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wall thickness 

cross-sectional area 

centroid of the section 

shear centre 

coordinates of shear centre 

modulus of elasticity 

modulus of elasticity in shear 

Poisson's ratio 

longitudinal displacement in z-direction 
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tangent of the profile line of the cross 
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transverse normal displacement 
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moments of inertia of plane area with respect 

to x and y axes 

,displacements of shear centre in the X and Y 

directions, respectively 

rotation of the section about shear centre 

resultant lateral load 

(vi) 



e 

I 
w 

M 

B 

H 

y 

eccentricity with respect to shear centre 

sectorial moment of inertia Iw= fw 2dA 

A 

applied torsional moment 

bimoment 

resisting torsional moment 

torsional rigidity 

shearing strain 

(vii) 



Figure 

1 

2 

3 

4 

5 

6 

7 

8a-c 

9 

10 

11 

12 

13 

l4a-b 

15 

l6a-c 

LIST OF FIGURES 

Types of Openings in Shear' Walls 

Construction Using Rectangular-Section 
Shear Walls in a Six-Storey Building 

Construction Using Channel-Section 
Shear Walls 

Frame Analogies and Shear Connection 
Methods of Analysis 

Lattice Analogy for TWO-Dimensional 
Stress Problems 

Dimensional Sketch of the Proposed Model 

Photograph Showing the Main Platform on 
the Tri-Legged Steel Frame 

Photographs Showing Sequential 
Assembling of Form-Work 

Photograph Showing the Base Plate 

Cross Section of the Assembled Form-Work 

Grading Curve - Dolomite Limestone 

Grading Curve - Silica Sand 

Stress-Strain Curve for Model Mix 

Photographs Shwoing a Freshly Poured 
Model Covered on Top 

Photograph of the Assembly when Erected 
in Place 

Photographs Showing Sequential Removal 
of the Form-Work 

(viii) 

Page 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

66-67 



Figure 

17 

18 

19 

20 

21 

22a 

22b 

23a-c 

24 

25 
~ 

~!'J 

26.,. 

27 

28 

29-30 

31 

32 

33 

34 

35 

36a 

36b 

Loading Cap 

Support for Hydraulic Jack 

Photograph Showing Hydraulic Jack 
Assembly and the Supporting Column 

Dimensional Sketch of Load-Cell 

Photograph Showing the Model, the 
Loading Arrangement and Instru­
mentation 

Location of Deflection-Gages 

Location of Strain-Gages 

Crack Location Model No. 2 

Crack Location Model No. 3 

Crack Location Model No. 4 

Crack Location Model No. 5 

Comparison of Strain Distribution, 
z = 2". (Model No.2) 

Comparison of Strain Distribution, 
z = 45". (Model No.2) 

Comparison of Deflections (Model No.2) 

Deflected Shape of the Sections, 
Q = 40 lbs. (Model No.5) 

Deflected Shape of the Sections, 
Q = 100 lbs. (Model NO e 5) 

Deflected Shape of the Sections, 
Q = 180 Ibs. (Model No.5) 

Displacement of Section Under 
Flexural-Torsional Loading 

Profile Line and Axis of the Model 

Displacements in the Longitudinal Plane 

Sectorial Area w 

(ix) 

Page 

68 

69 

70 

71 

72 

73 

74 

75-76 

77 

78 

79 

80 

81 

82-83 

84 

85 

86 

87 

88 

89 

89 



Figure 

37 

38 

39 

Load-Strain Curves (Model No.2) 

Assumed Distribution of Load 

Deformed Shapes for Rigid and Non-Rigid 
Section 

(x) 

Page 

90 

91 

91 



LIST OF TABLES 

Table Page 

DEFLECTION IN INCHES FOR VARIOUS 
LOAD VALUES (MODEL NO. 2) 

A-I 1st Cycle of Loading 92 

A-2 2nd Cycle of Loading 93 

A-3 3rd Cycle of Loading 94 

A-4 Final Loading-Up To Failure 95 

LONGITUDINAL STRAINS ~-INCH/INCH FOR 
VARIOUS LOAD VALUES (MODEL NO. 2) 

A-5 2nd Cycle of Loading 96 

A-6 3rd Cycle of Loading 97 

A-7 Final Loading ~ Up To Failure 98 

(xi) 



CHAPTER I 

INTRODUCTION 

1.1 Description of Typical Shear Wall Construction 

Shear walls are the important structural components 

of the modern high-rise apartment and other tall buildings. 

Their function is two-fold. 

1) To support the vertical loading. 

2) To resist lateral forces such as those due to 

wind, earthquakes and blast effects etc. 

Dictated by functional requirements, these walls 

normally contain openings for doors, windows and corridors. 

A wall may have a single band of openings (Fig. la), two 

symmetric bands of openings (Fig. Ib) or the openings may 

be assymetric w~th respect to the centre line of the wall 

(Fig. lc). In some cases the opepings may be staggered as 

shown in Figure ld. 

In actual building lay-outs shear walls may be 

found in two types of structures. The first type are 

buildings in which the shear walls are laid parallel to each 

other and are interconnected by floor slabs at each storey 

level. Figure 2 illustrates such a disposition for a six 

storey building. In the second type of construction, known 

as box-core type, the shear walls may not be plane­

rectangular in cross section but may have a channel or 

1 
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other shape. Channel section shear walls with inter-

connecting slabs (Fig. 3) represent a typical box-core 

construction type. In this type of construction the 

shear walls are built with their webs parallel. The 

flanges are connected by beams at each floor level and 

the floors are then added. The shear walls may have 

openings of the one of the band types as described earlier. 

In addition, horizontal floor slabs may be attached to 

each web at all floor levels; their outer corners being 

supported by four columns or in some other fashion to 
/ 

form the outer bays. 

1.2 Methods of Analysis of Shear Walls 

The problem of shear walls with openings has been 

approached, up to date, using a number of analytical 

methods. In reviewing the research literature, it is 

found that much work has been published in which shear walls 

with row openings have been idealized as an interaction of 

columns (or walls) and beams. In what has been called the 

1* equivalent frame method , the shear wall is treated as a 

rigid frame in which the lengths ?f the beams are taken 

to be the distances between the centroidal axes of the 

adjacent coiumns (Fig. 4a). The approach is unrealistic 

when the widths of the columns are not negligible compared 

with their centre to centre distances. This approach will 

*Numbers refer to the Bibliography listing. 



generally o~er-estimate deflections for shear walls with 

holes and therefore has limited applicability. 

A more general approach is to consider the beam 

length as being the clear distance between the columns. 

3 

Account is taken in the analysis, of the finite deflection 

at the ends of the beams due to the rotation of the columns. 

This idealization might be considered as a frame with 

rigid members as shown in Figure 4b and is termed the wide 

column frame analogYQ 

A simplified analysis has been produced by assuming 

that the discrete system of connections, formed by lintel 

beams in between the consecutive openings, may be replaced 

by an equivalent continuous medium (Fig. 4c). The method, 

apparently originally suggested by Pippard2 in connection 

with the analysis of spoked wheels, was first used by 

Chitty3 in the analysis of a cantilever composed of a 

number of parallel beams interconnected by cross-barso 

This approach is called the shear-connection method of 

analysis. Using this form of approach, and treating the 

row of beams as a continuous medium in pure shear, Rosman4 

produced an elegant solution by establishing a single 

second order differential equation in terms of the speci­

fic shear in the connecting medium and solving it for 

par~1gular load gases. ~he main assumptions made in this 

formulation are that the axial deformations of the beams 

are negligible and that there is a point of contraflexure 



at the centre of the beams. The upper end beam has one-

half the cross section and one-half the moment of inertia 

of an interior connecting beam. 

Rosman treated the cases of a single band of 

openings and two bands of openings for walls whose piers 

are fixed to the foundation in various manners. This 

solution appears to give good results for a variety of 

practical cases. In the experimental investigation con­

ducted by Barnard and schwaighofer5 in which they used 

epoxy sheet models, Rosman's theory was found to be in 

good agreement with experimental results. 

A more recent approach to the solution of shear 

wall structures is the lattice anology and finite element 

methods. 
6a 6b 

McHenry and Hrennikoff are several of the 

original researchers who described the lattice analogy 

method as adopted to the numerical solution of a number 

of types of two dimensional stress problems involving 

elastic materials. 

Figure 5 illustrates the idealization technique 

4 

involved in solving two dimensional problems of elasticity 

by the frame-work method. The elastic continuous medium 

of length "~" and thickness "t" is substituted by a pin-

jointed frame-work consisting of vertical, horizontal and 

diagonal members. The frame-work so formed is given the 

same external outline and the same boundary restraints. 

The elements of the equivalent structure are endowed with 



suitable elastic properties so as to represent the wall 

continuum; and the frame-work is subjected to the same 

loads as the solid body. The uniformly distributed load 

(Fig. Sa) is replaced by a statically equivalent system 

of concentrated forces acting at the joints of the arti-

5 

culated structure (Fig. 5b). The problem then is to solve 

for the displacements in this lattice, and the stresses 

and strains are then computed from the displacements. 

The resulting structure is highly indeterminate, 

and by the conventional methods applied to indeterminate 

structures, as many equations would be required as the 

number of members. (In the present example, because of 

the symmetrYi only half the lattice structure is to be 

solved.) It is apparent that the direct solution is very 

laborious. 

Before the advent of digital computersf Southwell's 

method of relaxation was the only indirect method for the 

numerical solution of such problems. The accuracy of 

results would depend on the number of lattices of the 

equivalent frame-work (Fig. Sb)9 When 11m Ii is decreased 
JI, 

the accuracy of approximation is improved and in the 

limiting case when "m9,." approaches zero the solution con­

verges to the exact solution. Therefore, the accuracy of 

the results is controlled primarily by the labor expended. 

This great labor of computation, which is the main dis-

advantage of the frame~work method, has been overcome by 
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the use of digital computers in conjunction with the use 

of matrix methods. This approach, therefore, is gaining 

popularity in solving a great variety of problems in-

cluding shear walls~ 

7 In his shear wall investigation, MacLeod employed 

McCormick8 lattice of the type shown in Figure 5b to com-

pare the results with those from the other methods and 

those obtained from the experiment. Grinter's9 grid 

analogy has been applied to shear walls with openings by 

Kazimi lO • 

A more recent development is the finite element 

method. Triangular and rectangular element stiffness 

matrices have been formulated for plane-stress analysis. 

Using the rectangular element stiffness matrix given by 

11 Argyris u MacLeod has used the finite element method to 

solve the shear wall problem. 

1.3 Experimental Investigation by Model Testing 

With regard to experimental investigation by way 

of model testing, the first major research into pure shear 

wall structures appears to be a series of tests carried 

out in the United States; to provide data for the design 

of blast-resistant structures. The full report was pre-

d b Wh · Add C h 12 . h' sente y 1tney, n erson an 0 en 1n a compre enS1ve 

paper dealing with the behaviour of structures designed to 

resist blast loads. In their report, approximate methods 

based on simple "strength of materials" theories were pro-

posed to predict the stiffness and ultimate load of simple 
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shear wall ,structures subjected to lateral loading. 

" d W'll' 13-16 , d 1 b f Ben]amln an l lams carrle out a arge num er 0 

tests on models of single-storey brick and reinforced 

concrete shear walls with and without openings, and on 

reinforced concrete shear wall assemblies consisting of 

one and two-storey parallel shear walls connected by 

diaphragms. Of particular interest in these investiga-

tions was the concern of the investigators with the 

scale effects of modelling. This is the first problem 

facing any study using models. In their investigations 

full-scale was assumed to be an 8 ft. high, 12 ft. long 

wall with 8 inches thick panel. A series of reinforced 

concrete walls ranging from l/Sth to 3/Sths scale were 

tested, all walls being proportioned on a purely geo-

metrical basis. It was concluded from test results that 

no scale-effect was presento This leads to the conclu-

sion that in model study of shear walls the choice of 

scale could be made on the basis of testing facilities 

available and other factors involved in making of such 

models and yet the models would yield results applicable 

to the prototype. Various investigators used small-scale 

metallic models in their experimental investigations to 

draw a comparison between the eXperimental results and 

theoretical estimations from one or more approaches as 

mentioned earlier. MacLeod employed 1/16" thick alurnin-

urn sheets for his model study, a cantilever of aspect 
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ratio 3:1 with one band of openings along the centre. The 

purpose of this study was to compare the experimental 

results with theoretical calculations based on finite 

element analogy and lattice analogy and the results given 

by basic strength of materials theory. 

For the purpose of establishing the width of the 

"slab strip" which is acting as the connecting media 

between the shear walls and to determine the accuracy of 

Rosman's theory and his own simplified theory, Barnard 

used models eu t from 1/411 thick epoxy sheets ~ He used a 

scale of model to prototype as 1:64. Jenkins and 

Harrison17 constructed models of both the parallel shear 

wall and box-core types using 1/4" thick sheet perspex. 

From the experimental investigations cited it is apparent 

that no definite rule has been followed by these researchers 

in the choice of the scale factor. 

However, in all these approaches the problem 

essentially is a plane-stress problem. 

1.4 Purpose of the Present Study 

In the present study a di~ferent approach is taken 

in the sense that not just a shear wall but a shear wall 

building is taken as an object of study. The reason which 

prompted the necessity of such a study is that a shear 

wall would seldom exist as an independent structure. 

Although single-panel shear wall analysis is desirable 
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from the point of view of detailed analysis of deflections 

and local stress distributions, the walls in practice do 

not act as independent cantilevers owing to the coupling 

action of slabs and other walls. The simplest approach 

would be to calculate the loads in the walls assuming that 

all interconnected walls deflect equally and no torsion 

occurs due to the high in-plane stiffness of the floor 

slabs. A design which does not effectively incorporate 

the interaction effect due to connected shear walls as 

well as floor slabs, would be highly uneconomical since 

the shear walls do derive strength from the connecting 

floors. By definition, a shear wall building is a three 

dime~sional entity composed of interconnected shear walls 

and floor slabs in which the whole strength of the building 

is derived from the interaction of these structural 

members. 

One theoretical approach is to study each shear 

wall independently and derive their interaction by matching 

the boundary conditions. This approach is lengthy and is 
I 

justified if detailed force and stress distribution is 

desired. 

Another approach which is the approach taken in 

this study is to use thin-walled beam theory. The theory 

18 of thin-walled beams is well laid down by Vlasov and is 

known to give good results when the beam is long, i.e., in 

this case a tall shear wall building. If only gross 
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behaviour of the building is required, it seems that this 

will be a fruitful approach. In order to establish the 

validity of this theory, an experimental programme is 

undertaken as described below. 

The present experimental programme forms the 

first phase of a more general experimental programme and 

consists of casting shear wall building models without 

floors or wall openings and testing them under some form 

of lateral load. It was decided to build a model 8 ft. in 

height and having a cross section as shown in Figure 6. 

It was decided~ also, to use concrete mortar as the 

modelling material. 

The choice of metal rather than mortar as a model 

material has the definite advantage of material homogenity 

and ease of building such models. On the other hand, 

considerable difficulty is involved in modelling if mortar 

is used because of the inherent properties of this 

material. Perhaps this might be one of the major reasons 

why many shear wall investigators avoided the use of 

concrete or concrete mortar as a model material. However, 

it is more realistic to use mortar as a model material 

because mortar is a brittle material with cracking and 

failure properties similar to full scale concrete. The 

use of mortar as model material, therefore, lends an 

opportunity for better appreciation of the problem as a 
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whole and in making correlation of the behaviour of the 

model with that of the prototype. The other advantage is 

the cost of the models if an extended programme is to be 

undertaken. Once a form-work is manufactured it could be 

used repeatedly resulting in much smaller costs for an 

investigation programme as a whole. 

The purpose of the present investigation is 

therefore two-fold: 

1) To determine the most suitable mix 

design and to develop and perfect the modelling technique. 

2) To study the behaviour of the model under 

some form of lateral load. 

The loading and the loading arrangement are discussed in 

detail in a later chapter. However, the loading arrange­

ment is such that with base fixed (Fig. 6), the model is 

essentially subjected to eccentric lateral loads at the 

top. This type of loading induces the combined bending and 

torsional effects. The lateral deflections and stress 

distribution across the cross sections as obtained experi­

mentally are then compared with the corresponding values, 

as predicted on the basis of Vlasov's thin-walled beam 

theory. 



CHAPTER II 

CONSTRUCTION OF MODELS 

2.1 Description of Models 

For the experimental investigation, in the pre­

sent work, it was proposed to build 8-ft. high models using 

a mortar mix most suitable for this purpose. Figure 6 

illustrates the general appearance including the size and 

shape of the proposed model. The design criterion for the 

mix used in terms of its proportions and other details are 

discussed in section 3 of this chapter. The form-work is 

designed so that a 2" thick 48" x 24" concrete base is 

cast monolithic with the model proper using suitable 

connections so that the model is completely fixed to the 

base. A 1/2" thick 5' x 4' aluminum plate, rigidly held 

to the concrete base through studs embedded in concrete, 

completes the base of the model. The aluminum base-plate 

is then held to the floor, rigidly, through anchor bolts. 

The purpose of using extra large size aluminum plate is to 

have space available for erecting a steel frame-work all 

around the model for attaching deflection gages. This 

arrangement permits the deflections to be obtained rela­

tive to the fixed base. 

12 



2.2 General Description of Form-Work 

In order to achieve maximum uniformity in the 

properties of the model throughout its height, it was 

decided to design a form-work to enable the casting of 

the models in a single pour. This is preferred to the 

method of pouring by lifts though the latter simulates 

the actual method of pouring prototype shear wall 

structures. Any discrepancies at joints of various 

lifts may affect the final results significantly. 

Although it was intended in the beginning to pour the 

models by method of lifts, this had to be abandoned due 

to the difficulties in obtaining proper bond between 

various lifts. 

13 

Laminated plywood (3/4" size) was used in con­

structing the form-work. The form-work consists of three 

pairs of 8 ft. long panels of plywood laid over a plat­

form and resting on their long edges. The main platform 

is constructed by rigidly bolting two layers of 3/4" 

plywood base on a 10' x 5' wheeled tri-legged steel frame 

as shown in Figure 70 The plywood base has circular 

openings for access from underneath the steel frame. The 

vertical height of the outer panels is 16" whereas the 

inner panels are 14-3/4" in depth. Figures 8a through 8c 

show the sequential mounting of the panels. A spacing of 

1/2" between each pair of panels is achieved by the help 

of cross-boards marked 1 to 8 in Figure 8a. The cross­

boards, which are rigidly bolted to the plat-



form, also prevent lateral buckling of the panels due to 

lateral pressure. 

14 

Figure 9 shows the aluminum plate which was used 

as a base-plate. This plate is attached at the end of 

the frame-work through 2" x 4" wooden spacers which pro­

vice for the 2" thick monolithic concrete base. The wire 

mesh (Fig. 9) is used to obtain a proper connection 

between the base and the model proper. Studs (Fig. 9) of 

1/4" diameter and passing through the aluminum plate are 

used to act as shear connectors between aluminum and 

concrete surfaces when embedded in the concrete base. 

Figure 10 shows the cross section of the assembled form­

work. The whole form-work was painted with two coats of 

liquid plastic (poly-urethane). This produced smooth and 

tough mould surfaces and effective water proofing against 

damage due to warping. 

2.3 Design and Properties of Mix 

The first problem in small-scale modelling of 

concrete structures is the determination of the best type 

of materials to be used as model substitutes for the 

actual concrete. For the particular model at hand, the 

mix design should meet the following requirements: 

1) It should be highly workable. 

2) Its initial setting time should permit adequate 

time for pouring and other manipulations required with the 



available facilities in the laboratory. 

3) It should have high early strength in order 

that the form-work could be removed earlier and in order 

to reasonably shorten the overall time from pouring to 

the testing of the modele 

4) The model mix should simulate the behaviour 

of its prototype, i.e., the stress-strain curve of the 

mix should have the same general shape as that of struc­

tural concrete. 

A programme of mix design was undertaken by one 

of senior undergraduate students in the summer of 1966. 

The test programme consisted of pouring 1/211 thick SLabs 

18 11 X 12" , with various 'trial mixes and examining the 

final product as related to the initial workability of 

15 

the mix. Aluminum sheets were used for the forms although 

this was later changed to plastic-coated plywood forms. 

In the selection of the mix materials, White's19 

concrete model mix was used as a guide line. White's mix 

consists of the following mix proportions: 

Ultracal 30 (a high-strength gypsum) 40% 

Ottawa sand 20% 

Crushed limestone (0.065" - 0.131") 40% 

water (percent by weight of ultracal 30) 33.4% 

Tests in the cited reference show that this mix is an 

excellent substitute for structural concrete. In the 
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design-mix for the present work, a combination of ultracal 

30 and high early-strength cement was considered in order 

to accomplish high compressive strengths. The propor­

tions of sand and limestone were varied keeping the ratio 

of cementing and filling materials constant (as in White's 

mix) while varying the quantity of water independently to 

gain higher workability. 

The set of tests consisted of pouring several 

trial mixes into plastic-coated plywood moulds to obtain 

1/2" thick IS" x 12" slabs. Since the actual form-work 

was to be plastic-coated plywood similar material was 

used for the form-work of small test slabs. After pouring 

the mix in small slab moulds, it was vibrated in the 

same manner as that to be used later for the actual 

model. The test slabs made from various trial mixes were 

examined for surface voids and uniformity of the final 

product. The following mix was recommended on the basis 

of high workability, setting time and high early strength. 

Ultracal 30 2% 

High early-strength cement 3S% 

Ottawa sand 

Dolomite limestone chips (l/S") 

Water (percent by weight of ultracal 30 

25% 

35% 

and high early-strength cement) 53% 

Grading curves for the dolomite limestone chips and for 
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fine Ottawa sand are shown in Figure 11 and Figure 12 

respectively. The following table represents the ultimate 

strength (compressive) of two-inch test cubes, made from 

the design mix, at different ages. 

Compressive 
Strength 

Age P.S.I. 

24 hrs. 2,070 

48 hrs. 3,200 

7 days 5,580 

1 month 10,000 

A typical stress-strain curve for a standard 6" 

diameter cylindrical specimen is shown in Figure 13. 

Young's modulus is defined as the initial tangent modulus 

of the stress-strain curve. This value of Young's 

modulus is found from the experimental curve (Fig. 13) to 

be 3 x 106 P.S.I. 

2.4 Method of Pouring and Erection 

Mineral oilwas liberally applied on the form-work 

surfaces before a pour was made. The required volume of 

mortar was mixed in a single batch and pouring was done with 

mould lying horizontally. The assembled form-work is such 

that when the mortar is set the model is resting horizon-



tally on the long edges of the flanges. Pouring is done 

from one end only (base end), letting the mortar flow 

into the mould by itself and thereby minimizing the 

chance of entrapping air. The compaction of the mortar 

18 

is achieved both by tapping and using a vibrator against 

the form-work. Since the concrete mixer and test-apparatus 

are located in different rooms, the model has to be trans­

ported immediately after the completion of the pouring 

process. This is considered to be an aid in compaction 

and elimination of voids. The top surface (which is at 

the back of the model) is then levelled with a straight 

edge and is then covered with a top panel. Figure l4a 

shows a freshly poured model with top panel in place and 

bolted to the rest of the frame-work. The model is 

allowed to set, in this position, for two days before it 

is erected on its final test postiion. Figure l4b shows 

the end to which the chain is hooked for lifting the model. 

The point of suspension is carefully located at the 

centroid of the total mass. Figure 15 shows the whole 

assembly after being erected on its desired location. 

The form-work is then stripped off the model by 

first removing the main platform and the two outer most 

panels (Fig. l6a). The remaining form-work is then 

removed in parts as shown in Figures l6b and l6c. 
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2.5 Problems Encountered and Improvement in the Technique 

A total of six models were poured and in the 

process various difficulties were encountered in obtaining 

a completely sound model. The first problem encountered 

was the sticking of form-work to concrete surfaces. Even 

though the coated surfaces of the form-work were liberally 

oiled, the inside panels badly stuck to the model and on 

application of force to remove these panels, the first 

model shattered into pieces. This problem was overcome in 

the latter models by carefully wrapping the plywood panels 

with 6 mil. plastic (polyethelene) sheets. In addition, 

the panels in contact with the inside of the web of the 

model were each sliced into three pieces, the middle 

piece in each panel forming a sort of wedge. This central 

wedge could be removed first (Fig. 16b) thereby enabling 

the other parts of the form-work to be removed easily. 

This technique of wrapping the form-work with wrinkle-

free polyethelene sheets produced a smooth and satisfactory 

surface. 

The second and the most serious problem encountered 

during modelling was the occurrence of shrinkage cracks. 

Both vertical and horizontal cracks appeared in almost all 

models. In some models these cracks were visible right after 

the stripping of the forms. In others, such cracks appeared 

after some time and became visible when the mounting of the 
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measurement gages was in progress. In one model horizon­

tal cracks appeared in the model section very near the 

base. These cracks were completely covered by pouring an 

extra 6" high, 5000 P.S.I. concrete pad around the base, 

thus reducing the test height to 90 inches. In other 

models, the cracks extended high enough above the base 

so that it was impossible to completely nullify their 

effect by pouring an extra base. However, to be consis­

tent, the test heights in all later models were maintained 

at 90 inches. 

Having noticed the persistent appearance of cracks 

near the base in the first two models, a careful considera­

tion was then given to the possible factors contributing 

to such cracks and then finding ways and means to avoid 

them. The following major factors could contribute to the 

development of cracks: 

a) Shrinkage. 

b) Handling of the models, i.e., modelling 

technique. 

c) Differential rate of setting. 

It was difficult, at that stage, to assess the 

relative degree of contribution of these factors. High 

water contents, finer aggregates and the type of cement 

used in the mix all contribute towards a greater possi­

bility of having shrinkage cracks. Because of the time 



factor involved, it was not possible at that stage to 

consider another test programme in order to find a more 

suitable mix. The other two factors were carefully 

examined and attempts made to make improvements. 

In order to avoid any harmful stressing of the 
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model due to lifting and handling,an attempt was made to 

lift the model when the model was still green and allow 

it to set in its final vertical position. This attempt 

proved unsuccessful because the material leaked from the 

bottom due to the damage to the seal at the bottom 

resulting from large deflections of the centre of the 

aluminum plate. Nevertheless, this attempt revealed the 

necessity of stiffening the base plate~ Since the 

aluminum plate is fixed to the frame-work only along the 

shorter edges, any possible deflection (however small it 

may be) during hoisting of the model may cause undue 

stressing of the model and hence cause cracks. To guard 

against such a possibility, the aluminum plate was stiffened 

against bending. 

In order that no differential setting should take 

place, the model was covered immediately after pouring, 

thus sealing the model comple~ely. The mortar was allowed 

to set for an extended time (4 days) so that the model 

would gain more strength before being hoisted. After the 

removal of the form-work the model is wet cured for one 
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week. As a precaution against any possible damage to the 

model due to the use of a vibrator for the compaction of an 

extra base, it was decided to use the same mix as for 

the model for the extra 6" base. No vibratory action was 

found to be necessary with the use of this mix. The 

extra base was also cured well for a period of one week. 

It was observed, however, that the cracks began to appear 

two days after the curing stopped. 

With careful examination of the evidence, it can 

be stated that the cracks existed due to the inherent 

properties of the mix itself rather than due to any other 

factors including modelling technique. This is discussed 

further later in this thesis. 



CHAPTER III 

LOADING AND TESTING OF MODELS 

3.1 Design and Description of Loading-Cap 

The loading-cap which is used to transmit the 

horizontal force to the model consists of a 1/4" 

aluminum plate 44" long and 28" wide. Aluminum angles 

(2" size) are bolted to the underside of this plate such 

that when the cap is placed on top of the model, the 

"E" section of the model is enclosed within the angles 

protruding underneath the plate (Fig. 17). The aluminum 

angles are slotted, as shown, to accommodate any slight 

irregularity in the section. This arrangement not only 

transmits load over the entire section of the model but 

also restricts externally the top end section of the model 

to maintain its regular "E" shape during the loading 

process. It is assumed that the total pressure is equally 

distributed over the flanges at the top end section. 

3.2 General Description of Loading System 

The model is loaded through a hydraulic jack. 

The piston rod of this hydraulic jack is 3/4" in diameter 

the end of which is threaded. The base of the hydraulic 
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jack is bolted to ~ 1/2" thick (24" x 18") steel plate 

through two 6" long parallel slots (Fig. 18). This 

arrangement permits about 2" travel of hydraulic jack in 

the horizontal plane. The steel plate is slotted along 

its vertical edges through which the plate-jack assembly 
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is bolted to the steel column. The vertical slots permit 

a 4" travel of the assembly in vertical plane. The 

horizontal and vertical slots, together, permit accurate 

alignment of loading. Figure 19 shows the loading jack 

attached to the steel column and the pump by means of which 

the piston is actuated. The pump is operated manually 

and though it does not permit precise control during un­

loading, as small as 25 lbs. increaments can easily be 

obtained by this arrangement. To the end of the piston is 

attached a strain-gage bonded load-cell (Fig. 20). A 3/8" 

diameter flexible wire, whose two ends are fixed to two 

points along the edge of the loading-cap, forms a loop 

which in turn is connected to the load-cell through a turn­

buckle thereby completing the connecting arrangement 

between the piston and the loading-cap. The general 

photograph (Fig. 21) shows the various elements in the 

connecting arrangement. The turn-buckle permits removal 

of any initial slack in the connections. The centreline 

of the piston, which is the line of action of the resultant 

force, passes through the centre of the flanges giving an 



eccentricity of 13.30 inches with respect to the shear 

centre. 

3.3 Instrumentation and Measurements 
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It was intended to record the magnitudes of 

deflections at significant points across the cross section 

and at different levels of height, and to record the 

magnitude and pattern of strain distribution across the 

corss sections. A steel frame-work (Fig. 21) footed on 

the aluminum base plate supports the deflection gages 

whereas the strain gages are bonded to the model surface 

at significant points where the strain measurements are 

intended. Figure 22a shows the locations at which 

deflections were recorded for all models~ Except for 

Model No.2, the locations at which longitudinal strains 

were measured are 'shown in Figure 22b. For Model No.2, 

the figure on page 97 shows the locations at which the 

longitudinal strain measurements were made. 



CHAPTER IV 

OBSERVATIONS AND RESULTS 

4.1 Cracking Patterns at Failure 

Figures 23 through 26 show the crack patterns 

at failure for various models. Initial cracks due to 

shrinkage if any are also shown. Almost all the models 

failed in a brittle manner with a loud sound 

indicating that as soon as a crack appeared in a tension 

zone it extended over the entire cross-section. Of 

particular interest is the crack pattern shown in 

Figure 23 for the model with no initial shrinkage cracks 

in the test height. The flattened "VI' shaped crack in 

the flange farthest from the load apparatus clearly 

indicates the type of strain distribution. A similar 

pattern is observed in the rest of the models too but 

these were affected to some degree by the presence of 

initial shrinkage cracks. 

4.2 Load-Strain Results 

Figures 27 and 28 show the typical strain dis­

tribution pattern over the cross-section as predicted 

by Vlasov's theory. The experimental values of strains 

recorded '(Model No.2) for points across the cross section 

are plotted on the same diagrams for the purpose of 

comparison. 
26 
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It may be seen from these diagrams that experimental 

values agree qualitatively with theoretically predicted 

tension and compression zones across the cross sections. 

However, the actual experimental values do not agree well 

with those predicted by theory and in general the experi­

mental values are lower than the corresponding theoretical 

values. The difference between experimental and theoreti­

cal values is larger for points 1, 6, 7 and 12 

which are close to the free edges of the flanges. For the 

sections at heights of 2" and 45" above the fixed end for 

which the strain distribution is plotted, it may be noted 

that the difference between the theoretical and the 

experimental values is smaller for the larger height (45") 

as compared to the height of 2 inches. 

4.3 Load-Deflection Results 

Figures 29 and 30 show a typical comparison of 

experimentally obtained deflections with those predicted 

theoretically~ The curves show the variation of deflec­

tions along the height of the model. The deflections 

are larger at the free edges of the flanges and increase 

with the height above the fixed base. Generally, all the 

flanges deflected equally and the order of magnitude for 

maximum deflections (near the free edges of the flanges) 

is 0.1". 



Although the theoretical and experimental values 

for deflections differ vastly, two notable trends can be 

observed. 
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1) The percentage difference between the 

theoretical and experimental values is smaller for points 

located near the free edges of the flanges than for 

points on the flanges near the corners. 

2) Along the test height of the model the per­

centage difference between the two values is smaller for 

greater heights for both locations either near the free 

edges or near the corners. From the measured deflections 

the deformed configuration of the sections for various 

heights and different values of loads can be drawn; 

typical configurations of the deformed sections are shown 

in Figures 31 through 33 for Model No.5. In constructing 

the deflected shapes a different scale (as indicated on 

Figures 31-33) is used for deflections than the scale 

used for sectional dimensions. The two perpendicular 

components of delfections for the corners of the section 

enable one to determine the final positions of the cross 

sectional components relative to each other. From this 

construction, it follows that even for small values of 

loads the deflected shape is no longer a regular "E". 

It can then be concluded that the assumption of rigid 

sections is in gross error in the 
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present problem. The experimental results show that this 

assumption is violated at all measured heights but the 

distortion at higher heights is relatively smaller than 

the distortion at lower levels. This agrees with the 

trend observed earlier when comparing theoretical and 

experimental values of deflections and strains. The top 

end is restricted externally through the use of loading 

plate to maintain its shape. The restraining effect is 

reduced at lower levels so that a larger percentage 

difference between theoretical and experimental values 

would be expected at lower levels, as was observed. It 

is therefore concluded that the kinematical relations for 

the theoretical deflections, given by Vlasov's theory and 

which follow from the assumption of rigid section, are in 

gross error because the section deforms in its own plane 

and the basic assumption is not true. 

4.4 Variation of strain over the thickness of the cross section 

The variation of strain over the cross sectional 

thickness is also considered. This was done by mounting 

strain gages exactly opposite to each other at two loca­

tions on one of the flanges. The results showed that the 

experimental ,values for each pair of strain gages were in 

good agreement. The difference between recorded values 

of strain within each pair was always less than 2 micro-



inches per ,inch. This shows that the stresses across 

the thickness of the cross section are uniform for all 

practical purposes. 
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CHAPTER V 

ANALYSIS OF RESULTS 

5.1 Method of Analysis 

Mathematical analysis adopted for the present 

problem is based on Vlasov's well known theory of thin­

walled beams. The difference between this theory and 

ordinary beam theory is that it recognizes the distinc­

tive feature of thin-walled beams that they can undergo 

longitudinal extensions as a result of torsion. Because 

of the warping of the sections, in thin-walled beams, 

longitudinal normal stresses are created proportional to 

the corresponding .strains due to such longitudinal ex­

tensions. These longitudinal normal stresses, which 

arise as a result of the relative warping of the section 

and which are not examined in the theory of pure torsion, 

can attain very large values in thin-walled beams with open 

(rigid or flexible) cross sections and also in beams with 

closed flexible cross sections. Vlasov called the longi­

tudinal normal stresses due to warping as complementary 

longitudinal normal stresses. 

Vlasov made two basic hypotheses in his theory of 

thin-walled beams of open sections. The first is that a 
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thin-walled beam of open section can be considered as a 

shell of rigid (undeformable) section. On the basis of 

this hypothesis the deformation, under load, of the 

section 'of a thin-walled beam in its own plane shall 

consist of rigid body translation and rotation. 

Figure 34 shows the contour line of the middle surface 

of the section of the model. Point "0" is the centroid 

of the section and point "s" is the shear centre. OX 
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and OY are the principal axes, the former being the axis 

of symmetry. The shear centre lies on the axis of 

symmetry and. is distant ax from the centroid. ; and n 

are the displacements of the point S in the direction of 

the coordinate axes OX and OY respectively, and e is the 

angle through which the section rotates as a rigid body 

about the shear centre. If V and Ware the displacements 

of a point lying on the section in the direction of the 

coordinate axes OX and OY respectively, then based on the 

aforementioned purely geometrical hypothesis, the 

following relations are obtained 

V(z,y) = ~(z) - (y-ay ) e(z) 

W(z,x) = n (z) + (x-ax) e (z) 

•••• (1) 

•••• (2) 

In these equations z is the coordinate of a section along 

the axis of the beam from some fixed plane of origin. In a 

thin-walled beam in which both coordiante axes OX and OY 

are not the axes of symmetry, the line of shear centres 
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is taken as the axi's of the beam. Figure 35 shows the 

contour line of the middle surface of the model and the 

coordinate z along the axis of the model. This longi-

tudinal axis together with the coordinate axes OX and OY 

form an orthogonal coordinate system. 

The second assumption made in Vlasov's theory is 

that the shearing geformations of the middle surface are 

negligibly small and can be assumed to vanish. By means 

of the second hypothesis concerning the absence of 

shearing strains in the middle surface, Vlasov found the 

longitudinal displacement u(z,s) directed across the 

plane of the cross-section due to the deformation of the 

middle surface, and obtained the following relationship. 

u(z,s) = 1;(Z) - ~'(z) xes) - n'(z) yes) - a'(z) w(s) 

•••• (3) 

In this equation s(x,y) is coordinate along the 

contour line of the section with respect to some fixed 

point on the section. The choice of the origin of the 

coordinate s(x,y) is arbitrary and is conveniently 

chosen depending on the shape of the contour line. 

Figure 36a represents the physical meaning of the second 

assumption, in which are shown the tangential displace-
I 

ments u(z,s) and v(z,s) occuring in the appropriate 

tangent planes, of four vertices M, a, band c of an 

elementary rectangle. The shearing strain at the point 



M is by definition equal to the sum of angles ~ and ~ 

through which the sides Ma and Mb of the elementary 

rectangle rotate during deformation. Denoting the 

shearing strain by y, we have by the second hypothesis; 

au av 
y = as + az = 0, 

from which upon integration equation (3) is obtained. 

In equation (3) ,(z) is an arbitrary function depending 

on z, which describes the longitudinal displacement of 

the point on the section which serves as the origin of 

the coordinate s. ~', n', e' are the first derivatives 

of the respective quantities with respect to variable z, 

and w(s) is defined as sectorial area equal to twice the 

area enclos~d between the radius vector PMl and PM. 

Point Ml is the origin of the sectorial areas which is 

arbitrarily chosen depending on the shape of the section 

whereas point M is the mobile point along the middle 

surface. Point P (Fig. 36) is called the pole of the 

sectorial areas and when the pole is the same as the 

shear centre w(s) is the principal sectorial areae 

Therefore, for a given profile line and specified points 

for the pole and the origin of the mobile radius vector, 

the sectorial area w(s) is a well defined function of s 

just as x(s) and y(s). The sectorial area will be con-
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sidered positive if the mobile radius vector PM (Fig. 36b) 

moves clockwise when observed from the negative z 

direction. 



In equation (3), the function s(z) determines 

the axial deformation when the cross section undergoes 

only a rectilinear displacement along the axis of the 

beam~ The function t;(z) and n(z) describe the flexure 

of the axis of the beam (x = a , y = a ) in the longi-x y 

tudinal planffiOXZ and OYZ and characterize the bending 

deformation. The fourth term of equation (3) determines 

the part of displacements that does not obey the law of 

plane sections and which arises as a result of torsion 

and is termed as sectorial warping of the section. 

Knowing the longitudinal displacements u(z,s) of the 
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points of the middle surface, the longitudinal strain "e" 

could be determined by taking the derivative of u(z,s) 

with respect to z 

e: = au = s'(z) - t;"(z) xes) - n"(z) yes) - e"(z) w(s) az 

•••• (4) 

Equation (4) allows the determination of longitudinal 

strain at any point of the middle surface of a thin-

walled beam when the four functions s(z), t;(z),n(z) and 

e(z) are known. 

These functions are determined from the following 

linearly uncoupled differential equations derived from 

equilibrium considerations. These equations are simpli-

fied form of Vlasov's general equations due to the 

absence of longitudinal load and s>.ear forces along the 



longitudinal edges of the present model. Also there are 

no distributed loads q ,q in the direction of x and y x y 

respectively and there is no distributed moment since 
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the model is loaded at the top by an eccentric transverse 

load only. The differential equations are: 

EAr;" :'::: 0 

EI ~IV = 0 
y 

EIxnIV = 0 

EI aIV 
- GI a" = 0 w d 

• ••• (5) 

• ••• (6) 

• ••• (8) 

A is the cross-sectional area of the section, Iy and Ix 

are the moments of inertia of the section, respectively, 

about y and x axes. Iw = f w2
dA, has the dimensions 

A 
L6 and is defined as sectorial moment of inertia, 

characterized only by the shape of the' cross section. 

E and G are moduli of elasticity and rigidity and Id is 

another geometric property of the section termed as 

torsional rigidity of the section. 

Boundary Conditions 

The model is fixed at the base (z=o) and loaded 

at top such that the resultant line of loading has an 

eccentricity "e" with respect to the shear centre. The 

effect of this load with respect to the line of shear 

centres is a flexural load (pure bending) "Q" and an 

anti-clockwise torsional moment M = Qe. 
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In absence of any externally applied loads in x 

and z directions, functions ~ and ~ are both zero. It is 

assumed that the compressive stresses due to self weight 

are negligible. The functions nand 6 are obtained by 

integration of equation (7) and equation (8). Equation 

(8) has four constants of integration which are deter-

mined by applying four boundary conditions, two at each 

end. The solution of these basic equations for the 

determination of the functions nand 6 are given in 

Appendix c. 

The resulting equations are, 

n(z) = Q 
EI 

2 3 
(3iZ - z ] I 6 • ••• (9) 

x 

n 1\ (z) = Q 
EI [ t-z] • •• (10) 

x 

6 (z) = Qe 
GId 

[z-i/k {tanh k(l-cosh kit z) + sinh kit z}] 

6"(z) = Qe 
GId 

• • 0 (11) 

kit [tanh k cosh kit z - sinh kIt z] 

where RId 
kit = -EI 

\ w 
, and i = length of the model. 

Knowing the values of nand 6 and their deriva~ 

tives, the theoretical values of deflections V(z,s), 

W(z,s) and longitudinal strains e(z,s) are computed from 

the following relationships. 
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v(z,y) 

w (z, x) 

= -ye(z) • ••• (13) 

= n(z) + (x - a )e(z) 
x 

£ (z,s) = -nil (z) y(s) - e" (z) w (s) 

5.2 Comparison of Typical Results 

(a) Comparison on the basis of recorded strains: 

• .•• (14) 

· ••• (15) 

Comparison of experimental values for longitudinal 

strain £(z,s) and component deflections W(z,s) with those 

computed theoretically (equations 15 and 14), is heavily 

based on particular model which had no cracks prior to 

testing. The distribution of strain, and therefore stress 

across the cross section is qualitatively in agreement 

with that predicted by theory. However, the magnitude of 

longitudinal strain at a particular point of the section, 

as predicted by theory, is higher than the corresponding 

experimental value. An important observation is made 

when comparing the corresponding values for different 

heights. The percentage difference between the experi-

mental and predicted values is not constant for all 

heights but is smaller for higher heights. Figure 37 

shows such a comparison between experimental and predicted 

values of strains for two heights (z = 2" and z = 45"). 

(b) Comparison of deflections: 

The following table represents the experimental 

values of deflections W(z,s), for two locations of the 
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section ang different heights of the model against 

corresponding values computed theoretically. 

Height in Deflections in Inches I 
Inches 

Location z Theoretical Experimental 

(1) 
12" 0.00063 0.0037 

I I '-j 48" 0.00870 0.015 

85" 0.02313 0.028 

(2) 
12" 0.00025 0.0029 

I I J~ 
48" 0.00328 0.010 
85 II 0.00873 0.016 

l ,,-

No apparent correlation is seen to be present between 

theoretical and experimental values. Experimental 

values are much larger than what theory predicts. How-

ever, two significant trends seem to be obvious. It may 

be noted from the preceeding table that the percentage 

difference between theoretical and experimental values 

is smaller in case (1) for the point, on the section, 

located near the free edge as compared to case (2) where 

the point is located near the corner. In case (1), the 

percentage difference becomes smaller with increase in z, 

and for z = 85" the two values are quite comparable. A 



similar trend is observed in case (2), but to a lesser 

extent. 

5.3 Discussion of-Conditions Affecting Results 

(a) Material properties: 

Assuming that the basic assumptions made in the 

derivation of theoretical relationships (rigid sections 

and absence of shearing strains) are not violated, an 
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investigation is made into the factors which could affect 

the theore'tical results. The equations for e (which is 

a measure of component deflection due to rotation about 

the shear centre) and e" (which is a measure of stresses 

and strains due to warping of the sections) are rewritten 

in the following form. 

e (z) 
2Qe(l+v) = EId [ 

(
2(l+V)Iw) { 

z - I tanh 
d 

+ sinh k/1 Z }] 

•••• (16) 

e" (z) = Qe!2(1+v) 

E!IdIw 
(tanh k cosh k/i z - sinh k/i z) 

••• (17) 

The above equations differ from equations (11) and (12) in 

that appropriate sUbstitutions have been made. It could 

be seen from equations (16) and (17) that both e and e" 



are inversely proportional to young's modulus E whereas 

poisson's ratio "v" appears both in the numerator and 

denominator. The variation in the value of v would also 

affect the values of the hyperbolic functions. It 

becomes apparent that both strains and deflections would 

decrease if the value of E is increased. The effect of 

variation in the value of v is not obvious and could be 
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ascertained only through computations for various values 

of v. The value of E used in the analysis is that of the 

initial tangent modulus of the stress-strain curve 

found experimentally and is equal to 3.04 x 10 6 p.s.i. 

The value of poisson's ratio "v" for concrete normally 

varies between 0.15 and 0.35 and a value of 0.15 is used 

for theoretical computations realizing the high compressive 

strength of the mix used. However, no appreciable differ­

ence is found in theoretical computations by varying the 

value of v from 0.15 to 0.40 in increaments of 0.01. 

The variation of E does not lead to any better 

agreement with the experimental behaviour since increase 

in the value of E would decrease the value of strains but 

also decrease deflections which are already much smaller 

than the experimental values. 

(b) Load distribution: 

Looking back into equations (16) and (17) it can 

be seen that both functions a and a" are directly pro-
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portional to the rotational moment "M" and hence the 

eccentricity of loading. In the present arrangement of 

loading where the load is transmitted to the three cross-

~alls through the loading plate, it is assumed that the 

total load is equally distributed to the three cross­

walls (Fig. 38). However, this could not be ascertained 

experimentally and it may be argued that the actual load 

distribution might be other than what has been assumed 

and the pressure distribution may not be equal for the 

three cross-walls •. Any other type of distribution of 

load, different from the assumed one, may drastically 

change the stress distribution. The best way to know 

this important factor is to have a loading arrangement 

with clearly defined load points and line of load. 

(c) Boundary conditions: 

Boundary conditions are examined next. Since 

the aluminum plate is resting on top of the model it can 

be understood that the top end of the model, through 

friction between angles enclosing the section, is not 

free to warp; inducing that in the extreme case the top 

end section remains plane under load. With this assump-

tion the boundary conditions are changed at the top end 

and the resulting relations for a and a" are as follows: 

a (z) Qe t/k r kit J cosh k-l (I-cosh kit z) + 
= GId l z -l sinh k sinh k/~ z }] 

•••• (18) 
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e"(z) = Qe 
G1d 

k/~ lCO~h k-l 
sJ.nh k cosh kit z - sinh kit z J 

•.•• (19) 

Comparing equations (18) and (19) with equations (ll) and 

(12) it can be seen that these sets of equations differ 

only in the multiplying factors for the expressions 

(1 - cosh k/~ z) in the equation for e and for cosh k/i z 

in the relationship for e". 

The multiplying factor for the set of equations (11) 

and (12) is tanh k and for the set of equations (18) and 

(19) is cosh k-l 
sinh k 

tanh k 

cosh k-l 
sinh k 

= 

= 

The numerical values for these are 

0.227 

0.115 

On using equations (18) and (19) it is found that although 

the values of deflections were still much smaller, the 

values of strains are quite comparable with experimental 

values for the height z = 2". On carrying the computations 

for a higher value of z (z = 68.25") it is found, however, 

that the signs for strains are reversed for points located 

at higher heights 'along the same longitudinal line. This 

is contrary to the experimental observations and cannot 

be justified. 

For the boundary condition at top end, however, 

it is more logical to assume the top end neither completely 

free nor remaining plane under load. The end condition 
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may be thought to be in between these two extremes. This 

effect may be studied by introducing a coefficient "C" 

for the multiplying factor (tanh k) and computing theore­

tical values for the variation of "c" between values of 

0.5 and 1.0. It is found that for values of "e: less 

than 0.9, the signs of theoretically computed strains at 

heights (z = 68.25") are reversed; again this is contrary 

to the eXperimental observations. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 AEplicability of Method of Analysis 

From the deformed shapes of the cross sections 

constructed from experimental results, it is concluded 

that sections are not rigid in their own planes as 

assumed in the mathematical analysis. Looking at the 

geometrical dimensions of the model (depth of web 

d = 40", flange width d l = 16" and length of model 

1 = 90") it is seen that the ratio d/l = 0.44 as com­

pared to the corresponding ratio of, equal to or less 

than 0.1, defining a thin-walled beam in Vlasov's 

theory. The rotational effect under eccentric load is 

much more pronounced than the pure bending effect 

because of the small value of torsional rigidity Id for 

the section. The large measured values of deflections 

are due to the fact that the corners do not remain at 

right angles under load and also the final deflected 

points on the web lie on a curve instead of on a straight 

line as shown in an exaggerated manner in the Figure 39. 

Therefore, the deflections due to the rotational effect 

cannot be considered as those due to the rigid body 

rotation of the whole section about the shear centre. 

When the section is deformable in its own plate, 
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any bending within the web resulting into a curved con­

tour line of the web would result in much higher deflec­

tions at the flange-tips than would occur due to rigid 

Dody rotation. The effect would be even more significant 

if the corners do not remain at right angles. 

Therefore, it is concluded that the disagreement 

in the results, quantitatively, is due to the fact that 

the very basic assumption of rigid sections in Vlasov's 

theory of thin-walled beams is not valid in the present 

problem. Nevertheless, this theory serves a useful pur­

pose for the model study because it indicates the nature 

of stress distribution_across the section and regions of 

maximum tensile and compressive stresses. Of particular 

significance is the favourable trend near the top end 

which is externally restrained to maintain its shape and 

therefore is nearer the situation assumed in Vlasov's 

theory. 

It may be recalled that a shear wall building is 

a three dimensional entity consisting of walls and inter­

connecting floors. The present model is a simplified 

form of the prototype in the sense that it contains no 

interconnecting floors. This simplification of the model 

was necessitated in order to develop a modelling technique. 

Once a satisfactory modelling technique is developed for 

the present model shape the floors can be added without 

much modification of the form-work. When the floors are 
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added at various levels they would, essentially, help 

maintain the shape of the cross sections and therefore 

would ensure the validity of the assumption of rigid 

sections. Based on these arguments, it is concluded that 

Vlasov's theory of thin-walled beams may prove a satis­

factory approach for the investigation of the models with 

floors and therefore a method of approach for the predic­

tion of gross behaviour of the prototype on the basis of 

which improvements in design and construction could be 

suggested. 

6.2 Implications for Design 

The results of the present model study have 

clearly indicated the general behaviour and stress-dis­

tribution pattern in three dimensional shear wall buildings 

under the type of lateral loading used in this investiga­

tion. These results at the present stage, though having 

no direct bearing on the design of such a structure, are 

nevertheless useful in providing an understanding of the 

general behaviour of such structures. The mathematical 

approach is basic and simple in its application yet it so 

well defines the qualitative behaviour of such structures 

in terms of the nature of stresses and points of maximum 

~tress., The maximum stresses due to the rotational effect 

are twice as much as those due to pure bending and 

therefore any design based on treating each wall separately 



as a plane stress problem will be in gross error. The 

indicated areas of maximum stresses can be properly 

reinforced to improve the design as a whole. 

6.3 Recommendations for Construction Procedures 
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The main problem encountered in the whole modelling 

procedure was the occurance of cracks. These cracks, 

essentially, appeared near the base and therefore necessi­

tated the pouring of extra 6" concrete base to cover them. 

In the very first model which was tested, the extra base 

completely covered the cracks but in other models these 

cracks extended high enough to be unable to cover them 

completely. However, to be consistent, the 6" extra base 

was poured around the structure in all models. 

These cracks are attributed to the shrinkage 

effects which are inherent properties of concrete and 

mortars. The finer size materials, type of cement and the 

high percentage of water used in the present mix all con­

tribute towards increasing the shrinkage effects and 

hence the shrinkage cracks. The small thickness of the 

section of the model and large surface area act to increase 

the significance of these factors. One of the reasons 

which led to the use of high early strength cement is the 

reduction of the curing time in order that the model be 

ready for test in a reasonably short time. However, the 

advantage of high early-strength is offset by the amount 

of time required to put the deflection gages in place and 



the mounting of strain gages. These operations required 

about three weeks, on the average, for each model. In 

view of this it is recommended that ordinary portland 

cement be used instead. 

Greater percentage of finer material in a mix 

increases the chances of having shrinkage cracks. In 

the present mix even the largest aggregate size (1/8") 

is fine in terms of the general definition of coarse 

aggregate. The percentage of limestone aggregate should 

be increased with decreased percentage of silica sand. 
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The remaining important factor in the mix related 

to shrinkage effects concern the percentage of water used. 

High water-cement ~atio increases the chances of shrink­

age cracks. The high water-cement ratio (0.53) in the 

present mix is called for in order to have a high worka­

bility. Since the model section is only 1/2" thick and 

the form-work is such that the mortar has to be pushed 

through this small space of the mould to make a 16" deep 

vertical section, the mix has to be extremely workable 

in order to avoid any voids. Any such voids could 

seriously effect the results. It is therefore desirable 

to investigate, further, the possibility of reducing the 

water-cement ratio without seriously impairing the worka­

bility of the mix. 

The 2" thick monolithic base involves a large 

volume of mortar at one end of the model as compared to 



the sectional area of the model proper and therefore 

restricts the changes in the volume of the model at that 

end during setting process. This is probably the reason 

for the shrinkage cracks persistently occuring near the 

base. The volume changes in the extra 6" concrete pad 

which is poured after the model is hoisted in place may 

have similar effects. It is therefore recommended that 

such large volumes of concrete at one end may be avoided 

in future modelling and other means should be considered 

to achieve fixed end conditions at the base. 
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Careful consideration should be given in attaining 

favourable humidity conditions. With a heated laboratory 

during the winter, quick surface drying of the model can 

take place and is 'therefore another factor which could 

cause surface cracks. Therefore, it is recommended that 

~uture testing be done in a laboratory with humidity 

control. 

6.4 Other Recommendations 

Loading device: 

Vlasov's theory of thin-walled beams is essen­

tially the rejection of the law of plane sections as 

assumed in the ordinary beam theory. The applicability 

of Saint Venant's principle is also doubtful in the case 

of thin-walled beams. At present, little information is 
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available regarding the validity of this principle and 

the extent of possible deviations for problems such as 
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in the present investigation. Under such circumstances, 

it is important to establish a clearly defined line of 

load. Therefore, it is suggested that loading cap should 

be improved in order to achieve this purpose and some 

method should be devised, also, to indicate the pressure 

distribution along the cross walls. 
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FLOORS. 

ELEVATION 

SHEAR WALLS. 

PLAN 

FIG.2_ CONSTRUCTION USING RECTANGULAR-SECTION SHEAR 

WALLS IN A SIX-STOREY BUILDING. 
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Fig. 7. Photograph showing the main platform on the 
tri-legged steel frame. 
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Fig. 8a. Assembling thp- form-work; outer panels and 
cross-boards in place. 
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Fig. 8b. Assembling the form-work; inside panels added. 
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Fig. 8e. Assembling the form-work; panels B-B added. 

Fig. 9. Photograph showing the base plate. 
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(a) 

(b) 

Fig. 14. Photographs showing a freshly poured model 
covered on top. 
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Fig. 15. Photograph showing the whole assembly erected 
in position. 

Fig. 16a. Removal of the form-work; base and the outer 
panels taken apart. 
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Fig. 16b. Removal of the form-work; wedge shaped central 
panels removed . 

Fig. 16c. Removal of the form-work; inside panels removed. 
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Fig. 19. Photograph showing the loading equipment and the 
column support. 
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1. Hydraulic jack 
4. Loading-cap 
6. Model proper 
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2. Load cell 3. Connecting arrangement 
5. Cast-iron pipe frame 
7. Anchors 8. Strain indicator 

Fig. 21. Photograph showing the experimental set-up. 
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(a) 

(b) 

Fig. 23. Photographs showing the crack pattern (Model No.2) 
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Fig. 23c. Photograph showing the crack pattern (Model No.2) 
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--- SHRINKAGE. 

--- AT FAILURE. 

FIG.25_cRACK LOCATION-MODEL NO.4. 
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FIG.26_CRACK LOCATION - MODEL NO.5. 
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APPENDIX A 

TABLES FOR EXPERIMENTAL DATA 

FOR A REPRESENTATIVE MODEL 

(MODEL NO.2) 



TABLE A-I 

DEFLECTIONS IN INCHES FOR VARIOUS LOAD VALUES 

1st Cycle of Loading 

Dial Gage I Loading (lbs. ) Unloading (lbs. ) 

No.* 125 238 362 475 600 475 362 238 Load Off 

1 0.0009 0.0028 0.0055 0.0074 0.0096 0.0090 0.0081 0.0060 0.0017 
2 0.0006 0.0009 0.0044 0.0059 0.0076 0.0076 0.0070 0.0053 0.0017 
3 0.0035 0.0090 0.0175 0.0245 0.0340 0.0290 0.0245 0.0165 0.0045 
4 0 0 0.0021 0.0057 0.0100 0.0072 0.0043 0.0002 0 
5 0.008 0.019 0.027 0.043 0.062 0.053 0.041 0.025 0 
6 0.004 0.011 0.021 0.029 0.038 0.033 0.027 0.018 0.003 
7 0.008 0.0023 0.0047 0.0062 0.0081 0.0072 0.0065 0.0046 0.0008 
8 0.0006 0.0020 0.0046 0.0060 0.0077 0.0073 0.0065 0.0045 0.0008 
9 0.0054 0.0121 0.0216 0.0291 0.0381 0.0332 0.0282 0.0201 0.0045 

10 0.0030 0.0074 0.0141 0.1880 0.0247 0.2120 0.0181 0.0129 0.0018 
11 0.006 0.018 0.038 0.054 0.073 0.063 0.052 0.036 0.008 
12 0.002 0.007 0.020 0.031 0.042 0.035 0.029 0.019 0.001 

-
13 0 0 0.0017 0.0031 0.0054 0.0050 0.0050 0.0019 0.0004 
14 0.0004 0.0020 0.0043 0.0058 0.0073 0.0061 0.0040 0.0007 0 
15 0.0045 0.0120 0.0205 0.0265 0.0345 0.025 0.018 0.005 0.004 
16 0.003 0.0075 0.0155 0.0200 0.0255 0.0200 0.0135 0.0025 0.0015 
17 0.007 0.019 0.039 0.055 0.074 0.053 0.038 0.011 0.008 
18 0.003 0.010 0.021 0.030 0.040 0.029 0.019 0.002 0.001 
19 

-

* Numbers refer to locations as shown under Table A-2 



TABLE A-2 

DEFLECTIONS IN INCHES FOR VARIOUS LOAD VALUES 

2nd Cycle of Loading 

pial Gage Loading (lbs. ) Unloading (lbs. ) 
Load 

No. 138 238 362 487 600 475 362 225 150 Off 

1 0.0008 0.0036 0.0059 0.0075 0.0091 0.0086 0.0075 0.0051 0.0040 0.0003 
2 0.0008 0.0032 0.0050 0.0061 0.0073 0.0074 0.0066 0.0049 0.0033 0.0007 
3 0.0020 0.0115 0.0200 0.0265 0.0330 0.0290 0.0240 0.0155 0.0100 0.0020 
4 0.0030 0.0095 0.0154 0.0190 0.0227 0.0207 0.0176 0.0115 0.0076 0.0001 
c:: n ('Ina 0.027 0.045 0.059 0.073 0.064 0.053 0.034 0.024 0.001 ..J V.VVJ 

6 0.006 0.016 0.026 0.034 0.040 0.035 0.030 0.020 0.014 A 0 f\, 
V. V.L I 

7 0.0013 0.0038 0.0059 0.0072 0.0084 0.0079 0.0069 0.0048 0.0034 0.0005
1 

8 0.0008 0.0035 0.0055 0.0068 0.0076 0.0074 0.0067 0.0046 0.0031 0. 0002 1 
9 0.0066 0.0159 0.0252 0.0318 0.0384 0.0346 0.0292 0.0200 0.0146 0.0029 

10 0.0038 0.0109 0.0172 0.0212 0.0250 0.0227 -0.0192 0.0128 0.0089 0.0015 
11 0.011 0.030 0.048 0.062 0.076 0.067 0.056 0.038 0.028 0.004 
12 0.005 0.019 0.031 0.040 0.048 0.043 0.036 0.025 0.017 0.001 
13 0.0003 0.0023 0.0043 0.0056 0.0068 0.0068 0.0068 0.0068 0.0055 0.0027 
14 0.0008 0.0034 0.0053 0.0065 0.0075 0.0073 0.0063 0.0042 0.0028 0 
15 0.0065 0.016 0.023 0.029 0.036 0.031 0.026 0.0175 0.0130 0.0025 
16 0.0045 0.0120 0.0170 0.0220 0.0255 0.0230 0.0200 0.0140 0.0095 0.0015 
17 0.012 0.030 0.048 0.062 0.077 0.067 0.056 0.038 0.028 0.005 
18 0.006 0.018 0.029 0.037 0.044 0.039 0.033 0.022 0.015 0.001 

z = 12.'~ :z. ",48~ z '" 85." 

'T~ 
k-

~ lit 4 l' 

.r ? r 10 IS 

'. > lIe; " 

,2. 

,,t. 1O 

~ !2 W 

~7 !> 1'1 .9 IS , 



TABLE A-3 

DEFLECTIONS IN INCHES FOR VARIOUS VALUES OF LOAD 

3rd Cycle of Loading 

Dial Gage Loading (lbs.) Unloading (lbs.) 

No. 125 250 362 487 600 487 250 Load Off 
1----------4--------------------------------------------~---------------------------\ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

0.0011 
0.0004 
0.006 
0.003 
0.011 
0.006 
0.0011 
0.0005 
0.006 
0.004 
0.012 
0.006 
0.0008 
0.001 
0.006 
0.003 
0.012 
0.006 

0.0037 
0.0029 
0.015 
0.010 
0.028 
0.016 
0.0034 
0.0032 
0.015 
0.010 
0.029 
0.017 
0.0032 
0.003 
0.014 
0.009 
0.029 
0.017 

0.0057 
0.0045 
0.022 
0.015 
0.043 
0.024 
0.0051 
0.0050 
0.023 
0.016 
0.044 
0.027 
0.0050 
0.005 
0.021 
0.015 
0.044 
0.026 

0.0074 
0.0057 
0.029 
0.019 
0.058 
0.032 
0.0066 
0.0044 
0.030 
0.021 
0.059 
0.037 
0.0064 
0.006 
0.027 
0.019 
0.059 
0.035 

0.0087 
0.0067 
0.035 
0.022 
0.070 
0.038 
0.0077 
0.0073 
0.036 
0.024 
0.071 
0.044 
0.0074 
0.007 
0.032 
0.022 
0.071 
0.041 

0.0081 
0.0067 
0.030 
0.020 
0.060 
0.032 
0.0070 
0.0070 
0.031 
0.021 
0.061 
0.039 
0.0070 
0.007 
0.023 
0.020 
0.061 
0.036 

0.0051 
0.0042 
0.012 
" n"t'l 
V.VoL£: 

0.034 
0.019 
0.0044 
0.0044 
0.018 
0.012 
0.036 
0.022 
0.0047 
0.005 
0.016 
0.012 
0.035 
0.021 

0.0002 
0.0005 
0.001 
o 
0.001 
0.001 
0.0005 
0.0002 
0.001 
o 
0.003 
o 
0.0005 
0.001 
0.002 
o 
0.002 
o 



TABLE A-4 

DEFLECTIONS IN INCHES FOR VARTOUS VALUES OF LOAD 

Final Loading - Up To Failure 

Dial Gage Loading (lb s • ) 

No. 338 487 712 

1 0.0054 0.0074 0.0116 
2 0.0046 0.0060 0.0082 
3 0.019 0.028 0.048 
4 0.014 0.019 0.026 
5 0.039 0.057 0.098 
6 0.022 0.031 0.044 
7 0.0049 0.0066 0.0088 
8 0.0049 0.0064 0.0084 
9 0.021 0.030 0.044 

10 0.015 0.020 0.029 
11 0.040 0.057 0.097 
12 0.026 0.037 0.057 
13 0.0049 0.0064 0.0079 
14 0.005 0.0064 0.009 
15 0.019 0.026 0.030 
16 0.013 0.018 0.025 
17 0.040 0.058 0.088 
18 0.024 0.034 0.048 

Load at Failure = 800 Ibs. 



TABLE A-5 

LONGITUDINAL STRAINS ~-INCH/INCH FOR VARIOUS LOAD VALUES 

2nd Cycle of Loading 

Strain Gage . Loading (lbs. ) Unloading (lbs. ) 

No.** 138 238 362 487 600 475 362 225 150 Load Off 

1 -21 -39 -60 - 80 - ,...,... 
~~ - 0)1 

o'"± =69 -49 -39 -12 
2 +20 +41 +62 + 83 +103 + 86 +69 +45 +33 0 
3 +12 +27 +43 + 60 + 76 + 62 +47 +28 +20 0 
4 -14 -26 -38 - 49 - 58 - 51 -41 -28 -23 - 8 
5 -25 -51 -82 -109 -138 -115 -92 -64 -48 -16 
6 +16 +33 +51 + 68 + 86 + 69 +55 +36 +26 + 2 
7 -17 -29 -43 - 57 - 70 - 60 -49 -35 -28 -10 
8 +11 +25 +41 + 56 + 70 + 58 +46 +29 +21 + 1 
9 + 5 +13 +23 + 32 + 40 + 31 +24 +15 +11 - 2 

10 -20 -36 -53 - 68 - 86 - 75 -58 -41 -34 -11 
11 -15 -28 -44 - 57 - 72 - 60 -49 -36 -30 -12 
12 +10 +18 +29 + 39 + 49 + 39 +31 +19 +13 - 1 

** Numbers refer to strain gage locations as shown under Table A-6 



Strain 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TABLE A-6 

LONGITUDINAL STRAINS ~-INCH/INCH FOR VARIOUS LOAD VALUES 

Gage 

125 

-20 
+20 
+15 
- 9 
-25 
+17 
-12 
+12 
+11 
-13 
-11 
+11 

3rd Cycle of Loading 

Loading 

250 362 

-37 -54 
+41 +60 
+30 +43 
-19 -30 
-48 -71 
+33 +47 
-23 -36 
+26 +38 
+19 +25 
-27 -39 
-24 -35 
+19 +29 

(lbs. ) 

487 

-72 
+79 
+61 
-41 
-98 
+66 
-48 
+54 
+36 
-56 
-47 
+39 

• -*-- 7 '.,.-

600 

- 90 
+ 99 
+ 75 
- 48 
-124 
+ 81 
- 60 
+ 65 
+ 43 
- 72 
- 58 
+ 48 

Unloading 

487 250 

- 75 -44 
+ 79 +47 
+ 61 +32 
- 40 -21 
-100 -54 
+ 66 +37 
- 50 -28 
+ 54 +29 
+ 36 +22 
- 57 -31 
- 48 -26 
+ 39 +21 

12 J. t 

(lbs. ) 

Load Off 

-7 
+3 
+2 

0 
-8 
+4 
.... 4 
+1 
+4 

0 
0 
0 



TABLB A-7 
.. 

LONGITUDINAL STRAINS ~-INCH/INCH FOR VARIOUS LOAD VALUES 

Final Loading - Up To Failure 

Strain Gage Loading (lbs. ) 

No. 338 487 712 

1 -40 -63 -117 
2 +58 +84 +128 
3 +45 +68 + 94 
4 -26 -37 - 54 
5 -57 -88 -128 
6 +45 +70 + 79 
7 -24 -35 - 75 
8 +41 +61 + 89 
9 +28 +41 + 56 

10 -29 -45 - 71 
11 -27 -39 - 60 
12 +28 +42 + 44 

Load at Failure ~ 800 Ibs. 



APPENDIX B 

CALCULATIONS OF THE GEOMETRIC PROPERTIES 

OF THE MODEL SECTION 

K 

~dl~ 
r' 
I 
I 

X ~ k~: +.~a > x 

I 
I-x .... 

y 

lb. 

I 
·3 

K 

1. Centroid of the section: Let d l , d and 8 denote, 

respectively, the width of the flanges, web and thickness 

of the section along the middle surface. X-x is the axis 

of symmetry. The overall dimensions of the section are 

40" X 16". 

Area of the section = (40 x 1/2)+(3 x 15.5 x 1/2)= 43.25 in. 2 

Taking moments about K-K. 

99 
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3 x 15.5 x 8 
XA = 

2 

X 
12 x 15.5 4.30 inches. = 43.25 = 

2. (a) Moment of inertia about OX, Ix = J y2 dA 

A 

(1/12 x 1/2 x 40 3 )+ 3 x 15.5 x (1/2)3 x 1/12 

+ 2 x 15.5 x 1/2 x (19.75)2 

= 
64000 

24 
+(3 x 15.5)+ (15 5 

8 x 12 L • 
negligible 

2666 + 6046 = 

x 390.06) 

8712 in.4 = Ix 

(b) Moment of inertia about OY, .Iy = f x 2dA 

A 

[40 x (1/2)3 x 1/2]+[40 x 1/2 x (4.30)2] 

+ 

t; 
negligible 

(15.5)3 
3 x x 1/2 

12 
+ [3 x 15.5 x 1/2(8-4.30)2] 

= (20 x 18.49) + 3723.875 + 3 x 15.5 x (3.70)2 
8 2 

= 369.8 + 465.49 + 318.29 = 1154 in.4 = I 
Y 

MILLS MEMORIAL LIBRARY 
McMASTER UN1\1E~S\TY 
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3. Co-ordinates of the shear centre. 

~)( B 0 
lrX -x 

j 
y 

~ 

® CD 

The shear centre S lies on the axis of symmetry ox. Point 

s is the pole for principal sectorial areas. The sector-

ial zero point is at the intersection of the axis of 

symmetry and the profile of the beamj which is also taken 

as the auxiliary pole. The diagrams of the sectorial area 

WB with respect to the auxiliary pole B and the ordinates 

yare shown. If a ,a and b ,b are the coordinates of x y x y 
points Sand B respectively, then 



ax - b x 
1 

J wB 
ydA a = = I x x 

A 

- b 
1 

J wE x dA a = a - I y y y 
Y A 

1 
JWB 

15 ds a = I y x x 

1 ,rx d/2 d/2 dx = -2- = I x 
0 

substituting 

2 2 (39.5) x (15.75) 
8 x 8712 

= 387039.5 
. 69696 

a = - 5.55 11 

X 

= - 5.55" 

= -

_ d
2

c I 2 d 1 x 
"2 = 21 x 0 

2 1560.25 x 15.75 
69696 

102 

d 2c d 2 
1 

41 x 

ay = 0, since both points Sand B lie on x axis • 

• • ax = ax + bx = -5.55 - 4.30 = -9.85 inches 

a = 0 y 

. 4. Principal sectorial area w. 
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1r--,:---- ----')0> X 
s 

The diagram of the principal sectorial areas is skew 

symmetrical with respect t.o the axis ox. Point B lying 

on the axis serves as the origion of the areas. The 

sectorial areas for the points on the web below the axis 

ox, will be +ve, since these areas are swept in the 

clock-wise sense by the radius vector SM. The absolute 

values of the sectorial areas for end flanges decrease 

·as we get further away from the w.eb, until, at some 

point C removed from the web a distance K, the sectorial 

area vanishes. 

Sectorial area 

Also = 

WM at point 

d/2 - b 
d l 

, 
M = (d/2 

••• b = 

- b)dl - axb 
a d 

x 
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dd l b(dl + ax) wM = -2- -

dd l axd(d l + ax) dd l a d x d/2 (dl ax) = -2- - 2(dl ax) 
= -y- - -2- = -+ 

From similar triangles Fig. (C), in order that the +ve 

and -ve areas are the same, K = ax. Also, sectorial area 

diagram vanishes for the middle flange. 

5. Sectorial moment of inertia I 
w 

I = f w
2 

dA. w 
A 

[d/2 a 

2 f 2 dy + JX 2 
I = (axY) 0 {d/2(ax-x)} 0 dx w 

0 0 

d -a 

o dX] + If x (dj2 x)2 

0 

2 l·}o d 3 
+ 0 d 2 3 + 0 d 2 

(d1-.x ) 3 J = 24 1:2 ax 12 

[ 2 d
3 d 2 3 3 2 2 3 }J = 2 I ax 0 24 +- 0 1:2 {a +d l -3dl a +3d l a -a x x x x 

20 d 3 
+ 0 d 2 r 3 2 2 ] = ax 12 6" 'Ld l -3dl ax +3d l ax 

20 l d
3 d 2d 

J + Od

2

d 1
2 l J 1 = ax 12 + -2-' 6 d l - 3ax 

2 [ d
3 d2d1l 

d2d 2 

[ d l - 3ax ] 
1 = ax 24 + --r- + 12 
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( 
d + 
,6 

= 1/4(5.55)2(39.5)2l3~.5 + 15.75 ] 

+[(39.5)2~~15.75)2J[15.75_16.651 

= 268271 - 29028 = 239243 in. 6 = I 
w 

6. Calculations for Id 

I a." di'3 d = '3 t.. U 

Taking a = 1 

Id = ~ [{3 x 15.75 + 39.5} x (0.5)3] = 3.62 in.4 



APPENDIX C 

Determination of functions n(z) and e(z) for the given 

boundary conditions: 
~-
t; 

--II. . __ . --;..'~. I 
I S I 

I I 
I 
I 

I 

I 
I I 
I I 
I I 

(a) Determination of function n(z) 

EI IV 
xn 

EI nil x 

EI n' x 

= 0 (equa tion 7) 

= Q (Q,-z) 

= Q[1z - z2/2 ] + C
1 

N , 
~ 

N 

EI n x 
= Q(1z 2/2 _.z3/6] + C1 z + C2 

The constants of int~gration C1 and C2 are both zero, 

since 

n = n' = 0 at z = 0 

n (z) Q (3J/.z 2 z3) .••• (C-1) = 6EIx 
-

(equation 

nil (z) = Q (J/.-z) •.•• (C-2) 
EIx (equation 

106 

9) 

10) 



(b) Determination of funci:ion e (z) 

EI eIV 
- GI e" = 0 w d 

Dividing by EI and denoting 
w 

(Equation 8) ,r--
G

-
I

-

J(El
d

) /2 by dimensionless 

quantity k 

2 
eIV _ k ,,= 0 

~e 

Let e = e rz be the solution 

upon substitution 

4 rz k 2 2 rz 
r e -

~ 
r e = 0 

e rz and dropping the common factor 

r2 (r 2 k
2 

) .•.• (C-3) 
-~ = 0 

Equation (C-3 ) has four roots 

r l = r 2 = 0 (a double root) . 

r3 = k/2, r 4 = - k/£ 

Cl + C2 z + C3 
e k/ 2 z + C4 

-k/2 z e = e 

107 

Passing from exponential functions to hyperbolic functions 

through the formulae 

e k / 2 z = cosh k/~ z + sinh kit z, 

ek /£ z = cosh k/2 z - sinh k/2 z 

and writing new constants C3 = C3 - C4 and C4 = C3 + C4 , 

we get 

•••• (C-4) 



Boundary conditions: 

6 = 6' = 0, for z = 0 

B = 0, H = M, for z = ~ (free end) 

where B = Bimoment, and H = resisting torsional moment. 

M = Qe = Applied torsional moment which is constant. 

sUbstituting 6 = 6' = 0 in (C-4) , 

o = Cl + C4 

o = C 2 + C 3 k/~ 

B (z.) = - E1 e" w 

• 0 0 • (C-5) 

0.0. (C-6) 

= -
= 

E1 k2/~2 [C 3 sinh 
w 

k/~ z + C4 cosh k/~ z] 

G1d [C3 sinh k/~ z + C4 cosh k/~ z] 

B(t) = 0 = - G1d [C 3 sinh k + C4 cosh k] 

.00 C4 = - C3 tanh k 

H(z) = - E1 e"' + G1 6' w d 

substituting the values for e"' and 6' 

H (z) 

H(o) 

and 

= G1d C2 

= H (.e) = G1d C2 = Qe 

Qe 
C2 = G1 

d 

from (C-6) and (C-7 ) 

Qe 
.elk G1d 

C4 = .elk tanh k g~ 
G1d 

and finally from (C-5) 

Cl = -~/k tanh k g~d 

• ••• (C-7) 

• ••• (C- 8 ) 

• ••• (C-9) 

•••• (C-lO) 

0.00 (C-ll) 
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6 (z) = Qe 
GId 

[z - £/k {tanh k (l-cosh k/£ z) 

+ sinh k/ £ z}] 

109 

•••• (C-12) 
(Eqllation 11) 

and differentiating twice, 

6 11 (z) Qe = 
GId 

k/£ [tanh k cosh k/£ z - sinh k/£ z] 

•••• (C-13) 
(equation 12) 
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