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ABSTRACT

The first chapter provides a discussion of lithe" simplest

affine H2elmslev plane with non-trivial neighhour relation. In the

s,,)ccmo, vie COTlsider a eeornetry constructed over a locI ring and discuss

th~ rcJationship between the A. H. ring propE'rties and thp. A. H. plane

axin~c. In this way we introduce generalized A. H. planes - incidence

struc'turt)s ',oJith parallelism satisfying only the axioms induced by

t:'10 local r:i np; prorerties. In the rem inj_ng chapters, we coordina tize

steh a strcct~ro and gi-e a proof of the ~lndamental Theorem.
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INTRODUGTIOi'

An affine Hjelmslev plane (henceforth, called an A. H. plane)

m~y be described as a eeometry where more than one line may pass

through t·o distinct points. Such a structure is usually defined

by means of a neighbour relation and eight axioms. He begin this

thesis with the construction of "the" simplest A. H. plane "lith

non-tri ial neiehbour relation. (Simplest in the sense that it has

the sn~llest number of points and lines.) We then discus~ two non

isomorphic examples of simplest A. H. planes. The coo... dil:ate rings

of these two geometries are special local rings called A. H. ringG.

This leads, in a natural way, to the examin~tion of an

incidence structure with paralleli m constructed over a local rine.

Such a structure is shown to satisfy all but two of the axioms for

an A. H. plane. 'tJe then discuss the relationship 2t\ een the missing

A. H. plane axioms and the m'ssing A. H. ring p~op rties,

The next. section deals with an incidence structure \<lith

rall~ i~~ whic satisfies only the A. H. pl'ne axioms sa~isfied

by an incidence struct re constructed over a local ring. In the

manner of Artin [lJ, we introduce two additional axioms and th n

coordinatize the structure by means of a 1 cal r'ng.

In the final section, we discuss automorphisms of the new

8tructu~e and rovide a proof of the fundamental tht~orem.
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Prelimiu2.ry Definitions and Resu ts

1.1. <!P,lL ,I,ll> is called an incidence shu turp. with

parallel'~m if and only if:

(a) lP and lL are sets.

(b) I~ !PXIL.

(c) II ~ IL X lL is an equivalence relation (parallelism).

The elements of IP are ~alled E.oints and are denoted by P, ~, R, •••.

The elements of tL are ines and are denoted by 1, m, n, •••. (F,l) c I

is \.rittan P I 1 and is read, lip is incident \'Jith 1"; sim:i.1arly,

(J.,m) c il is ...,ritten.lll m and is read, 1:1 is parallel to :n'l. In

addition, lAm:= {Pcpl P II, m}.

Two points, P and Q, are neiehbours (written P~Q) if and only

if there exist 1, m c III , 1 ~ m such that P, Q I 1, m. '1\/0 li 19S,

1 and m, are neiehbours (also vJri tten I-v m) if and only if for any

P I 1, there exists a Q I much that P,,-, Q and for any Q I m, there

exists a P I 1 such that QtvP. The non-neighbouring relat:'onship lil1

be denoted oy 1- •

An incidence s true ture \-li th parallelism -;f...::: < lP, u.... ,I, K > is

called an affine !!..ielmslev plane (or an A. H. pI e) if it satisfies

the following axioms.
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Al. For any P, Q c P, there exists 1 c L such th t P, Q I 1.

If P-f.- Q, we vJri te 1,;; PQ.

A2. There exist Pl , P2 , P-, c lP such that PiPjrl-PiP
k

where

(i, j, kJ is any permutation of (1, 2, 3). lP
1

, P
2

, P
3
'

is co. led a tria 51~.

A3. ,v is transitive on p.

A4. If Q I 1, m, then l-i--m if and only if cardLp I 1, rr.J

is one.

A5. If l..-t-m; P, R I 1; Q, RIm and P""Q, th~n R~P,~.

A6. If l,.vm and n~l-l with P I 1, nand Q 1m, n, t}wn

A7. If 111 m; P I 1, nand 11-n, then m"i-n and there exists

a point Q such that Q I m, n.

A8. For every PeW and every 1 c ~, there exists a unique

line L(P,l) such that P I L(P,l) and L(P,l)\\ 1.

From A3 nd the definition of the neighbour relation on L, it

is ob ious that tv is transitive on IL also.

1.2. Lcmrr.a. There exist t~ree non-neig~bourin lines through ~~~y point

p.

L(P,P2P3), L(P,P1P3)

the point p.

re three pairwise non-neighbouring linp.s t~!'ough



, l~

1.3. Lemma. ~~ere are two non-ne'Ghbouring ~oints on every line.

Proof. Consider any line 1. By A3 and A7, L(P.,l)+P.P
j

, P.P
k

, for
J. 1. J.

some permutation (i, j, k) of (1,2,3). By;\7, I-l-P.P., P'P
k

and
1. J 1. ~

there exist points Q and R s ch hat Q = 1I\P.P. and R = l"P.P
k

•
1. J 1.

If Qli--R, then \ole are finished. Suppose that Q..vR. By 1.5.

Pi""Q, R. Clearly, Q, RfP
j

, P
k

• By A7, J,(P
k

,l)1JPj,P
j

and there

exists a point S"" L(Pk,l)I\P.P .• By A5, Sl-'P.; hence, S+Q, R also.
1. J J.

Again by A7, L(S,P
i

P
k

),..,.,l and by A5, Q..yL(S,PiPk)1\ 1.

This implies fvr any point P on a line 1, there exists a point

Q such that Q I 1 and Q~ p. otherwise, nll points on 1 ,,[ould be

neighbours.

1.4. Lemm. Let 1 and m be two parallel lines. If there exist P 1 1

and Q I m s ch that p"" Q, then 1....., m.

Proof. Assume there exist points P and Q as defined in the lemma. By

1.3, there exists R I 1 such that R1--P. Then R.1-Q and RQ"'l by

A5. Then, by A7, m...... QR and by transitivity IN m.

1.5. Lemma. Let ~ be an A. H. plane with non-trivial nei~hbour relation.

Then for any point P, there exists a oint Q with Q-vP,Q*P.

P oof. Choose a y noint p. If th neighbour relation is non-trivial,



then there exists a pair of neighbourin~ point R Rnd S. If p~ R, S,

then we have the required noint. Therefore, we may as~ume that

5

P -1- R, S. 'There exi ts a line 1 s h thrl t P I 1 and

and A4, L(S,PR)+ 1 and there exists a unique point

By 1.4, L(S,PR)iV PR. By A6, PIV T.

1+ PRo By A7

T == L(S,PR)/\ 1.



CHAPTER 2

The Sirnnlcst ~. ~. Plane with Non-trivial

Neiv, bOll Relation

2.1. In this chapter, \lie sha11 construct an A. H. plane with

a non-trivial neigh Olr relation containing the minimum number of

points and lines.

By definitions every A. H. plane must contain a triangle

{A, B, C). By A8, thcr~ exist L(A, BC), L(B, AC) and L(C, AB); A7

implies the existence of a fourth point D = L(A, BC) 1\ L(C, AB);

D-v A, B, C by A:;J. By A6 again, two possibilities exist: either

AC A BD = ¢ (CaAe 1) or AC/\ BD = E, for some E c IP (Case 2). In

eithe eve:lt, if the ne"ishbour relation is non-trivial, it is possible

to find a point F 'hich i- a neighbour of A and F I A (by 1.5).

Obviously, the lines AB, AC, AD 1 Be, BD, CD are pairwise not

n ighbours, hence, F ccn be incident with at most one of these six

lines. (He have a.lready defi.ned all the points of intersection of

pairs of these lines. By d_finition, F I A, B, C; since D.+A, F I D;

by A5, F I E.) F\trther, if X, Y c {B, C, D} and X I Y then F J. XY;

othenJise, AXr(.. XY implies, by A5, that Arv X which is a contradiction.

Therefore, F is incident ,it. at most one of AB, AC, AD and F J. Be, BD,

CD. Without loss of ~enerality, we may assume F J. AC, AD. There

exists L(F, AD)r!- AC, CD, ED an
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G :: L(F, AD)~ AC

H :: L(F, AD)" CD

J:: L(F, AD)"BD.

Clearly, these points are distinct from A, B, C, D, F, L(F, AD)", AB.

If H :: G, then H :: G :: C and L(F, AD) :: L(H, AD) :: L(C, AD) :: BC

which implies F I BC; a contradiction. A similar argument may be

used to show J I H.

Case 1: ACI\BD:: ¢ (cf. Figures 2.1 and 2.2).

If G - J, G =- ACABD which would, of course, be a contradiction.

Consider, now, the distinct lines L(J, AB), L(G, AB) which give rise

to the points

K :: L(J AB) /\ Be

M :: L(J, AB) " AD

N :: - , ro AB) 1\ BeL\u,

P :: L(G, AB)" AD.

J '1 AB, CD, LCG, AB) and G J AB, CD, L(J, AB) imply M, K I A, B, C, D,

H, G, N, P, L(F, AD) .... AB and N, P I A, B, C, D, H, J, L(F, AD)A AB.

Also, F J L(J, AB), L(G, AB) imply F I M, K, N, p. Clearly,

M I K I J I 1'1 and NIP I G f N. Let Q :: LUI, BD)" AB. Since Q I AB,

Q J CD, L(J, AB), L(G, AB); hence, Q f C, D, H, N, P, G, M, K, J.

If Q:: For Q:: L(F, AD)"AB, then Q:: F:: H or Q:: L(F, AD;~AB

:: H, both of which are contradictions.

7

If Q :: B, L(Q, BD) :: BD which implies H I BD; however, H I CD.

Hence, H :: D; a contradiction.

Finally, if Q :: A, then Q""' F. By .4.7, L(F, AD),y L(H, BD) and
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Fi/3U e 2.1.
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so by A5 we would h.,'lve QIV H. Since L(H, BD)+ CD, this would imply AB ""

CD; a contradiction.

Now conoider the line through Q parallel to AD. Since Q f A,

B, L(F, AD)A AR, L(Q, AD) f. AD, BC, L(F, AD) and we can define the

points

R = L(Q, AD)A L(G, AB)

S = L(C2, AD)A CD

T = L(Q, AD)A L(J, AB)

which are distinct from all the previously defined points. (All the

previouuly def~ned points, with the except·on of Q, are incident with

one of the lines AD, BC, L(F, AD).) Further, they are mutually distinct

as the lines AE, CD, L(J, AB) and L(G, AB) are distinct.
,

Therefore, the A. H. plane with F I AB must have at least

sixteen points and if

least sevent en points.

J AB the A. H. plane so defined must have at

Case 2: ACABD = E (cf. Figure 2.3).

If A-vE, AD·..j.,BD \-lonld imply tlat A""'D; a contradiction.

Further, if E IV X, for a y X I AD, AD+ AC would imply A'" E. Clearly,

if J = G, then J = G = E which gives L(E, AD) = L(G, AD) = L(F, AD);

however, L(F, AD)", AD a d so t.here exists X I AD such that E",X. Thus,

J f G.

Now consider L(J, AB) f. AB, CD and L(G, AB) f AB, CD, L(J, AB).

By A?, we have the following points:

K=L(J,AB)ABC

M= L(J, AB) A AD



P'--' .L.-__-'-J. -=-¥

Figure 2.3.

LU-,AD)
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N = L(G, AB)A BC

P = L(G, AB)/,AD.

Clearly, these points are mutually distinct and differ from all the

previously defined points including L(F, AD)A AB (as in Case 1).

Finally, let

Q = L(E, AD) 1\ L( G, AB)

R = L(E, AD) A CD

S ::: L(E, AD) A AB

T ::: L(E t AD) " L(J, AB) •

Obviously, L(E, AD) cI AD, BC, L(F, AD) and as we have already noted

L(J, AB), AB, CD, L(G, AB) all differ. Therefore, these four points

are different from any of the previously defined points and are

mutually distinct.

~nerefore, such a geometry contains at least seventeen points

if F I AB and at least eighteen points if F J FB.

We have determined that an A. H. plane with a non-trivial

neighbour relation must contain at least sixteen points. If we

examine the structure ill strated in Figure 2.J, \e can obtain the

following equivalence classes of points determined by the neighbour

relation:

{p, A, F, G}

{D, M, J, H}

ic, K, S, TJ
{N, R, B, Q].

If this structure is an A. H. plane, then all lines must

12
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contain the snme ) umber of poi:J.ts (cf. (I;Jj). Since the lines AD, BC,

LO" AD) and L(Q, AD) are distinct Rnd parallel, they each contain four

points and hence, a11 lines v!ould contain four points. (d.ll'XL 7-.10),

2.2. Claim: Any three pairwise non-neighbouring points are

not collinear, of the p ,ne tus only sixteen points.

Clearly, tllree pairwise nOD-neighbouring points are not collinear

with any line aral 01 to AD or parallel to AB. Without loss of

generality, viC can consider the line AK. There must exist two more

points incident \dth the line AK; however, since AK1-AD, BC, AB, HK,

these t\w points cannot be i cident with these other lines;

two points must be selected from the fou points H, S, G, R.

thus, the

In this

case, the four points are vlinlise not neighbours and we can see

°mmediatcly that AK -;. H.1, ~m, liS, GR. If AK ::;; HR, then by A5, AK"i- QS

and hence K"'T implies T~R; a contradiction. Therefore, AK ::;; GS,

hut A~ G and K""S~ thus~ we ave only tHO non-neighbouring points on a

line.

2.3. C]{):i.~: Three distinct neighbouring points are not

collinear, if the plane has only sixteen point •

Assume there exist three neighbouring collinear points.

vtithout loss of generality, consider A, F, GIl (some 1 c L). Then

A, F I 1, AB imply by AL~ L:l. t 1 ...... AB. Similarly, A,GIl, AC imply

l ...... AC o T'nus, by transitivity, AB ...... Ar'; a contradiction.





(a, b),..., (c, d) if a.nd only if a - c, b - d = 0, 2. Two lines are

defined to be in the relation 'V if for each point P incident with

either line, there exists a point Q incident with the other line such

that P ""Q.

We shall show that this structure is an A. H. plane with the

above equivalence relation as the neighbour relation. Further, as

this structure contains only sixteen points and twenty-four lines,

it must be "the" simplest A. H. plane with a non.-trivial neighbour

relation.

From the definitions we obtain the following equivale ce

classes induced by the I'-' relation on p:

[ (0, 0) , (0, 2), (2, 0), (2, 2)}

[(0, 1), (0, 3), (2, 1) , (2, 3)}

[(1, 0) , (1, 2) , (3, 0) , (3, 2)}

[(1, 1) , (1, 3), (3, 1), (3, 3)}

and the fol1ovd.ng equivalence classes induced by the I'V relation on iL:

f[O, OJ 2 , [0, 2J 2 , [2, OJ 2 , [2, 2J 2}

{ [0, IJ 2' [0, 3J 2 , [2, 1J 2' [2, 3J2~

{ [1, OJ 2 , [1, 2J 2 , [3, OJ 2 , [3, 2J 2}

{ [1, IJ 2 , [1, 3J 2 , [3, 1J 2 , [3, 3J21

{ [0, OJ 1 ' [0, 2J 1 ' [2, oJ l' [2, 2J 1 }

{ [0, IJ 1 ' [0, 3J 1 , [2, IJ l' [2, 3J 1}'

From the equivalence classes of the lines, we can see

15
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immediately that for any em, nJ., [p, qJ. c L, em, nJ, - [p, qJ. if
1. J 1. J

and only if i = j and m - p, n - q = a, 2. We can make one

addit'onal observation: two lines of the first kind do not meet

unless they are in the ~ relation.

Next, we prove that the eight axioms of an • H. plane hold in2(.

AI. For any P, Q c ~9 the~e exist~ 1 c ~ ~ch tho t P, Q I 1.

Consider any (a, b) , (c, d) c !p. Clearly, if .8.. = c, then

(a, b), (c, d) I [0, aJ
1

; if b = d, then (a, b), (c, d) I [0, bJ
2

•

Therefore, assume a 1 c, bl d. If (rl. - c) 'I 0, 2, then (a _ c)-l

exists and (a ~ c) = (a c)- Hence, (a, b), (c, d) I [(b - dHa -. c),

b - a(b - d)(s - c)J
2

• Similarly, if (a - c) = 2 . d (b - d) I 0, 2,

then (a, b), (e, d) I [(a - c)(b - d), a - (a - c)(b - d)bJ l • Finally,

if (a - e), (b - d) = 2, tlAn

A2. There ex'sts ~ tria gle,.

(a, b), (c, d) I [1, a - bJ~.
c..

Consider t~~ee points (0, 0), (1, 0), (0, 1). It is readily

apparent that (0', O)~ (1, 0) I [0, OJ
2

; (0, 0), (0,1) I [0, OJ
1

;

(1, 0), (0, 1) I [3, 1J2• Further, nce all points incident with

[0, OJ
1

are of the form (0, b) for some b cHand (l, O)ti-- (0, b), we

have [0, OJ1~ [0, OJ
2

, [3, IJ
2

; similarly, all po'nts incident with

[0, OJ
2

are of the form (a, 0) and (a, oH· (0, 1); hence, [0, oJ
2
+

C3, IJ 2.

~. ~ is transitive ~ ~.



17

This follows from the fact tlat ~ is an equivalence relation.

M. If PI 1, m, then l~m if and.Q£l.y if cl3.rdtp c!p1 PI 1, mJ = 1.

We need only consider two cases: 1 and m are both of the

second kind and 1 and m are of different kinds.

Let 1 = en, P]2' m = [q, rJ 2 , wh re l~m and (a, b) I 1, m.

Since b = an + p and b:= aq + r, we hav an + P = aq + rand

a(n q) := r - p. If n- := 0, 2, then r - p = 0, 2 and en, pJ 2"'"

[q, rJ 2 • 1bus, n - q f 0, 2. For any (c, ) I 1, m, we have

en + p = d = cq + r; hence, c(n - q) = r - p = a(n - q). Since

n - q f 0, 2, Cn - q)-lexists and is equal to n - q. Thus, (a, c) :::

Finally, if the two lines are of different k:inds, say en, pJ =
1

1, [q, 1'J 2 = m. and. (a, b), (c, d) I 1, m, then a - bn ::: c - dn and

b - aq := d - eq. Hence, b = d - cq + aq and a - bn := e - dn. This

implies a(l qn) ::: cCl - qn). However, since en, pJ 1 c [,1' n ::: 0, 2-,
hence, nq := 0, 2 and 1 - nq -I 0, 2. Therefore, (1 - nq)-l = 1 - nq

and so (a, b) = (c, d) •

Conversely, consider any pair of neighbouring line~ (without

loss of generality, let the pair be em, nJ 2 , Cp, qJ 2 ) which pass

through a point (a, b) • From earlier results, m - p ::: 0, 2 and

n - q = 0, 2. Therefore, we have b ::: am + n and b ::: ap + q which

imply am + n ::: ap + q and a(m p) := q n.

If m - p - 0, then q - n ::: 0 and the two lines are equal. If
I

m - p ::: 2 and q n = 0, 2, then since



(a + 2)m + n = am + 2m + n = b + 2m;

(a + ~)p + q = ap + 2p + q = b + 2(p - m) + 2m = b + 2m,

we have (a + 2, b + 2m) is incident with em, nJ
2

and [p, qJ
2

, also.

Hence, if neighbouring lines meet then they do so in more than one

point.

18

A,Z. If l,y m; P, R I 1; Q, RIm and P""Q, then R '" P, Q.

Consider, first em, nJ 1-1- CPt qJ 2 with (a, b) I em, nJ1' [p, q]2'

(C t d) I em, nJ l ; (e, f) I [p, qJ 2 and (c, d) IV (e, f). Therefore,

a - c = (b - dJrn and b - f ;;; (a - e)p.

However, em, nJ 1 eLI' so m = 0, 2 which implies a - c = 0, 2. Also,

since (c, d)~ (e, f), c - e, f - d = 0, 2 and hence, a - e = 0, 2.

This in turn implies that b - f = (a - e)p = 0, 2 and b - d = 0, 2.

Th 1S t (a, b) N (c ~ d) , ( e , f).

By an earlier remark, two non-neighbouring lines of the same

kind th't intersec+ must be lines of the second kind. Consider

implies that d - f = 0, 2. However,

em, nJ
2

1- [p, qJ
2

I [p, qJ 2 where

(c, d)tv(e, r)

with '(a, b), (c, d) I em, nJ
2

and (a, b), (e, f)

(c, d)"" (e, f). As before, m - p -I 0, 2. Clearly,

d - f = (em + n) (ep + q)

= em + (b am) - ep - (b - ap)

= cm am ep + ap

= (c a)m + (a - e)p.

Now, if m = 0, 2, (c - a)m = 0, 2 and (a - e)p must equal a or 2.

However, m = 0, 2 and m - p 'I 0, 2 imply p 'I 0, 2' hence,,
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a - e ~ 0, 2 and a - c = a - e + e - c = 0, 2. If mfa, 2, then

p = 0, 2 and by the same method as above we obtain , a - c = 0, 2.

In addition t b d = m(a - c) and b - f = p(a - e) ·,hich imply

b - d, b - f = 0, 2.

A6 .. If l",m and n,pl with P I 1, n and Q I m, n, then P""Q.

Again, we have two cases: all three lines are of the second

kind or 1 and rn are of one kind and n is of the other.

Let em? nJ 2 1V [p, qJ
2

and em, nJ 2,y [r, sJ 2 • By the transitivity

of the neighbour relation on the points, [p, Q]2,y [r, sJ 2 • This

implies that n; e. p = 0, 2 e n - q = 0, 2; m - r f 0, 2 and p - r f,
0, 2 •. Let (a, b) I em, nJ

2
, [1', sJ

2
and (c, d) I [p, qJ

2
, [r, sJ

2
•

Clearly, since (a, b), (c, d) I [r, s1 2 , we have b - d = ar - cr. If

r = 0, 2, then b - d = 0, 2 which implies

0, 2 = b - d

= (am + n) - (cp + q)

= am + n - cp - q

= am cp + n q.

But n - q = 0, 2; hence, am - cp = 0, 2. This implies

0, 2 = am - ap + ap - cp

= a(m - p) + (a - c)P.

However, m - p = 0, 2 and so a(m - p) = 0, 2. Further, since we

assumed r = 0, 2, P f.O, 2 and thus, a - c = 0, 2.

If r I 0, 2, then

b - d = (a - c)r implies

-1
r = r and ro, p = 0, 2. Therefore,
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::: (am + n - cp - q)r

::: (n - q)r + (am - cp)r

= 0, 2.

Thus, -b - d ::: 0, 2 also.

In the other case, we may, without loss of generality, let

em, nJ 2'" [p, qJ 2 a.nd em, nJ 20' [r, sJ l , where (a, b) I em, nJ 2'

[r, sJ l
and (c, d) I [p, qJ .... , [r, 6J 1 • Therefore, a - c ::: (b - d)r.

c..

If r ::: 0, 2, then a - C ::: 0, 2 and

b d = am + n - (cp + q)

::: (br + s)m + n - (dr + s)p q

= brm + sm + n - drp - sp q

::: r(bm - dp) + s(m - p) + n - q

= 0., 2.

If r f. 0, 2, then m,_ p = 0, 2 and

b - d ::: (am + n) (cp + q)

::: am - cp + (n - q)

::: 0, 2.

Hence, a - c - (b - d)r ::: 0, 2 also.

A7. f III m; P I 1, n and l+n, then m+n and there exists

Q I m, n.

Once again, we have two possibilities: all three lines nmy ~e

of the second kind or the two parallel lines may be of one kind and the

third line of the other kind.
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First of all, consider em, nJ 2 1l em, pJ 2, em, nJ2~ [q, rJ 2 and

(a, b) I em, nJ 2 , [q, rJ 2• By an earlier result, m - q I 0, 2 (since

em, nJ 2 1'[q, rJ 2) and thus em, pJ 2+ [q, rJ 2 also. Since (a, b) I

em, nJ 2 , [q, rJ 2 , ,,"e have am + n = b = aq + r. Hence,

a = (r - n)(m - q) and

(r - n)(m - q)m + n = b = (r - n)(m - q)q + r.

Take the point «r - p)(m q), (r p)(m q)m + p). It is clearly

incident with the line em, pJ 2 • However,

(r - p)(m - q)m + p

= (r n + n p)(m - q)m + p + n - n

= (r n)(m - q)m + "1 + (n p)(m q)m + p - n

= (r n)(m q)q + r + (n p)(m - q)m + p - n

= (r n)(m q)q + (n p)(m - q)(m - q + q) +r+p-n

= (r p)(m - q)q + (n p) + r + p - n

= (r p)(m - q)q + r.

Thus, «r - p)(m - q), (r - p)(m - q)m + p) I [q, rJ 2 •

Next, without loss of generality, consider em, nJ 2 1\ em, pJ 2 ,

em, nJ 2+ [q, rJ l
and (a, b) I em, nJ 2' [q, rJ l • Clearly, em, pJ 2""

[q, rJ l • Since (a, b) I em, nJ 2 , [q, rJ l , we have b - n = am = bqm + rm

and bel - qm) = rm + n. However, q = 0,2 and so (1 - qm) I 0, 2.

Thus, b = (rm + n)(l - qm) implies a = (re + n)(l - qm)q + r and

(rm + n)(l - qm) = b = «rm + n)(l - qm)q + r)m + n.

Now, consi1er the point «rm + p)(l - qm)q + r, (rm + p)(l - qm)) I

[q, rJ 1• In addition,
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«rm -I- pHI - qm)q + r)m ..- p

:= «rm -I- nHl qm)q + r)m + n + (p - n)(l -qm)qm + p - n

::; (rm + n)(l qrn) + (p n)( (1 qm)qm + 1)

(rm + n)(l qm) + (p n) (qm 2 1)= (qm) +

::: (rm + n)(l qm) + (p -n)(l - qm)

= (rm + pHl qm) •

Thus, «rm + p)(l - qm)q + r, (rm + p)(l - qm» I em, P]2.

AB. For every 1 c L and everx PcP, there exists L(P,l) c L such

that L(P,l) 11 1 and P I L(P,l).

Consider any (a, b) c P and em, n]l' Cp, q]2 c L. Then

(a, b) I em, a - bm]l' [p, b - ap]2 and

[p, b - apJ 2 [p, q]2-

em, a - bmJ 1

2.6. By the properties of H, it is also clear that ~ is a

Dcsarguesian A. H. plane (cf. (,], 4.5). Since multiplication is

commutative, £.. is also Pappian.

~. It is interesting to note that not all A. H. planes with

sixteen points and twenty-four lines are isomorphic. Consider the set

2
J ::; Z2[x] / (x ), where Z2[x] is the set of polynomials over the

integers modulo 2. Thus, J::; [0,1, x, 1 + xj. Let "t.
J

::; < pi, L', II,1i >,

\"here

{pI::; J X J
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r; = L'
1V iL~, \./i th

IT:.: = {[a, bJ 1 = t(ya + b, y) I y c J} I a c lo, xl, b c J];1

[}2 = [[a., bJ
2

= {Cz, za + b) \ z c J} I a, b c J}.

II is set inclusion

III m if and only if.l and m are of the 'same kind with the same first

cOOl'dina te.

Let g: H -'7 J, where gCO) = 0, gCl) = 1, g(2) = x, g(3) = 1 + x.

The map f = C~ ,'tj.. ) : x.---1'~J' where

Lp lP~P'

Ca, b)~ (gCaJ, g(b)O

i-. [,..--.,L'

[a, bJ. "-'"'-~ [g(a + 2), g(t)J. , if a, b c (1, 3J
1 1

[gCa), gCb)J., otherwise,
J..

is an I-isomorphism,. but ~([1, OJ 2 ) = [1, OJ 2 and 4([1, lJ 2 ) =
[1 + x, IJ 2 with [1, OJ 2+[1 + x, 1 J2 • Hence, f is not an isomorphism.

In fact, this implies that no isomorphism between these two A. H. planes

exists. (cf. [q], 3.\. ).



CHAPTER .2

Incidence r:trl c+:,tres over Local P.ings

~. In the last chapter, we constructed an A. H. plane. It

is readily apparent that its coordinate r"ng, H, is an A. H. ring. It

is not surprising that the incidence structure £.. that we constructed

over H is an A. H. plan0, since i J. W. Lorimer and N. D. Lane's paper,

tiDe argues ian Affine Hjelrnslev Planes", "t is sho"m that all incidence

structures constr ~ted over A. H. rings are A. H. planes. We sh 11

now examine the consequ"!nces of 1J/eakening the cond" tions on the

coordinate ring hy start.:. g, ine-tead, with just a local ring.

~2. Theorem. If L is a ring \ofith 0 /l s then the follO'.\'ing are

equivalent (cf. [5J):

1) L / Rad L is a division ring.

2) L has exactly one maxi~al ideal.

3) All non-units of L ~re contained in a proper ideal.

4) All non-units of L form a proper ideal ~.

5) For all a c L, either or 1 - a is a unit.

6) For all a c L, either a or 1 - a is right invertible.

~. A ring, L, \"ith 0 f 1 i called local if it satisfies

one of the eqlivalent sta"'::ements of Theorem 3.2.

24



An fl.

conditions:

;T.:!i is a Jocal ring, L, with two additional

25

re DO is the set of divisors of zero plus 0 itself).

2) If a, b! L, then a c bL or b caL.

~. Let ~::: < P, L, I, II> be an incidence structure with

parallelism where

lP ::: L X L, L a local ring;

lL ::: lLlu 1L2 \<lith

[,1 = {em, nJ l
::: (x, y) c pi x= ym+ nJ mell, n c L);

[,2 = {em, nJ = { (x y) c PI Y ::: xm + nj ro, n c LI. .
2 ' J ,

I is set inclusion;

em, n\ 1\ Cp, qJ j if and only if i = j and m = p.

We also define a neighbour relation on P by: (a, b)rv(c, d)

if and only if a - c, b - d c'l. Two lines are defined to be neighbours

if for any point on either line there exists a neighbouring point on

the other line. We denote both of these neighbour relations by~ •

3 .. .5. Lemma. If (a, b)r#-(c, d) and (a, b), (c, d) I 1, then a - c

c I) if and only if 1 c [,r

Proof. Assume (a, b), (c, d) I em, nJlo Then a::: bm + n and

c ::: dm + n imply a - n ::: bm C r) and c - n ::: dIn ell. Hence,

a-c=a-n-c+nc'1.

Next, consider two points (a, b) ~ (c, d) with 5. - cell and



(a, b), (c, d) I 1,

b - d = (a - c)m.

If 1 = em, nJ 2 ' for some m, n c L, then

However, b - d t '1 and (a - c) m ell; a

contradiction. Since
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b(b - d)-lea - c) - b(b - d)-lCa - c)

deb - d)-lCa - c) - b(b _ d)-lea 

- - (b - d)Cb - d)-lCa - c) + a

= - a + c + a

= c,

+ a = a;

c) + a

3.6. Lemma. For any point P incident with some line 1, there ex'sts a

point Q also on 1 such that Q1-'p.

Eroof. Since 1:1 = 1 and a·a = a-a = 0, for all a c L, we have

1 t" and ° crt. Consider any em, nJ 1 • Then I-m + n = m + nand

O'm + n = n which imply (m + n, 1), Cn, 0) I em, nJ,. Now, for any
.L

(a, b) I em, nJ 1 , either bel) or b ttl.

1 - b .',\, so (a, b), (m + n, 1) I em, nJ
l

If b i 1\, then b - a = b t tl and (a, h)

(a, b)+(n, 0).

In the first case,

and Ca, b).{> (m + n, 1).

Cn, 0) I em, nJ l with

Similarly, for any point P on a line of the second kind,

there is a point which is not a neighbour of P but is incident with

the same line.

).7. Lemma. Two lines of different kinds are not neighbours.
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Proof. Consider any two lines em, nJ l , [p, qJ 2 ' where 0, p, q £ L

and m c~. For any point (a, b) I [p, qJ 2 , th~re exists a point

(c, d) I [p, q]2 such that (a, b);1-'(c, d). Hence, by 3.5, a - c ill.

Now assume em, nJl~' [p, qJ 2 • This implies that every point

of [p, qJ 2 is the neighbour of some pint on em, J l • In particular,

there must exist points (e, f) ffi1d (g, h) I em, nJ
l
~nth (e, f)~(a, b)

and (g, h)"" (c, d). Clearly, (e, f)+ (g, h); hOlvever, by 3.5,

e - g ell and by definition, e - a c '1 nnd g - e c r). Thus,

a - e = (a - e) + (e - g) + (g - c) c '1; a contradiction.

2..:-.8. Le a. Two lines of the same kind are neighLmArs if and only if

their corresponding coordinates differ by a non-unit.

Proof. Consider two lines em, nJ 2 and [p, q]2' Assume m - p c~ and

n - q c~. If (a, b) I em, nJ
2

, then (a, ap + q) I [p, qJ
2

and

b - (ap + q) = am + n ap - q

= a(m - p) + (n q) C I).

Thus, (a, b)~(a, ap + q). Similarly, we can find a neighbour of any

point (c, d) I Cp, qJ 2 , incident with em, nJ 2 •

Next, consider any two non-neighbouring oints (a, b) and

(c, d) on em, nJ 2 , where em, nJ 2"" [p, qJ 2• Then there exist (e, f),

(g, h) I [p, qJ
2

'lith (a, b) N (e, f) and (c, d)'" (g, h). Now,

(a, b)w(e, f) implies b - f C 11. Hence,

b - f = am + n - ep - q

= am + d em ep - h + gp
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= (a - c)m + (g - e)p + d - h c~.

Consequently, (a - c)m + (g - e)p c~. Therefore,

(a - c)(m - p) + (a - e)p + (g - c)p

~ (a - c)m + (a - c + g - e - a + c)p c~.

Hence, (a - c)(m p) C '" ,.,.hich implies m - p C 1"\ since a - c i r,

by 3.5. In addition,

b - f ~ am + n - ep - q

= a(m

= a(m

p) + ap

p) + (a

ep + n - q

e)p + n - q ~ r,.

This implies that n - q c f'lo

1be result fol:ows in a similar manner for two lines of the

first kind. However, sin~e the first coordinate of a line of the first

kind is a non-unit, the first coordinates of the two lines of the first

kind must necessarily differ by a non-unit. The rest follows as above.

319. Remark. If (a, b) I em, nJ 2 , [p, qJ 2 , we have am + n = b =
ap + q; hence, a(m - p) = q - n. Thus, if m - p c ~, then

q - n c'1. Therefore, if em, nJ2~ [p, qJ 2 and em, nJ2" Cp, qJ 2 i ¢,

then m - p , ".

Several of the axioms of A. H. planes still hold in our new

incidence structure ~.. It is readily apparent that the neighbour

relation is transit've on the set of points (A3). The points (0, 0),

(0, 1) and (1, 0) form a triangle, where (0, 0), (0, 1) I [0, OJ
1

;

(°to), (1 to) I [°t oJ 2 ; (°t 1), (1 , 0) I [ -1 , IJ 2 (A2) • The

following system of lemmas give the additional axioms which hold in ~ •
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2,10, Lel'lma, If (a, b) I g, h and g rlJ h, then card~P I g, h} ::; L

Proof~ Assume there exists (c, d) ~ (at b) such that (c, d) I

g, h also.

Case 1: Let g ::; em, nJ l
and h ::; CP, qJ 2"

Therefore,

b ::; ap + q ::; (bm + n)p + q ::; bmp + np + q;

d ::; cp + q ::; (dIn + n)p + q ::; dmp+ np + q.

Hence, b(l mp) -- np

1 - mp 1.1') and so (1

::; d, Also, since a

a contradiction.

q ::; d(l mp) • However, m c '1 implies

)-1 exists. Thus, b (np + q)(1 _ mp)-l- mp ;::

c ::; bm - dm ::; (b - d)m ::; 0, we have a ::; c;

Case 2: Let g::; em, nJ
2

and h::; [p, q]2.

By the above. remark, m - p I. 'I , Therefore, am + n ::; b ::;

ap + q and cm + n ::; d ::; cp + q imply a::; (q - n)(m _ p)-l ::; c and

b ::; am + n ::; cm + n ::; d. Thus, (a, b) ::; (c, d); a contradiction,

Finally, if two lines of the first kind meet, say (a, b) I

em, nJ
l

, [p, q]l' then bm + n ::; a ::; bp + q, which gives b(m - p) ::;

q - n. However, m, p C Ii implies m - p c

Thus, the two lines are neighbours,

hence, q - p C t"\.

3,11, Lemma. If g~h; P, RIg; Q, R I h and P"'Q, then R"-'P, Q.

Proof, Let p::; (a, b); Q::; (c, d); R::; (e, r),

Case 1: Let g::; em, nJ
2

, h ::; [p, qJ 2•
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By an earlier remark, m - p 11'). From the aSBumptions of the

lemma,

b - d = b-f-d+ f

:: am + n - em - n - cp - q + cp + q

:: (a ... e)m + (e c)p

:: (a e)(m p) + (a e)p + (e - c)p

= (a e) (m p) + (a c)P.

However, (a, b fV (c rlJ , 'J"ous, b - d, a - c c 11. Therefore,,

(a e)(m - p) c" and hence, a - e C Ii. Finally, since b - f =

(a - e)m c '1, (a, b)"" (e, f) .. Similarly, (c, d)"" (e, f) •

Case 2: Let g = em, nJ 1 ' h ::: [p, qJ ~.
Co

Then a - e = bm + n - fm - n :: (b - f)m c '1. However,

(a, b) IV (c, d) implies a eel) Ilnd b - d r. 1'\ and so c - e ::

c - a + a - e c '1. In additon, d - r = cp + q - ep - q :: (c - e)p c 'I.

Thus, (a, b), (c, d)tv(e, r).

As in the proof of the previous lemma, g and h cannot both

be lines of the first kind, since if two lines of the first kind

meet, they are neighbours.

3.12. Lemma" If gNh; j ,yg; PIg, j; Q. I h, j, then p;vQ.

Proof. Let P :: (a, b) and Q = (c, d) •

Case 1: Let f1" = em, nJ
2

, h :: [p, qJ 2 and j = [r, sJ l •C>

Clearly, m - p c 1/, n - q c '1 and r c 11. Therefore,

a - c = br + s - dr - s :: (b - d)r
c "

and
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b - d = am + n - cp - q

;:;; (br + s)m + n - ( (lr -I- s)p - q

= brm + sm .;- n - drp - sp - q

= brm + s(m ~ p) - drp + n - q E: '1.

Hence, P IV Q.

CAse 2: Let g;:;; Lrn, nJ 2 , h = [p, qJ 2 and j = [r, 8J 2 •

Then m - p r; II ~ n - q C 1\ and r - m t Ii. By the assumptions

of the lemma, am + n = b :::: nr + 3 and cp + q = d = cr + s. Hence,

b - ar = s = d - cr. ~~erefore,

:n + n ?r = cp + q - cr

a( - r) dp r) = q - n

a(m - r) - C<p- m + m r) = q - n

(a - cHm r) = q - n + c(p - m) c 1'\.

This implies (a - c)(m - r) C I") and a - eel'). Also, b - d =

(a - c)r c '). Thus, PIV Q.

If g, h are lines of the first kind and j is a line of the

second kind, the rNml t fo] 10\lls from a proof similar to Case 1. Again,

the three lines cRnnot all be of thp first kind.

3.13 .. LemmR. If 61111; PI j, g; j·.... g,then j,j..h and there exists

Q I h, j.

Proof. Take P ;:;; fa b) , for scme a, b c L. P I S, j.,
Cas, 1: Let g = em, nJ 2 , then since h II g, h = [m , pJ 2 , for

some p c L. Let i = [q, r' Clearly, jwh (by 3.8). Let
"

.1 1 .
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-- cm + p

and so (c, cm + p) ! [q, rJ
2

also.

If g and h are lines of the first kind, j must be line of

the second kind. Clearl ~ h t/J j. The construction of the point Q is

similar to the construction in Case 1$

As in the case of A. H. planes, we have a similar result which

is even stronger.

3.14. L~!th..a. Let P. = g.A j, j+g. (i = 1,2) such that ~:ll g')"1 1 1 _ ~

TIlen the followi g are equivalent:

1) gl'" g2

2) P
1

NP
2

•

Proof. AssUll1e . ,
Let . p = (a, b) and P = (e, d)..1.) •

1 2

Cas.!L!~ Let g = em, nJ 2 ; g2 = em, pJ 2 and j -- [q, rJ l •1

'.1'his implies that a - e = (b - d)q c t'") (since q c tl). Also

since Pi I gi'

b - d - a~ + n - em - p = (a - c)m + (n - p) c t'").

Thus, p ...... p
-1 2·

Case 2: Let gl and g2 be defined as in Case 1. Let j - [q, rJ 2"

Since jAg. ;i¢ and j tV g. (i = 1, 2) , we have m - q 1.1 ,
1 1

ef. 3.8 and 3.9. I gl""" g2' then n - pel). C early,

am + n - em - p : b - d = aq - eq



and

(a - c)(m - q) = p - n c 'I-

Since m - q i h, we have a - c c ~ and b - d c ~ also. Thus,

Case 3: Assume gl and g2 are lines of the first kind. Then

j must be a line of the second kind (since two lines of the first kind

'''hieh meet are neighbours). Let gl = em, nJ l ; g2 = em, pJ l ,

j = [q, rJ 2 •

Then if gl'" g2'

a - c = bm + n - dm - p = (b - d)m + (n - p) c ~

(since m c 'I and n - p c Y)) and

b - d = aq + r - cq - r = (a - c)q r. 'l.

Assume 2).

Let gl = em, nJ 2 ; g2 = em, pJ 2 ; Pl = (a, b); P2 = (c, d).

n - p = b am d + em = (b - d) + (e - a)m c ~

(since b-dc'l and c .• ac'l). Thus,gl",g2-

The proof is similar if gl and g2 are lines of the first kind_

The proof in this direction does not require the existence of j.

3,15. Lemma. For every point P and every line 1, there exists a

unique line L(P,l) such that P I L(P,l) and L(P,l) Ill.
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Troof. Take p::;: (a, b), for some a, beL. If P I 1, then 1

itsplt is the required line, so we need only consider the case where

P 1 1. Take 1 = em, nJ 2 and consider the line em, b - amJ 2• Clearly,

em, b amJ21l[m, nJ 2 and since am + (b - am) = b, we have (a, b) I

em, b - amJZ. If 1 = em, nJ 1 , then (a, b) I em, a - bmJ l and

[rn, a - bmJ 1 H[m, nJ 1.

~.. ie have shown that the incidence structure ~ satisfies

all the axioms of A. H. planes, with the exception of Al and A4 in one

direc tion. v. e shall examine these axioms next.

3.17. Lemrr'a. Through any two non-neighbouring points, there exists

exactly one line.

Proof. Consider the two non-neighbouring points (a, b) and (c, d).

Ide discuss two cases: 1) a - c ,,'); 2) a - c c'l and b - d Ilf.

Case 1: Since a - c i'l, there exists. (a - c)-l i~. We

-1 (-l()have (a, b), (c, d) I [(a - c) (b - d), - a a - c) b - d + bJ 2

because

c(a - c)-I(b - d) - a(a - c)-l(b - d) + b

- - (a - c)(a - c)-l(b - d) + b

=-b+d+b

= d.

Therefore, there exist at least one line through the points (a, b) and

(c, d).
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If (a, b), (c, d) are also incident with some line of the

first kind, say (a, b), (c, d) I em, nJ
1

, then a - c = (b - d)m c~;

a contradiction.

Further, if Ca, b), (c, d) are incident with some em, nJ 2 ,

then b - d = (a - c)m i~plies m = Ca - c)-l(b - d); b =
a(a - c)-lCb - d) + n implies n = b - a(a - c)-lCb - d). Thus,

[(a - c)-lCb - d), b - a(a - c)-lCb - d)]2 is the unique line between

(a, b), (c, d).

Case 2: If a - c c ~ and b - d t~, then (b _ d)-l

exists and (a, b), Cc, d) I [(b - d)- (a - c), a - b(b - d)-lea - c)J
l

since

deb - d)-lea - c) + a - b(b _ d)-lea - ~)

- - (b - d)(b d)-lea - c) + a

= - a + c + a

= c.

The uniqueness of this line is shown in the same manner as in Case 1.

~" At this point, we may note, in addition, that if the

first coordinates of tNO points a e the same and are equal to some

a c L, then both points are incident with the line [0, aJl" Similarly,

two points with second coordinate beL are incident with [0, bJ 2•

3.19. Lemma. There exists a pint on each lOne.

Proof. Take any line 1 and let m = L«O, 0),1). Since [0, OJl~



[0, oj 2' either m+ [0, oj 1 or m-+ [0, oJ 20 W thout loss of

generality, assume that m-f[O, oJ
1

• 'I'hen by 3.13, 1+ [0, OJ
1

and there exists a point P wi.th P 1" [0, oj 3.' 1.

3.20. Lenma. For any line 1, there exist a point P such that P-4-X,

for all X I 1.

Proof. Assume such a point does not exist. Then there exist three

points Q, Rand S on 1 which are neighbours of (0, 0), (1, 0) and

(0, 1), respectively. Clearly, there exist lines R(O, 0) and

R(O, 1). Therefo~e, by 3.11, l",R(O, 0), (0,0)/\/(0, oHo, 1);

1 ""R(l, 0) and R(l, 0)· '(0, 1Hl, 0). 'Thus, by transitivity,

(0, oHo, 1) IV (0, 1)(1, 0); a contradiction.

3,21, Lemma. On any line 1, there exist pain" 6 P and Q such that

P -t- Q.

Proof. By 3.20, we can select R such that R+X, for all X I 1.

At least two of the lines [0, OJ
1

, [0, OJ
2

, [1, OJ
2

are not

neighbours of the line L( (0, "0) ,1). l,et these two lines be m and n.

By 3.13, L(R,m), L(R,n)~ L(R,l); hence, L(R,m), L(R,n)~l also

and there exist unique points P = L(R,m) 1\ 1 and Q = L(R,n) 1\ 1.

Since mti-tn and R1-P, Q, 3.11 implies p,yQ.

~. Using 3.21, il is easy to see that for any point P on
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a line 1, there exist a Q I 1 such that P+Q. If it were otherwis~

all po·ints on the line would be neighbours; a contradiction.

3.23 2 Lemma. There exists a line through every pair of points if

and only if for all a, beL either a c bL or b caL.

Proof. Assume that through any two points of ~ , there exists a line.

In particular, for any a, beL there exists a line through (0, 0)

and (e., b). If (0, 0), (a, b) I em, n] l' for' some m c '1 and

n c L, then ° ~ O·m + n = n and a = b'm + n = bm. If (a, b),

(0, 0) I [p, qJ 2 , for some p, q c L, then °= O'p + q = q and

b = a,p + q = ape Hence, either a c bL or b caL.

Nov assume that for any a, beL, either a c bL or b caL.

Take ~~y two points (a, b), (c, d) and consider a - c, b - d c L.

By our assumption, either (b - d) c (a

If the first is true, then there exists m c L such that

b - d = (a - c)m. Therefore, b - am = d - cm, which implies (a, b),

(c, d) I em, b - am]2"

If (a - c) c (b - d)L, but (b - d) i (a - c)L, then there

exists mCIl such that a - c = (b - d)m. If

ex':'st -1 and (b d)m would implym a - c = :-

Thus, m c 1\ • Since a - bm = c - dm, we have

em, a - bm]l'

m i~, there would

b - d = Ca- _ c)m-l •

(a, b), (c, d) I

2fi24. Remar. If (a, b) +(c, d), the lines defined above coincide



with the lines ~e constructed in 3.17. If a - c i ~ and b - d c ~,
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then a - c f (b - d)m for all meL, since (b d)m c r'j. Hence,

under the assumption that x c yL or y c xl, for all x, y c L,

b - d = (a - c)m fo some meL and the lines em, b - amJ and
2

[(a - c)-l(b - d), b - a(a - c)-l(b - d)J
2

are the same. Further,

if b - d i ~ and a - c c~, a - c = (b - d)m for some meL,

as above. ( ) -1However, m c ~ since otherwise b - d = a - c m and

a - c i 1\; a contradi~tion. Thus, em, a - bmJ =
1

[(b d)-lea - C), a - beb - d)-lea - c)J 1 • Finally, if a - c, b - d

i 'I, then b - d ::; (a - c)m for some mir'j and (b d)m-1
a - c = - •

HO\'1ever, since -1 .J -1m ,.. rj, m cannot be the first cvordinate of a

therefore, a = 0 and

=1. Byl),Cm,OJ 2 ,y

Hence, r'j ~ D_S~ (cf. Cb],

line of the first kind an:i as above, b - d = (a - c)m implies C~, ~.>,

(c, d) I em, b --amJ
2

= [Ca - c)-lCb - d), b - a(a-- c)-l(b - d)J
2

•

3.25. Lemma. The fo11owin are equivalent:

1) For. g, helL, card[P I g, hJ = 1 implies g4.-h.

2) ~= D_, where D is the set of left divisors of zero.

Proof. Assume 1). Consider any r c L, D and choose some meL.

Put P = m - r. Th s, m - p i D. Clearly~ both em, OJ 2 and [p, OJ 2

pass throug~ (0, 0). If Ca, b) I em, oJ 2 , [p, OJ 2 , then 0 = b - b =

am - ap = aCm - p). However, m - p i D_;

b = am = O. Thus, card{Cm, OJ2~~' OJ 2J
Cp, OJ 2 and so by 3.8, r = m - p i ~.

2.2) •
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Assume 2). Consider em, nJz-[p, qJ 2 such that there exists

(a, b). I em, nJ 2 , [p, qJz. By 3.8, m - per") :::; D; thus, there

exists c I 0 such that c(m - p) :::; O. Hence,

q - n :::; a(m p)

:::; c(m p) + a(rr. - p)

:::; (c + a)m (c + a)p

which implies (c + a)m + n :::; (c + alp + q. Since c I 0, c + a I a

and we have two distinct points (a, b) and (c + a, (c + a)m + n),

incident with both em, nJ 2 and [p, qJ 2•

If we have two lines of the first kind, t e con tr ction c

a second point i~cident with both lines is similar to the above

construction.

In addition, recall that two lines of different kinds cannot

be neighbours.

2.26. Lemma. If (a, b) and (c, d) are two neighbouring points

incident with a line of the second [firstJ kind, then they are inc:dent

with another line if and only if a - e c D+ [b - d c D+J, where D+ is

the set of right divisors of zero.

P oof. Assume (a, b), (e, d) I em, nJ
2

, [p, qJ
2

• Then am + n :::; b :::;

ap + q and em + n :::; d :::; ep + q imply (a - c)(m - p) :::; O. However,

m - p I 0; otherwise, n ~ q :::; a(p - m) :::; 0 and the lines are equal.

Therefore, a - c C D+.

Next, assume a - c c D+. Thus, there exists riO such that
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(a - c)r = O. Let p :; m + r. Then

am + n = a(p - r) + n

:; ap + (n - ar)

~ nd

em + n = c(p - r) + n

= cp cr + n

:; cp ar + ar cr + n

= cp + (n ar) •

Hence, (a, b) , (c, d) I [Pt n - arJ 2•

If (a, b) and (c, d) are t\!O neighbouring points incident

with a line of the first kind, then a similar argument shO\~s that a

second line through these two points exists if and only if b - d C D+.



CHAPTER l~

Generalized Affine Bjelrnslev Planes

4.1. In the last chapter, we investigated the incidence

structure constructed over a local ring and found it satisfies several

of the axio~s of an A. H. plane. We also showed that the missing

axioms were equivalent to certain algebraic properties of the local

ring. In this chapter, we shall consider the incidence structure

satisfyine the same axioms as the incidence structure over a local

ring did. We show that under certain assumptions, such a structure

may be coordinatized, in the manner of Artin [1J, by a local ring.

Let ~ = < iP, [" 1,1\ > be an incidence structu e with

parallelism. We define the nei~hbour relation on P to be an arbitrary

equivalence relation on P X P wh'ch also satisfies the condition that

if two points are not in the neighbour relation, there exists exactly

one line between them. ~10 lines are defined to be neighbours if

for any point on either line there exists a neighbouring point on the

other line.

If ~ also satisfies the following axioms, we call ~ a

generalized a fine Hjelmslev nlane (generalized A. H. plane).

Gl. There exists a triangle.

G2.

G3.

If

If

P I 1, m, then l-Ym

P, Q I 1; P, RIm;

!t2

implies cardfP I 1, mJ = 1.

QNR and lli-m, then P"'Q, R.



G4. If P I 1, mO Q I 1, n; l<1'm al'ld mNn, then p", Q.,
G5. If 11\ m; P I 1, n and 14- n, then m+n and there

exists a Q I m, n.

G6. For any P c lP and any'l c [~, there exists L(P,l) c [L

such that P I L(P,l) and L(P,l)1\ 1.

It is clear from the definition that the neighbour relation

on L is also an equivalence relation.

4.2. Remarks. Let ~ be a generalized A. H. plane.

1) For any line 1, there exists a point P such that P~X,

for all X I 1. This is prov~d in the same ann~r as Lemma 3.20.

2) On any linE' 1, there exist points P and Q such that P1- Q;

hence, for any P T 1, there exists Q I 1 \\lith Ql' p. The proof

of this is similar to that of Lemma 3.21.

3) Through any point P, there exist three non-neighbouring

lines. By Gl, we may select a triangle with sides 11 , 12 , 1
3

• Since

these lines are pairwise not neighbours, by G5, .the three lines

L(P,ll)' L(P,12)' L(P,13) are also pairwise not neighbours and all

three pass through the point p.

This also implies that for any given line m and any point

P I m, there exist two l'nes n
l

and n2 through P such that the three

lines m, nl , n2 are pairwise not neighbours.

lj.3. Lem ..-. If g /I h; PIg; Q I h and P,.., Q, then g'" h.
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Proof. Choose R I h such that R'1' Q. Then R'¥ P and RP IV RQ by

G3. By G5, gNRP and by transitivity, gwh.

4.4. We now define some mappings on the set of points. We

call a map, cr: iP ~iP, a dila t t on of ~ if and only if P, Q I 1

implies oP I L(crQ,l), for points P and Q and a line 1.

~ ~

A dilata tion '"(. is a quasi transla tion if l: has no fixed

"-
points or 1: is the identity.

A line joining a point and its image under a dilatation is

called a tr~ce of the dilatation.

A quasitransla tion T is a tra slation if and only if every

line parallel to a trace is also a trace.

It is clear that the identity map on P is a translation. Let

D be the set of dilatations of a generalized A. H. pl~ne ~ and let

T be the set of translations.

4.5.-Rem .rk. If L is a translation with a trace 1 and P is any point,

then l:P I L(P,l). By definition, L(P,l) = m is a trace of 1:; hence,

the e exists a point Q such that Q,"'[Q I m. Hmo/ever, L is a dilatation ~

therefore, -CP I L(t:.Q,m) = m. Thus, P, 1:P I L(P,l).

4,6. Lemm~. The images of two non-neighbouring points uniquely

determine a dilatation.

Proof. Let P and Q be two on-neighbouring points ...,ith images (J P and



R = L(C5P,PR) "LG:YQ,QR) is a un·.quely

(S' Q unde-r some dj la ta tion C), respec tively. By 4.2, there exis ts a

point R ..... ith R4-X, for all X I PQ. In particular, R4-P, Q and so

there exist lines RP and RQ. Clearly, the t~Jee lines are pairwise

not neighbours. Therefore,

determined point.

Now consider any point S. If SIVR, then SI'I-X, for all

X I PQ and as above (JS:;.; L(GP,PS) I\L([)Q~QS)o If S1-R, then there

exis ts a line SR and SR ,p RP or SR +QR. \-Ji thou t loss of general i ty ,

assume SR~RP. If S /VP, then G3 wot:.ld jmpl:r p"", R; a contradiction.

By G4, the lines SP and SR are not neighbours. Therefore,

uS '= L(ITP,SP)/\ L(GR,SR) defines a tmique point.

Thus, () is comple tely de fined.

4.7. Lemma. 'I'he following are equivalent for a dilatation () :

1) For any pair of non-neighbouring points, P and Q, \;le have

U P-i-OQ.

2) IT is bijective.

Proof. Assume there exists a pair of non-neiGhbouring points, P and

Q such tha.t CJP1-0-Q.

Let R' be a point such that R'~X, for all X IOPGQ. Then

there exists a unique point R = L(P, PR')I\L(Q, QR'). ClearlY',

lJR:;:R'o

Now let R' be a neighbour of some point on ~P~Q. Clearly,

R' cannot be a neighbour of both lYP and CfQ; say R'~l-lTP. Choose



()R6QIVL(GS,SR), L(oS,SQ); other~ise, crH"'O-Q by G4. Similarly,

()RUQ '" PR, PQ (since if u RUQ is not a neighbour of PR or PQ then,

using PR",PQ, G4 ,.,.ould imply CYR·....uQ). By ::!".~ transitivity of the

neighbour relation, PR "vuRC"Q A' L(erS, SR); a contradiction. Thus,

Case 2: Let

Then there exists a point S ,+ P and a point 1;11- X, for all

X I PSt By G3, we have PF IVWQ and PS"" SQ; by G5~ L(uW,PV) ::

P\v"-' L(cJ\v,vJQ} and L(uS,PS) = PS,vL(o-S,SQ).

Nm-! aRsume P';'U'Q. By G4, ffiQ""PV, PSi therefore, P'dIVPS.

HO,"/ever, since \1.-vX, for all X IPS, PH+P '; a G.011tradiction.

Thus, PN'[)Q. Symmetrically, we obtain p""rrR. Then 6RIVP..... lTQ.

4.9. Lemma. One point and its image uniquely determine any translation

that has a trace.

Proof. Let ~ be a given translation with a trace m. Take any point

f with image 1: P under the transla tion -C. By 4.5, P ~ -CP I L( P ,m) ::

). ... By 4.2, there exists a point Q with Q+ X, for all X I 1. From

the definition of dilatation, we obtain l:Q = L(TP,PQ)AL(Q,l), a

well-defined single point.

As we now have b/o non-neighbouring points and their images,

4.6 gives us the desired result.

4,10. Remark. A translation without traces i~, of course, completely

determined by the images of two non-neighbouring points.
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4,11. Lemma, The composition of two dilatations is again a dilatation,

Proof. Let rr
l

and ~2 be two dilatations, Consider the composition

ITlo \)2° If P, Q I 1, then ()2P I L(IT2Q,1) and

°1 (IT2P) I L(rrl(G2Q),L(~2Q,1)) = L(~1(~2Q),1)

4,12. Lerlm3.. For any translation -c. with a trace 1 if -CP,,",P, for

some point P s then ""C.QIVQ, for all points Q.

Proof. For a given translation 1:, assume there exists a point P \... ith

L P ""' p. Consioer a.'1.y other point Q.

If Q1-X, for all X I L(P,l), then by definition, '1:Q =

L(Q,l)AL(LP,PQ). Since PlVrP and QI'I-P, -CP, G3 implies that

PQN1:.PQ; hence, by: G5, "'(PQ"'L(-CP,PQ). Hovlever, L("(P,PQ)+L(Q,l) by

G5, so by G4, Q.,,-cQ.

If QNY? for some Y I L(P,l), then there exists an R such

that Rrf.-X, for all X' I L(P,l) and so 1:R""'R. There also exists a

point S such that StYX, for all X I PR. Clearly, S =

L(LP,PS)I L(LR,RS). Since PS~RS by G4, either

RS1-L(S,l). vlithout loss of generality, assume

PStitL(S,l)

PS4-L(S,l).

or

Since

S.-f.-P, S-r"LP and by G3, PSIVLPS. By G5, 1:PS.-vL(1:P,PS); therefore s

by G4, SIV-cS.

There exists m c {PR, RS, PSi such that Q +X, for all X I m.

By a similar discu sion to tr.e one above replacing PR by m and S by

Q, \-/e obtain QIV"CQ.



We call any translation which maps a point P to a point Q,

where Q~P, a neighbou' translation. Let N he the set of neighbour

transla tions.

~. We now introduce a new axiom.

G7. For any pair of points P and Q, there exists a tr nslation

taking P to Q.

A generalized .:I.. H. plane in which G7 holds is called a

~eneralized ~. ~. translation nl~ne (or a generalized T. pane).

4.14. A minor Desargu~sian co~fisuration, Cl, (cf. Figure 4.1)

is a set of six points P., Q. (i= 1,2,3)
). ].

and eiGht lines

(i = 1, 2, 3); ql' q2 satisfyin~ the followins conditions:

)J g·IIe.; i, j - 1, 2, 3.
:I. J

2) P. , Q. I g. ; I = 1, 2, 3.
:I. :I. :I.

3) P. , P. I Pk; ( i, j I k) is a permutation of (1, 2, 3) •
:I. J

5) PIli ql; P2 II q2·

6) PI' P2 +gy

We say that a generalized A. H. plane has property Dl if and

only if for each minor Desarguesian configuration we have Q2 I

4.15. Theorem. In a generalized A. H. plane, G7 im.lies Dl.
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Proof. Consider any minor Desarguesian configuration, Cl. G7,

there exists a translation, 1:, which aps P
l

to Ql. Clearly,

-CP3 = L(Qi,P2) "L(P3 ,gl)

= Q2" g3

= Q3

and

i:P2 = L(Q3' Pl) "L(P2 ,g3)

= Ql"g2

= Q2·

Hence, by de inition, Q2 I L(Ql,P3).

4.16. Le~ma. Translations are bijective.

Proof. Case 1: Let -c be a translation with a line 1 as a trace.

Select a point P and take any point Q such that Q-1-X, for

all X I L(P,l). Then LQ = L(LP,PQ)"L(Q,l). If L:P ...... -CQ, then by

4.3, L(P,l) = L(TF,l)IVL("CQ,l) = L(Q,l). Since L(P,lH,pQ, G4

implies P "'Q; a contradiction. Hence, "(P+ LQ and by 4.7, "( is

bijective.

Case 2: Let L be a translation without traces.

Then for any point P, p"" -CP. Consider a air of non

neighbouring points P and Q. Clearly, "(P~ P1--Q-T.Q. Thus, as before

L is bijective.

4.170 Re ark. Let 1: be any translation. Then for any pair of non

neighbou ing points P and Q, Ie have "(P~LQ. If we were to assume the
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existence of a nair of non-neighbouring points P and Q with -CP"'LQ,

then for a point R "lith R -I-X, all X I PQ, we have "'CR =

L(TP,PR)AL(LQ,QR). cf. proof of Lemma 4.6. By G3,LR~LP,-cQ.

However, for any point S, there exists a line 1 in {PQ, QR, PR} such

that S,""X, for all X I 1. By the same reasoning as above, we obtain

"tS IV 1:.P, -CQ, LH. Thus, 1: cannot be bijective by 4.7 and so it

cannot be a translation.

Henceforth, we assu e that ~ is a generalized A. H. translation

plane.

4.18. Lemma. The inver-se map of a translat'on with traces is also a

translation with the same lines as traces.

Proof. Take any transla. tion -C with a line 1 as a trace. Since T

is bijective, the inverse map is defined on all points p. If there

is a line m with "[P and LQ on m and L(l:P, 1) I- L("CQ, 1), then we may

consider two cases.

Case 1: LtcP ,1H... L(l:Q, 1).

By 4.3, LP~TQ and P;J.-Q. Therefore, there exist unique

lines "C P"CQ and PQ; hence, l:.P I L(TQ,PQ) implies P I L(Q,LPLQ)

= L(Q,m).

Case 2: L(TP ,1) "" L(TQ, 1).

There exists a point R such that TR+ X, for all X I L(TP ,1).

By definition, LR1-X, for all X I L("'[Q,l) also. It is clear that

l:RLP+-L("'[P,l), l:.RTQ+L(cQ,l) and L(R,l)+L(P,JJ, L(Q,l). By Case 1
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C'.nd G5, this implies RP+ L(LP,l) = L(P
1
1) lUld RQ-1J L(TQ,l) = L(Q,l).

By G5,· RP, RQ-fL(R,l). \ve now have P I L(Q.m) by Dl.

Finally, if 1,(TP,i) = L("TQ,l) and L(TP,l) is the only line

through 1:P and l:Q, then L(LP ,1) must be the only line through P and Q

by the definition of dilatation. If there exists a line m I L(lP,l)

with -CP, LQ I m, then for any point I:R 'tlith LR+X, for all X I

L(LP,l), we have 1:R4-X, for all X I m also. By definition,

"CRCP, l:R1Q+L("CP,1), m. Hence, there exists a point. S =

L(Q,m) A L(R,lRLP) and

-CS = L(LR,L(R,LRCP» A L(LQ,L(Q,m»

:;; "CRtRAm

=-c.P.

By the injectivity of ~ , we have p:;; S. Therefore, P I L(Q,m).

Thus, l:..-1 is a dilatation.

It is clear that 1:. -1 has no fixed points unless L is the

identity, and that all the traces of -C are traces of 1[-1. Hence,

1[-1 is a translation.

4.19. Lemma. The set of translations is closed under functional

composition.

Proof. Consider two translations L
l

and "'(2. By 4.11, L
l

oL
2

is

a dilatation. Choose a point P and let Q = (L
I

OL
2

)P, R = T
2
P.

Suppose, first, that ~l has a trace 1
1

•

\ve may assume that R I 1
1

• Thus, Q I 1
1

also. If L
l
° l2

has a fixed point S then (llOL
2

)S = S. Since 1[1 is bijective,



and

t - -1 .a race, L
l

. lS

Q ::: -LpQP. In addition,

L 2Q::: L(Q,1
2

)I\L(R,m),

L 2R == 12 1\ L(L2Q,11)'

LpQR := L(R ~m) A L( Q, 1
2

) =.: L
2

Q

nri-12 , L(P,ll)' m. No· take any point SIn such that S,""p. 'l'hen

-CPQ
S = L(S~m)A L(Qf n )

L 2S = L(S,J.
2

) I\L(R,n)

L 1 (l2R) == L(L2R,ll) A, L(Q,12)

::: L(L2Q,11) A L(Q,12).

Case 1: 7~ere exist lines 1
2

and m such that P, R I 1
2

and

P, Q I m.

identity trllnslbbor:. On the other hand, if L
l

oL
2

has no fixed points

then it is at Jeast C"l qU3.sitranslation. 'vIe now have four possibilities.

a) First, suppose 11' 12 , m are mutually distinct and two of

them are neighbours. 'I'hen there exists a line n through P such that

Tl (L2S) ::: L(TZS, 11) A L(Q,n).

~/e ha\re tllref' parallel lines n, L(R,n) and L(Q,n). In addition,

(T 0""[ )? ::0

1 2

J.2 'i-' nand m-1' n. By Dl, LpQS I L("[2S' 11); therefore,

TPQS::: L(l2S ,11) /\ L(Q,n) ::0 L
l

(-SS).

Thus, ~Q - 1°"[2 by 3.6.

b) Next, SUppose 11 , 12 , m are mutually distinct and airwise

not neighbours and P, Q, R are also pairwise not neighbours. We ha.ve

and
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Ho~evcr, LZQ I L(TZQ,ll)' L(Q,12); therefore, by GZ and G5,

Tl(LZR) ::':LZQ ==LpQR. By 3.6, Ll°'CZ ==~ and hence, TloTZ is a

tran.slation.

c) S~ppose all three points are incident with some line 1.

There exis tB S such thn t S+ X, for all X I 1. Thus, there exis t

lines SP, SQ and SR. Clearly, SP,,-,SQ if and only if P,....Q; SQ,.....,SR

if and on.ly if Q,,-,R and SP,..,SR if and only if P""R. If SP...-.-SQ,

then by a), we have LPQ = l sr;Cps' If

have lPQ =LS<-{PS by b). Similarly,

'!'here fore,

S?"" SQ, then P-fQ

and

and we

~ = -c L
L l SQ RS·

-Cicz == (lSQLRS)(TSRLpS)

= LSQTpS

== -rPQ'

L 0"'[Hence, 1 Z is a translation.

d) Finally, suppose that 11' 1
2

and m are mutually disti ct and

painlise non-neighbouring and. P, Q, R are neighbours. Then there

exiGts S I 1
2

such that S~P. Clearly, Sr/-Q, Rand SP/VSQ.

Hence, by a), L pQ == LSqlpS and "'[SQ =lRQLSR" By c), --CpR = LSRLpS '

Therefore,

-r- L'C (-r- -)- -'C - L
L pQ -' SQ PS = L.RQ lSR L pS = lRQt'R = 1 2'

C ~ ?: L
l

and '"(Z re translations '.... i t traces, but the e

._ :1 line th ough P 'lnd Q.

If ther_ exist.s a po'~t S such that ,L
I
L

2
(S) I 1 for sone

'( L ~·C Hline 1, then 2 S (S) by Case 1. owever, this implies that
1 ,Ll l 2

P,L
l
L

2
(P) I L(P,l); a contradiction. ':i:'hu..~, LiLz has no traces and

the condition that all lines parallel to a trace be traces is satisfied
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vacuou.sly.

Case 3: There exists a line m with P, Q I.m, but no line

through P and R.

ThUS, 11 and mae distinct and L2 has no traces. By Case 3,

Thus, lloL2 is a translation.

Case 4: Ne ithAr L2 nor 1:PQ have traces. The resul t follows

in the same rnanne as Cas:) 3, using Case 4 instead of Case 1.

Ne. t, we assume that 'r1 ~s without traces. This implies that

RIVQ. Therefore, there exists a point S such that S,y P, R, Q. By

"C1L2
:;:: CLSQ'~S)L2

:::. LSQC'LRSL2)

:;::
lPQ'

and Therefore,

4.20. Remark. ~~0 proof of Lenma 4.19' . yields that if L1L2CP) :;:: Q,

tr.en ·riL2:;:: lr~. Hence, if-CPQ is a translation without traces, we

may select a point R such that R~P, Q and we have LPQ :;::L'RQLpR"

Since -CR and ~PR are translations with traces RQ and PR, respectively,

they ~re completely determined a~d hence, so is L pQ • Thus, there is

only one tr~lslation taking P to Q. This i,plies th t the translations

wit.hont traces a e also completely determined by the image of a

single oint.

4.21. lemma. The inverse of any t anslR.tion is also a translation.



Proof. Take any translation L •

a translation by 4.18.

-1
If L has a trace, then L is
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Assume -c has no traces and select a. y point p. Clear y,

P,,-,'CP. There exists 8. point Q such that Q1-P,TP. By 4.19,

T = TQ,""CplPQ: However! L Q,TP and lPQ

traces respectively. By 4.18, rQ;Cp-
l

However,

(where i is the identity translation).

L -IT -1 T
PQ Q;r.p f; •

have the lines Q1P and PQ as

T -1and PQ are translations;

-1Therefore, -c ::

4.22. Lemma. Comuosition of translations is commutative.

Proof. Consider any two translations L
l

and ~2' By 4.19, both

1:iL2 and L 2l
1

are translations. Choose any point P and let

Q :: L1L
2

P ana R:: T
2

R.

Case 1: P, Q I 12 ; R, Q I 11 and ll--Y 12 ,

Clearly, Q ="L
l

(L
2

P) = 11"L(L
1
P,lz) and

L 2 \(lP) :: L(CI P,12 L" L(R,ll). Thus, TiL2 =""C2L1 •

Case 2: P, R I 1
2

; R, Q I 1
1

and 1
1

",",1
2

,

There exists a line m through P ''lith m +1
2

, Hence, m+L(P,ll)

and by G5, 01';'11 and they meet. Take S I m such hat Stl-P. VIe

have Stf.-X, for all X I 1
2

, L(P,ll) by G3. By G5, L(P,1
1

).... 1
1

•

T'nerefore, S+X, for all X I 1
1

also. Hence, SP, SH, SQ+1
1

, 12 ,

By 4.19, we have L l = lSQLRS ' By Case 1, LZl SQ =LSQLZ and



L ZLRs ::: -cRST2 • Hence,

L 2T1 =LZ(-SQl:RS)

= (T£lSQ)LRS

= (LSQLZ)lRS

= lSQ(LZlRS )

::: LSQ(LRSCZ)

= (TSQ~S)-LZ

=-s lZ·

Case 2: One or both of the translations L 1 and 1[2 has no

traces. Thus, at least two 0 the points P, Q, Rare ne"ghhours.

There exists a point S Nith S1' P t Q, R. By 4.19,

L Z = lSIFps' L l ::: LSQLRS and LPQ = LSQ~'. By Cases 1 and Z,

LZLJ. = (TSRLpS ) (lSQLRS )

= ("CpSTSR)(~SLSQ)

=' LpSTSQ

=L pQ

=rltZ•

~. In 4.18 through 4.zz, we have shown that the set of
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translations of a generalized A. H. translation plane is closed under

functional composition and the takin~ of inverses. Composition was

also shown to be commutative. The set of translations is, therefore,

an abelian group.

We call a map, a
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endomornhism of T if the traces of L' are among the traces of L. a

and for any two translatjons L
1

nd L
2

, VIe have (L
1

"C
2

)B = L
l
a

T:
2

a •

Let L be the set of trace-preserving endomorphisms of T.

Consider the map which takes all translations to the identity

translation. Clearly, it satisfies both the conditions of a trace-

preserving endomorphi~m. 1e de. ate this special endomorphism by O.

We denote the identity endomorphism by 1. To remain consistent we

shall denote the ~np takine each tr~nslation to its inverse by -1.

We now introduce two more maps on T. Fo~ a, beL, let

a +be the map defined by L

= (Tb)a, for any LeT.

b --:. a..-b
= L l and ab the map defined by

~24. Lemma. If a, beL, then a + b, ab c L.

Proof. Take any translation L. Since the traces of L a and L b

include the traces of T , the t~aces of L are also traces of

by Case 1 of 4.19. Clearly, the traces of I[ab

include those of l:.

Now hoose 'e
1

, L 2 cT. T"he:'1

(1:;(2)a + b = (Lil 2)a(L1L
2

)b

=T ae [bL b
1 2 1 -Z

=T a[ b[ aT. b
112 2

='[ a + he a + b
12'

and
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= <T
l

b )a((2b )a

= L ab.e ab
12'

4.25. Lcmm~. L is a ring.

Proof. By 4.24, L is closed under both addition and multiplication.

a +
L

Let -Cc T; a, b, eeL. We have

Ca + b) + c - a + b..-c
L = L L

= CTat:b)t::c

::; rc~b.ec)

. a-h + c
=L:L

a + Cb t c).
=L ,

b =-Ca'Lb =L~a =-c...b + a.,
La + a = -cG.ca = La = -CaLO = -c.a + 0;

L + C-l)a = -cT.C-l)a ::; -CaCLa)-l = i ::; -Ca.

Thus, L is a commutative group under addition. \Ale also have

l:Cab)c := (""[c)ab = CC-Cc)b)a ::; (-cbc)a = -caCbc );

1:.la := tca)l ::; L.a ::; C-c.l)a ::; L:.a \

L:.a(b + c) = (Lb + c)a ::; tt~c)a ::; (Lb)aC-Cc)a ::; Lab.e.ac ::; -Cab + ac;

"(b + c)a := (La) b + c = <-ea) b('Ca)c := 1:..ba-cca = -cba + ca

Th 6, L is a ring.

Let L· be the multiplicative monoid consisting of the non-z ro

elements of L.
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~t26. Theorem. Let P be a given point. For any a c L, there exists a

unique. dilatation ~ == rr (a) which leaves P fixed such that

L pS
a

==L p CJS' for all points S. If a == 0, then CJ is the degenerate,
dilatation which maps every point into p.

Proof. Suppose such a dilat~tion exists. Then for any point S, we

have () S == -cp crsP == -CpSap • Thus, (J is completely determined.,
Therefcre~ if such a dilatation exists it is unique.

Now define a map cr by crs =Lpsap, for all points S. Consider

any pair of points Q and R Jhich are incident with some line 1.

and so ~Q == ~a(UR). However, a preserves traces so all lines

11 I -apara1 e to are traces of L RQ • Therefore, (fQ I LUR,l)

Thus, CJ is a dilatation. In addition, ()P =L pp8p = p. It is

clear that Cl is not the dilatation taking all points to the single

point P unless LPQa = i, for all Q. This is the case if and o~ly if

a == O.

a
Finally, we have lp rr-S == l .,- 8.-. =1: ,for all points S.

~ P,LpS ~ PS

4.27. Lemma. Let () c Dp and LeT.

Proof. Let 1:P = S.

Then ()"L == L p u"CP •,

Case 1: Assume the translation L has a trace 1. Clearly,
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Now tilke Q+X, for all X I L(P,l). This implies that PQ1'L(P,l).

Let iJQ;::; R. Then

L p (fdJQ ;::; L p OSR ;::; L(R,l) A L(oS,PQ)., ,
However, tS(-cQ) I L(()S,p~), L«(J"Q,l) =: L(R,l). Therefore, by 4.6,

Case 2: NoV! assume the translation L has no trace. There

exist two non-neighbouring lines m and n through p. By G5, L(S,n)~ m

and there exists a point U =: mI\L(S,n). Hence, T =: LUSLpU and

-CUSP =: L(P,n)AL(S,m). Let -CUSP =: It!. I3y Case 1,

(J L. =u(Lpvl~U) = L p ,<J\,,(\JLpU ) =: L p ,tl\; lp ,cnF.

'vie shall show that L p ,u "JlP ,tJU =: T p ,uS' \'Ie have

-Cp crviCp (J~ =: L p 151,/iJU) =: L(GU,n)A L~\·J,m).
" ,

Ho'",ever, () is a dilatation and so C>S I L(oU,n), L(Ovl,m). Thus,

4.28. Theorem. Let P be a given poi~t. The mapping hp

defined by hp(a) =:u(a) is a monoid isomorp~ism.

L*~ Dp

Proof. To show that ~ is a monoid homomorphism, we prove that

()(a)(J(b) = o-(ab) and rr(l) = i, for all a, beL. Take any point

S and any a, beL. Then

LP,<J(a)iJ(b)(S) ;::; CLp,tr(b)(S))a

= «("c )b)a
PS

;::; (I:" )ab
PS

= L p ,<J(ab)(S)'

and
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Therefore, ~ is a monoid homomorph'sm.

Now let tJ(a) =:()"(b). Then for

L ps
a

= lP,G(a)(S) = lp,lY(b)(S)

all points S,

b=L pS •

1~us, a = band hp is injective.

=T-p uS' for each S.,

Let If c Dp •

He shall

surjective.

a

It remains to show that ~ is

- aT ---->- T, by LpSDefine a map,

show that a is a trace-preserving endomorphism. Consider any two

translations II and l2' Letl.P=Q.,for i=1,2.
~ ).

'l'hen if

L.1(2P = L
1

Q
2

= S, we have

'8 a
(L1T 2 ) p ="CpS p = Lp,<rSP = Lp ,<r(L

I
Q2)P :=u(T.LQ2)

and

T-laC2ap =lla(Lp ITQ )p == Lp <rQ lp ~Q p - 'Cn lrQ ( Q2)'
, 2 ' 1 ,v 2 ., 1

By 4.27, ITL.
l

= Lp ,()LlP{f. Therefore, (LiC)8 ::: L
l

a T2a. Take any

translation L.:::LpS ' If there is no line through P and S, then the

traces of L D.re obviously among the traces of -c a. Assume that

L has a trace 1 \ve may assume that PI). and so S I 1. Since u

is a dila ta tio. , -Cap = ITS I 1. Thus, the traces of L are traces of

a
L also.

L;'.29. Rem'3.rk. An element of a monoid A is a non-unit if it is not

invertible. Let t") be the set of non-units of A. If '1 is an ideal,

then A is local and 'I is the unique maximal ideal of A (cf. 3.2).

Let ~ be a generalized T. plane. Consider Dp , the set of

dilatations with fixed point P, and ~, the set of degenerate

..
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dilatations with fixed point p. By Lt .7, if Cf c ~, then all points

~re mapped by G to a set of neighbouring points. By 4.8, t ere can

be no dilatation in Dp which takes neighbouring points to non

neighbouring points. Thus, ~ is the set of non-units of Dp • By 4.6,

Dp is a monoid under functional composition. Take any ()l C !'Ip and

'() 2 c Dp • For two non-neighbouring points P and Q, 4.7 implies

lJIP;v{)lQ and 4.8 yields ()2«()lP)'V(J2«()ltt). Also by 4.7,

~1«()2P)~ul(~2Q). Thus, ~ is an ideal and Dp is a local ~onoid.

In Theorem 4.?8, \"e shovled that hp is a monoid isomorphism

between L* and Dp • Th-, L* is also a loca monoid and a c ~ (where

'I is the set of non-units of L*) if and only if (J ~a) c~. \~e

have the result that IJ is a local ring.

~o. Lemma. Let a c L.

if a c '\.

a
Then for any L c T\N, LeN if and onl

Proof.
a

Suppo.se tha t for some L c T\N, we have TeN. Le t '"CP = Q.

Then there exists a dilatatiop.. Cl = cr(a)

for all translations -CPS. In particular, La = L p (JQ. Consequently,, .
P"-'{)Q; however, P+Q implies, by 4.7, that (') c Hp • 'fll,us, act').

Now assume a c 1\. Then ():: If (a) c r'\> and for any non

neighbouring translation LPQI we have LPQa =:lp,tfQ c N.

it.21. Before we can coordinatize our generalized T. plane ~ ,

we must introduce an additional axiom.
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G8. If 1:1 c T\N, -L2 c T, and the traces of T
l

are among

the traces of L 2 , then there exists a trace-preserving endomorphism

a such that L l
a =L2•

It is clear that T
l

must be a translation with traces and

therefore, l:2 must also have traces.

We also introduce a second condition.

G8(p). For each collinear triple (PQR) of mutually distinct

points with P.-j..Q, there e:<ists a dilatation (r which leaves P fixed

and takes Q to R.

4.32. Theorem. In a 6eneralizec T. plane 08 is equivalent to G8(p).

Pr££.... Assume that G8 holds in a generalized T. plane ~. Select

any collinear triple (PQR) where P~Q. By G7! there exist translations

L PQ and LPR" Since p ..,., Q, L pQ i N. By G8, there exists a trace

preserving endomorphism a of T such that L pQ
a =-CPR" By 4.26, there

exists a dilatation () with fixed point P such that L ps
a

=Lp()S' for

all points S. In particular, l.pQa =Lp,\YQ. Thus, -CpR = Tp,LJQ. If

we now apply this to the point P, we obtain,

.R = lpRP :::; T P ,iSQP = ()Q.

Thus, IT is the required dilatation.

Now assume G8(p) holds for all points p. Consider two

translations "[1 and L 2 ' such that L l c T\N and the traces of L l

are among the traces of L 2" Take any point P and let Q = T P and
1
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collinear. If L l == l2' then the endomorphism 1 takes L l to l2' so

we may assume Ll and l2 are not equal. Hence, Q and R are distinct.

The endomorphism -1 takes L
l

to its inverse so we mBy also assume that

p and R are distinct. By G8 (p), there exists a dilatation ~ such that

IT P == P and \5Q == R. By 4.28, there exists a c L such that

L a - L
PS - P,GS'

Therefore, L
l

a

for all points S. In particular, L 1a == LPQa

== l.p ,aQ == L pR == ""(2. Thus, S == L l a.

~~. We now define a second configuration~ A Desarguesian

confiRuration, C2, consists of eight lines Pi' gi (i == ,2, 3); ql'

q2 and seven points P, P., Q. (i == 1,2,3)
:1. :1.

with the fol1o~ing

properties (cf. Figure 4.2).

1) PIg. and P., Q. I g.; i = 1, 2, 3.
:1. :1. J.

2) P~, p. I Pk; (i, j, k) is a permutation of (1, 2, 3).
). J

3) PIli ql; P21\ q2·

4) P'"I,Py

5) PI' gl rt g3 or P2' g2 tf gy

We say that a generalized A. H. plane p~s property D2 if and

only if for any Desarguesian configuration we have Q2 I L(Ql,P3).

4.34. Theorem. In a generalized T. plane a8 implies D2•.

Proof. Consider any Desarguesian configuration, C2. vli~hout loss of

generali ty, we may assume . PI' gl t{- gy By G4, we have cmd

P2 4gr By 4.32, G8 implies G8(p). Therefore, there exists a



Figure 4.2.
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dilatation, u c Dp , such that ()P3 :::: Qy B definition,

cr P
l = L(P1,p) Agl = Ql'

68

a dilatation, we have Q2 =crP2 I L(Ql,P3)' Thus, we have property D2.

Henceforth, we assume that both G7 and G8 hold in a generalized

A. H. plane ~.

4,35. Theorem. Let L l and T 2 be non-neie;hbourine; tran6lations

such that for some point P, P1J.P--I- PL
2

P. Then for any translation L ,

there exist unique endomorphisms a, b c IJ such that L::: L
l

a L2b.

Proof, Take 1:1 , '[2 and P as defined in the t.eorem. Select any

translation L and let L:P:::: Q. Since FLIP -1--PL
2
P, L(Q,PSP)+ PL

2
P

and there exist translations L pR and lL
RQ

• Clearly, PL
2

P is a trace

of ~R and FLIP

a
that TRQ::: II

a trace of LRQ'

b
and L pR = l2 •

By G8, there exist a, beL s 'eh

Th -_ ... r - - a- b
us, L- ~RQ~PR - Ll l2 •

Now suppose there also exist c, deL such thRt L

Then
..,...a b_ cd
\"'1"(2 - L l "C2

a
are traces of Tl

and ..,- a - c ..,.... d - b H P- P d
L l = L 2 • owever, L

l
an

- c and l2d - b t respectively fl.nd PLIP-I- PSp.

Therefore, by G2, the two lines can meet in only one point. Hence,

if and only if L
l

a - c p =a
P, '"(1

T d 
.... 2

-c -Cd-b
P = 2 P I FLIP, P~P

b a-c Td-bp..= p. Thus, L
l

= 2 ;:: i . Consequently,

a - c = 0 :::: d - band a = c, b = d. Thus, the representation,

,.. -r a_ b. .
L- = l.l ~ , 1S un1que.
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4.36. He are now ready to introducE' coordinates. \ve do this

in the same manner as Klingenberg did in ['3J. Choose any triangle

to, X, Y} as a coordinate frame for~. Let 11 = OX, J.
2

= 01. Define

L 1 =L OX and '"[2 = LOY' Take any poin t p. By G7, there e is ts a

translation -COP and by 3.35, there exist a, beL sue that

LOp =L
l
a-c

2
b • We shall call (a, b) the coord inates of the poin t P

''lith respect to the coordinate frame {O, X, YJ. Let

P = 11 A L(p , 1
2

) = (a, 0) and P
2 = 12 AL(P,ll) = (0, b) •

1

S' 1:. -"LD-r0 0 has the coordinates (0, 0) • Similarly,1nce 00 - 1 2'

X has the coordinates (1, 0) r.l.nd Y has (0, 1).

Throughout the :!'est of this chapter, \\Ie remain in

coordinate frame [0, X, Y} of -::r.

fixed.

4.37. Lemma. Let P and Q be points of ~ with coordinates (a, b) and

(c, d) respectively. Then P"'Q if and only if a - c c ~ and

b - d c 1")".

Proof o vIe first show PNQ if and only if Pl""Q
l

and P
2

",Q2 0

Assume P"'Q. By 4.3, L(P,ll)N'L(Q,ll) and L(P,12)IVL(Q,lZ)' By

By 4. 30, a - c c 'I

P1 ....... Q1 and P2'" Q20 Then

By G4, P",L(P,ll)" L(Q,1
2

)

G4, P
l

'" Q
l

and P
2

,vQ2 0 Now suppose that

L(Pl ,12 )"" L(Ql,12) and L(P2 ,11),vL(Q2,11)'

and Q-vL(P,ll)A L(Q,12)' Thus, P.-vQ.

Clearly, T 1a O = P1 ' -SCo = Q1' L2bO = P2

" a-c - b-d
\oJe have L

1
= l and L 2 = TO P •

QIPl v2 2
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if and only if Q
1

"'" P1 and b - d c 'I if and only if Q2 "" P2.

Therefore, P"" Q if and only if a - c C 'I and b - d C 1.

4.38. Remark.

(x, y), then

P =l xL YO
12'

a.....bIf L= II L
2

and P is any point with coordinates

P = (a + x, b + y). Since P has the coordinates (x, y),

• _ lL b _ B-- b
C

)L y ) _ a + x b + Y
Hence, l:.P-L

1
l
2

P-l
1

l
2

L
1

l 2 0 -ll "[2 0

= (a + x, b + y).

~. Now consider any line 1 and any point P = (a, b) with

P I 1. There exists a point Q incident \oJith 1 such that Q1-'P and

c d
c, deL such that lpQ = L

1
12. Any point '~ inc';"dent with 1 may

- t L A 'f Lbe expressed as the image of LpQ ' for some t c • Iso, ~ t c _ ,

then LpQtp I 1. Therefore, [R I R I 1) = llpQtp\ t c LJ. In addition,

T t D = (T c.c d)tp =T tCL: tdp = Ctc + a, td +b). Hence,
PQ L 1 2 1 2

tR \ R. I 1J = [( tc + a, td + b) \ teL}•

We showed in 4.37, that P = (a, b) and Q = (c, d) are

neighbours if and only if a - c, b - d c '1' Therefore, if P1- Q,

then either a - c or b - d i ~.

We now define t kinds of lines. A line 1 is of the first

kind if and only if 1 has a rep esentation of the form

l={.P\PIlj = t(tm+n, t)\ teL},

where m c '1 and n c L. We write 1 = em, nJ
1

• A line 1 is of the

second k'nd if and only if 1 has a representation of the form

1 = (P I P I 1 ~ = [ ( t, tm + n) I teLJ,

where m, n c L. We write 1 = em, nJ
2

•
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4. 1+0. Th~ore ;. For each line, there exist m, n c L such that

1 == em, nJ 1 or 1 == em, nJ Z• Comrerse1y, "en ro, n !; L, there

exists a line 1 == em, nJ z'. If m c l' the, ',.here exists 1 == em, nJ 1•

Proof. By 4.39, each line 1 has a representation of the form

[(tc + a, td + b) It c L1, where (a, b) I 1 and the non-neighbouring

transla bon L
l

cLZd ha.s 1 as a trace. Since L 1crZd tN, either

c I. ~

t = (s

or d t1. If c t f), then let s == tc + a. Clearly,

-1 1 1-1- a)c and td + b == (s - a)c- d + b == sc- d - ac d + b.

-1 . -1 J
~us, 1 == [c d, b - ac d i. If c c ~, then

s = td + b Clearly, t = (8 - b)d-1 and

Let

c + a == (s - b)d-l c + a == ad-Ie - bd-1c + a. Thu, 1 ==

-1 -1 J[d c, a - bd c 1.

1 mNow take ~ny 01, n c L. Let ~== Ll lZ ' and P be the point

1- m (with coordinates (0, n). Then P == L
l

LZ 'p = 1, 01 + n) and

(0, n).y (1, :n + n). However, n ::; Om + nand m + n == 1m + n. Thus,

m 1
If 01 c '1, let 1: =L l lZ. Let P be the point with coordinates

(n, 0). Then L P = L
l

mLz
l p = (01 + n, 1) and (n, 0)1- (01 + n, 1).

However, n = Om + nand 01 + n = 1m + n. Thus, (n, 0)(01 + n,l) =

4.41. Lemma. A line of the f'rst kind and a line of the second kind

intersect in a unique point.
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Proof. Consider any two lines em, nJ l and [u, vJ 2 which are of

different kinds. By definition, m c~; hence, urn, mu c~. Since

L is a local ring, (1 - urn), <J. mu) t ~ (cf. 3.2). First, assume

the two lines intersect in some point (x, y). Then x = ym + nand

y = xu + v. ) -1Hence, x = (vm + n)(l - um and ) ( ) -1y = (nu + v 1 - mu •

Thus, the point of intersection is unique if it exists.

Now consider the point «vm + n)(l - um)-l, (nu + v)(l _ mu)-l).

Then

(vm + n)(l - um)-lu + v

= «vm + n)(l - u~)-lu(l - mu) + vel - rou))(l _ mu)-l

( ( -1 )-1= vm 1 - um) u - (1 - urn umu - u)

) -1 -1
+ n«l - urn u - (1 - um) umu) + v)(l -

um)u - u)

and

= (nu + v)(l

+ n(l - um)-l(l - um)u + v)(l _ mu)-l

) '-1mu

(nu + v)(l - mu)-lm + n

= «nu + v)(l - mu)-lm(l um) + n(l - um)(l - um)-l

4.42. Lemma.

= (vm + n)(l - um)-l.

Thus, «vm + n)(l - um)-l, (nu + v)(l - mu)-l) is always incident with

em, nJ l and [u, vJ 2 •

Two lines em, nJ. and [u, vJ. are parallel if and only
~ J

if they are of the same kind and m = u.
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Proof. G6 and 4.41 imply that two parallel lines mus' of the

same kind.

Suppose both lines are of the first kind; ie., vie have

therefore, each has only a sine;le parallel pencil of

h .,- T m_ 1. C'. 'I 1ence, ~= 1 l2. ulml ar y,

m 1
Cle rly, -s. r2 '

em, nJ l and [u, vJ l • Then there exists a translation T with em, nJ l

as a trace such that LO = (m, )J;

traces. Hence, em, nJll1 [u, vJ l if and onl if there exists a

'-Llu-L'2L __ (-r mr- 1)trace-preserving endomorphism a such that L L -1 2

ie., such that a = 1 and u = am = m. 'rhus, u = m.

A similar disclssion gives the same result if the lines are

of the second kind.

4.43. Thus, if a generalized A. H. plane ~ satisfies G7 a~d

G8, it may be coordinatized by a local rine; L. As in the previous

chapter, we have the add'tional results thRt a c bL or b c aL ~or

all a, beL if and only if there is a line through every p3.ir of

points and that ~ = D_ if and only if for any tW0 lines g and h.

card tp I g, h J = 1 implies g~ h. All the other resul ts regarding

the behavior of lines and points proved in the last c apter also hold

in ~.



CHAPTER 5

The Fundamental Theore3 of Generalized ~. ~. Pl~~es

g. In this chapter, \ole discuss the fundamental theore.n of

a generalized A. H. plane which is coordinatized by a local ring.

Henceforth, we let ~ be such a generalized A. H. plane with

L as its coordinate ring. Let 0 be the pojnt with coordinates (0, 0).

5.2. Lemma. If P1- 0, then every point on the ine OP is of the form

tP, for some teL.

Pr00f. Let p::: (a, b).

If OP is a line of the first kind, then OP::: em, OJ 1 , for sorr.e

Oil.m C If since o ::: Om + n ::: n. By 3.5, a ::: a - 0 C r') and b = b

r 0\01 consider any point Q ::: (c, d) on em, OJ l • Clearly,

d :; d(b-lb) ::: (db-l)b

and

(db-l)a :; db-Ibm::: dm ::: c.

Thus, Q ::: (db-l)P.

If OP is a line of the second kind, then it must have second

coordinate 0 as above. Then OP ::: em, oJ .." for some meL and by
L

3.5, a ill' Hence, for any Q ::: (c, d) on em, oJ 2 , Q ::: (ca,",l)p.

In addition, it is clear that for any teL, tP I 1 whenever

74



0, P I 1.
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5.3. Lemma. If g and hare non-neighbourjng lines such that 0, PIg

and 0, Q I h, then P + Q = L(P,h)A L(Q,g) (,here the addition is

componenhTise) •

Proof. Let P = (a, b) and Q = (c, d).

Case 1: The lines are of di ferent kinds, say g = em, oJ l

and

Since

h = en, oJ
2

,

Clearly,

for some meL, n c 1.

L(P,h) = en, b - anJ2 and L(Q,g) = em, c - dmJ l •

and

(a + c)n + b - an = cn + b = b + d

(b + d)m + c - dm = bm + c = a + c,

we have (a + c, b + d) I L(P,h), L(Q,g). By 3.10 and 3.13, the two

lines intersect in only one point. 1bus, P + Q = L(P,h)A L(Q,g).

Case 2: Both lines are of the second kind, say g = em, oJ 2

and h = en, oJ 2 , for some m, n c L. It is readily apparent that

L(P,h) = en, b - anJ 2 and L(Q,g) = ern, d cmJ 2 • Therefore,

(a + c)n + b - an = cn + b = d + b = am + d = (a + c)m + d - cm;

hence, (a + c, b + d) I L(P,h), L(Q,g). Again by 3.10 and 3.13,

P + Q = L(P,h) AL(Q,g).

5. 1+. Lemma. If O'-vP [tnd Q,fX, for all X lOP, then P and Q are

(left) linearly independent.
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nd Q::; (c, ) and consider mP + nQ = 0,

for sO'!!E! l":1, n c L. Thus, rna + nc = 0 nne rr.b + nd ::; O. Since

0,(... P, He have a III or b i II and since Q1-' (ta, tb) for any

t c L, "Ie have c - ta i 'I or d - tb I- 11.

If a i then ,-1
and so b + d O. If'1~ J"i = - nca - nca =

n f 0, then - ca-lb + d c D f;1j which implies that 0 = c - (ca-1 )a

i t"1; a contradiction. Thus, n = 0 and hence,

( -1) ( ) -1 -1m = m,aa, = ,na a ::; Oa = o.

A similar proof gives the result 'hen b I ~.

~. An A. H. plane is a pair

of functior, ... f ::; ( LP, \!- ) : :t4--'7 ~ such that

1) ep : lP -"> II' and 11 : [.-->[, are bijections;
I

2) P I 1 if and only if ~P I ~1;

3) 11i m if and only if 1f llllm.

Although it is not immediately apparent that the neighb0ur

relation remains unchaneed ul1.der such n map f, this result ...lil1 follow

from la ter \·!Ork.

Clearl , tea It r. ~p_':'..C;;;;S of ~ 0 m a group, Aut:5. l.o::-eover" ,

if f c Aut~, then {Q'l Q III J::; {cpp lp I1J; hence, we may write

f = (f,f). Fro:n the definition"', it is obvious that card fp I 1, mJ = 1

implies r(ll\m) = nAfm and f(L(P,l)) = L(fP,fl).

Let (Aut ~) be the 5U group of Aut -j \"hich map 0 to O.
o

5.6. Ler.Jm~. The number of lines between P and Q is equal to the number



of lines between fP and fQ.

Proof. Assume there is no line between oints P and Q. If there

exists a line between fP and fQ, then b tte bijectivit of f on L,

there would exist a line ~, the prei~ ~e of the line throu~h fP and

fQ. Clearly, P, Q I m; a contradi.ction.

The other cases are proved in a similar fashio •
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5.7. Theorem.

and Q in ~.

If f c (Aut~) , then f(P + Q) = fP + fQ, for all P
a

Proof. We may assume that P, Q i 0.

Case 1: There exiHt non-neighbouring lines 1 and m such that

0, P I 1 and 0, Q I- m.

By 5.3,

+(P + Q) = f(L(P,m)/\L(Q,l»

:= f(L(P,m)) /\ f(L(Q,l»

:= L ( fP , fm) A L ( fQ, fl) •

Clearly, 0, fP I fl and 0, fQ I fm. Using the method employed in

the proof of 5.3, it is readily apparent t~at fP, fQ I L(fP,fm),

L(fQ,fl); however, we have just sho",n that these two lines intersect

in the single point f(P + Q). Thus, f(P + Q) := fP + fQ.

Case 2: Lines between the pai.rs of points 0, P and 0, Q do

not necessarily exist.

Let P = (a, b) and Q = (c, d). Consider the points



(a, 0), (c, 0), (<1 + c, 0) I [0, OJ 2• Clen ly, (1, 1) l' (x, 0), for

all x c L and (0, 0), (1, 1) I [1 OJ 2• There are, by Case 1,

f«c, 0) + (1, 1) = f(c, 0) + f(l, 1)

and

f«a + c,O) + (1, 1)) = f(a + c, 0) + f(l, 1).
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Since (c + 1, 1)1--(0, 0), there exists a unique line tru-ough theM,

say 1, and since (c + 1, 1),y (x, 0), all x c L, we have 1+ [0, OJ 2 •

Therefore, by Case 1,

f( + c, 0) I- f(l, 1) = r(a + c + 1, 1)

= f«a, 0) + (c + 1, 1) )

= rea, 0) + fCc + 1, 1)

f(a, 0) fCc, 0) f(l, 1) •
.

= + +

Hence, f(a + c, 0) = f(a, 0) + f( c, 0) ~ Similarly,

reo, b + d) = f(O, b) + f(O, d).

Moreo7er, since (a, 0), (c, 0), (a + c, 0) I [0, OJ 2 and

(0, b), (0, d), (0, b + d) I [0, OJ 1 , Case 1 imnlies

f(a, b) = rCa, 0) + f(O, b),

fCc, d) = f(c, 0) + f(O, d)

and

f(a + c,.b + d) = f(a + c, 0) + f(O, b + d).

Therefore,

f(a + C, b + d) = r(a + c, 0) + f(O, b + d)

= f(a, 0) + f(c, 0) + reo, b) + f(O, d)

= f(a, b) + fCc, d);

ie., f(P + Q) = fP + fQ.



5.8. Thp.o em. If f c (Aut ~) , then there exists a uni ue ring
o
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isomorphism A = A
f

c Aut L such that f(tP) = A(t)fP.

Proof. We first show that if such a A exists, it is unique. Assume

there exists AI c Aut L such that A(t)fP = f(tP) = I.'(t)f?, for

each p. By the 5urjectivity of f on P, we may choose Q such that

fQ = (1, 0). Then

f(tQ) = t(t)(l, 0) = (AI(t), 0) = (A(t), 0).

Hence, A'(t) = A(t), for all t.

We n~xt establish the existen,e of A. Ta~e any point P such

th"lt fPrl-'O. Clearly, for any teL, the po'nt tP is incident "lith

:he unique l'ne 1 through 0 and P (cf. 5.6). Hence, f(tP) I fl = OfP.

By 5.2~ f(tP) may be eAp~essed as a multiple of fP, say f(tP) = sfP~

for some s r. L. For each teL, let A( t,p) = s. vIe now show that

A(t,p) is independent of the choice of P, where fP~O.

Choose any other point Q such that fQi'O. Let the un que

line through the points 0 and Q be h (cf. 5.6).

Case 1: fl,y fh.

By 3.11, O-YfP implies that fPryX, for all X I fh; hence,

fP and fQ are linearly independent by 5.4. Also by 3.11, fQ l' , for

all Y I fl. Thus, fl;/JL(fQ,fl). By 3.13, L(fP,fh)fl and since

f(P + Q) = fP + fQ I L(fP,fh), L(fQ,fl), 3.11 implies that O-l-'f(P + Q).

Using 5.7, we obtain,

A(t,P)fP + A(t,Q)fQ = r(tp) + f(tQ)

= f( t(p + Q»
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= A(t,P + Q)f(P + Q)

= A( t ,P + Q) fP + A( t ,P + Q) fQ.

However, fP and fQ are linearly independent. Thus,

A(t,P) = A(t,P + Q) = A(t,Q).

Case?: fIN fh.

Since f is an autamorphism, there exists a line j such th~t

o I fj and fj~fl, fh. Th~re also exists a point R I j such that

fRi' O. Applying Case 1 to the pairs of lines fl and. fj; fh and fj in

turn, we obtain A(t,P) = A(t,R) = A(t,Q).

Since A( t,P) is independent o"f the choice of P as long as fP~-- 0,

we may replac A(t,P) ~y A(t). We have f(tP) = A(t)fP, for all P

with fP'I~ O.

In addition, we shall show that f(tP) = A(t)fP even if fP~O.

Choose any Q such that fQ+ 0, then if fP"" 0, He have

r(p - Q) = fP + f(- Q) l' O. Hence,

f(tP) = f(t(P Q) + tQ)

= f(t(P Q)) + f(tQ)

= A(t)f(P - Q) + A(t)fQ

= A(t)(f(P - Q) + fQ)

= A(t)f(P - Q + Q)

= A(t)fP.

Finally, we show that the map A is a ring isomorphism. Using

tte s~me method as above, we see that there exists a ma_ ~ such th~t

f-l(tP) = ~(t)f-lp, for each point P and each teL. For any teL,

A(~(t))( , 0) = A(~(t))f(f-l(l, 0))
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= f(~(t)f-l(l, 0»)

= f(f-1(t)(1, 0»

= t(l, 0).

Thus, A(~(t» = t. Similarly, ~(A(t» = t, for any teL.

Next, consider any two points P and Q different from Osuch

that fP = Q. Then for any 6, teL,

A(S + t)Q _. A(S + t)fP

= fees + t)p)

- r(sp + tp)

= f(sP) + f( tp)

= A(s)fP + A(t)fP

= (A(S) + A(t)Q.

Hence, A(S +. t) = A(S) + A(t). In additio , for s, teL,

A(St)Q = A(st fP

= f«st)P)

= f(s(tP»

= A(s)f(tP)

= A(S)A(t)Q.

Thus, A(st) = A(S)A(t). Ther fore, A is an automorphism of L.

5.9. Remark. vIe have just shown that for any point P and any teL,

f(tP) = A(t)fP. Therefore, in particular, if P = (1, 0) or

P = (0, 1), f(t(l, 0» = A(t)f(l, 0) or f(t(O, 1» = A(t)f(O, 1),

for any teL. However, ny point (a, b) can be expressed as a linear

combination of (1,0) and (0,1); ie., (a, b) = a(l, 0) + b(O, 1).
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Hence,

f(a~ b) ='f(a(l, 0) + b(O, 1»

= f(a(l, 0») + f(b(O, 1»

Since f is surjective 0:::' P, this implies that any point in ~ may be

expressed as a linear co~b'nation of f(l, 0) and f(O, 1); thus,

[f(l, 0), f(O, l)} is a basis for the set of points and f is a

non-singular semi-lin ~r transforMation with respect to the module

structure on L X L.

5.10. Theorf'm. The rr.....p (l: (Aut ~) ~Aut L
o

defined by (l(f) = A
f

,

is a grOl p epimorphism "Jhose kernel is the general linear group,

(G. L.- ~) , of the mo ule structure on L X L. Thus,
o

(Aut ~) I(G. L • ...t.) ~ Aut L.
0' A 0

Proof. From 5.8, it is clear that (l defines a mapping. Since

(f
1

D f 2)(tP) = f l (A
f2

(t)f2P)

= A
f

(A f (t»fl (f
2

P)
1 2

= A
f

(A
f

(t»(fl Of2)P,
1 2

for :.'fl , f 2 c (A t ~) 0' \-Ie have

A in 5.8.

by the uniqueness of

We next show that (l is surjective. Take any A c Aut L. Define

f by:

f(x, y) = AC )(1, 0) + A(Y)(O, 1) = (A(x), A(y»



and

f([m, nJ.) = [A(m), A(n)J 0'
~ ~
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where x, y, m, n c IJ and em, nJ.is a line of the i~ kind in ~.
~

Since A is bijective, f must be bijective on both the points and the

lines; A(O) = ° implies f(O, 0) = (0, 0); A(l) = 1 = A(aa-l ) =

A(a)A(a-1 ) implies a c 1 if and only if 'A(a) c ~.

Consider any (a, b) I em, nJ
l

• Then

A(b)A(m) + ,A(n) = A(bm) + A(n)

= A(a)

which implies f(a, bJ I f([m, nJ
1

) and conversely. Similarly,

fCa, b) I f([m, nJ
2

) if and only if (a, b) I em, nJ
2

• Thus, it

is clear that f c (Aut~). Since fCaP) = A(a)fP, nCf) = A.
o

Finally, we s .•o I that ker ex. = CGt. L.::!:t) •
a

Let ' f c ke n·t

ie., Af = i and so fCaP) = AfCa)fP = afP, for all p. Therefore,

f c (G. L.~). Conversely, if f c (G. L.~) , then the uniqueness
o 0

of A shown in 5.8 implies that Af = i.

5.11. Now that we have shown t~at f(tP) = A(t)fP, for all

points P and all

preserved by all

teL, we can show that the neighbour relation is

f c (Aut:) •
o

5.12. Lemma. If f c (Aut 1) , then p"" Q if and only if fPIV fQ.
o

Proof. Let A be the automorphism of L associated with f. Since
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i\ E Aut TJ, if a ill ' then 1 = A(aa-l ) = i\(a)A(ll.-l); ie. , i\(a) I,.,.
Let c (. L. If ;, (c) i "I, put b = A(c). Then here xists d c L

such that i\(d) -1
Therefore, 1 bb- l = ;-< c )1..( d) = A(cd) 1..(1)= b • = =

and Eince .1.. c Aut L, cd = 1. Hence, a I ~ if and only if i\(a) I ~.

Now consider any P such that PIV 0 (such a P exists if and

only if the .e:ighbour relation is non-trivial; cf. 1.5). Let

P = (a, b); 1'(1, ()) = (c, d) and 1'(0, 1) = (g, h). Then

f(a, b) = i\(a)f(l, 0) + i\(b)f(O, 1)

= (i\(a)c + i\(b)g, i\( )d + i\(b)h).

Since u l b c ~, we have i\(a), i\(b) c~; hence, i\(a)c + i\(b ~,

Thus, fP", O.

Finally, for any pair of neiGhbouri:'l[j points P and Q, P Q"-'O.

Therefore, ON f(P - Q) = fP - N. Thus, fPtvfQ.

51'nee f-11's also an t h' h' h 1 0 f' d fP fQau ornorp 1sm VI 1C eaves l.xe, N

also implies P~ Q.

If l' c (Aut~) ,the~ IN m if and or.ly if fl·'" fm.
o

Proof. Assume IN rn. If P I 1'1, then there exists Q I 1 such that

fQ = P; however, there exists RIm such that Q.... R. Clearly,

fR I fm and by the last lemma, fQA-' fRo Similarl, if \.;e consider

any 'Q I fm, there exists an R I f1 such tha t (~N R.

Since r- l c (Aut!.l) , fl,"'fm also im.lies loVrn.
o

5.14. 5.14. Now consider any pair of points P = (a, b), Q = (c, d).

Clearly, the rna p ~: iP-



(x + c - a, y + d - b), takeli Pinto Q. 'vie can use g" to define a

map ~: ~-->~ in t~e fo lowin manner. Take any line 1, then by

3.21, there exist two points Rand S on 1 such that R~S. Clearly,

CfRi-CiS and so there exists a unique line m with erR, CfS I m. Let

l}(l) = m.

5.15. Lemma. If f = ( q, 1+), where Cf, l.~ are defined as above, then

f c Aut :~.

Proof. It is clear that Cf is bijective and by definOtion, if P I ,
~,

then CfP I 41 a d conve!'sely.
.

Let C" = em, nJ
1

an::! = em, pJ
1

be a pair of ara lel Ii. c>::'D

then (n, 0), (m + n, 1) I em, nJ l and ( p, 0) , (m + p, 1) I [ , P]l'

Therefore,

(n + c - a, d - b), (m + n + c - a, 1 + d - b) I 4([m, nJ l )

and

(p + c - a, d - b), (m + P + c - a, 1 + d - b) I ~([m, pJ l );

hence,

11([m, n]l) = em, n + c - a - dm + bmJ l

and

~([m, pJ l ) = em, p + c - a - dn + bmJ l

using the methods of 3.17. Therefore, parallelism is preser ed for

lines of the first kind. If the two lines are of the second kind, the

result follows in a similar fashion. In addition, the same argu oent

may e used to shQ\oJ that· f 111 II ~ m, then II! m.
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The surject·vity of ~ is clear since for any em, nJ
l

and

~([m, n - c + a + dm - bmJ l ) = em, nJ l

and

~([p, q - d + b + cp - ap]2) =- [p, q]2'

We sho'vl fi.nally that 4 is injective. If two lines ha e the

same image, then they must be of the same kind and have the same first

coordinate. Without loss of generality, consider two lines of the

first kind, em, nJ 1 and em, pJ l • If they have the same image, then

n + c - a - dm + bm = p + c· - a - dm + bm,

hence, n = p.

Thus, f c Aut ~.

~. We shall call the automorphism which takes P to Q, as

defined above, f PQ •

5.7 and 5.8 together with 5.15 completely determine the

structure of all autcmorphisms of -;,. If \"e take any f c Aut ~ such

that f(O) = P, for some point P and let f' = f of c (A~)
0'

thenPO

we have f - f of' and therefore, f has the formOP

f(a, b) = A(a)f'(l, 0) + A(b)f'(O, 1) + P

= A(a)f(l, 0) + A(b)f(O, 1) + (1 - A(a) - A(b»P.

This, then) is what one calls the Fundamental Theorem.

F'inally, we show that any automorphism of ~ preserves the
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neighbour relation.

5.17. Lemma. If f E: Aut:5, then p", Q if ar.d only :i f fP ~ fQ.

Proof. Consider any pair 0; neieh ourir.e points P and~. Let

f(O) = R. Recall that f can be put :in the forla, f = fORof', where

fl c (Aut~). By 5.12, fl preserves the neighbour relation.
o

Therefore,

fP - fQ = (flP + R - (f'Q + R)

fP'" fQ.

= f'P - flQ c 'IX I,.
-1 J.Since f E: Aut ~ , the arne argument imp~ies if

~. An argument similar to the proof of 5.13 implies that

1---- m if and only if fl "-' fm.



APPENDIX

We give two examples of local rings which are not A. H. rings.

We then construct generalized A. H. planes over these rings and show

that they are not A. H. planes.

Consider the set Q of rationals with denominator not divisible

by a fixed prime p. It is clear that Q is a local ring, with the

non-units being those elements of Q with numerator divisible by p;

however, D = [01 ;t "1.o
Therefore, Q is not an A. H. ring. If w.e

take any pair of points a i b j
a = a l P , b = hIP c Q, where a, aI, b, b l

are not divisible by p and i > j, then

b j b l a i - j
= hIP h ;IP c Q.

Therefore, if we construct a generalized A. H. plane over Q in the

manner of Chapter 3, it is clear that for distinct a c
h' d c ~, we have

[~, OJ 2 , [~, OJ 2 are neighbouring lines through (0, 0).

any point (x, y) to be incident with both these lines

However, for

o = x(~ - .£)
b d·

Since a 'C J---itO =D,x=Ob d 0
and 'a

y = x - = O.b
Therefore, such a

structure is a: ~eneralized A. H. plane which is not an A. H. plane.

Consider now any field F. Let R - [p(x,y)
\

p(x,y), q(x,y)- q(x,y)

c F[x,yJ; q(O,O) 1 oJ. Clearly, R is a local ring with elements of

the form
p(x,y)

where pCO,9) = 0, as non-units. Once again,q(x,y»)

D = [011'1. In addition, it is clear for the polynomials x and y.
0

that x i yR and y i xR. If we construct a generalized A. H. plane

over R in the manner of Chapter 3, it is clear that there is no line

through the points (0, 0) and (x, y).
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