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ABSTRACT: 

The thermalization time of positrons in metals has been 

computed as a function of the electron denSity r4rameter r , in 
s 

the complete metallic electron denaity ranee (2 < r < 5.6). s 

Our calculations are based on the propagator technique of many-

body perturbation theory, to first order in the electron-positron 

effective force. The rate of energy loss of the positron, in 

our foroalism, is given by the imaglllary part of the self energy 

operator; this quantity is worked out both in the Random Pha,3e 

and t~e Hubbard approximation. 'de find that, in the low 

mOlllentum transfer region, \·thich is really the only regime of 

importance here, the electron-positron interaction can be approximated 
2 

by a screened Coulomb potential; exp (-i'-'l'F r) vthere A.rF is the 

(ii) 



Thomas-Ferr.1i momentum given by J4rr.rI.. PF. 

r s' the usu3.l density parameter, by ,J., = 

Here ~ is related to 
r 

5 

1.9l91i · 
Further, 'de find that, in general, the time taken -by 

the positron to drop to an energy of .025 e.v. is not as short 

as is generally believed, although it can be said beyond doubt 

that complete thermalizution has taken place before annihilation 

at room temperature. Ho\vever, for aluminium at 1000k, the 

therrnalization time is lonP;jer than the annihilation time. On 

the basis of thiG result, ~ve sugeest that this lack of thermalization 

in aluminium might be detectable in an experiment similar to that 

recently reported by SteHart and Shand (1966), concerning the 

positron effective mass in sodium, although without more extensive 

calculations it is not possible to say precisely hOlrl a small 

amount of non-therrnalization would affect the anGular correlation 

curves. 
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CHAPTER I 

Introduction - -

The thermalization time of a positron in a metal is 

the interval of time beb/een the instant a relatively high 

energy positron enters into the metal and that at which it 

achieves thermal eqllilibrittm 'i/ith the conduction electron gas. 

A knm.,ledge of this characteristic time ,. T is pertinent to the 

interpretation of the experimental angular correlation data and 

the total annihilation rate. It is usually taken for granted 

that the positron is therl,Jalized before annihilation. While 

a small amount of non-thermalization would not change the shape 

of the (overall) angular correlation curves very much, the recent 

experiments on the positron motion in sodium reported by Ste'v!ar\; 

and Shand (1966), however, depend quite critically for their 

interpretation and consequently, for their conclUSions, on the 

assumption that the positron is thermalized prior to annihilation. 

Thus, the determination of the thermaliz~tion time, by a detailed 

analysis, is an illuminating problem. 

1 
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J~ part froI:l th~sc reasons s from a tho ore tical poj_n t of 

a s'cudy of the entity Tm :Ls interesting in its 0\,/11 riC':-1t. 
1 

It pro':ic:es an insight into the v.J.ri0u:::; polarization proccc:::;cs 

occm.':cir,c in the !il8diu;i1 such as the creation of electro:1 Ll0le-

particl..: p.::.:.irs and the back influence of the resulting polarization 

charge on "ehe positron and, consequentlys on the rate at "'/hich it 

loses 0nersy. 

It seems that not mnch Hork has been reported on the 

calcula t:Lon of Tm even after t~e advances in cJany-boc.y thev;:-y. 
l 

':L'r-:S! recent expe::.'imental att.crnpt to determina TT directly, (S-;;E!1:!:::..rt &: Shand (196 

0:':: th~ ot::8r ~'l.arld') coes not; yet appear to have reached the z.ccuracy 

needed. IJec-',:nitins's (1955) thcor~tical calculations of TT 

is the only published vlOrk. available to da.te. This work VIas 

done bcfore r:lany-body techniques vTere well establish0d. 

1ee-V::hi ting represents th~ intel'action bet,'lCen a 

posib'on ar.d a :r:01arizable free-electron gas by a screened Couloffib 
;z 

potential of the form e C-Ar) , vlhere is the electronic r 
exp e 

charge, r is the relative distance betHeen the positron az:d an 

elec tr0!1 and A. is the screenins parameter. The paraweter A is, 

to some extent, arbitrary and to be fixed in a reasonable way. 

It is further assumed that the value of A. appropriate for positron·· 

electron interaction is the same as tlut sQitable for electron-

electr)n interaction. The Exclusion PrinCiple does not 
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c\P?ly to the electron~posi troll system. The initial st~te of 

the systCl1 is ta:..;:01l to b8 a free elect2'on ge.s \lith a polarization 

cloud about each electron. It is iu:::-thcr assumed that, 

high enerr;y level ~ is then capable of losing energ-y to the r:1cdiU:'.l 

by creating real electron hole-p2.rticlo }Jairs. Thus it loses 

its enerGY to the w~dilun continuously and tends to'.v.::l.rds therrual 

equilibrium \ii th the electron gels. The rate of energy loss is 

a function of the positron energy and is extre:Jely sensitive to 

the parar.lete:.' A. 
_1.( 

In fact R~ A • 

Basins bis argument on the available eZperimental data 

in l'elated fields Md the theoretical situation at that ti~d0, L~c-

, 8 -1 
'tl:ri ting took I\. = 1.02 x 10 cm for sodium. Thus "j T for soditU:l 

-l2 
vlaS found to be 3 x 10 sec., whereas the annihilation tirn0 

"j A = 3.lt x 10-
10 

sec., so that 

'I 
A "Fe = 113. 
T 

Hence, acco:::-ding to 

Lee-';!hitin.;, a positron is certainly thermalized before anr.ihilation. 

Our approach to the proble::;) is on a similar line of 

phYSical argl:.":1ent to Lee-',ihitins's. HOi'/ever, in the light of 

advances in Qany-body theory, \-:e propose, in this vlerk, to tackle 

tho problo;Jj in a somc\lhat more ftu'1daCiental .ray t by U3ing tr.e 

Green's function propagator teChnique of the many-body perturbation 

theory. ',Ie .... "ill consider only the first order effects 1 assu:Jing 
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that the higher order contributions are negiigible in comparsion. 

Nevertheless, the dynamic dielectric fUllction vlill be used in 

determining the effective potential. 

In Chapter 2, the theory will be developed by using 

the propagator technique and an expression will be found for the 

irreducible self energy operator 11(!s; w) in the Random Phase 

Approximation (R.P.A.). An expression for the rate of energy 

loss R[lsJ of the positron as a function of its momentum ~ will be 

obtained in Chapter 3. This expression is obtained quite directly 

from the imaginary part of the self energy operator M(k; w). 
/'OJ 

Chapter L:. is merely concerned \vith the algebraic reduction of 

the expression for R[~] to be ready for cooputation. Also the 

real and imaginary parts of the dynamic dielectric function, in 

the R.P.A., will be computed and compared, in the low energy and 

momentum transfer range, with the static limit. 

The formalism of Chapter 2 will be extended in Chapter 5 

to take account of the Hubbard correction to the R.P.A., which 

can be important at metallic densities. 

Finally, in Chapter 6, we discuss the results obtained 

and draw conclusions~ In the end, we propose an experiment in 

aluminium similar to that reported by Stewart and Shand in sodium, 

which might be expected to Show effects of lack of positron therm-

alization. 



CHAP7"8R 2 

Tile 1-'08i trOll PropcS:~:2:.toi' 

Let u.s cOilsidor a positron propc:..gatiu.?; throuGh a li1etal. 

''':e neslect, the lattice entirely, replncin.::; it by a fixed bacl<::-

ground of positive charGe neutralizinG the system. The positron 

Gree~1. Ie functiol: G (x j x I ), which can then depend only on the 
p 

rele.tivt; space and time coordinates, is defined by 

G (x' Xl) P , = i <H 1 T 1 (x) (2.1) 

fully interacting Heisenberg ground state for 

the N conduc'Uon electrons, and T is the '.lick t s time orderin,;; 

oper",tor (1950). (v (x) and cf (x) are respectively the p3.rticle 

creation nnd dastruction operators for the positron field in the 

Heisenborg pict~re. Notice that for t' > t,G (x; Xl) vanishes. 
p 

To start 'Ilith, \-le consider the syste:n to b~ noninteracting. We 

will, later on, account for interactions by perturb~tion theory. 

In this approxirr.ation, equation (2.1) becomes 

GO i B.1.- (x·. v I) 
k

2 (t-t I )1 (Xi Xl) r. -.... .. .. 
i = V 

€: ~ ..- ~ 
p ~ 

k ,., 
for t > t l 

(2.2) 

= 0 for t f > t 

5 
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where k is the positron momentum and V is the volume of the ,.., 

metal; also we have talcen units such that 2m =..n = 1. 

By space and time Fourier transforming, (2.2) becomes 

1 
t 

where all Fourier transforms are defined by 

F(x; xt) 1 
Y: 

ik. (x-x t ) 

S 
dw -iw( t-t') = V e"'" IV "'tJ - e 

k 2n 
;>;> 

x F(k' -' w) (2.4) 

The positron Green's function (propagator) for the interacting 

system is related to the noninteracting propagator by the well-

known Dyson equation: 

w) = w) 

where r'l(!;,; w) is the irreducible self-energy operator. 

~/e are concerned, in this work. with the determination 

of the thermalization time. This can be easily calculated from 
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t':le r&tc: of 8n(;J.~Cy loss of the positron. ;\nd it will be sho',v..'1 

in Chapter 3, thnt th2 r~te of energy loss i8 9 in turn, directly 

tL.c imnginnry part of the irl'educi'ole celf-energy ope:"'ator H(k; w) 
,~ 

Hence it is ::10:'0 apprOl)riate to approx::'mate 

directly ,,0 the o:perator ~';(~; w) rather than to the Green I s 

fuuctio:l G (1-- w). P ~, 

Going back to the Dyson equation (2.5) (v/hich is just 

a linear equation), its solution is given by 

GO (1 __ 
w) .. , 

G Uc; w) - ---P-=:: 
p .- 1_GO (lq w) 1·:(1:; w) 

p ,... ,v 

and makinG use of (2.3), we have 

G (k- w) = p ,..., 
1 (2.6) 

Equation (2.6) is an exact equation of motion of the 

positron ~~ the medium; (·j(k; w) accounts for interactions. 
'" 

',';hen it vanishes, we recover, of course, the noninteracting 

propiJ..:;ator. It should be clear nov' from the explicit 10r:n of 

G in (2.6) that it is more convenient to \-lork with M rather than 

G, since M represents a direct correction to the noninteracting 

motion of the positron. In particular, its imaginary part gives 

the d~~pins of the positron motion. 
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To begin with, we shall treat H(x; x') in the Random 

Phase Approximation, which means that ~le will include in our 

calculation only those graphs which are shm·rn in Figure (la). 

In Chapter 5, however, we shall correct the R.P.A. formulation 

by incl11ding the interactions between the created electron hole-

particle pairs, as first suggested by HUbbo.rd .(1957). It is 

enough to remark here, hm'lever, that in our region of interest, 

Hubbard corrections do not modify our results significantly and 

that the R.P.A. is a good approximation. 

Obviously, the first graph in this infinite series has 

no contribution, since it involves the time ordering t' - t > 0 

(with (t'-t) ~ 0) of the propagator G (x; x') which, from 
p 

equation (2.2), is zero. In any case, this is the first member 

of the infinite set of Feynman's graphs of interest here and, 

therefore, we will include it for the sake of continuity argument. 

Finally, this infinite set of graphs is written identically equal 

to the graph (lb) by introducing the effective potential ~(x; x'). 

The integral equation representing U(x; x') is shown 

diagrammatically in Figure 2. Mathematically, 

~(x; x') = Vex; x') - i S vex; RPA 
z) Q. (z; 
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where QRPA is the polarize.tion part in R.P.A. and V is the bare 

coulomb potential. 

Taking spnce-time Fourier transforms, it reads 

ll(q; ,. e) = v _ 2 V QRPA ( q ; 
q q ,., -

Here V = 
q 

4ne2 
2 - where e is the electronic charge. The factor 

N q 
of 2 is included for spin degeneracy. 

The momentum frequency dependent polarization part in 

R.P.A. is defined in terms of the free electron propagator 

GO(ko w) as 
e ,..' 

QRPA (q; 

= 

... 

1 
- V r. 

k ,.., 

e) ! E = V 
k ,., S dW GO (k+q; 2it e ,.. '" 

GO(k' 
e ... ' 

w) 

where e's are step functions; for example, 

= 0 for k < PF 

Here PF = Fermi momentum. 

w + e) x 

(2.8) 
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Solving equation (2.7) for the effective potential, 

we have 

= 

vlhere (:. (q; €) is the dynamic dielectric function for the 

electron medium. A knot.,.ledge of the dielectric function is 

pertinent to our problem. 

between Q and E , 

Q = 

Because of the direct relationship 

E - 1 
2 V t 

q ,.,. 

we shall investiGate the behaviour of the polarization operator 

Q, in detail. 

As shO'.'in in Figure (lb), the self-energy operator H 

can be written in terms of the effective potential as 

Hex; = U (x; (2.10) 

The physical interpretation of this equation, which gives an 
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insight into the actual processes tru~ing place, is as follows. 

The positron creates an electron hole-particle excitation in a 

fully interacting medium. The excitation and the positron 

then propagate independently for some time before the excitation 

interacts back on the positron affecting its trajectory. It 

is this screened coulomb force, including the virtual polarization 

of the medium \'/hich determines its rate of energy loss and, con-

sequently its thermalization time. 

Notice that 'tIe a.re considering '~he first order effects 

only in the electron-positron coupling, assuminG that the second 

and higher-order effects can be neglected, in comparison to this. 

Fourier transforming (2.10), one obtains 

M(k- w) i r. S ~~ lJ(q; e) GO (k-q; w-e) = -,..,' V 271: N P ,., .., 
q 
IV 

(2.11) 

! ! S ~ (q; e) 
1 = IJ V 2rc 2 • + q 

..., 
(k-q) - W + e - J.o ,., ... ,., 

where we have made use of (2.3). 

The analytic properties of the integrand in (2.11) as 

a function of the complex variable £ consist of the singularities 
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of \l(q; e) plus the extra pole of e = W -
# 

e-integral has been worked out by Carbotte and the result 

is 

w) 2 
= 7-

x 

r; 
qq' 
NN 

1 

2 2 (q'-q) -q' .... ,.. 

We have dropped the contribut~on to H from the plasmon pole, 
( 

I 2 

(2.12) 

since 'tIe are interested only in a formula for the rate of energy 

loss in the case of a la\" energy positron, Le., having 8.n energy 

of say 5 e.v. or less. Plasmon energies are, in S·2neral, con-

siderably higher than this so that, in the region of interest 

here, plasmon creation is not a possible mechanism of energy 

transfer. 

As a function of complex W , the singularities of 

H(k; w) can be easily read from the expression (2.l2). ,., It has 

a cut extend.ing from zero to infinity just belo\" the real a.xis. 

This contribution comes from the continuum \',hich implies the 

excitation of individual particles as opposed to collective 
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excitations like a plasma oscillation. M(k; w) has no ,.. 

singularities in the upper half plane. We shall make use of 

these properties of H(k; w) in the follovling chapter, where 
N 

the actual positron propagator G will be shovln to be very 
p 

simply related to the imaginary. part o£ the irreducible self-

energy operator M(k; w). ,.. 



CHAPTER 2 

!.~rmll~or the R~f Energy Loss 

We shall now work out the expression for the rate 

of energy loss of the positron as a function of its momentum. 

For this purpose, \'10 will be interested in the momentum time 

dependent positron propagator# Therefore, taking the Fourier 

transform of the positron Green's function from the frequency 

to the time plane, we have 

-co 

-iw'T e 1 

(3.1) 

where we have substituted from (2.6) into the prescription for 

the Fourier transform, 

G (k; 
p ,.., 

,.) = 

+CIQ 

S 
-ea 

14 

dw 
21t 

-iw,­c G (k. 
P -' 

w) 

(3.2) 
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Tl:~ integral (3.1) can be worked out fror.l our 

~'1ovl::'ed:;~ or the singularities of NC{.; w) for complex w. ,., 

Provic.ed th&t r.o r.ew pole is introduced because of the appearance 

of the s~lf-energy operator in the denoreinator, it is clear that 

G (~:; (.0) has the saw8 singularities as those of MOq w). No ... , 
P N ,.., 

as a f12'~ction of w, NO:; w) has a cut extending rrOr.l 0 to oa 
N 

just beloYl the real axis (coming fror.l the continuum); the 

plasmon pole would introduce a further cut in part of this range, 

although this contribution has been omitted. Hence N(k- w) 
-' 

and therefore G (k; w) are both analytic in the upper half plane. T'tiUS~ 
p IV 

G (k; (,t) is zero for '; L.. 0, since we can then close the CO:1tour in the 
p 

upper half plane. T'nis result is consistent with (2.2). Consider the 

case ofl-) O. Close the contour below the real axis in the complex w-plane. 

-iw'-As e dawps out to zero on the contour Y (ffigure 3(a». 
therefore the contribution to the integral comes from the contour 

vtFigure 3(b», which encloses the branch cut. 

axis dOW~l so tP.at it coincides with the cut. 

Then the closed integral 

§ 
y 

= 

y' 

dw 
2it 

Push the real 



o 

= 
o 

2;: 
e-ix.,-

-ix.,­e 

~( . +) 1 X + J.O 

o 
+ \' 

\ 
, ' 

-ix'r 
e 

U(x + io+) - f(x - io+» 

10 

Fror.l eq. 0.1), since H(!s; ''.1) has no imaginary part 0:1 

the negative side of the ::.~eal ~.\-D.::d.:3. G (~j 0) is rl';:ll for re.:;.l 
P .-

1,) <:'0. r.2herefo1"e9 by usir.g the SC}l\';aTtz reflection principle 

+ 
C ->0 

He:1ca the integral reduces to 

-ix.,­
e 

In our problem 

~( . +) 
I A ± J.O = 

(2i) Imf(x) 

1 
2 k - x - E (k· 

... ' 

(3.4) 

x) :!: i/2 r (k; v) ... 
'" 



-:- :i.o·:);;: E(k; 
'" 

Ii.1 rex) = 

'l'hl.lS equation (3.2) reduces to 

s~ 
o 

dx 
= --2')t 

o 

i r 
x) i: 2' x) 

17 

(3.6) 

The factor of i- in the imaginary part r of H ha.s been 

(3.8) 

taken for the sake of convenience in the following calculations. 

Using the relation 

lim 1 ---,..-- = 
x-x +if' 

0' c. 
pp 1 

x-x o 
+ iTIO (x - x ), o 
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x) com be easily obtained from 

equation (2.12) and is given by 

~. r x) 2 
i-:: (co ::: ;2 "'1 

w qq' 
tV., 

( ) .2 ,2 
x + q'-q -q ) 

"'" ..., 

Tho motion of the p05i tron is dalllp(;)d by the induced 

holc-pa.l'ticle pairs and the extent of dc:.tr.Jping will be shown to 

be directly related to the im9.ginary pnrt of H(kj x). ,., 

The int.egrfl.l 0.8) is easily evaluated for r' '\'«1. 

For the per'~urbation theory to be valid, the quasi-particle 

energy shift as .,.,el1 as the dw;;ping rate should be small so that 

the int€:grand vlithout the exponential in <3.8) is peaked at 

) '" ~2 :x: ::: K. The peak \'lidth is r . Thus~ 

provided the \·d,dth is small as compared to the energy, which is 

the case in fact, we can extend the lo\"er limit to - eO 

'tli thout makin.:; any change in the value of the integral. Ther€:-

fore, the domain of inte[,;ration can be takon to be ~ (- co, + 00). 

The :r;8.~k ,·,id th r as a fune tion of the positron energy for ve,lues 

of r (2 to 6) is \'lorked out in the Appendix B and recorded in 
s . 

Table 1. 
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Now due to the presence of the oscillatory function 

-ix't e ,the peak is not so 'vlell defined. In order that the peak 

does not get chopped off due to oscillations, we assume that the 

l'lavelength of oscillations is much larger than the \-ridth of the 

peak so that the oscillatory function can be considered to be 

almost constant as x ranges over the Lorentzian (Figure 3c). 

Thus for r T<<:1., we have, on replac:i.ng x bJ k.? in r(k; x), 

G (k' 
P ,..,' T) = 

-~ 

k 2);2 
0.10) 

In order to evaluate this, let us consider the integral 

in the complex z-plane 

-cO 

The integrand has poles at 

z = 

-iz1' 
e 

and 
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No\-!, fo:;.~ .... / 0, the exponential. dies out along the circle of 

in the lower half plane. Therefore, \'Ie mD.y 

close the contou:c below. 'l"'.aus~ closi:::.g the conzour below9 the 

resic.ue of the function at the pole II - iris 
2 

. (1 2 i rl ) ,-
-:L .( - 2' I' , 

c (-1) --. 
2n (- i r ) 

TIlE: minus sign in the nUillcrat()r api.)en.rs because the 

contoLU~ has been taken in the clocl-:-Hiso direction • 

Thus 

- 0) 

dx 
2'i1: 

G (x; 
p ~ 

. ~ 
(i) 0 -:LX, T' 
--- - ---'-;:;-2 
( 2 2 r 
x-l~ ) + Ii 

'i') :: (i) 

= 

exp -i 

= (i) exp - i 

x 

i 1") 2 'i' (3.11) 

(3.12) 
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and 

t r(k; ,.., 
2 

= -; ~ 
qq' 

e(p _q') 8( Iq'-ql-p ) v 2 F _ ... .., F 9 

... ", 

(3.13) 

)( 1t 6. [(k+q)2 a. k2 + (q '_q)2 _ q ,2J ...... 

We shall no\v determine the exact relationship between 

the rate of energy loss and r (k; k2 ). 
'" 

For this we go back to the general e~pression (2.1) 

for the positron propagator 

(3.14) 

No\·/ the space Fourier transform of the positron field 

operator is given by 

f(x) = 
1 -.[f 

where the Heisenberg time dependent operator bk(t) is related 

to its time independent analogue by 

iHt = e 
-iHt e (3.16) 
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where H is the total Hamiltonian for the combined electrons 

and positron system. 

we have 

Now 

and 

Takine the space Fourier transform of (3.14) 

1 ik.(x-x') 
~ e "'" ., """ V ,-, 
k 

G (k; ,.) p .., 

'" 

= ~ < NI L 
kk' 

iCk.x-k'.x l ) e .......... ~ ...... x 
..,., 

eiHt bk(O) e-L~t eiHt ' bk,(O) e-iHt'IN> 

~, 
iHt 

e = e 

.., "\0 

iE t 
o <NI 

-iHt' -iE t' e IN> :: e 0 IN> 

(3.17) 

where E is the ground state energy of interacting N-electron o 

system. Thus, equation (3.17) becomes 

1 
E 

ik. (x-x') G (k' ,.) V e,..... "" .... 
k P .,.' 
.., 

i r. iCk.x-k' .x' ) iE (t-t') = e .......... - - e 0 
V kk' ... .., 

<N!bk(O) 
-H(t-t') + e bk , (0) IN> (3.18) 
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Here b:, (0) IN> is the initial state of N + 1 particles 
... 

with total momentwn ~' and <Nlbk(O) is the complex conjugate of ,... 
the final state of the N + 1 particle system with momentum k • ... 
But the total mOlli0ntum of the system remains the same even 

though a redistribution of energy and momentum may take place 

within the system itself. 

This certainly implies tlJat k = k'. 
... ... 

Thus 

1 ik.(x-x') G (k. -V}:; e ..... -
p ... ' k -

T) 

~ ik.(x-x') =Vr. e - ...... 
k ... 

where,. = t - t' > O. 

Hence 

() I () -i(H-E)T + ( )1 
Gp~; ,. = i <N bi£.. 0 e 0 b k 0 N> 

Now the square of the absolute value of the time 

dependent positron Green's function, i.e., fG (k; ")12 
is the 

p -
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probability that if at a time T = 0, the positron-electron system 

is in a state I~J{> = b~ (0) IN> (IN> being the ground state of the 

metal ru1d 1~> repres~nting an incoming positron in a plane wave 

state of momentum k), then it will still be in this state at a -
later tine T. 

This is easily seen from equation <3.19) since, 

except for a phase factor, G (kj 
p -

T) is just the projection 

back on the initial state b~(o)IN> of the state rnT + e - b~(O) IN> ... 
that has developed from it in the time interval T. 

-r(k; e .. 

From eqnation <3.11) this probal:>5.1ity is given by 

k2 )T 
• 

Then the probctbility that the positron is not in this 

state at time T, i.e., the probability that the positron will 

have made a transition from the state 19 to an arbitrary state 

Ik+q> is - ... 

Therefore, the probability per unit time that the 

positron ... Jill make a transition is determined by 

lim 

T .... ° 
-r(k o 

1 - e -' r( --...-.;..----- = k 0 T _, 

0.20) 
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Note that as T-+ 0 the previous condition rT«t is really no 

restriction at all and is automatically satisfied. 

Dropping the q summations in (3.13) gives the transition ... 
probability per unit time from the state 1~ to a specific state 

Ik + q>. - ... 
Thus it is clear that to obtain a formula for the rate 

of energy loss Rrk] as a function of positron momentum k, we 
~ -

need to introduce inside the q swnmation in (3.13) an energy 

transfer term k2 _ (~+~)2. 

Hence 

I: 
qq' 

e(p _q') 8(tq'_qt-p ) V 2 
--1' -- F 9 

RPA 2 2 2 11 + 2 V Q (q; (q'-q) -q' )1 
q ,... --

In the next chapter, we shall be mainly concerned with 

the algebraic reduction of this formula for the purpose of 

computation. 



CIlAPTER 4 

Algebra.ic Reduction and Evaluation of _R[lsJ 

The expression (3.21) for the rate of energy loss can 

be reduced analytically to a double integral, For the sake of 

convenience, we shall measure all momenta in units of the Fermi 

momentum PF , 

Haking use of the prescription for going over from 

summation to integration and in the limit of infinite volume 

= s 
doing the transformation 

k -i:I> 
IV 

26 
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F 

\ c:-;-c;. II >1 
• ~.; -.I 

q' < 1 ....., 

27 

2 2 Ie (p - (p-q) ) - ... -,-2 -RPA( 
o+~Ql 0" . ., 

... :11e1"0 \'T0 :'13.VC reintr0duced the constG.12ts ':1 and 2m set equal to 1 e.nd 

e is the electronic charge. Also \-/0 hc.v~ 1.1.8e1 the fact that 

5(ax) :.: 
1 6(x) • 

Tho parameter ~ is relatod to the us',;,:;,l electron dr.:DSity 

parameter r by of., = s 

of equation (3.21) by 

r 
.~fr-._ 

2 
1.919TC 

-RPA 
Q. = 

d u-RPA to nRPA 
an the f1.UlC tion '(. '" 

(4.2) 

\-Ie s~all be interested in evaluating (4.1) only for positron 

momenta less than or the orci.er of :1. (i.e., Fermi mowentum) since a 

high energy positron loses energy v0ry rapidly as vlill be sho\'Ill later. 

For the sake of convenience in writing, He \·,ill I-lork with 

rep) rather Rrp P""', ·.-Ihere, by definition ,., ,.; ~-
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= 
p 2 .-1 

F 
~ 1 (4.3) 

Therefore 

3 2 2 d q n (p - (p-q) ) ,... ,., 
x 

s 3 '2 2 2 2 d qtO r(~-~) _ p + (qt +~) _ qt ] 

'q+qt '>1 ,., ... 

qt < 1 (4.4) 

where we have made use of the energy conservation delta function 

222 2 
in (4.1) \'/hich demands that (qt + q) - qt = P - (p-q) for any 

", "., ~-

contribution. This makes the situation simpler since then the 

denominator in (4.1) can be taken out of the qt-integration and 

thus we obtain equation (4.4). 

The integral 

I = S d3q t 

Iq+q'r>1 .. ., 
qt< I 
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is \Olorked out in the Appendix A and is given by 

2 2 r = 0 for p (p-q) <0 
"" -

(4~6) 

.1L 2 2 2 2 
= (p - (p-q) ) for p (p-q) >0 

2q ..., ... --

Equation (4.4) then simplifies to 

rep) ,.. = s 
2 2 

p -(p-q) >0 (4.7) 

No\'/ for performing the q-intesration in (4.7), we fix ,., 
the polar axis along the direction of p and let the cosine of the 

N 

angle bct.:cen these two vectors be jJ-. The condition p2 _ (p_q)2>o, .. ... 
which ensures that, in any given collision uit1:1 a valence electron, 

the positron always loses energy, can be simplified as follo\1s. 

2 or - q + 2po)A. > 0 

or - q + 2p}l- > O· 
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For a fixed q, 

jJ- ~ qj2p 

Hence 1~ jJ.-;:. qj2p (4.8) 

and q ranges from 0 to 2p. Incorporating these limits on the q 

and )A integrations, liTe have 

2p 1 2 
= ~ dJl-

(-g + 2p ft) I(p) S q3 dq S Q 2 .., 
fq2 + c(. Q-RP\~; -q+2pq}J-) , 

0 q/2p 

(4.9) 

The demoninator in (4.9) is worked out in Appendix A, and is given 

by 

2 4 221 2 
c/J 'It (2p,u-q) + (q + 2ito(, (1 + 4ci (1- (q-p}A-) ) 

In (g + I - p fl)2 + 
q-I-pJl-

x 

The first term in t~is expression is the square of the imaginary 

part and the second term is the square of the real part of the 

denominator in (4.9). 

(4.10) 
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o:.:::e ir.tegral (l:r.9)~ i::;. its present foro, ca::mot be redt:c.::d 

",,:;:;..lytically a::;.c. \'l~s computed on tile ;":cHaster LB.:-l. 7040. 

T:le co:.l.:?i.l.ted results bring out the fallowing interesti::..:; 

The time required by the positron to fall to t1:..e eners'Y 

level cor~espo~ding to the room teoperature (.025 e.v.) is deter-

~~cd al~ost entirely by the reGion .1 e.v. to .025 e.v.; the 

tioe reqt:ired to fall froo a high enersy level, say the Fermi level, 

~~ .1 e.v. is quite neslegible, in co~parison. 

T:lis type of behaviour of the positron cc;;,n be unde::stood 

by referC:.lce to Figure (7a). Hore p is the momentum of a~ 
• .J 

electron in t!1e Fermi sphere and q is the oomentum transferred to 

it ~y the positron. Then the only electrons that can be excited 

\-:ill be contained in the shaded region. Clearly the volume of 

the allowc.:d region increases with Is). Now a high energy positron 

can trans=cr large momentum, thereby increasing the volume of the 

alloVl;:)d region and since the density of allowed k-vectors is 
r' 

constant in ~space, a larger volume implies a larger number of 

elec~rons that can be excited. Thus a high energy positron is 

ca~ble of creating more electron hole-particle pairs and there-

fore lose~ energy much more rapidly than a low energy positron. 

Furtheroore, it is found that for low momentum transfers, 

the r&te of energy loss of the positron in a given metal is 

proportio~al to the third power of its energy. This result is 
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::'l:;:;:c:.~:<;a::-.:<; cii:?rerence 9 c.OVlever, thz:l.t the :nul tiplying factors differ 

T:;'is pain':; Hill be discussed in the last 

cnapte:."', '.;'h8~e ~.:le dra\"J conclusions. 

l·:o::-eover, the bc::aviour of the dielectric fu.'1ction of 

the elec~:o~ S~s ~s a function of ~omentUT. and energy trar~:?er 

of t~e positro~ is then pertinent to our proble~. 

and imaSi::ary parts ~l (~,w) and E2(~"W) of tile dielectric 

functio~ ~(~,w) a=e co~puted as a function of lsi and w using tha 

exprcssic:::..s (A-35) and (A-36) (worked out in Appendix A), ~d 

are plottvQ (for rs = 4) for a number of values ofi~I(.l, .3, .5, 

.7, .9) (in ~~its of ~) as a function of w, ~'1 Figure 4. 

O~r region of importa'1ce, as indicated by the comp~ted 

:::-esults, is that of 10\'; energy and low mooentum transfer. He 

have, however, plotted Eland ~ for large I~) and w, which, 

thoug~ not needed for the present work, may be helpful for making 

calculations in related fields. 

I::.;, our region of interest, vie find, for example, f~'o::l 

?isu:e 4(~) that for k = 0.1 and CD = .02 (=.06 e.v.), f1 = 260 

and E2 = 20. It is also clear from expression (4.9) for I(p) 

.• • L 2 I' 2 that the denom~nator conta~ns a term ~1 + C2 • The contribution 
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--c-
_,0..)') ~~harefo::-c 9 FrOD this semi-

. tIl' E 2 . , q~~1t~t&t~ve ars~~en , we may as we ~G~ore 2 1n compar~son 

.... ' I" 2 
\l:l.. ... n i;:" 1 • 

I~: the li~i ting case of w-)O, E? -)0 and E1(k,W) t.c~ds .... ,.., 

to its st~tic li~~t. In fact, it was found that the same 

I Q-RPA 
~csult could be obtained to better than .Zo by replacing 

(q; _'1
2 

+ 2pqJ~ ) by its zero frequency limit Q-(~; 0). 

T~~s equation (4.9) simplifies to 

dq 
(4.11) 

where Q- ('1; 0) = Q (q; 0) ,..., 

I';; is proved in Appendix A that 

1 I 
0) = 2n [1 - 2q (1 - 4 

(4.l2) 



Using the vrell kno\'!n relations 

2 
r/1.9191t 

1.919/r a 
S 0 
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where a is the Bohr atomic radius, the final expre3sion for 
o 

Rr!s] tal~es the for'm 

R[!sJ A 
= 2 

r s 

where A 
e2 2 (1. 919),2 = (_) 4 _ • 

.j ~a 2 
o 

3 
1t 
6 = 3.519 X 105 erg sec. 

(4.13) 
-1 

Here p is related to the energy E (in e.v.) of the 

positron by the relation 

p = .1414 IE r s (4.14) 

The integral in (4.13) is computed for values of E in 

the range 4 e.v. to .025 e.v. and for a set of values of r in 
S 

the complete metallic density range (2 to 5.6). 
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G.S a i\:",,-:c"c:'Ol: of its er~crgy, the ther:;1alization time was ci.::.lculated 

be respectively the rates of energy loss 

(for a fixed. r ) s of the positron when it has energies E. 
:l. 

~~en the ~verage rate is trucen to ~e the arit~~etic :::ean 
(R. + R •. ,) 

"-.d '" ~ .J. l' :1.+ 

of ti!.e 

two l'ates~ i.e., :t(av = 
::l. l. .... _ 

2 
Therefore the ti~a tclcen 

by t~e p03itron to loss energy (E. 
l. 

2. _) is ea .. ual to 
1.+.L 

~. = 
:1., i+l 

= 

R:-~er':!Y loss 
AveraGe rate 
(E. - E.+l ) 

J.. l. 

Rav 

~he cner~r interval was tru~en to be sufficiently small for a 

In fact, the energy interval was taken as 

.005 c.v. for making calculations between the energy range 1 e.v. 

to .025 e. v. In eeneral, the time taken by the positron to fall 

from El to E is the sum of all partial times, i.e., 
n 

'i T = 
n - 1 

L 
i = 1 

T~e same procedure was repeated for various values of 

r E (2, 5.6). s 



,. as a function of the metallic IT 

dcnsi ty par~.later r s and for temperature 300
0

k is plotted in 

..,. c 

.i:~gure :;;. The Sr<:~p:1. exhibits the follO\·ling important feature • 

The thel'"ialization time is larcer for a high d-.:r .. si ty me'l;al like 

aluminiu!:1 than for large r vc.:..lues. 
s 

This res;,.tlt makes sensc,since 

higher the electron denSity, larger the screenine;.;::hich implies '."leaker 
) 

electron positron coup1in3 a.."ld)therefo::.'e, a sr:lZ.ller rate of enerSY' 

loss and hence larg~r thermalization time. This characteristic 

feature of l,." is in contrast :'lith the annihilation time, v:hich is ... 
smaller for a hiZh denSity metal. He shall disc1..lsS the significance 

of this point in the last chapter of this \"lork. 

Quantitatively or cc 
T 

graph of Fis~e 5). 

(as can be read from the 

1::e finally make the follovling remark. For positron 

energies of the order of .1 e.v. or less, the maximum momentum 

transfer q enterin3 in (4.11) is 2p. From expression (4 .lIt ) for 

p and for say rs = 2, 2p is less than .18. (2emeoberin6 that 

we are expressing rr.o~enta in ~~its of the Fer~i momentum). Then, 
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in this case, Q- (qj 0), to a good approximation, can 'be set equal 

to its Ions \1avelength limit (q ~ 0). This gives ,.. 

And, in this limiting case, the expression for rep) 

reduces to a simple form. 

I(p) 
'" 

= ~p2 r ~ 
x 

where x = PI ~~ 

+..!. 
x 

-1 
ten 2xJ (4.15) 

Equation (4.15) is the Lee-dhitillg's formula (1955) 

with the only difference that the screening parameter is, in our 

case, equal to J4rr ~ PF, which is the Thomas-Fermi value for 

the electron gas. 



CH/\PTER 2 

Ext0nsion to the Hubbard AEEroximation 

He have, so far, worked in the Rane.om Phase 

Approximation, i,lhich basically implies that in our calculations of 

the polarization p~rt Q(q; e), we have limited ourselves to the 
'" 

inclusion of simple hole-particle bubble, shmm in Figure 6. 

(}~rGt bubble on the right-hru1d side). This is surely the first 

and the leading term in the complete series for the polarization 

operator (Gell-Hann, Brueckner (1957)) and is the only important 

term for high densities (i.e., r «1). s At metallic densities 

(2 < r < 5.6) t hO\vever, Hubbard (1957) was the first to suggest s 

that higher order corrections may become important. His argument 

is based on the follovrinb phYSical grou ... "lds. 

Let us consider an interaction process and suppose that 

en electron hole-particle pair is created. Now, in the R.P.A., 

these two quasi-particle excitations (the physical picture of a 

quasi electron is an electron plus its associated screening cloud) 

propagate freely and independentl:'[ of each other, since the 

36 



37 

screened Coulomb force acting betvleen them is not included. 

This seems to be an oversimplified assumption, especially in 

the case of intermediate densities, Hhere one would expect that 

important correlations will exist in the relative motion of the 

pair due to their mutual attractive interaction. This situation 

is analogous to that which arises in the theory of positron 

annihilation in metals, where it is noi'! well established (Kahana 

(1963), Carbotte and Kahana (1965) that the relative motion of 

the annihilating positron-electron pair is strongly correlated. 

On the basis of the above arguments, Hubbard tried to 

include in the calculation of the polarization part Q(q; e) ,.., 
not only the R.P.A. bubble, but also the infinite set of repeated 

hole-particle ladders shoi'ln in Figure 6. These account for the 

multiple scattering of the electron hole-particle pair leading to 

renormalization of their relative wave function. 

HUbbard did not sum this infinite set of graphs exactly, 

but suggested an approximate solution of the form which is related 

t QR?A t . o by he equatlon 

QH 
QRPA (q; e) 

(q; e) 
..- (5.1) = 

QRP\q; ,.. 
1 - f(q) e:) - ,. 

where 4rce 2 
f(q) = 2 ---;r-

q + ~~ 
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Here g is a par8.meter which suffered, .to some extent, 

at least, from arbitrariness in its value. 

But, recently, Cro'<lell, Anderson and Ritche (1966) 

have summed the infinite set of graphs of Figure 6 numerically, 

using a Nonte Carlo Calculation technique and conclude that, in 

the zero frequency limit, HUbbard's form of solution (5.1) is 

quite accurate, provide~ one chooses ~ to be of the form 

= 1.5 + 0.6 rs 

In the follovling formulation, we shall use this value 

of S even in the finite frequency case. This assumption is not 

unjustified due to the fact that, in the end, we ~ill go over to 

the zero frequency limit (i.e., low energy transfer); the main 

point is that 11e are only trying to make a reasonable estimate 

of the effect, on the positron energy loss, of the Hubbard type 

corrections to the polarization pnrt. 

Using the more realistic polarization part" ';;;.H (q; €), ,., 

we now proceed to calculate the rate of energy loss of the positron. 

Replacing QRPA (q; ~) by QH (q; e) in the expression (2.12) for - ... 
the irreducible self energy operator, we have (in the region of 

our interest - the continuum region) 



x 

x 

2 l: 
v 

qq' ,..-

v 2 
q 

(~_ ~2 _ w + (q' _ q)2 
,., ,., q.2 _ io+ 

1 

, 1 + (2V _ f(q)) aRPA 
(q; 

q ,.. '" .., .., 
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This expression for HH(!;s; w) differs from the corresponding 

RPA 
one for 1'1 (k; w) (eque..tion (2.12)) only through the appearance of ,., 

function f(q) in the denominator. ,..,. 

Substituting from (5.1) and (5.2) in (5.3) ruld going through 

similar al3;ebraic steps as in Chapters 3 and 4, He arrive at an 

expression for 1(12), \'/hich instead of (4.11), now reads 

2p 

~ (' ~pd I(R) = 7L J 6.0 
o 2 .5.1, Q(;l;O) 2 

[q < 1 - ~2:=----- > + .L'::r(~; 0), 
q + f: 

The fo1lo'.·lin::; rei113.rk is quite relevcmt here. It seems 

apparently obvious th::t in Going from the R.P ./,. to the Hubbard 
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scheme, one should simply replace Q-(1; 0) in (4.11) by the 

static limit of the Hubbf' .. rd :polarization PClTt. This is, 

ho\vever , deceptive and would lead to a diff el'ent and quite 

incorrect result for the rate of energy loss. One must, there-

fore, go back to our basic equation (2.12) to reformulate a 

consistent theory, as we have done. 

It is fOlmd from a numerical calculation that the rate 

of energy loss, computed with expression (5.4 ), yields results 

which are almost the same as those obtained in the R.P.A. There-

fore, we will not plot our results for the thermalization time "'lith 

HUbbard corrections included. This is easily understood from the 

fact that in the limit of q-+O, equation (5.4) once again reduces ,., 

to the Thomas-Fermi result. 



CHAPTER 6 

Discussion ruld Conclusions 

We have computed the thermalization time of positrons 

in metals as a function of the electron density parameter r in 
5 

the entire range of metallic densities. The effective positron-

electron interaction wan treated in perturbation theory to first 

order but a number of approximations to the polarization part were 

examined. The simplest one to work with is the Random Phase 

Approximation. Using the dynamic dielectric function in the R.P.A., 

it is found that the main contribution to the·thermalization time 

comes from the positron energy region, viz., .1 to .025 e.v.; the 

time taken to fall in energy nay from 4 to .1 e.v. is neglegibly 

small, in comparison. This brought out the important fact that 

the region of greatest importance in determining thermalization 

time is the 10\'/ positron energy range. Since in any given 

collision, the maximum energy transfer from the positron to the 

electron gas is its total kinetic energy and the maximum momentum 

41 



42 

transfer is twice its momentum (this occurs for pure backward 

scattering), the thermalization times must depend, in an important 

way, only on the low energy transfer as well as low momentum 

transfer limit of the effective potential. 

Now in the range of q -40, the imaginary part of the .,. 

dielectric function is small and the real part attains a simple 

form. In fact, the real ,part tends towards the static limit 

expression. Using the static limit of the R.P.A. potential 

our results change by no more than .2% from those obtained by 

using the complete dynamic potenti&.l. In fact, both results 

reduce to the Fenni-Thomas limit. That is, \1e would obtain the 

same answers to better than 1% by postulating that the basic force 

2 -1 bebleen an electron and a positron in a metal has the form e r 

exp (-"TF r) where ~F (equal to J 4n of., KF ) is the electron gas 

screening length, i.e., the Fermi-Thomas parameter. 

Next, the HUbbard correction to the R.P.A. was applied. 

This takes into account the correlations betvleen the electron 

hole-particle pair created in the polariz~tion process. These 

are neglected in the ~.P.A. Applying such corrections, however, 

we find no significant change in our results. Thus, we conclude 



that the formula given by Lee-',,:hi tine; is quite adequate to 

predict energy loss rates provided one uses the Thomas-Fermi 

value for the electron gas screening len:;th. 

The following \'/o~'d of caution is worth emphasising. 

It is quite true that, in the Hubbard case, ~ Q-H(~; 0) behaves 

like 

4n 0(. ( 1. 5 + • 6 r ) 
s 

1.5 + .268 r s 

in the limit q~ O. For example, for r = 4, s ,. 

I Q-H ( """ q; ,., 

and therefore 

which is .n. times the Fermi-Thomas value A.rF. Since the 

-4 thermalization time comes out oC A. ,this will lead to value 

of TT which is 2.25 times larger than the actual value. One 

might argue, on this basis, that our above conclusion is uIldoubtedly 

wrong. But, as remarked in the previous chapter, one should not 

just replace the polarization part in the denominator of equation (4.11) 
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by the corrected Hubbard one, but the right value of the numerator, 

"H \'lhich contains the imaginary part of "'l , a.s well as that of the 

denominator should be substituted in equation (2.12) and the 

integral re\vorked out. 

In his calculation for sodium, Lee-~.,1J1iting used a 

8 -1 screening parameter A = 1.02 X 10 em • This differs consider-

1 X 8 -1 ( ably from the Thomas-Fermi value of 1. ~77 10 em strictly 

for r = 4). s Thus he found a thermalization time of 3 X 10-12 sec. 

which is a factor of 4.5 too small. Our better calculations give 

= 1.33 X 10-11 sec., for room temperature, which is still 

about 25 times smaller than the annihilation time TA = 

In aluminium, 'however, the thermalization time is com-

-11 parative1y longer and is equal to 5.31 X 10 sec., barely a factor 

of 4 less than TA = -10 2.0 X 10 sec. 

A significant remark is in order here. In going over 

sec. 

from Na to Al (r = 4 to r = 2), the annihilation time TA decreases s s 

4 X -10 X -10 from 3. 10 to 2.0 10 sec., whereas the thermalization 

-11 X-II time TT increases from 1.33 X 10 to 5.31 10 sec. 

1 
Quantitatively TT oC 2 

r s 

or the thermaliza tion rate cC r 2. 
s 



Unfortu.nately, no experiments have been reported to 

date, which measure the thermalization time directly and there-

fore we cannot claim our results to have been verified experimentally. 

We will, however, discuss the results of Stewart's recent 

effective mass experiments in the light of our present calculations. 

The temperatures used in his work are 110°, 300°, 400° and 600
0
k. 

Stewart's interpretation of his experimental data in sodium, particularly 

° the point corresponding to the temperature of 110 k, is based on the 

general conclusion th~t positrons are completely thermalized even 

at this temperature. In fact, t,lis is the point we have been 

tryinS to investigate so far. Our calculations show that for the 

highest temperature of 6000 k," is 2.8 X 10-12 sec., while for 
T 

the 1m·rest tempera.ture used, i.e., 1100 k, it is .95 X 10-10 sec. t 

1,-lhich is only' a factor of 4 less than the ru:nihilation time. 

This seems to imply a small amount of non-thermalization at this 

temperature. This \·lould prObably not ShOH up very significantly 

in Stewart's experiments and his interpretation of the positron 

effective temperature in terms of complete t~lerrnalization and an 

effective mass of about 2 stands. 

As TT goes inversely as the square of the electron density 

parameter r s ' it will be interestin; the investi.sate the state of 
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the positron in a high density metal and at 10\" temperatures say 

at liquid Helium temperatures. \/e find th~·.t in aluminwl1 for 

T = 110ok, the thermalization time is 3.81 X 10-10 sec. which 

X -10 is about 1. 9 times larger than T A = 2.02 10 sec. \ve claim 

that positrons are definitely non-thermalized on annihilation 

o 
even at T = 110 k. An experiment of the type reported by 

Stewart nnd ShaIld may be able to detect this lack of thernw.lization 

in aluminum. 



Derivntion of EQu~tion (4.10) 

To derive equation (4.10), \-/e start from the 

definition of the momentum frequency dependent polarization 

function GquC',tion (2.8»: 

== - ~ i S V -
P .... 

i = 

where 

GO (p; po) == e .., 

and 

° G (p+q; p +q ) = e..,." 00 

dp 
o 

2n: 
GO (p+q; 

e "'_ 

1 
p - (:' + i11..... o -P 'F ,., 

1 

47 

(A-I) 

(A-2) 
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where np and r~+q are qU2ntities tending to zero such that 

'Ii > 0 
«. 

< 0 

Here Pp is the Fermi momentum. l,ve first perform 

the P integration. 
o 

Consider 

1 in the 
+ q - € + in Po p+q p+q o .., _ 

Plane of complex p. It has a pole at p = € + - q - i~ 
- 0 0 p q 0 'P+ q 

which lies in the lovler half plane for Ip+q 1>P"'F ;nd in ,.. ~ 

the upper 

function 

10i-fer half 

(a) For 

Q(q; ..., 

half for Ip+ql < PFo Similarly the -.., 
1 has a pole at p = e - i~; in the 

P - ~ + iff" o p 
o 'p p ,.., ..., 

for p > PF and in the upper half for p < Pr 

Let us consider the following four possible cases. 

'1)-:-Q r>tJ. and p>p . 
~.y ... p F 

i 
= (211;)4 

dn 
-0 



Both the poles of the integrand lie in the lower half 

plane. Therefore. vIe close the contour in the upper ha.lf plane, 

where the function is analytic. Thus there is no contribution to 

Q(q; q) in this domain. 
'" 0 

(b) Similarly for '!?+~, < PF and p < PF, \'Ie a.gain get zero. 

Q(q; -

In this region, the contribution to 

q ) is o s (p +q -o 0 

d
3

p 

~p+q 
.... -

dp 
0 

. +) + ~o (p -
+ 

F'p - io ) 
0 

"" 

\</e close the contour in the upper half plane, where 

1 
• + 

P - ~ - ~o o P .. 
has a pole Po + = €p + io • Then using the residue theorem, 

.... 
we have 



Q(q; c ) (2ili.) (i) 

S 
d3-o = --~ ... ·0 + 

(2TI:) + a - €p+q + io 
~~) "0 ... 

-1 
= -_. 

(A-4) 

(d) Furtfier for lp + Sf < PF, P > PF' w~ ~btain in a similar 

way a contribution of 

-1 \ d
3E (A-5) 

( 2rr.)3 + 
ep+q - t!p - qo + io 
,. 

'" '" 

In order to write equations (A-4) and (A-5) in a 

compact form, let us introduce the step functions: 

and 

f = 1 
P 

= 0 for p > PF 

f = 1 p+q 

= 0 for , p+q I > PF ..,.., 

(A-6) 
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Then equa.tions (A-4) and (A-5) can be vlritten in 

a combined form as 

1 S { f (1 - f + ) 
Q(q; qo) = 

(2i[)3 
[ _P E q 

. + .., 
€E+q - ~p - qo - J.o 

.... ,., 

(A-7) 

f + (1 - fp) ;} d
3p1 p g 

€p+q - €p - qo + io 
., .., .... 

For fu::-ther simplification, we make the follovIing 

transformations in the second integral of (A-7) • 

Let p + q ~ p ... "" -
p ... p - '1 
'" 

and then set p ~ -p to get ,.. 

Q(q; q ) 1 r S { 1 1 
+} :::: 

( 2i[)3 
+ 

0 
t" -q -io + io €p+q- E:p+'!, - €p + q + -p 0 0 .. .. ... .. 

(A-B) 
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In order to determine the real and imaginary parts 

of Q(q; qo)' we make use of the relation 

lim 1 PP(.1:. ) :; inO(x) (A-9) = 
x ± io + x 

Then 

ReQ(q; qo) ..L cS P\ - 1 + 1 
+ q } = 

(2n)3 €p+q - e - q €p+q - €p ;e 0 0 ....... 

(A-10) 

and 

1m Q(q; .., d3
p f (1-f + ) rC(~ - ~'p - qo) p p q . "'p+q 

~... -

+ C (e + - ~ • qo) ] 
P ~ P 

(A-ll) 

Having separated out the real and imaginary parts of 

the dynamiC polarization ftmction, we now proceed to obtain explicit 

expressions for them. Owin~ to the conditions imposed on the 

p-integration and further additional &-function restrictions imposed 
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on the imaginary part, \.;e have to determine their values separately 

in different reeions of ~. 

The three possible regions are 

To start \'lith we study the real part of Q(~; qo) 

Case (a) 

From equation (A-IO), we find that for any contribution, 

we must have 

These coditions limit the region of p-integration to 

the shaded one s~O\m in Figure 7a. 

In Figure 7a, we have drawn two circles each of radius 

PF with their centres separated by a distance q. As q < PF , the 

circles must overlap. 

spherical coordinates. 

Because of spherical symmetry we work in 



Let the polar axis be taken along the q direction. 
"'" 

The region of interest in the shaded region between the parallel 

planes B anJ C. Here B is the right bisector plane of q and C is 

the plane at a distance q + PF from O. 

The ¢-integration Gives 21t.·' The range of p is 

The limits on the 8-integration are determined as 

follO\·!s. Fix any arbitrary value of p in the allo\'!ed range. 

\'Jith 0' as centre and <,dth this arbitrarily chosen p as radius dra\v 

an arc of a circle, which cuts the O-circle at D. Thus OD = Ip+ql=p~ 
"' .... 1 1.' 

and O'D = p. Then from the ~ OO'D 

= (q)2 ( )2 =: + 2q.p + P 
"" "'" .... 

q2 + p2 = + 2pQf" 

Therefore, for a fixed p, minimum value of fA is 

222 
PF - q - P 

2pq 

The upper limit of f4. is 1, which is the case when p 

and q are in the sa~e direction. ,.. 



Hence 

Then 

222 
PF - q - P 

11.. ~ (-2------' 1). ,- pq 

PF 1 
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\' 2 S (1 1) J P dp dp. 2 + ~ 
2 2 2 q +2pqf4 -qo q +2pqp- +qo 

p -q Pi<' -q -P F ' ... 
2pq 

(A-12) 

Performing the f'- -integration \"Ie obtain 

Re~~ (q; 
'" 

PF 

qo) = 21L S (2n)3 
PF-q 

p2 { 1 
2pq 

2 
In (q + 2pq - q ) o 

dp 

pdP 5 In (q2 + 2pq _ q ) + In (q2 + 2pq + q ) 
l 0 0 

PF-q 

(A-13) 



and 

Haking use of the formulae 

S x In (a + bX) dx = 
2 2 2 

b x - a 
2b2 . 

2 
In (a + bx) + :~ - x4 

\ 2 2 122 222 
j x In l(a -x )l dx = 2 rex -a ) In la -x I -x J (A-14) 

one obtains on performing the p-integration, 

= 

where 

1t 
2q 

2 + (p -F 

1tPF PF = - r 1 +-
(2n)3 - 2q 

x = L + 
2QPF 

qo 
y = 

2qpF 

2 2 
(q +qo) 

2 ) In 
4q 

2 
2qPF + q + q 
I 2 0 fJ 
2qPF - q - qo 

2 11+xl PF (l_y2)ln I 1!.y. 1 (1 - x ) In 'k - 2q l-y· 

(A-15) 

-L 
2PF 

(A-16) 
-L 
2PF 

J 
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We proceed in the sarne way as before. The total 

domain of integration can now be split up into two domains, 

viz., a circle of radius q - PF and the remaining shaded region 

between the planes Band C. Clearly, from the Figure 7b, ~ 

varies for the second region between 

and 

ReQ(:!; 

+ 

2 
- q 

2 2 
PF - P 
(~~---

2pq t 1) 

Thus, we obtain 

PF 

S 
2 

P dp 

q-PF 

211: 

+1 

S eLf-

2 2 

q-p 

r S p~ dp S dr<~2-1~_­
q +2pqP- - qo 

o 

( 1 + 

+ 

1 
2 2 

2 q +2pqf--qo q + 2pq fl+ 
PF -p -q 

2pq 

qo 

) J 

(A-17) 



The integrations are trivial and one finds, on simplification, 

ReQ(q; ,... q ) 
o 

(A-18) 

which is the same as equation (A-15). 

Case (c) '~I > 2 PF 

This ~s the simplest of the three cases. The ¢-integration 

gives 2n. p and fl range over the complete circle (Fi~ure 7c). 

~.1e have thus 

ReQ(~; 

I 
2 q +2pq)-l-+q 

o 

(A-19) 

The intebrations are performed Hithout much labour. 

One finally obtains the oame expression for Re~(q; q) as in 
,.. 0 

(A-15) or (A-18). 

} 

, 
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Thus, we have the general expres~ion for the real part 

of the polarization function in the Random Phase Approximation 

ReQ(<i; 
PF r1 +-2q 

1n ,l+YI 
l-y J 

2 (l-y ) X 

(A-20) 

In the second part of this appendix we work out the 

imaginary part of' Q(:i; q ) in the R.P.A. 
o 

As already remarked, the conditions for integration 

for 1m Q (q,i qo) are similar to those for Re~(~; q ) \"rith the 
o 

difference, however, that the 6-function further limits the domain 

of integration. 

For the sake of convenience, we consider the case of 

positive frequencies only and later on generalize the results to 

both the positive and negative frequencies. 

write equation (A-II) for q > 0, o 

= 

where 

I'lith this in mind, 1:Ie 

(A-2l) 



= " f (1 - f ) 0 [e ] d
3 

11 j p p+q p+q - ~p - qo p 
~ ~ 

= S 0 (q2 + 2pq}J.. -qo) d3
p 

'P+~ l>PJ!' 

P<PF 

where p- is the cosine of the angle bet1tleen P and ~. 

For O-function to click, ,-Ie should have 

p fI-. = 

2 q -q 
o 
2q 

We evaluate 11 in the three regions, as before. 

Case ( c:) ,~, < PF • 

Consider Figure 7d. 

60 

(A-22) 

(A-23) 

(A-24) 

Take a point D on the curved line of the left Circle, 

which is enclosed bet"leen the planes Band C. li'rom the i}OO'D 

2 2 2 
+ 2pqp.. PF = P + q 

2 2 2 
or PF - q - P 

P- = 2pq 



Hence the range of f.t. is 

. 2 
PF 

( 

2 2 
- q, - p 

2pq 

61 

+ 1) 

But, due to the b-function restrictions, the ranges of 

P will be different in the two shaded regions, i. e., behleen 

planes A and C and that between planes A and B. 

Now between the planes A and C, the b-function demands 

that 

or 

or 

2 
qo - q 

2q 

2 
q - q 

and in this range of qo' p E ( 0 2 q PF). 

Hence 

PF 1 
2 S 0(q2+ 2pq}-L -qo) 11 = J p dp 

2 
qo-q 2 2 2 

PT,"> -q -p 
2q 

Jl 

2pq 

dp. 
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2 2 
for qo E (2qPF - q , 2QPF + Q ) 

(A-25) 

Now consider the region between the planes A and B. 

Imposing O-function restrictions, one finds that 

2 

-q/2 

or 

qo - q 
~ 2q ~ PF - q 

2 
2qpF - q 

and in this range of qo E(O, 2qpF - q2) t?- again ranges between 

222 
PF - q - P 
(-----=----2pq t + 1) but the p-integration range is a little 

bit complicated und is obtained as follows! 

and 

Draw DE 1."" on the <t-axis. 

Then, we have 

= 2 2 
(q + PIt-) + a 



Therefore 

222 
P = (pp) + a 

= (q + pf. )2 _ P 2 

2 = q + 2pq fA-
2 

2 qo - q = q + 2pq (2 ) pq 

or 

- q o 

2 
Hence for qo ~ (0, 2qPF - q ) 

Trq 
= -2. 2q 

222 
PF -~ -P 

2pq 

(A-26) 

(A-27) 
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2 
and in the region qo > q + 2q PF 

= 0 (A-28) 

In this case the blo spheres again overlap. The 

contribution to the integral comes only from the shaded region, 

shmvn in Figure 7e. 

The situ~tion is similar to that in the previous 

case of '~I < PF, The results are the same as (A-25), (A-27) 

and (A-28) for the three regions of qo' discussed above. 

Case (c) 

The spheres do not overlap in this case. Except 

for the O-function, the whole of the sphere should be the 

integration ranee. 
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TIm-lever, for the 6-function to click we mU3t have 

or 

Once againJ for qo > q2 + 2qPF' there is no contribution. 

In contrast to the two cases discussed above, II vanishes for 

2 
qo < q - 2QPF' 

Thus the only region of qo that contributes is 

2 
q + 2qp:&,). 

In this region 

IT +1 

S 
2 

S 
' 2 

II = 2it P dp dfL O(q +2qp g _q ) 
2 0 

q -q 
0 -1 
2q 

PF 

211; ~ 2 --L = P dp 2 2qp q -q 
0 

2q 

2 
11: 2 q -q 2 

= 2q [PF - (-~~ ) ] (A-29) 2q 
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Summing up, VIe write down the general results for 

the real and imagin3.ry parts of the polariza_tion function (qo > 0) 

and 

_ F (1 _ 2) In (~) p 2 } 
4q Y l-y (A-30) 

iC 

= (2n;)3 

= 0 

= 0 

for q < 2 PF and 

for 

for 

2 
2qpF + q 

q > 2_PF and 

2 
qo< fq - 2qpF ' 

2 
2qpF q > q + a 

(A-31) 
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where x and y are given by (A-16). 

It can be easily seen from equation (A-ll) that one obtains 

the same results for Illi',~(q; 
"" 

q ) for negative as for positive q • 
o 0 

NoVl \'Ie express all momenta in units of Fermi momentrun 

P
F

• This implies that \'/e ma..lte the transformation 

PF } 

Naking these transforr.1ations in equations (A-30) 2-11d (A.31) 

2 
and putting qo = -q + 2pq J-L (on comparison \'lith value of qo in 

equation (~-.9))in the transformed equations (A-3D) and (A-31), 

2 
"Ie obtain in the region of 10':1 energy transfers (qo ~ I q - 2~ l-
our region of interest). 

= 

2 
(q+l-pe ) 

q-l-p jJ-

1 2 eF!! 2 2 242 
+ 4q (l-(prc) ) In ~~p_l)}1 + r:l 1( (2pr -q) 

(A-32) 
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't,hich is the desired equation (1j- .10). 2 
'.,'hen -q + 2pql"- = 0 

1 
0) = 2n rl - 2q (1 -

2 
1 2) (.9:"s) 'If q In q+2 1 which 

is equation (4.12). 

It is no','! a matter of two steps to prove equation (4.6). 

Setting qo = p2 - (p_q)2 in equation (4.6), we have 
" ..., 

I = ~ 

q '<1 

3 ~ ( + q)2 d q' v r l' q,2 - qo J 

It maybe remarked that all'momenta have been expressed 

in units of Fermi momentum PF. 

Now, obviously, (q' + q)2 _ q,2 > o. 
,.. ,-I 

Therefore, 

for the arguljent of the O-function to vanish, vie should have 

q > O. o 

Hence 

I = 0 
2 2 

for p - (r-~) < 0 
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~u ou: resion of interest, (q < 1), go is sma:l. 

2 
r~C0 of qo can be tru{en to be (0, 2'1-'1). Usi~Z 

8q~&tio~ (A-27), one finds 

I = 

= 

.?L 
2'1 

"" ", 

2'1 

v:hich is the required equation (4.6). 

(A-34) 

The real and imaginary parts of the dielectric function 

are given by equation (2.9): 

£1 (~; o ) =1+ 2 V Re QRPA ( <;!; '1
0

) ·0 'i 

E2 ('1} qo) = 2 V I QRPA (q; q ) q m 0 

VJ:'th the help of equations (A-30) and (A-3l) and 

expressing all momenta in units of Fermi momentum, i.e, m~~ing 
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1 + 
c 

s [1 + 1 (1 (~+ ~)2) X 
C
, ., ),.2 1;k - 2.~ 2 

i! .... 5 ... 9 ... 

.- 1 + 
~ 
"\ 
I 

II -

r 1 + (,St)_ - ~ ) 

2 

\ 21>: 2 l2 
In(----~ 1 , , J (A-35) 

L 1 - (~ -:::) J 
2.1.t 2 

E? (~; w) = 0 ..... 

= 0 for k > 2 

and w < I II - 2k 

w;:-
s (A-36) = for k<2 and 

1.919 1;; 
w < I k2 

- 2k 1 

r 
1;.;) 

2 s f 1 - (~ } = 1.919 Ie"' - 2 

for , k
2 

- 2k I < w < 2 k + k
2 



vlhere , .. 0 :i~ve wade use of the E:quations v q = ,.. 

2 
41TC 

2 
q 

68c 

and 

- .... --n ... 
~ s = 1.919 'r I. S is expressed in atoO".1ic units), and rer:ler:lberins 

:.:;hat 0
2 = 2, II = 2I:l = 1 in atotti.c units • 

• ~.PP:&:'rD IX :3 

o~ taking out the energy transfer term from expression 

(4.1) for the rate of energy loss, one ootains an expression for 

Honce, tee width of the peaked function (i.e., integrand ,.. 

vJithout "'.:;he exponential in 0.8» in units of energy is given by 

2 2 
2 

"I"(u) (£.... ) 
PF 2rtl ". it x ,n. = -x -2 ,,2 x J. ~ 

rc2 .... 
1i Pp 'a. 

3 d3qt 

5 
d q 

x 

tq2 + J.. Q-RPA 2 2 2 (q; (q' +CY - q ) I 
l'!:"'t'i>l "-' 

q'L..l 

2 2 + (0' 2 2 x o rep-'1) - p + '1) - q' ] 
,..., - rJ 

(B-1) 



68D 

= 

(B-2) 

\':here He ::ave wade use of (A-34). 

:~ (B-2). the ¢ integr~tion gives 2n. Further, the 
) 

co~ditio~ 1'2 - (p_q)2>D implies that Il E(q/2p, 1). q ranges 

from 0 to 21'. 

T'.c.en, in the static limit, 

2:::1 .·i S 11 

r+1 

X J 
q/2p 

21' 

o 

(- q + 2pit. ) df 

~2p 

J 
2 

q2 (_'1 + P + ~) d'1 

o 
(in e.v.) 

where AI = 
4 

e -7t 

2::.'1 
;2 
n 

" 
1 

1.6 x 10-12 

= 

.-

• 

e.v. 

(B-4) 



-Z\:;!re p = .lLt14 JE r (E in e. V • ) • s 

Tee 8xpr~~sio~ (B-3) was employed for computation of r as a 
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Figure 1 

Figure 2 

Figure 3 

Figure 4 

CAPTION TO FIGURES 

Positron self-energy operator in the Random Phase 

Approximation CR.P.A.). Note that the first 

graph in CIa) is really zero since it involves 

o 
G (x· x') for the time orderin~ t ' - t > 0 P , ~ 

(~O). It is included, nevertheless, because 

it is the natural first member of the infinite 

series shO\m. In (lb) the wiggly dynamic inter-

action line stands for the effective potential 

in R.P.A. 

The integral equation for the effective potential 

~(x; x') in the R.P.A. 

(a) Singularities of M (!s; 0» 

(b) Contour used for integrating equation (3.1) 

(c) Graph of the integrand in equation (3.10) 

(a), (b), (c), (d), and (e): 

Graphs for the real and imaginary parts (~1 and 

E2 respectively) of the dielectric function 

E(k- w) in R.P.A. for r = 4 for values of ~, s 

k = .1, .3, .5, .7, .9 (in units of Fermi 

momentum) respectively. 
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Figure 5 

Figure 6 

Figure 7 

Table 1 

72 

The thermalization time TT as a function of 

the electron gas density parameter r for s 
o temperature T = 300 k. 

Graphs vrhich are included in the calculation 

of the polarization function '~(!;j e:) in 

the HUbbard approximation. 

Regions of integration of expressions (A-IO) 

and (A-II) for real and imaginary parts of the 

polarization function. (a), (b), (c) correspond 

to the case ofJ~tc(O'PF)' E(PF' 2PF) , !~l > 2PF 

in the case of Re Q(q; q) and (d), (e), (f) _ 0 

correspond to the Same ranges ofl~ffor rm ~(~j q ). 
o 

The peak width T' (,~.v.) of the integrand of Equation 0.8) 

as a functio!l of the p02itron energy (.le.v. - .01 e.v.) 

for vo.lue:: of r (2-6 in e.u.). s 
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TABT}~ 1 

The peo.k \·:idth r (o.v.) of the integrand of equation (3.8), \"lith0Ut the eYr}O)..JoC"nt::ic~l~ 

as a ftmctio:l of the p')sj.tron ono'GY (.1 e.v •..• 01 0.'1.) froF'V<?lc·!:: 

of r (2 - 6 in D .• u.) 
(; 

-. --- -

E(e.v.) 
-------- - -~- ------------- ----- ------ -------------~---- ------------------~ ~ - -

rs(a.u.) .10 .09 .08 .07 .06 .05 • o!~ .03 
'. --------~-- ~------------------------ -----~-.--~- --~~--------- ------~---- --. -- .0-

2.0 .00017 .00013 .00011 .CYJOO8 .00006 .000:)4- .00003 .0:)0015 

2.5 .00026 .00021 .00017 .00013 .00009 .00007 .00004 .OOOO2l} 

3.0 .00037 .00030 .00024 .00018 .00013 • ()(,'O°9 .00006 .OG003h 

3.5 .00050 .0001+1 .00032 .00025 .00018 .00013 .oOJ08 .0000L,6 

It.O .00066 .00053 .000L!2 .00032 .0002/+ .0OOl? .00011 .O()OOSO 

4.5 .00083 .00067 .00053 .00041 .00030 .00021 .00013 .Oo~;a76 

5.0 .00102 .00083 .00066 .00051 .00037 .00J26 .00017 .OOO09L~ 

5.5 .00124 .00101 .00020 .00061 .000l1-5 .0'.)031 .00020 .OO(ll13 

6.0 .OOllf? cOO120 .00095 .00073 .00054 .00037 .0002It .000135 
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