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The first chapter provides a discussion of 'the" simplest
affine Hielmslev plane with non-trivial neighbour relation, In the
second, we consider a geometry constructed over a locl ring and discuss
the relationship between the A, H, ring properties and the A, H, plane
axioms, In this way we introduce generalized A, H, planes - incidence
structures with parallelism satisfying only the axioms induced by

the local ring properties, In the remaining chapters, we coordinatize

such a structure and give a proof of the Fundamental Theorem,
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INTRODUCTION

An affine Hjelmslev plane (henceforth, called an A, H, plane)
may be described as a geometry where more than one line may pass
through two distinct points, Such a structure is usuvally defined
by means of a neighbour relation and eight axioms, We begin this
thesis with the construction of '"the" simplest A, H, plane with
non-trivial neighbour relation, (Simplest in the sense that it has
the smallest number of points and lines,) We then discuss two non-
isomorphic examples of simplest A, H, planes, The cocrdinate rings
of these two geometries are special local rings called A, H, rings,

This leads, in a natural way, to the examination of an
incidence structure with parallelism constructed over a local ring.
Such a structure is shown to satisfy all but two cf the axioms for
an A, H, plane, We then discuss the relationship between the missing
A, H, plane axioms and the missing A, H, ring properties.

The next section deals with an incidence structure with
parallelism which satisfies only the A, H, plane axioms satisfied
by an incidence structure constructed over a local ring, In the
manner of Artin [1], we introduce two additional axioms and then
coordinatize the structure by means of a local ring,

In the final section, we discuss automorphisms of the new
structure and provide a proof of the fundamental theorem,
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CHAPTER 1

Preliminary Definitions and Results

1.1, <P,L,I,|| > is called an incidence structure with

parallelism if and only if:
(a) P and L. are sets,
(b) TC P X,
(¢) | &L XL is an equivélence relation (parallelism),
The elements of ¢ are called points and are denoted by P, @, R,... .
The elements of |L. are lines and are denoted by 1, m, n,..,. (F,1) ¢ I
is written P I 1 and is read, "P is incident with 1"; similarly,
(1,m) ¢j| is written 1| m and is read, "1 is parallel to m'. Ia
addition, 1Aam = {PeP | P I 1, n],
Two points, P and Q, are neighbours (written P~Q) if and only
if there exist 1, m ¢ l{, 1 # msuch that P, Q I 1, m, Two lines,
1 and m, are neighbours {also written 1l~m) if and only if for any
P I 1, there exists a Q I m such that P~Q and for any Q I m, there
exists a P I 1 such that Q~P, The non-neighbouring relationship will
be denoted by + .
An incidence structure with parallelism L = <P,k ,I,§ > is

called an affine Hjelmslev plane (or an A, H, plane) if it satisfies

the following axioms,
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Al, TFor any P, Q ¢ P, there exists 1 e L such that P, Q I 1,

v

If P4 Q, we write 1 = PQ

A2, There exist P P, € P such that Pipjd‘PiPk where

13 Fgn Py
{i, i, X} is any permutation of (1, 2, 3]. {Pl, P, FE}
is called a triangle,

A3, ~ is transitive on P,

Ak, If QI 1, my then 14m if and only if card{P I 1, m}
is one,

A5, If 14m; P, RI1; Q RIm and P~Q, then R~P, Q,

A6, If 1l~m and n+4l with PI1, n and Q I m, n, then
P~Q,

A7, If 1fjmj PI1l, n and 1l4n, then m4n and there exists
a point Q such that Q I m, n,

A8, For every P e P and every 1 ¢ L, there exists a unique
line L(P,1) such that P I L(P,1) and L(P,2)| 1,

Froem A3 and the definition of the neighbour relation on L, it

is obvious that ~ is transitive on L also,

1,2, Lemma, There exist three non-neighbouring lines through any point

P,

Then L(P,PIPZ),

’PIPB) are three pairwise non-neighbouring lines through

Proof, By A2, there exists a triangle {Pl, s PB},

L(P,PZPB), L(P

the point P,
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1.3, Lemma, There are two non-neighbouring voints on every line,

Proof, Consider any line 1, By A3 and A7, L(Pi,l)'ia Pin-, Pipk' for
some permutation (i, j, k) of (1, 2, 3), By A7, 14-Pin, P.P_ and

there exist points Q and R such that Q = 1APin and R = lAPiPk.
If Q4R, then we are finished, Suppose that QaR, By A5,

P,~Q, R, Clearly, Q, R+pj, P, *By AR, L(Pk,l)f)bPin and there

exists a point S = L(Pk,l)APin, By A5, S#P.; hence, 54Q, R also,

Again by A7, L(s,pipk)rw_ and by A5, Q+L(S,PiPk)A 1

This implies fur any point P on a line 1, there exists a point
Q such that @ T 1 and Q4P; otherwise, all points on 1 would be

neighbours,

1,4, Lemma, Let 1 and m be two parallel lines, If there exist P I 1

and Q@ I'm such that P~Q, then 1~n,
Proof, Assume there exist points P and Q as defined in the lemma, By
1.3, there exists R I 1 such that R4P, Then R4Q and RQ~1 by

A5, Then, by A7, m~QR and by transitivity 1~ m,

1,5, Lemma, Let X be an A, H, plane with non-trivial neighbour relation,

Then for any point P, there exists a point Q with Q~P Q#P.

Proof, Choose any point P, If the neighbour relation is non-trivial,



then there exists a pair of neighbouring points R and S, If P~ R, S,

then we have the required point, Therefore, we may assume that
P4 R, S, There exists a line 1 such that P I 1 and 14 PR, By A7
and A4, L(S,PR)4 1 and there exists a unique point T = L(S,PR)A 1,

By 1.4, L(S,PR)~ PR, By A6, Pa T,

N



CHAPTER 2

The Simplest A, H, Plane with Non-trivial

Neighbour Relation

2.1, In this chapter, we shall construct an A, H, plane with
a non-trivial neighbour relation containing the minimum number of
points and lines,

By definition,; every A, H, plaﬁe must contain a triangle
{a, B, €}, By 48, ther. exist L(A, BC), L(B, AC) and L(C, AB); A7
implies the existence of a fourth point D = L(A, BC)A L(C, AB);
D+ A, B, C by A5, By A6 again, two possibilities exist: either
ACABD = ¢ (Case 1) or ACA BD = E, for some E ¢ P (Case 2), In
either event, if the neighbour relation is non-trivial, it is possible
to find a point F which is a neighbour of A and F # A (by 1,5).

Obviously, the lines AB, AC, AD, BC, BD, CD are pairwise not
neighbours; hence, F can be incident with at most one of these six
lines, (We have already defined all the points of intersection of
pairs of these lines, By definition, F # A, B, C; since D#4A, F # D;
by A5, F # E,) Further, if X, Y e {B, C, D} and X # Y then F 7 XY;
otherwise, AX4 XY implies, by A5, that A~ X which is a contradiction,
Therefore, F is incident with at most one of AB, AC, AD and F X BC, RD,
CD, Without loss of generality, we may assume F X AC, AD, There

exists L(F, AD)# AC, CD, BD and



G = L(F, AD)a AC
H = L(F, AD)A CD
J = L(F, AD)A BD,

Clearly, these points are distinct from A, B, C, D, F, L(F, AD)A AB,
If H= G, then H= G = C and L(F, AD) = L(H, AD) = L(C, AD) = BC
which implies F I BC§{ a contradiction, A similar argument may be
used to show J # H,

Case 1: ACABD = @ (cf, Figures 2.1 and 2,2),

If G =J, G = ACABD which would, of course, be a contradiction,
Consider, now, the distinct lines L(J, AB), L(G, AB) which give rise
to the points

K = L(J, AB)ABC

M= L(J, AB)A AD

N = L(G, AB)A BC

P = L(G, AB)a AD,
J X AB, CD, L(G, AB) and G X AB, CD, L(J, AB) imply M, K # A, B, C, D,
H, G, N, P, L(F, AD)A ABand N, P # A, B, C, D, H, J, L(F, AD)A AB,
Also, F X L(J, AB), L(G, AB) imply F # M, K, N, P, Clearly,
MZK#ZJI#Mand NZP #ZG#N, Let Q= L(H, BD)a AB, Since Q I AB,
Q Z ¢p, L(J, AB), L(G, AB); hence, Q # C, D, H, N, P, G, M, K, J,

If Q=F or Q = L(F, AD)AAB, then Q = F = H or Q = L(F, AD)AAB
= H, both of which are contradictions,

If Q = B, L(Q, BD) = BD which implies H I BD; however, H I CD,
Hence, H = Dj a contradiction,

Finally, if Q = A, then Q~F, By A7, L(F, AD)4 L(H, BD) and
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so by A5 we would have Q~H, Since L(H, BD)# CD, this would imply AB~
CD§ a contradiction,
Now consider the line through Q parallel to AD, Since Q # A,

B, L(F, AD) A AB, L(Q, AD) # AD, BC, L(F, AD) and we can define the

points
R = L(Q, AD)A L(G, AB)
S = L(Q, AD)ACD
T = L(Q, AD)A L(J, AB)

which are distinct from all the previously defined points, (All the
previously defined points, with the exception of Q, are incident with
one of the lines AD, BC, L(F, AD),) Further, they are mutually distinct
as the lines AB, CD, L(J, AB) and L(G, AB) are distinct,

Therefore, the A, H, plane with F I AB must have at least
sixteen points and if F ¥ AB the A, H, plane so defined must have at
least seventeen points,

Case 2: ACABD = E (cf, Figure 2,3),

If A~E, AD#BD would imply that A~ D; a contradiction,
Furthef, if E~X, for any X I AD, AD# AC would imply A~ E, Clearly,
if J = G, then J = G = E which gives L(E, AD) = L(G, AD) = L(F, AD);
however, L(F, AD)~ AD and so there exists X I AD such that E~X, Thus,
J #£ G,

Now consider L(J, AB) # AB, CD and L(G, AB) # AB, CD, L(J, AB),
By A7, we have the following points:

K

1]

L(J, AB)a BC

M = L(J, AB)A AD
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N

L(G, AB)A BC

P = L(G, AB)n AD,

it

Clearly, these points are mutually distinct and differ from all the
previously defined points including L(F, AD)A AB (as in Case 1),

Finally, let

Q = L(E, AD) AL(G, AB)
R = L(E, AD)ACD
S = L(E, AD) A AB

T = L(E, AD)AL(J, AB),

Obviously, L(E, AD} # AD, BC, L(F, AD) aznd as we have already noted
L(J, AB), AB, CD, L(G, AB) all differ, Therefore, these four points
are different from any of the previously defined points and are
mutually distinct, '

Therefore, such a geometry contains at least seventeen points
if F I AB and at least eighteen points if F 7 AB,

We have determined that an A, H, plane with a non-trivial
neighbour relation must contain at least sixteen points, If we
examine the structure illustrated in Figure 2,1, we can obtain the
following equivalence classes of points determined by the neighbour
relation:

{P, A, F, G}
{p, M, J, H}
{c, X, s, T
{N, R, B, q}.

If this structure is an A, H, plane, then all lines must



contain the same rumber of points (c¢f, (1d])., Since the lines AD, BC,
L(F, AD) and L{Q, AD) are distinct and parallel, they each contain four

points and hence, all lines would contain four points.(cf'U?J,lﬂo)'

2,2, Claim: Any three pairwise non-neighbouring points are
not collinear, if the plane has only sixteen points.

Clearly, three pairwise non-neighbouring points are not collinear
with any line parallel to AD or parallel to AB, Without loss of
generality, we can consider the line AK, There must exist two more
points incident with the line AK; however, since AK%AD, BC, AB, MK,
these two points cannot be incident with these other lines§ thus, the
two points must be selected from the four points H, S, G, R, In this
case, the four points are pairwise not neighbours and Qe can see
immediately that AKX # HG, SR, HS, GR, If AK = HR, then by A5, AK# QS
and hence K~ T implies T~R; a contradiction, Therefore, AK = GS,
but A~ G and K~ 5§ thus, we haie only two non-neighbouring points on a

line,

2,3, Claimt Three distinct neighbouring points are not
collinear, if the plane has only sixteen points,

Assume therc cxist three neighbouring collinear points,
Without loss of generality, consider A, F, G I 1 (some 1 ¢ L), Then
A, FI 1, AB imply by Ak that 1~AB, Similarly, A,G I 1, AC imply

1~AC, Thus, by transitivity, AB~AL; a contradiction,
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2,4, These facts enable us to discover the number of lines
in such a structure, Each line is uniquely determined by two non-
| neighbouring points and each of our lines contains four such pairs of
points, Using combinatoric methods, we find that there are:

| ' (lg) = 120 pairs of points

4 ° (g) = 24 pairs of neighbouring points,
Hence, there are 96 pairs of non-neighbouring points. From these
. e L .
9% pairs, we obtain il 2h distinct lines,
Consequently, if there exists an A, H, plane with non-trivial
neighbour relation which has exactly sixteen points, it must have

twenty-four lines,

2.5. We shall now examine a particular incidence structure,
Define H = Z (mod 4), Consider an incidence structure with parallelism
L= <P, L, I,][|> where

P = {(x, y), X, ¥ ¢ H},

L = lel&é, with
Ll = {[a, b]l' La, b]l = {(ya Yy iy H}; beu, as 0, 2};
mé = {[a, b]zt La, b]2 ={(x, R e Hj; a, be H}.

I is set inclusion,

Elements of Ll (L ) are called 11nes of the first (second) kind,

La, b]i are called the coordinates of the line, For any 1 = [a, b]

and m = [c, d]j, 1 m if and only if i = j and a = c.

In addition, we define an eguivalence relation ~ on P by

- - a2 T 2" g ' B T
‘ v y w},‘”.ﬁ: P “w”’,.'. -‘.W;‘ o ;m mw:.w* MERCE AN W ANy T o \. K
t 7 ' ‘e a ) : 3 L . b g £e’y . o i . . 4 - . » ) >



(ay, b~ (cy d) if and only if a=-¢, b =d =0, 2, Two lines are
defined to be in the relation ~ if for each point P incident with
either line, there exists a point Q incident with the other line such
that P~Q,

We shall show that‘this structure is an A, H, plane with the
above equivalence relation as the neighbour relation, Further, as
this structure contains only sixteen points and twenty-four lines,
it must be "the" simplest A, H, plane with a non-trivial neighbour
relation,

From the definitions we obtainlthe following equivalence
classes induced by the ~ relation on P:

{(0, 0, (0, 2), (2, 0), (2, 2}
{co, 1), (0, 3, (2, 1), (2, 3)}
da, 0), (1, 2); 43, 0), <3, 2%
{a, v, a, 3, G, D, 3, 3}

and the following equivalence classes induced by the ~ relation on L:

{co, 01,, [0, 21, [2, 01,, 2, 21}
{[0y 10,, [0, 30,4 (2, 11, £2; 31.}
{2, 015, (15205 020 635, (3,20}
{ ] B0 Bhal 3 1)y £330}
{ o, 05, 1o, 2l fidainittay 2.}

{[O, 1]1’ [01 3]19 [2' 1319 [2’ 3]1}-

From the equivalence classes of the lines, we can see

15
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immediately that for any [m, n]i, Cp, q]j € L, [m, n]i'“ [p, q]j if
and enly if i =j and m-p, n=q = 0, 2, We can make one
additional observation: two lines of the first kind do not meet
unless they are in the ~ relation,

Next, we prove that the eight axioms of an A, H, plane hold inX,

Al, For any P, Q € P, there exists 1 € L such thatP, Q I 1,

Consider any (a, b), (¢, d) ¢ P, Clearly, if a = ¢, then
(a, v}, (¢, &) I [O, a]l; if b =d, then (a, b), (¢, da) I [0, bl
Therefore, assume a ¥ c, b #d, If (a ~c¢) # 0, 2, then (a - ey

(a = )"}, Hence, (a, b), (c, @) I [(b= d)(a =c),

exists and (a - ¢)

b - alb - d)a - c)]z.

then (a, b), (c, d) I [(a =c)(b=~d); a -~ (a -c)b = d)b]l. Finally,

Similarly, if (2 =c¢) = 2 and (b - d) # O, 2,
if (a=c), (h =d) =2, then (a, b), (¢, d) I[1, a - bl,.

A2, There exists a triangle,

Consider three points (0, 0), (1, 0), (0, 1), It is readily
apparent that (0, 0), (1, 0) I [0, 032; (0, 0), (0, 1) I {o, o]l;
(1, 0), (0, 1) T (3, 1],. Further, since all points incident with
(0, 0], are of the form (0, b) for some b ¢ H and (1, 0)# (0, b), we
have [O, O]i+ o, 032, (3, 132; similarly, all points incident with
[0, 0], are of the form (a, 0) and (a, 0)#4 (0, 1); hence, [O, 0l,#

[3’ 1]20

A3, ~ is transitive on P,
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This follows from the fact that ~ is an equivalence relation,

Ab, If PT1, m, then 14m if and only if cardlP ¢ P|P I 1, m] = 1,
We need conly consider two cases: 1 and m are both of the

second kind and 1 and m are of different kinds,

Let 1 = [n, pl,, m = [q, r],, where 14m and (a, b) T 1, m,

Since b=an+p and b=agq + r, we have an + p = ag + r and
aln~-q)=r-p, If n-q=0,2, then r - p=0, 2 and [n, p]é“
[q, r]2. Thus, n - q # 0, 2. For any (c, @) I 1, m, we have
en + p=d=c¢q + r; hence, cln - q) 5 r -p=aln~g), Since
n-qi#0,2, (n- q)-lexists and is equal to n - q, Thus, (a, ¢) =
(e, 4),

Finally, if the two lines are of different kinds, say [n, p]l =
1, g, rl;=m and. (a, b), (¢, d) I 1, m, then a - bn = ¢ = dn and
b-ag=d~-cq, Hence, b=d-cq+ag and a -bdn =c¢ - dn, This
implies a(i ~ gn) = ¢(1 - gn), However, since [n, p]l e by, n=0,2
hence, nq = 0, 2 and S nq # 0, 2, Therefore, (1 - nq)-'1 =1 = nq
and so (a, b) = (¢, d),

Conversely, consider any pair of neighbouring lines (without

loss of generality, let the pair be [m, n]z, [p, q]a) which pass

ti

through a point (a, b), From earlier results, m - p = 0, 2 and

]

n-q=0,2, Therefore, we have b =am+ n and b = ap + q which
imply am+ n=ap+q and alm-p) =q = n,
If m-p=20, then q - n =0 and the two lines are equal, If

me-p=2 and g - n = 0, 2, then since



(a+2m+n=am+2m+n=">+ 2m
(a+2)p+q=ap+2p+q=b+2(p=m) +2m=1b+ 2m,
we have {(a + 2, b + 2m) is incident with [m, n]2 and [p, ql,, also,
Hence, if neighbouring lines meet then they do so in more than one

point,

A5, If 14mj P, RI1l; Q, RIm and P~Q, then R~P, Q,

18

Consider, first [m, nl;+[p, ql, with (a, b) I [m, nly, [py alss

(¢y d) I [m, nl;;s (e, £) I [p, ql, and (cy, d)~ (e, f), Therefore,
a-c=(b~-dn and b~ f=(a-elp,
However, [m, n]l £ Ll’ so m = 0, 2 which implies a - ¢ = 0, 2, Also,
since (c, d)~ (e, f), ¢ ~e, f=d=0,2 and hence, a - e = 0, 2,
This in turn implies that b - f=(a-e)p=0,2 and b-d=0, 2,
Thus, (a, b)~(c, d), (e, f),
By an earlier remark, two non-neighbouring lines of the same
kind that intersect must be lines of the second kind, Consider
[m, n]24'[p, ql, with (a, b), (cy d) I [m, n], and (a, b), (e, f)
I [p, q], where (¢, A)~(e, f), As before, m = p # 0, 2, Clearly,

(e, d)~(e, f) dimplies that d - £ =0, 2, However,

d -f=(cm+ n) - (ep+q)

cm + (b = am) = ep = (b = ap)

cm -~ am - ep + ap
= (c = a)m + (a - e)p.
Now, if m=0,2, (¢ -a)lm=0,2 and (a - e)p must equal O or 2,

However, m=0, 2 and m - p # 0, 2 imply p # 0, 2; hence,
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a~e=0,2 and a~-c=a-e+e-c=0,2, If m#O, 2, then
p = 0, 2 and by the same method as above we obtain e, a=-c¢c =0, 2,
In addition, b -d=mla -c) and b - f = pla - e) which imply

b-d, b= f=0, 2,

A6, If 1~m 2nd nel with PI1l, n and Q I m, n, then P~Q,

Again, we have two cases: all three lines are of the second
kind or 1 and m are of one kind and n is of the other,

Let [m, n]zﬂ'[p, q]2 and [m, n]24'[r, s]a. By the transitivity
of the neighbour relation on the points, [p, q]erk[r, 5]2. This
implies that m - p=0,2; n-q=0,2; m=-r#0,2 and p=-r1r ¥
0, 2, Let (a, b) I [m, n]a, [r, s]a and (c, d) I [p, al,, [r, sl..
Clearly, since (a, b), (¢, d) I [r, 5],y we have b - d = ar - cr.' If
r =0, 2, then b - d = 0, 2 which implies

b~ d

]

0, 2

(am + n) = (cp + q)

L]

am+ n -c¢cp~-q

am - ¢cp +t n - q,

But n-q =0, 2§ hence, am - cp = O, 2, This implies

0, 2 =am = ap + ap - Cp

alm - p) + (a = ¢c)p.

However, m - p = O, 2 and so al(m - p) = 0, 2, Further, since we
assumed r =0, 2, p #0, 2 and thus, a -c = 0, 2,
If r#0, 2, then r = r“1 and m, p= 0, 2, Therefore,

b-d=(a=-c)r implies
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(b = dr

o)
i
Q
i

(am + n - ¢cp - g)r

t

(n - @)r + (am - cp)r
=0, 2.
Thus, b = d = 0, 2 also,
In the other case, we may, without loss of generality, let
[m, n]aA,[p, q]2 and [m, n]zfﬁ[r, s]l, where (a, b) I [m, n]z,
[r, s]l and (c, d) I [p, q]2, (r, s]l. Therefore, a - ¢ = (b - d)r,

If r =0, 2, then a -¢ =0, 2 and

b-~d=am+n - (cp + q)

(br + s)m+ n - (dr + 8)p - q

]

i

brm + sm + n - drp - 8p - g

i

r(bm - dp) + s{m = p) + n - g
= 0, 2.

If r # 0, 2, then my, p = O, 2 and

o
i
[}
]

(am + n) -« (cp + q)

am - cp + (n - q)

i

=0, 2,

(b - d)r = 0, 2 also,

i

Hence, a - ¢

A7, If 1lilm;j PI1l, n and 14n, then m4n and there exists

QIm, n,
Once again, we have two possibilities: all three lines may he
of the second kind or the two parallel lines may be of one kind and the

third line of the other kind.
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First of all, consider [m, n]zu (m, p]2, [m, n]24'[q, r]a and
(ay b) I [m, nl,, [a, r],. By an earlier result, m - q # 0, 2 (since
[m, n]zfﬁ[q, r]a) and thus [m, p]zd'[q, r]2 also, Since (a, b) I
(m, nl,, [a, r]a, we have am + n = b = ag + r, Hence,

a=(r-n)m«gq) and

e

(r =n)m=g)m+n=>b=( =-n)m~-qlg+r,
Take the point ((r = p)(m = q), (r = p)(m ~ g)m + p). It is clearly
incident with the line [m, p]z. However,

(r = p)n = g)m + p

N

(r-n+n-pllme-qg)m+p+ne=n

(r=-n)(m-qg)m+n+(n-plm=-=g)m+p-n

=(r=-nm-qglg+r+n=-pm=-q)m+p-=-n
=(r-nm=-qglg+h=-pln=q)im=g+q)+r+p=-n
=(r-p)m-qlg+(a-p)+r+p=-n

= (r = p)lm = q)g + r,

Thus, ((r - p)(m - q), (r = p)(m = q)m + p) I [q, rl,.
Next, without loss of generality, consider [m, n]al\[m, p]z,
(m, n]zd—[q, rJl and (a, b) I [m, n]z, La, r]l. Clearly, [m, p]24'

[a, r]l. Since (a, b) I [m, nl,, [a, rJl, we have b = n = am = bqm + rm
and b(1 -~ qm) = rm + n, However, q = 0,2 and so (1 - qm) # 0, 2.
Thus, b = (rm + n)(1 - qm) implies a = (re + n)(1 -~ gqm)g + r and

(rm + n)(L = gm) = b= ((rm + n)(1 = qm)g + r)m + n,

Now, consider the point ((rm + p)(1 = gm)g + ry (rm + p)(1 = gm)) I

lq, r]l. In addition,
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(Cem + p)(L ~ gm)g + r)m + p
= ((em + n)(1 = gm)q + Pdm+ n+ (p - n)(1L ~qm)gqm + p - n

= (rm + n)(1 = gm) + (p =« n)((1 = gm)gm + 1)

= (rm + n)(1 = qm) + (p = n)(qm - (qm)2 + 1)
= (rm + n)(1L - qm) + (p =n)(1 = qm)
= (rm + p)(l - qm).,

Thus, ((rm + p){(1 = gm)g + r, (rm + p)(1 = qm)) I [m, p]a.-

A8, For every 1 e L and every P ¢ P, there exists L(P,1) ¢ L such

that L(P,1)li1 and P I L(P,1),

jo N

Consider any (a, b) ¢ P and [m, n]l, Lp, q]2 ¢ L, Then
(a, ¥) I [m, a - bm]l, [p, b = ap]2 and [m, a - ‘om]l (m, n]l;

{p, b = ap]2 Cp, q]2.

2,6. By the properties of H, it is also clear that X is a
Desarguesian A, H, plane (cf, [1], 4,5)., Since nultiplication is

commutative, ¥ is also Pappian,

2,7. It is interesting to note that not all A, H, planes with
sixteen points and twenty-four lines are isomorphic, Consider the set
J = Zz[x] / (xe)7 where Zz[x] is the set of polynomials over the
integers modulo 2, Thus, J = {O, 1%y 1+ Rg Ak 'XU =< P, L, I,[ >,
where

P'=J XJ



L= L'lu I.'a, with
{(ya + b, y)l y € J}‘ ae (0, x}, bedl;

{(z, za+ )1z ¢ d}|a, bedl.

1& = {[a, bl

Eé = {([a, bl,
I'is set inclusion
lim if and only if .1 and m are of the same kind with the same first
coordinate,
Let g : H—>J, where g(0) = 0, g(1) = 1, g(2) = x, g(3) = 1 + x,
The map f = (¢, 4 ) :)L——}Xﬁ, where
(P : PP
(a, b)~=> (gla), glb)o
1#_ t L-L*
[a, bl ~~> [gla + 2), g(b)]i Y if a, b ¢ {1, 3}
[g(a), g(b)]i 5 otherwise,
is an I-isomorphism, but Y([1, O]a) = [1, 0]2 and Y([1, 1]2) =
{1+ %, 1]2 with [1, 0]24'[1 + .. 1 ]2. Hence, f is not an isomorphism,
In fact, this implies that no isomorphism between these two A, H, planes

exists, (cf, [91, 3.1 ).



CHAPTER 3

Incidence Structures over Local Rings

3.,1. In the last chapter, we constructed an A, H, plane, It
is readily apparent that its coordinate ring, H, is an A, H, ring, It
is not surprising that the incidence structure X that we constructed
over H is an A, H, plane, since in J, ¥, Lorimer and N, D, Lane's paper,
"Desarguesian Affine Hjelmslev Planes", it is shown that all incidence
structures constructed over A, H, rings are A, H, planes, We shall
now examine the conseguences of weakening the conditions on the

coordinate ring by starting, instead, with just a local ring,

3,2, Theorem, If L is a ring with O # 1, then the following are

equivalent (c¢f, [5]):
1) L. / Rad L is a division ring,
2) L has exactly one maximal ideal,
3) All non-units of L are contained in a proper ideal,
4) A1l non-units of L form a proper ideal .
5) For 211 a ¢ L, either 2 or 1 - a is a unit,

6) For all a ¢ I, either a or 1 - a is right invertible,

3.3. A ring, L, with O # 1 is called local if it satisfies

one of the equivalent statements of Theorem 3.2,

2l



An A, © ing is a local ring, L, with two additional
conditions:
1) n=Dy (icre D is the set of divisors of zero plus O itself),

2) If a, b« L, then a € bL or b € aL.

5,4, Let #=<P, L, I,||> be an incidence structure with

parallelism where

P=LXL, L a local ring;

L=LUL, , with
L, = {Cm, n]1 = {(x, ) e P|lx=ym+ n} men, nec L};
L, = {[m, nl, = {(x, ¥) e Ply=xm+ nj m, ne L} :

I is set inclusionj
[m, n]i“ [p, q]j if and only if i = jand m = p,

We alsoc define a neighbour relation on P by: (a, b)~(c, d)

if and only if a - ¢y b -~ d en., Two lines are defined to be neighbours
if for any point on either line there exists a neighbouring point on

the other line, We denote both of these neighbour relations by~ ,

3,5, Lemma, If (a, bdA4(c, d) and (a, b), (¢, d) I 1, then a - c¢
en if and only if 1 ¢ Ll'
Proof, Assume (a, b), (c, d) I [m, n];. Then a=bm+n and
¢ =dm+n imply a=-n=bmen and ¢ -n =dmen, Hence,
a-¢cC=a-n-c¢+t nen.

Next, consider two points (a, b)#(c, d) witha - c en and



(ay, b), (¢, ) I 1, If 1= [m, nJ for some m, n ¢ L, then

P
b-d=1(a~-cln However, b=-dgn and (a =-clmen ; a
contradiction, Since
bb - &) Ha - c) = blb =) Ha =c) +a-= a3
ab - D Ma =) b - D Ha=-c) +a

- (b= d)(b = d)"l(a -¢c) +ta

il

=c’

we have (a, b), (¢, @ I [(b -~ @7 a = ¢), a - bb - A Ha - o).

3,6, Lemma, For any point P incident with some line 1, there exists a

point Q also on 1 such that Q+P,

Proof, Since 1:1 =1 and a-0 = 0-a =0, for all a ¢ L, we have
1 £n and O ery, Consider any [m, n]l. Then l'm+ n=m+n and
O'm+ n =n which imply (m + n, 1), (n, 0) I [m, nl;. Now, for any
(a, ¥) I [m, n]l, either ben or b gZn, In the first case,
l1-b¢n, so (a, b), (m+n, 1) I [m, n]l and (a, b)4 (m + n, 1),
If bZn, then b=0=b¢n and (a, b), (n, 0) I [m, n]l with
(ay b)4 (n, 0),

Similarly, for any point P on a line of the second kind,
there is a point which is not a neighbour of P but is incident with

the same line,

3.7 Lemma, Two lines of different kinds are not neighbours,

26
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Proof, Consider any two lines [m, n]l, (p, q]2 , where n, p, q ¢ L

and m €y, For any point (a, b) I [p, ql,, there exists a point

(cy @) I [p, al, such that (a, b)# (c, d), Hence, by 3.5, a = ¢c £n.
Now assume [m, n]l-[p, q]a. This implies that every point

of [p, q]2 is the neighbour of some point on [m, n]l. In particular,

there must exist points (e, f) and (g, h) I [m, n]l with (e, f)~(a, b)

and (g, h)~(c, d), Clearly, (e, £)#(g, h); however, by 3.5,

e - gecn and by definition, e-aen and g - ¢ €, Thus,

a-c=(a=-e)+(e-g)+ (g=c)en; a contradiction,

3,8, Lemma, Two lines of the same kind are neighbours if and only if

their corresponding coordinates differ by a non-unit,

Proof, Consider two lines [m, n]2 and [p, q]z. Assume m - p €n and
n-qen, If (a, b) I [m, nl,, then (a, ap + q) I [p, ql, and
b-(ap+q) =am+ n «ap - q

alm = p) + (n =-q) €n,

Thus, (a, b)~(a, ap + q)., Similarly, we can find a neighbour of any
point (¢, d) I [p, qu’ incident with [m, n]z.

Next, consider any two non-neighbouring points (a, b) and
(cy, @) on [m, n]a, vhere ({m, n]2ﬂ'[p, q]z. Then there exist (e, f),
(g, h) I [p, q]2 with (a, b)~ (e, f) and (c, d)~ (g, h), Now,
(a, b) ~(e, f) implies b - f € . Hence,

b - f

i

am + n -ep~-q

am + d - cm - ep - h + gp



28

=(a-cm+ (g=-e)pt+d=-h en,
Consequently, (a - cl)m+ (g - e)lp €n. Therefore,
(a~c)m=-=p)+ (a-e)p+ (g=-2clp
=(a-clm+(a-c+g=-e=-a+c)p cn.
Hence, (a - ¢)(m - p) ¢  which implies m - p € n since a - ¢ £n
by 3.5. In additionm,

b~ f

i

am + n - ep - q

alm - p) + ap=-ep+n =g

alm~p) +(a=-e)lptn-q cn.
This implies that n - q € n, ‘

The result follows in a similar manner for two lines of the
first kind, However, since the first coordinate of a line of the first
kind is a non-unit, the first coordinates of the two lines of the first

kind must necessarily differ by a non-unit, The rest follows as above,

3,9. Remark, If (a, b) I [m, n]a, (p, q]z, we have am + n =b =
‘ap + q; hence, alm - p) =q -n, Thus, if m - p € n, then
q - nen, Therefore, if [m, n]g* Cp, q]2 and [m, n]2A (p, q]2 £,

then m « p £ n.,

Several of the axioms of A, H, planes still hold in our new
incidence structure %., It is readily apparent that the neighbour
relation is transitive on the set of points (A3), The points (0, 0),
(0, 1) and (1, 0) form a triangle, where (0, 0), (0, 1) I [O, O]l;
(o, 0), (1, 0) I [0, 01,3 (o, 1), (1, 0) T [-1, 1]2 (A2), The

following system of lemmas give the additional axioms which hold in & ,
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3,10, Lemma, If (a, b) I g, h and gah, then card{P I g, h} = 1,

Proof. Assume there exists (c, d) # (a, b) such that (c, @) I
g, h also,

Case 1: Let g = [m, n]l and h = [p, q]a,

Therefore,
b=ap+q=(bm+ n)p+q=bmp+ np + q;
d=cp+q=(dm+ n)p+q=dmp+ np+q.

d(l - mp), However, merv implies

Herce, b(1l = mp) = np = g

l1-mpgn and so (1 - mp)“1 exists, Thus, b = (np + q)(1 - mp)-l

= d, Also, since a-c¢c=bm-~dm= (b =-dm=0, wve have a = c;
a contradiction,

Case 2: Let g = [m, n]2 and h = [p, q]z.

By the above remark, m - p #n, Therefore, am+ n="b =
ap+q and cm+n=d=cp+q imply a= (q = n)(m - p)—l = ¢ and

b=am+n=cm+n=d, Thus, (a, b) = (c, d); a contradiction,

Finally, if two lines of the first kind meet, say (a, b) I
[m, n]l, [p, q]l, then bm+ n=a = bp + q, which gives blm = p) =
q - n, However, m, perny implies m- pe § hence, q -~ pen,

Thus, the two lines are neighbours,

3,11, Lemma, If ga4h; P, RI gy Q RIh and P~Q, then R~P, Q,

Proof, Let P = (a, b); Q= (c, d); R = (e, f).

Case 1: Let g = [m, YIJZ, h = [p, q]2°
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By an earlier remark, m - p £n., From the assumptions of the
lemma,

b=-d=b=~f«d+ f

it

am+ ne-em-ne~-cp=-q+cp+g

(a ~e)m+ (e - c)p

(a~e)m=p)+(a=-ce)p+ (e =clp

(a = e)m=1p) + (a ~clp,
However, (a, b))~ (c, d), Thus, b =d, a = ¢c € n, Therefore,
(a = e)(m = p) e n and hence, a - e ¢ n, Finally, since b - f =
(a - e)m e n, (a, VI~ (e, £f), Similarly, (¢, d)~ (e, £),

Case 2: Let g = [m, n]l, h = [p, q]z.

Then a-e=bm+ne-fm=n= (b= flm en, However,
(a, b)~(c, d) implies a~cen and b-den andso c -e =
c-ata-e en, Inadditon,d-f=cp+q=-ep=-q= (¢ =e)p en.
Thus, (a, b), (¢, d)~(e, ),

As in the proof of the previous lemma, g and h cannot both
be lines of the first kind, since if two lines of the first kind

meet, they are neighbours,

3,12, Lemma, If g~h; j4#g; PIg, j;s QIh, j, then P~Q,

Proof, let P = (a, b) and Q = (¢, d).
Case 1: Let g = [m,.n]z, h = [p, q]2 and j = [r, s]l.
Clearly, m=-pen, n-qgern and r €n, Therefore,
a-c=br+s-dr-s=1(b=~-dr en

and
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b-d=am+n-cp-=-aq

= (br+s8)m+n-(dr+ s)p=~-q

brm + sm + n - drp -~ 6p - g

t

brm + s(m = p) =drp+n~-q €n.
Hence, P~Q,

Case 2: Let g = [m, n]a, h = [p, q]2 and j = [r, s]z.

Then m=pecn,n=qgen and r -m¢n, By the assumptions
of the lemma, am+ n=b=ar +s and cp+q=d=cr + s, Hence,
b-ar =5 =4d - cr. Therefore,
am+ n - ar = cp + ﬁ - Ccr

r)

alm = r) - ¢(p - =q~-n
alm-r) ~clp=n+mer)=q=-n

(a - c)m = 1) +clp-m) en.

i
o
i
o

This implies (a - c)(m=-r) erp 2nd a=-cen, Also, b-4d=
(a = ¢)r e n, Thus, P~Q,

If g, h are lines of the first kind and j is a line of the
second kind, the result follows from a proof similar to Case 1, Again,

the three lines cannot all be of the first kind,

5,13, Lemma, If glihy P I i, gt Jj+g, then j+4h and there exists
QIh' jo
Proof, Take P = (a, b), for scme a, be L, PIg, j,

Case 1: Let g = [m, n]?, then since hl|lg, h = [m , p]z, for

gome p ¢ L, Let j = [q, z;-_}l. Clearly, j#h (by 3,8), Let



c =a=(n - pg(l - mq)-l, which is well-defined since q ¢ n and

-.hence' R mq lf\. Then (C, cm + p) I [my p-.}

{1 -1l i i i li {l

(cm + p)g + r

cmqg + pq + r

PR PR VORI o ) PR

amq ~ (n

- p)q(l = mq) "mgq + pqg + r

amq - (n = plq(l = mq) "mq + pq + a = bg

amq - (n = p)g(l - mg) "mq + pq + a - amg - ng

p)g - (n = plg(1 - mq)-lmq

ka4 0L e ) )

p)q((1 - mq)-l(l - mg) & (1 = mg) 'lmq)

plg{l - mq)-l

Hence, (¢, cm + p) I [q, r]l also,

Since
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In addition,

Case 2¢ Let g and h be defined as in Case 1 and j = [q, r]2.

© RS PO T n and hence, h4j also,

Take

i o

a = (p - n)

32

(m - q)-l,which'is well-defined since m - q £gn. Clearly, (¢, cm + p)

I [m, p]2. Furthermore,

€q

(a

aq

aq

am

am

am

am

-y

-+

r
(p - n)(m - @)™)q + r

(p ~ 8)(m « a) ™ ¢ p

RN T R Y ST SIS
n-(p-n)n-qg)q

(nbin )ty a)insq) e
(p = a)1 + (m~q) Ta) + p

(p = n)(m - q)-l(m -q+q)+p
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(a - (p - n)lm = a) VIm + p

il

cm + p
and se (¢, em + p) I [q, r]2 also,

If g and h are lines of the first kind, j must be a line of
the second kind, Cleariy, h4j, The construction of the point Q is

similar to the construction in Case 1,

As in the case of A, H, planes, we have a similar result which

is even stronger,

3,14, Lemma, Let P, =gndy dtey (i = 1, 2) such that gln gy
Then the following are equivalent:

1) g~ &p

2) P,~P,,

Proof, Assume 1), Let Py (a, b) and P (c, d),
Case 1: Let gy = (m, n]a; g5 = [m, p]2 and j = [q, r]l.
This implies that a - ¢ = (b - d)q e n (since q e¢n), Also
since Pi I 8so
b-d=an+n-cnm=p=(a=-cmn+ (n=-p) en.
Thus, P1~ P2,
Case 2: Let By and 8 be defined as in Case 1, ILet j = [q, r]a.
Since jag; # @ and jte, (i =1, 2), we have m - q £ n;
cf, 3.8 and 3,9, If 81~ B9 then n - p en, Clearly,

am+ n-cm=-p=D>b~d=ag =~ cq



and
(a ~c)m=-q)=p=-n cn.
Since m=-q ¢ n, we have 2 =cen and b - d cnr also, Thus,
Plh'}a,
Case 3: Assume gy and g, are lines of the first kind, Then

j must be a line of the second kind (since two lines of the first kind

which meet are neighbours), Let g = (m, n]l; B = [m, p]l;

Then 1f 8y~ B>

a-c=bm+ne-dn-p=(b-dm+ (n~p) en

(since men and n - p en) and
b-d=a +r-cg=-r=~(a-=-c¢clg ecn,

Thus, P AJPZ.

1

Assume 2),

Let gy = (my nl,; &5 = [m, p]a; P (a, b); P, = (c, d).

Clearly, if Pln'PZ,
n-p=b-am-d+cm=(b=-d)+ (c-adm en
(since b~den and ¢ - a en), Thus, 8y ~Boe

The proof is similar if g, and g, are lines of the first kind,
2 2

The proof in this direction does not require the existence of j.

5,15, Lemma, For every point P and every line 1, there exists a

vnique line L(P,1) such that P I L(P,1) and L(P,1)Ml 1,
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Proof, Take P = (a, b), for some a, be L, If P I 1, thenl
itself is the reguired line, so we need only consider the case where
PX1, Take 1 = [m, n]2 and consider the line [m, b - am]z. Clearly,

[(m, b - am]anfm, nl, and since am + (b - am) = b, we have (a, b) I

(my b - aml,, If 1= [m, nl., then (a, b) I [m, a - bm]l and

1
(m, a - bm]l‘i[m, nl

J. .
2,16. We have shown that the incidence structure A satisfies
all the axioms of A, H, planes, with the exception of Al and Ak in one

direction, Ve shall examine these axioms next,

3,17, Lemma, Through any two non-neighbouring points, there exists

exactly one line,

Proof, Consider the i non-neighbouring points (a, b) and (¢, d),
We discuss two cases: 1) a-c £n; 2)a-cen and b-4dgn,

Case 1: Since a - ¢ £, there exists. (a - " gn. Ve
have (a, b), (c, @) I [(a - &)™ (b - d), - ala - &)™(b = @) + bl
because

ola = eV b w G v mla ) b at) 2 b

- (& = eXn - Y (5= -al+ b

-b+d+b

:d‘
Therefore, there exists at least one line through the points (a, b) and

(c, d).
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If (a, b), (c, d) are also incident with some line of the

first kind, say (a, b), (¢, d) I [m, nl., then a =c = (b = d)m en;

1?
a contradiction,

Further, if (a, b), (¢, d) are incident with some [m, n]z,
then b-d=(a~-c)m implies m= (a - ¢) (b - d}; b=
ala - )" Xb -a) +n implies n = b - ala - b < a), Thus,
[(a - ¢)" (b - d), b - ala - &) (b - d)]2 is the unique line between
(a, b), (c, d),

Case 2: If a-cen and b-dgn, then (b - a)~t
exists and (a, b), (¢, d) I [(b - a)"a - c), a - b(b - ) a - c)]1
since

db = & Ha - ¢) + a - by ~¢) ¥ & c)

o [ AR e, ) * 5

= g +t¢c + a
= G,

The uniqueness of this line is shown in the same manner as in Case 1,
3,18. At this point, we may note, in addition, that if the
first coordinates of two voints are the same and are equal to some

a ¢ L, then both points are incident with the line [O, a]l. Similarly,

two points with second coordinate b & L are incident with [O, b]2.
3,19, Lemma, There exists a point on each line,

Proof., Take any line 1 and let m = L((0, 0),1), Since [0, O], %



to, 0l,, either m4 [0, O]1 or mA4[0, O]Z. Without loss of
generality, assume that m~[O, O]l. Then by 3,13, 1+ [0, O]l

and there exists a point P with P I [0, OJ,, 1,

B!
3,20, Lemma, For any line 1, there exist a point P such that P4#X,

for all X I1,

Proof. Assume such a point does not exist, Then there exist three
points Q, R and S on 1 which are neighbours of (0, 0), (1, O) and
(0, 1), respectively, Clearly, there exist lines R(0O, 0) and
R(0, 1), Therefore, by 3.11, 1~R(0, 0); R(0, 0)~ (0, 0)(0, 1);
1~R(1, 0) and R(1, 0)~(0, 1)(1, O), Thus, by transitivity,

(0, 0)(0, 1)~ (0, 1)(1, 0); a contradiction.

3,21, Lemma, ©On any line 1, there exist points P and Q such that

P4 Q.

Proof, By 3.20, we can select R such that R#X, for 21l X I 1,
At least two of the lines [O, O]l, o, 0]2, L3, 0]2 are not
neighbours of the line L((0, 0),1), Let these two lines be m and n,
By 3,13, L(R,m), L(R,n)# L(R,1); hence, L(R,m), L(R,n)# 1 also
and there exist unique points P = L(Rym)a 1l and Q = L(R,n)a1l,

Since m4n and R#4P, Q, 3.11 implies P+ Q,

3,22, Using 3,21, it is easy to see that for any point P on
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a line 1, there exist a Q I 1 such that P4 Q, If it were otherwise,

all points on the line would be neighbours; a contradiction,

3,23, Lemma, There exists a line through every pair of points if

and only if for all a, be L either a e bL or b e al,

Proof, Assume that through any two points of ¥ , there exists a line,
In particular, for any a, b € L there exists a line through (0O, 0)
and (a, b), If (0, 0), (a, b) I [m, n]l, for some men and
nel, then O=0m+n=n and a=bm+n=>bm If (a, b),
(0, 0) I [p, ql,, for some p, q e L, then 0=0'p+q=g and
b =a.p+q=ap, Hence, either a e bL or b e aL.’

Now assume that for any a, b € L, either a € bL or b ¢ al,
Take any two points (a, b), (¢, d) and consider a -c, b -d e L,
By our assumption, either (b =-d) ¢ (a=c¢c)L or (a=-c¢) e (b=~ dL,
If the first is true, then there exists m ¢ L such that
b-d=(a=c)n Therefore, b = am=d - cm, which implies (a, b),
(¢, @ I (my, b~ aml,.

If (a=-c)e (b=-dadlL, but (b=-ad) £ (a = c)L, then there
exists men such that a-c¢c= (b - dm, If m¢n, there would

exist m > and a-c= (b= d)m would imply b - d = (s = m L,

Thus, me¢n, Since a - bm = ¢ - dm, we have (a, b), (¢, @) I

[m, 2 - bm]l.

3,24, Remark, If (a, b)+#(c, d), the lines defined above coincide




with the lines we constructed in 3,17, If a-c¢n and b -d cn,
then a - c # (b - d)m for all m ¢ L, since (b - d)m € , Hence,
under the assumption that. xcy orycxl: for all x, ye L,
b-d=(a-c)m for some me L and the lines [m, b - am],, and

[(a - ) b - d), b - ala - ) Mo - d)]2 are the same, Further,

if b-dfn and a-cenya=-c=(b-dm for some me L,

as above, However, m € n since otherwise b - d = (a = ut  and
a=-c¢gZn; a contradiction, Thus, [m, a - bm]l =

[(b - &) Ma - c), a = b{b - 8 "¥(a = c)]l. Finally, if a -c, b - d
£rn, then b - d = la < o0 for sae” o £n and a-c = (b - Y,
However, since m‘-1 £ oy m“l cannot be the first cuordinate of a

line of the first kind and as above, b = d = (a - ¢)m implies (a, b),

(¢, @ I [m b -'am]z = [(a - &)"L(b - d), b - ala = P d)]a.

5,25, Lemma, The following are equivalent:
1) For g, h ¢ L, card{P I g, h} = 1 implies g+h,

2) n=D_, wvhere D_ is the set of left divisors of zero,

Proof, Assume 1), Consider any r ¢ L\\D_ and choose some m ¢ L,
Put p=m-r, Thus, m~p ¢ D, Clearly, both [m, O]2 and [p, O]2

pass through (0, 0), If (a, b) I [m, 0l,, [py OJ,, then O =b - b=

2,
am - ap = a(m - p), However, m - p ¢ D_; therefore, a =0 and

b = am = 0, Thus, card{[m, O]zA[b, O]2§ = Y By 1), Em, 032‘*

[p, 0], and so by 3.8, r =m - p £n, Hence, nE D &n (cf, [e],

28,

39
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Assume 2), Consider [m, nl,~ [p, q]z such that there exists
(a, b). I [m, n]2, [p, q]2. By 3.8, m=-pen =D; thus, there
exists ¢ # O such that c(m = p) = 0, Hence,
q -n=alm - p)

cl{m - p) + alm - p)

(¢ + a)m = (¢ + al)p
which implies (c + alm+ n= (c +a)p+q, Since c#0,c+afa
and we have two distinct points (a, b) and (¢ + a, (c + alm + n),
incident with both [m, n]2 end [p, q]z.

If we have two lines of the first kind, the construction of
a second point incident with both lines is similar to the above
construction,

In addition, recall that two lines of different kinds cannot

be neighbours,

3,26, Lemma, If (a, b) and (c, d) are two neighbouring points
incident with a line of the second [first] kind, then they are incident
with another line if and only if a -c ¢ D, [b -d ¢ D], where D _ is

the set of right divisors of zero,

Proof, Assume (a, b), (¢, d) I [m, nl,, [py ql,. Thenam+ n="b =
ap+q and ecm+n=d=cp+q imply (a - ¢)(m - p) = 0, However,
m-p# 0; otherwise, n - q = al(p = m) = 0 and the lines are equal,

Therefore, a ~c € D,

Next, assume a - c € D, Thus, there exists r # 0 such that
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i
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(a - c)r =0, Let p r. Then

am+ n=alp=-r)+n

ap + (n - ar)

cm+n=c(p=-r)+n
=¢cp=-cr tn
=cp-ar tar -cr + n

cp + (n - ar),

i

-

Hence, (a, b), (¢, d) I [p, n =~ ar]z.
If (a, b) and (¢, d) are two neighbouring points incident
with a line of the first kind, then a similar argument shows that a

second line through these two points exists if and only if b - de D



CHAPTER 4

Generalized Affine Hijelmslev Planes

4,1, 1In the last chapter, we investigated the incidence
structure constructed over a local ring and found it satisfies several
of the axioms of an A, H, plane, We also showed that the missing
axioms were equivalent to certain algebraic properties of the local
ring, In this chapter, we shall consider the incidence structure
satisfying the same éxioms as the incidence structure over a local
ring did, We show that under certain assumptions, such a structure
may be coordinatized, in the manner of Artin (1], by a local ring,

Let A=<P, L, I,||> ve an incidence structure with

parallelism, We define the neighbour relation on P to be an arbitrary

equivalence relation on P X P which also satisfies the condition that
if two points are not in fhe neighbour relation, there exists exactly
one line between them, Two lines are defined to be neighbours if
for any point on either line there exists a neighbouring point on the
other line,

If i also satisfies the following axioms, we call N a

generalized affine Hijelmslev plane (generalized A, H, plane),

Gl, There exists a triangle,
G2, If PI1, m, then l4m implies card{P I 1, m} =1,

G3, If P,QI1; P,RIm Q~R and 1l4m, then P~Q, R,
42
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G4, If PI1, mj QI 1, nj 1l4m and m~n, then P~Q,

G5, If 1ljjm; PI1l, n and 14n, then m4n and there
exists a Q T my, n,

G6, For any P ¢ P and any "1 ¢ L, there exists L(P,1) ¢ L
such that P I L(P,1) and L(P,1)ll 1,

It is clear from the definition that the neighbour relation

on L is also a2n equivalence relation,

4 2, Remarks, Let XA be a generalized A, H, plane,

1) For any line 1, there exists a point P such that P4 X,
for 211 X I 1, This is proved in the same manner as Lemma 3,20,

2) On any line 1, there exist points P and Q such that PdaQﬁ
hence, for any P T 1, there exists Q I 1 with Q4P, The proof
of this is similar to that of Lemma 3,21,

3) Through any point P, there exist three non-neighbouring
09 13. Since

these lines are pairwise not neighbours, by G5, the three lines

lines, By Gl, we may select a triangle with sides 11, 1

L(P,ll), L(P,lz), L(P’IB) are also pairwise not neighbours and all
three pass through the point P,
This also implies that for any given line m and any point

P I m, there exist two lines n. and n, through P such that the three

1

lines m, n,, n, are pairwise not neighbours,

2

4,3, Lemma, If gllhy PI gy QIh and P~Q, then gwh,
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Proof, Choose R I h such that R4Q, Then R#4P and RP~R) by

G3, By G5, g~RP and by transitivity, g~h,

L 4, We now define some mappings on the set of points, Ve
call a map, O: P—>P, a dilatation of 4 if and only if P, Q I 1
implies 0P I L(T Q,1), for points P and Q and a line 1,

"~
A dilatation T is a quasitranslation if’% has no fixed

points or T is the identity.

A line joining a point and its image under a dilatation is
called a trace of the dilatation,

A quasitranslation T is a translation if and only if every
line parallel to a trace is also a trace,

It is clear that the identity map on P is a translation, Let

D be the set of dilatations of a generalized A, H, plane A and let

T be the set of translations,

4,5, Remark, If T is a translation with a trace 1 and P is any point,
then TP I L(P,1), By definition, L(P,1) = m is a trace of T ; hence,
there exists a point Q such that Q,TQ I m, However, T is a dilataticn,

therefore, TP I L(TQ,m) = m. Thus, P, TP I L(P,1),

L, 6, Lemma, The images of two non-neighbouring points uniquely

determine a dilatation,

Proof, Let P and Q be two non-neighbouring points with images TP and
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C Q under some dilatation G, respectively, By 4.2, there exists a
point R with R4 X, for all X I PQ, In particular, R4 P, Q and so
there exist lines RP and R}, Clearly, the three lines are pairwise
not neighbours, Therefore, R = L(GP,PR)ALEQ,QR) is a uniquely
determined point.

Now consider any point S, If S~R, then S#4¥X, for all
X I PQ and as above US = LOP,PS)ALEQ,QS), If S4R, then there
exists a line SR and SRA4RP or SR4QR, Without loss of generality,
assume SR4RP, Tf S~P, then G3 would imply P~ R; a contradiction,
By G4, the lines SP and SR are not neighbours, Therefore,
GS = L(OP,SP)A LICR,SR) defines a unique point,

Thus, G is completely defined,

4,7, Lemma, The following are equivalent for a dilatation G :
1) For any pair of non-neighbouring peints, P and Q, we have
0 PA0Q,

2) U is bijective,

Proof, Assume there exists a pair of non-neighbouring points, P and
Q such that OPAH0Q,

Let R' be a point such that R'4 X, for all X I CPCQ, Then
there existsa unique point R = L(P, PR') AL(Q, QR'), Clearly,
OR=R',

Now let R' be a neighbour of some point on OFCQ, Clearly,

R' cannot be a neighbour of both OP and 0Q; say R'+CP, Choose
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GRQ~L(ES,SR), L{ES,S5Q); otherwise, OR~TQ by G4, Similarly,
URIQ~ PR, PQ (since if TRUQ is not a neighbour of PR or PQ then,
using PR~PQ, G4 would imﬁly OR~0Q). By the transitivity of the
neighbour relation, PR~TURCQ~L(TS,SR); a contradiction, Thus,
U Q~CR,

Case 2: Let P~Q,

Then there exists a point S<¢P and a point W4X, for all
X I PS, By G3, we have PWAWQ and PS~5Q; by G5, LOW,PW) =
PW~ LOW,WQ) and L(CS,PS) = PS~L(TS,SQ),

Now assume i’fHTQ, By G4, POQ~PW, P3; therefore, PW~PS,
However, since WA4X, for all X I PS, PW4PS; a contradiction,

Thus, P~0Q, Symmetrically, we obtain P~UR, Then 6R~P~0‘Q..

4,9, Lemma, One point and its image uniquely determine any translation

that has a trace,

Proof, Let T be a given translation with a trace m, Take any point
P with image TP under the translation T. By 4.5, P, TP I L(P,m) =
1. By 4,2, there exists a point Q with Q4 X, for all X I 1, From
the definition of dilatation, we obtain TQ = L(TP,PQ)AL(Q,1), a
well-defined single point,

As we now have two non-neighbouring points and their images,

4,6 gives us the desired result,

4,10, Remark, A translation without traces is, of course, completely

determined by the images of two non-neighbouring points,
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4,11, Lemma, The composition of two dilatations is again a dilatation,

Proof, Let U'l and G, be two dilatations, Consider the composition

2
crlo GZ, If P, QI1, then GP I L(D'ZQ,I) and

G,(@,P) T L(T(0,2),L(0,R,1)) = L(S, (6,Q),1),

L.,12, Lemma, For any translation T with a trace 1 if TP~P, for

some point P, then TQ~Q, for all points Q,

Proof, For a given translation T, assume there exists a point P with
TP~P, Consider any other point Q,

If Q#X, for all X I L(P,1), then by definition, TQ =
L(Q,1) AL(TP,PQ), Since P~TP and Q#P, TP, G3 implies that
PQ~TPQ; hence, by G5, TPQ~L(TP,PQ), However, L(TP,PQ}7# L(Q,1) by
G5, so by Gk, Q~TQ,

If Q~Y, for some Y I L(P,1), then there exists an R such
that R4X, for all X I L(P,1) and so TR~R, There also exists a
point S such that S#4X, for all X I PR, Clearly, S =
L(TP,PS) AL(TR,RS), Since PS4#RS by G4, either PS#L(S,1) or
RS4L(S,1), Without loss of generality, assume PS#L(S,1), Since
S4P, S#TP and by G3, PS~TPS, By G5, TPS~L(TP,PS); therefore,
by G4, S~TS,

There exists m ¢ {PR, RS, PS] such that Q#X, for all X I m,
By a similar discussion to the one above replacing PR by m and S by

Q, we obtain Q~TQ,



We call any translation which maps a point P to a point O,

where Q~ P, a neighbour translation, Let N be the set of neighbour

translations,

4,13, We now introduce a new axiom,

G?7. For any pair of points P and Q, there exists a translation
taking P to Q.

A generalized A, H, plane in which G?7 holds is called a

generalized A, H, translation plane (or a generalized T, plane),

4,14, A minor Desarguesian configuration, Cl, (cf, Figure 4,1)

is a set of six points P, Q, (i =1, 2, 3) and eight lines Piy 8
(i =1, 2, 3); dys 95 satisfying the following conditions:

1) g, g5i 1 3=1,2, 3

2) P,y Q Teggs I=1,23

3) P, Pj I pk;' (i, j, k) is a permutation of (1, 2, 3).

4) Qpy Q5 T agi s Q5 I ap.

5) pyllays pylla,.

6) Py P #85.

We say that a generalized A, H, plane has property D1 if and
only if for each minor Desarguesian configuration we have Q2 I
L(Ql'pB)'

4,15, Theorem. In a generalized A, H, plane, G7 implies D1,
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Figure 4,1,
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Proef, Consider any minor Desarguesian configuration, CI, r G7;
there exists a translation, T, which maps P1 to Ql‘ Clearly,
‘('IP3 = L(Qi’pE)AL(PB’gl)
= qz’\g}
= Q3
and
T =
P, L(QB,pl)AL(Pz,gB)
S B
= QZ'

Hence, by definition, Q, I L(Ql’pB)'
4,16, Lemma, Translations are bijective, .

Proof, Case 1l: Let T be a translation with a line 1 as a trace.

Select a point P and take any point Q such that Q4X, for
21l X I L(P,1), Then TQ = L(TP,PQ)AL(Q,1), If TP~TQ, then by
4,3, L(P,1) = L(TP,1)~L(TQ,1) = L(Q,1). Since L(P,1)+PQ, Gk
implies P~Q; a contradiction, Hence, TP#TQ and by L7, Tis
bijective,

Case 2: Let T be a translation without traces,

Then for any point P, P~TP, Consider a pair of non~-
neighbouring points P and Q. Clearly, TP~P+Q~TQ, Thus, as before

T is bijective,

4,17, Remark, Let T be any translation, Then for any pair of non-

neighbouring points P and Q, we have TP+4+TQ, If we were to assume the
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existence of a vair of non-neighbouring points P and Q with TP~TQ,
then for a point R with R4X, all X I PQ, we have TR =
L(TP,PR) A L(TQ,QR); of, proof of Lemma 4.6, By G3, TR~TP,TQ,
However, for any pocint S, there exists a line 1 in {PQ, QR, PR} such
that S4X, for 211 X I 1, By the same reasoning as above, we obtain
Ts~TP, TQ, TR, Thus, T cannot be bijective by 4,7 and so it

cannot be a translation,

Henceforth, we assume that 3 is a generalized A, H, translation

plane,

4,18, Lemma, The inverse map of a translation with traces is also a

translation with the same lines as traces,

Proof, Take any translation T with a line 1 as a trace, Since T
is bijective, the inverse map is defined on all points P, If there
is a line m with TP and TQ on m and L(TP,1) # L(TQ,1), then we may
consider two cases,

Case 1: L(TP,1)4 L(TQ,1).

By 4,3, TP+#TQ and P4Q, Therefore, there exist unique
lines TPTQ and PQ; hence, TP I L(TQ,PQ) implies P I L(Q,TPTQ)
= L(Q,m).

Case 2: L(TP,1)~1L(TQ,1).

There exists a point R such that TR4 X, for all X I L(TP,1),
By definition, TR#X, for all X I L(TQ,1) also, It is clear that

TRIP#L(CP,1), TRIQ+LE{Q,1) and L(R,1)#L(P,1), L(Q,1)., By Case 1



and G5, this implies RP4 L(TP,1) = L(P.)l) and RQ4 L(TQ,1) = L(Q,1).
By G5, RP, RQ+L(R,1), We now have P I L(Q,m) by D1,

Finally, if L(TP,1) = L(TQ,1) and L(TP,1) is the only line
through TP and TQ, then L(TP,1) must be the only line through P and Q
by the definition of dilatation, If there exists a line m # L(TP,1)
with TP, TQ I m, then for any point TR with TR%4X, for all X I
L(TP,1), we have TR4X, for all X I m also, By definition,

TRTP, TRIQ+ L({ICP,1), m, Hence, there exists a point S =

L(Q,m) A L(R,TRTP) and

TS = L(TR,L(R,TRTP)) A L(TQ,L(Q,m))

TRTR Am

= TP,

By the injectivity of T, we have P = 5, Therefére, P I L(Q,m). ‘
Thus, ‘L—l is a dilatation,
It is clear that 't-l has no fixed points unless T is the
identity, and that all the traces of C are traces of 'C—l. Hence,

-1 is a translation,

h.lg, Lemma, The set of translations is closed under functional

composition,

Proof, Consider two translations T, and T,, By k11, 'C1°'C is

1 2
a dilatation, Choose a point P and let Q = fi°Té)P, R = TP,
Suppose, first, that ‘Cl has a trace 11.
o T o
We may assume that R I 11. Thus, Q I 1l also, If Sy L2

has a fixed point S then (Ti°Té)S = S, Since T, is bijective,



-
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7 T exints and

——

Sk
= o -1 . .
T,5 = ti S. However, as tiﬁhas a trace, T is
also a translation, Hence, Ié =T .

&l ¢ - . 5
1 - Therefore, ti té i, the
identity translation, On the other hand, if 't1°Té has no fixed points
then it is at least a quasitranslation, We now have four possibilities
Case 1:

There exist lines 12 and m such that P, R I 12 and
P, QIm,
a) First, suppose 1,5 15, m are mutually distinct and two of
them are neighbours, Then there exists a line n through P such that
nr#la, L(P,ll), m

. Now take any point S I n such that S+4Pp,

Then
'v:st = L(S,m)a L(Q,n)
T8 = L(S,la)AL(_R,n)
and
T(T,8) =

L(Tes,ll)AL(Q,n).
We have three rarallel

lines n, L(R,n) and L(Q,n). In addition,
) R
].2+n and m4n, By D1, ‘tP

QS I L(TéS,ll); therefore,
TpoS = 1,(':25,11)A L(Q,n) =T, (T,
Thus, t%Q =_El°té by 3.6,

b) Next, Suppose 1

19 12, m are mutually distinct and pairwise
not neighbours and P, Q, R

are also pairwise not neighbours, We have
(TiGT;)? = Q =-:5QP' In addition,
TR = L(Q,IE)AL(R,m),
TR = 1,4 L("L'ZQ,ll),
LPQR = L(R,m)I\L(Q,la) = L2Q
and
Tl(LP_R) = L(tzR,ll)/\L(Q,lz)

L(TQ,1,) A L(Q,1,).
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However, T,0 T L(‘L‘EQ,II), L(Q,le); therefore, by G2 and G5,
‘tl(tZR) ='C2Q ='CPQR. By 3.6,'t1°té =-tPQ and hence, Ti°Té is a
translation, .

¢) Suppose all three points are incident with some line 1,
There exists S such that S4X, for all X I 1, Thus, there exist
lines SP, SQ and SR, Clearly, SP~SQ if and only if P~Q; SQ~SR

if and only if Q~R and SP~SR if and only if P~R, If SP~SQ,

then by a), we have T_, =T, C,e. If SP~4SQ, then P#Q and we
PQ ""1! PS
. S imi T. =T =TT
have .tPQ Csops py b), Similarly, T, = Coplpg and Ty 5q Rs*
Therefore,
Tqty = (’CSQTRS)('CSRLPS)
= Tsolps , :
=TPQ.
Hence, Ti°75 is a translation,

11 12 and m are mutually distinct and

pairwvise non-neighbouring and . P, Q, R are neighbours, Then there

d) Finally, suppose that 1

exists S I 12 such that S4P, Clearly, S4Q, R and 8P~ SQ,

= T = T = T
Hence, by a), -EPQ —tSQLPS and TSQ tﬁQtéR' By ¢), PR tSRLPS‘
Therefore,
=T = = = T
g = Cs0%ps = (CroTsr’Tps = Tropr = U1 2
Case 2: 'El and Té are translations with traces, but there

is no line through P and Q,
If there exists a point S such that S, titZ(S) I1 for some
i L o T
line 1, then 1o = S,tif?(s)
P,'Cita(P) I L(P,1); a contradiction, Thus, Tiié has no traces and

by Case 1, However, this implies that

the condition that all lines parallel to a trace be traces is satisfied
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vacuously,

~ Case %: There exists a line m with P, Q I m, but no line

through P and R,

Thus, 11 and m are distinct and Tz has no traces, By Case 3,

_— -1~ T
=T s, T = U i i
i 1 © Hence, thé T Thus, 1 L2 is a translation,

2 PQ°* P*
Case k: Neither T, nor C have traces, The result follows

2 PQ

in the same manner as Case 3, using Case L instead of Case 1,

Next, we assume that'ti is without traces, This implies that

R~Q, Therefore, there exists a point S such that S+ P, R, Q, By

earlier cases,'t1='fsqfés,'t§8 ='tRéC2 and tPQ = TEQIFS‘ Therefore,
T = (T GdT .
= Tgo{Trsts) )
= tPQ L

Thus,'t1°té is a translation,

Q

vy

4,20, Remark, The proof of Lemma 4,19 : yields that if’tité(?)

then_'fit? = Tppe Hence, ifTPQ is a translation without traces, we
may select a point R such that R4 P, Q and we have -tbQ =—tRthR’
Since TkQ and TbR are translations with traces RQ and PR, respectively,

*fQ‘

only one translation taking P to Q, This implies that the translations

they are completely determined and hence, so is Thus, there is
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