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The resonant response of nonlinear dynamical systems

of one and two degrees of freedom subjected to parametric

external monofrequent periodic excitation is investigated.

The nonlinearities involved in the system arise from the

nonlinear restoring forces.

It is known that nonlinear systems subjected to

external parametric excitation are susceptible to resonances.

These are dependent upon the relationship of the natural

frequencies of the system and the external exciting frequency.

In addition to the study of resonant conditions, particular

emphasis is laid in the present study on the amplitude of

the oscillations once the system is excited into resonance.

The nonlinear restoring forces are divided into two groups,

those that can be represented by analytical expressions of

the co-ordinates and those that are multi-valued, non­

analytic, hysteretic functions of the co-ordinates.

Firstly, the phenomenon of internal resonance inter­

acting with pa~ametric resonance is studied. It is shown

that a transfer of energy between modes is possible due to

the nonlinear coupling between the modes and that the extent

of the interaction depends on the frequency and damping

relationships between the modes. The region of parametric

resonance, the steady-state ampli~udes of oscillations, and
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the non-steady state time-history plots are presented.

A special feature of parametric resonance is that a

monofrequent external excitation may induce either a one

mode or two mode response. All previous studies in parametric

resonance have assumed that the ratio of the natural

frequencies of the system are such that a single mode resonance

and combination mode resonance do not occur simultaneously.

In Chapter III the interaction of these two forms of para­

metric resonance on a nonlinear system are investigated. The

destabilizing effect of viscous damping and it's effect on

the growth behaviour of the oscillations is discussed.

The force-deformation relationships of physical systems

under cyclic displacements often exhibit a hysteresis effect.

Using three common hysteretic models known as the bilinear,

double bilinear and the Ramberg-Osgood hysteretic models,

the response of a single degree-of-freedom oscillation para­

metrically excited is examined. The steady-state response

curves are given, the effect of the yield point, the effect

of initial conditions and the possibility of unbounded

response is discussed in Chapter IV.

The analysis is then extended to include the parame­

tric resonance of a two degree-of-freedom hysteretic system.

The destabilization effect as caused by the bilinear and the

Ramberg-Osgood relationships is shown. The steady-state

curves are verified by direct numerical integration. The

transient solutions proceeding steady-state provide a qualita­

tive behaviour of the meaning of destabilization in hysteretic

systems.
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CHAPTER I

INTRODUCTION

1. I Preamble

The emphasis in modern structures in Civil, Mechanical

and Aerospace engineering is on light-weight., complex

assemblies fabricated of thin-walled shells, plates or beams,

Many of these structures are exposed to complex dynamic

environments. For example, buildings are subjected to wind

and earthquake loading and machine vibrations, machine com­

ponents are subjected to alternating reciprocating action and

bridges and high speed track are subjected to moving loads •

. To ensure proper performance of these structures, a study of

the response of structural systems to dynamic excitation is

necessary.

Dynamic excitation can be classified into three main

groups: (a) transient excitation such as occurs through

wind gusts, ocean waves breaking on marine structures or

earthquake ground motion, (b) complex periodic motion in which

the excitation may consist of a multi-frequency input, and

(c) monofrequency periodic motion. Structures exposed to

periodic loading may be excited into large amplitude oscil­

lations in the neighbourhood of certain critical frequencies

of the external excitation. This phenomenon of resonance

caused by periodic forces is one important area of the

response study of structures to dynamic excitation. It is

this phenomenon of resonance as caused by monofrequent

periodic loading that will be investigated in this thesis.

(a) Ordinary Forced Resonance v.s. Parametric Resonance

Structures subjected to a complex dynamic environment

I
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can exhibit a large number of possible resonances. The

investigations in this thesis are concerned with parametric

resonance. As such it is necessary to distinguish between

parametric and ordinary forced resonance. The essential

observable differences of these two resonances are: (a) the

range of frequencies in which large amplitudes can occur,

and (b) the growth history of the response from some small

value to the steady-state amplitude.

As an example, consider a simple pendulum subjected

to periodic excitation at its support. The horizontal

component of the excitation leads to a forced resonance of

the system while the vertical component of the excitation

leads to parametric resonance of the system. Forced

resonance occurs when the horizontal component excitation

frequency is equal to the natural frequency of the system.

·Parametric resonance occurs when the vertical component

excitation frequency is close to 2/n, (n = 1, 2, 3, ••• ) times

.the natural frequency of the system. Therefore the chance of

a system being excited into parilluetric resonance is more

numerous as compared to forced resonances. By comparing the

transient response before the steady~state response is

established, it is observed that the amplitude grows linearly

in the case of ordinary forced resonance and exponentially

for parametric resonance.

A practical example where a structure is parametrically

excited is in a strut under axial load. The strut may buckle

if the compressive load should exceed the buckling load.

However, if the applied load is pulsating, parametric resonance

may occur which leads to large amplitude flexural oscillations

even if the load is less than the buckling load. A similar

form of resonance can occur under the effect of periodically

varying thrust perturbations in propulsion systems. Such

thrust fluctuations have been encountered[l, 10, 16]; other

examples of mechanical systems that are susceptible to para­

metric resonance are given by Evan-Iwanowski[12] and Bolotin[41.
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There is another essential difference between ordinary

forced and parametric resonance. An analysis of a linear

parametrically excited system predicts unbounded response.

In contrast to ordinary forced resonance the inclusion of

viscous damping terms in the analysis will not lead to

bounded response. Consequently, the linearized analysis can

"give only, the bifurcation points where the equilibrium posi­

tion becomes unstable. The resulting motion after the

initial growth can only be obtained by taking into account

the nonlinear behaviour. It is this fact that makes a

nonlinear analysis mandatory for the complete response analysis
of systems under parametric excitation.

(b) Multiple Degree of Freedom Systems

All engineering structures are continuous structures.

However, their dynamic behaviour can often be studied satis­

factorily by approximating that structural system into a multi­

degree of freedom system, or even a single degree of freedom

system. Whether a structural system should be approximated

by a multi-degree of freedom system or a single degree of

freedom system depends on the system and the external

excitation. If the excitation is such that only one mode of

the structure will be excited, then the structure can be

treated as a single degree of freedom system.

But, a number of examples of dynamic resonance cannot

be explained by the action of a one degree of freedom system.

A parametric resonance may occur when the exciting frequency is

near a combination of natural frequencies. With this type

of combination resonance multi-modal response occurs and the

~hysical system has to be analysed as a multiple degree of

freedom system. The importance of this type of resonance is

demonstrated by the fact that for some mechanical systems only

combination resonance is possible and single mode response

subjected to paraBetric excitation cannot occur[3I]. While
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studies on the resonance of single degree of freedom nonlinear

systems has been extensive [3] , resonance, particularly parametric

resonance of multi-degree of freedom, nonlinear systems is

less understood. The reason for this is that during resonance,

it is possible that an interaction can occur" between various

degrees of freedom and between the degrees of freedom and the

external excitation. Consequently, a wide variety of

resonances can occur in a multi-degree, nonlinear, dynamical

system.

(c) Area of Research

Traditionally each form of resonance is studied

separately assuming othe~ forms of resonance do not occur at

the same time. There is however little research on the inter­

action of the different resonances in multiple degree of

freedom systems. Not only is it very possible that several

external resonances can occur simultaneously but the nonlinear

response can also cause a strong coupling effect between modes

of motion which causes an internal resonance condition to

develop. This is particularly important in structures where

two modes of motion have almost equal frequencies. One of

the main objects of the present work is to study parametric

resonance of nonlinear systems where more than one type of

resonance occur simultaneously.

1.2 Literature Survey

An extensive literature exists on the subject of

parametric resonance in a nonlinear single-degree of freedom

system. For a complete response analysis there are three

phases to be studied. First, it is necessary to determine the

conditions under which a dynamic resonance can occur. This

phase of study usually reduces to an examination of a set of

linear differential equations with constant or periodic

coefficients. The second phase of study involves the deter­

mination of the steady-state amplitude of vibration if it
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exists. If it does not exist it is necessary to examine the

time-history of the response to obtain quantitative and

qualitative information as to the type of response that

exists in lieu of the steady-state. The third phase of

study is concerned with the transient growth of the oscilla­

tions from some small initial value to the final steady­

state or quasi-steady response. Of particular interest in

this phase of study is the amount of overshoot of the tran­

sient amplitude of oscillation to the steady-state amplitude.

The literature survey will be presented under these three

phases of investigation.

(a) Condition for Resonance

A dynamical system with multiple degrees of freedom

and under parametric excitation is governed by a system of

ordinary differential equations with periodic coefficients.

The condition for parametric resonance is the condition under

which the original equilibrium confi.guration becomes unstable.

Extensive studies of parametric systems have been carried

out by Bolotin[4]. He however restricted his analysis to

single mode response and did not consider combination

resonance. Much of the earlier work done on combination

parametric resonance is due to Mettler[31]. However, he

analysed only systems where the loading forces can be derived

from potential functions. He also excluded the possibility of

an inter-action of external resonance zones. Piszeck[38]

extended Mettlers analysis to investigate the condition where

the external loading followed the deformation of the system

and first investigated the combination-minus resonance.

Schmidt and Weidenhammer[44] included the effect of viscous

damping on the instability zone of combination resonance. In

a series of papers Hsu[19, 20], applied the method of

averaging and completed to the first approximation the insta­

bility study of parametrically excited systems including the

effect of viscous damping and the interaction of various
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resonance zones.

(b) Nonlinear Analysis (Response Analysis)

To obtain the amplitudes of response of a parametri­

cally excited system it is necessary to carry out a nonlinear

analysis. The works on nonlinear vibration studies are

divided into two sub-sections, (i) nonlinear analytic systems

and (ii) nonlinear hysteretic systems.

(i) Nonlinear Analytic Sys~ems

Studies of one degree nonlinear systems subjected to

ordinary forced and parametric excitation have been extensively

treated in the works of Bogoliobov and Mitropolsky[3] and

Minorsky[3G). For multiple degree of freedom systems again

an extensive literature exists for the case of monofrequency

response. If the nonlinear terms cause a coupling effect

between several modes an internal resonance condition may be

possible. Where as an extensive literature also exists on the

free vibration of nonlinear coupled systems, only a small number

of papers have been written on the interaction effect as given
[35] [45 46]

--by Miles and Sethna ' •

Few studies exist on the nonlinear analysis, and

steady-state behaviour of parametric systems. Mettler[32]

investigated the response of a thin-walled beam where the

nonlinearity was introduced by the axial shortening affect,

Piszeck[38) and Hagedorn[15) analysed a similar problem and

included the nonlinear affect due to torsion and nonlinear

damping respectively. All authors avoided the case of an

internal resonance condition and the coincidence of parametric

resonance zones.

Experimental results for combination resonance

involving a two mode response are also few in number. An

experiment to deterraine the instability zones of cowbination

resonance was carried out by Reckling[4l] for the case of an
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I beam and plane section under pulsating end moments; for a
. f d [2]. d tmechanlcal two degree-o -free om system Benz carrle ou a

number of experiments on combination resonance. Close agree­

ment was observed with the experimental and theoretical

results. In the field of fluid mechanics, Hutton [21] carried

out an experimental investigation in the nonlinear coupling

of modes. The experiment consisted of a liquid filled

cylinder excited in a planar mode of motion. The results

indicated that a nonlinear coupling can excite the non-planar

or swirling mode of motion of the liquid surface.

(ii) Nonlinear Hysteretic Systems
. [17] [39]Experlmental results have shown, Hanson , Popov ,

shiga[47], Yamada[56~ that for many engineering structures,

the force-displacement relationship shows a distinct,

hysteretic behaviour. To describe'the behaviour of hysteretic

system under cyclic loading it is necessary to use non­

analytic functions. These functions are characterized by the

fact that the function and its derivatives may be discontinuous

and multi-valued. In general, the load-displacement relation

under cyclic loading beyond the elastic limit of the system

is highly complex. In order that such characteristics may be

incorporated into engineering analysis, there exists a variety

of hysteretic models which approximates the true hysteretic

load-displacement relation. Among the most common hysteretic

models used are the bilinear hysteretic model (the elasto­

plastic model is a special case of this), double bilinear

hysteretic model and the Ramberg-Osgood hysteretic model.

There are two motives for the study of hysteretic

systems: (a) As an accurate representation of the force

deformation characteristics that exist in real structures as

obtained in experiments. (b) As an alternate energy dissi­

pation mechanism as compared to viscous damping. By far, the

greatest effort has been expanded on the first motive, in

particular in the field of earthquake engineering. Research
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in this area has focused on ordinary forced resonance of one

degree of freedom str~ctures subjected to transient and

sinusoidal excitation. The response of a simple oscillator

to sinusoidal excitation with bilinear hysteresis was carried

out by caughey[7]. Sinusoidal excitation of~Gystem with double

bilinear hysteresis was studied by Iwan[22] and that with the

Ramberg-Osgood hysteretic function by Jennings [27] . ': .Steady­

state response of~two degree of freedom system under sin'lsoidal

excitation has been obtained by Iwan[24] and by Dokainish &

Sahay [11] ;~;for the bilinear and double bilinear hystere'cic mc)dels

respectively.

The second point concerns the use of the hysteretic

functions as a replacement of viscous damping as a possible

mechanism to account for the dissipation of energy. Viseou;:,

damping is a suitable mod.:::.l to use in free and forGed oscil-­

lation studies because it provides the effect of damping out

the motion of the system in free vibration and limiting the

resonant response of the system to finite values in the case

of forced resonance. However, the viscous damping model

appears inadequate in many instances. A case in point is

associated in the stability problems with non-conservative

loads. It is known that there is a discontinuity of critical

load values from the undamped system to a system with small

viscous damping. Recently Jong[28] has shown that if a bilinear

hysteretic damping model is used instead of the viscous

damping model, such a discontinuity in critical load values

of the system vanishes.

Another area where the viscous damping model appears

to be inadequate is in the area of parametr ic )~esonance. It.

is well known that. the main effect of viscous dlrnping is to

modify the sizes of the unstable regions only, Bolotin[+~ Once

the system is excit:E.d into IJarametric resonanc(~ t.h8 rssponse

of the linearized syste~ grows without bound. Howeve~, finite

steady-state response is possible if the dissipation of energy

is accredi teo to the hyster'2tic nature of the restoring
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forces[55J.

For combination parametric resonance it was shown by

Schmidt and Weidenhanuner[44J that viscous damping may cause

a widening of the instability zone as compared to the undamped

case. Using a nonlinear but analytic representation of

viscous damping, Hagedorn [15J showed that the additon of

nonlinear da~mping also causes widening of the resonance zone.

No study has been made of the effect of hysteretic damping

model on the instability zone of combination resonance.

(c) Transient Response

The transient growth of oscillations once a system is

excited into resonance can be obtained by direct experimental

observations or by numerical integration of the governing

differential equations. An experimental investigation of the

transient motion of parametrically excited systems was

carried out by Benz[2). A numerical investigation of the

effect of initial conditions and the effect of viscous d~~ping

was carried out by Ghobarah[14) and Tso & Asmis[55J. Additional

experimental results are given in Bolotin[4].

1. 3 Review of the Mathematical Methods

Nonlinear mechanical systems sUbjected to periodic

excitation can be described mathematically by a system of

nonlinear ordinary differential equations with periodic

coefficients. The techniques necessary to solve such a system

requires a knowledge of the standard analysis of linear

ordinary differential equations with constant coefficients,

linear ordinary d.e. with periodic coefficients and nonlinear

o.d.e. with constant and/or periodic coefficients. The

method of analysis that is most widely used is the method of

averaging as developed by Bogoliubov and Mitropolsky[3J and

Malkin[30J. The popularity of this method is attested by the

fact that it has been used on almost all present works on
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nonlinear as well as some linear dynamic resonance problems[7,

15, 19, 24] In addition, the smoothing effect of the

averaging process makes the method an ideal analytical tool to

study the behaviour of non-analytic hysteretic systems.

(a) The Method of Averaging

Consider a dynamical system with n degrees of freedom.

Let x. (j :::: 1, 2 •.• n) be the generalized coordinates of the
J

system. The equations of motion can be written as

2x. + w. X. + £f. (xl ---x, x 1 ---x , t) :::: 0 1-1
J J J J ' n n

(j :::: l,---,n)

where £«1, w. is the linear natural frequency and f.
J J

represents a function of nonlinear terms. The system 1-1 is

weakly nonlinear and weakly perturbed (in the sense of linear

equations with periodic coefficients) whose perturbations can

be considered small.

The method of averaging provides an approximate

solution to the system of equations 1-1. In essence, the

method transforms the equations 1-1 by a suitable change of

variables to the system

Z :::: £F(Zlt) 1-2

where z :::: {zl' --- z2n} is a vector of slowly varying variables

and F(z,t) is an almost periodic function of t. Once the

differential equations have been brought into standard form

the averaging principle is applied which consists of taking

the mean value of equations 1-2. The averaged equations are:

z 1-3a
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where

Y(z) = Lim 1 fT
o

F(z,t)dt
T+o::> T

1-3b

where the variables z are assumed constant during the inte­

gration process. The difference between the exact solutions

of 1-2 and the approximate solutions represented by 1-3a have

been studied[37].

Several transformations exist which can reduce the

system 1-1 to 1-2. A common method in dynamics is to use the

polar transformation where

x. = Q. (t) cos (w.t + e.(t»
J J J J

_ Q. cos l.jJ.
J J

and x. = -Q.(t) w. sin {w.t + e. (t»
J J ] J J

- -Q. w. sin (l.jJ.)
J J J

This leads to n system of equations

1-4a

1-4b

cos l.jJ.
J

-w. sin l.jJ.
J J

-Q. sin l.jJ.
J J

-Q.w. cos l.jJ.
J J J

Q.
J

e.
J

==

o

-Ef.
J

1-5

(j==l,---,n)

Applying the averaging principle to 1.5 the averaged equations

are

•
Q. =

J
lim 1
T+OO T

Ef. sin_-2
w'J

lj;. dt
J

1-6a
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•
Q.e. =

J J
lim 1
T+ ex> T

e:f . ,', d__Jcos '1" t
Jw.

J
(j = 1, n)

l-6b

Another transformation is the use of rectangular co­

ordinates and is more suitable to study the stability of the

trivial solution Q. = o. The transformation takes the form
J

x. = A. (t) cos w.t + B. (t) sin w.t
J J J J J

x. =-A. (t) w. sin w.t + B. (t) w. cos w.t
J J J J J J J

l-7a

Substituting 1-7 into 1-1 one obtains the n system of equations

A. e:f. sin w.t l-8a= ----1J w. J
J

-e:f.
B. = _2 cos W.t l-8b

J w. JJ (j = 1, n),

The rectangular and polar transfoDmations are related by the

equations

A. = Q. cos e.
J J J

B. = -Q. sin e.
J .J J

l-9a

l-9b

Another transformation which was used by Hsu[19] and

Tondl[53] is the complex transformation
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iw.t -iw.t
x. e J e J A.

J J

= 1-10

iw.t -iw.t
x. iw.e J -iw.e J B.

J J J J

Since the x. are by definition real, A. and B. must be complex
J J J

corijugates and it can be seen that the transformations 1-10 and

1-7 are identical.

In practice, the polar transformation is used to

obtain the steady-state curves. For stability analysis

the use of the rectangular transformation is more convenient.

(b) Structure of the Averaged Equations
.....

The method of averaging presents~nified mathematical

approach to dynamic resonance problems. On the basis of the

averaged equations the dynamic resonances can be classified

and the nature of the response obtained. In many cases it is

possible to obtain the regions of instability and steady-state

curves by algebraic means and the transient motion can be

obtained through step by step integration.

Resonance conditions can occur as a result of the

interaction of the system's natural frequencies with the

external excitation frequency or as a result of an interaction

of natural frequencies only. The former will be called

external resonance and the latter internal resonance. Internal

and external resonances may occur simultaneously in a given

dynamical system.

The nunilier of first order equations of the type

necessary for the analysis is governed by the number of modes

that participate in the resonance conditions [45] • If M is

the number of modes 2M equations are necessary. However, if

only one resonance condition occurs the phase angles can be

combined and the number of equations reduced to M + 1. For



14

each additional resonance condition the equations are increased

correspondingly up to 2M. Each additional resonance condi­

tion complicates the equations and can completely alter the

nature of the response.

If the forces sf. of Equation 1-1 are analytic, single
J

valued functions of the co-ordinates x. and their time
J

derivatives x. and f. is periodic in Qt then f. can be expanded
J J J

in the Taylor series.

N
= L:

m=-N

~ imQt [fm
O

(0,0,--)= LA erne
m=-N

1-11

2n afm 1
2n a2f

+ L: l: m
(an) r 'k + 2T (an an ) nrn sk=l k r,s r s

0 0

1 2n
+ TI l:

r,s,9..
]

where the n. representing displacements and velocity. They are
J

taken as small deviations from the equilibrium position. If

the variables n. are so small (throughout the motion of the
J

system) that higher order terms can be ignored, the problem is

linear. As the amplitudes increase the higher order terms

begin to take effect. Breaking off the series after the

third order term allows one to examine many of the important

non-linear effects in the system.
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Substituting 1-11 into 1-6 and carrying out the

averaging process, the constant terms are the only non zero

terms after the integration process. They have a long term

effect on the behaviour of the variables Q. and 8 .• As the
J J

coefficients of the trigonometric terms in f. are stipulated
J

to be polynominals the terms under the integral signs can be

expanded and are of the form:

sin {<ron + nlw l + n 2w2 + ---)t + n1 81 + n 2 82 + --- } 1-12a
cos

or

sin {<n1w,l + n W + ---)t + n 1 81 + n e + --- } 1-12b
cos 2 2 2 2

integer

If the frequencies of these terms are zero, i.e.

(mQ + nlwl + n 2w2 + ••. ) : 0, the terms

sin { n 8 + n 8 + ---
cos 1 1 2 2 } 1-13

will carryover into the averaged equations and cause an

external or internal resonance condition depending on the

presence of or absence of Q the external excitation frequency.

Thus the resonance condition according to the first approxi­

mation is

Q = I nlw l + n 2w2 + --- I
m

1--14a
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If f. is limited to a single frequency external excitation
J

and m :::: 1, then

For the general system excited by several periodic forms

Malkin[30] gives the resonanc~ condition as

1-14b

:::: 1-14c

m
k

= 0, +- 1 +- 2---,· n - 0 + 1 + 2 ---k - , - ,-

(c) Introduction of a Detuning

It is often desired to study the response in the

neighbourhood of a critical resonance zone. To do this,

a detuning is introduced either in the natural frequencies

or in the external frequency or both. By introducing this

detuning, the equations 1-1 can be written in the form

2x. + (wo. + £6.) x. + £f. :::: 0
J J J J J

I-lSa

where w. :::: woo + £6. and the woo are chosen to satisfy
J J J J

exactly the resonance condition which is being investigated.

The detuning now acts as an additional perturbation force

proportional to £

I-ISb
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and has an important effect on the response.

(d) Nature of Response

Depending on the resonance conditions, detuning,

dan~ing, and nonlinear effects the response of the averaged

equations in terms of amplitude and phase can be classified

in the following four ways.

(a) Non-Resonant Response Q. = 0, e. = undetermined
J J

The frequency of the external excitation is

outside the possible resonance zone. The response of the

system subjected to any initial disturbance will approach

zero if damping is present in the system.

(b) Resonant Steady-State Response ~'. = 0, e'. = 0
J J

The amplitudes Q. and phase e. have constant
J J

values. This is a fully synchronized state and the frequencies

of the response modes are entrained to their natural frequen~

cies for a finite amount of detuuing.

(c) Resonant, Partially Synchronized Response

Q'. = 0, (0· + 0.)' = 0
J ~ J

This state may occur in systems of two degrees

or higher where only one resonance condition occurs.

Individual frequency corrections are possible but the combined

effect of the frequency correction cancels so that the combined

phase angles of all participating modes remain constant.

(d) Resonant-Quasi-Steady-State Respon~~

Q' . :j 0, tI'. :j 0
J J

This system is in a resonant state with high

modulated amplitude. This state can occur in a one degree of

freedom system with large excitation parameters[4]. In

multiple degree of freedom systems this modulated response can

also occur with damping present[45].
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Cases (a) and (b) are the usual response conditions

for the one degree of freedom system. For resonance to occur

the phase angle relationship given by 1-13 must reach a

constant state. This means that the detuning is restricted

to a range of values dependent on damping and the strength of

the excitation. Outside this allowable range of detuning, a

resonance condition can not occur.

Systems having more than one degree of freedom can

demonstrate a variety of phenomena that have no counterpart

in single degree systems j as the response may depend on the

interaction of modes. These systems may exhibit the type

of response indicated by case (c) and (d) as well as (a) and

(b) •

(e) On the Classification of Resonances

Dynamic resonances in nonlinear systems can be

divided into two categories. The first category concerns

itself with systems in which a resonance condition can develop

in the linear equations. The interest is then to see how the

response is modified by the nonlinearities. The second

category concerns itself with those resonance conditions that

are only possible in nonlinear systems. Both categories have

received extensive classification[33,53,13] based according

to the integers retained in l-14a. By restricting the

classification to only those resonances possible in linear

systems subjected to monofrequency excitation as described by

the averaged equations an external resonance can occur only

in the following four cases: (a) Q ~ w. (b) Q ~ 2w.
J J

(c) Q ~ w. + wand (d) Q ~ w. - w. The first case is
J K J K

called ordinary forced resonance, the second, parametric

resonance (type I), the third, parametric combination plus

resonance (type II), and the fourth parametric combination

minus resonance (type II).
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1.4 Scope of Investigation

The problems investigated in this thesis fall into

two groups. The first group concerns the inter-action of

dynamic resonances in nonlinear systems where the nonlineari­

ties can be expressed as analytic, single valued functions

of the generalized displacements. The second group concerns

the response of nonlinear systems where the nonlinear

functions are considered to be hysteretic and are non-analytic,

multi-valued functions of the generalized displacements.

The interaction of resonance zones is divided into

two chapters - Chapter 2 is devoted to the interaction of an

external and internal resonance zone. A thin-walled beam

excited by pulsating end-moments is considered. The

parameters of the beam are chosen in such a way that both an

external and internal resonance condition takes place

simultaneously. The interaction of two external resonance

zones is investigated in Chapter 3. The physical model used

in the investigation is the double-pendulum of ziegler[58J

subjected to a non-conservative thrust-type loading, where

it is assumed that the thrust has a sinusoidal time-varying

components. The interaction problem that is studied is the

simultaneous occurrence of two parametric resonances. The

effect of viscous damping is also included.

The response of a single degree of freedom hysteretic

system subjected to parametric excitation is investigated in

Chapter 4. A comparison is made on the parametric response

of the bilinear, double bilinear and the Ramberg-Osgood

hysteretic system. A detailed description of these hysteretic

modals is given in Appendix A. Finally, the parametric

response of two degree of freedom hysteretic systems is

presented in Chapter 5 and Chapter 6.

The purpose of the present study is twofold: firstly,

to examine new phenomena due to the interaction of resonances

and secondly, to investigate the effect of hysteretic damping

in parametrically excited dynamical systems.



CHAPTER II

COMBINATION RESONANCE AND-INTERNAL RESONANCE OF

THIN-WALLED STRUCTURES

2.1 Introduction

It is a modern feature of construction that more and

more emphasis is placed on structures with long slender, light­

weight members. In particular, thin-walled beams of open

section are the co~mon elements used in such structures. If

these structures are exposed to periodic excitation the result

is that a large number of possible resonance zones may be

excited. Large amplitude vibrations will result if the

excitation is in a resonant or near resonant zone.

Concerning the forced vibration of thin-walled

structures, a distinction must be made between the forcing

functions which are independent of the response of the system

and those that are dependent upon the response. The former

falls in the category of ordinary forced vibration. The

latter is called parametric excitation and is the characteris­

tic loading condition studied in the Theory of Dynamic

Stability[4J. The purpose of this chapter will be to investi­

gate the latter loading condition. The majority of the work

in dynamic stability concerns itself with the case when the

frequency of the external excitation is approximately twice one

of the natural frequencies of the structure. These regions

are the principal unstable regions and the dynamic resonance

is called parametric resonance Type I. In addition, principal

regions of dynamic stability may occur if the external excita­

tion frequency is equal to a coniliination of natural frequencies.

Such resonance is called parametric resonance Type Ir. If the

21
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analysis is limited to parametric resonance Type I the analy­

sis can be based on a single nonlinear Mathieu-type equation.

The analysis becomes more complicated for the Type II parametric

resonances. If the frequencies of the problem are such that

only one resonance condition is satisfied, it is still possible

to obtain steady-state solutions in algebraic form. However,

when more then one resonance condition is present in the

system, the resulting analysis is not amenable to any simple

format. In fact there is no guarantee that a steady-state

solution is possible.

A special feature of nonlinear dynamical systems is

the possibility of transferring energy from one mode to

another mode within the system. Such transfer is possible

due to the nonlinear coupling between the modes. This ability

to transfer energy depends on the frequency relationship and

the structure of the nonlinear coupling between the modes.

Such a phenomenon is called internal resonance. Internal

resonance in the absence of an external excitation has been

studied[49], the interaction of internal resonance and

ordinary forced resonance has been investigated by Miles[35]

and Sethna[46]. However, all studies of resonances in

parametrically excited systems have assumed that the ratios

of the natural frequencies in the system are such that an

internal resonance will not occur. If an internal resonance

condition does occur two things may happen.

(a) An otherwise dormant mode may begin large amplitude

vibrations which was not directly excited by the external

source.

(b) A non-linear interaction between two externally excited

modes may take place.

Case (b) will be investigated in this chapter. Both modes are

already externally excited and both amplitudes begin to grow

under the action of the dynamic loading. The amplitudes will

in general be different for the different modes. A number
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of questions inooediately come to mind. Will the amplitudes

influence themselves in such a way that the overall maximum

response will be more? Will there be a continual exchange

of energy between the modes with the result that a steady­

state motion can not exist? If such a modulated response

occurs, is it possible that the amplitudes of the modulated

response caused by the internal resonance condition may

exceed that if internal resonance had not been considered?

These are important questions to be answered because

the response behaviour of a large class of structural systems

due to the existence of more than one dynamic resonance

condition is completely unknown. For design purposes it is

important to know the amplification factor caused by the

occurrence of an internal resonance condition. Bolotin[4]

and Mettler[32] have treated the nonlinear response of thin­

walled beams when only one resonance condition was possible.

Bolotin treated the parametric resonance case Type I and

Mettler the paranletric resonance Type II.

It is the purpose of the present Chapter to examine

the nonlinear equations of a thin-walled beam subjected to

parametric excitation. The equations of motion are reduced

to a system of two nonlinear ordinary differential equations.

The parameters of the system are chosen such that both

parametric resonance and internal resonance occurs simul­

taneously. The effect of viscous damping is included in the

analysis. Only the parametric resonance type II (combination

resonance) is considered.

2.2 Derivation of the Equations of Motion

Consider a thin-walled beam of uniform cross-section

area A and length L simply supported in flexural and rotational

deformation but restrained from axial shortening. The section

is symmetrical and warp free and loaded by a periodic end

moment M::: M cos ~ t, acting in the plane of largesto
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rigidity[32]. The equations that describe the lateral and

torsional oscillations of the beam are: [4]

2-la

with the boundary conditions

2-lb

o,u == 0, ¢ == 0, z == 0, and z == L 2-2

EI is the bending stiffness in lbs in2 , Gld is the torsional

stIffness in lbs in2~ u is the lateral displacement of the

centroid (in), ¢ is the angle of rotation in radius, m is the
2 2mass per unit lengths lbs sec ,p is the radius of gyration

. 2
~n

(in2 ) , Mo is the amplitude of the external moment in in.lbs.

and ~ is the frequency of the external excitation. The axial

force ~N is not an inpressed axial force but is developed by

the axial tension caused when the beam is deflected from its

equilibrium position into lateral, torsional movement.

The periodic load can be expected to excite bending

vibrations in the plane of action of the load (Y-z plane).

This load also appears as a parametric load with respect to

the lateral bending and torsional modes of motion. The beam

is considered dynamically stable if small lateral and torsional

perturbations are damped out with time. But if small initial



25

perturbations give rise to intensive bending-torsional

vibrations, the beam is considered dynamically unstable and

is parametrically excited by the end couples. The present

analysis is focused on the lateral bending and torsional

response of the system once it is parametrically excited into

resonance. For convenience, it is assumed that the frequency

of the load is far enough removed from one of the natural

frequencies of bending in the strong direction so that

little dynamical amplification of the inplane displacement

exists.

(a) Nonlinear Forces

When the beam is excited into lateral, torsional

movement a shortening effect takes place due to the twisting

and bending of the cross section. The shortening effect due

to lateral bending was examined by Mettler[4], the shortening

effect due to torsion was first explored by CUllimore[~J.

The nonlinear force terms due to the shortening effect of

bending and torsion can be obtained as follow:

Shortening Effect Due To Bending: Let ds be a segment of the

centre line of the deformed beam as shown in Fig. 2-la.

Let e denote the strain. Then

e = ds - dz--crz--

l~z2
I

2 dz 2 -dz+
(~~)=

dz

1 (-~~)2~ 2"

2-3a

2-3b

2-3c
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The strain due to bending of the total length is

1
= + 2L 2-4

The axial force developed because the beam is restrained from

movement in the axial direction is

~N d' = EA ~BBen lng

2-5

Shortening Effect Due to Torsion: Let ds be a segment of a

longitudinal fibre a distance r from the centroid as shown

in Fig. lc. Then the strain due to twist is approximately

2-6

The strain at the centre-line if it is assumed that plane

sections remain plane can be obtained by equating forces over

the cross section.

and

1 (~:)2 1

fA
y2dAecentre = "2 A

1 I p (~z¢)2= "2 A

2-7a

2-7b

and the total shortening over the length of the beam is
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2-8

and the axial force developed is

1 E I p
=+'2-L-

2-9a

2-9b

The combined axial force due to bending and twisting

is

2-10

Inserting the axial force ~N into equations 2-1 there results:

a 4u (Dt) a
2 ¢ - ! E {t 2EI + M cos

{A (~~ )y
az 4 0

az2 2 v'
0

+ I (~_~)2 }dz }a 2u + m
a 2u 2-11a

az 2 at2 = 0p

M (Dt) a
2

u GId~
2

E {J>A (~~)cos - p
0

az 2
az

2 2" L

+ I p (~~ f}dz } a 2ep
+ mp

2 a 2(t 2-11b--2-
at2 = 0

az
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This is ~he system of purtial difisrential equations

which describes 'the lateral und torsional response of ·the

structure due to the periodic moment. The axial forces cause

nonlinear forces to develop when the motions become large.

(b) Heau<;tion t~._C!-~~1i~a~5 Diffe:c~ntial"._~sua!:.i:~_ns

An approximate solution of 2-11 can be obtained. Let

u (z f t) = x. (t.)
J.

sin 'TTZ

L
2-12

¢(z,t) --x
2

(t.) sin 'TTZ

L
2-13

where we limit the expansion of u and ¢ to one mode in trans-'

lation and one in rotation. Substituting 2-12,13 into 2-110.

and applying the Calerkin averaging technique, there is

obtained

EI M 2
+ ~(~)4 x _ -.E: ( ~) cos (~t) x2m LIm L

2-14

Similarily su~stituting 2-12,13 in 2-11b there results

2

+ Glcl ( ~fd x 2 ~o co;__ (Sit ). (2J- )2
-~t2

x - xl2 I.. 2mp mp L

1 EI 4
3 1 (~)+ - m'P- ([ )

EA 2
'f

x 2 + 4" 1: 2 Xl = 0m 2-15
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2.3 Statement of the Problem

Equations 2-14 and 2-15 are a quasi-linear system of

ordinary differential equations with periodic coefficients

which in matrix notation can be written as.

1 0 xl 0 xl
2 0 xle l wl

+ s +

0 1 0 x 2 0
2

x 2 e 2 w2 x 2

- s cos(~t)

o

+ S

o

o

+ S

2 0x
l

x 2

= 2-16

2
0xl x 2

where £«1, xl(t) and x 2 (t) represent the generalized co-ordi­

nates of the system. xl represents the lateral deflection

in the minor axis direction and x 2 the rotation of the section

as specified by equations 2-12. The e., w., (j =1,2) denote
. J J

the damping coefficients and natural frequencies associated

with mode j. The fourth term represents the pair of equal

but opposite periodic moments applied to the end of the beam

in the plane of the major axis and consists of a monofrequent

parametric excitation. It should be noted that the matrix

associated with this term is antisymmetric and consequently

it can be shown that parametric resonance of the first kind

cannot occur in this system. With the coefficients b l , b 2
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taken to be positive only combination resonance of the sum

type can occur. The nonlinear terms in the system consist of

a cubic nonlinearily associated with each coordinate with

coefficients a l and a 2 and the last term in the equation

represents the nonlinear coupling between xl and x 2 with the

coefficients d
l

and d2 . Mathematically, the coefficients are

defined as

2
Ely ( 7f )4 2-17awI =

m L

2
Gr~(~)2 2-17bw2 =

mp

M 2
£bl = ~ (~) 2-17c

£b2 = M02 (Ef 2-17d
mp

1 E~ (E)4 2-17e£al = "4

1 E~p (~)4 2-17f£a2 = 4

£dl
1 E~p (~)4 2-17g= 4

2-17h
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Equation 2-16 is a homogeneous system and xl = x 2 = 0

is a solution. The central problem in the present analysis is

to find the non trivial solutions.

Neglecting the nonlinear terms and the damping terms,

the equation 2-16 has been studied by Mettler[4] to determine

the condition under which non-trivial solutions exist. It was

found that a combination resonance condition exists provided the

external frequency ~ and the natural frequencies wl and w2
satisfy the condition

2-18

Including the uncoupled cubic nonlinearities in the

system Mettler further determined the steady-state amplitude

'of xl(t) and x
2

(t) once combination resonance takes place[4].

Schmidt and Weidenharnrner[44] neglected the nonlinear terms in

equation 2-16 to study the effect of viscous damping on the

conditions under which combination resonance is possible. It

was found that unequal damping coefficients in the system

have a destabilizing effect. In other words, a system with

unequal damping coefficients is more susceptible to combination

resonance then the one with equal damping coefficients.

Hagedorn [15] included nonlinear cubic velocity dependent

damping terms in the equation to find that the destabilizing

effect of damping is not only confined to linear viscous

damping. In all the above investigations, the non-linear

coupling terms x 1
2

x 2 and x l x 2
2 were neglected and the

two co-ordinates were only coupled by the parametric excitation

term. In this case, the problem of internal resonance does not

arise. In this chapter, equation 2-16 will be studied under

the conditions where both the combination resonance condition

and the internal resonance condition are approximately satisfied.

It is convenient to express equations 2-16 in terms of

nondimensional variables. Using the non-dimensional time

variable T defined by
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2-19

equation 2-16 can be written 15

2-20a

where

and

K. ::: w~/Qo

J J

E. ::: £e./rt°
J J

W. ::: w~ (1 + 6..)
J J J

(j ::: 1,2)

2-20b

2-21a

2-21b

2-21c

2-21d

2-21e

2-21f

2-21g
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n°, wO
I

and w0
2

repre,ent the nominal value of the

parametric frequency and natural frequencies of the system.

A, AI' and A2 are small quantities representing small detuning

of the actual frequencies from the nominal values. Primes

denote differentiation with respect to the nondimensional

time T.

2.4 Derivations of the Averaged Equations

An approximate solution of equations 2-20 can be

obtained by the method of averaging. Realizing that the

periodic excitation and the non-linear terms act as small

perturbations to the free vibration of the system, the

solutions can be approximated ~y

x. (T) = Q. (T) cos (K. T + e. (T) )
J J J J

_ Q. cos ljJ.
J J

(j = 1,2)

2-22a

2-22b

where Q. (T) and e. (T) can be considered as slowly varying
J J

functions of time. Stipulating that

x' . =
J

sin ljJ.
J

2-22c

the system of equations 2-20 can be replaced by the system of

first order equ'ations.

cos ljJ.
J

-K. sin ljJ.
J J

-Q. sin ljJ.
J J

-Q. K. cos ljJ.
J J J

Q .•
J

eI.

J

=

o

-£f.
J

2-22d

(j = 1,2)
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where

£f. = - E.Q.K. sin W. + 2K. 2 (~. + A)Q. cos W.
J JJJ J J J J J

3 3+ A.Q. cos W· - B. cos (T)Qm cos WmJ J J J
2-23

+ D.Q. cos ,I,. Q 2 cos 2 ,I,
J J 'V J m 'I'm (j = 1,2, m = 1,2)

j =I m

Equations 2-22d are an exact representation of the

system 2-20. To obtain an app~oximate asymptotic solution of

equations 2-22d the method of averaging is applied. This

consists of taking the mean values of the terms occurring in

2-22d. These equations can be expanded into the format

Q' .
J

£t.
= _J

K.
J

sin W.
J

2-24a

Q.8' .
J J

£f.
= -.2K.

J
cos W.

J

(j = 1,2)

2-24b

The mean value is defined by the integration process.

Q' . lim 1 IT C:t. sin W· dt 2-25a= _J
J T-rOO 'r K. J

0 J

Q. 8' . = lim 1 J:
£f.

W· dt 2-25b_J cos
J J T-rOO T K. J

J
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where the variables Q., e. ar~ considered as constants during
] ]

the averaging process. Only the terms that are constant can

be expected to have a long-term effect on the slowly varying

variables and it is these terms that will enter over into

the averaged equations. If the integrands of 2-25 are periodic

the integration can be carried over a specific period. In

general, however, the integrands are almost periodic functions

and the averaging process consist of taking the mean values of

each term after the integrand has been expanded.

Expanding 2-24 there is obtained

Q' . = 2K. [6. + ;\] Q. cos 1J!. sin 1J!. - B
k Q

k
cos 1J!k sin 1J!. cos T

] J J J J J K. J
J

. 21J!
A. 3 cos3- E.Q. Sln . + -='- Q. 1J!. sin 1J!. 2-26a

J J J K. J J JJ

D. 2 2+ J Qk 1J!. 1J!k sin 1J!.K Q · cos cos
. J J JJ

Q. e' .
J J

2 BkQk= 2K.Q. [~. + ;\] cos 1J!. - ---- cos 1J!k cos 1J!J' cos L
J J J J K.

J

- E.Q. cos 1J!.
J J J

sin
A. 3 4

1J!. + ~ Q. cos 1J!.
J j J J

Dj Q 2 2 2
+ K. k QJ' cos 1J!. cos 1J!k

J J

(j :J k)

(j = 1,2)

(k = 1,2)

2-26b



37

(a) External Resonance: The external resonance terms are

those terms multiplied by the parametric coefficient B .•
J

Expanding sin ~j cos ~k cos T leads to terms.

sin { (K. ±
J

± l)T + e.
J

2-27a

it is seen that a resonance term will only occur if

similarily cos ~j cos ~k cos T will lead to terms.

2-27b

2-28

and the same resonance condition f2-27b) applies.

(b) Internal Resonance: Internal resonance can be caused by

those terms multiplied by the nonlinear coupling coefficient

D . • Expanding
J

sin 2 1
~j cos ~j cos ~k = 4 sin

it can be seen that only the terra

2-29
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can lead to an internal resonance condition, if

2-31

or wj =~. Consequently an internal resonance condition can

only occur if w
j

~ wk. A similar conclusion can be drawn

by considering the term

2 2
cos ljJ j cos 1Jk 2-32

The prime purpose of this chapter is to investigate

the situation where both combination resonance and internal

resonance occurs simultaneously. Hence it will be assumed

in the derivation of the averaged equations that the nominal

values of the natural frequencies and the parametric frequency

satisfy the following relation.

(combination resonance condition) 2-35

(internal resonant condition) 2-36

Equation 2-35 specifies that the parametric frequency

is approximately equal to the sum of the natural frequencies

while equation 2-36 states that the two natural frequencies

are af?proximately the same. It can be seen from equation

2-20 f and g that A, and I), = 1),1 - 1),2 are measures of how close

the actual frequencies of the system satisfy the combination

resonant and internal resonant condition. They shall be

referred to as ,external detuning and internal detuning respec­

tively in the subsequent analysis.

For thin-walled beams it is very possible that a

torsional frequency is approximately the same as a bending

frequency. Consequently the study of internal resonance in



to external resonance should be of practical
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addition

interest.

The averaging technique is now applied to the

equations 2-26. During the averaging procedure the conditions

imposed by the combination resonance 2-35 and internal

resonance 2-36 are borne in mind to obtain the non-zero terms

in the averaged equations.

Q'
1

== B'- 1

4K

2-37a

Q' 2 == -B2 Ql sin (8
1

+ 82 ) - E2 Q
2

- 1 D2 Q2Q1
2

sin (28 1 - 28 2 )

4K 2 81<

2-37b

2-37c

2-37d

where Q. and 8. (j == 1,2) are now denoting the average value
J J



of t.he amplitudes and phase angles over one cycle of

oscillation.

Since it is the combination of phase angles that

determine the behaviour of equations 2-37 the equations

2-37c and 2-37d are rewritten as:

40

2- Q 2
+ l 1: (A

1
+ A2

Q
2 Q 2 + 1: 1: (D 1

2 Q 2-) -- + D )
8 K Q 2 1 4 K Q 2 2 1

1 1

+ 1: 1
Q 2

Q 2(D
1

2 cos <P
2

2-37e-- + D )8 K Q 2 2 1
1

3 l'
Q 2

Q 2 + 1: 1:
Q 2

Q 2- A _2_) 2 - D )+ "4 K (A1 (D1 -22 Q 2 1 2 K Q1
2 1

1

+ 1: 1
Q 2

Q 2(D
1

2 cos <P 2
2-37£- - D )

4 K Q 2 2 1
1

where
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It is observed that the external detuning A does not

appear in equation 2-37f and that if ~l = -~2 the internal

detuuing will not appear in equation 2-37e. In the response

plots it will be assumed that ~l = -~2 and the internal

detuning will be defined by the new detuning parameter

2-37g

In equations 2-37a and 2-37b the first term on the

right hand side arises as a result of the fact that the

combination resonance condition 2-35 is satisfied, the second

term represents the viscous damping contribution, and the

third term arises due to the fact that the internal resonance

condition 2-36 is satisfied. Similarily, the first term on

the right hand side of equations 2-37c and 2-37d is due to

detuning, the second term is due to combination resonance,

the third and fourth terms represent the contributions due to

the nonlinear restoring forces and the last term arises due

to internal resonance.

If the natural frequencies of the system are such that

internal resonance does not occur, (i.e. Kl ~ K2 ), then the

last terms in equations 2-37 do not arise as a result of the

averaging process. In this case it is convenient to combine

equations 2-37c and 2-37d to form a single equation relating

the amplitudes Ql' Q2 and the sum of the phase angles (8 1 + 82 ).

The averaged equations for the system where the internal

resonance condition 2-36 is not satisfied can be written as

QI =
1 2-38a



QI
2

sin
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2-38b

where 2-38d

Therefore, the analysis of the system subjected to

combination resonance only is simplified, involving the

solution of three equation 2-38a, b, c only, while the

analysis of the system with combination and internal resonances

interacting involves the solution of four equations 2-37a, b,

c, d.

The analysis of equations 2-38 is considerably simpler

than equations 2-37. It is to be expected that even if

wI ~ w2 equations 2-38 can provide certain important details

of the response of 2-37. It is evident from the nonlinear

terms of 2-37 that the response of 2-38 and 2-37 are similar

for sufficiently small amplitudes. Consequently, the

boundaries of instability and behaviour at small amplitude

levels can be obtained from 2-38. For large amplitude motion

however it must be expected that the nonlinear resonance terms

will have a marked effect on the amplitude-frequency relation­

ship. It is also to be expected that the response of 2-37

passes over to the response of 2-38 as the detuning of the

natural frequencies ~l' ~2 becomes large.

The study of 2-38 thus forms the background against
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which the more complicated anllysis of 2-37 will be compared

to illustrate the effect of internal resonance on a combina­

tion resonant system.

2-4

(a)

QO
/ y~ v1

1T - 0-0- =
2

and sin q>0 = 2El KI 1T--
BI

Therefore,

2-39

2-40a

cos q>0 = ± 2-40b

Substituting 2-39 and 2-40b into 2-38c and applying the

notation for the ratio of the amplitudes and coefficients.

the steady state response curves for QOl is obtained, namely
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± 1
4

[BIB2 _ 4 EE] 1/2( ('1)1/2
KI K2 1 2

1 1/2)
+ (-)

'1
2-41a

and 2-41b

3 Al 2 D
S = (1 + ~) + 1 1 (! + '1)8" Kl as "4 K2 \) S

2-41c

A plot of equation 2-41 is given in Fig. 2-2 and

Fig. 2-3 for equal damping ratios and unequal damping ratios

respectively. The equation yields two branches, one stable

and one unstable branch. The unstable branch is shown in

dashed lines in the graphs.

(b) Analysis Including Internal Resonance

The steady-state a~mplitudes in this case can be

obtained by setting the first derivative terms on the left

hand side of equations 2-37 to zero. Due to the existance of

the additional internal resonance terms in equations 2-37a

and 2-37b, the ratio of the steady-state solutions cannot be

obtained as readily. From equations 2-37a and 2-37b one

obtains

sin 4>1
El [1 + ~ ]

= IT '1ITBl [1 + \) ]
S

El
S

sin 4>2 2 1 [1 - --2
= Y ITDl (Qo ) 2

2 [1 + ~ ]
\)

2-42

2-43
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From equations 2-37c, d one obtains

(-1 + v ) [-1 + v 4
1T(~1 + ).) 2" 3 Al (!) J

cos <PI ==
1T + -- ( Q0 1)27f CI. 7f 2-44B1

(-,1 + v) 2 B 1 [-1 + v JB s

== 7f [ (~1 + y) (-1 + ~2)
B1 (-1 + ~) 7f

cos <1>2 =
1 1

-::-Q"=-o-::Q"'o- 7f
2 1

2
[1 - 2!"-]

S

[_ 1 + !]
v f3

2-45a

[1/(Cl.7f)2 - 1T
2/S]

[-l/v + l/S]

2 2
+ 3A ( S/ (em ) - 7f )]

1 f3
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2 2 2
(S - TT ) + 3A

I
(S/(CiTT ) - TT )]

For a given set of system parameters and excitation

condition equations 2-42, 43, 44 and 45 are the equations to

determine the four unknowns QOI' TT, <PI and <P 2 o

The algebraic equations must satisfy the condition

Isin <pjl ~ I
J

Icos <pjl ~ I (j := 1,2) 2-46

With these requirements the equations 2-43 to 2-46 can

be examined to determine the approximate limits of the steady­

state solutions ° Firstly, considering 2-42, it is seen that

the parametric excitation represented by B
I

must have a certain

threshold value to overcome the effects of viscous friction

represented by Elo As the coefficients are positive sin <PI

will always be negative. Equation 2-43 indicates that the

inequalities 2-46 can not be met for Q0
2

« 1 unless the

numerator is zero and this suggests that a steady-state may

not be possible at low amplitude levelso

Equation 2-44 suggests that steady-state may not be

possible for large values of QO l because of the free form

Qo 1
2

and equation 2-46 again suggests that a steady state

value may not be possible for small values of Q0
2

and QOl.

The external detuning A can be eliminated between

2-37c and 2-37d to obtain

DI (Qo ) 2 2+ ~ 1 (l/TT - l/v) (2 + cos <p° 2 ) := 0 2-47
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The procedure for an ~lgebraic trial and error solu­

tion is now as follows. A value of 6°1 is chosen and the

value of 6°2 is found which when substituted into 2-42 and

2-43 obeys the inequalities 2·~46 and simultaneously satisfies

the equation 2-47. The corresponding frequency is then

found from equation 2-37c and 2-37d and is:

(1 - A) Bl i A QO 2= 1 + ~l - 4TI cos ~ol + 8 1 1 +

+ ~ D (Qo )2 (2 + cos ~02)
812

2-48

Plots of the steady state curves are shown in Figs. 2-2,

3, and 4). All calculations are based on the following data

Al = 0.05, A2 = 0.08, Bl = B2 = 0.05, Dl = 0.06, D2 = 0.09.

In Fig. 2-2 is shown the steady state curves of QO l
as a function of the external de tuning parameter A. It is

assumed that the damping coefficients of the system are the

same, namely, El = E2 = 0.01. Also the internal detuning

~ = ~l - ~2 is taken to be zero. It can be seen that by

neglecting the effect of internal resonance, (solution of

equations 2-38), the steady-state amplitude is underestimated

by 30% or more. The unstable branch of the curve is shown

in dashed lines.

By changing the damping of the system El = 0.01,

E2 = 0.03, so ~hat the damping coefficients are no longer

equal, the corresponding steady-state curves for QO l and Q0 2
are shown in Figs. 2-3 and 2-4 respectively. A number of

interesting features can be observed by comparing Figs. 2 and

3. First, the range of detuning frequencies over which

combination resonance becomes possible is increased for the
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case of unequal damping coefficients. In the case of

equal damping coefficients, the unstable range is 11 -AI < 4.8%

while the system with unequal damping coefficients has an

unstable detuning range of 11 AI < 5.5%. This increase in

the combination resonant range, due to unequal damping

coefficients is evident from equation 2-41 and was first

pointed out by Schmidt and Weidenhammer[44]. Secondly, while

there is a substantial shift in the steady state curves with the

internal resonance effect neglected, (equation 2-38), the

steady state curves with internal resonance are essentially

the same in both figures.

The third point is that the steady-state curve with

internal resonance in Fig. 2-3 does not exist for small values

of QOl' The same feature is observed in Fig. 2-4 where the

steady-state response of Q0 2 is shown. In other words, within

the unstable range of frequency detuning, a true steady-state

where the amplitudes of the generalized co-ordinates remain

constant does not always exist. In the present case, a steady­

state exists only when the detuning parameter (1 - A) is

larger than 0.985, or the external detuning A < 0.015. If the

influence of internal resonance is neglected, a steady-state

is always possible within the unstable de tuning range. Also shown

in Figs. 2-3, 4 are the results obtained from the direct

numerical integration of the equations 2-16. 'It can be seen

that the solutions neglecting the internal resonance terms

always under estimate the steady state response of the system.

Also,' by comparing the numerical integration results with the

steady-state response curve with internal resonance, it can

be seen that the solutions based on the method of slowly

varying parameters becomes increasingly inaccurate as the

external detuning (1 - A) increases.

Shown in Fig. 2-5 are ~ime history plots to indicate

how the amplitudes Ql and Q2 grow from a small initial value

to the final steady-state value. These results were obtained

by integrating the set of equations 2-37. The initial values

have no effect on the final steady-state. Only the time at
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which steady state is reachecl is affected by the initial

conditions.

2.5 NO?-SY~~!lroni~~? QUdsi~Steady Response

(a) Internal Detuning 61 = ~2 = 0

As indicated in the example with unequal damping

coefficients, a steady state cannot be reached for an external

detuning (1 - A) c 0.985. Since the unstable range of

detuning lies in the Tange 0.945 < (1 - ~) < 1.055 it is

now necessary to investigai::.e the type of response of the

system when ~he external detuning lies in the range

0.945 < (1 - ~) < 1.985. Shown in Fig. 2'0') is the time

history response of Ql a:r:d Q2 where the system is in a combina-­

tion and an internal resonance state with (1 - A) = 0.97. The

plots were obtained by numerically integrat~ng the set of

equations 2-37. It can be seen that the amplituc.es Ql and Q2
initially have a rapid rate oE rise and then oscillate about

some value which may be termed the "quasi steady-state value".

(b) Effect of I~ternal Detuning

To study the effect of internal detuning the frequencies

of free vibration w. = WO (1 + ~.) are separated by letting
J J

!:l2 ::::: - ~l and ~ now represents 2~1. In terms of the

averaged equations this internal de-tuning has no direct effect

on 2-37e but has a very important effect on 2-37f. The

steady-state synchronizeo state becomes increasingly difficult

to obtain as the detuning is increased. If the detuning is

large enough no synchronized sta-te can be reached.

Although the reasons for a synchronized state not

obtainable may' be cE££icult to explain in physical terms, an

explanation can be based on the averaged equaticns. By

including the internCll resonance, an extra equation 2-37f

describing the phase angle variable 1J 2 ::::: 28
1

- 28
2

must be

considered. For a St22dy state conjition to exist ~I 2 = 0 is

a necessilry condit.ion. From 2-37f iot is difficult too say
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exactly when this state is possible but it is evident that

this condition is dependent at least in part on the detuning

parameter 6. In Fig. 2-7 the effect of the internal detuning

on the ,threshold of steady-state response is plotted. Here

the viscous damping coefficients El , E2 are set equal to 0.01

anj fxom Fig. 2-2 it is seen that steady-state response is

possible for 6 = 0.0. As 6 is increased the range in which

a steady-state is possible changes. For 6 = 0.04, a steady

state is only possible for (1 - A) > .985. At 6 = 0.12 no

steady state is possible over almost the entire instability

zone. The synchronized state is dependent on the value of the

internal detuning. As 6 increases the condition ~'2 = 0 is

no longer possible. When this happens the trigonometric

terms sin ~2' cos ~2 in equations 2-37 will begin oscillatory

motion. The resulting cross-modulations between the ampli­

tudes and phases will be extremely complicated. But it can be

seen that as 6 increases, ~2 increase more rapidly and the

influence of the trigonometric functions of ~2 will take on

the nature of a high frequency superposition on the system

of equations 2-37 similar to the terms whose mean value were

calculated to be zero in the averaging process of the equations

2-26. Consequently, the equations with internal resonance

2-37 will pass over to the equations 2-38 where the internal

resonance effect is not included. However Kl = K2 = K must

then be substituted into 2-38.

Fig.2-8a shows the time history response of Ql and Q2
for 6 = 0.12, and (1 - A) = 1. From Fig. 2-7 it is seen that

these parameters are such that no steady-state is possible.

Following an initial disturbance the amplitudes grow rapidly

and reach a maximum at time T = 100. After this initial

overshoot the oscillations appear to become periodic for

T > 800 and a quasi-steady state motion exists. As the

detuning increases the frequency of the modulated motions

increase, and the amplitude of the modulations decrease.
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Fig.2-9a shows the effect of a large internal detuning on

the quasi steady state response of ~ = 0.24. By comparing

Fig.2-9a with Fig. 2-2 it is seen that the mean value of Ql
of the quasi-steady state mean coincides with the value of

QOl of Fig. 2-2 for the steady-state curve where the

internal resonance effect had been neglected.

For ~ = .24, Kl = 0.56 and K2 = 0.44 and the internal

resonance condition 2-36 is no longer satisfied. This means

that equations 2-37 which have assumed the internal resonance

condition to be at least approximately satisfied are not

valid if ~ is extrapolated to large values. Then, the

equations 2-38 will provide a more accurate description of the

solutions of 2-16, the original equations. The problem

of deciding which set of equations to use can be approached

from two points of view. Qualitatively, an analysis of the

system of equations 2-38 will not reveal the high amplitude,

modulated motion as shown in Fig.2-8a. Quantatively, the

analysis of equations 2-38 will provide the correct mean values

of Ql and Q2 for large internal de tuning only. To decide the

relative accuracy of the two sets of averaged equations the

solutions of the exact equation 2-16 were compared against

the solutions of 2-37 and 2-38 for increasing ~l. Shown in

Fig. 2-8b and 2-8c are the solutions of 2-38 and 2-16

respectively for D = 0.12. In Fig. 2-9 b , c are the

respective solutions for ~ = 0.24.

In Fig. 2-9a, the mean values of the quasi-steady

state response for both Ql and Q2 is equal to 0.54. This

value coincides to the value of the steady state response

neglecting internal resonance obtained in Fig. 2-2. This was

to be expected as Kl = K2 = 0.5. But with ~ = 0.24,

Kl = 0.56, K2 = 0.44 and the response of equations 2-38 is

as shown in Fig. 2-9b. Here QO l = 0.49 and Q02 = 0.55.

Fig. 2-9c shows the response of the exact equations 2-16.

Examining the response it is seen that while a steady-state

has not been exactly obtained the mean value of the quasi-
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steady state amplitudes xl = 0.50 and x 2 = 0.56. Therefore

for ~ ~ 0.24 the equations 2-38 provide a more accurate

evaluation of the response then the equations 2-37. As ~

is increased further the accuracy of equation 2-38 is

increased.

2.6 Observation and Discussion

On the basis of this investigation on the parametric

response of thin-walled beams the following observations are

made.

1. The method of averaging provides an accurate, approximate

mathematical analysis to nonlinear dynamic stability problems.

The solutions obtained by the averaged equations were

checked by direct integration of the exact equations and were

found to be in close agreement. In general, while the exact

integration would provide a small quantitative correction

the solutions were identical in a qualitative behaviour. This

would indicate that extending the averaging method to higher

order approximations would not introduce any qualitative

change in the behaviour of the solutions in the neighbourhood

of the external combination resonance zone which was studied

in this chapter.

2. A resonant solution leading to large amplitude oscillations

upon a small disturbance from the equilibrium position, can

only occur if the external excitation is within the boundaries

of instability. The width of the instability zone in which

the trivial solution is unstable is governed by the size of

the parametric coefficients, the absolute value of damping,

the ratio of the damping terms and the distribution of

natural frequencies. The characteristics of the response

following the transient solution is primarily dependent upon the

damping ratio and the extent of the internal detuning.

Outside the instability zone in the region of the "overhang"

large amplitude resonant solutions may be excited by large
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initial values.

3. The system under investigation satisfies an internal

resonant condition when wI ~ w
2

• This resonance has a very

important effect on the resonant response of the system.

First, the system with internal resonance leads to larger

steady-state responses than one without. The increase can

be up to 30%. Secondly, an internal resonance condition can

cause steady-state response in which the frequency of

motion of both co-ordinates is entrained to exactly 1/2 the

external excitation. Thirdly, the system with internal

resonance may have a resonant nonsynchronized solution where

the maximum amplitude of the modulated response exceeds the

steady-state. This modulated motion appears to be periodic

and persists even under large values of damping.

4. It was the purpose of this analysis to compare the special

condition when the natural frequencies of lateral bending and

torsion coincide. It was shown that this condition leads to

an internal resonance and that the resonant response of the

system has marked differences over the response of the system

when the natural frequencies are not approximately equal.

The modulated response which may occur under these conditions

takes the form of a continual energy exchange between the

lateral and torsional modes of motion. The peak amplitudes of

thes~ surges may exceed by 50% the value of the steady-state

amplitudes. Detuning of the natural frequencies by an

order of 6 > 0.16 will eliminate the internal resonance effect.

Consequently it is proposed that the structural system be

designed with this separation of frequencies in mind.

5. This theorecical investigation of the simultaneous

occurrence of an internal and external resonance condition

has shown that the resulting motion is sufficiently different

from the case when only an external resonance is considered.
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While the investigation was applied to a two mode approximation

of a simple thin-walled beam it may have far reaching

consequences in the dynronic stability study of other elastic

bodies where the natural frequencies of various modes of

motion may coincide.



CHAPTER III

THE INTERACTION OF TWO EXTERNAL PARAMETRIC RESONANCES IN

A TWO DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO

NON-CONSERVATIVE LOADING

3.1 Introduction

When a two-degree of freedom dynamical system is sub­

jected to an external parametric excitation, it may be excited

into resonance. A special feature of parametric resonance is

that a monofrequent external excitation may induce in a linear

system either a one mode or two mode response depending on

the relation between the external and natural frequencies. A

large number of possible resonance zones ex~st for both the

one mode and two mode response. The most important resonance

zones occur when the external frequency is in the neighbourhood

of twice the value of either of the natural frequencies

n ~ 2 wl ,2 and if the external frequency is close to the sum or

difference of the two natural frequencies n ~ WI ± w2 . The

former is called parametric resonance Type I while the latter

is called combination resonance or parametric resonance

Type I1[3l]. The study of parametric resonance Type I in non­

linear system has been carried out in the context of the

theory of nonlinear oscillations by Bogoliobov & Mitropolsky[3]

and in the context of dynamic stability of structures by

Bolotin[4] and Mettler[33]. The study of combination resonance
. I' h b t [38, 34, 15, 16]
~n non ~near system as een more recen .

All studies of parametric resonance in nonlinear

dynamical systems have assumed that the ratios of the

natural frequencies of the system are such that a single mode

resonance and a combination resonance do not occur simul­

taneously. However, it is possible to have both types of

parametric resonance occur simultaneously. It can be expected

67
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that if this happens the two resonances will reinfo~ce each

other to cause a greater response than each resonance

treated individually. Also it is to be expected that the

instability region of such a system will differ from the

individual zones of the uncoupled system.

By examining the resonance conditions it is clear that

an interaction of a parametric and combination resonance is possi­

ble say if WI = 1, w2 ~ 3 and an external frequency 0 ~ 2.

In this case, both the parametric resonance 0 ~ 2wl and the

combinational resonance condition 0 ~ w2 - w1are satisfied.

It has been shown by Mettler[31] that a combination minus

resonance is not possible in systems where the forces are

derivable from potential functions. However Piszeck[38] has

proven that systems subjected to non-conservative forces such

as followers forces that change their direction of application

with the deformation of the system are susceptible to the

combination minus resonance. In the present study a physical

system consisting of a double pendulum, subjected to a

follower's force P is considered. This model was first pre­

sented by ziegler[S8] and formed the basis of the early studies

in the theory of non-conservative stability.

For a constant thrust P this model is an example of a

self-excited system. At a certain critical load P , flutterc
oscillations with increasing amplitude will result following

a small disturbance from its equilibrium position. Below the

critical load flutter oscillations can also occur if the thrust

force P has a periodic component

P = Po + Pt cos (Q t)

for then a parametric instability will result when Q ~ 2w l ,2

or w2 - WI. The natural frequencies of the loaded system are

a function of the constant load component P. Thus even if theo
physical system is designed in such a way that the natural
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frequencies of the unloaded system are well separated from

the ratio w2/w l ~ 3, the action of the external loading Po

can cause this ratio to occur and cause the superposition of

the two external resonance zones.

It is the purpose of this chapter to investigate the

nonlinear response of a non-conservative two degree of freedom

system subjected to parametric excitation. The parameters

of the system are chosen such that both a type 1 and type II

resonance occurs simultaneously. The effect of the inter­

action on the linear instability zone is obtained and the

response of the coupled system is compared against the

response of each resonance treated on an individual basis.

First the general two degree of freedom systems will be examined

and the important features discussed. Then a specific

numerical example of the double pendulum will be investigated.

It is shown that the interaction effect has a strong qualita­

tive difference when compared to the uncoupled response.

3.2 The Equations of Motion

The equations of motion of a general two-degree of

freedom system, with cubic nonlinearities, can be written in

the form

2 2
X. + w. x. + €{ ~ e. X + cos(nt)

J J J m=l Jm m

2
~

m=l
b.x +g.}=O

Jm m J
3-la

/

where 3-lb

(j = 1,2 n = 1,2)

(j t- n)

where the x. represent the normal co-ordinates, w. the undamped
J J
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natural frequencies, e. the viscous damping coefficients,
Jm

b. the parametric excitation parameter, a' K the coefficients
Jm J

of the nonlinear terms and ~ the frequency of the external

excitation. It is assumed that self-excited oscillations of

the system 3-1 can not occur, that is the circulatory loading

is assumed to be below it's damped critical value[18]. This

means that flutter oscillations can only occur due to the action

of a parametric resonance zone.

Equation 3-1 can be transformed by the change of

variables

T = ~t

Kl = WI

~o

K2 = w
2

~o

~ = ~ (1 - A)
0

to

" 2 -1 2x. + K. x. + £{£ (2K. A x.)+
J J J J J

2
L:

m=l

e.
~ ,

S2 x m
o

3-2a

3-2b

3-2c

3-2d

+ cos (T)
2
L:

m=l

b.
~
~ 2

o

3-3

where A represents a small detuning in the external frequency

which allows the response of the system 3-1 to be studied in

the neighbourhood of the critical resonance zone.

The equation 3-3 is now cast into a suitable form to

apply the method of averaging. By introducing the polar trans-
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formation

X. ::: Q. (T) cos (K. T + 8. (T) )
J J J J

_ Q. cos \jJ.
J J

X. ::: - Q. (T) K. sin (K. T + 8. (T) )
J J J J J

- - Q. K. sin \jJ.
J J J

3-4a

3-4b

SUbstituting 3-4a, b into 3-3 the system of 4 first order

equations in the variables Ql,2' 81 ,2 is obtained

I

cos \jJ. - Q. sin \jJ. Q. 0
J ] J J

::: 3-5a

- K. sin \jJ. - Q.K. cosJ./J. e I • -£f.
J J J ] J .J J

(j ::: 1,2)

where

-1 2 e.
f. ::: £ (2K. AX. ) + L: ~ Xl

J J ] m::::l n m
0

2 b. gm
+ COS(T) 1: ~ X + -2

m::::l n 2 m n
0 0

3-5b

Expanding the equations 3-5 there results the following system
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of first order equations.

K.Q' .
J J

2= 2AK. Q. cos ~. sin ~. + B .. Q. cos ~. sin ~. cos L
J J J J JJ J J J

. "I . 2+ B. Q cos ~ Sln~. cos L - K.E .. Q. Sln ~.
Jrn rn rn,J J JJ J J

- E. Q K sin ~ sinJrn rn rn rn
3

~. + A.1Q. cos~.
J J J J

sin ~.
J

2 2+ A. 2Q. Q cos ~. cos ~ sin~.
J J rn J ·rn J

2 2+ A. 3Q.Q cos~. cos ~ sin~.
J J rn J rn J

3 3+ A.
4

Q cos ,I, sin ,I,. 3-6a
J rn ~m ~J

K.Q.8'. = 2AK.2Q~ cos 2",. + B .. Q. COs 2"I.
, J J J J J ~J JJ J ~J

cos L

+ B. Q cos ~ cos~. cos L -Q.E .. K.sin ~. cos ~.
Jrn rn rn J J J J J J J

- E. Q K sin ~ cos~. + A.
1

Q.3 cos4~.
Jm rn rn m J J J J

+ A Q 2Q cos3~. cos ~ + A Q 2Q cos2~. cos2~
j2 j rn J m j3 rn j J m



+ A
J
'
4

Q 3 cos3~ cos~.
m m J

(j = 1,2 m = 1,2)
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3-6b

where E.
Jm

Ee.
=~ BSG ' .o Jm

A.
Jm

(j =I m)

Ea.
=~

SG 2
o

3.3 The Averaged Equations

A combination resonance type II and a parametric

resonance type I can occur sim~ltaneously when the values of

the natural frequencies and the parametric frequency satisfy

the following relationships.

(combination minus
resonance condition)

(parametric type 1
resonance condition)

3-7a

3-7b

Equation 3-7a specifies that the parametric frequency

is approximately equal to the difference of the natural

frequencies while equation 3-7b states that it is also approxi­

mately equal to twice the first natural frequency. From

equation 3-2d it is seen that the quantity A is a measure of

how close the external frequency of the system satisfies the

parametric resonance conditions. This external detuning is
. . -1 2 ). t' 3 3reflected ln the expresslon E (2K. AX. ln equa lon - .

J J
The method of averaging is now applied to equations

3-6a and 3-6b. During the averaging procedure, the conditions
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imposed by the parametric resonance conditions 3-7a and 3-7b

are born in mind to obtain the averaged equations.

A
+ ~ Q 2Q sin(38

l
- 8

2
)

812
3-8a

A24 Q 3
- -8- 1 sin 3-8b

3-8d

The variables Q. (T) and e.(T) in equations 3-8 now
J J

represent the mean values of Q. and 8. over one period of
J J

oscillation. In equation 3-8a the first term on the right
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hand side is caused by the fact that the parametric type 1

resonance condition of equation 3-7b is satisfied. The

second term arises due to the combination resonance condition

3-7a. The third term is due to viscous damping and the

fourth term is due to the internal resonance condition caused

by the fact that the parametric resonance conditions stipulate

that 3Kl = K2. In the second equation 3-8b the type 1

resonance condition was not satisfied for coordinate x 2 and

consequently no term representing this resonance was carried over

into the averaged equations. The terms in equation 3-8c, d

are similar except that here the first terms on the right hand

side are due to detuning, the terms with the coefficients

All' A13 , A21 and A23 represent the contributions due to the

nonlinear restoring forces and the terms with coefficients

A12 , A24 arise due to internal resonance.

As was shown in Chapter 11 an internal resonance

condition can affect the nature of the response with respect

to a variation in the steady-state values and with respect

to obtaining a steady-state. In this chapter, it is intended

to concentrate on the interaction of the external resonance

zones only. Consequently, it will be assumed that the

internal resonance coefficients A12 , A
24

, as a first approxi­

mation can be neglected in the analysis that follows.

3.4 Stability of the Trivial Solution Q. = °
J--

The stability of the trivial solution, Q. = 0, can
J

be obtained from the linearized equations. Using the rectan-

gular transformation,

y. = Q. cos e.
J J J

z. = Q. sin e .
J J J

(j = 1,2)

3-9a

3-9b



the stability condition

sidering the conditions

tives of 3-9
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can be studied conveniently by con­

y. ~ 0, z. ~ 0. Taking the deriva-
J J

y' . = Q'. cos 8. - Q. sin 8. 8'.
J ] J J ] J

z'. = Q' . sin e. + Q. cos 8. e'.
J J J J J J

Each pair of equations 3-8

3-l0a

3-l0b

sin 3-l1a

can be transformed by multiplying 3-1la by cos 81 and 3-llb

by sin 81 and subtracting and rearranging to obtain

- cos (8 - e )1 2 3-l2a

which can be rewritten as:
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3-12b

Similarily the other three equations for y'2' z'l and

can be obtained. Together they form the homogeneousz'
2

system of first order equations:

K1Y'1
EIlKl _ AK 2 +

Bll 0
B12

-2- 1 -4- - -4- Yl

KlZ'l
Bll + AK 2

EIIKI
B12 0 zl 3-l3a-4- 1 2 -4-

-
K2Y'2 0

B21 E22 K2 _ AK 2- -4- 4 2 Y2

K2Z'2
B2l 0 AK 2

E22 K2
z24 2 2

which can be written compactly as

{ z;; '} = [AJ {z;;} 3-l3b

where {z;;} represents the vector of the variables Yl' zl' Y2 ,

z2 and [AJ a matrix of constant coefficients. The stability of

the variables y., z. and in turn the stability of the Q. is
. J J J

based on the e~genvalues of the matrix A. Let

3-14

Substitute 3-14 into 3-13b and solve the resulting eigenvalue

problem



I [AJ - pI I = 0
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3-15

If any of the eigenvalues of 3-15 have a real part greater

than zero the solutions of 3-14 are unstable and hence the

trivial solution is unstable.

In general, an explicit solution of 3-15 may be

extremely difficult and it is most convenient to solve 3-15

by standard computor techniques. For only a single resonance

condition and zero damping coefficients the instability

zones can be determined explicitly as was done in a similar
[19)

manner by Hsu. For Bll = Ell = E22 = 0, the equation 3-15

can be written as:

0 AKI

B12
- P - - K

1
4

0
B21 AK2- p K24 -

= 0 3-16

AKI

B12
0Kl 4 - P

B21 AK 2 0K2 4 - P

Expanding 3-16 the characteristic equation is

4 2 2 2 1 B12 B21P + P (AK2 ) + (AK
1

) + - - -)8 K1 K2

= 0 3-17a
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1 2 2 1 B12 B21
-( (AK) + (AK

l
) + - --- ­2 2 8 K1 K2

1
± 2"

2 2 1 B12 B21 2 1 B12[(AK2 ) + (AK l ) + - --- -] - 4 (AKI AK2- ----8 Kl K2 16 Kl

3-17b

Roots with positive real parts can only exist if

2 2 1 B12 B21 2 1 B12 B21 2
[(AK2 ) + (AKl ) + -8 --- ---] - 4(AKI AK2 - -- ---- ---) < 0K1 K2 16 Kl K2

3-18a

(AK - AK )2 < 1 B12B
21 3-18b

1 2 "4 K1K2

A
2

(K - K )2 <
1 B12B21 3-18c1 2 - "4 Kl K2

IAI <
1 B12 B21 3-18d2' - ----K

l
K

2

Equation 3-18d shows that the external detuning must be

within the limits ± ~ for an instability to occur.

3.5 Uncoupled Parametric Type 1 and Type 11 Resonances

If the natural frequencies are such that the two para­

metric resonances can not occur simultaneously (i.e. K2 ~ 3Kl )
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then each resonance can be treated on an individual basis.

The typ,~ 1 reson.:mce cal~ be obtained frOin equations 3-8 by

setting B
l

? = B
21

= A
12

= A24 = 0 and the type 11 resonance

can be obt2ined by setting B
ll

= A12 = A24 = O. In these

uncoupled resonance caser,; the analysis is considerably simpli-

-fied involving either the solution of 2 or 3 averaged equations

as compared to the analysis of the syst.em with both resonances

interacting which involves the solution of four equations (3-8).

To evaluate properly the effect of the interaction of the two

parametric resonances, a comparison will be made between the

solutions of eqnation 3-8 and the eq\13.tions 'dh Lcll neglect the

coupling effect. In this way/the qualitative and quantitative

differences of the interaction effect will become ~pparent,

including the crror estimate of basing an analysis on the

approximation that the interaction can be neglected.

(a) Uncoup~ed.Paramet~icType I Resonance

If the frequencies are not near an integer ratio, a

parametric type I resonance will develope if ~ ~ 2~l'

Applying the averaging operator to the equations 3-6a, b, the

averaged equations are

K Q'
B
ll Q

l
sin 26 1

Ell
KIQ l

3-l9a-- -1 1 4 2

K2Q'2
E22

3-l9b= - -2- Q2K2

K fj' AK I
2

+
B
ll ?G + 3

1'...11°1
2 1 A13Q2

2
3-19c= -ii-COS 8 + 4"1. 1 ~ 1

= OK 2 + 3 A Q 2 +
A 2 8 21 2 3-l9d
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It can be seen from equation 3-19b that Q2 is not

excited and any initial disturbance of Q2 will die down due

E
to the damping term - ~2 Q2K2. With Q2 + 0 the equations

3-19a and 3-19c are uncoupled from the system and can be

written as:

KIQ I

l

Bll sin 28 -
EIIQl 3-20a= -4- Ql ---K1 2 1

K1 8'1
Al Kl +

Bll 28 1 + 3 2 3-20b= 2 -4- cos 8 AIIQl

Equations 3-20 are the averaged equations of a non­

linear Mathieu type equation and represent a single mode

response of the system 3-1 to an external mono frequency

excitation. The steady-state boundaries can be obtained by

setting Ql = QOl' 81 = 8°1' Q'l = 8 1

1 = O. Then

sin 28° =1 3-21

substituting into 3-20 and using the definition

3-22

the steady-state amplitude frequency relationship is

obtained.

1 - 3 All Q 2
"4 Kl 1 3-23
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From equation 3-23 it is seen that viscous damping represented

by the coefficient Ell diminishes the instability region for

which a parametric resonance is possible. If

>

the instability zone vanishes and no parametric resonance is

possible. This means that the parametric excitation coeffi­

cient Bll must exceed a certain threshold value for resonance

to take place.

(b) Uncoupled Parametric Type 11 Resonance

If it is assumed that the frequencies are not near an

integer ratio, the averaged equations for the combination

minus resonance, n = w0
2

- wO
l

can be obtained from equations

3-6 and are:

Q'
B

12 Q2 sin (8 - 8 2 )
Ell

Ql= 4Kl
- -2-1 1

Q'
B2l Q1 sin (8 - 82 )

E12 Q2= 4K2
- -2-2 1

3-24a

3-24b

8' =1

8' =2

3-24c

3-24d



83

The phdse angles can be combined to

¢ I A(K1
K

2
)

1 Bl2 Q2
B
2l

Q
1 ij) 3-25a= - + -(--- --- - --- ---) cos

4 K
l

Q
1

K
2

Q
2

A 2
A

2 1 A13 2 A
23

Q1
2

)1 (-1- 1 Q
1

21 Q
2

.:- - Q2 ) + -(-- -8 Rl K2 4 K
l

IZ
2

where tP == e - G1 2
3-25b

Equation 3-25a can be rewritten in the form

cos :IJ

1 B12 Q2
B

21
Q -7 Q

1
2

3 All A
23¢ I = -A + -(- -- .-l) + 4- (- --- - --)

4 Kl Q
l K2 Q2 2 K1 K

2

Q 2
2+ -­
4

3-26

where the relationship K
l

- K
2

= -1 has been substituted.

The steady state equations can be obtained from 3-24

and 3-25 by setting Q1 == QOl' Q2 = Q02' ¢ = ¢o, Q'J. = Q' 2 -- ¢' == o.
'The ratio of the stea.dy st.at.e amplitudes can be obtai.ned

from 3-2~a and 3-24b and is:

3-27

It is t.o be noted that for this st.udy of a combinati.on rr.2.nus

resonance, B12 B21 < O. The expression 3-27 is therefore a

real quantity. Using the expression 3-27 the steady-state
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ampli t.ude r:esponse can be o}-,; .ined as follows:

1= 1 ± 4

where the substitutions

2
Q

2- --
4

3-28

H' QO
sin <po 2

.1."11 1 K1
3-29a.-

B12
QO--

2

;-;----
¢o ± . 2.' 3-29bcos 1 - S1-n <po

3-29c

have been carried out.

Three important differences can be observed between

the mono frequency response of the type I resonance and the two

mcde response of the combinatioflfi.lnUS type II resonance,

namely

(a) the destabilizing effect of viscous drullping

(b) the frequencies of the responding modes and

(c) the effect of the l":.onlineur terms.

From equat:.:Lon 3-28 it cO.n be S8en that if Ell :f E22
but Ell' E22 axe small, the 'l,vidth of the resonance zone can

be made arbitrarily large. This is in distinct contrast to
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equation 3-23 of the type 1 resonance where the addition of

viscous damping can only decrease the width of the resonance

zone.

For the steady-state response, the phase angle

variable ~ = 81 - 82 must remain constant. This means that

individual frequency corrections can occur in each mode but

in such a way that the external resonance condition K2 - Kl = 1

is maintained. Consequently, both modes must have equal

frequency corrections.

The nonlinear terms are expected to limit the maximum

amplitude growth. By inspecting equation 3-26 it is seen

that the coefficients of the nonlinear terms are made up of the

difference of the constants A.. This will tend to reduce
Jm

the effect of the nonlinearities. In fact, a special system

could be conceived where the nonlinear effects could cancel out

completely. Also, from the nature of the coefficients it is

possible that the steady-state response curve can exhibit a

hardening or softening type of nonlinearity even if the

system is composed of hardening type nonlinear terms.

3.6 Steady-State Solutions

The steady-state response curves for the type 1 and

type 11 resonances can be plotted directly from the equations

3-23 and 3-28 respectively. The steady-state curves for the

coupled system can not be written out explicitly. The solutions

in this case must be obtained by trial and error.

(a) Uncoupled Type 1 Resonance

In Fig. 3-1 the steady-state amplitude QOl is plotted

against the non-dimensional frequency ratio QjQ. Theo
condition QjQ = 1.0 means that the external resonance cond~tion

o
is exactly satisfied and the external detuning A is equal to

zero. The value of the coefficients for which these curves

are plotted are as indicated in the figure. It is to be noted
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that the response curve has bom branches and the unstable

response curve is marked by dashed lines. The steady-state

amplitude Q02 is zero in this resonance. The response curves

exhibit a hardening type nonlinearity and lean towards the

high frequency side. As predicted by equation 3-23, a

steady-state response is always possible for A < 0 or

n/n > 1. The width of the instability zone is given by
o

equation 3-23 by setting QOl = O. Within this zone any small

initial disturbance will grow and finally reach the steady

state value. Over the width of the instability zone it is

seen that the steady-state amplitude QO l is zero at the low

frequency side of the instability zone and increases continuously

as the external frequency increases. Outside the instability

zone large initial disturbances may shock excite the system

into resonance in the area of the "overhang" (1 - A) > 1.1.

(b) Uncoupled Type 11 Resonance

The steady-state amplitudes QOl and Q02 for the

combination resonance are plotted in Figure 3-2 with the values

of the coefficients shown in the figure. In contrast to the

type 1 resonance curve, the response curves exhibit a lean

towards the low frequency side as is characteristic of

systems with softening type nonlinearities. The width

in the instability zone is given by equation 3-28 by setting

QOl = Q0 2 = o. Within this zone any small initial disturbance

will again cause large amplitude oscillations.

(c) Coupled Type 1 and Type 11 Resonance

For the coupled system where both type 1 and type 11

resonance occur simultaneously the steady state must be

sought by trial and error methods. Replacing the amplitudes

Ql,2 and phase angles 81 ,2 of equat~on 3-8 by their steady­

state values QOl,2 and 8° 1 ,2 and neglecting the internal

resonance condition by setting A12 = A24 = 0, the equations
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from which the steady-state values are sought can be written as

sin

3-30a

o == 3-30b

3 All QO 2 I Al3 QO 2
+ 8 K

I
I + 4 K

I
2

From equation 3-30b

3-30c

3-30d

and

sin (8° - 8° )I 2 3-31a

E K 2 QO 2

I - 4 (~~) (~)
B21 Q I

3-31b
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sin 3-32a

Because of the condition lsin (eO l - e0 2 ) I ~ 1, 3-32b

equations 3-31 and 3-32 already impose restrictions on the values

of the coefficients for which a steady-state is possible. By

eliminating the external detuning between 3-30c and 3-30d a

relationship between the amplitudes QO l and Q0 2 can be

obtained.

B QO
1 QO 2] + _1__ 21 1+ 4 A13 2 2 [--4- ---Qo cos (eO l - e0 2 )

K 22

3-33

the

The

By trial and error, using equations 3-31a, b,3-33, and

condition 3-32b, steady-state amplitudes may be obtained.

amplitude-frequency relationship is then given by

3-34

The results of the numerical solutions of equation 3-30
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to 3-34 are as shown in Fig. ]-3. In addition to obtaining

the steady-state values of the amplitudes it is also necessary

to check the stability of the trivial solution QOl,2 = O.

This was done by numerically solving the eigenvalue problem

given by equation 3-15. It was found that R (p) > 0 occurred

in the range A = ± .082. Compared to Fig. 3-1, the coupled

instability zone is less by 16% then the type 1 uncoupled

zone. Only over a small portion of the instability zone, is

a steady-state solution possible. The steady-state curves

on the low frequency side coincide for QO. = 0 with the
J

boundary of the instability zone as determined by the insta-

bility analysis of the trivial solution. On the high fre­

quency side a steady-state condition appears possible for

nino> 1.022. In this case the amplitude QOl has a much

larger value than the amplitude Q02. As nino increases the

response is predominantly in the first mode as shown by the

large value of QOl. This may be expected by comparing

Fig. 3-3 to Fig. 3-1 where it is seen that the uncoupled

type 1 response curve slopes to the high frequency side.

3.7 Transient Response

In order to find out the nature of the response where

the algebraic analysis has indicated that no steady-state is

possible, a study of the transient response is necessary. For

completeness, the transient response of the uncoupled cases

will also be studied.

(a) Uncoupled Type 1 Transient Response

The time history response for A = .02 is given in

Fig. 3-4. The 'amplitude Ql grows exponentially following a

small disturbance. As the amplitude builds up the nonlinear

terms begin to take effect and the amplitude Q1 after several

oscillations takes on a steady-state value. Similarily the

phase angle also takes on a steady-state value. At this point
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the system is in a synchroniz8d state and the frequency of the

response is exactly on~ half the frequency of the external

excitation. The amplitude Q2 is not excited and approaches

zero. The phase angle 82 is coupled to the amplitude Ql as

shown by equation 3-19d and increases with time. The rate

of change of 82 , however, reaches a steady state value. The

overshoot, or maximum amplitude reached before steady-state

takes place is in the order of 40% greater than the final

steady-state value.

(b) Uncoupled Type 11 Transient Response

In Fig. 3-5 are shown the response curves by numeri­

cally integrating the system of equations 3-24. Again it is

noticed that the transient solution has a pronounced over-
t 1\

shoot after which the amplutides settle in on a steady-state

value. The overshoot for this case is in excess of 20% of

the steady-state values. The phase angles 81 and 82 increase

continuously with time but the difference 81 - 82 reaches a

constant value. This means that each mode has an increased

frequency correction which can be calculated from equations

3-24c and d.

(c) Coupled Type 1 and Type 11 Transient Response

The nature of the transient solutions pr6ceding the

steady-state and the nature of the solutions where no steady­

state is possible is obtained by integrating the averaged

equation system (3-8). The numerical integration is also used

to verify the stability of the steady-state curves shown in

Fig. 3-3. Fig. 3-6 shows the response at (1 - A) = 1.01 in

the region where no steady-state is possible. The two time­

history curves plot the amplitudes Ql' Q2 against the non-dimen­

sional time T. The integration was continued until a quasi­

steady-state condition was obtained. After T > 600 the response

curves appear to become periodic although the nature of this
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periodic response appears complex. The mean v~lue of the

amplitude Q
l

can be scaled from the plot and is approximately

1.4. This can be compared to Fig. 3-1 where the maximum

amplitude Q
l

at QIQo = 1.01 is 1.22. The mean value of Q2 is

0.7 and is in excess of 50% of the value of Q
2

given by the

uncoupled parametric type 11 curve.

Fig. 3-7 shows the response curves for the frequency

(1 - A) = 1.08. This is just within the instability zone and the

rate of growth of the amplitudes is at first very slow.

However the amplitudes continue to grow and finally at

T > 1100 reach a steady state. The steady-state values agree

with the algebraic steady-state values as shown in Fig.3-1.

The overshoot in this case is approximately 30% in excess of the

steady-state value.

3.8 Example of a Double Pendulum with Circulatory Loading

Statement of the Problem

The response curves obtained in section 3-6 and 3-7

were based on the mathematical model of the equations 3-1

without direct application to a specific physical model.

This was done to demonstrate the key points of the interaction

problem. To obtain a better physical insight and also to

provide a basis for experimental investigation the physical

modal of the double pendulum first proposed by ziegler[58l

will be examined.

The model is shown in Fig. 3-8 and consists of a

double pendulum which is allowed to rotate in a smooth hori­

zontal plane. It has two rigid bars of negligible weights and

equal length ~ and two masses ml and m2 . A force pet) is

assumed to act tangentially at the free end of the bars. At,
the hinges act the restoring moments cR. (~., ¢.) which may be

J J J
linear or nonlinear functions of the generalized co-ordinates

~j and their time derivatives. It is assumed that the dis­

placement of the angles ~. is small so that the small
J
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angle assumptions sin¢ = ¢, cos¢ = I hold. The Kinetic

Energy Tis:

3-34a

For the case ml = 2m2 = 2m, the kinetic energy can be written

as·

3-34b

The generalized forces S. corresponding to the generalized
J

co-ordinate ¢. can be obtained from the expression
J

oW. = s. o¢.
J J J

where OW. is the work done by all applied forces
J

is increased by o¢ .• The generalized forces due
J

load P (t) can be obtained from the expression

3-35

when ¢. alone
J

to the applied

3-36a

3-36b
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The generalized forces due to the external force and the

restoring forces is then:

51 = - p~¢ - cR2 1

By means of Lagrange's equations:

101

3-37a

3-37b

d (aT)
dt ~

J
(j = 1,2) 3-38

the equations of motion are:

2A: n 2 ;h
2m~ ~1 + mN ~2 + CR2 = 0

which can be re-ordered in the more convenient form

"¢1 + 0.5 R1 - R2 + 0.5 F ¢2 = 0

"
¢2 - Rl + 3R2 - F ¢2 = 0

3-39

3-40a

3-40b
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where primes now mean differe. '.tiation with respect to the

nonnalized time T where

= P{t) R­
c

3-4la

3-4lb

•
(a) Description of the Restoring Functions cR. (¢., ¢.)
~~--="':""::--=--"--=-~::"-;:~-=--:""::'-_--=--~~--=~~.':"---'--J-J--J-

The restoring moments cR. (¢., ¢.) are taken to be of
J J J

the form

cR. (¢., ¢.)
J J J

- 2 - •= [c + a¢. ]¢. + e¢.
J J J

3-42

where a represents the strength of the nonlinear cubic part of

the restoring spring. The plus sign designates a hardening

spring. The coefficient e is a measure of the value of the

viscous damping. The three coefficients c, a and e are taken

to be equal for both restoring functions.

Instead of continuing the analysis in the variables

¢. which represent the actual physical co-ordinates at the
J

double pendulum model, new variables x. are introduced
J

defined by

3-43

For re~toring functions which have a pronounced yielding

effect ¢ would correspond with the yield point. For cubicy
restoring functions a pronounced yield point does not exist
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and ¢ may be taken as the proportional limit. The variables
y

(x 0' - 1) now measure the extent to which the angles have
J

entered the nonlinear range.

(b) The Equations of Motion

By specifying a harmonic time varying component in

the thrust force

3-44a

and substituting

e e
3-44b=

~(mc)1/2

- 2
a¢

a = ~ 3-44c
C

the equations 3-40 can be rewritten in matrix notation.
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The dots over the variables x. now represent differen-
J

tiation with respect to the normalized time T. In the

numerical analysis to follow the values of e, a and Ft will

be taken as 0.01, 0.05 and 0.10 respectively.

(c) Transformation to Normal Co-ordinates

The equations 3-45 are now in the form

2
x.+ l: C.X +e:f.(x.,x.,QT) =0

J m=l Jm m J J )
3-46

To obtain equations 3-46 in terms of normal co-ordinates the

linear transformation

{x} _ [D) {y} 3-47a

where

xl Yl
1 1

11+)' 12
r /1+)'2

2
y

{x} = ,{y} = ane;. [D] _.

Yl Y2
x 2 Y2

Il+y1 2
r

/1+)'22 r

- C21 (j 1,2) 3-47by. = :::

J C22 -
2w.

J

is applied to equations 3-45. In equations 3-47b the w.
J
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designates the natural frequencies of the abbreviated system

e = a = Ft = O. Pre-multiplylng equations 3-45 by the inverse

LD]-l the equations are brought into normal form

1 0

o 1

+
o

o

+

3-48

+a = 0

The equations 3-48 are now in the form of the equations 3-1

and the approximate method of analysis of 3-48 can proceed

as detailed in Section 3.2 to 3.7 •.

(d) Numerical Example

This model, described mathematically by Equation 3-45

has been analysed for the onset of instability. For zero

damping coefficients the critical load Fc has been calculated

to be F = 2.086. For the case of small damping e = 0.01 thec
critical load was calculated to be Fd = 1.464. It is a

characteristic of this type of system that in the case of

vanishing damping the cri.tical load can be lower than the criti­

cal load for zero damping.

In Fig.' 3-9 the natural frequencies of the undamped

linear system are plotted as functions of the loading Fo • It

can be seen that for Fo ~ 1.15 the ratio w2/w l ~ 3. At this

point of the external loading it is to be expected that the
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two parametric zones type I and type II will coincide. The

averaged equations will then be similar to the system of

equations 3-8. For Fo = 1.15 the coefficients of the

equations 3-48 were calculated and are:

WI = .486;

W
2

= 1.45;

ell = .000916;

e 21 = - .0071;

= .0027

= .0341

b ll = .126; = - .2314; all = .116; = .303

b 21 = .6135; b 22 = - 1.126; = -.274 = .196

a 21 = 2.93;

a 23 = 3.23;

= - 4.56

= .245 a = 0.05

Using these figures the uncoupled type I and type II

steady state curves are obtai~ed and plotted in Fig. 3-10. It

is seen that the type I curve has a narrow instability zone

of IAI < .017. The type II resonance has a wider instability

'zone IAj < .081 which is 4.8 x the size of the type I resonance.

An indication of the instability zones can be seen by comparing

the damping coefficients d .. and the parametric coefficients
'1)

b ij • The damping ratio of the two modes dll/d22 is in the

order of 1/38 and by Equation 3-28 a large combination resonance

zone can be expected. This shows the destabilization effect

of viscous damping on the width of the instability zone. For

zero damping the width is given by Equation 3-18d and is

IAI < .0188. Consequently the viscous damping effect has
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caused an increase of the width of the combination resonance

zone by a factor of 4.3. This is quite a surprising fact

particularily as the damping coefficients of the physical modal

were chosen to be identical. It appears that the effect of

the non-conservative loading is to reduce the effect of

damping on the first mode and increase it on the second mode.

In other words, the action of a non-conservative loading

appears to favour excitation of the first mode.

The danger of destabilization must be viewed in a

proper perspective and the rate of rise of amplitude following

an initial disturbance must also be considered. If the

positive real part of the roots of Equation 3-15 are very

small the build-up of oscillations will take a long time.

From a practical point of view, an instability becomes more

dangerous if the increase in amp~t~de is fast once instability

starts. A measure of the "degree of instability" can be

obtained by plotting the maximum value of R(p) of Equation 3-15.

This was done in Fig. 3-11 where R(p) is plotted against

(1 - A). The intersect of R(p) = 0 is almost indiscernible as

the value of R(p} becomes nearly zero in the range

.9 < (1 - A) < .93. The actual intercept is at (1 - A) = .92

or A = ± .08. The positive value R(p) increases as the

external detuning IAI decreases. At (1 - A) = 0.992 there is

a sudden increase in the value of R(p) up to a maximum of

R(p) = .0129. From this figure it is seen that not all points

within the unstable zone have the same degree of instability.

The most dangerous region is the one bounded by the parametric

type 1 zone.

Fig. 3-12 to 3-14 show the time history plot of the

uncoupled parametric type 1 and type 11 response. Fig. 3-11

represents a single mode response of the first mode at

(1 - A) = 1.0. There is a quick exponential rise of the

amplitude Ql and an exponential decay for the amplitude Q2'

Ql shows very large oscillations about a mean steady-state
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value which was not obtained \'i thin the integration period

T = 1600. This is because the damping coefficient in the first

mode is extremely small. Fig. 3-13 shows the response of

the uncoupled type 11 resonance at ~/~o =.0.95. From Fig. 3-11,

R(p) = .0007 and it is to be expected that the build-up of

amplitudes is extremely slow. This is indeed the case as the

amplitude Ql has only tripled the value of the initial distur­

bance at 1 = 1200. At ~/~ = 1.0 the build-up takes place
o

at an increased rate.but the curve of Q
l

does not exhibit the

large overshoot as was evident in Fig. 3-5.

For the coupled type 1 and type 11 response Fig. 3-15 is

quite similar to Fig. 3-13 except that a modulated motion is

superimposed on the response cu~vesi the amplitudes of this

modulated motion appears to be increasing in time. Fig. 3-16

is also similar to Fig. 3-14 with a modulated motion super­

imposed on the response curve of Fig. 3-14. The modulations

are quite large reaching approximately 50% the values of

amplitudes of the uncoupled type 11 resonance. The maximum

value of Ql within the integration limit T < 1600 is 2.22

which is 1.3 times larger than the maximum amplitude reached in

Fig. 3-14. The wave form for Ql and Q2 appear to reach a

quasi-steady-state although the form of wave motion fot Q2 is

complex.

(e) Comparison of the Response of the Averaged Equations and

the Exact Equations

The response of the averaged equations shown in Fig. 3-16

can be plotted in terms of the co-ordinates x. by applying the
J

transformation 3-47, i.e.

3-49
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The responses in terms of the original coordinates xl and x 2
are shown in Fig. 3.17. The numerical values used in the

transformations are:

Fo = 1.15, dll = 0.85, d 12 = 0.255, d 21 = .527 and

d 22 = - 0.967

Fig. 3-18 shows the integration of the exact

equations 3-45. The time scale has been normalized to T

and the frequency of the external excitation is taken to be

Q = 2w
l

. Comparing the two response curves it is seen that

the qualitative behaviour is similar although the number of

beats in the averaged equations are more frequent over the

sa~me time interval. The amplitude xl from the averaged

equation is 1.3 times the amplitude of xl of the exact

equations. The amplitude x 2 of the averaged equations is 1.05

times the amplitude x 2 of the exact equations. The averaged

equations overestimate the response both in the sense of an

increased modulation effect and increased maximum amplitude.

From a design point of view, the averaged equations thus

provide a conservative approximation of the actual response.

3.9 Discussion and Observations

Based on the analysis of a two degree of freedom

system with viscous damping and cubic nonlinearities, the

following observations are drawn concerning the interaction of

two external parametric resonant zones.

1. A two degrees of freedom system in general has three main

parametric resonance regions. A parametric resonance type 1

can occur when the frequency of the external periodic form is

approximately equal to twice one of the natural frequencies

and a parametric resonance type 11 can occur when the frequency
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is approximately equal to the difference of the two natural

frequencies. An interaction effect between the external

parametric resonances occurs if the natural frequencies of the

system are near the integer relation say w2/w l = 3, (W l <W2 ).

When this latter ratio is satisfied a coupling of the para­

metric type 1 and type 11 resonance occurs. This coupling

influences the size of the instability zones, the steady­

state amplitude relationships and the transient response.

2. Viscous damping has a strong influence on the width of the

instability zone. For the uncoupled type 1 parametric resonance

viscous damping causes a narrowing of the instability zone.

For the uncoupled type 11 resonance it is primarily the ratio

of the viscous damping terms of the normalized system that

dictates the width of the resonance zene. In general, the

further the ratio of the damping terms is from unity, the

greater is the width of the instability zone. For the coupled

system both the stabilizing and destabilizing effect of viscous

damping act simultaneously. Based on a numerical evaluation

of the eigenvalues of the stability matrix, it was found that

the width of the instability zone of the coupled system main­

tained a position between the two instability zones of th=

uncoupled system. with respect to design criterion the largest

instability zone of the two uncoupled resonances can be taken

as a conservative measure of the width of the coupled insta­

bility zone.

3. The interaction effect of the two external resonances

causes both a qualitative and quantitative difference on the

response amplitude. The resonant amplitude frequency relation­

ship can be divided into two parts. In the one part, a steady­

state response is possible and in the other part a steady-

state condition is not possible. When a steady-state is possible

the envelope of response amplitude remains at a constant value.

The maximum steady-state amplitude in this case is about 10%
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over the maximum steady statE amplitude assuming there is no

interaction between the two types of parametric resonance.

When a steady-state condition is not possible the

envelope of maximum response undergoes large amplitude modu­

lations. These modulations appear to be periodic although

the wave fOl:m of the periodic motion becomes complex. The

maximum amplitude of this quasi-steady-state motion exceeds

the uncoupled steady-state amplitudes. From the present

investigation it was observed that the maximum amplitude of

the quasi-steady motion may be larger by 70% than the

uncoupled steady-state amplitude.

4. Before either a quasi-stea~y state or a steady-state motion

is reached, the system undergoes a transient phase. For the

uncoupled system the transient growth follows a well-behaved

pattern. From a small initial value, the amplitudes grow

exponentially, overshoot the steady-state response to reach

a maximum and then after several smaller oscillations

finally reach a steady-state. For the coupled system, it

was observed that the transient motion consists of the

exponential build-up followed by a number of oscillations

about the mean value of the quasi-steady state response. The

maximum response however does not necessarily occur at the

first overshoot but was also observed to occur near the

enQ of the transient phase of the motion.

5. The rate of growth of amplitude varies considerably over

the width of the parametric resonance zone. The fastest rate

of rise occurs when the frequency of the external excitation is

within that region enclosed by both the uncoupled resonance

zones.

6. The solutions obtained by the method of averaging were

checked by direct numerical integration. The method of
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averaging does provide the co~rect qualitative nature of

the response. In addition the method of averaging slightly

over estimates both the maximum amplitude response and the

modulation effect and can be considered as providing a con­

servative estimate for design purposes.



CHAPTER IV

PARAMETRIC RESONANCE OF A SINGLE DEGREE OF

FREEDOM SYSTEM WITH HYSTERETIC DAMPING

4.1 Introduction

Restoring forces with a hysteretic force - deflection

or moment-rotation characteristic have been found to be

reasonable approximations to describe the behaviour of many

engineering materials and structural assemblies under cyclic

loading. Much attention has been given to the study of

dynamical systems containing elements with hysteretic con­

stitutive relationships. Due to the nonlinear and loading

history dependent nature of such elements, such problems are

in general not amenable to analytical treatment. However,

successful analytical analysis has been carried out to

systems with piecewise linear hysteretic elements. The two

most common of these are the bilinear and the double bilinear

models. The study of ordinary forced resonance of one degree

of freedom problems have been made by Caughey[7] and Iwan[22]

for the bilinear and double bilinear hysteretic models

respectively. The bilinear model was used to describe the

behaviour of composite structures, due to the action of slip

and boundary shear effects at mating surfaces, interfaces or

joints. It is also used to model the elasto-plastic

behaviour of the materials in the system. Physical elements

containing elements with double bilinear hysteretic charac­

teristics are fewer in number; however, they have been used to

model the behaviour of structures with degrading joints[26]

and cross-braced towers[43]. Originally, the double bilinear

hysteretic model was proposed as an alternative modelling

of the structural damping mechanism[22] as it was found that

the hysteresis loss specified by the bilinear model was

123
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higher than that which actually existed. For this reason the

behaviour of hysteretic models having a lower hysteretic loss

than the bilinear model were investigated. The double bilinear

hysteretic loop has exactly one half the hysteretic loss of

the bilinear modal for the same amplitude of response.

The third hysteretic model which is to be investigated

is the general hysteretic force-deformation relationship

described by the Ramberg-Osgood functions. Structures with

this hysteretic characteristic have been investigated for the

case of forced resonance and earthquake excitation by

Jennings [27l . The Ramberg-Osgood function is a smooth,

continuous function and includes the linear and elasto-plastic

relations as limiting cases. It presents a more accurate descrip­

tion of the real behaviour of materials under cyclic loading

as shown by the experimental work of Hansen[17]. The use of

the Ramberg-Osgood functions necessitates a numerical analysis;

however, because of it's accurate representation of the true

behaviour of certain yielding structures the analysis can be

used to verify the validity of the piecewise linear hysteretic

models.

Most of the attention in the study of dynamical systems

containing elements that exhibit hysteretic damping has been

in the direction of forced excitation and particularly in the

field of earthquake engineering[Sl). But another interest in

the study of systems with hysteresis is to use it as an

alternative possible mechanism to account for the dissipation

of energy. Viscous damping is a suitable model to use in

forced oscillation studies because it limits the resonant response

of the system to a finite value. However, the viscous damping

model is inadequate in the area of parametric excitation. The

analysis of a one degree of freedom system under parametric

excitation results in a MathiEu equation. It is well known

that the main effect of viscous damping is to modify the

sizes of the unstable regions only. Once the system is excited
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into parametric resonance, the response of the linearized

system grows without bound. A system with damping modelled by

the bilinear, double-bilinear or Ramberg-Osgood hysteretic

model gives in general, bounded response under parametric

resonance. Only when the hysteretic loop is very narrow or the

parametric excitation amplitude becomes large is unbounded

response obtained.

It is the purpose of this chapter to study the

parametric behaviour of a one degree of freedom system having

restoring forces with the three above mentioned hysteretic

characteristics. The model to be investigated is an

inverted pendulum under sinusoidal base excitation.

4.2

(a)

statement of the Problem

The Mathematical Model

The system under study consists of a weight-less rod

of length L with a mass m attached to one end. The rod

is connected to the base by a hinge which provides a restoring

moment cM when the system is disturbed from its equilibrium

position. The system is subjected to periodic base motion

f(t) in the y-direction as shown in Fig. 4-1. The hinge is

assumed to have one of the three forms of moment-rotation

characteristics (a) bilinear, (b) double-bilinear and

(c) the Ramberg-Osgood functions as shown in Figures A-I

A-2 and A-3 of the appendix. For the piecewise linear

models it can be seen that

lim M(¢,u) = ¢

u + 0

and for the smoothly curved hysteretic function

lim M(¢,a,n) = ¢

a + 0

4-la

4-lb
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Therefore, the problem is similar to that studied by Skalak

and Yarymovych[48J when u = a = O. The kinetic energy T, and

the generalized force S of the system can be written as

s = - cM

Taking the base motion in the form

f (t) = F cos (wt)

4-2

4-3

4-4

and by means of Lagrange's equation, the equation of motion

can be put in dimensionless form as

where

~ + M(¢) + (RQ
2

cos (QT» sin ¢ = 0

= 1 (C)1/2
L m

R = F/L

4-5

4-6a

4-6b

4-6c

4-6d
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and dots indicate differentiation with respect to the

dimensionless time parameter T.

Equation 4-5 is a nonlinear ordinary differential

equation with periodic coefficients. There are two sources

of nonlinearity in equation 5. The hysteretic form of

M(¢) can be called nonlinear in material property while the

sin¢ term is a geometric nonlinearity. Provided the maximum

parametric response of the system ¢ is small, sin¢max
may be replaced by ¢ as an adequate first approximation. If

the maximum response is large, higher order approximations

of the expression sin¢ become necessary.

4.3

(a)

Method of Solution

First ApEroximation (sin¢ = ¢)

Assuming that ¢ is sufficiently small such that themax
approximation sin¢ = ¢ is valid equation 4-5 becomes.

4-7

Equation 4-7 is a homogeneous equation in ¢ and admits

the trivial solution ¢ = O. For I¢ I < ¢ ,for the piecewisey
linear models, and ex = 0 for the Ramberg-Osgood hysteretic

.models M(¢) = ¢ and equation 4-7 becomes

4-7a

which is a Mathieu equation with parametric exciting amplitude
2

R~ and parametric exciting frequency~. Hence, there are

various ranges of frequency ~ within which the system can be

parametrically excited into resonance. Here only the princi­

pal region of parametric resonance will be considered. To



129

study the response of the hysteretic system, a response with

a frequency in the neighbourhood of 1/2 D, is sought.

Assume a solution of the form

= Q(T) cos (1:. DT + 8 (T»
2

- Q ( T ) cos 1JJ (T )

Substituting 4-8 into 4-7 and imposing the condition

Q cos 1JJ - Q e sin 1JJ = 0

to be satisfied, equation 4-7 becomes

1 D2 D 22 DQ sin1JJ - (~+ 2 e - RD cos DT) Q cos1JJ + M = 0

4-8

4-9

4-10

Equations 4-9 and 4-10 can further be simplified so that one

equation contains only the derivatives of Q and the other

equation contains only the derivatives of 8. This can be done

first by multiplying equation 4-9 by D cos 1JJ and equation 4-10

by sin1JJ. Subtracting the resulting equation becomes

D D2 22 Q + ~ Q cos1JJ sin1JJ - Msin1JJ = RD Q COS(DT) sin1JJ cos1JJ 4-11

Second, multiplying equation 4-9 by D sin1JJ and equation 4-10
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by cos¢, and adding the two resulting equations lead to

2 2= RQ Q COS(QL) cos ~ 4-12

As the parameters Q(T) and e(T) are slowly varying functions

of T, the method of averaging is used to obtain approximate

solutions to equations 4-11 and 4-12. The variables Q(T)

and 6(T) together with their derivatives may be treated as

constant over one cycle of~. Thus integrating equations 4-11

and 4-12 with respect to ¢ from zero to 2n and dividing the

results by 2n there is obtained.

QQ - S(Q) = ! Rn 2 Q sin 262 4-13

QQ8 + ! Q2Q _ C(Q) = 1 RQ 2 Q cos 26
4 2

where

2n

S(Q) 1
fo

M sin~ d ~- ....
n

2n

C(Q) I

fo
M cos~ d ~- IT

4-14

4-15

4-16

(b) Second Approx~mation (sin¢ = ¢ - ¢3/6 )

An examination of the hysteretic moment rotation

characteristics will indicate that if "yielding" does not occur
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until the rotation is large, the first approximation sin¢ ~ ¢

would obviously be a poor approximation to the actual problem.

In this section, the averaged equations will be derived by

approximating the sin¢ term by the first two terms in its power

series expansion. The equation of motion becomes

.. 2 3
<I> + (RQ cos QT) (<I> - <I> /6) + M ~ 0 4-17

Seeking the solution in the form given by equation 4-8

and carrying out the method of slowly varying- parameter

procedure the equations describing the average values of Q and

8 can be written as

4-l8a

4.4 Steady-State Response

(a) First Approximation (sin¢ = ¢)

The steady-state response of the system of averaged

equations 4-13 and 4-14 can be obtained by setting Q and ~ to

zero, ~amely,

S (Q ) =
o

sin 28
o

4-l9a

! Q2 Q _ C(Q )
4 0 0

= ! RQ 2 Q cos 28
200

4-l9b
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where Q and e denote the steady-state values of Q and 8.
o 0

Eliminating e from equations 4-l9a and 4-l9b, the equationo
describing the steady-state response curve is obtained and is:

C(Q )
4( 0) ± 4

si = Qo

2 ( C (Qo) 2 S (Qo) 2)
4R ( ) + (--) -

Q
o

Q
o

(1 - 4R
2

)

S (Q ) 2
( 0)

Q
o

4-20

Instead of expressing the steady-state amplitude Qo
as a function of frequency ~ , the ratio ~ = Q /¢ is plotted

o y
in the response plots. Written in terms of ~, the response

curve Equation 4-19 can be written as

4C(lJ)

4-2la

where in comparison to equation 4-20 C(lJ) and S(lJ) are defined

as:

C(Q )
C(lJ)

0 4-2lb-
¢y

S(Q )
S(lJ)

0 4-2lc-
¢y

It should be noted that in the first approximation, the

steady state response of the system as given by equation 4-2la

is independent at the yield rotation ¢ .
y
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(b) Second Aprroximation (s~n¢ = ¢ - ¢3/6 )

The steady-state response of the system of averaged

equations 4-18a and 4-18b is given by

Q [1 _ R2 (1 _ Q 2/12 )2]
o '4 0

4-23

In terms of ~ equation 4-23 can be written as

C(~)

4-24

The steady state equations 4-21a and 4-24 are

applicable to systems with any of the three types of hystere­

tic characteristics. The different hysteretic characteristics

of the system is accounted for by the evaluation of the

expressions SeQ) and C(Q) as defined in 4-15 and 4-16.

4.5 Steady-State Response Curves For the Bilinear, Double

Bilinear and Ramberg-Osgood Hysteretic Models

Up to now, the analysis has been on a general basis.

In this section, the response calculations of each of the

three hysteretic models will be presented separately.

(a) Bilinear Hysteretic Model

For the bilinear hysteretic model the values of C(~)
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and S(]J) are(7]

C(]J) = ]J - U]J (n - 8* + sin8* cos8*) for ]J > 1
n

4-25a

and

U]J . 28*= - - S1.nn

-1 28* = cos (1 - -)
II

for ]J > I 4-25b

4-25c

A detailed derivation is given. in the appendix. A plot of

equation 4-2la is shown in Fig. 4-2 for different values of

U (0 ~ u ~ 1). As indicated in Fig. A.l, u = 0 corresponds

to a linear elastic hinge and U = 1.0 corresponds to a hinge

with elastic, perfectly plastic moment-rotation characteris­

tics. The steady-state response is unbounded over a range

of frequency in the case U = 0.1. A bilinear hysteretic

hinge with u = 0.1 is very close to a linear elastic hinge

with a small hysteresis loop. Therefore, the dissipation

power of the mechanism is limited. However, for hinges with

larger values of u, ,the response is bounded for the whole

range of parametric frequencies. The higher the values of

u, the lower is the maximum steady-state response. For an

elastic, perfectly plastic hinge characteristic, the maximum

response is no more than 9 per cent over the yield rotation

<p •
y

Response curves using equations 4-24 of the second.
approximation are shown in Fig. 4-3. The yield rotation is

taken to be <p = 0.2 rad. Comparison between Fig. 4-2 andy
Fig. 4-3 shows that the response curves for u = 0.3, 0.5 and

1.0 are essentially the same. Recalling that the magnitude

of angular displacement in these cases are of the order of
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0.3 rad, it is not surprising that the first approximation of

sin¢ = ¢ gives results that are close to results obtained

by the higher approximation.

The effect of the yield rotation magnitude on the

steady amplitude is given in Fig. 4-4. It can be seen that

if the yield rotation ¢ is large, the results based on they
first approximation overestimates the response.

(b) Double Bilinear Hysteretic Model

For the double-bilinear hysteretic moment rotation

characteristic the values of C(~) and S(~) were obtained by
Iwan[22] and are:

sin 28*
C(~) = ~ {u[8* + 8* _ 1

TI 122

sin 28*
---=-2-_2_- ;] + (l-u)TI}

4-26a

s (~) = 2 1u(l - -)
TI ~

4-26b

4-26c

8* = cos-l(
2

1- -)
~

4-26d

A plot of equation 4-2la is shown in Fig. 4-5 for

the base motion amplitude R = 0.05 and the four values of u

equal to 0.1, 0;3, 0.5, and 1.0. For small initial distur­

bances, Fig. 4-5 shows that finite amplitude steady-state

vibrations are possible within the parametric resonant fre­

quency range for u = 0.3, 0.5 and 1.0. However, unbounded

resonance becomes possible in the case u = 0.1. The response

curve has a greater "overhang" towards the direction of



2.32.2

R =0.05

U = 0.5

U -= 0.3

U = 1.0

u = 0.1'

- - - UNSTABLE BRANCH

\. \
I
I
\

• NUMERICAL INTEGRATION

Eqn. 4-5 with ¢y = 0.2

1.5

,,,
\
\
\
\
\
\... u =03

\
\
\
\
\
\
\
\
\

\
\

\ \ . \r-. \"~.~
" ,,\-e 0 0" e
~ \.----0 0,,-0........... "
~. --:~~1.01\---.....L-__...J... .L.-__-L__...::::~ l____:.;;;:::;~~__..L_____.l....._l':J_o

I~ 1.5 1.6 1.7 1.8 1.9 2.0 2.1

FREQUENCY n

2.0

4l
w 4.0
(J)
z
0
a.. 3.5C/)
w
0::

::l

2.5

FIG. 4-5 RESPONSE CURVES (FIRST APPROXIMATION (sin ¢ = ¢»



- - - UNSTABLE BRANCH

1.8 1.9 2.0 2.1 2.32.2

u:; 1.0

u = 0.5

u = 0.3

U =0.1

R=0.05

4>y= 0.2
•

1.71.61.5

\
\
\
\
\
\
\ u=Q3

\-
\
\
\
\

• - NUMERICAL INTEGRATION. \

EQN. 4-5 with ¢ = 0.2 \ •

y \.. \ \.
\ o~-l
"-,",. \. .""" .~

'.~e e---:, '-~~---...<o_?_~~

J-L

6.0

5.5

5.0

4.5 -

4.0

35

3.0

2.5

2.0

15

11.0
1.4

FREQUENCY n

FIG. 4-6 RESPONSE CURVES (SECOND APPROXIMATION sin



(

u =0.5

U =1.0

R =005
<Py= 1.0

•

- --- UNSTABLE BRANCH

0
14 15 1.6 1.7 18 2.0 2.1 2.2 2.3

FREQUENCY .n I-'
tl::>o

<1>3
I-'

FIG. 4-7 RESPONSE CURVES {SECOND APPROXIMATION (sin <I> = <t> - 6) )

15

25

30

20 0 NUMERICAL INTEGRATION

(EQN. 4-5)



142

decreasing frequency as compared to similar curves for the

bilinear hysteretic system. The overhanging portions of

the stable branch of the response curves outside the para­

metric resonant frequency range can only be reached when the

initial disturbance is large. The effect of initial

conditions will be discussed later in the section on tran­

sient response.

Response curves for the second approximation obtained

from equation 4-24 for two values of ¢ corresponding toy
¢ = 0.2 radian and ¢ = 1 radian respectively are showny y
in Figure 4-6 and 4-7. While figures 4-6 and 4-5 are similar,

the response curves in figure 4-7 differ considerably from

those in figures 4-5 and 4-6. Results obtained from numeri­

cally integrating the exact equation 4-5 are also shown on

figure 4-7. It can be seen that while the response curve

expression for the first approximation may "be an adequate

representation of the exact equation for small yield

rotation ¢ , results based on higher order approximations havey
to be used when the yield rotation ¢ is large.

y

(c) The Ramberg-Osgood Hysteretic Model

For the smoothly curved Ramberg-Osgood hysteretic

functions explicit analytical expressions for the value of

C(~) and S(v) in terms of the displacement variable ~ are

difficult to obtain. These functions can be evaluated

numerically direct from their integral definitions given by

equations 4-15 and 4-16. The functions C(~) and S(v) are

dependent on the scaling parameters a and n. In Fig. 4-8

the steady state curves are plotted for the value a = 0.1

and the three values of n, n = 3, 9 and 21. It is seen that

for n = 3 there is a large overhang extending to the low

frequency side a distance of approximately 40% of the

instability zone. This compares closely with the response

curve of the double-bilinear model for the case u = 0.5.

As n increases, the response of the system decreases. For

n = 21 the response compares closely with the response of
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the bilinear system for u = ].0. The stability of the

steady-state curves was checked by direct numerical inte­

gration and the unstable portions are shown as dashed lines.

4.6 Stability of Steady-State Solution

To investigate the stability of the steady-state

response curves, the variational equations based on the

steady-state solutions of the first approximation will be

studied. Let

Q = Q + So

e = e + no

4-27a

4-27b

where sand n are small quantities representing the deviation

from the steady-state solution. Substituting equations

4-27a,b into equations 4-13 and 4-14, neglecting higher

order tenus in sand n, and also making use of relationship

4-l9a,b there is obtained

4-28a

4-28b

4-29a

4-29b
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Seeking a solution of the form

n
=

n

4-30

equations 4-28a,b can be written in matrix form as

SeQ )
1 n2QS' (Q ) 0 An - 2C(Q ) t;- -0;- -

0 2 0 0

= 0 4-31
C(Q }

C I (Qo) 0 2S(Q } AnQ- - nQo 0 0

For a given pair of values Q and n, the values of A are to
o

be determined by equating the deferminant of the matrix in

equation 4-31 to zero. If all values of A determined have

negative real parts then any perturbation from the steady­

state motion tends to die out; hence the steady-state solution

is stable. On the other hand, if one A has a positi.ve real

part, the perturbations will grow and the steady-state is

unstable.

Equation 4-31 determines the stability of the steady

state response curves of the first approximation. It is now

necessary to substitute the appropriate values of C(Qo}'

C' (Q ), and SeQ ), S' (Q ) corresponding to the hysteretic modelo 0 0

which is being analyzed. Here only the stability condition

for the bilinear hysteretic model will be evaluated explicitly.

The procedure is identical for the double-bilinear model. For

the Ramberg-Osgood model, analytical expression for the

functions C(Q }, C' (Q ), seQ ), S' (Q ) are not readily avail-o 0 0 -0

able and the stability of the response curves were checked

by numerical integration. The unstable branches are shown

in dashed lines in all response plots.
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Setting the determinant of 4-31 to zero results in a

quadratic equation in nA, namely

4-32

The coefficients a l ,2 can be evaluated by using the values

of C(Q ), seQ ) from equations 4-25a and 4-25b and theo 0
values of S' (Q ) and C I (Q ), whereo 0

SI (Q ) = u (1 - cos 8*) 2
o 71

c' (Qo) = ; [ue* + (1 - u)n + i sin 28* - 2u sin 8*]

The coefficients of equation 4-32 are

3u 2 4usin 8* + ---- > a
n nQ 2

o

4-33a

4-33b

4-34a

= + ![-C' (Q) C (Qo) 2a 2 2 0 +, Q ]n + 2
o

C(Q )o

+ 2
SeQ )

o [S' (Q ) ­
o

SeQ )
o ]

Q
o

4-34b

Solving 4-32,

- a 1
4-35
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The characteristic roots A will have positive real parts only

when a
2

< O. Consequently, the question of stability depends

on the sign of a 2 . It can be shown that the equation of

vertical tangency a~2/aQ = 0 is given by

a = 02
4-36

Hence, the line of vertical tangency serves as a boundary

separating the stable and unstable branch of the response

curve. For a given value of Qo' a 2 can be treated as a

function of ~ in equation 4-34. From 4-25a and 4-29b it is

seen that the coefficient of the frequency term in 4-34 is

positive, i.e.

2u sin e* ~ 0
TIQo

4-37

since 6* < TI. Let the value of the frequency corresponding

to Q
o

on the line of vertical tangency be ~v. Then an

increase of frequency from ~v will render a 2 positive, while

a decrease of frequency from ~v will make a 2 negative. Thus

the branch of the response curve to the right of the vertical

tangency is stable while the branch of the response curve to

the left of the vertical tangency is unstable in the response

amplitude-frequency plot.

4.7 "Exact" Analysis

To check the validity of the second approximation, the

equation 4-5 is studied without making a simplification to the

sin¢ function. Seeking a solution in the form of equation

4-8 and applying the method of averaging, the steady-state

equations can be written as
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4-38a

where

4-38b

f27T [cos 21jJ]. sin1jJ sin(Qocos1jJ)d1jJ
o s~n 21jJ

f
27T [cos 2lj;]

coslj; sin(QocoS1)J)dlj;
o sin 2lj;

4-39a

4-39b

The integrals defined in 4-39a,b are not conveniently

expressible in terms of elementary functions, however, they

can be evaluated numerically.

Numerical integration shows that II and I 4 are zero for

all applicable values of Q. For each value of Q , integralso 0
I 2 and I

3
are evaluated and by eliminating the steady-state

phase angle e the steady-state response curve can be plottedo
between Q and Q.

o
The steady-state curves were obtained for the bilinear

hysteretic model and are shown in Fig. 4-9. This figure also

compares the response of the first approximation, the

second approximation and the numerical integration of the

governing differential equation Eqn. 4-5. The steady-state

response curve of equations 4-38a,b are almost the same as

the response plot determined from the second approximation
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for yield rotation up to 1 rad. The numerically integrated

points coincide with the "exact" analysis and the response

curve given by the first approximation overestimates the

response. It can be seen that the steady-state amplitude

as predicted by the method of averaging agrees well with

that obtained through direct numerical integration of the

governing equation.

4.8 Transient Response

Unlike the forced-vibration problems, some nonzero

initial conditions need to be specified to equation 4-5 or 4-7

in order to get a nontrivial response. Zero initial condi­

tions will only lead to the trivial solution ¢ = O. The

effect of initial conditions on the response of the system

is studied by solving equation 4-5 and 4-7 numerically with

a variety of initial conditions. Using a fourth order

Runga-Kutta method for numerical integration the time response

curves are obtained.

(a) Bilinear Hysteretic Model

Shown in Fig. 4-10 and 4-11 are two representative

plots of the time history response curves by integrating the

equation 4-7. Fig. 4-10 corresponds to the initial conditions.
¢(O) = 0.01, ¢(O) = 0.01 while Fig. 4-11 corresponds to the.
initial conditions of ¢(O) = 0.01, ¢(O) = -0.01. It can be

seen that both sets of initial conditions lead to the same

magnitude of steady-state amplitude. The initial conditions

only effect the time at which the steady-state condition is

established. It is noted that the growth of the amplitUde

before it exceeds the yield level is an exponential growth

just as predicted by the linear Mathieu equations. But, once

the hysteretic dmnping mechanism takes effect, the amplitUde

quickly settles to the steady-state value. It should also be

pointed out that the "overshoot ll of the amplitude from the
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steady-state value is small. For this reason, the factor ~

in the response plots can be treated as the ductility factor,

a terminology commonly used in earthquake engineering to

denote the ratio of maximum displacement to yield displacement.

The amount of overshoot depends on the characteristic of the

bilinear hysteretic parameter u. The overshoot is generally

small for u > 0.5, but can amount to 20 percent of the

steady-state amplitude when u = 0.1.

(b) Double Bilinear Hysteretic Model

In contrast to the bilinear hysteretic model, the

steady-state response curves have a pronounced lean or

"overhang" in the direction of decreasing frequency. In

)order to interpret the results properly, it is necessary to

make a distinction between the magnitude of initial distur­

bances on the system from its equilibrium position ~ = O.

When the initial disturbance is small so that the maximum

excursion of the system caused by the initial disturbance is

less than the yield rotation ~ , the system is initially non-y
hysteretic. In fact the system given by the equation 4-7 of

the first approximation is then initially a linear system.

The parametric stability of the system is given by the

Strutt-Ince stability chart. Unless the exciting frequency

is within the parametric resonance range, the system will not

be parametrically excited into oscillating motion. Within

the ~arametric resonance range, different small initial dis­

turbances only affect the time at which the system attains

steady-state vibration. The steady state amplitude is not

affected by the initial conditions and can be predicted

accurately by the response curve calculations.

If the initial disturbance is of such a magnitude

that it causes the system to exceed the yield rotation during

its first cycle of oscillation, then the system may be para­

metrically excited into large amplitude oscillations even
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when ·thE'; exciting freqvency is outside the para.lf'.8tric resonant

frequency range. The effect. of initial dis-turbances is illu­

strated in Figures 4-J.2 and 4-13. Shown in Fig. 4--12 and

4-13 are the results of numerically integrating equation 4-7

under 'cwo different ini·tial condi tiOIlS. The parametric

frequency Q == 1.85, is outside the pararnei:ric resonant

range. Figure 4-12 E'hmlS that ,-rhen the init.ial disturbence

is small, the system is not exci~ed. Figure 4-13 shows the

response of the Sw,le system uEder the same cOl10.ition of

excitation. ITowever, the values of initial conditions used

are such that t.he system enters int.o the double bili:l.ear

hysteretic loop from the start. It can be seen that the

system is parametrically excited. The steady-state amplitude

of the resulting oscill~tion agrees with the values predicted

from Fig. 4-5.

*Instead of plotting the transient response of the

amplitude vs time relationship for the RanL-'0erg-Osgood nodel

the hysteretic moment-ro·tation curves are drawn to show the

actual hysteretic loops as they are traced out from a small

initial disturbance to a steady-state value. Fig. 4-14 com­

pares the three hysteretic loops for a = .1, n = 3, 9 and 21

at the frequency r2 == 2.0. It can be seen, that following an

initial small disturbance the relationship M/~ is at first

approximately linear. As the amplitude increases the nor.linear

effect becomes more pronounced until at steady-state identical

branches of the ascending and descending curves of the

hysteretic loop are continuously retraced.

4.9 Bounded Response Hithin the L~!1ear Instability Zone

To obtain bounded response within the linear

instability zone, both asymptotes of the steady-state response

curves given by equation 4-2la should be outside the linear

instability zones. The width of the instability zone for

~ = 0 is obtained from Equation 4-21a by setting C(~)/~ = 1

*Note: Follm'iing the n.des sp'2cified by J~nnings r2~i]
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and S(~)/~ = 0, namely

n2 = 4 (1 ± 2R)
(1-2R) (1+2R)

2n1 --

(1+2R

n = 2
2 "";:,=1=-=2R=-

For the base excitation parameter R = 0.05,

w1 = 1.91 and w2 = 2.11.

4-40a

4-40b

4-40c

While it is true that when the steady-state response

becomes large the steady equations 4-21a based on the first

approximation may not be a good approximation to the exact

equation 4-5, nevertheless, it is instructive to establish

the conditions under which bounded responses are obtained.

For the piecewise linear system

==
~(l-u)

1±2R
4-41

The two asymptotes in the response plot are given by

n - 2 / (l-u) .
1 - 1+2R 4-42a
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4-42b

- -In order to yield bounded response, both 01' and Q2
of equations 4-42 should be outside the range of parametric

resonance, i.e.

<.....
2

Il+2R
4-43

and the condition for bounded response is

(l-u) ~
(1-2R)
(1+2R)

(Piecewise Linear)

(R < 0.5)

4-44

For the case of elasto-plastic deformation, u=l and

equation 4-44 is always satisfied. Hence bounded response is

always possible during parametric resonance for a system

with bilinear or double bilinear hysteresis with u = 1. For

the Ramberg-Osgood function

Lim Q2 = 0 (Ramberg-Osgood function) 4-45

and hence bounded response is always possible.

4.10 Characteristics of the Functions a ~)/~, S(~)/~

The steady state equations depend on the functions

C(~)/~ and S(~)/~. These functions are derived as integral
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.
expressions of the restoring moment M(¢,¢) averaged over one

cycle of oscillation where the integral S(~) represents the

energy dissipation property of ~he function M(¢) and the

integral C(~) represents the measure of frequency detuning.

In this section, a study is made on the functions C(~)/~

and S(~)/~ for the three hysteretic models. Also it is

intended to illustrate the difference between the hysteretic

models and th:ree COTI1IDOn analyt.ical representations of the

restoring force characteristics.

(a) Analytical Reoresentation of the Restoring Force
~-ChaYacterlstics

.
Consider three cases where M(¢,¢) is represented by

a combination of linear and nonlinear terms of the co-ordinate.
¢ and it's time-derivative ¢.

(i)

(ii)

(iii)

• 3= ¢ + e¢ - a¢

2 .= ¢ + e ¢ (¢)

4--46

4-47a

4-47b

In Equation 4-46 tne restoring force M has in addition to.
its linear component ¢ a linear viscous damping term e~ and
- . ft' b . l' - f' .' ~ 3 .a so_ en1ng cu 1C non~lnear .unCC1on - u¢. It 15 assuned

the coefficients e and a are small compared to unity.

Equation 47a is the case where M is linea~ in the displac2­

ment co-ordinate but a cubic viscous dwaping term e¢3 is

added. Equation 4-47b is similar to Equation 4-4G except that

t h l' d' 2('). f ._1e hG:il lnear a.mpJ.ng tern; e._ .~ conSl.S ts 0_ a rrD.xcd expres-

sion of amplitude and velocity. Such an expression is often
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used as an analytical form of hysteretic damping [Bolotin] .[4].

The values of C(~)/~ and S(~)/~ of the expressions

4-46,47a,b are found to be

(i)
S(~)l e 4-48a= - - Q

~ 2

C(~)l
1 -

3
act>

2 2 4-48b= 4" ~
~ Y

(ii)
S(~)2 3 eQ3 ct>y

2 2 4-49a= 32 ~
~

C(~)2
1 4-49b=

~

(iii)
S(~)3 1 eQ ct> 2 2 4-50a-- = - "4 ~

~ y

C(~)3
1 4-50b=

~

In the steady-state equations 4-2la, viscous

linear damping would be represented by the constant of

equation 4-48a, nonlinear cubic viscous damping by the quad­

ratic expression of equation 4-49a and nonlinear, analytic

hysteretic damping by the quadratic expression of

equation 4-50a. The frequency detuning parameter is a

constant for the two nonlinear damping terms and is a quadratic

expression in terms of ~ for the cubic restoring moment.

From the steady-state equation 4-21a a constant expression for

C(~)/~ means that the "backbone" equation of the steady state
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response curve defined by

4-51

is a constant.

(b) Hysteretic Representation of the Restoring Force
Characteristics

For the two piecewise linear models explicit expres­

sions for C(~}/~, S(~}/~ can be obtained from equations

4-25 and 4-26. For the Ramberg-Osgood model the functions

can be evaluated numerically from the integral definition

of equations 4-15 and 4-16. As the nature of these

functions is not readily apparent from their defining

equations they are plotted against amplitude ~ in Fig. 4-15.

Fig. 4-15 is a plot of the function a ~}/~ for the

bilinear hysteretic model for the values of u ranging from

0.2 to 1.0. It is seen that the value of C(~}/~ decreases

monotonically to the limit of l-u. The energy dissipation

function S(~)/~ is plotted in Fig. 4-16. Here S(~}/~ reaches

a minimum for ~ = 2 and then increases to zero as ~

increases.

The function C(~)/~ for the double bilinear model is

plotted in Fig. 4-17. The curves are similar to the bilinear

model except that within the range 1 ~ ~ ~ 2 the values

C(~}/~ for a common value of u is slightly less for the

double bilinear model and in the range ~ > 2 slightly more.

The limit C(~}/~ as ~ goes to infinity is the same as the

bilinear model, namely, the limiting value is l-u. The

function S(~}/~ is identical to the bilinear model of Fig. 4-16

with the ordinate divided by two, since the dissipation power

for the double bilinear hysteretic model is half that of the
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bilinear hysteretic model.

'1'he functions C(p)/f-\ and S{f-\)Iv for the Rant8erg­

Osgood model are shown in Fig.> 4--18a and Fig. 4-18b respp.ctively.

The parameter a = 0.1 and three values of n are 3, 9, and 21.

In conJcrast to the piece-I>/ise linear models where the func,tion::;

are only defined for V ~ ]. for the R(,llahe::g Osgood model U'.'2

functions are continuous for V ~ O. The asymptotic value of

S (LJ) /~1 as )1-t-oJ is zero. An E::xplici t limit expression is not

readily obt.ainable fur the function C (]..l) /)1 but by numerical

integration for large values of V it was observed that the

asymptotic value tends to zero.

(c) Comparison of AnalJ!_tic an~!:!Y3~er':."!.:i~Restoring,yunc~i..?:ns_

The equation 4-210. for the steady-state response

curves is written in -terms of the functions C (V) Iv and

S(]1)/V. For any system with given restoring moment charac­

teristics, it is only necessary to substitute their respective

values for the type of restoring moment under consideration.

The analysis \vould be considerably simplified if the hystere­

tic nature of the restoring moment could be replaced by soue

combination of analytic functions of the angle of rotat.ien

and its time-derivatives. Such an approach would he valid if

the functions C(~)/~ and S(p)/v of the analytic expression

are similar in a quantative and qualitative manner to those

of the hysteretic functions they are meant to replace.

Fig-. 4--19 compares the function C (V) /]1 for thE: cubic

softening spring, the bilinear model (u = 0.4) :=lnd the Rar(l))erg­

Osgood model (a = .J, n = 9). Fig. 4-20 compares the function

S(~)/~ for linear viscous d~mping r, analytic hysteretic

damping ¢ 2 (¢ ),. the Ramberg--Osgood Hedel (0, = .1, n :::: 9) and

the bilinear hysteretic model (u = .4). By comparing these

figures it> is seen that Jche non ljnear analytic~,l expres~;ions

coulc1 duplicate the effect of tl-)'2 hyst:e..:.-etic action for jJ

less than two. For lJ grea-c.er th2.n hvo the curV2""-::t:re c:.nd
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slope of the hysteretic functions change causing a

qualitative difference which the nonlinear analytic functions

can not duplicate.

How this difference manifests itself in the response

curves can be seen by examining the steady-state equation

4-2la. The width of the response curve is governed by the

expression under the square root sign and is

222
'¥ _ 4R2 [ (C~ll)j + (S(~))]~ (S(~)) 4-52

Bounded response occurs when '¥ ~ O. By comparing first the

expressions for cubic restoring forces and analytic hystere­

tic damping, it is seen that bounded response always results

provided that R < 0.5. For hysteretic damping the function

'¥ is more complicated. Shown in Fig. 4-21 is a plot of '¥

for the bilinear hysteretic model for R = 0.05, u = .2, .4,

.6 and .8.

The function '¥ and the corresponding amplitude­

frequency steady-state curves are shown in Fig. 4-22 and

Fig. 4-23 for the value u = .2 and u = .4 respectively. For

u = 0.2, which represents a small hysteretic effect, '¥ is

positive and the response curves do not close. The function

'¥ approaches asymptotically the value

as ll-rco.

2 2
'¥ == 4R (l-u) 4-53

Fig. 4-23 shows the response curves for u = 0.4. Here ,
the amplitude frequency plot can be divided into three zones.

In zone A, bounded steady-state response is possible, in

zone B no steady-state motion is possible and in zone C

unbounded response is possible. The presence of zone C is a
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unique feature of the piecew~se linear hysteretic systems.

Zone C can only be reached by a large shock excitation.

The response curves in zone C can be shown to be unstable

branches; once the system has been shock excited into zone C

infinite response is possible. As an amplitude ~ > 6 is

uncommon in engineering materials the importance of zone C

is questionable. It does however illustrate an additional

qualitative difference between the analytic and hysteretic

restoring functions.

4.11 Observations and Discussion

The following observations are based on the study of a

single degree of freedom system under sinusoidal parametric

excitation. Three types of hysteretic loops were considered:

the bilinear, the double-bilinear and the Ramberg-Osgood

hysteretic curve.

1. Unlike linear viscous damping, a linear system with

hysteretic damping representation in the form of a hysteretic

loop generally leads to bounded response during parametric

resonance. Exceptional cases are systems with very narrow

piece-wise linear hysteretic loops.

2. The damping mechanism of hysteretic elements is two-fold

and is caused by (a) energy dissipation, (b) frequency

detuning. The area of the hysteretic loop is a measure of

the energy dissipation within the structure. This energy

dissipation will attenuate high amplitude oscillations caused

by impulse loading, such as shock excitation and prevent the

build-up of large amplitude oscillations caused by a resonant

state. The frequency of the responding system is amplitude

dependent; this mechanism of frequency change in the

responding structure causes a detuning of the driving frequency

with the frequency of the system which in turn limits the
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amplitude at which resonance can occur. It is these two

properties that reinforce each other to prevent high-amplitude

oscillations and cause bounded response.

3. At steady-state, the frequency of the responding oscillation

is entrained to exactly one half the frequency of the exter-

nal excitation. This synchronized response is possible

because the influence of the external force depends on the

motion of the system.

4. The accuracy of using the first and second approximation

for'the sin ¢ function in the equation depends on the magni­

tude of ¢ • If sin ¢ = ¢ is a good approximation, then themax
response curve based on the first approximation will provide

accurate results. In the same spirit, if sin ¢ = ¢ - ¢3 j6 is

a good approximation, the response curves based on the second

order approximation analysis is useful. The advantage of using

the first or second approximation of sin ¢ instead of using

the function sin ¢ itself is that the response curves are

expressible in terms of elementary functions so that the

result can be obtained more easily. It should be noted that the

first order approximation results overestirnate the true

response and may be treated as an upper bound.

5. The steady-state response curves lean towards the lower

freq~encies and thus exhibit a softening effect. Three cases

of steady-state amplitude exist over a certain range of

frequencies. Portions of the response curves are unstable

branches and the "jump" phenomenon is possible within this

range of frequencies. For small hysteretic effect the

Ramberg-Osgood and double bilinear models have a very

pronounced lean with a resulting large overhang. The overhang

portion of the steady-state curves can be reached through
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large initial disturbances. This means both the double­

bilinear and the Ramberg-Osgood hysteretic systems can be

parametrically excited into large amplitude. oscillations

outside the linear instability region.

6. For the Ramberg-Osgood hysteretic function there is no

well defined yield point particularly if n is small. For

this system the equations of motion must be considered

hysteretic nonlinear for any finite initial disturbance. The

double-bilinear model can not be excited into resonance

outside the linear instability zone unless the initial

conditions are such that the angle of rotation ¢ exceeds the

yield point ¢y or ~ > 1. The Famberg-Osgood Model, however,

can be excited into resonance outside the lin~ar instability

zone for ~ < 1. This property should suggest caution when

substituting piecewise linear hysteretic models for curved

ones.

7. The double bilinear hysteretic system is less effective in

limiting the growth of cscillations during parametric resonance

then a similar system with bilinear or curved hysteretic

characteristics.

8. The initial conditions do not affect the steady-state

amplitude but only affect the time at which this steady-state

takes place. The overshoot of the response amplitude over the

steady-state value depends on the parameter u in the piecewise

linear models and the parameter n in the curved model. For

hysteretic loops approximating the elastic, perfectly plastic

behaviour, or elastic with slight linearly hardening behaviour

of materials, the overshoot is small and the steady-state

amplitude can be taken as the maximum response of the system.

9. It appears to be impossible to duplicate the hysteretic
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effect of structural systems by any combination of the

common, non-linear analytic elements such as cubic damping

ex)3, "hysteretic" damping x2(~) and anti-symmetric restoring
2n-lforces x (n > 1).

10. Hysteretic damping does not affect the width of the

parametric instability zone, whereas viscous damping can

narrow the width of the instability zone, or completely

eliminate the instability for a given parametric excitation.

Therefore a threshold effect is not possible in hysteretic

damped systems.



CHAPTER V

PARAMETRIC RESONANCE OF A TWO DEGREE OF FREEDOM

BILINEAR HYSTERETIC SYSTEM

5.1 Introduction

The purpose of this chapter is to extend the analysis

of the previous chapter to two degrees of freedom. Two

degree of freedom systems under parametric resonance can

have a one mode or two mode response depending on the system

and the value of the external excitation frequency. A

parametric type I resonance may occur when the frequency of

the external excitation is approximately twice one of the

natural frequencies and a parametric type II combination

resonance may occur when the frequency is approximately equal

to the sum or difference of two natural frequencies. The

type I resonance causes a mono frequency response in one of the

natural frequencies of the system, while the type II resonance

causes a response in both natural frequencies.

A monofrequency response causes the hysteretic loops

to trace out a steady-state pattern. In this case a general

treatment of the two degree of freedom system with hysteretic

constituitive relationships is possible. Previous analysis

for forced resonance[24, 1/] and self excited systems[28]

have made use of this fact. For the combination resonance the

hysteretic loops do not, necessarily, trace out a steady

state pattern. In this case the analysis must be restricted

to special systems where a steady state pattern can be obtained.

It is the purpose of this chapter to analyse the

response of a two degree of freedom system to parametric

excitation. It consists of two parts~ firstly, the mono-

frequency response of a general two degree of freedom system, secondl:

179
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the two mode response of a particular two degree of freedom

system. The bilinear hysteretic representation will be used

for both parts.

5.2 statement of the Problem

The equations of motion of a two degree of freedom

system subjected to parametric excitation with bilinear

hysteretic restoring elements considered in this chapter can

be written as:

1 0

o 1

+ + £ cos Ott)
ell c 12

= 0

5-1

The functions F. (¢., u., t) represent the hysteretic,
J J J

nonlinear force-displacement relationships. The functions are

such that as u. ~ 0, F.(¢., u., t) ~ ¢ .. The relationship
J J J J J

between F. and ¢. is shown in the Appendix, Fig. A-l.
J )

The natural frequencies of the system are obtained by

linearising the F. terms i.e. by setting u. = 0 I and solving
J J

the eigenvalue problem

2I [b .. ] - w [I] I = 0
~J

5-2

Let x l ,2 be the normal co-ordinates corresponding to the

diagonalized system

Then

-1
[a .. ] [b .. ] [a .. ]

~J 1.J 1.J
= D. (w .2 J1.ag J

5-3

¢. =
J

5-4
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where a .. is the i th component of the jth normalized
1J

eigenvector.

Returning to equation 5-1 and considering the non­

linear functions F. as elements of the vector ff
J

the system is converted to normal co-ordinates by the

transformation:

[a .. ]-1[1] [a .. ]{x} + [a .. J-l[b .. J{f}
1J 1) 1J 1)

-1+ £ cos(Qt) [a .. J [c .. ] [a .. J {x} = 0 5-5
1J 1) 1)

with the result that the hysteretic elements are now a

function of the two normal co-ordinates. In Chapter II and

Chapter III the F. were analytic functions of their
J

arguments and the method of averaging could be applied

directly. If the arguments of F. are almost periodic the
J

hysteretic elements will not trace out a steady-state

hysteresis pattern with respect to their arguments. In this

case the averaging process is not clearly defined.

5.3

(a)

Monofrequency Response

The Equations of Motion

In terms of the normal

equations of motion are:

co-ordinates Xl and x 2 the

5-6a
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5-6b

where [B .. J
~J

[C. 0 J
~J

-1
== [a. 0 J [b .. ]

~J ~J

-1
== [ao.J [c. oJ [a. oJ

~J ~J ~J

5-7a

5-7b

For the linearized system, u l == u 2 == 0,

5-8a

5-8b

and 5-8c

5-8d

Substituting the results of Equation 5-8 into

Equation 5-6 it is seen that for the linearized system the

coupling between the restoring forces has been removed. For

Q ~ 2w l a predominantly monofrequency response in the first

mode will exist and the normal co-ordinates x 2 is not

expected to be excited. Assuming that x 2 is not excited, the

analysis can be concentrated on Equation 5-6a alone by setting

x == O. It is reasonable to assume that for a system with
2
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the value of x 2 will also be small and

can be set equal to zero.

The approximate analysis is now based on the

equation

The correctness of the approximation (x2 = 0) will be

verified later by the direct numerical integration of the

system 5-6a and 5-6b.

Substituting

T = wIt 5-10a

5-10b

5-10c

5-10d,e

the equation 5-9 can be written in nondimensional parameters

as

x" +1 5-11

The approximation solution of equation 5-11 now

follows along the procedure .outlined in Chapter IV.

5-l2a
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5-12b

5-13

Equation 5-11 can now be transformed to a system of first

order differential equations:

cos lJi 1 - Q1
Q'

1

=

o

5-14

- ~ sin lJi 1 e' 1 -g

Further simplification of 5-14 leads to

5-16

_ !l 2 2 B11 2
B

12
F2{a21Xl~cos lJi 1

e I = cos .lJi l + en Q
1

F 1 (allxl ) + ---1 2 n Q
l

+ 2
ell cos (n T) cos lJi l

. 2t)J 5-17- Sln 1n
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185

nQ' 1
sin 5-18

2
~ + B11 C1(Ql) + B12 C 2(Q2)

5-19
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where the symbols 81 (Ql)' 82 (Q2) , Cl(Ql) and C2 (Q2) represent

the integrals

2n

f
o

Fl(allQl cos ~l)sin. ~l d~l

2n

f
o

F2(a21Ql cos ~l)sin ~l d~l

5-20a

5-20b

2n

Cl(Ql) =; f
o

Fl(allQl cos Wl)cOS Wl dW l

2n

C2 (Q2) = ~ J F2 (a21Ql cos Wl)cOS ~l d~l
o

5-20c

5-20d

The steady state solution can be obtained by setting

Q'l = 8'1 = 0 in Equation 5-18,19 and solving the resulting

algebraic equations in terms of the steady-state variables

QO l and eo l . The transient response can be obtained by direct

numerical integration of the system 5-18, 5-19.

In order to determine the functions 8. (Q.), C. (Q.),
J J J J

(j = 1,2) it is necessary to specify the form of the hysteretic

characteristics. An example of a system with bilinear

hysteretic restoring forces will be given to illustrate the

technique invo~ved in obtaining the response of a two degree

of freedom to parametric resonance.

Consider a two degree of freedom hysteretic system

given in terms of the generalized co-ordinates by,
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2

+ O. H2 :l

.7 .1
cos nt = 0
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5-21

The functions Fl(¢l'ul ), F2(~2,u2) are bilinear

hysteretic functions defined in the Appendix by Fig. A-l.

Setting u l = u 2 = 0, the natural frequencies of the linear

system are

= 1

The modal matrix can be written as

and it is seen that the mod~l matrix is orthonormal

5-22a

5-22b

5-23

-1a ..
1.)

T= a ..
1.)

5-24

In terms of the normal co-ordinates, the generalized

co-ordinates are given by equation 5-4

5-24a
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5-24b

Applying the transformation of Equation 5-5 and

making use of the change of variables of Equation 5-10 the

system of equations 5-21 in terms of normal co-ordinates is

5-25a

5-25b

Assuming only the first mode is excited, the system to be

analysed is

(b) Steady-State Solution

The steady state solutions can be obtained from the

system of equations 5-18,19, where ell = .05n
2

and Bll = B12
= 1/ {2. The steady state equations are

1 [S (Qo ) + S (QO)] - .°2 5 n 2 QOl sl'n 28°1[2 1 1 2 1. = 5-26a
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with

.05 2Qo= --2- n 1 cos 28°2
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5-26b

5-27a

5-27b

the equations 5-26 are of identical form to the ~teady state

eq~ations of Chapter IV.

5-28

where R = 0.05.

In Fig. 5-1 the steady-state response is plotted in

terms of the nondimensional amplitude ~l = QOl/¢Yl against

the non-dimensional frequency n. The value of u l of the

hysteretic loop F l is kept constant at u
l

= 0.3, but the value

of u 2 of the hysteretic loop F 2 is varied from u 2 = 0, .3, .5

and 1.0. The ratio of the yield points is taken as

¢ Y21 ¢ Yl = 2. a•
It is seen that three separate regions of the response

curves exist. The first region correspond to the linearized

equation where the amplitude QOl/{2 is less than the lowest

value of the two yield points of F l and F2 • The second region

is that region where one of the elements F
l

or F 2 has reached

it's yield point, and the third region is where both F
l

and F 2
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have exceeded their yield points.

Consider the case where only the first element F l
displays a hysteretic property with u l =.3 and F 2 is a

linear function. In this case unbounded response is possible.

The range of n for which unbounded response is possible can

be determined from Equation 5-28 by using the large amplitude

approximations for S(QO)/Qo and C(QO)/Qo, namely,

Therefore, unbounded response following a small initial

disturbance is possible in the range of frequencies

r-_
2 _ < n < __2_ /1 - 0.5 u

l!1+2R !1-2R

For the numerical example, R = 0.05, u l = 0.3

1.908 < n < 1.94

5-29a

5-29b

5-30a

5-30b

With only one yielding element large amplitude response

is possible. In fact, as the analysis has shown, unbounded

response is possible. By introducing the second yield element

u
2

f 0.0 the resonant amplitude can be reduced considerably.

A steady-state is now possible for a short excursion into the

yield range of the element F2 .



----~--~~-

n
2:1 Frequency

,

u 2 = 0 u
l = 0.3

u
2 = 0.3

u..,. = 0.5
,{.

u
2 = 1.0

..
._--- .Yie1d Point IDY2

2.0

Unstable Branch

\
\

\
\

\
\

\
\

\
¢ \
y~--_.- -- ---,

I
I

\
\
\

\
\
\

\ \

\ \
\ \

\ \

1,.8

Yield Point

J..ll

4.0

3.0

2.0

'-1.0

FIG. 5-1 STEADY-STATE RESPONSE - ONE MO!)E APPROXIMATION (¢ Y2/¢ Yl = 2)



192

(c) Transient Response

The key assumptions of the steady-state analysis

carried out in the previous section were (a) that only one

mode Xl participates in the resonant oscillations and (b)

that a monofrequency response occurs. It is now necessary

to verify these assumptions. This is done by comparing the

time history response of the averaged and exact equations of

the two frequencies n = 1.95 and n = 2.05. The first frequency

corresponds to the case where both elements F l and F 2 have

entered the hysteretic range and the second frequency corres­

ponds to the case where only element Fl has entered the

yield range.

The transient response of the averaged equation is

obtained by integrating the system of equations 5-18,19. The

transient response of the exact equations is obtained by

integrating the system of equations 5-25a,b. The results of

the averaged equations are shown in Fig. 5.2 and the results

of the exact integration in Fig. 5-3 for the parameters

n = 1.95, u l = 0.3, u 2 = 0.5. The yield point of the

hysteretic element F 2 is taken to be twice the value of the

yield point FlO To obtain a consistent measure of amplitude,

the amplitude of the normal modes Xl and x 2 are plotted in

terms of the ratio's ~1 = xl/¢YI' ~2 = x2/¢Ylo
Fig. 5-3 showB ~hat a monofrequency response does

indeed take place once the transient phase of oscillations

has passed. The response of the exact integration can now be

compared to the solution obtained by the method of averaging.

For the exact integration ~l = 3.6, ~2 = 0.5. This compares

to ~l = 3.2, ~2 = 0 of the approximate solution. Fig. 5-4

and Fig. 5-5 show similar time history comparison response at

Q = 2.05. The steady-state amplitude of the approximate

solution ~l = 2.16 and compares to ~l = 2.10 of the exact

integration. The mode ~2 does not appear to be excited and
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only reflects a small background forced oscillation.

The results of this numerical example can be sUlnmarized

as follows: (a) A one mode approximation allows a relatively

simple determination of the parametric instability zone,

steady-state and transient response. (b) The assumption of a

monofrequency response is correct. (c) A one mode approximation

can obtain the correct order of magnitude of the steady-state

amplitudes.

5.4

(a)

Combination Resonance

Equations of Motion

The system 5-1 subjected to combination resonance will

respond with large amplitude oscillations in both normal

modes. This causes the nonlinear hysteretic elements to be

functions of almost periodic arguments and makes a general

analysis of the two-degree of freedom system under combination

resonance difficult However a special system can be

obtained from Equation 5-1 in which the arguments of the

hysteretic elements are each a function of only one normal

co-ordinate. Setting b 12 = b 21 = cll = c22 = 0 and b ll = w1
2

,

b
22

= w
2

2 , c
12

= -€bl , c21 = -€b
2

the equations of motion are:

5-31a

5-3lb

Equation 5-31 corresponds to the problem of Chapter II

with the exception that there is no nonlinear coupling. As

was shown, the system 5-31 can be excited into combination

resonance if n ~ wI + w2 •

The bilinear hysteretic functions are specified by the
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value of their yield points x yl ' x Y2 and yielding parameters

u
l

and u
2

• To study the effect of two different yield points,

it is convenient to carry out the change of variables

~1 == x 1/x
Yl

, ~2 == x /xY2 in equations 5-31, i.e.

2-
~2 + w2 F2(~2) - £b2 ~1 cos(Dt) == 0

r

where

5-32a

5-32b

5-33a

5-33b

5-33c

Let T = wt 5-34a

D == DO (I-A) 5-34b

Kl == w /D o 5-34c1

K2 == w /D o 5-34d2

Substituting the change of variables of Equation 5-34
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into Equation 5-32 there results,

5-35a

5-35b

where primes denote differentiation with respect to the non­

dimensional time T and A represents a small detuning of the

external excitation frequency.

Seeking a response

jJ.(T) = Q.(T) cos (K.T + e.(T»
J J J J

- Q. cos tlJ.
J J

]J I • (T) = - Q.K. sin tlJ.
J J J J

(j = 1,2)

5-36a

5-36b

and substituting into 5-35, the system of second order

differential equations is transformed into the system of

first order equations.

,
cos tlJ· -Q. sin tlJ· Q. 0

J J J J

= 5-37a

-K. sin tlJ· -Q.K. cos tlJ· e I • -g.
J J J J J J J



Where:

gJ' = _Q.K. 2 cos ~. + K.
2

[1+2A]F.
J J J J J

200

c:b.
~ Qm cos ~m cos T 5-37b
rwo

(j = 1,2; m = 1,2; J f m)

(b) The Averaged Equations

To obtain an approximate solution of the system 5-37

the method of averaging is applied. The averaged equations

are:

5-38a

5-38b

5-38d

2n

where: S. (Q.)
1 f if. (Q. cos ~.) sin ~. d~.- -

J J n a J J J J J

2n

C. (Q.) 1

fa F. (Q. cos ~.) ~. d~.- - cos
J J n J J J J J

5-37a

5-39b

and

(j = 1,2)

5-40a
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For convenience in notation let

5-40b

5-40c

The instability region of the linearized system can

be obtained from Equation 5-38. For the linear case:

F . (Q. cos \jJ.) = Q. cos l/J.
) ) J J )

S . (Q . ) = 0
J J

C. (Q.) = Q.
) J J

Substituting the relations 5-42 into 5-38 the

linearized equations are:

5-4la

5-4lb

5-4lc

Q'
Bl Q2 sin (8 1 + 82 ) 5-42a:::;
4Kl1

Q'
B

2 Q1
sin (8 1 + 8

2
) 5-42b= 4K22

Ql 8'1 = AK1Ql -
B

1 Q
2

cos (8 1 + 8
2

) 5-42c
4K1
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5-42d

To determine the instability zone, it is necessary to

determine the conditions when the trivial solution Q1
is unstable. This is obtained most conveniently with

change of variables.

y. = Q. cos e.
J J J

z. = Q. sin e.
J J J

= Q = 02
the

5-43a

5-43b

and investigating the stability of the trivial solution

y. = 0, z. = 0, (j = 1,2). Carrying out the substitution
J J

5-43 the system of equations 5-42 is transformed to the

following system in terms of the new variables.

y' . cos e. -sin e. Q' .
J J J J

= 5-44

z' . sin e. cos 8 . Q .8' . (j = 1,2)
J J J J J

Carrying out the substitution indicated in Equation

5-44 and seeking a solution in the form

y. = Y.e PT
J J

z. = Z.ePT
J J

5-45a

5-45b
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the question of the stability of the variables y. and z. is
J J

determined by the eigenvalue problem

I [M] - P [I] 1 = 0 5-46a

where 0 0 -AK
Bl

1 -4K
l

0 0
B

2 -AK-4K
2 2

M - 5-46b

AKl

Bl 0 0-4K
l

B2 AK
2 0 0--4K2

The system 5-45 is unstable if R(p) > O. It can be

shown by expanding Equation 5-46a that R(p) > 0, and

consequently the trjvial solution Ql = Q2 = 0 is unstable if
y

5-47

It should be noted that Equation 5-47 is independent

of the yield point ratio, r.

ee) Steady-State Response Curves

To obtain the steady-state response curves, Equation
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5-38 can be rewritten as:

Q' K
1

[1+2>"]
8 1 (Q1) B

1 Q
2

sin ~ 5-48a= 4K11 2

Q' K
2

[1+2>..]
8 2 (Q2) B

2 sin ~ 5-48b= 4K Q12 2 2

~'
[1+2>"] [K1

C1 (Ql)
+ K2

C2 (Q2) 1 [K1 + K
2

]= Q ]2 Q1 "22

1
Bl Q

2
B

2
Q

l cos ~ 5-48c- "4 [- - + --]
Kl Ql K2 Q

2

Setting Q'l = Q'2 = ~' = 0 in Equation 5-48 the steady­

state equations in terms of the variable Q01' Q02 and ~o are

0 K
1

[1+21,.]
Sl(Qol) B

l QO sin ~o= 4K
l2 2

-
0 K

2
[1+21,.]

S2( Qo2) B2 QO sin ~o= - 4K
22 1

0 [1+2>"] [K1

C1 (Qo 1)
+ K

2

C2 (Q o2) 1 [K
1

+ K
2

]= QO ]2 QO 21 2

1 B1Qo 2 B
2

Qo
l cos ~o- "4 [K QO + K QO ]

1 1 2 2

5-49a

5-49b

5-49c
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The relationship between QOl' Q02 can be obtained from the

first two equations 5-49a,b to give

B K 2
= QO (~~)

1 B K 2
1 2

Now, from 5-49a

5-50

sin <li 0 =

and substituting

5-5la

into 5-49 c

1
2"

5-5lb

5-52

a relationship between amplitude and frequency is obtained.

Solving for the explicit amplitude frequency relationship

and rememberin~ that

Q
A = 1 - QO

there is obtained

5-53
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(l-A)

5-54

where
Kl Cl(Qol)

+
K2 C2 (Qo2)

a = "2 --Q-o- "2 QO
1 2

1 Bl
QO B

2
QO

S
2 + 1= "4 [- QO- K2

00-]Kl 1 2

S
2Kl Sl(Qol)

= -Bl
QO

2

5-55a

5-55b

5-55c

Here S represents the strength of the parametric external

excitation. The term ~ represents the effect of the hysteretic

energy dissipation, and the term a the detuning effect due

to the hysteretic nonlinearity.

An examination of equations 5-54 and 5-55 show that

unbounded response is possible if

5-56

Equation 5-54 is the steady-state equation applicable

to· any desired nonlinear restoring functions. It is only

necessary to substitute the appropriate functions for

Sl(Qol)' S2(Qo2)' Cl(Qol) and C2 (Qo2)' The steady-state

response curves-and the transient solutions will be given for

the bilinear hysteretic model.

To evaluate the steady-state response curves it must

be assumed that both amplitudes Q
l

and Q2 are within the

hysteretic range. This means that QOl and Q0
2

must be equal

to or greater than one, i.e.
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5-57a,b

Fig. 5-8 to 5-10 plot the steady-state response

amplitude of ~l and ~2 against frequency. The ratio of

yield points r = 2 in Fig. 5-8, 5-9 and r = 1 in Fig. 5-10.

The values of the coefficients used are B1 = B2 = 0.05,

Kl = 0.366, K2 = 0.634. The bilinear hysteretic parameter

u 2 = 0.5 and u l = 0.3, 0.5, and 1.0.

Examining Fig. 5-8 it is seen that the boundaries

of the linear parametric resonance zone and the steady-state

curves do not coincide. In fact, they can be made to coin­

cide for only one specific ratio of the yield points, r.

For the equality relationship of Equation 5-57 a,b

S . (Qo .) = 0
J J

C. (Qo .) = 1
J J

and Equation 5-54 reduces to

For the specific yield point relationship

5-58a

5-58b

5-59

r :: 5-60

the equation 5-59 coincides with equation 5-54 and the discon­

tinuity is removed. For any other ratio x y2/x
Yl

the width of
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the response curve given by

rela~ion to Equation 5-47.

value of A with respect to

212

F1uation 5-59 increases in

For example, the stationary

r is obtained from the equation

i3A 0 5-61ai3r =

ffi!i 5-61bor r = Bl K2

Since the second derivation i3 2 A/i3r 2 > 0, A and consequently

the width of the response curves can only be equal to or

greater than the width of the linear parametric instability

zone.

Fig. 5-11 shows the time history response of the

averaged equations 5-48. The transient response can be

viewed as consisting of four stages: (a) the initial amplitude

growth of the linear equations, (b) the co-ordinate xl enters

the yield range, (c) the co-ordinate x 2 enters the non-

yield range, and (d) steady state. These four phases are

shown in Fig. 5-11.

(d) Passage Through Resonance

For the yield point ratio r = 2 Fig. 5-8 and Fig. 5-9

show that large amplitude response can occur outside the

linear instability zone. The steady-state response curves

lean towards the lower frequencies and a large "overhanging"

region exists. For a fixed external frequency within the

region of the overhang, a small disturbance will not excite

the system into resonance. The disturbance must be large

enough so that the system co-ordinates exceed their yield

points, before a resonance condition can be reached. There

is however another mechanism by which these large amplitude
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regions can be reached. This occurs during a passage through

resonance.

As the external frequency n is increased from some small

value, only a small background vibration exists until the

frequency reaches the lower boundary of the linear resonance

zone (point A in Fig. 5-8). A resonant build-up of oscil­

lations occurs at point A and the oscillations experience a

sudden jump to their respective steady-state curves. As

n is further increased the amplitude of oscillations follow

the steady-state curve to point C. At point C the system

is no longer in a resonant state, the phase angles are no

longer synchronized to the external frequency and the steady­

state pattern of the oscillations break down. The amplitudes

fall below their respective yield points and the system is no

longer hysteretic. As the frequency is further increased

oscillations with amplitudes less than the yield points

will continue indefinetly.

If the external frequency is decreased from a large

value, only a small background oscillation exists until the

higher boundary (point B) of the linear resonance zone is

reached. At point B the oscillations jump to their respective

steady-state curves. As n is further decreased the amplitudes

follow the steady-state curves until the lower limit is

reached at point D. At point D the system is no longer in a

resonant state and the oscillations break down. Again, as

the frequency is further decreased oscillations with amplitudes

less than their respective yield points will continue indefinetly.

It must be noted that for small hysteretic effect, the steady­

state response curves do not close. (For example u l = u 2
= 0.3 in Fig. 5-8). In this case, very large response is to

be expected as the frequency passes through resonance from

a high value to a low value.

Fig. 5-12 and Fig. 5-13 show the time history response

of a passage through resonance as the frequency is decreased
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from (l-A) = 1.1 to (I-A) = 0.8 over a time interval L = 1200.

Fig. 5-12 corresponds to the steady-state response curve

u
l

= 0.5, u 2 = 0.5, r = 2 of Fig. 5-9 and Fig. 5-13 corres­

ponds to the steady-state response curve u l = 0.5, u 2 = 0.5,

r = 1 of Fig. 5-10. Both the amplitude and time scales of

Fig. 5-12 and Fig. 5-13 are identical. In comparing the

response of these two curves it is noticed that the oscilla­

tions do follow closely the steady-state response curves.

Fig. 5-12 was integrated with the ratio r = 2. This increase

of the ratio r has a two-fold effect on the response. It

causes both a larger amplitude of response and increases the

duration that the system is in a resonant state. In terms

of engineering design an increase of r causes both an increase

in stress and an increased fatigue effect.

5.5 Observations and Discussions
, hysteretic

1. A two degree of freedomAsystem parametrically excited can

exhibit a monofrequency response if th~value of the external

frequency is approximately twice the value of one of the

natural frequencies. In this case, an approximate solution

of the general two-degree of freedom system is possible.

2. The approximate solution is obtained by assuming both a

monofrequency response and a single mode response. A one
f

mode approximation allows a relatively simple determination of

the parametric instability zone, steady-state response and

transient response. The second mode, although not parametri­

cally excited at it's own natural frequency is nevertheless

coupled to the motion of the first mode by both the nonlinear

hysteretic elements and the linear parametric terms. These

terms do cause a forced response of the second mode. As a

result, the approximate method may not obtain the exact

steady-state amplitude; it does, however obtain the correct

magnitude of response.
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3. Analytical solutions of a general two degree of freedom

systems subjected to combinati~n parametric resonance is a

difficult task. The interaction of two modes each excited

at it's own natural frequency renders unclear the averaging

process of the hysteretic elements as they do not, in general,

trace out a steady-state pattern. However, a special two

degree of freedom system is analysed in which. each hysteretic

element is a function of only one normal co-ordinate. In this

way a steady-state solution is possible and the effect of

hysteretic damping can be investigated.

4. In order to reach a steady-state, both restoring elements

must enter the hysteretic zone. This is in sharp contrast to

the first example where steady-state is possible with only one

hysteretic element. Here, even though one' co~ord±nate has

passed its yield point, it is drawn further into the yielding

zone until the hysteretic action of the second element causes

a steady-state to occur.

5. A system with bilinear hysteretic damping can assume a

dual-state depending upon the amplitude levels. At small

amplitudes, where the oscillations are less than the yield

points the equations of motion are linear and undamped. At

large amplitude levels, the system is nonlinear, hysteretic.

The steady-state curves of the hysteretic system depend on the

actual value and the ratio's of the parametric coefficients

B., the normalized natural frequencies K., the ratio of the
J )

yield points, and the hysteretic parameters u .. The instability
J

zone of the trivial solution of the undamped system depends on

the product of the parametric coefficients and the distribution

of the natural frequencies only. At the interface between

these two systems the resonance zones do not coincide. In

general, the width of the steady-state response curve is

larger than the linear resonance zone.
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6. The increased width of the steady-state zone is caused

by the ratio of yield points. In this respect the ratio of

yield points determines the maximum amplitude of response

and the duration that a system is in a resonant state. The

ratio r for minimum response can be calculated. In this way

a design aid is available to minimize the response.



CHAPTER VI

COMBINATION RESONANCE OF A TWO DEGREE OF FREEDOM

SYSTEM WITH THE "RAMBERG-OSGOOD" HYSTERETIC

RESTORING FUNCTIONS

6.1 Introduction

In chapter V a two degree of freedom system subjected

to combination resonance was investigated. The restoring

functions were assumed to follow the piece-wise linear

representation of the bilinear hysteretic model. It was

observed that bilinear hysteretic damping does in general

cause bounded response. However, it was also observed that

hysteretic damping caused a wider parametric resonance zone.

Damping in engineering structures is widely considered to

provide a beneficial effect. It is often purposely intro­

duced to restrict the amplitudes of motion during resonant

oscillations. In this way, damping acts to stabilize the

system. Of great concern is the fact that the addition of

damping may cause a system to become more susceptible to

resonant oscillation. In this way, damping causes a

destabilizing effect.

A destabilizing effect of viscous damping in para­

metric combination resonance was first noted by Schmidt and

weidenhammer[44]. Hagedorn [15] extended the investigation

to nonlinear viscous damping and found that this form of

damping can also widen the resonance zone and cause a

destabilizing effect. In stability analysis the use of

viscous damping leads to similar findings. ziegler[58] has

shown that linear viscous damping in a circulatory system may

lower the critical flutter load compared to the critical

load of the undamped system. At the time it was proposed by

219
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Ziegler that internal damping of physical systems is usually

connected with a hysteresis effect which is not represented

if the damping forces are assumed to be velocity dependent.

Jong[28] by using the bilinear form of hysteretic damping

concluded that this hysteretic model generally removed the

destabilizing effect.

It is the purpose of this chapter to investigate

whether hysteretic damping causes a dynamical system to become

more susceptible to parametric combination resonance. The

bilinear hysteretic model is not suitable to study the motion

of hysteretic systems when the amplitudes of motion are less

than the yield points. For this purpose the smoothly

varying Ramberg-Osgood hysteretic model is used.

6.2 The Equations of Motion

The equations of motion of the two degree of freedom

system considered in this chapter are:

6-la

6-lb

Equation 6-1 corresponds to the problem treated in Chapter V.

The system is subjected to combination parametric resonance,

type II. The restoring functions Fl(xl,ul,nl ) and

F2 (x2 ,u2 ,n2 ) represent the Ramberg-Osgood hysteretic force­

displacement relationships. The functions are such that for

u l = u 2 = 0, Fl(x l ) = Xl and F2 (x 2 ) = x 2 . With the change of

variables, ~l = xl/xyl ' ~2 = x 2/xy2 the equations 6-1 can be

written as:

6-2a



where
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6-2b

6-3a

6-3b

6-3c

The relationship between the functions

thei~ arguments ~l' ~2 is shown in the

With the change of variables

T = nt

K = w /51 0

2 2

Fl(~l)' F2(~2) against
Appendix in Fig. A-3.

6-4a

6-4b

6-4c

6-4d

the equations 6-2 can be rewritten to form the system

].12 cos T = 0 6-Sa
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6-5b

where primes denote differentiation with respect to the non­

dimensional time T and A represents a small de tuning of the

external frequency.

6.3 Approximate Method of Solution

Seeking a response

Q. (T) cos (K.T + e. (T»
J J J

6-6a

- Q. cos 1jJ.
J J

and specifying that

1-1' • (T) = - Q. K. sin 1jJ.
J J J J

(j = 1,2)

6-6b

6-7

the averaged equations can be obtained from the system 6.5.

The averaged equations are

sin 6-8a

S (Q )
Q' = K (1+2A)' 2 2

2 2 2 6-8b

6-8c
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6-8d .

27f

where S. (Q.)
1 f F. (Q. l/J . ) sin l/J. dl/J. 6-9a- - cos

J J 7f o J J J J J

27f

C. (Q.) 1
fo

F. (Q. l/J . ) l/J. dl/J. 6-9b- - cos cos
J J 7f J J J J J

e:b.
and B. == J (j == 1,2) 6-10

J (r2 0)2

6.4 Steady State Response

The steady-state response in terms of the amplitude

QOl and Q0
2

and the frequency (l-A) can be obtained from the

averaged equations 6-8 by setting Q. = QO., Q'. == 0,
J J J

e. == eo. and a' . = 0, (j = 1,2). By substitution and elimina-
J J J

tion a relationship between the steady-state amplitudes can

be obtained, i.e.

6-11

(l-A) 6-12

where 6-13
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1
B

l
r Qo

2
B2

QO

S
1 6-14= 4" [K QO + Qo-J

1 1 rK
2 2

1';
2Kl 51 (Qol)

6-15=
Blr QO

2

Equation 6-11 and 6-12 are the steady-state equations appli­

cable to any desired nonlinear restoring functions. In

Chapter V the steady-state response curves were obtained for

the bilinear hysteretic function. Here the steady-state

curves will be calculated for the Ramberg-Osgood hysteretic

function.

The Ramberg-Osgood hysteretic function is specified

by the two parameters a and n. The equation for the backbone
-

curve for the restoring functions F. is:
J

n.
= - Jll. F. + a.F.

J J J J
6-16

For the evaluation of the steady-state and later for

the transient response only the parameter n. will be varied.
J

It will further be assumed that r=l and a l =a2 .

The functions 5 1 (lll)' 52 (1l2) ,Cl(lll) and C2 {1l2) of the

Ramberg-Osgood hysteretic model in general can not be evaluated

explicitly in terms of the amplitude levels and a numerical

analysis is necessary. For small amplitude levels ll.«l
J

the approximations

C·(ll·) ~ ll·
J . J J

6-17a

S.(ll·) ~
J J

4a
'IT

(n . -1)
-2-_
(n .+1)

J

n.
ll· )

)
6-17b
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can be made.

Then the ratio of amplitudes as given by equation

6-11 is

6-18

~2

~l

~2

~l

= (l:)

= a

6-l9a

6-19b

1

For n l = n 2 = n Lim ~2
B K 2 n+l

- = ( B~ K12) 6-l9c
~1+0 1-1 1 2

The steady-state response, curves for a = 0.1, n 2 = 9,

and different values of n l are plptted in Fig. 6-1 to Fig. 6-3.

The three curves are all plotted ~or the value of the coeffi­

cients Bl = B2 = 0.05, wI = 1.0, w2 = {i, Kl = .366,

K2 = 0.634, and r=l.

The largest response is given by n l = 3 and the least

response by n l = 15. For n l = 9 the maximum response within

the resonance zone is approximately ~l = 1.3. As n
l

is

increased further there appears to be only a slight decrease

in the maximum response and for n l = 15, ~l = 1.23. The steady­

state response curves were checked by exact numerical inte-
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gration and close agreement was obtained.

The steady-state curves have a pronounced softening

effect and lean to the low frequency side. The stability of

the steady-state curves were checked numerically and the

unstable portions are shown as dashed lines. At small

amplitude levels, the steady-state curves diverge for all

values n l not equal to n 2 ; only when n
l

= n 2 can the steady­

state curves be extrapolated to the zero amplitude axis.

This raises the question of the stability of the trivial solu­

tion ~l = ~2 = O. For the undamped system the instability

region is IAI < .0519. Within this region R(p) of the

associated eigenvalue problem is positive and an instability

occurs. Outside the instability zone R(p) = 0 and the

question of instability is undecided from a linear analysis.

This question was discussed by Hagedorn[15] in his investigation

of cubic viscous damping. Using Liapunov's second method he

concluded, that the trivial solution was also unstable in the

region outside the linear instability zone. In terms of

practical stability, it can be seen that irrespective of the

initial values large amplitude can only be maintained in the

frequency region .916 < (I-A) < 1.0526. This amounts to an

increase of 30% over the linear instability zone. Within this

enlarged region the question of stability must be answered in

terms of degree of instability. In the linear instability

zone any initial disturbance no matter how small will be

followed by an exponential rise in amplitudes. Outside this

zone, very small initial disturbances will cause, in practical

terms almost no hysteretic damping effect. However, for large

initial disturbances and low values of n l the hysteretic damping

effect will become evident and cause the destabilizing effect

which in turn will cause the amplitudes to increase.

6.5 Transient Response

To illustrate the actual behaviour of the system to
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hysteretic da:npinl;; t.lle Bqua.LI.OJlS 6-2 ore integrated numeri-
-}I,

cally. Fig. 6-4 shows tha response of the system for small

initial conditions at the frequency (1-;\) == 0.94. This

frequency is outsiQe the linear instability zone but within

the region where large steady-state response can occur. It

is seen that the ampli htdes or mot ion do not undergo a

significant increase within the integration tiroe T < 500.

Fig. 6-5 shows the effect of large initial conditions at the

same frequency. Here, the destabilizing effect of the

hysteretic damping is Gvident. The clmpli tudes grow rapi.dly

and reach 2. steady-state motion at T ::=: 200. ~<Ji thin the

linear instability zone small initial conditions cause an

immediate gro,-"th of amplitudes. Fig. 6-6 shows the response

of the system at t.he frequency (l-A) == 1.0.

The large amplitude regions \-.7hich are outside tne

linear instaLility zone can be, reached without specifying

large initial disturbances. nlis happens during a passage

through resonance where the resonance zone is traversed

from a high frequency to a lower frequency. Fig. 6-7 shoHs

the response for a pa.ssage through resonance with the parame­

ters of the Ramberg-Osgood function n
l

=: 3, n
2

::;: 9. Fig. 6-8

shows a similar res?onse for n
l

~ 9, n 2 = 9. The initial

phase of motion up to L ~ 200 is the same for both sets of

response curves. A resonant build-up is Seen to occur at

(1-\) = 1.05. As the external frequency is further decreased

the resonant. amplitudes follow closely the values given by

the steady-state curves. The resonant state ends at T = 550

for the case n l = n 2 = 9 and at L ~ 600 for the case n
l

= 3,

n 2 == 9. A fur~her decrease in frequency causes only a small

decrease in amplitudes.

COillpa!.·~ng the t.iJT~e his tory response of the system to

the ste~dy-state response the following observations are made.

For small initial disturbances resonant oscillations do not

take place unl~ss the external frequency is within the

boundaries of the linear inst2~ility zone. The large ampJ.itude
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regions outside the linear instability zone can be reached

either by large initial disturbances or by a passage through

resonance. The widening of the resonance zone at small

amplitude levels for n l t n 2 appears ~o have no practical

significance.

r
6.6 Presence of Higher Order Harmonies

The response curves of ~2 in Fig. 6-5 to 6-8 show a

slow frequency modulation of the order of 10% superimposed on

the motion ~2 = Q2 cos ~2. As the averaged equations predict

a steady-state it is of interest to see how this slow

frequency component is generated. Fig. 6-9 plots the dis­

placement, velocity and acceleration response for the first

mode ~l. The acceleration record indicates the presence of a

third order harmonic in the wave form.

Expanding the parillmetric term of the second mode and

including a third order harmonic in ~l' i.e.

6-20

the lowest frequency obtained is (3Kl - 1). For Kl = .366

this frequency has a period in the order of 6.5 times the

natural period of the second mode. The actual time history

response of the parametric driving term B2~1 cos T is plotted

in Fig. 6-10. Here the slow frequency component is seen to

have a period approximately 9 times the period of the second

mode. To obtain the effect of the higher order harmonics the

method of averaging must be extended to higher order approxi­

mations.

6.7 Observations and Discussion

Based on the present analysis of a two degree of

freedom system with hysteretic damping modelled by the

Ramberg-Osgood functions, the following observations are
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drawn.

1. For all practical purposes, a system with hysteretic

damping has the same parametric instability zone as a system

without damping. In other wo~ds, a small disturbance can only

cause a rapid rise of amplitudes if the frequency of the

external excitation is within the linear instability zone.

Therefore, the addition of hysteretic damping can not cause

a system to become more susceptible to parametric combination

resonance.

2. Once, a parametric resonance does take place, then the

hysteretic properties of the system influence the responses.

The steady-state curves of the hysteretic system depend on

the ratio of the yield points r and the parameters a and n.

By varying the parameter n it was observed that large amplitude

oscillations are possible Qver a region that is 30% larger

than the undamped instability zone. This enlarged resonance

region at large amplitude levels is particularly important

when a passage through resonance occurs.

3. At small amplitude levels, the steady-state curves in

general diverge and do not exhibit the usual bifurcation

points which are associated with parametric resonance problems.

The divergence of the response curves is caused by a difference

in the hysteretic properties of the two restoring elements.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

7.1 Conclusions

In the present investi.gation the resonant response

of nonlinear dynamical systems of one and two degree of

freedom subjectec to external monofrequency, parametric

excitation was examined. The resonance phenomena was

divided into external resonance and internal resonance and two

interaction problems were studied: first, the interaction of

an external parametric resonance and an internal resonance

caused by the nonlinear coupling terms, second the interaction

of two external parametric resonances. The nonlinearities

were grouped into those that were analytic functions of the

co-ordinates and their time-derivatives and those that were

hysteretic, time-history dependent functions of the co-ordinates.

The problems studied are typical of those that occur in the

theory of dynamic stability. Whereas an extensive literature

exists on the forced resonance. of nonlinear mechanical systems,

few contributions exist within the context of dynamic sta­

bility. In particular, no research has been reported either

on the interaction of resonance zones or the response of hyster­

etic systems. The approximate method of analysis employed·was

the method of averaging.

Based on the present analysis, the following conclusions

were obtained.

1. A nonlinear coupling between modes can cause an interaction

effect between an external parametric resonance and an internal

resonance. The parametric resonance zone can be divided into

240
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two regions; (a) that region ~n which a small disturbance will

grow rapidly and after the initial transient motion is passed

will reach a steady-state, (b) that region in which a small

disturbance will again cause a resonant build-up of amplitudes

but the envelope at maximum response instead of reaching a

st~ady-state will continue to oscillate about some mean value.

The former condition is typical of systems without internal

resonance and the latter condition may occur in systems with

internal resonance. This qualitative difference in the response

is the main difference that is caused by an internal resonance.

Taking as an example a thin-walled beam subjected to pulsating

end moments it was found that an internal resonance occurred

as the two natural frequencies'of bending and torsion coincided.

As the two frequencies approached each other a strong modulated

response occurred which consisted of a slow frequency wave form

superimposed on the envelope of maximum response. This non­

steady state motion was called a quasi-steady motion to dis­

tinguish it from a true steady-state condition. The modulated

motion appeared to be periodic but was too complex for an

analytical analysis.

2. An approximate solution of a system that can manifest an

internal resonance condition involves a two-fold analysis of

varying difficulties. The first analysis neglects the internal

resonance effect and obtains the steady-state response of the

system except in the neighbourhood of those frequencies that

will cause an internal resonance condition. The second

analysis includes the internal resonance effect, but is only

valid in the r~gion of internal resonance. Their exists a

transition zone as the frequencies approach an internal

resonance condition where the first method of analysis must be

changed to the second. Because of the techniques of the

approximate method of analysis the second method does not

degenerate into the first method as the frequencies diverge
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from the internal resonance condition. Accurate values of

the response in this transition zone can only be obtained

by direct numerical analysis; however, within their

respective regions of validity both approximate methods of

analysis do provide accurate response.

3. In two degree of freedom systems subjected to followers

forces, two external parametric zones can coincide and

reinforce each other when the natural frequencies of the

loaded system are near the ratio 3 1. This ratio may

occur in structural systems due to the action of the

external loading not withstanding the fact that the fre­

quencies of the unloaded system may be well separated from

that specific ratio. When the two parametric resonance zones

coincide an explicit algebraic solution of ,the steady-state

response is not possible; instead, the steady-state curves

must be obtained by numerical trial and error methods. Again

as was shown in the example of internal resonance a steady- '

state condition may not be possible over a portion of the

parametric resonance zone. The response that occurs in lieu of

the steady-state is a modulated response. A transfer of

energy between the modes caused by the parametric coupling

terms appears to be the reason for these modulations. These

modulated motions were found to be quite pronounced and

exceeded by 50% the maximum amplitude of the steady-state

curves that neglected the interaction effect.

4. The instability zone of the parametric combination

resonance is a function of the ratio of the damping coeffi­

cients. For the non-conservative system studied, the ratio of

the damping coefficients of the first and second modes was

(1/38). This caused the system to be extremely susceptible to

parametric coniliination resonance. However, although the

zone of instability was wide it was found that the transient



- --- - ~- ----------------------- - ~-

243

solution had a very slow rate of rise near the boundaries of

the instability zone. This introduced the concept of degree

of instability in parametric resonant systems and it was

concluded that a dynamic instability had to be measured not

only in the width of the resonance zone, but also in the

character of the transient motion.

5. Simple analytical expressions of the energy dissipation

mechanism of real physical system are not suitable for the

study of parametric resonance. Linear viscous damping, does

not cause bounded response and nonlinear forms of viscous

damping predict an unacceptable destabilizing effect in the

case of combination resonance .. In addition, these forms

of analytic damping do not correspond to the actual force­

deformation characteristics measured experimentally. By using

hysteretic damping in the form of the bilinear, double­

bilinear and Ramberg-Osgood functions, bounded response was

obtained during parametric resonance. The damping mechani~m

of these hysteretic elements is two-fold and is caused by

energy absorption and frequency detuning. The area of the

hysteretic loop is a measure of the energy dissipation within

the structure. Because the frequency of the responding system

is amplitude dependent, this causes a detuning of the exci­

tation frequency which in turn limits the resonant amplitude.

It is these two properties that reinforce each other to cause

bounded response. The steady-state response curves of

hysteretic systems lean towards the lower frequencies and thus

exhibit a softening effect. Portions of the response curves

have unstable branches and the "jump" phenomenon is possible.

For small hysteretic effect it was found that the Ramberg­

Osgood and double bilinear models have a·pronounced lean with

a resulting large overhang. This overhang portion of the steady­

state curves can be reached through large initial disturbances

with the result that these systems can be parametrically
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excited into large amplitude .:>scillations outside the linear

instability zones. For the one degree of freedom system, it

was found that hysteretic damping does not affect the width

of the parametric instability zone. In contrast, viscous

damping can narrow the width of the instability zone and if

it surpasses a critical value it can completely eliminate

the instability for a given parametric excitation.

6. Hysteretic damping of two degree of freedom system subjected

to parametric resonance can cause extreme analytical diffi­

culties. However, by treating two restricted problems of the

general two degree of freedom system a number of conclusions

can be drawn_. First, the two degree of freedom systems may

be parametrically excited into a mono-frequency response where

both co-ordinates respond at one-half the frequency of the

external excitation and the frequency of response is close to

the frequency of the first or second mode. For the case of

mono-frequency response an approximate solution of the

general two degree of freedom system is possible. By using the

assumption that only one mode was excited into parametric

resonance the two degree of freedom problem was reduced to

one degree and the steady-state solutions were easily

obtained. Numerical integration showed that the one mode

approximation allowed a relatively simple determination of the

instability zone, the steady-state response curves and the

transient solutions.

7. The second problem that was treated i.nvolved the corr.bina­

tion parametric resonance of a specialized hysteretic system

where each hysteretic element was a function of only one

normal co-ordinate. With this system, a ste~dy state solution

was possible and the destabilizing effect of hysteretic

damping was investigated. The destabilizing affect caused by

the addition of damping to systems subjected to combination
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resonance is also evident in hysteretic structures. However,

the des"tabilizing effect does not manifest itself until the

system undergoes large amplitude oscillations. For all

practical purposes, a system with hysteretic damping has the

same parametric instability zone as a system without damping.

Once parametric resonance does take place, then the hystere­

tic properties can influence the response. It was found

that the ratio of yield points was the important parameter

that determined the effective width of the hysteretic

resonance zone. This ratio determined the ma~imum amplitude

of response and the duration that a system is in a resonant

state, during a transition through resonance.

7.2 Suggestions For Future Research

The theoretical investigations of the simultaneous

occurrence of two resonance conditions has shown that the

resulting motion is sufficiently different from the case

when only one resonance is considered to justify an

experimental investigation. The investigation of the thin­

walled beam was restricted to a two mode approximation.

The inclusion of additional modes will increase the accuracy

of the analysis and may indicate some new qualitative changes

in the response. Other elastic bodies such as plates and

shells where the natural frequencies of various modes of motion

may coincide should be investigated.

The study of systems subjected to non-conservative time­

dependent loading should be expanded from it's present appli­

cation in aero-space engineering to other engineering systems

where such loadings are feasible. One such application could

be in the area of wind or hydraulic loading of structures.

As the non-conservative loading is increased it reaches a

critical value where self-excited oscillations are possi.ble. A

worthwhile investigation would be the interaction of a self­

excited and parametric resonance.
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Investigations of hysteretic systems are becoming

increasingly more important. Here the emphasis on research

should concentrate on multiple degrees of freedom. In

particular, the effect of nonlinear coupling, internal

resonance and combination resonance should receive further

attention. The effect of degrading material properties

should also be investigated.

Extension of the method of averaging to higher order

approximations is feasible. A worthwhile mathematical

investigation would be to evaluate the significance of the

higher order resonant zones.
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APPENDIX

Evaluation of the Hysteretic Functions C(Q), SeQ)

The integrals C(Q), seQ) for the bilinear, double bilinear
and Ramberg-Osgood hysteretic relationships were first evalu­
ated by Caughey [7] , Iwan[22] and Jennings[27] respectively.

For completeness the results will be derived here in detail.

(a) Bilinear Hysteretic Model

The bilinear hysteretic function is shown in the Fig. A-I.
Along the branch BC the restoring force M is

Along the branch CD the restoring force M2 is

M2 = Q cos ~ - Qu cos ~ - U~y

A-I

A-2

The integration is performed over each line segment with the

first integration period defined by the angle

A-3

cos 6* =
Q - 2~

Y
Q A-4

The functions C(Q) and SeQ) are symmetric with respect

to one half period of integration

2~

seQ) =; f
o

M sin ~ d~

A-I



SeQ)

A-2

e* 11'

2 r J M1 sin 1JJ d1JJ + fe*
M2

sin ljJ d1JJ]= -11'
0

e*2 ( I (Q cos $ - uQ + uct> J sin 1JJ dt/J= 11' Y0

+ I1T

[Q cos 1JJ - Qu cos 1JJ - u~ ] si.n 1JJ d1JJ A-5
e* Y

uQ . 2 e*= - - sJ.n
11'

= - 4u ct> (1 - !x.
11' Y Q Q ~ ¢

Y
A-6

S (Q) = 0 Q < ¢ A-7
Y

1 I211'C (0) = - o M cos 1JJ dt/J11'

fe
*

11'
2 Ie*

= - r M1 cos W dljl + M
2 sin W d1JJ] A-a

11'
0

e*2 I
o

(Q cos 1JJ - uO - U$ ] sin IjI dW= 11' Y

+ J11' (0 cos W - Qu cos ljJ - U$yJ sin $ dt/J
e*

C(Q) Qr1 - u + uo* u . e* cos e*] Q ~ ¢ A-9= - - - sJ.n
11' 11' Y
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FIG. A-l BILINEAR HYSTERETIC FUNCTION



C(Q) = Q

A-4

A-lO

(b) Double Bilinear Hysteretic Function

The double bilinear hysteretic function is shown in

Fig. A-2. The restoring force M is defined on the four

linear branches as follows:

M = Q cos ~ - u(Q - ~y)i

= (1 - u) Q cos ~i

= Q cos ~i

(Q - ~y) < Q cos ~ < Q

o < Q cos ~ < (Q - ~y)

- ~ < Q cos ~ < 0y

= (1 - u) Q cos ~ - U~yi - Q < Q cos ~ < - ~y A-II

Let A-12a

-1 ~
62 = cos (- i)

Then seQ) may be evaluated as follows

A-12b

S(Q) 2 { (1 [Q cos ~ - u(Q - ~ )] sin ~ d~= -'IT Y

'IT/2 82
+ J (l-u) Q cos ~ sin ~ d~ + J Q cos ~ si.n ~ d~

8
1

. 'IT/2

'IT

+ J ((l-u) Q cos ~ - U~y] sin ~ d~ A-13
62
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FIG. A-2 DOUBLE-B!LI~2AR HYSTERET~C FUNCTION J



Upon

SeQ)

integration

Q . 262 s~n 1
= :rr { 2

A-6

Substituting 81 and 8 2 and simplifying

A-14

S (Q)
Q - <p

= - ~ u<p ( Q Y)
1T Y Q ~ <p y A-IS

In a similar manner

C(Q)

Q ~ <p y

A-l6

(c) The Ramberg-Osgood Hysteretic Function

The Ramberg-Osgood Hysteretic function is shown in

Fig. A-3. The function is specified conveniently in the

non-dimension~l amplitude ratio ~ = 4>/4>y' Explicit expressions

of S(~o) and C(~o) in terms of the amplitude ~o are not

readily available. The integrals can be conveniently evalu­

ated directly from the defining integrals



A-7

1T

S (llo)
2 Io

M(ll cos 1/1) sin 1/1 d~l A-l7a= -
1T 0

1T

C(llo)
2 Io

M(ll cos 1/1) sin 1/1 d1/1 A l7b= -
1T 0

by the use of Simpson's Rule.
A mixed analytical expression in terms of Mo and llo is

readily calculated for the integral S(~o).

With the change of variable

II = II cos 1/1 A-l8ao

d~ =-ll sin 1/1 d1/1 A-18bo

the integral A-17a can be rewritten as

-~ ,

J 0 M(p) dll
+~o

A-19a

=

From Fig. A-3

-M

J+M

o

o

M dll dM
dM A-19b

Consequen-tly

A-20a

M - M
d~ - 1 + a n( --£)n-l
dM - 2 A-20b
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FIG. A-3 RAMBERG-OSGOOD HYSTERETIC FUNCTION
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Now

-M
- M2

fM

0 M
S(J.Io ) = - {M + em M ( 2 o)n-l} dM

J.Io TI
0

-M M - M2 [0 + an I 0 M(= - 2
o)n-l dM]

J.Io TI Mo

Let ~ = M - M
0

Then

A-21

A-22

= (n-l) M n+l
(n+l) 0

A-23

S(J.I
o

) is now given as a mixed expression in terms of Mo and

J.Io ' These variables are related by the expression

J.I = M + aM n
000

For large displacements

H :::: "'M n
t"o "'" 0

J.I lin
M = (~)

o a

For small displacements

J.I »lo

J.I «1o

A-24

A-25a

A-25b

A-26a



A-IO

and

4a (n-l) n
1T (n+l) llo A-26b

Area of hysteresis looE
The area of the hysteretic loop can be evaluated from

the integral

Area = I Mdll = A-27

Now A-28a

A-28b

Area =

Area =

- IIo

21T

I
o

M sin 1/1 d1/l A-29a

A-29b

Consequently the integral S(llo) is a measure of the area
contained within the hysteretic loop.


