited oscillations of

the system 3-1 can not occur, that is the circulatory loading

is assumed to be below it's damped critical value[lg]. This
means that flutter oscillations can only occur due to the action
of a parametric resonance zone.

Equation 3-1 can be transformed by the change of

variables
T = 0t 3-2a
K, = ¥ 3-2b
o
o
K — m2 3—2C
2 o
o)
Q = Qo (1L - ) 3-24
to
" - 2 e
x. + K.2x + efe l(2K 2 A x )+ E Mg
J J Jj m=1 “o m
2 b'm Im
+ cos (1) z L X + ——7} = 0 3-3
m=1 Qo QO

where A represents a small detuning in the external freguency
which allows the response of the system 3-1 to be studied in
the neighbourhood of the critical resonance zone.

The equation 3-3 is now cast into a suitable form to

apply the method of averaging. By introducing the polar trans-
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formation
X. = .{1t) cos (K.T + 6. (T 3-4a
3 QJ( ) ( 5 J( ))
= Q. cos Y.
QJ wJ
[
X, = = . K. si K.T + 0. 3-4b
3 QJ(T) 5 in ( jT J('r))

- . K. 1 .
Qj 3 slin wj

Substituting 3-4a, b into 3-3 the system of 4 first order

equations in the variables Q1 o el 5 is obtained
r Vi
i 110, ) ( 1
cos . - . sin y. . 0
o ¢3 QJ wj QJ
1 = 4 2 3-5a
- K. sin . - K. cos ¢. et -ef .
j ¥y O5%5 Yy 3 €3
- J . J L J
(J = 1,2)
where
-1 2 e.n
f. = ¢ (2K, Ax.) + I x'
J J n=1 %o m
2 b, g
+ cos(t) I —l% x o+ R 3-5b
m=1 Q_ m 2,

Expanding the equations 3-5 there results the following system
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of first order equations.

K.Q'. =
JQ J

K.Q0.0'.
' JQJ J

2 . .
2AK. . CO . Sin . + B..Q. cos . sin . Cos T
j 93 GOS8 ¥y SIn Wy * Byy0y Y3 Y3

. . 2
+ B. coOs sin . COs - K.E..Q. sin .
3mm I sin by T RyE540 vy

. . 3 .
B, K sin sin . + A. . cos . Sin .
JQO - Y wj JlQ:J tllj wj

+

AjZszQm c052 wj cos.wm sin wj

+ Aj3Qij2 cos wj cos2 wm sin wj

3

+ A'4Qm

3 .
cos sin . 3-6a
J wm w]

2 . 2 2
= 2AK. . co . + B,.Q. C .
i QJ s wj JJQJ oS wj cos T

+ B. O cos cos . cos T ~Q.E,.K.sin . COS .
JjmTm wm wJ QJ J3 3 wJ w]

. 3 4
Eijme sin wm cos wj + Alej cos wj

2 3 2 2 2
+ AjZQj Qm cos wj cos wm + Aj3Qm Qj cos wj coSs wm
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3 3
+ Aj4 Qm cos wm cos wj 3-6b
(3 = 1,2 m=1,2)
(3 # m)

ee. eb.m ea.

where E. = -l—, B, = ——l—, A, =12
Jjm g jm q 2 jm Q 2

' o o

3.3 The Averaged Equations

A combination resonance type 1I and a parametric
resonance type I can occur simultaneously when the values of
the natural frequencies and the parametric frequency satisfy

the following relationships.

K2 - Kl = 1 (combination minus 3-7a
resonance condition)

N
~
I

3 1 (parametric type 1 3-7b
resonance condition)

Equation 3-7a specifies that the parametric frequency
is approximately equal to the difference of the natural
frequencies while equation 3-7b states that it is also approxi-
mately equal to twice the first natural frequency. From
equation 3-2d it is seen that the quantity X is a measure of

how close the external frequency of the system satisfies the
parametric resonance conditions. This external detuning is

2}\x.) in equation 3-3.

reflected in the expression g_l(sz
The method of averaging is now applied to equations

3-6a and 3-6b. During the averaging procedure, the conditions
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imposed by the parametric resonance conditions 3-7a and 3-7b

are born in mind to obtain the averaged equations.

do. B B E
1 Bna . 12 . _ B
Ky g7 = 1 9 sin28; + —5= Q) sin(6; - 6,) 5 9Ky
A
12 2 . _ _
+ —5= 9,70, sin(38, - 6,) 3-8a
a0 B E
2 _Bxn . Y
Ky a7 = 7~ Q sin(8; - 0,) 5 9K,
A
24 3 .
- 5 Q;” sin (38, - 8,) 3-8b
ae B B
1 2 11 12 )
KlQl a7 = AKl Ql + Ql —~7 Cos 261 + I Q2 cos(el 62)
A A
3 3 13 2 12 2
T E B9 YT QT v g Q7Q, cos(38; - 8,) 3-8c
ae B
2 2 21 _ 3 3
RpQp —g7 = MKy Qy + -7~ Q) cos(8) - 8,) + 5 3,0,
A A
23 _ 2 24 3 _ }

The variables Qj(T) and ej(T) in equations 3-8 now
represent the mean values of Q. and 6. over one period of

oscillation. In equation 3-8a the first term on the right
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hand side is caused by the fact that the parametric type 1
resonance condition of equation 3-7b is satisfied. The

second term arises due to the combination resonance condition
3-7a. The third term is due to viscous damping and the

fourth term is due to the internal resonance condition caused
by the fact that the parametric resonance conditions stipulate
that 3K, = K.

1 2°

resonance condition was not satisfied for coordinate X, and

consequently no term representing this resonance was carried over

In the second equation 3-8b the type 1

into the averaged equations. The terms in equation 3-8c, d
are similar except that here the first terms on the right hand
side are due to detuning, the terms with the coefficients

All’ A13’ A21 and A23 represent the contributions due to the
nonlinear restoring forces and the terms with coefficients

A A arise due to internal resonance.

’
12 24As was shown in Chapter 11 an internal resonance
condition can affect the nature of the response with respect
to a variation in the steady-state values and with respect

to obtaining a steady-state. 1In this chapter, it is intended
to concentrate on the interaction of the external resonance
zones only. Consequently, it will be assumed that the

internal resonance coefficients A as a first approxi-

127 P24
mation can be neglected in the analysis that follows.

3.4 Stability of the Trivial Solution Qj = 0

The stability of the trivial solution, Qj = 0, can
be obtained from the linearized equations. Using the rectan-

gular transformation,

y. = Qj cos Gj 3-9a

z5 = 0y sin g, (5 = 1,2) 3-9b
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the stability condition can be studied conveniently by con-

sidering the conditions yj - 0, zj -+ 0. Taking the deriva-

tives of 3-9

<
I

', cos 6. - Q. sin 6, 8',.
° J J J J

N
Il

', sin 6. + . cos O, B',
Q J J QJ J J

Each pair of equations 3-8

.o 11 : 12 : _ _ 11
KlQ 15 T Ql sin 28l + i Q2 51n(el 62) 5 QlKl
B B
. _ 2 11 12 _
Klg@ ] = AKl Ql + 1 Ql cos 29l + 1 Q2 cos(el 62)

3~-10a

3-10b

3-11la

3-11b

can be transformed by multiplying 3-1la by cos 6., and 3-11lb

1
by sin Bl and subtracting and rearranging to obtain

E__K B
y o 1171 _ 2 11 .
Kly 1 = 5 Yq KKl zy + 7 Ql[81n 26l cos el

B
o 2 12 3 —
cos 26l sin el] + 7 Q2[51n (el 62) cos el

- COs (Sl - 92) sin el]

which can be rewritten as:

3-~12a
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PO - 2 i1 - 12 -
Kly 1 = 5 Y, AKl 24 + 7 %) 7 Z 3-12b

Similarily the other three equations for y'2, z'l and

z'2 can be obtained. Together they form the homogeneous

system of first order equations:

- r N b
E..K B B
: _Enpky _ 2 11 B
Kyv'y 3 ARy "+ 0 ) Yy
B E._K B
, 11 2 EFpi%y 12 )
Klz 1 <z + AKl > e 0 zl 3-13a
r= 4 *
B E. K
. _ By _EBxpKy 2
Y2 ° 3 Z Mo Y2
B E K
. 21 2 _Expky
Kzz 5 e 0 AKZ > 22
L o L J L o

which can be written compactly as

{z¢'} = [Al{g} 3-13b

where {g¢} represents the vector of the variables Yyr Zyr Yor

z, and [A] a matrix of constant coefficients. The stability of
the variables yj, zj and in turn the stability of the Qj is
based on the eigenvalues of the matrix A. Let

{z} = {g)eFT 3-14

Substitute 3~14 into 3-13b and solve the resulting eigenvalue

problem
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|(a] -p1| =0

w
|

15

If any of the eigenvalues of 3-15 have a real part greater
than zero the solutions of 3-14 are unstable and hence the
trivial solution is unstable. .

In general, an explicit solution of 3-15 may be
extremely difficult and it is most convenient to solve 3-15
by standard computor techniques. For only a single resonance
condition and zero damping coefficients the instability
zones can be determined explicitly as was done in a similar
manner by HsuglglFor Bll = Ell = E22 = 0, the equation 3-15

can be written as:

B
12
- P 0 REER ST
1
B
21
0 - P -2 B
2
Blz =0 3-16
AKl %4 - p 0
1
B
21
K1 K 0 - P
2
Expanding 3-16 the characteristic equation is
B B
4
p* + p2 (k% + k)2 4 & A2 21
2 1 8 K K
1 2
B B 2
1 2 °21,° _ _

o
[z}
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B B
2 1 2 2 1 712 72
pr = - (K™ + (K™ + 5 - %
1 2
B B B B
1 2 2 1 712 721,2 1 712 721.2
5 [(AKz) + (AKl) + 5 R —E“] - 4(AK1AK2 Te R _K*)
1 2 1 2
3-17b
Roots with positive real parts can only exist if
B B B B
2 2 1 712 1.2 1 12 721,2
[(AK) + (AR T + 5 %= %17 - 40KMK, - 3¢ - %) <0
1 2 ‘ 1 2
3-18a
B.. B
2 1l 712721
()\Kl )\Kz) < I KR 3-18b
172
B..B
2 _ 2 _ 1712721 _
AT (K; - K,) < T = 3-18c
172
B B
I < 3 //— =2 2 3-184d
1 2

Equation 3-18d shows that the external detuning must be

BB
k1K

within the limits = % for an instability to occur.

3.5 Uncoupled Parametric Type 1 and Type 11 Resonances

If the natural frequencies are such that the two para-

metric resonances can not occur simultaneously (i.e. K, # 3Kl)
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then each resonance can be treated on an individual basis.

The typs 1 resonance cai be obtained from equations 3-8 by

i = = = = 1 e
setting B12 le A12 A24 0 and the type 11 resonanc
~inaed > settil = = ] = . these
can be obtained by setting Bll A12 A24 0 In
uncoupled resonance cases the analysis is considerably simpli-

-fied involving either the solution of 2 or 3 averaged equations
as compared to the analysis of the system with both resonances
interacting which involves the solution of four equations (3-8).
To evaluate properly the effect of the interaction of the two
parametric rasonances, a comparison will be made between the
solutions of equation 3-8 and the equations which neglect the
coupling effect. In this way, the qualitative and gquantitative
differences of the interaction effect will become apparent,
including the error estimate of basing an analysis on the

approximation that the interaction can be neglected.

(a) Uncoupled Parametric Type I Rasonance

If the freguencies are not near an integer ratio, a
parametric type I resonance will develope if Q = 2w,.
Applying the averaging operator to the eguations 3-6a, b, the

averaged equations are

B E
1, t aen __];1_' .= - ll -
KlQ 1" 7 Ql sSin 26l 5 KlQl 3-19a
E
¢ 22 -
KZQ 5 = 5 Q2K2 3-19b
2 Byy 3 2 1 2
y 8 — K atinindl a) et el — .
KlO 1 AKl b i cOoSs Zbl + 8 AllQl + 7 A13Q2 3-19¢c
2 3 2 1 2
1 — 7 it o -
Kze 5 Ahz + 5 A21Q2 + i A23Ql 3-19d
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It can be seen from equation 3-19b that Q2 is not
excited and any initial disturbance of Q2 will die down due
E22

2
3-19a and 3-19c are uncoupled from the system and can be

to the damping term - Q2K2. With Q2 + 0 the equations

written as:

B E..Q
S B § ; N ¥ S § -
KlQ 1 = 3 Ql sin 26l 5 Kl 3-20a
A B
v 1 11 3 2 _
Kle 1= 5 Kl + 7 cos 26l + 8 AllQl 3-20b

Equations 3-20 are the averaged equations of a non-
linear Mathieu type equation and represent a single mode
response of the system 3-1 to an external monofrequency

excitation. The steady-state boundaries can be obtained by

setting Q) = Q°l, 61 = 6°l, Q'l = e'l = 0. Then
2 E..K
sin 20°, = -——-%i—l— 3-21
11

substituting into 3-20 and using the definition

>
Il
H
!
Lo]k-e]
w
i
N
N

(o}

the steady-state amplitude frequency relationship is
obtained.

23

w
1



82

From equation 3-23 it is seen that viscous damping represented

by the coefficient E diminishes the instability region for

11
which a parametric resonance is possible. If

the instability zone vanishes and no parametric resonance is
possible. This means that the parametric excitation coeffi-
cient Bll must exceed a certain threshold value for resonance

to take place.

(b) Uncoupled Parametric Type 11 Resonance

If it is assumed that the frequencies are not near an

integer ratio, the averaged equations for the combination

minus resonance, = w°, - w®, can be obtained from egquations

2 1
3-6 and are:

Q'; = gx- Q, sin (8, - 8,) - == 0; 3-24a

o= o 21 - - - -

'—J
N

+
oo W
l b
=

10
’_l

S i el 3-24c

o

ool w
7|
N

O
N}

B Q
. 21 “1 _
§) 2 A K2 + Zﬁ; Q2 cos (81 62)

=
N

+-

A 3 0 2
K2 1

3-244

+
S
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The phase angles can be combined to

L By, Q, B0
12129 B 9
31 = AR, - K) + (=2 -2 - 2L 2y o5 0 3-25a
1 2 4 Kl Ql K2 Q2
La3fimo2 P20 113 2 P32
5k, "1 X, “2 17k, %2 K, 1)
where ¢ = 61 - 0, 3-25b

Equation 3-25a can be rewritten in the form

cos ¢
B.. 0. B..Q./ 0.2 _.a A
_— 1,712 =2 21 *1 1 3 711 23
vlEAr s o) Y B R T xR
1>1 2 <2 1 2
2
L2 fis s Py 326
4 Kl 2 K2
where the relationship Kl - K2 = =1 has been substituted.
The steady state equations can be obtained from 3-24
- P . = N° - 0O° - &° t ' ='=:O
and 3-25 by setting Ql Q 1 Q2 Q o d ¢°, Q ! Q 5 ® .

The ratio of the steady state amplitudes can be obtained

from 3-24a and 3-24b and is:

Q° E B K
Q° E B K

3]
st
ot
\S]
j—
[

—
N
[\
fomst
o

It is to be noted that for this study of a combination minus
resonance, Bl? le < 0. The expressicn 3-27 is therefore a

o
real quantity. Using the expression 3-27 the steady-state
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fi

amplitude response can be oh! .ined as follows:

TS N Bt P 3 Y e B /Ezz TR S PR L
2 4 " KyKy o LBy J”‘ll ] B1oBos
2 A A 2 A A
s N T B R X N 2 P33t 328
4 2 Kl K. 4 Kl 2 K2
where the substitutions
n Q°
sin 0° = 2 Bll‘ §—o~l— K, 3-29a
12 972
cos $° = % fl - sin?go 3-29b
%" = (1 - A) 3-29¢
Ke)

have been carried out.

Three important differences can be observed between
the monofrequency response of the type 1 resonance and the two
mcde response of the combinationainus type I1I resonance,

namely

(a) the destabilizing effect of viscous damping
(b) the frequencies of the responding modes and

{c) the effect of the nonlinear terms.

From equation 3-28 it can be secen that if Eqy # Eoy

but Ell’ E22 are small, the width of the resonance zone can

be made arkitrarily large. This is in distinct contrast to
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equation 3-23 of the type 1 resonance where the addition of

viscous damping can only decrease the width of the resonance

zone.
For the steady-state response, the phase angle
variable ¢ = el - 82 must remain constant. This means that
individual frequency corrections can occur in each mode but
in such a way that the external resonance condition K, - Ky = 1

is maintained. Consequently, both modes must have equal
frequency corrections.

The nonlinear terms are expected to limit the maximum
amplitude growth. By inspecting equation 3-26 it is seen
that the coefficients of the nonlinear terms are made up of the
difference of the constants Ajm‘ This will tend to reduce
the effect of the nonlinearities. In fact, a special system
could be conceived where the nonlinear effects could cancel out
completely. Also, from the nature of the coefficients it is
possible that the steady-state response curve can exhibit a
hardening or softening type of nonlinearity even if the

system is composed of hardening type nonlinear terms.

3.6 Steady-State Solutions

The steady-state response curves for the type 1 and
type 11 resonances can be plotted directly from the equations
3-23 and 3-28 respectively. The steady-state curves for the
coupled system can not be written out explicitly. The solutions

in this case must be obtained by trial and error.

(a) Uncoupled Type 1 Resonance

In Fig. 3-1 the steady-state amplitude Q°l is plotted
against the non-dimensional frequency ratio Q/QO. The
condition Q/Qo = 1.0 means that the external resonance condition
is exactly satisfied and the external detuning A is equal to
zero. The value of the coefficients for which these curves

are plotted are as indicated in the figure. It is to be noted
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that the response curve has two branches and the unstable
response curve 1is marked by dashed lines. The steady-state
amplitude Q°2 is zero in this resonance. The response curves
exhibit a hardening type nonlinearity and lean towards the
high frequency side. As predicted by equation 3-23, a
steady-state response is always possible for A < 0 or

Q/QO > 1. The width of the instability zone is given by
equation 3-23 by setting Q°l = 0. Within this zone any small
initial disturbance will grow and finally reach the steady
state value. Over the width of the instability zone it is
seen that the steady-state amplitude Q°l is zero at the low
frequency side of the instability zone and increases continuously
as the external frequency increases. Outside the instability
zone large initial disturbances may shock excite the system

into resonance in the area of the "overhang" (1 - A) > 1.1.

(b) Uncoupled Type 11 Resonance

The steady-state amplitudes Q°l and Q°2 for the
combination resonance are plotted in Figure 3-2 with the values
of the coefficients shown in the figure. In contrast to the
type 1 resonance curve, the response curves exhibit a lean
towards the low frequency side as is characteristic of
systems with softening type nonlinearities. The width
in the instability zone is given by equation 3-28 by setting
Q°l = Q°2 = 0. Within this zone any small initial disturbance

will again cause large amplitude oscillations.

(c) Coupled Type 1 and Type 11 Resonance

For the coupled system where both type 1 and type 11
resonance occuy simultaneously the steady state must be
sought by trial and error methods. Replacing the amplitudes

Ql 2 and phase angles § of equation 3-8 by their steady-
14

1,2
state values Q°l 5 and 6°l 5 and neglecting the internal
I I
resonance condition by setting A,_, = A_, = 0, the equations

12 24
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from which the steady-state values are sought can be written as

B B E
= 11 ° : o 12 o : o - ° ___l_J; o
0 = ZEI 0] 1 sin (26 l) + 4K1 Q 5 Sin (o 1 0 2) 5 Q 1
3-30a
B E
= - 21 5 : - - 22 4o -
0 4K2 Q 1 sin (6l 62) 5 Q 2 3-30b
B B Q°
— l () 12 2 [+] — o
0 = + AKl + ax- Cos (29 l) + % g cos (9 1 3] 2)
1l 1 1
A A
3711 .2 1%13 2 _
e Y1 T K, 92 3-30¢
B Q° A
_ 21 * 1 o _ go 3 %21 ., 2
0 = + AK2 + 4K2 Q°2 cos (© 3 S 2) + T R Q 2
2
A
+ % _23 QolZ 3-304
2
From equation 3-30b
E..K., Q°
sin (0° - 0°)) = - 2 ;2255—2- 3-31a
21 1
and
2 2*1
E._K Q°
o _ po y _ _ 2272 2 _
cos (8°) - 6°,) =+ [1 4(B21 )(Qol) 3-31b
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From (a)

E._K
i °" 2 22 ._1'_1'_]:_
sin 260 = <Q° ) + 2

3~32a
Bo1 Biy

Because of the condition |sin (6°, - 6°2)| <1, 3-32b
equations 3-31 and 3-32 already impose restrictions on the values
of the coefficients for which a steady-state is possible. By
eliminating the external detuning between 3-30c and 3-30d a

relationship between the amplitudes Q°l and Q°2 can be

obtained.
L. [—llcos (200 + 22 22 (6, - 6,) + 2 A, 0o 2
2 1 3 g%, ©° 1 2 g “11 ~ 1
1 1
B.. Q°
1 . 2 1 21 * 1 o  _ ao
+4A13Q2]+ 2[4Q° cos(el 62)
K 2
2
3 o 2 .1 o 27 _ -
g By 0°,° + 7B, 00 =0 3-33

By trial and error, using equations 3-3la, b,3-33, and
the condition 3-32b, steady-state amplitudes may be obtained.

The amplitude-frequency relationship is then given by

B.. Q°
e _,_1 Bn . 12 9% o e
g = 1 E_§ [~—~ cos (26 l) + 7 o° . cos (6 1 5 2)
1
1
34 g2yl ge? _
t g By @7 T A3 0%, 3-34

The results of the numerical solutions of equation 3-30
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to 3-34 are as shown in Fig. 3-3. In addition to obtaining
the steady-state values of the amplitudes it is also necessary
to check the stability of the trivial solution Q°l’2 = 0,
This was done by numerically solving the eigenvalue problem
given by equation 3-15. It was found that R (p) > 0 occurred
in the range A = * .082. Compared to Fig. 3-1, the coupled
instability zone is less by 16% then the type 1 uncoupled
zone. Only over a small portion of the instability =zone, is
a steady-state solution possible. The steady-state curves

on the low frequency side coincide for Q°. = 0 with the
boundary of the instability zone as determined by the insta-
bility analysis of the trivial solution. On the high fre-
quency side a steady-state condition appears possible for
Q/Qo > 1.022. 1In this case the amplitude Q°1 has a much
larger value than the amplitude Q°2. As Q/Qo increases the
response is predominantly in the first mode as shown by the
large value of Q°l. This may be expected by comparing

Fig. 3-3 to Fig. 3-1 where it is seen that the uncoupled

type 1 response curve slopes to the high frequency side.

3.7 Transient Response

In order to find out the nature of the response where
the algebraic analysis has indicated that no steady-~state is
possible, a study of the transient response is necessary. For
completeness, the transient response of the uncoupled cases

will also be studied.

(a) Uncoupled Type 1 Transient Response

The time history response for A = .02 is given in
Fig. 3~4. The amplitude Q, grows exponentially following a
small disturbance. As the amplitude builds up the nonlinear
terms begin to take effect and the amplitude Q, after several
oscillations takes on a steady-state value. Similarily the

phase angle also takes on a steady-state value. At this point
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the system is in a synchronized state and the frequency of the
response 1is exactly one half the frequency of the external
excitation. The amplitude Q2 is not excited and approaches

zero. The phase angle 6., is coupled to the amplitude Q, as

shown by equation 3-19d ind increases with time. The rate
of change of 62, however, reaches a steady state value. The
overshoot, or maximum amplitude reached before steady-state
takes place is in the order of 40% greater than the final

steady-state value.

(b) Uncoupled Type 1l Transient Response

In Fig. 3-5 are shown the response curves by numeri-
cally integrating the system of equations 3-24. Again it is
noticed that the transient‘soldtion has a pronounced over-
shoot after which the amplﬁtides settle in on a steady-state
value. The overshoot for this case is in excess of 20% of
the steady-state values. The phase angles 8., and 62 increase

1
continuously with time but the difference el - 62 reaches a
constant value. This means that each mode has an increased
frequency correction which can be calculated from equations

3-24c and d.

(c) Coupled Type 1 and Type 11 Transient Response

The nature of the transient solutions preceding the
steady-state and the nature of the solutions where no steady-
state 1is possible is obtained by integrating the averaged
equation system (3-8). The numerical integration is also used
to verify the stability of the steady-state curves shown in
Fig. 3-3. Fig. 3-6 shows the response at (1 - i) = 1.01 in
the region where no steady-state is possible. The two time-
history curves plot the amplitudes Ql’ Q2 against the non-dimen-
sional time T. The integration was continued until a quasi-
steady-state condition was obtained. After 1 > 600 the response

curves appear to become periodic although the nature of this
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periodic response appears complex. The mean value of the
amplitude Ql can be scaled from the plot and is approximately
1.4. This can be compared to Fig. 3-1 where the maximum
amplitude Ql at Q/QO = 1.01 is 1.22. The mean value of Q2 is
0.7 and is in excess of 50% of the value of Q2 given by the
uncoupled parametric type 1l curve.

Fig. 3-7 shows the response curves for the frequency
(1 - X)) = 1.08. This is just within the instability zone and the
rate of growth of the amplitudes is at first very slow.
However the amplitudes continue to grow and finally at
T > 1100 reach a steady state. The steady-state values agree
with the algebraic steady-state values as shown in Fig.3-1.
The overshoot in this case is approximately 30% in excess of the

steady-state value.

3.8 Example of a Double Pendulum With Circulatory Loading
Statement of the Problem

The response curves obtained in section 3-6 and 3-7
were based on the mathematical model of the equations 3-1
without direct application to a specific physical model.

This was done to demonstrate the key points of the interaction
problem. To obtain a better physical insight and also to
provide a basis for experimental investigation the physical
modal of the double pendulum first proposed by Ziegler[sg]
will be examined.

The model is shown in Fig. 3-8 and consists of a
double pendulum which is allowed to rotate in a smooth hori-
zontal plane. It has two rigid bars of negligible weights and
equal length £ and two masses m, and m,. A force P(t) is

assumed to act tangentially at the frei end of the bars. At
the hinges act the restoring moments ch (¢j, éj) which may be
linear or nonlinear functions of the generalized co-ordinates
¢j and their time derivatives. It is assumed that the dis-

placement of the angles ¢j is small so that the small
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angle assumptions sin¢ = ¢, cos$¢ = 1 hold. The Kinetic

Energy T is:

1l ¢ 2,2 1 2 2 2° : :

+ 22 (4 + 67 3-34a

i

For the case my 2m2 = 2m, the kinetic energy can be written

as -

! £ 2.2 27 ¢ 2 2 _
T = Z w69, 2% + 425916, + 2%9,°] ‘ 3-34b

The generalized forces Sj corresponding to the generalized

co-ordinate ¢j can be obtained from the expression
SW. = S.8¢. 3-35
3 J '3

where 6W. is the work done by all applied forces when ¢j alone
is increased by 6¢j. The generalized forces due to the applied

load P (t) can be obtained from the expression

O
=1
I

1 {-pP2 ¢2} 8¢, 3-36a

SW., = 0 3-36Db
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The generalized forces due to the external force and the

restoring forces is then:

Sl = - P2¢2 - ch 3-37a
82 = - cR2 3-37b
By means of Lagrange's equations:
d 3T _ T _ . _
3 (55) - 57 =12 3738
J 3
the equations of motion are:
6mes. + 2m2%5. + cR, + PLs. = 0 3-39
1 2 1 2
2, 2. N
2m4 @l + m ¢2 + cR2 =0
which can be re-ordered in the more convenient form
n
¢ + 0.5 Ry = R, + 0.5 F ¢, = 0 3-40a

¢2 - Rl + 3R2 - F ¢2 =0 3-40b
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where primes now mean differe tiation with respect to the

normalized time T where

1/2
= 1cc -
T=5(5) ¢t , 3-41a
- P(r) ? -
F (g s 3-41b

(a) Description of the Restoring Functions chigj, éjl

The restoring moments ch (¢j, $j) are taken to be of

the form

where a represents the strength of the nonlinear cubic part of
the restoring spring. The plus sign designates a hardening
spring. The coefficient e is a measure of the value of the
viscous damping. The three coefficients c, a and e are taken
to be equal for both restoring functions.

Instead of continuing the analysis in the variables
¢j which represent the actual physical co-ordinates at the
double pendulum model, new variables xj are introduced
defined by

For restoring functions which have a pronounced yielding
effect ¢y would correspond with the yield point. For cubic

restoring functions a pronounced yield point does not exist
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and ¢y may be taken as the proportional limit. The variables
(xj - 1) now measure the extent to which the angles have

entered the nonlinear range.

(b) The Equations of Motion

By specifying a harmonic time varying component in
the thrust force

F = FO + Ft cos (QT) 3-44a
and substituting
e = e 75 3-44b
% (me) 172
ad 2 '
a = ——c"z— 3-44c¢

the equations 3-40 can be rewritten in matrix notation.

r 17 . r ' ar . ¢ 1 .
1 0 xl 0.5 O.SFO—l Xy 0.5 -1 X
3 r + 1 b +e 4 g
0 1 X, -1 3—FO X, -1 +3 X,
. J L J s.. J - J L J L .
[ I [ W 2 11 3‘ 3-45
0 0.5Ft xl 0.5 -1 xl
+ cos(QD 4 > +a , S
_ 3
0 Ft X, -1 3 X
e -~ e - o o b -
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The dots over the variables xj now represent differen-
tiation with respect to the normalized time T. In the
numerical analysis to follow the values of e, a and Ft will

be taken as 0.01, 0.05 and 0.10 respectively.

(c) Transformation to Normal Co-ordinates

The equations 3-45 are now in the form
C. x + ef. (x.,x.,2T) =0 3-46
3(3’)' )

To obtain equations 3-46 in terms of normal co-ordinates the

linear transformation

{x} = [D]{y} 3-47a
where . ‘ 1
[ ] [, ] 1 1
X3 ¥y > >
/1+Yl /l+y2
{x} = P{y}= 4 ( and [D] =
Yl Y2
X Y
L 2 2 27 27
J - “ ll+Yl /l+y2
- C
y; = ——21 s (5 = 1,2) 3-47b
I e - w.
22 J

is applied to equations 3-45. 71 equations 3-47b the wj
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designates the natural frequencies of the abbreviated system

e = a = Ft = 0. Pre-multiplying equations 3-45 by the inverse

[D]—l the equations are brought into normal form

r " b - -1 r 1 r '} r -]
1 0 w2 0 e e :
Yy 1 Yy 11 C12 Yy
3 - 1 >+ 3 :
2 .
0 1 Yy 0 w y e e y
2 2 2 3-48
| J L4 ! R S I
r f 7
b b 1 ] 3+ 2 +a 2+a
11 “12f { Y1 A11Yy Fa5,5¥y YA 3Y Y, Tag Y,
+Ftcos(QT) . F+a T
: 3 2 2 3
byy bzzJ Y, 8y1Yy ta,,Y, Yitag ¥ oYy ta,,v
L L. J J

The equations 3-48 are now in the form of the equations 3-1
and the approximate method of analysis of 3-48 can proceed

as detailed in Section 3.2 to 3.7..

(d) Numerical Example

This model, described mathematically by Equation 3-45
has been analysed for the onset of instability. For zero
damping coefficients the critical load F has been calculated
to be Fc = 2.086. For the case of small damping e = 0.01 the
critical load was calculated to be Fd = 1.464. It is a
characteristic of this type of system that in the case of
vanishing damping the critical load can be lower than the criti-.
cal load for zero damping.

In Fig.’ 3-9 the natural frequencies of the undamped
linear system are plotted as functions of the loading FO. It
can be seen that for Fo =~ 1.15 the ratio wz/wl =~ 3. At this

point of the external loading it is to be expected that the
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