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ABSTRACT:

The thermalization time of positrons in metals has been
computed as a function of the electron density parameter T in
the complete metallic electron density range (2 < r, < 5.6)

Our calculations are based on the propagator technique of many-

body perturbation theory, to first order in the electron-positron
effective force, The rate of energy loss of the positron, in

our formalism, is given by the imaginary part of the self energy
operator; this qﬁantity is worked out both in the Random Phase

and the Hubbard approximation. We find that, in the low

monentum transfer region, which is really the only regime of
importance here, the electron-positron interaction can be approximated

2

by a screened Coulomb potential %— exp (-A,,..T) where KTF is the

OF

(ii)



Here o is related to
r

s
l.9l9n2 ’

Thomas-Ferni momentum given by Jhnd Ppe

T the usual density parameter, by & =
Further, we find that, in general, the time taken by

the positron to drop to an energy of .025 e.v. is not as short

as is generally believed, although it can be said beyond doubt

that complete thermalization has taken place before annihilation

at room temperature. However, for aluminium at 1oo°k, the

thermalization time is longer than the annihilation time. On

the basis of this result, we suggest that this lack of thermalization

in aluminium might be detectable in an experiment similar to that

recently reported by Stewart and Shand (1966), concerning the

positron effective mass in sodium, although without more extensive

calculations it is not possible to say precisely how a small

amount of non-~thermalization would affect the angular correlation

curves,
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CHAPTER I

Introduction

The thermalization time of a positron in a metal is
the interval of time between the instant a relatively high
energy positron enters into the metal and that at which it
achieves thermal equilibrium with the conduction electron gas.
A knowledge of this characteristic time TT is pertinent to the
interpretation of the experimental angular correlation data and
the total annihilation rate. It is usually taken for granted
that the positron is therualized before annihilation. While
a small amount of non~thermalization would not change the shape
of the (overall) angular correlation curves very wuch, the recent
experiments on the positron motion in sodium reperted by Stevart
and Shand (1956), however, depend quite critically for their
interpretation and consequently, for their conclusions, on the
assumption that the positron is thermalized prior to annihilation.
Thus, the determination of the thermalization time, by a detailed

analysis, is an illuminating problem,



Apart from thesc reasons; from a thncorctical point of
view, a study ol the entity Trp is interesting in its owa rigat.
I% provides an insight into the varicus polarization processes
occurring in the mediuwa such as the creation of eleciron nole-~
particle puirs and the back influence of the resulting polarization
charge on the positron and, consequently, on the rate at which it

3

It seems that not much work has beon reported on the
calculation of TT even after the advances in many-vody theory.

re recent experimental attempt to determine T, directly, (Stewzrt & Shand (19€

T
oo the other hand, does not yet appear to have reached the accuracy
needed., Lee-Vniting's (1955) theoretical calculations of Top
is the only published work, available to date. This work was
done bcfore many-body techniques were well established.
Lee~Whiting represents the interaction between a
positron and a polarizable free-eclectron gas by a screenced Coulomb
2

a2 L s e 3 EN 2
potential of the form 5 exp (-Ar), where e is the electronic
cnarge, ¥ is the relative distance between the positron and an

electron and A is the screening parameter. The parameter A is,

to some extent, arbitrary and to be fixed in a reasonable way.

4

t is further assumed that the value of A avpropriate for positron-
electron interaction is the same as that suitable for electron-

electron interaction. The Exclusion Principle does rot



W
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avply to the electron-positron system, The initial state of
the system is taxen to be a Iree electron gas with a polarization
cloud about ecach electron. It is further assumed %hat,

ron interacts with free elogirons

vnroush o screened Coulomb intoraction. The positron peingz in a

high energy level, is then capable of losing energy to the mediun

’

by creating real electron hole~particle pairs, Thus it loses
its enerygy to the medium continuously and tends towards thermal
equilibriun with the eleciron ges. The rate of energy loss is
=

a function of the positron energy and is extremely sensitive to

-

- &
he parameter A, In fact R<C A 4

ct

Basing his argument on the available experimental data

in related fields and the theoretical situation at that time, Lee-

s \ 8 1 . .
Yhiting took A = 1.02 x 10~ cm ~ for sodium, Thus TT for sodiun
o 2 . ~-12 . oy . .
was found to be 3 x 10 sec,, wnerszas the annihilation time
T
7, = 3.4 % 109 5 nat st = 11 H according t
T, = 20X sec,, so that =% = 113, ence, according to

T
Lee-ihiting, a positron is certainly thermalized before annihilation,

Our appreoacn to the problem is on a similarline of
physical argument to Lee~Whiting's. However, in the light of
advances In many-body theory, we propose, in this werk, to tackle
the problem in a somevhai more fundamental way, by using the
Green's function propazator technicue of the many-body perturbation

theory. e will consider only the first order effects, assuning



that the higher order contributions are negligible in comparsion.
Nevertheless, the dynamic dielectric function will be used in
determining the effective potential,

In Chapter 2, the theory will be developed by using
the propagator technique and an expression will be found for the
irreducible self energy operator M(g; w) in the Random Phase
Approximation (R.P,A.). An expression for the rate of energy
loss R[k] of the positron as a function of its momentum k will be
obtained in Chapter 3. This expression is obtained quite directly
from the imaginary part of the self energy operator M(k; w).
Chapter &4 is merely concerned with the algebraic reduction of
the expression for R[k] to be ready for computation. Also the
real and imaginary parts of the dynamic dielectric function, in
the R,P.A,, will be computed and compared, in the low energy and
momentum transfer range, with the static limit,

The formalism of Chapter 2 will be extended in Chapter 5
to take account of the Hubbard correction to the R.P.A., which
can be important at metallic densities,

Finally, in Chapter 6, we discuss the results obtained
and draw conclusions. In the end, we propose an experiment in
aluminium similar to that reported by Stewart and Shand in sodium,
which might be expected to show effects of lack of positron therm-

alization,



CHAPTER 2

RS ORISR

The Positron Propasator

Let us consider a positron propagating through a metal,
We neglect the lattice entirely, replacing it by a fixed back-
ground of vositive charge neutralizing the system. The positron
Green's function Gp(x; x'), which can then depend only on the

relztive space and time coordinates, is defined by
L+
Gk x) = i<l d(x) ¢ (x") N> (2.1)

whera §ﬁ> is the fully interacting Heisenberg ground state for
the N conduction electrons, and T is the Vick's time ordering

+ . .
operator {(1950) % (x) and ¢(x) are respsctively the particle

creation and dessiruction operators for the positron field in the
Heiserberyg picture. Notice that for tt' > t,Gp (x; x') vanisnes.
To start with, we consider the system to be noninteracting. We
will, later on, account for interactions by perturbation theory,

In this approximation, equation (2.1) becomes

i ik, (x-et 2
¢ (x; x')= = % Bk G - ik (t-t')
' X
for t > ! (2 2)
= 0 for tt s ¢



where g'is the positron momentum and V is the volume of the
metal; also we have taken units such that 2m =4 = 1,

By space and time Fourier transforming, (2.2) becomes

G (}é; (.U) = ' (203)

o
P

F(x; x') =

ik, (x-x') S dw ~ie(t-t")
~ ~ o~ - e
2T

x F(k; w) (2.4)

The positron Green's function (propagator) for the interacting
system is related to the noninteracting propagator by the well-

known Dyson equation:

o (o]
Gp(g; w) = GP (k; w)+Gp (k; w) Hk; w) Gp(li, w)
(2.5)
where M(g; w) is the irreducible self-energy operator.

We are concerned, in this work, with the determination

of the thermalization time. This can be easily calculated from



the rate of enersy loss of the positron. And it will be shown
in Chapter 3, that the rate of energy loss is, in turn, directly
related to the imaginary part of the irreducidle self-cﬁergyop@rator (ks w)
>, Hence it is nore appropriate to approximate
directly to the operator M(%; w) rather than to the Green's
function Gp(5; R
Going back to the Dyson equation (2.5) (which is just

a linear eguation), its solution is given by

a° (k5 w)
G (k; w) = po .
p 1-G0 (k3 w) MQz; w)
P ~ ~
and making use of (2.3), we have
¢ (k5 w = 5 1 (2.6)
P K - - M (& w)

Squation (2.6) is an exact equation of motion of the
positron in the mesdium; M(g; w) accounts for interactions.
when it vanishes, we recover, of course, the noninteracting
propagator. t should be clear now from the explicit form of
G in (2.6) that it is more convenient to work with M rather than
G, since } represents a direct correction to the noninteracting

notion of the positron, In particular, its imaginary part gives

the damping of the positron motion,



To begin with, we shall treat M{x; x') in the Random
Phase Approximation, which means that we will include in our
calculation only those graphs which are shown in Figure (la),
In Chapter 5, however, we shall correct the R,P.A, formulation
by including the interactions between the created electron hole-
particle pairs, as first suggested by Hubbard (1957). It is
enough to remark here, however, ihat in our region of interest,
Hubbard corrections do not modify our results significantly and
that the R.P.A, is a good approximation.

Obviously, the first graph in this infinite series has
no contribution, since it involves the time ordering t' - t » O
(with (t'-t) — 0) of the propagator Gp(x; x') which, from
equation (2,2), is zero. In any case, this is the first member
of the infinite set of Feynman's graphs of interest here and,
therefore, we will include it for the sake of continuity argument.
Finally, this infinite set of graphs is written identically equal
to the graph (1b) by introducing the effective potential y(x; x'),

The integral equation representing py(x; x') is shown

diagrammatically in Figure 2., Mathematically,

Mlx; x') = Vix; x') -4 S Vix; 2) QRPA (z; z')

plz'; x') d'z d'z!



where QRPA is the polarizetion part in R.P,A. and V is the bare
coulomb potential,

Taking space~time Fourier transforms, it reads

‘ RPA
Mg © =V -2V & (g o wy o (2.7
~ g 9; ~ ~
4nea . .
Here Vq = 5 where e is the electronic charge, The factor

of 2 is included for spin degeneracy,

The momentum fréquency dependent polarization part in
R,P,A. is defined in terms of the free electron propagator

o
Ge(gg w) as

RPA

= i d® o .
S A g S 3 G (kg 0+ e) X
Golic; )
o 1 . [ 8 (k-—PF) 0 (PF-!I';%»% l) _ e(pF_k) 9(‘},’:“”%‘ -PF>
! k (5+q)2 - K - et io" (§+Q)2 - K - € ~io"

2.8)

where g's are step functions; for example,

il
-

ok - PF) for k> P

F

n
®)

for k < PF

Here PF Fermi momentua.
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Solving equation (2.7) for the effective potential,

we have

ol
~~
e

[ ]
S’
n

(2.9)
= a 943 e)

vhere ¢ (g3 ¢) is the dynamic dielectric function for the
electron medium. A knowledge of the dielectric function is
pertinent to our problem. Because of the direct relationship

between Q and €

g

we shall investigate the behaviour of the polarization operator
Q, in detail,
As shown in Figure (lb), the self-energy operator M

can be written in terms of the effective potential as
M(x; x') = 1G (x5 x') gy (x5 =x) (2.10)

The physical interpretation of this equation, which gives an
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insight into the actuwal processes taking place, is as follows,
The positron creates an electron hole-particle excitation in a
fully interacting medium, The excitation and the positron
then propagate independently for some time before the excitation
interacts back on the positron affecting its trajectory. It
is this screened coulomb force, including the virtual polarization
of the medium which determines its rate of energy loss and, con-
sequently its thermalization time,

Notice that we are considering the first order effects
only in the electron-positron coupling, assuming that the second
and hiéher—order effects can be neglected, in comparison to this,

Fourier transforming (2,10), one obtains

. i d o
M(k; w) = 7T S 5% u(%; e) Gp (E-%; w-¢)
1
(2,11)
i de 1
= & g S M(a; )
V % 27[ ~ (li-g)a -w + e - io+

where we have made use of (2,3).
The analytic properties of the integrand in (2.11) as

a function of the complex variable € consist of the singularities
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of u(q; ¢) plus the extra pole of ¢ = W = ('lg—q)2 +i0". The
.4 ~

eé~integral has been worked out by Carbotte (1964) and the result

is
6(P-a") o(lg! - q| - P V2
MG W) = S5 £ e L3
£ BRI RPA 2,2 2
qq' | 1+2 v 9 (g (g-g)"-q |
X x (2.12)

2 .+
(ET%)Z ~w+ (g - % - q° - i0

We have dropped the contribut%on to M from the plasmon pole,
since we are interested only in a formula for the rate of energy
loss in the case of a low energy positron, i.e., having an energy
of say 5 e.v, or less, DPlasmon energies are, in general, con-
siderably higher than this so that, in the region of interest
here, plasmon creation is not a possible mechanism of energy
transfer,

As a function of complex W , the singularities of
M(k; ) can be easily read from the expression (2.12). It has
a cut extending from zero to infinity just below the real axis,

This contribution comes from the continuum which implies the

excitation of individual particles as opposed to collective
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excitations like a plasma oscillation. M(k; ) has no
singularities in the upper half plane, We shall make use of
these properties of M(g; w) in the following chapter, where
the actual positron propagator Gp will be shown to be very
simply related to the imaginary. part of the irreducible self-

energy operator M(%; W)



CHAPTER 3

Formula for the Rate of Energy Loss

We shall now work out the expression for the rate
of energy loss of the positron as a function of its momentum,
For this purpose, we will be interested in the momentum time
dependent positron propagator, Therefore, taking the Fourier
transform of the positron Green's function from the frequency

to the time plane, we have

+ &

G (E; T) = S %w;r e-lw’r 5 1
P K" -0 =M (k w

-0
(3.1)
where we have substituted from (2.6) into the prescription for
the Fourier transform,
+90

dw -iwT
. =t ) g (k.
Gp (k, 'r) 5 © P("" w)

]

(3.2)

14



5

The integral (3.1) can be worked out from our

the singularities of M(Xx; w) for complex w.
~

5
o
)
<Y
C
©
O
[

Provicded that no new pole is introduced because of the appearance
of the s¢li-energy operator in the denominator, it is clear that
cles w) has the same singularities as those of M(k; w). Now
as a function of w, M(l;; w) has a cut extending from 0 to *
just below the real axis (coming from the continuum); the
plasmon pole would introduce a further cut in part of this range,

althougn this ccntribution has been omitted, Hence M(k; w)
~r

and therefore G_(k; ) are both analytic in the upper half plane. Thus,

P~
Gp(k; @) is zero for ¥ £ Oy since we can then close the coatour in the
upper half plane, This result is consistent with (2,2)., Consider the

1,

case of 7> O, Close the contour below the real axis in the complex w-plane,

=i . - "y
As e damps out to zero on the contour ¥ (Figure 3(a)),

therefore the contribution to the integral comes from the contour
/ .

Y(Figure 3(b)), which encloses the branch cut. Push the real

axis dowa so that it coincides with the cut.

Then the closed integral

N I

< O
)

k} --".'
= S -g% e £(w)
Y



[
Ch

o
o
ax -3 - .+ r i -ixT +
= ) 3 T sx+ o)+ ™ f(x-107)
" R 27
0 3
[~
= cx =ix - . . *
S Eﬁ e T (f{x +i0 ) = £(x - i0)) (3.3)
0]

-

From eq. (3.1) since ¥(k; @) has no imaginary part on

X3 ®) is real for rezl

presd

the negative side of the real w-axis, Gp(
o L0, “Tnerefore, by using the Schwartz reflection principle

£(w~) = J*{w), we can write
lim {£(x + ie) - £{x - i€)7 = 21 Im £(x) (3.4)

+
c—>0

Hence the integral reduces %o

°°dx; -3
= e T (24) Imf(x) (3.5)
0

In our problem

+ 1

K - x - E (x; x) x i/2 r’(g; %)

(a7
~
#
-+
e
o]
s
[}



17

Sinse
Mg x  i0 )= EQky x) @ % I (s =) (3.6)
Therefove
2 I (1
Im i‘(x) = z <'~7 X) 2 J - (307}
<K= x - BQ;ox) T+ Mk x)

Thus equation (3.2) reduces to

o p- & o @il
k ) o <k2 - - E(b; x)>?+ é 7 (55
s oo Mo
= = 2 1 {
T < —X-EQV‘I; x)>2+1; I"Zk'\;; x%)

The factor of ¥ in the imaginary part [’ of M has been

taken for the sake of convenlence in the following calculationse.

Using the relation

. 1 1 - .
Iim propemune e PP P + ind (x - xo),
+ o~"¢& (o)

g —°

x)
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the imaginary part of M(l; x) can be easily obitained from
~

equation (2,12) and is given by

8 (2 q") B(jq'mq]-B) V2
PG o= 5o R e
” Ve oget 2V Q77 (g5 (g'-q)T-qY)
2,2
X8 r(§~g)2 - x + (gl=q)"~q'"] (3.9)

The motion of the positron is dauped by the induced
hole-particle pairs and the extent of damping will be shown to
be directly related to the imaginary part of M(E; x).

The integral (3.8) is easily evaluated for ' Tedl.

For the periurbation theory to be valid, the quasi-pariicle
energy shift as well as the damping rate should be small so that
the integrand without the exponential in (3.8) is peaked at

. e
X =g -

i

(5; x) & kz, The peak width is [" . Thus,
provided the width is small as compared to the energy, which is
the case in fact, we can extend the lower limit to - <0

withoutl making any change in the value of the integral. There-

fore, the domain of integration can be taken to be € (~e0, +%),

The peak width I as a function of the positron enerzy for value

0

of r (2 to 6) is worked out in the Appendix B and recorded in

Teble 1.
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Now due to the presence of the oscillatory function
~ix'€ the peak is not so well defined. In order that the peak
does not get chopped off due to oscillations, we assume that the
wavelength of oscillations is much larger than the width of the
peak so that the oscillatory function can be considered to be

almost constant as x ranges over the Lorentzian (Figure 3c).

Thus for f7T<K1, we have, on replacing x by k2 in I'(k; x),

G (ks 7T) = §°°§9£ (1) e Mk, ¥°)
prtd 2T (x_k2)2 + < % r7 (L{; k2)>2
- (3.10)

In order to evaluate this, let us consider the integral

in the complex z-plane

+ 00 -iz7
{8 =

S (k)2 4 (312
-0

The integrand has poles at



7 0, the exponential dies out along the circle of

, in the lower half pliane. Therefore, we may

Thus, closing the comtour below, the

2 ip

resicue of the function at the pole kX =~

close the contour below,

.
i3

DS

My
> L

Zw(—il‘)-

The minus sign in the numerator appears becausc the

contouwr has been taken in the clock-wise direction.

Hence
+ ¢
P
{ & @Wer | 2 @r
D2 (o123 T 2ni T X
- I
. 2 i
exp (k= - =z e (3.1
2 i
= (1) exp iK% 2 r) o«
Thus
3 .—2 -j:r . 2
6 G o= (1) et F s 1) (3.12)
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and

6(Pe-q') 8(|q'~g]-Pp) qu

RPA 2 2
lL+2v Q ey (@r-9)%-ar))?

(3.13)

X T 6-['(k+q)2 YA (q'--q)2 - q'2]

We shall now determine the exact relationship between
the rate of energy loss and I (k; kz).
For this we go back to the general espression (2,1)

for the positron propagator
6 (x; x') = i<NT ¢ ) & (x)ns (3.14)

Now the space Fourier transform of the positron field

operator is given by

$G) = = Xy (1) (3.15)

b
v k =

where the Heisenberg time dependent operator bk(t) is related

-~

to its time independent analogue by

bE(t) = ifit bk(o) e-th (3.16)

-~
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where H is the total Hamiltonian for the combined electrons
and positron system,

Taking the space Fourier transform of (3.14)

we have
ey !
% 5 elk.(% X ) G (§, T)
E Y
s et '
=%(-<N|2 e:.(lg__.i_gk.x) «
kk!
3 - 4 ] - L]
elHt b (0) e iHt iHt b '(O) e iHt 'N)
: i
(3.17)
. ik t
H
Now <N ’ el t = e ° <N '
S+ - 1
and e e |N = e lEot |Ns>

where Eo is the ground state energy of interacting N-electron

system, Thus, equation (3.17) becomes

§oo ) g m
k
- _‘1;2 od(kex-k'.x")  iE (t-t')
K
- =t
Ko (o) et oy (5.18)

- -~
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Here b;,(o)|N> is the initial state of N + 1 particles
with total mome;tum k' and <N]bk(o) is the complex conjugate of
the final state of the N + 1 particle system with momentum k.
But the total momentum of the system remains the same even
though a redistribution of energy and momentum may take place

within the system itself,

This certainly implies that k = k',

Thus
s et
k
- -t - T
- % ik (ex") i(H-E))

<Nlbk(o) e b; (o) >

Lol

where 1 =t - t' > 0,

Hence

-i(H-Eo)T

G (k; 1) = iN|plo)e b, (o[> (3.19)

~—

Now the square of the absolute value of the time

dependent positron Green's function, i.e., [Gp(k; T)]Z is the



2k

probability that if at a time T = O, the positron-electron system
is in a state |kNs = b; (o) Ils (N> being the ground state of the
metal and |§> represqn:ing an incoming positron in a plane wave
state of momentum g), then it will still be in this state at a
later time T,

This is easily seen from equation (3.19) since,
except for a phase factor, Gp(&; +) is just the projection
back on the initiul state b;(o)[N> of the state e”H b;(o)]N>
that has developed from it in the time interval T,

From equation (3.11) this probahility is given by
e-r(§; kZ)T.

Then the probability that the positron is not in this
state at time 71, i.e., the probability that the positron will

have made a transition from the state {§> to an arbitrary state

lk+g> is

. 2
1.6 l(lg; k%)t

Therefore, the probability per unit time that the

positron will make a transition is determined by

T(k; K2)7
lim 2= = = TG &

T 2)
T—0

(3.20)
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Note that as T=> O the previous condition [Tt is really no
restriction at all and is automatically satisfied,

Dropping the q summations in (3.13) gives the transition
probability per unit time from the state |k> to a specific state
k + o>

Thus it is clear that to obtain a formula for the rate
of energy loss ng] as a function of positron momentum k, we
need té introduce inside the q summation in (3.13) an energy

transfer term k2 - (§+g)2.

Hence
8(P.~q') 8(]qt-q|-P,) V ?
RFKT = 4 F -1’ Y4
k1= -5 % RPA T2 2.2
Vg 2 Ve @ (g (q'-q)"~q")|

~ -

x (- (erq)?) 6 [(erg)Pk®+(q-)%q' P

(3.21)
In the next chapter, we shall be mainly concerned with

the algebraic reduction of this formula for the purpose of

computation.



CHAPTER 4

Algebraic Reduction and Evaluation of R[k)

The expression (3.21) for the rate of energy loss can
be reduced analytically to a double integral, For the sake of
convenience, we shall measure all momenta in units of the Fermi
momentum PF'

Making use of the prescription for going over from

summation to integration and in the limit of infinite volume

' 3
v (k) = —— (k) d7k;
k 7 (em)? S ~

doing the transformation

Ek— Pl
% — 3 PF
g — ' Py
q —> -q

26



2
2 2P . 1w (p =~ (p=g)7)
o F 5 3 73
Rlp P.] = (:5m) - 5 d’q d7q! -3 2
pt Fy TC‘- ‘}f iq2+ & Q“RPA(Q; (q'+q) -~qx2>? -
porgii>i - T
a'<1
x 0 r(p—q>2 -5 (gt +)® - q'aj (4.2

vhere we have reintrcduced the constants 41 and 2m set ecual to 1 and
¢ is the electironic charge. Also we hove used the fact that

&(x).

[og
~~
j6)

Y

|
H
o Jp

The parameter o is related to the usual electron density

r

~RPA RPA

varameter r_ by & = w——Bw and the funciion ¢ RP to Q ®

8
1.919%
of equation (3.21) by
~RPA ’1} RPA
Q = &) g (4.2)
F

WYe shall be interested in evaluating (4.1) only for positron
momenta less than or the order of 1 (i.e., Fermi momentum) since a
high energy positron loses energy very rapidly as will be shown later,

Por the sake of convenience in writing, we will work with

I(p) rather Rfp P.7, where, by definition
~ -~ -
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2
L i 22 Pl )
P i w1 R R 2

Therefore

&g 6% - (g9

I(p) = S X

o2 o KPR (a3 2 (12"%)2)'2

S qu'G r(P‘%)a - p2 + (q| + %)2 - q'2]
larg!1>1

q'<1 (4.b)

where we have made use of the energy conservation delta funciion
. 2 2 2 2

in (4,1) which demands that (q' + q)° - ¢'" = p~ - (p-q)~ for any

contribution. This makes the situation simpler since then the

denominator in (4,1) can be taken out of the q'-integration and

thus we obtain equation (4.4),

The integral

I = S d3q' 6 [(p-q)2 - p2 + (qt + g)a -~ Q'ZJ

[qjg' >1 (4.5)
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is worked out in the Appendix A and is given by

I=20 for p2 - (g—g}z <0
(L}';‘6)

[}

é—g—- (p2 - (g—%)a) for p? - (g—g)e >0

Equation (4.4) then simplifies to

2 (% - (p-q)%)
I(p) = S d3€1 (ga"‘) P TRER

~

la® + = Q™ (q; ™~ (p-q)

~

2)!2

2 2
P -{p-q)™>0 (4.7)
Now for performing the g-integration in (4,7), we fix
-~
the polar axis along the direction of p and let the cosine of the
angle between these two vectors be M, The condition p2 - (p-q)2>0,
which ensures that, in any given collision with a valence electron,

the positron always loses energy, can be simplified as follows.

p2 - (p—q)2 >0

or = qz + 2poHk > 0

or ~-qg+2p Kk >0-
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For a fixed q,

H= a/2p

Hence 12 > o/2p (4,8)

and q ranges from O to 2p. Incorporating these limits on the g
and M integrations, we have

1

2p 2
3 (=g + 20 M)
I(p) = v S q” dq S d M —3 = -gpA( . o5 )'2
o /2 la” +*Q q; —qta2pq M

(4.9)

The demoninator in (4.9) is worked out in Appendix A, and is given

by

ooa 1[4 (2p}4l-q)2 +[q_2 + 2nee (1 + ;_]-;E (1~ (Q"'P}“')z) X

+1 - p M2 1 2 H+1.2.2
n (52207« 7 Q- M) W G

(4.10)
The first term in this expression is the sguare of the imaginary

part and the second term is the square of the real part of the

denominator in (4.9).



3%

Tle integral (4.9), in its present form, caanot be reduced
further analytically and was computed on the McMaster I,B.M. 7040,
Tie computed results bring out the following interesting

Jeatures, The time required oy positron to fall to the ener

ot
8]
W

level corresponding to the room temperature (.025 e.v.) is deter=-
mined almost entirely by the region .1l e.v. to .025 e,v.; the
time required to fall from a high energy level, say the Ferml level,
D .1 e.v, is quite neglegible, in comparison.

This type of behaviour of the positron carn be understood

by refercuce t Figure (7a). Here p is the momentum of aa
-/

electron in the Fermi sphere and g is the momentum transferred to

q
it by the positcron. Then the only electrons that can be excite
will be contained in the shaded region. Clearly the volume of
the allowcd reglon increases with ig}. Now a high energy positron
can transier lerge momentum, thercby increasing the volume of the
allowzd regiom and since the density of allowed k-vectors is
constant in k-space, a larger volume implies a larger number of
electrons that can be excited. Thus a high energy positren is
cazable of creating more electiron hole-particle pairs and there-
fore losel energy much more rapidly than a low energy positron.
Furthermore, it is found that for low momentum transfers,

the rate of energy loss of the positron in a given metal is

proportional to the third power of its energy. This result



ia ouzxlitotvive cgrecmeant with Lee-Wzitings (1955) with the

}..J .
H,
Hy
[o]
B

faveriant aiiference, howe that the multiplying factors d

(T»
()
s}
-

comsidzrauly. Tais point will be discussed in the last

of the positron is than pertinent to our provlem, The real
and imaginary parts gq(k w) and Ca(h,w) of the dielectric

function ((k,w) are computed as a fuaction of [i2} and w using the

il

xpressicas (4-35) and (A-36) (worked out iz Appendix A), and

are plotted (for r, = L) for a number of values of jx[(.1, .3, .5,

. ~

.7y +9) (in units of hﬁ)) as a function of w, in Figure 4.

Car region of importance, as indicated by the computed

£

results, is that of low energy and low momentum transfer., We
have, however, pTOtﬁed(: and 62 for large; k[and w, which,

tnougz net needed for the present work, may be helpful for making
calculations irn related fields,

-

In our region of interest, we find, for example, fron

[
[
[+
t
@
£

() that for k = 0.1 and w = .02 (=.06 e.v.), £, = 260
and €., = 20, t is also clear from expression (4.9) for ;(n)

. . . 2 . .
that the denowinator contains a term él + 62 . The contribution



2. . ., 2 . .
o3 ég is, therefore, 0.6% that of (—l . From this semi~

vontitative arguuzent, we may as well ignore £ 2 in conmparison
qu-. . e WA Swuv‘ L] so‘y O 2 p e

. z
with S
Ia the limiting case of w-0, €,—0 and él(}i’w) tcnds
.
to its static limit, In fact, it was found that the same

- s X ~RPA
rosult could be obtained to vetter than .2% by replacing Q

o

(g5 =9~ + 2pg o ) by its zero frequency limit Q (q; 0).

Thus equation (4.9) simplifies to

3 - 3
I(p) = g a. dq (=g _+ 2p)
S° P l® + 4 Qg 0% (h.11)

0)

1)

. ’ 167{?
wihere @ {gq; 0) = (=5=—) Q (¢
- -~

- F
I: is proved in Appendix A that

2
1 1 2 G2
Q (q; O).—.Zn[l--ga(l-,: q)ln(af;é—) ]

(4.12)
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Using the well known relations

rs/l.9l9ﬂ?

&
"

and Pp l.9l9/rsao

where a, is the Bohr atomic radius, the final expression for

Rfk7 takes the form

2p
q3dq (-q+2p)3

or 2 2
r 2 s b q-2
s 0 prq” + ToTon {1 - (—gﬂ-q ) 1n (q+2) }j

2

22 2 3 (4,13)
vhere A = (iz) N f}:ﬁ%;il . gh = 3,519 X lO5 erg sec.-l
&fao

Here p is related to the energy E (in e.v.) of the

positron by the relation
p = A4 JE r (4.14)

The integral in (4.13) is computed for values of E in
the range 4 e.v. to .025 e.v. and for a set of values of r in

the complete metallic density range (2 to 5.6),
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Tooz & knowiedge of the rate of energy loss of the positron,

a funcvion of its erergy, the thermalization time was culculated

0
Ui

s AT Tt
&3 LCadUVos

be respectively the rates of energy loss

i i+l
{(for a fixed rs) cf the positron when it has energies ﬂi and E'+l'
Then the average rate is taken to be the arithmetic mean of tue
. s s .
two rates; i.e., Rav = 3 . Therefore the timze taken

by the positron to lose enrerg - 34+l) is equal to

d
~
t

i

Lreray loss

Average rate
B, - &,

( 3. 1+l)

(X8

-
[N
4
[

Rav

The energzy interval was taken to be sufficiently small for a

good anproximation. In fact, the energy interval was takea as
.C35 e,v. for making calculations between the energy range 1 e.v.
to .025 e.v. In general, the time taken by the positron to fall

from El to En is the sum of all partial times, i.e.,
a -1

T = z T

i=1 v 1+l

SN
[ i

Tze same procedure was repeated for various values of

r_ € (2, 5.6).
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The thermalization tiue Tp &S a function of the metallic

T s ~ NS PRYAN © e 2
density paraicter T and for temperature 300k is plotied in
Zigure D. The graph exhibits the following important feature.
The therwalizaltion time is larger for a high doensity metval like

a2luminiun than for large rs velues, This result makes sensc,since

higher the electron density, larger the screening;which implies wveaker

elcciron positron coupling and)thereforej a smaller rate ol energy

loss and hence larger thermalization time. This characteristic

feature of T, is in contrast with the annihilation tiwme, which is

EY

smaller for a high density metel. We shall discuss the significance

+

of this point in the last chapter of this work.

R 1 - .,
Quantitatively TTCC 3 (as can be read from the
r

-~ s
graph of Figure 5).

Ve finally meke the following remark. TFor posiiron
energies of the order of .1 e.v., or less, the maximun momentun
transfer ¢ entering in (4,11) is 2p.  From expression (4,14) for
p and for say r_ = 2, 2p is less than .18, (Remembering that

S

we are expressing momenta in units of the Fermi momentun). Then,
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in this case, Q (gq; 0), to a good approximation, can be set equal

to its long wavelength limit (q—>0). This gives

And, in this limiting case, the expression for I(p)

reduces to a simple form,

2
I(p) = ng- Fi’i - 2—2— +(4-)6-;§) m (1 + b x5

1 -1
+ = (18 - —2-;5:5-) tens 2x]  (4.15)

where x = P/ Jhme

Equation (4.15) is the Lee-whiting's formula (1955)
with the only difference that the screening parameter is, in our
case, equal to Vim « PF; which is the Thomas~Fermni value for

the electron gas.



CHAPTER 5

Extension to the Hubbard Approximation

We have, so far,; worked in the Random Phase
Approximation, which basically implies that in our calculations of
the polarization part Q(g} e), we have limited ourselves to the
inclusion of simple hole~particle bubble, shown in Figure 6.
(First bubble on the right-hand side), This is surely the first
and the leading term in the complete series for the polarization
operator (Gell-Mann, Brueckner (1957)) and is the only impﬁ}tant
term for high densities (i.e., rg << 1), At metallic densities
(2 < rg < 5.6), however, Huobard (1957) was the first to suggest
that higher order corrections may become important., His argument
is based on the following physical grounds,

Let us consider an interaction process and suppose that
an electron hole-particle pair is created. Now, in the R.P.A,,
these two quasi-particle excitations (the physical picture of a
quasi electron is an electron plus its associated screening cloud)

propagate freely and independently of each other, since the

36
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screened Coulomb force acting between them is not included,
This seems to be an oversimplified assumption, especially in
the case of intermediate densities, where one would expect that
important correlations will exist in the relative motion of the
pair due to their mutual attractive interaction. This situation
is anélogous to that which arises in the theory of positron
annihilation in metals, where it is now well established (Kahana
(1963), Carbotte and Kahana (1965)) that the relative motion of
the annihilating positron-electron pair is strongly correlated,

On the basis of the above arguments, Hubbard tried to
include in the calculation of the polarization part Q(%} e)
not only the R,P,A, bubble, but also the infinite set of repeated
hole-particle ladders shown in Figure 6. These account for the
multiple scattering of the electron hole-particle pair leading to
renormalization of their relative wave function.

Hubbard did not sum this infinite set of graphs exactly,
but suggested an approximate solution of the form which is related

to QRPA by the equation

1 Sl CTRY
Q (g5 ¢) = NN (5.1)
~ 1 - f(g} Q (g; e)
where 4ﬂ92

f(Q) 2
~ q+§kF2
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Here g is a parameter which suffered, to some extent,
at least, from arbitrariness in its value.

But, recently, Crowell, Anderson and Ritche (1966)
have summed the infinite set of graphs of Figure 6 numerically,
using a Monte Carlo Calculation technique aund conclude that, in
the zero frequency limit, Hubbard's form of solution (5.1) is

quite accurate, provided one chooses £ to be of the form

E 1.5 + 0.6 rg (5.2)

In the following formulation, we shall use this value
of € even in the finite fregquency case, This assumption is not
unjustified dus to the fact that, in the end, we will go over to
the zero frequency limit (i.e., low energy transfer); the main
point is that we are only trying to make a reasonable estimate
of the effect, on the positron energy loss, of the Hubbard type
corrections to the polarization part.

Using the more realistic polarization partAQH (%} ey
we now proceed to calculate the rate of energy loss of the positron,

Replacing QRPA

(q; ¢) by QH (q; ¢) in the expression (2.12) for
the irreducible self energy operator, we have (in the region of

our interest - the continuum region)
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2
MH(}g; w) = F % © (pF -q') 6 (lg‘ -ql - PF)
aq
vg?
X 2

-w+ (g - q)2 _ q,z _ io+
~ ~

|1+ (2Vq - £(q)) QRPA 2)]2

~

2
(q; (q'-q)” - q!
- ~ S

—r

(5.3)

This expression for MH(g; w) differs from the corresponding

one for MRPA(

k; w) (equation (2,12)) only through the appearance of
function £(g) in the denominator.
Substituting from (5.1) and (5.2) in (5.3) and going through

similar alzebraic steps as in Chapters 3 and 4, we arrive at an

expression for I(p), which instead of (4.11), now reads

2p
(p) = S ! (-q + 25)°
~ P =
.54 Ag;0) _
° [q2<1— 5 - > +dQ (%; 0)12
q +eg

(5.4)
The followins remark is quite relevant here, It seems

apparently obvicus that in going from the R,P.,A. to the Hubvard
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scheme, one should simply replace Q_(%; 0) in (4.11) by the
static limit of the Hubbard polarization part. This is,
however, deceptive and would lead to a different and quite
incorrect result for the rate of energy loss, One must, there-
fore, go back to our basic equation (2.12) to reformulate a
consistent theory, as we have done.

It is found from & numerical calculation that the rate
of energy loss, computed with expression (5f+), ylelds results
which are almost the same as those obtained in the R.P.A, There-
fore, we will not plot our results for the thermalization time with
Hubbard corrections included, This is easily understood from the
fact that in the limii of %-—»O, eguation (5.4) once again reduces

to the Thomas-Fermi result,



CHAPTER 6

Discussion and Conclusions

We have computed the thermalization time of positrous
in metals as a function of the electron density parameter T in
the entire range of metallic densities. The effective positron-~
electron interaction was treated in perturbation theory to first
order but a number of approximations to the polarization part were
examined, The simplest one to work with is the Random Phase
Approximation, Using the dynamic dielectric function in the R.P.A.,
it is found that the main contribution to the thermalization time
comes from the positron energy rggion, viz., .1 to .025 e.v.; the
time taken to fall in energy say from & to .1 e.v. is neglegibly
small, in comparison, This brought out the important fact that
the region of greatest importance in determining thermalization
time is the low positron energy range. Since in any given
collision, the maximum energy transfer from the positron to the

electron gas is its total kinetic energy and the maximum momentum

2
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transfer is twice its momentum (this occurs for pure backward
scattering), the thermalization times must depend, in an important
way, only on the low energy transfer as well as low momentum
transfer limit of the effective potential.

Now in the range of %-—>O, the imaginary part of the
dielectric function is small and the real part attains a simple
form, In fact, the real part tends towards the static limit
expression., Using the static limit of the R,P,A, potential
our results change by no more than .2% from those obtained by
using the complete dynamic potentizl. In fact, both results
reduce to the Fermi-Thomas limit. That is, we would obtain the
same answers to better than 1% by postulating that the basic force
between an electron and a positron in a metal has the form e2 r-l
exp (-?\TF r) where ATF (equal to / bmet KF) is the electron gas
screening length, i.e,, the Fermi-Thomas parameter,

Next, the Hubbard correction to the R,P,A, was applied.
This takes into account the correlations between the electron
hole-particle pair created in the polarization process. These
are neglected in the R,P.A. Applying such corrections, however,

we find no significant change in our results, Thus, we conclude
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that the formula given by Lee-Whiting is quite adequate to
predict energy loss rates provided one uses the Thomas-Fermi
value for the electron gas screening length.

The following word of caution is worth emphasising.
It is quite true that, in the Hubbdard case,dL‘Q-H(%; 0) behaves

like
L"Rd'(los + 06 I's)

1,5 + ,268 ry

in the limit 9~ 0.  For example, for r_ = 4,
-H ~
L Q (q; 0) T b

and therefore

7\’:’,/-6—1;4 kp

which is .jré times the Fermi-Thomas value ATF' Since the
thermalization time comes out ¢ K_q, this will lead to value

of TT which is 2.25 times larger than the actual value. One

might argue, on this basis, that our above conclusion is undoubtedly
wrong. But, as remarked in the previous chapter, one should not

just replace the polarization part in the denominator of equation (4,11)
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by the corrected Hubbard one, but the right value of the numerator,
which contains the imaginary part of QH, as well as that of the
denominator should be substituted in equation (2,12) and the
integral reworked out,

In his calculation for sodium, Lee-Vhiting used a

8 cm-l. This differs consider-

8

screening parameter A = 1.02 X 10

e (strictly

for r, = k), Thus he found a thermalization time of 3% X 10‘12 sec.

ably from the Thomas-Fermi value of 1.477 X 10

which is a factor of 4.5 too small. Our better calculations give

TT = 1,33 X 10-11 sec,, for room temperature, which is still

about 25 times smaller than the annihilation time TA = 3,4 X 10"lO sec,

In aluminium, ‘however, the thermalization time is com-

paratively longer and is equal to 5.31 X lO-ll sec,, barely a factor

of Lt 1ess than TA = 2,0 X 10—10 sec,

A significant remark is in order here. In going over

from Na to Al (rs =4 to r, = 2), the annihilation time T, decreases

0 4o 2,0 X 20719 sec., whereas the thermalization

11

from 3.4 X 10~

time TT increases from 1,3% x 10—~ to 5,31 X l()--ll sec,

Quantitatively TT oC -!‘-é- or the thermalization rate e rsz.
r
s
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Unfortunately, no experiments have been reported to
date, which measure the thermalization time directly and there-
fore we cannot claim our results to have been verified experimentally.
We will, however, discuss the results of Stewart's recent
effective mass experiments in the light of our present calculations,
The temperatures used in his work are 110°, 3000, 400° and 600%k.
Stevart's interpretation of his experimental data in sodium, particularly
the voint corresponding to the temperature of llOok, is based on the
general conclusion that positrons are completely thermalized even
at this temperature. In fact, tnis is the point we have been
trying to investigate so far. Our calculations show that for the
is 2.8 X 107 sec., while for

T
i 4 . O . . X -10
the lowest temperature used, i.e., 110k, it is .95 * 10 sec, ,

highest temperature of 600°k, T

which is only a factor of 4 less than the arnihilation time.
This seems to imply a small amount of non-thermalization at this
temperature, This would probably not show up very significantly
in Stewart's experiments and his interpretation of the positron
effective temperature in terms of comnlete thermalization and an
effective mass of about 2 stands.

As TT goes inversely as the square of thue electron density

parameter Teos it will be interesting the investigate the state of
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the positron in a high density metal and at low temperatures say
at liquid Helium temperatures, We find that in aluminum for

7 = 110%, the thermalization time is 3.81 X 10720 sec, which

is about 1.9 times larger than T, = 2:02 x 10719 sec. e claim
that positrons are definitely non-thermalized on annihilation
even at T = 110%k. An eXPeriment of the typec reported by

Stewart and Shand may be able to detect this lack of thermalization

in aluminum,



APPRNDIX A

Derivation of Zcuation (4,10)

To derive equation (4.10), we start from the
definition of the momentum frequency dependent polarization

function equation (2.8)):

. dap
- i o .0 o
Wgs q) = V’—"S 50 G (prai po*ay) Glps py)
4
= e Go(p+q~ +q) a2 (p; ) d3 pd p
- N e D7 Py o’ Ye'Bi Po )
(2m)
(A-1)
where
o 1
G (p; p) = -
and (A=2)

7
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where np and ﬂp+q are quantities tending to zero such that

n > 0 for ¢« » PF
(A-3)

< O for ¢ <« PF

Here PF is the Fermi momentum. We first perform

the P, integration, Consider

1

+ - € + i
Po qo p*a Mg

plane of complex Py It has a pole at Py = €p+q -9, - lnp+q

-

in the

which lies in the lower half plane for |prqf>py and in

the upper half for ‘P*@J < Ppe Similarly the

1 .
n has a pole at p = o~ in_; in the
o €p+1np o 5 np
lower half for p > Pp and in the upper half for p < Ppe

function

Let us consider the following four possible cases,

(a) For Ip

Jak
£
~r

Fglfp? and p>pp°

~ =

3

- ————

_~r 4 - »
° (2m) S (pyta, - €p+q lﬂp+q)(po Tept lnp)
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Both the poles of the integrand lie in the lower half
plane., Therefore we close the contour in the upper half plene,
where the function is analytic. Thus there is no contribution to

Qlq; qo) in this domain.

(v) Similarly for lp+ql <« Pp and p < pp, Ve again get zero,
(¢c) For lf+g} > pp and p < ppt

In this region, the contribution to

. d"p dp
Q(C}.; 9,) is —L-Q S 0‘ + +
(em) (po+qo = €piq + io ) (po =~ ep -~ io )

We close the contour in the upper half plane, where

1
.+
po-ep"lo

+
has a pole Py = g + 1o . Then using the residue theorem,

we have



<7 (27m)(L)
Kigy ¢ ) = S
~ 0 (2n)4
) (27c)3

50

S dBD
. +
T % T g T
) 3,
) :
ey T % T Eprg T IO
2 e

(A=h)

(a) Further for lp + q] < Pps D > Pp, We obtain in a similer
~ ~ Iy

way a contribution of

&

(ZTT) e

o
”~

T °F

= — (&-5)
- qo + 10

~

In order to write equations (A=4) and (A-5) in a

compact Iorm, let us introduce the step functions:

£ = 1
)Y
= 0
and
f = 1
p+q
=0

for p<pF

for p > Pp

(4-6)

for | otg | < pp

for + >
Perg | >p5

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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Then equations (A-4) and (A-5) can be written in

a combined form as

f(L-f )
Q(q; qo) = ___2'_3_ S { p 'P+CL -
-~ (2713) eg"‘q - ep nd qO - io
(A-7)
f (1 - £p)
A > } &p1
eprg T ep T G T I

For further simplification, we make the following
transformations in the second integral of (A-7).

let p+q — p

o~ »~

P —> p-g

and then set p — -p to get
1
Q(%; q_o) = -—--)—5- r S{ 1 ~ + 1
- - - - + 3
(2n €P+% epdo710 ep+% e, * 4, *io

3
X - -
fp (1-f + ) a7p 9 (A-8)
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In order to determine the real and imaginary parts

of Q(g; qo), we make use of the relation

1im ——2—— = pp(-%; T ind(x) (A-9)

Then

1 5; 1 1
ReQ(q3 = P P + }
(%’ qo) (2 )3[ EXS +q-ep" 9 e+q-e +q0

3

dp £ 1 - fp+q)] (4-10)

and

. S R N - 5 - e -
Im (g5 q ) = o B a’p £,(1 fp+q) r (9P+% p q,)

+ 5 - - A-11)
Ceprgmep* 1

Having separated out the real and imaginary parts of
the dynamic polarization function, we now proceed to obtain explicit
expressions for them, Owing to the conditions imposed on the

p-integration and further additional g-function restrictions imposed



on the imaginary part, we have to determine their values separately
in different regions of q,

The three possible regions are

la) € O,pp)y lal € (ppy 2p)s  lal > 2pp.

To start with we study the real part of Q(q; q.)

Case (a) ]g! e (O,pF)

From equation (A-10), we find that for any contribution,

we must have

Iptal>ppy P < ppe

These coditions limit the region of g—integration to
the shaded one shown in Figure 7a.

In Figure %a, we ﬁave drawn two circles each of radius
Pp with their centres separated by a distance q. As g < Ppo the
circles must overlap, Because of spherical symmetry we work in

spherical coordinates,
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Let the polar axis be taken along the q direction,.
The region of interest in the shaded region between the parallel
plenes B and C, Here B is the right bisector plane of g and C is
the plane at a distance g + Pp from O,

The ¢-integration sives 2m.” The range of p is
(pp = @y P

The limits on the e—integration are determined as

(¢4

follows, Fix any arbitrary value of p in the allowed range.
With 0" as centre and with this arpbitrarily chosen p as radius draw
an arc of a circle, which cuts the O~circle at D. Thus OD = ‘p+q!=pF

and O'D = P, Then from the A 00'D

2

(r@)® = () = ()% + 20D + (p)?

2 2
q +p + 2pgm

Therefore, for a fixed p, minimum value of M is

2 2 2
PF'q-P

2pq

The upper limit of a is 1, which is the case when p

~

and g are in the same direction.
~



Hence
2 2 2
pF -~ qQ -p
~ e ( 2pq ? 1.
Then
1.
1 1
Req(q; q ) == S pdpg ar (-3 o=
(2n) > 2 o Q¥2pap g, g repqpta,
F -q -p
2pq
(A-12)
Performing the g~ -integration we obtain
Pp
o _ 2 1 2
Rem(g, qo) = (2v)3 S P { 559 In (¢~ + 2pg - qo)
pF"q
2
+1n (g7 + 2pg + q )
2 2
- 1o (pp - P - q)
2 2
- 1n (p,” - p +q°)} dp
Pp
T 2
= 3 S pdpiln(q +2pq-qo)+ln(q2+2pq+qo)
PF"q
2 2 2
- 1ln (pF -p - qo) - 1ln (pF -p + qo)}

(A-13)

)



Making use of the formulae

S b2 ¥ - a2 ax 52
Xln(a+bx)dx=—-——£—-=——-—-- ln(a-{»bx)-f--}.{._._
2 ab L
2b
and :
S x 1n '(az—xz)]dx = % r(xa-aa) 1n !aa-le -x2 I (A-14)
one obtains on performing the p-integration,
- 1 > (qa-qo) 2qpp+q -9
ReQ(gj qo) = -2'-5 '-———3 [2qu + (pF - —"""‘é-""")ln ! !
(2m) kq 2qpp=q"+q
2
> (a7+q)) 29pp + @ * Qg
+ (pp - = n 1]
L
q 29pp = 4 - q
o
P P 2 1+x F
= ri+ (1-%x7) 1n |== == (1-y")1n|
(A-15)
where q
X = 20 + Eﬂ_
q (A-16)
y = o - 4.
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Case (b) lqf ¢ (pF, 2PF)'

We proceed in the same way as before, The total
domain of integration can now be split up into two domains,
viz., a circle of radius gq - Pp and the remaining shaded region
between the planes B and C, Clearly, from the Figure 7b,

varies for the second region between

p 2. p2 - q2
2pq
and v € (qa - pp, pple
Thus, we obtain
q-p N
1 1
ReQ(qs q) = === 2m rg o ddeHa + = )
(2m) o g +2pq p - a, q  + 2pq et q,
Pp +1
+ g padp S Sy ( 5 1 + 5 1 )
. > o 9 *2pap-q, 9 + 2pqp+ g
q"PF pF =D =q
2pq

(A-17)



The integrations are trivial and one finds, on simplification,

P Y
ReQ(E; qo) = = )3 [1 + uE (l—x ) In |1+X[ - -% (l—ya) ln l%é%!

(4-18)

which is the same as equation (A-15),
Case (¢) Igl >2 Pp

This is the simplest of the three cases. The ¢~integration

gives 2T. p and At range over the complete circle (Figure 7¢).

We have thus

ReQlq; q ) = “;"“3 27 g P dP S {"“;L""“ +
(2m) q +2pq;&- a,

. }
2 .
q +2pqMtq
(4-19)

The integrations are performed without much labour.
One finally obtains the same expression for Re%(q;

(A-15) or (A-18),

qo) as in
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Thus, we have the general expresuvion for the real part

of the polarization function in the Random Phase Approximation

TPy Pp 2 1+x Pr 2
(qs Z e — - =2 o= (1- X
ReQlg; qo) " (on)? r+ 2q (1-x7) el 2q (1-y")

o 1] 1 (a-20)

In the second part of this appendix we work out the
imaginary part of Q(g; qo) in the R,P.A.

As already remarked, the conditions for integration
for Im Q (g; qo) are similar to those for ReQ(%; qo) with the
difference, however, that the O-function further limits the domain
of integration,

For the sake of convenience, we consider the case of
positive frequencies only and later on generalize the results to
both the positive and negative frequencies, With this in mind, we

write equation (A-11) for a, > O,

ImQ (g5 g ) = I, (A-21)

(21r)3

where
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‘ )
- - 6 - - A-22
I, 3 fp (1 fp+q) [egﬂg "'g q,] &'p ( )
= {8 @® v g g @ (4-23)
lp+at>py
P<pp

where - is the cosine of the angle between p and q.

- -~

For O~function to click, we should have

q.-q
P Moo= —-—g—-q*-- (A-ZLI')

We evaluate Il in the three regions, as before.

Case (a) Iq] < Pp.

Consider Figure 7d,

Take a point D on the curved line of the left circle,

which is enclosed between the planes B and C, ¥From the AOO'D

2
Pp

2 2
P +taq + 2pqp

2
or P =-qQ =~ Pp
2pq
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Hence the range of st is

But, due to the ®-function restrictions, the ranges of
p will pbe different in the two shaded regions, i.e,, between
planes A and C and that vetween planes A and B,

Now between the planes A and C, the S_function demands

that >
q, - q
or
2
29pp -9 €£9,€ 9 * 29 pp
or

q

2 2
9y ¢ (2app -q7, a7 + 2ap; )

2
. . , - 4
and in this range of 9ys P € (——-52;- ‘. pF).

Hence

oo, 2
I, =) , P dp g (g™ 2papt -q ) dp
q

0‘-q 2
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2
q, - a 2
_ I 2 0 2 2
= 3g(pp = (—zg—) 1 for q € (2app - a7, 2app + a7)

(4-25)

Now consider the region between the planes A and B,

Imposing O_function restrictions, one finds that

or

2
0 £ 9, g 2app - 9

O

and in this range of q_ e(o, 2qpp - qz), J again ranges between

2 2 2
fr -9 F

2pq

s * 1) but the p-integration range is a little
bit complicated and is obtained as follows:

Draw DE 1" on the g-axis,

Then, we have

2 2
pF = (q+p/ub) +a2

and
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2o (o )? v
Therefore
2 2 2 2
pp =P = (qg+pr) -p
2
= q + 2pgpm
2
q, - 4
= q + 2pq ( 559 )
or
p = 2 _ 4 (4-26)
Pp (o]
Hence for q_ ¢ (0, 2qp, - qa)
(o] » <qPp
Pp +1
I, =2n 24 dm 8 (g +2 pap- q)
1= p dp p 8 (g pq p- G
2 i/2 2 2 2
(pp=a,) Pp -9 P
2pq

= 5 (a-27)
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and in the region 49, > q2 + 29 Pp

I = 0 (A-28)

Case (b) !%’ e (pF, 2pF)'

In this case the two spheres again overlap. The
contribution to the integral comes only from the shaded regiocn,
shown in Figure 7e.

The situation is similar to that in the previous
case of !3? < Ppe The results are the same as (A-25), (A-27)

and (A-28) for the tharee regions of o discussed apove,

Case (c) ]gl > 2pp

The spheres do not overlap in this case. Except
for the 6--function, the whole of the sphere should ve the

integration range.,



65

However, for the S_function to click we must have

or 2 2 ”
9" - 29pp <4, <9 + 29pq.

Once again, for q, > q2 + 2qu, there is no contribution,

In contrast to the two cases discussed abvove, Il vanishes for

q, < q2 = 29pp.

(o]

Thus the only region of 9 that contributes is

2 2
qo G(q e 2qu’ Cl + 2qp}?)c

In this region

Pp +1
2 ' 5.2
I, = 2n p dp dm O(q +2qp . -q.)
2 (e}
qo‘q -1
2q
,pF
_ 2 1
= an 2 TP Tagp
q,-4
2q
> 4,1 2

|
n
Ko
'
)
Fam
fujo
O
L
—

(4-29)
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Summing up, we write down the general results for

the real and imaginary parts of the polarization function (qo > 0)

ReQ(q; g ) =(§p£3 1+ i-f-l‘ (1 - %) 1n ( _}-ijpa
- z% (1 -y%) In (%{%)2 } (A-30)
and
T qu

= ——— . for q « 2 p_, and
° (em)? 2q .

2
q, <j2app ~ o |

T 2 . x 2

= ee——— . P . m— for[2qp-q|sqs
r 2 F o]
(2m)” :
(l—yz) 2
quF +q
= 0 for q > 2‘pF and
2

q,< 1a” - 2qp,!
= 0 for > q2 + 2qp
% F

(A-31)
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where x and y are given by (A-16).
It can be easily seen from equation (4-11) that one obtains

the same results for ImQ(q; qo)for negative as for positive 9.
-

Now we express all momenta in units of Fermi momentum
Ppe This implies that we make the transformation

9 —>q Py,

—~

2
G, — 4, Pp -

Making these transformations in equations (A=30) and (4.31)
and putting q, = --q2 + 2pq M (on comparison with value of dq in
equation (4.9))in the transformed  equations (A-30) and (A-31),

we obtain in the region of low energy transfers (qo < ! q2 - Zq]-

our region of interest).

2 2

~RPA ~RPA

,qa +el P (%; -q2+2pq[-‘~) I = (q2 +oL Re QRP )
2
2

= [q2 + 2ﬂkL{l + %— (1 - (q - p;L)Z 1n (ﬂil;RﬁL_)
4 q-l-p &

2 2
* e (-ep)®) 1n EEDY v Pl app )

(a-32)
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vhich is the desired equation (4.,10), When —q2 + 2pqu = 0

- 1 1 2 2, °
we get Q (%; 0) =2nTl - 55 (1 - Fa ) 1n (%:E) 7 which

is equation (4.12),

<

It is now a matter of two steps to prove equation (4.6).

Setting q = p2 - (P-g)z in equation (4.6), we have

UL CUNEISER LN

lq'+qls1 (4-33)

q'<l
It may be remarked that all momenta have been expressed
in units of Fermi momentum Ppe

Now, obviously, (q' + %)2 - q‘2 > 0.  Therefore,
for the argument of the O-function to vanish, we should have

qo>0.

Hence



=

[
oo

Now, in our region of interest, (g < 1), ¢, is swall,

. 2 .
¢_ can be taken to ve (0, 2¢~g ). Using

T = de B o ey~ > = -
in fact, Tie range of s

equation (A-27), one finds

. 7
7 2 2 z
= 5= (p7 - (p-q)7) for q > 0. (&-34)

vhich is the required equation (4.6).

Expressicns for Gi(g; w) and 52(55 w)

The real and imaginary parts of the dielectric function

are given by eguation (2.9):

2
~

RPA
€,{q; o)) =12 v, Re QT (g

~

RPA
€(q; q)) =2V, I Q (

~

g q)

With the help of equations (A-30) and (A-31) and

expressing all momenta in units of Fermi momentum, i.e, making



. . 5 2 .
the tramsiormations q -k k., and qo — W LF , we obtain
~ g &

2w -
ro 3 L &L 2 .
€.{%; @) = L1+ =————— 1+ 77=(1-(E+37)X
4 (1.919)1> & &k 2
- 1z 2
(1+ G307 1 6 2
lI.‘. \i - N é,/ - 7::.‘;-? (l - (Z - 2) )7(
2_ 1 - (2? + Zé;) -
o x
1t GE-3 )02
in g 5 ] (8-35)
L [83) 1{\ j
==\ T3/
and
E, (ks w = O for w> X%+ 2k
= (8] for ks 2
2
and w< | k" -2
wc
= = for k<2 and (A=36)
1,919 1

w< J k% - 2k}

» 2
S~ B w,o ok
= 1.919 k2 {1- (Ek 2) 3

for]k2-2k}<w<2k+k2
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2
X . ; s . byo .
where we nave uade use oi the equa‘tlons Vq = > anc
~ q
Lpr = 1,919 (r_ is expressed in atomic units), and remembering
-~
2 . . .
chat ¢ =2, L =2n = 1 in atomic units,

APPENDIX B

Ca taking out the energy transfer term from expression
(4.1) for the rate of energy loss, one obtains an expression for
I'(p). Honce, the width of the peaked function (i,e., integrand
r 4

without the exponential in (3.8)) in units of energy is given by

2
2 2 Pn v
™) = () — x 2. % wx4
2 2 z .2
T gl pp &
~ d}q dsq’
* )
~RP
12+ oL @ (g5 (g1 +)® - D)?
larq! i1 v T
Q'L 1

L]

5 [(gfg)a -t (q' + %)2 - 9'°]
(B-1)



, g &) 2 - (=)
o 2 S Sy
-3 T2
T b4 y 2 -RPA . 2 25,2
b7 (p-0) %0 R A e
(8-2)
where we Lave made use of (A-3k).
Ta (B—2))the & integration gives 2%w. Further, the
conditiox p2 - (p—q)2>0 implies that A& e(e/2p, 1). ¢ ramges
from O to 2p.
Then, in the static limit,
7. 2p
e 22 2 o dq
Mp) == - 5% .= S 2 < 2
v A o (@ + Qg o))
f‘+l
X.B (-q+ ppM)ak
a/2p
2
2 3
P % (eq 4 p = =) dq
or I(p) = av '
z s a2 2t L 2 22
+ PR - - tanh
(in oue) (q Toige (—ﬂ-ﬂ—gq ) 1n ( q+2))
(B-3)
eé 2m 1
where Al = = » = =3 e.v.
' A 1.6 x 10
(B-%)

17.34 e.v.
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Here p = Liklh JE rg ( E in e.v.).

ke expression (B-3) was employed for computation of T as

unction of T and E.

a
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Figure 1

Figure 2

Figure 3

Figure 4

CAPTION T0 FIGURES

Positron self-energy operator in the Random Phase
Approximation (R.P.A.). DNote that the first
graph in (la) is really zero since it involves
G;(x; x') for the time:ordering t' -t >0
(—0). It is included, nevertheless, because
it is the natural first member of the infinite
series shown. In (1v) the wiggly dynamic inter-
action line stands for the effective potential

in R,P.A.

The integral equation for the effective potential
M(x; x') in the R,P.A,

(a) Singularities of M (k; )

(b) Contour used for integrating equation (3.1)
(¢) Graph of the integrand‘in equation (3.10)
(a), (), (¢), (d), and (e):

Graphs for the real and imaginary parts (gl and
€ respectively) of the dielectric function

e(Ej w) in R,P.A, for rg = 4 for values of

k = .1, .3, .5, .7, «9 (in units of Fermi

momentum) respectively.
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Figure 5 The thermalization time TT as a function of
the electron gas density parameter fs for
temperature T = SOOOk.

Figure 6 Graphs which are included in the calculation
of tne polarization function (k; ¢) in
the Hubbard approximation,

Figure 7 Regions of integration of expressions (A~10)
and (A-11) for real and imaginary parts of the
polarization function. (a), (b), (c) correspond
to the case ofjq)e(0,pp), €(ppy 2pp), Ja| > 2pp
in the case of Re Q(g; qo) and (d), (e), (£f)

correspond to the seme ranges of g (for Im 4(%5 qo).

Table 1 The peak width T° (e.v.) of the integrand of Equation (3.8)
as a fuaction of the positron ensrgy (.le.v. - .0l e.v.)

for values of r_ (2-6 in 2.u.).
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TAWLE 1
The peak width I (e.v.) of the integrand of equation (3.8), without the exponcuticl,
as a function of the positron encrpy (W1 ecve = 0L e,v.) for valuos

ofr (2 -6 ina. u.)

&

ro(au) .10 .09 .08 07 .06 .05 Ol .03 .02 .01

2.0 .00017 00013 L0001 00008 .CO006  LOOUDY L00003  ,CO0015 Q00007 LO0C202
2.5 00026 .00021. .00017  ,00013 ,00009  .00007 L0000 00002k ,000010  LOUG003
3.0 .00037 .00030 00024 ,00018 .00013  .0CO09 L00006  L00003% 000015 LOOCCDh
3.5 . 00050 .00041 L00032  ,00025 L0008 .00013 00008 000046 000020 LCDRT0%
4.0 00066 .00053% 00052 ,00032 L0002k ,00017 LO0001L  L,000050  L,0O0UR7 000007
b.5 .00083 .00067 00053  .COOLL ,00030  ,00021 00013 .000076 00003 ,000008
5.0 00102 .00083 00066  ,00051 ,00037 00026 .00017  .00009L L0002 LOC00L0
5.5 0012k .00101 L00080  ,00061 .000L5  ,0003L L00020  L,000113  ,000051  ,000013
6.0 Moo o .001.20 00095 00073 ,00054k  ,0003%7 L00024 ,000135  ,000060  LOOC0L5
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