Dedicated
to my
Mothen

THE COMMUNICATION MANAGEMENT

SYSTEM (COMS)

AN INVESTIGATION INTO
THE

COMMUNICATION MANAGEMENT SYSTEM (COMS)

By
MARC STEPHEN BADER, B.Sc.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

June 1973

MASTER OF SCIENCE McMASTER UNIVERSITY
(Computation) Hamilton, Ontario.

TITLE: An Investigation Into The Communication
Management System (COMS)

AUTHOR: Marc Stephen Bader, B.Sc. (McMaster University)
SUPERVISOR: Dr, Nicholas Solntseff

NUMBER OF PAGES: ix, 112, A(3), B(3), C(56), D(1), E(43),
F(100), G(3), H(17)

(ii)

ABSTRACT

This report is concerned with an investigation into
a software system designed to allow effect utilization of
FORTRAN application programs from a library. The components
of this system consist of an interpreter program to manip-
ulate character strings and provide overall control, an
evaluator program to carry out operations on numeric data
and to provide for the calling of library programs, and an
associative memory to store and retrieve facts about the
environment or field of study in which the system is being
used. Details involving how to use each component and how
each component works are discussed. Possible improvements
to the system and the relationship of the system to the
field of control structures are also considered. The
implementation of the system is discussed and this leads
to an examination of the algorithms used in the operation
of the system. Control is easily maintained so systems
constructed from the components may be modified or extended
by any user. Thus, these components form a basis for a

class of extendable systems.

(iii)

Acknowledgments

The author gratefully expresses sincere thanks to
Dr. N. Solntseff for his guidance through this project and
to the National Research Council of Canada for the computer
time provided by their financial support.

Special thanks to Mr. Bill Bell whose programming
suggestions helped a great deal.

For the manuscript typing the author is indebted
to Miss Linda Westfall; and finally for her concern and

encouragement in this endeavour, thanks to Miss Debbie

Westlake.

(iv)

TABLE OF CONTENTS

INTRODUCTION
CHAPTER 1: THE COMMUNICATION MANAGEMENT SYSTEM
1.1 Introduction
1.2 Description of COMS
1.3 Elements of COMS
1.3.1 Interpreter
1.3.1.1 The STRAN Language
1.3.1.2 STRAN Pseudo Operators
1.3.1.3 The STRAN Rule
1.3.1.4 STRAN and the Associative Memory
1.3.1.5 STRAN Errors
1.3.1.6 Conclusions and Examples
1.3.2 Evaluator
1.3.2.1 Algebraic Formula Evaluation
1.3.2.2 Infix to Prefix Polish
1.3.2.3 Variables and Arrays
1.3.2.4 Communication with the Program Library
1.3.3 Fortran Library of Programs
1.3.3.1 Placing Programs In the Library

(v)

10
28
33
36

39
40
44

50

58
58

1.3.3.2 Efficient Program Organization 61

1.3.4 Associative Memory 71

1.3.4.1 Use of the Set Theoretic Language (STL) 73

1.3.4.2 An example Deduction 78
1.3.5 Conclusions 79

CHAPTER 2: CONTROL STRUCTURES AND COMS
2.1 Introduction 82
2.2 COMS and Coroutines 83
2.2.1 Coroutines and Multiple-Pass Algorithms 105
2.3 Soapsuds 107

REFERENCES 111

APPENDIX A: STRAN Syntax

APPENDIX B: STRAN Operators

APPENDIX C: STRAN Sample Programs

APPENDIX D: STRAN Error Messages

APPENDIX E: COMS Reference Manual

APPENDIX F: COMS Fortran Program

APPENDIX G: Scope 3.4 Control Cards For COMS

APPENDIX H: An Example Coroutine Program

(vi)

TABLE OF DIAGRAMS

Detailed block diagram of COMS
Simple STRAN rules
Illustration of STRAN storage
Detailed rule body breakdown
Block diagram of the evaluator

Flow diagram showing the assignment of

operator precedence in the evaluator, and
the translation of Infix to Prefix Polish

notation

Examples of possible actual parameters
used in calling COMS library programs

Control cards set up for:
(1) the creation of the COMS library
(2) additions to the COMS library
(3) the deletion of the COMS library

The Set-Reset method of program organi-
zation

Use of variable length argument lists in
program organization

Use of Namelist Input in subroutine
argument transmission

Examples of the Set Theoretic Language
showing expanded N-Tuple representations

A set of useful primitive operations

Comparison of main routine-subroutine
linkage and coroutine-coroutine linkage

Flowchart of the Fortran routines RDCARD
and SQUISH

Flowchart of the Fortran routine WRITE

(vii)

Page

13
19
20
42

56

59

64

66

68

73

76
89

30

92

2.7

2.8

Flowchart of the coroutine SQUISH
Flowchart of the coroutine WRITE

Flowchart of a sample program using
coroutine bilateral linkage

Flowchart of the coroutines IN and OUT

Multiple pass algorithms

(viii)

93
95

98

100

107

PREFACE

This project involves the study of a group of basic
computer programs and methods collectively called the
Communication Management System (COMS). Originally designed
and implemented in 1969 by Robert C., Gammill at the Univer-
sity of Colorado, COMS was used to develop methods of
computer utilization which would allow application programs
produced by experienced programmers for different fields of
study to be used by other interested people, who, having
very little knowledge of computers and computer program-
ming, never had access to such programs before. The result
is a system which creates an environment that encourages
the authors of application programs to write them as general
purpose subroutines, and which allows the inexperienced
computer user to operate such application programs with

little knowledge of their intricacies.

(ix)

CHAPTER 1

THE COMMUNICATION MANAGEMENT SYSTEM

1.1 Introduction

The software elements (programs) which make up the
COMS system were originally implemented in PL/1 on an IBM
360/65 computer. A second but incomplete Fortran IV im-
plementation was carried out on a CDC 6600 computer. Part
of this project involved completing the previous Fortran
version and reimplementing it on the CDC 6400 computer at
McMaster University.

The individual program elements of COMS are dis-
cussed in great detail in Chapter 1 with respect to their
function in the COMS system, their relationship to each
other and the methods involved in their use. Investigation
of a possible improvement in the system is carried out in
Chapter 2 showing how particular programming control
structures may be used to attain a greater degree of effi-
ciency. Also examined here is the possible use of COMS in
the development of a command language for an operating
system used in a parallel programming environment. The
appendices following Chapter 2 are used to provide summaries
of important aspects of the COMS system, to display sample
programs involving a variety of applications of the system
and to give a detailed account of the program flow of each

of the COMS software elements.

1.2. Description of COMS

COMS is a software package which consists of three
major programs. These include an Interpreter program which
serves as the controlling element of COMS, an Associative
Memory program which stores factual information about COMS,
its library and the environment in which it is being used,
and an Evaluator program which evaluates algebraic formulas,
stores and retrieves numeric data, and causes execution of
FORTRAN programs from a library. Associated with each of
these programs is a data collection as shown in Figure 1l.1.

The major aim of COMS is effective utilization of
FORTRAN programs from a program library. These programs are
supplied by both those who design the COMS system and those
who use it.

To be helpful to programmers in all fields of study,
COMS has been designed to be changed. This is because COMS
is data directed through commands to the interpreter and
these commands can be modified or added to by anyone.

One way to view the COMS system is by an analogous
comparison to a book-type library, where the man in charge
is say Mr. X. Now Mr. X (the computer scientist) is a busy
man dealing with not one but many such libraries (computer
systems) and he knows that for each of his libraries to be
useful to the public, books (application programs) cannot be

blindly thrown into rooms where readers (people wanting to

[USER <

FIGURE 1.1

COMS - DETAILED BLOCK DIAGRAM

DATA ELEMENTS
IN SECONDARY
STORAGE

SAVED RULE

~.

SETS

R

SAVED

NUMERIC DATA

PROCEDURE DATA ELEMENTS
ELEMENTS IN IN CORE
CORE
STRAN |, lcmaractEr |
? INTERPRETER |7 STRING RULES S
: _AND DATA
K
|
ASSOCIATIVE N-TUPLE
MEMORY <——3 DATA
PROGRAM
| EVALUATOR
[PROGRAM TO NUMERIC
ALLOCATE, ARRAYS AND
STORE AND < VARTABLES
GET

ARGUMENT LIST
GENERATOR AND
CALLER FOR
LIBRARY

N

MODELS

USER DATA
COLLECTIONS

PROGRAM
LIBRARY

<-PROGRAM LOADED ————

PROGRAM

LIBRARY

use the application programs) are expected to rummage
through the mess to find what they want. Mr. X also knows
that he hasn't the time to take each person (each programmer)
and show them the exact location of each book they wish to
read (that is, the computer scientist is too busy to show
each programmer how to use a particular application program).
Instead, Mr. X must create a system (COMS) which allows
library users {(programmers) to find and use what they need
on their own. Thus Mr. X hires librarians (system program-
mers) and provides them with money (COMS programs) to dev-
elop such a system. The librarian can then transform the
library books (application programs) into an effective tool
for different readers' (users') goals. The authors of the
books in the library are analogous to the authors of the
application programs.

The important point in the above comparison is that
the person in a particular field of study that desires the
use of computing facilities but does not have any idea how
to use them is provided with a tool for just this purpose.
Once COMS has been set up by experienced programmers for use
in a particular field, anyone involved in that field will
have the availability of computing facilities that did not

exist previously due to the lack of programming "know-how".

Other software systems of the COMS variety! have
been developed and aimed at people who know little about
computers but are knowledgeable in the problem area of
interest. WNone of these however, ofifer as much user flex-
ibility as that given in COMS. Also, in some cases, ap-
plication programs in the field of interest which are to be
added to the system have to be massively rewritten to con-
form to restrictive conventions and standards. The result
with many systems (and this is definitely not true of COMS)
is that they have remained alive only as long as the people
who originally designed them continued to work on and dev-
elop the system.

In summary then, COMS was conceived with the follow-
ing philosophy. The computer scientist designs the basic
programs of the system. Given these, the systems programmers
use them to produce particular COMS implementations (that is,
particular to a certain field, say compiler development or the
fluid sciences). Library application programs for each im-
plementation are supplied by sophisticated members of the
user population who would be rewarded for their work (much
like authors getting monetary awards for their efforts). The

result should be a system which will rapidly grow and develop.

lgome of these software systems include SKETCHPAD (Sutherland,
1963), Map (Kaplow, 1966), ANAL 68 (Welsh, 1967), ICES (Roos,

1967) and SIR AND STUDENT (Raphael and Bobrow, 1964).

1.3. Elements of COMS

In the following four sections a description of the
elements of COMS will be presented. These include the in-
terpreter, the evaluvator, the associative memory and the
program library. Each element will be described in detail
in terms of its purpose, its use and its relationship to

the other elements.

1.3.1. The Interpreter

Of the four elements in the Communication Manage-
m2nt System the interpreter serves as the most important.
The reason for this is its ability to provide a control
mechanism for each of the other elements.

Control is established through the manipulation of
data (presented as strings of characters) by a set of rules
(also presented as strings of characters) fed to the inter-
preter. These rules directing the interpreter may cause
character strings to be passed to and received from the
associative memory and the evaluator (see Figure 1.1 in sec-
tion 2.1). Also, user communication is established by
rules which may cause input of character strings (from the
user) and output of character strings (to the user). Since
the interpreter has the ability to communicate with both
the other elements of COMS and the COMS user, it serves as

an intermediary and translator between the two. This leads

to the primarv function of the COMS interpreter which is to
allow the definition of command languages by experienced
computer users, thus providing a valuable tool for access
to computational facilities not previously available to in-
experienced computer users.,

Programming the rules which direct the interpreter
is done in the string transformation language (STRAN).
STRAN may be classified as a general purpose symbol manip-
ulation language and as will be seen forms a very signif-
icant part of COMS. STRAN cleosely resembles the informa-
tion retrieval language COMIT[1]. Both STRAN and COMIT use
sequentially interpreted rules which perform decomposition,
transformation and recomposition of character strings. Al-
so both languages have rules which pass control to one of
two other rules depending upon the success or failure of
the decomposition portion of the rule. The main difference
between STRAN and COMIT is that STRAN makes no distinction
between rules and data. A character string to be inter-
preted as a rule must simply conform to certain rules of

format if successful interpretation is to occur.

1.3.1.1. The STRAN Language

The interpreter for the string transformation lan-
guage is a sequentially executed character string processor.

Input to the interpreter must be in character string form

so that STRAN programs (also referred to as "rules") and
data are in the same format. An example of a few simple
STRAN rules will serve to motivate the descriptive material
that follows. These are shown in Figure 1,2 (page 13).

The interpreter can operate in two different modes:
(1) In the "rule reading"” mode rules are collected from
the input cards (80 columns) and stored. A unique name is
associated with each rule; The interpreter always begins
execution in the rule reading mode but is switched from
this to the "interpretive"™ mode when a rule name surrounded

by parentheses is encountered. An example of this is

(PROG) or
(READ) or
(TEST)

Each of the above rule names are termed "go-to" rule names.
When an input such as this is encountered, control is

transferred to the rule named by the character string with-
in the parenthesis except where the rule named is a pseudo

operator.

1.3.1.2., STRAN Pseudo Operators

In the rule reading mode, the interpreter is able
to accept commands from the STRAN user via a list of pseudo
operators. (These may be compared to the pseudo operators

found in a typical assembly langquage). Through these com-

mands a user can control certain "switches" (i.e. variables
set to ¢trueec or <false+ in the FORTRAN sense) which in
turn control certain aspects of the interpretation opera-
tion. Input of a STRAN command does not change the rule
reading mode to interpretive mode. This only occurs when

a "go-to" rule name is encountered.

The following is a list of pseudo operators avail-

able in the present STRAN version:

(ECHO): Causes an echo of each input card to be
printed. Each line given by the echo com-
mand begins with the phrase INPUT... to
distinguish it from the output lines of
the interpreter.

(NOECHO) : Echoing is discontinued.

(TRACE): Causes each rule currently being inter-
preted to be output in the form:
INTERPRETING RULE...
and also causes the contents of each
variable changed during rule execution to
be output in the form:

VARIABLE (name) =
(NOTRACE): Turns off the (TRACE) command.

(PUNCH) : Causes punching of a card for each output

line produced by a rule. That is, the

output line produced by the (TRACE) com-

10

mand is also punched on cards (without the
two words shown above)
(NOPUNCH) : Punching is discontinued.
(RESTART)]
(RETURN)

(DUMP) See Appendix B

(READLX) —
The above four pseudo operators pertain to the entire COMS
system rather than the interpreter and are therefore dis-
cussed in the COMS reference manual.

In the interpretive mode execution of the STRAN prog-
ram takes place. Once the interpretive mode has been
entered a return to the rule reading mode can only be
accomplished when the name of the next rule to be inter-
preted is (END) or when the pushdown stack (to be discussed

below) is empty.

le3.1.3. The STRAN Rule

Each STRAN rule is scanned from left to right by the

interpreter. There are three main types of STRAN rules, all
of which must begin with a left parenthesis followed by a rule
name followed immediately by a second left parenthesis. Also,
each of these rules must end with two right parentheses sur-
rounding from zero to two rule names. A rule name may be from

one to ten characters in length (any characters

11

over 10 are ignored).

Using traditional Backus-Naur form the definition
of a STRAN rule is given below. The English words enclosed
between the angular brackets < and > denote syntactic con-
structs. Possible repetition of a construct is indicated
by an asterisk (0 or more repetitions) or a circled plus
sign (1 or more repetitions). If a sequence of constructs
to be repeated consists of more than one element, it is
enclosed in the meta-brackets { and }l.

Thus in BNF we have
<STRAN RULE>::= (<RULE NAME> (<TYPE 1 BODY>|<TYPE 2 BODY>|

<TYPE 3 BODY>)
<RULE NAME>:: = <NAME>
<NAME> :: =<LETTER><ALPHANUM CH>*
(maximum of ten characters)
<ALPHANUM CH>::=<DIGIT> | <LETTER>|<ZERO>
<DIGIT>::=1]|2|3|4]|5|6|7]8]9
<LETTER>::=A|B|C|D|E|F|G|H|I|T|K|L|M|N|O|P|Q|R]|S|T|U|V]
wix|y|z
<ZERO>:: =0

The user must fit each STRAN rule onto an 80 column
card. If a rule is more than 80 characters in length, it
must be broken down into smaller length rules so that each
can fit on a card (this is easy to do with STRAN).

The three types of STRAN rules are described below

12

with references to Figure 1.2. Rules with type 1 and type 2
bodies are used for storing information while those with

type 3 bodies stipulate the processing to be performed by

the STRAN interpreter.

Type 1 Body:

The form of this body in BNF is
<TYPE 1 BODY>::=<RULE NAME>{,<RULE NAME>}*)
Thus a rule with a type 1 body must contain a string of rule
names separated by commas. An example is (1) of Figure 1l.2.
The purpose of this type of rule is to place a list
of rule names onto a push-down stack which is referenced

by the interpreter when the rule name (END) is encountered.

The stack is accessed in a "last-in-first-out" manner (from
right to left) so that the last rule to be placed on the stack
is the first one to be referenced by the interpreter. In the
example referred to above, the rule will give rise to the

following stack configuration

READ + Pirst rule referenced
EXEC +> Second rule referenced
TEST » Third rule referenced

b
t

Thus on encountering an (END) rule name, the interpreter
will "pop-up" the first rule name in the stack and execute

that rule. All the other rule names would then move up one

FIGURE 1.2

SIMPLE STRAN RULES

(PROG (READ ,EXEC, TEST))

(STOP (*FIN'HALT*TERMINATE"'))

(READ (*INPUT/'*'+$/=*INPUT/'COM. .. "'+2/) READ,END)
(EXEC (INPUT/$+' ("+$+4+') '+$/=*0UT/3/INPUT/5/) EXEC,END)
(TEST (INPUT/$+STOP/) END, PROG)

(PUNCH)

{PROG)

13

(1)
(2)
(3)
(4)
(5)
(6)
(7)

slot giving:

EXEC -+ PFirst rule referenced

TEST + Second rule referenced

If now another stran rule of this type is executed by the
interpreter, the existing rule names on the stack will be
pushed down. For example

(RULE 1(XYZ,RG,SUCCEED))

will result in:

XYz + First rule referenced
RG + Second rule referenced
SUCCEED + Third rule referenced
EXEC + Fourth rule referenced
TEST + Fifth rulq referenced

f
1 ' '
+ . ’

The maximum number of rule names the stack is capable of

holding is 100.

Type 2 Body:

The form of this body in BNF is
<TYPE 2 BODY>::=<LITERAL PATTERN>)
<LITERAL PATTERN>::={'<CHARACTER STRING>}®’
<CHARACTER STRING>::=<any sequence of one or more basic

6-bit display BCD characters>. An example is (2) of

14

Figure 1.2.

The purpose of this rule is to store away a literal
collection pattern under one name (which is the rule name)
for later pattern matching in STRAN rules. This type of
STRAN rule can be placed anywhere in the STRAN program and
is dealt with by the interpreter while in the rule-reading
mode only. Trying to pass control to this rule during
execution will cause an interpretation error. An example

of the use of this type of rule will be given later on in

the discussion.

Type 3 Body:

The form of this body in BNF is:
<TYPE 3 BODY>::=<RULE BODY>)<GO-TO SECTION>
<GO-TO SECTION>::=<RULE NAME>|<RULE NAME>,<RULE NAME>
<RULE BODY>::=<LHS>=<RHS>|<LHS>|=<RHS>
<LHS>:: = {<VARIABLE NAME>/<DECOMP PAT>/|
+F<DIGIT>/<FIND PAT>/|
+A<DIGIT>/<ACCESS PAT>/}®
<VARIABLE NAME>::=<NAME>
<DECOMP PAT>::=<DECOMP OP>{+<DECOMP OP>}®
<DECOMP OP>::=$%|$<DIGIT>|$LITERAL|<VARIABLE NAME> |
+<DIGIT> | <LITERAL>| «<DIGIT>
<LITERAL>::="<CHARACTER STRING>'
<FIND PAT>::=<FIND OP>{+<FIND OP>1}®

(a maximum of 4 find operators is al-

16

lowed in one find pattern)
<FIND OP>::=$|<KLITERAL>|<DIGIT>
<ACCESS PAT>::=<DIGIT>{+<DIGIT>}®
(a maximum of 3 digits is allowed in an
access pattern)
<RHS>#={{*|, }*<VARIABLE NAME>/<COMP PAT>/|
+S/<STORE PAT>/1}®
<COMP PAT>::= <COMP OP>{+<COMP OP>}%
<COMP OP>:= <DIGIT>|<LITERAL> |+<DIGIT>|ZL<NUMB>,<DIGIT> |
=R<NUMB>,<DIGIT>
<NUMB>::= <DIGIT> | <DIGIT><DIGIT>
(numb has a maximum value of 80)
<STORE PAT>::=<STORE OP>{+<STORE OP>}®
(maximum of 4 store operators in a store
pattern)
<STORE OP>::=<LITERAL>|<DIGIT>
The complete form of the type 3 body is presented
above although many of the definitions (those dealing with
the associative memory) will not be referred to until sec-
tion 1.3.3.2. Some examples of type 3 body rules are
shown in (3), (4) and (5) of Figure l.2.
A STRAN rule with type 3 body is the real workhorse
of the STRAN language, performing compositions, decomposi-
tions and transformations of character strings. The go-to

section of the rule contains either one or two rule names.

17

If two are given they are separated by a comma. The first

will receive control if the character string decomposi-
tion by the rule body succeeds. The second will receive
control if decomposition fails. Of course if only one rule
name is present, control is passed to it in either case.

Some examples are:

(a) (RULE1 (<RULE BODY>)RULE2)
(B) (RULE2 (<RULE BODY>)RULE3,RULE1l)

(C) (RULE3 (<RULE BODY>)END)

In (A) RULEl will pass control to RULE2 no matter
what happens in decomposition. However, in (B), RULE2 will
only pass control to RULEl on a decomposition failure where-
as RULE3 will receive control on decomposition success. In
(C) control will be passed to the rule named END regardless
of whether RULE3 has failed or succeeded and, as mentioned
previously, this will initiate the popping up of a rule
name from the push down stack.

The rule body is separated into two sides (left and
right) by an equals sign. The left side of the rule body
performs three operations.

1) References the contents of STRAN "storage loca-
tions" named. A STRAN storage location provides storage

for variable length strings of characters (up to a maximum

of 80 characters in one location) where both data and rules
are kept. Each location of this storage is referenced by a
unique name assigned at execution time.

2) Decomposes the contents of the storage locations
named according to the pattern matching directions given.

3) ©Stores the resulting decomposed elements in one
of nine successive special character-string-storage loca-
tions. These may be thought of as pseudo-registers or
accumulators, each capable of holding up to 80 characters.
Referencing of these registers is done by using the integers
1 to 9 as will be shown. (A virtual depiction of STRAN
storage can be found in Figure 1l.3).

The right side of the rule body performs three
operations:

1) Concatenates the contents of specified pseudo
registers and literals.

2) Stores the results (character strings) of con-
catenations in the storage locations named.

3) Associative memory operations (section 1.3.4).

A more detailed description of the rule body can be
carried out using the example shown in Figure 1l.4(a). Be-
ginning with the left side of the rule body (Figure 1.4(b))
VARB is the name of a storage location (as with rule names
the maximum length of a storage location name is 10 char-

acters).

18

FIGURE 1.3

STRAN Storage

PUSH DOWN STACK
OF RULE NAMES

1 |+ 10 CHARACTERS -
2
3 —
4
5
100
VARIABLE NAMES
STORAGE
1 ¢ 10 CHARACTERS
2
3
4
5
257
Notes:
1)

2)

W 0 NN Y U W N

N o W N

257,

19

PSEUDO REGISTERS

+< 80 CHARACTERS -

VARIABLE LENGTH
STRING STORAGE

< 80 CHARACTERS -

Pseudo registers are automatically referenced in succes-
sion by the left hand side of a STRAN rule with type 3 body.

Variable names may also be used as rules names as long as
the string referenced by that name is a syntactically correct
STRAN rule.

FIGURE l.4(a)

RULE BODIES

(5) (6) (5) (7)

r 1 T 1 T

(EG (VARB/S$+'A'+$/=VARB/1+'B'3/)EG,R2

bt it 1

(1) (2) (3) (4)

(1) rule name

(2) 1left side

(3) right side

(4) succeeding rule names
(5) wvariable name

(6) decomposition operators

(7) composition operators

(1)
(2)
(3)

(4)

(1)

(2)
(3)

(4)

21

FIGURE 1.4 (b)

RULE BODIES

(3)
Lo(4) (4]
VARB / $ + "A ' + S /
| E— 0 S,

(1) (2)

variable containing character string to be decomposed
decomposition operators separated by plus signs

decomposition operations to be performed on the vari-
able VARB

quotes indicate a literal

FIGURE l.4(c)

(3)
: (4) (4) !
VARB / 1 + *B ' + 3/
L 1 T 4

(1) (2)

variable under whose name composed string will be placed
in STRAN storage

numbers refer to particular pseudo registers

composition operations to be performed on decomposed
string

quotes indicate a literal

22

Operations enclosed between the two oblique strokes
are performed on the variable named immediately to the left
of the first oblique stroke. The operators for decomposi-
tion are seperated by plus signs. The two operators shown
are the dollar sign $§ and a character string literal 'A’'.

A complete list of STRAN decomposition and composi-
tion operators along with their meaning is given in Appendix
B.

The dollar sign operator matches any arbitrary char-
acter string including the null string. The character
string literal (string of characters surrounded by single
quotes) matches only an exact occurrence of the contained
string of characters. Thus the above operators attempt to
find an A in the character string stored in VARB., If an A
is found (i.e. decomposition is successful) all characters
preceding the left most A are placed in pseudo register 1,
the A is placed in pseudo register 2 and the remaining char-
acters in pseudo register 3.

For example if VARB references the string

IbRUNbWITHbSAM
(where b indicates a blank character), the result of the a-

bove decomposition will be

pseudo register 1 contains IbRUNbWITHDbS

pseudo register 2 contains A

pseudo register 3 contains M

If VARB references the string

IbRUNbWITHbPETER
decomposition fails, the rest of the rule body is skipped
and control is immediately transferred to rule R2.

Now consider the right side of the rule body as
shown in Figure l1.4(c). The storage location named immedi-
ately to the left of the first oblique stroke receives the
result of the character string composed by the operators
between the obligue strokes. Composition operators like
decomposition operators are separated by plus signs. The
integers 1 and 3 refer to the contents of pseudo-registers
1 and 3 respectively.

The contents of VARB after the above operations
are performed will be the contents of pseudo register 1
concatenated with a B, concatenated with the contents of
pseudo-register 3. Using the previous example VARB will
contain

(3)
+
IbRUNbWITHbSBM

f

(1) (2)

(1) pseudo register 1
(2) 1literal

(3) pseudo register (2)

23

24

Control will now be passed to the rule named EG and the
whole process will be repeated resulting in all the A's
being changed into B's.

An asterisk placed in front of a variable name
indicates that an input-output operation is to be carried
out. Thus on the left side of a rule body an asterisk pre-
ceeding a variable name tells the interpreter that before
decomposition begins, an input line (i.e. an 80 column card)
is to be read into a STRAN storage location for future ref-
erence by that variable. Similarly an asterisk preceding
a name on the right side of a rule body tells the interpreter
that after results have been placed in the storage location
named, its contents are to be printed as a line of output.
An example of this is:

(READ (*INPUT/'C'+S$/=*INPUT/2/)READ,END)
This rule reads an input line, tests to see if that line
begins with a C and if so it outputs the rest of the line.
This process continues until an input line without a C at
its start is found.

The comma is also used as a variable name prefix
but only in the right side of the rule body. Its presence
indicates that before the results of composition are placed
in the storage location named, they are to be passed to the
COMS evaluator (section 1.3.2). The result returned by the

evaluator (always a string of characters) is then placed

25

into this storage location. The use of the comma in this
way is the only means by which the STRAN interpreter may
be caused to communicate with the COMS evaluator. An ex-
ample of the use of a comma is:

(EVAL (INPUT/S$/=,RESULT/1/) END)
This rule causes the whole contents of the storage location
named INPUT to be passed to the evaluator before it is
placed in the storage location RESULT.

A comma may be used in conjunction with an asterisk
to send a string to the evaluator and output the result when
it returns. The order is not significant, either *, or ,*
will work. For example:

If the variable INPUT contains the string I=C0S(0)
then the rule

(EVAL (INPUT/S$/=,*RESULT/1/) END)
will print out
I=1
with the string I=1 stored in RESULT.

A rule body need not have both a left and right side.
The equals sign is included only when it is necessary to
mark the beginning of the right side. An example of a rule
body with left side only is:

(READ (*INPUT/S+"CAT " +S$+ '?l)_' +$/)R2)

If a rule body has no left side, the operations specified

are performed on the contents of the pseudo registers left

from interpretation of previous rules. Examples of a rule
body with right side only are:
(RIGHT(=OUT/1+'9'+5+6/)SUCCEED,FAIL)
(REMARK(=*LINE/'PROGRAM§E§TRAN'/)END)
The second example will cause the literal character string
PROGRAMbbSTRAN to be printed out as well as stored in LINE.
It is possible to mention more than one variable
name on either side of a rule body. For the left side of
a rule body the operators in the seperate strings place
their respective components of the decomposition in consecu-
tive pseudo registers as shown by the following:
1 2 3 4 5 6

L A 2 A ¢
(DECOMP (VARB/S+"'A"'+$/TEMP/S$+"B*+$/) END)

If VARB contains an A and TEMP contains a B, the A will
appear in pseudo register 2 and B in pseudo register 5 after
decomposition. A failure at any point causes the rest of
the rule to be skipped.

An example of more than one variable on the right
side is:

(COMP (=VARB/1+'ABC'+5/TEMP/1+2+3+4/) END)

The "literal" decomposition operator (number (2) as
listed in Appendix B) is worthy of special note as its
creation is dependent on a STRAN rule with type 2 body
(section 1.3.1.3). Pattern matching takes place in the left

side of a type 3 body rule using the name of the type 2 body

26

27

rule as the decomposition operator.

For example say we had previously issued the follow-

ing type 2 body rule:
(ANIMALS ('bDOGDb 'CATL 'bHORSEDL '))

The string ANIMALS used as a decomposition operator would
match the first occurrence of any of the three above literals
(i.e. bDOGb or bCATb or bHORSEb). Assume the variable SENTEN
contains the string

WALKbYOURDDOGDF IRSTbTHENDYOURbCAT
Now the following decomposition operation is possible:

(LIT (SENTEN/S$S+ANIMALS+S/))

Thus the following would be the pseudo registers' contents:

pseudo register contents
1 WALKbYOUR
2 * bDOGb
3 FIRSTbTHENDbYOURDCAT

i.e. the leftmost occurrence of one of the literals in the
collection will be matched.
A more useful example of this type of decomposition
operator can be seen by having a STRAN rule such as
(PREPOSITS ('bINb'bONDb'bTOb'bBYb'bFORDb'))
where all the prepositions in a sentence could be matched

and printed out by a rule such as

28

(MATCH (SENTENCE/$+PREPOSITS+S$/=*0QUT/2/SENTENCE/3/)MATCH ,END)

1.3.1.4. STRAN and the Associative Memory

The Associative Memory (section 1.3.4) forms a
major part of the COMS system as does the STRAN interpreter,
the evaluator and the program library. Interpreter commu-
nication with the evaluator has already been mentioned and
now associative memory communication will be discussed.

The associative memcry stores and retrieves ordered
pairs, triples and quadruples of character strings. These
are refered to as n-tuples for simplicity. Some examples

of n~tuples are:

(ANIMAL,CAT)
(NUMBER, 20)
(&,B,C,D)

(NUMERICDLFOR, 20, TWENTY)

Storing of n-tuples in the associative memory
occurs only on the right side of a rule body by using a
STORE request. The components of an n-tuple may be literals
or the contents of pseudo registers. A typical STORE re-
quest is written as
+S/pseudo register numbers and literals/

Plus signs are used as separators for the different parts of

29

the n-tuple. For example
+S/1+'ONE'+5/

stores an ordered triple whose first element is the char-
acter string in pseudo register 1, whose second element is
the literal 'ONE' and whose third element is the character
string in pseudo register 5. It is interesting to note
that we have already used the associative memory without
knowing it in a previous exémple (section 1.3.1.3). The
type 2 body STRAN rule (literal collection patterns) uses
the associative memory automatically to store its literals.
Taking for example the rule

(PREPOSITS ('bIND "bONbL 'bTOb'bBYb 'bFORb '))

this automatically generates stores of the following form:

+S/'PREPOSITS'+'bONb "/

+S/'PREPOSITS'+'bONb "/ and so on.

When the rule name PREPOSITS was used as a left side decom-
position operator what in effect was happening was an auto-
matic reference to the associative memory for retrieval of

one of the above ordered pairs. That is, the above would

have been stored as

(PREPOSITS, IN)

(PREPOSITS,ON)

etc.

30

Failure of a STORE request occurs only if the n-tuple

being stored is already in the associative memory. If this
occurs, execution of the rest of the rule is skipped and

control is transferred as if the rule had succeeded.

Retrieval of stored character strings from the asso-

ciative memory.occurs on the left side of a rule body. It
is carried out by two separate requests, FIND and ACCESS.
The FIND request attempts to find suitable stored n-tuples
to serve as answers for the n-tuple sought. If all the
components of that sought n-tuple are known, then the only
information that can be given the user is whether or not
the n-tuple is stored. However, if some components of the

n-tuple are not known, then they can be obtained by the

ACCESS request. Before proceeding consider the following
example,

Assume the following triples have previously been

stored:

(LETTERS IN,3,BOY)

(NUMERIC FOR,2,TWO)

31

(NUMERIC FOR,10,TEN)
(NUMERIC FOR,13,THIRTEEN)

(LETTERS IN,5,TRAIN)

Now if a FIND request is issued for the triple (NUMERIC FOR,
10,TEN) the only result will be successful request. Con-
versely (NUMERIC FOR,5,FIVE) will result in an unsuccessful
request. However, (NUMERIC FOR, ,TWO) will cause a search
of the associative memory for a triple having as its first
element the character string 'NUMERIC FOR' and as its last
element the character string 'TWO'. To obtain the second
component of this n-tuple an ACCESS request is issued. Thus
the character string '2' will be picked up.

Now, looking at the actual STRAN commands (BNF on
page A-1l), the FIND request is written as:
+Fn/pseudo register numbers, literals and dollar signs/
As with decomposition and composition operators plus signs
are used as separators for the above components. Using the
previous example, assume that pseudo register 2 contains
the character string THIRTEEN. Thus, the FIND request will
be

+F4/'NUMERICDFOR‘+$+2/

The above will retrieve all ordered triples whose first
element is the string NUMERICDFOR , second element is an

arbitrary string and third element is the string contained

32

in pseudo register 2. The number immediately following the
+F is used by the ACCESS operation to identify which FIND
request will receive the result. This identification is
necessary due to the possibility of several ACCESS and FIND
operations occurring in one program. Each ACCESS operation
must know which FIND requested it.

The ACCESS request is written as

+An/pseudo register numbers/
(Separators of pseudo register numbers are again plus signs).

The nﬁmber of pseudo registers needed depends en-
tirely on how many dollar signs occur in the associated
FIND request. Continuing with the present example the ACCESS
request is:

+A4/4/
since only one dollar sign appears in the FIND operation.
The end result of the example is that the character string
'13"' will be placed in pseudo register 4.

The ACCESS request is thus used to collect results
of FIND requests which have included dollar signs. If no
dollar signs are included then the success or failure of
that FIND request is the only useful information obtained
and any ACCESS request associated with the FIND will not
return any valid information. Failure of a FIND request
causes control to be passed in the exact same manner as a
decomposition failure (to the rule whose name has been given

for the failure case). Further examples of STRAN associative

33

memory requests can be found in program (4) listed in

Appendix C.

Summary of STRAN rule syntax

The following is a summary of the syntax of rule

bodies (to be used for quick reference). Curly brackets
indicate a choice of one or more from a list and square

brackets indicate an optional element.

(1) 1left and right sides of a rule body are separated by an

equals sign.
(2) left side: one or more syntactic units from the fol-
lowing-
(a) [*] storage name/decomposition operator string/
(b) +Fn/string of $'s, literals and pseudo register
numbers/
(c) +An/string of pseudo register numbers/
(3) right side: one or more syntactic units from the fol-
lowing-
(a) [{f}] storage name/composition operator string/
(b) +S/string of literals and pseudo register numbers/
(4) All strings of operators between slanted bars are

seperated by plus signs.

1.3.1.5. STRAN Errors

The STRAN user must take care that he never causes

34

the interpreter to process a string of characters that is
not a well formed rule. This mistake can easily be made due
to the fact that STRAN rules and STRAN data are stored in
the same mechanism. If an error such as this does occur the
message "Error has occurred in interpretation of" followed
by the rule name is printed. The interpreter then automat-
ically pops up another rule name from the push down stack
and begins executing it. If the stack has no more rule
names in it the interpreter switches to the rule reading
mode and proceeds to read the next input card.

The problem here is that in most cases all rules
will have previously been read in, so the result is either
data cards are read in as rules (which leads to another
interpretation error unless the data is itself a well form-
ed rule) or there are no input cards left, thus causing the
termination of execution entirely.

If a user tries to perform a decomposition operation
on a variable which has nothing stored in it then the error
message “Variable named (variable name) is not yet stored" ap-
pears and the same procedure described above is followed by
the interpreter. This type of error commonly occurs due to a
misspelling of. previously used variable names.

The error message "Error in evaluation of algebraic
expression" occurs when a string of characters sent by the

interpreter to the evaluator has caused the evaluator to

35

go into error. Another evaluator error is caused by using

more than

5 subscripted variable names in one algebraic

expression. Tne error message given is "Error, algebraic

expression contains more than 5 subscripted variable names”.

A

variable in an arithmetic expression not yet as-

signed a value is assigned a default value of zero and the

message "The variable (variable name) has been assigned a

value of zero" is printed. Any errors due to storing or

retrieving values of either subscripted or unsubscripted

variables
"Error in
evaluator

"Error in

by the evaluator results in the error message
numeric storage or retrieval”™. An overflow of
storage results in "Numeric storage has overflowed".

indices" is caused by incorrect referencing of

array variables. Overflow of the storage of rule names and

variable names (which are both stored in the same area) causes

"Dictionary full, execution terminated". Finally, a STRAN

program trying to read more data cards than actually exist

results in the message "End of file read on input tape (tape

number) ",

This cannot really be classified as an error mes-

sage since the termination of a STRAN program (with no errors)

is brought about by there being no more input cards left on

the input

file. At this point the above message is also

written out and execution is stopped.

A

long with

list of all the above mentioned error messages a-

the resulting action by the interpreter can be found

£

in Appendix D.

1.3.1.6. Conclusions and Examples

STRAN can be described as a simple but powerful
language that is easy to learn and easy to use. Take for
example the fact that rules and data are stored under the
same nmechanism. This allows the user to change the meaning
of a rule during its execution. The example below shows
this feature of STRAN. The reader must keep in mind that
when a STRAN rule is stored internally, the pair of left
parentheses and the rule name they surround are removed from
the rest of the rule and stored else where - i.e. when say
(Sl (=*0UT/1/)S2) is stored, only the characters =*0UT/1/)S2)
are stored together. Consider the rule

(EXAMPLE (=RULELl/'RULE2 ,RULE3)) ' /RULE])

This stores in the variable RULEl the character string RULE2,
RULE3)) and thus when tﬁis rule passes control to RULE1

(i.e. in the go-to section) what the interpreter sees stored
under rule name RULEl is a type 2 body rule telling it to
place the rule name RULE2, RULE3 on the push down stack.

Thus the rule EXAMPLE actually creates another STRAN rule
called RULE]l and transfers control to it.

Now to extend the above example and make it more

general examine the following section of a STRAN program:

37

PROGRAM
(XYZ ()FOUND,FAIL)

(RULE4 () FOUND,FAIL)

(READ (*INPUT/S$+" ('+$+") "+$/=0UT/3/)S1,END)

(si1(ouT/$/=0UT/1+"')) ' /OUT)

*

DATA FOR PROGRAM

(READ)
(XY2)

(RULE4)

When the rule called READ is executed the character
string READ is placed in the variable OUT and control trans-
ferred to rule S1. Rule S1 adds the two closing parentheses
to the character string READ obtaining the character string
READ)) which is again stored in the variable OUT. Now
control is transferred to the name OUT and this results in
the rule name READ being placed on the push down stack. Thus
the next rule to be executed is READ (since it lies at the

top of the stack) and the whole

38

process repeats itself, reading in the character string
(XYZ).

The above examples plus the ones given in Appendix C
should demonstrate some of the more useful characteristics
of STRAN.

One can view STRAN and its interpreter as a segment
of the overall COMS system working to provide simple com-
munication links with the other elements. This is an ex-
tremely important task since although STRAN serves as a
powerful character manipulation language in its own right,
the effectiveness of the whole COMS system is dependent
entirely on communicable results between the user and the

COMS elements.

39

1.3.2, The Evaluator

Any implementation of a COMS system must use the
evaluator program to achieve the goal of effective utili-
zation of the program library (1.3.3). Besides serving the
purpose of a communication link to the program library, the
evaluator also provides an interface mechanism for the inter-
preter to the realm of numeric data. More specifically,
this element of COMS evaluates algebraic formulas, allocates
space for numeric variables and arrays, stores values in and
retrieves values from these variables and arrays, generates
argument lists for the COMS Fortran library programs and
causes the execution time loading of these same programs
upon request from the COMS user.

Commands to direct evaluator action are received
from the interpreter as character strings. Results from
the evaluator are sent back to the interpreter also as char-
acter strings.

To the knowledgeable computer user desiring a mod-
ification of a particular COMS system, the evaluator is
more resistant to change than any of the other COMS elements.
The reason for this is found in the actual program set-up
of the evaluator which deals with the practical and concrete
difficulties of the Scope operating system. Also, because
the evaluator deals specifically with library programs and

sets of data, it is more dedicated to a specific problem

40

area \gay geophysics or astronomy) than either the inter-

preter or the associative memory (1.3.4).

1.3.2.1. Algebraic Formula Evaluation

As in Fortran, algebraic expressions are accepted
by the evaluator in infix notation. There are basically
two ways to cause evaluation of expressions. The first is
by sending the evaluator a character string consisting of
a STRAN variable name followed by an equals sign followed
by the expression. In this case the character string re-
turned to the interpreter includes the name of the target
variahle, the equals sign and the resulting value of the

expression. For example if the string
RESULT=Y+5% (2+Z%*2)
is sent to the evaluator, then the string
RESULT=33

will be returned (assuming Y and Z have previously been
assigned the values 3 and 2 respectively). The second way
to cause evaluation is by sending only the expression itself.

For example sending the string
Y+5*% (242%*2)

will return the string 33.
Most of the built-in functions and operators avail-

able in Fortran are also available to the evaluator. These

41

include:
+, -, *, /, **, unary +, unary -, AMOD, MOD, FLOAT, FIX,
ABS, IABS, SIN, COS, TAN, ATAN, EXP, ALOG, ALOGl(0, SOQRT.

The mode (fixed or floating) of a particular STRAN
variable is defined by the mode of the number assigned to
it. For example Y=5 makes Y integer while Z=5.2 makes Z
real. An expression containing mixed modes has all its
fixed point numbers floated. Also if a fixed point number
appears as the argument of a built-in function requiring a
floating point argument, that number is floated and vice-
versa.

The evaluator operates in two passes as shown in
Figure 1.5. The first pass collects contiguous characters
into symbols and interprets these symbols as variable names,
numeric constants, array names, operators or built-in func-
tion names. Also, the values of simple variables are re-
trieved from STRAN storage and a precedence is assigned to
each operand and built-in function. The second pass trans-
lates the original infix notation fed to the evaluator into
prefix Polish notation. This is accomplished under the
control of operator precedence and parentheses. Also during
the second pass, evaluation of operators, execution of the

built-in functions and retrieval of array values takes place.

T

l PASS 1

FIGURE 1.5

EVALUATOR BLOCK DIAGRAM

Input character
string from in-
terpreter to
evaluator

[

Break gharacter
string into fol-
lowing class
lcategories

U S _J

Y

42

.
|
|
l
|

l

v

v

v

r__w_m\'?l

[Si&p]e) - '
: Numeric Built-in
h variable ‘Array names rant Operators "
! names i constants unctions ‘
‘L..... — l 1
N

| ,/

Varizables Y/

prev1ousl§>»__ . E><3

stored// 44

Retrieve it
value from

age

|
|
l
|
, STRAN stor-
|

V

Assign pre-
cedence to
each
category

Result
returned is
error
message

Translate original
infix string to
prefix polish
notation

valuate operators,
execute built-in
functions,retrieve
array values from
ISTRAN storage

Executioin_No

errors

Return result
as character
string to

interpreter

43

44

1.3.2.2., Infix to Prefix Polish

The translation scheme used for the conversion of
infix to prefix Polish notation is based on a publication
of the Burroughs Corporation called a "Compilogram" which
was specifically adapted for this use by D. McCracken [2].
A flowchart of the assignment of operator precedence and
the translation process is shown in Figure 1.6. Although
the evaluator has many more intricacies than are shown, the
basic method of conversion is the same. Also, for sim-
plicity, variable names have been aésumed only one character
in length and no error situations are examined.

The input expression is gtored in the array SOURCE
and the associated precedence of each operator, operand or
built-in function is stored in SHIER (standing for Source
HIERarchy). Allocation of precedence (in the order lowest

to highest) is as follows:

OPERAND 0
(1
) 2
+,- 3
*’/ 4
*% MOD 5
UNARY +, -

BUILT IN FUNCTION} 6

Operands are transferred to the array POLISH as soon

FIGURE 1.6

ASSIGNMENT OF QOPERATO

RECEDEN D

TRANSLATION OF INFIX TO PREFIX POLISH NOTATION

READ
INPUT
EXPRESSION

SET L=1

I=1+1 -

SHIER(L)=1 >

SHIER(L)=2 1>

SHIER(L)=3

Note: assume no blanks precede the input expression.

*

45

/ “\\\ H

/ . Y }
~SOURCE(L)" Yes 1y

N or / SHIER(L)=4

? 7

No T

. N
~
/§66RCE(L5\\Y@§ > N
% or ¥OD .~ SHIER(L)=5 |

? 7
¢

e e e e

SOURCE (L)
/ﬁ§2;y'+, UNAﬁ;\>

“Yes > _____{>
Nr BUILT—V SHIER(L)=6 !

FUNCTION
?

No

D1SHIER(L)=0 D

SET I=1, J=2, K=1,
SHIER(N+1)=0
OHIER(1)=-1

; POLISH(KY
™ =source()

47

/"‘\
)

//>‘/\\\.
. Bo m</SOURCE (1™~ I=T+1
=) 7 : K=K+1
\\ :
Yes
.
[r N
{ - N
| §~§3 L s OHIER(J-1) No
: - AN N>SHIER(I) - ~
| .
{ e
Yes
N OPSTCK(J)
=SOURCE (I) 1
H
e POLISH(K) | |
& _ =0PSTCK(J-1)/
| |
OHIER(J) | !
=SHIER(I) %7
b e e J=J-1
7
i \ 1 K=K+1
l I=1+1 | L
z J=J+1 j

Notes

(1)

(2)

(3)

(4)

48

The built-~in functions available to the evaluator
are not in actual fact all given the same precedence
as shown above. A separate section of coding han-
les their individual classifications, however for

simplicity this will not be shown.

The exponentiation operator and the MOD function are

both trecated as binary infix operators.

Also for gimplicity, operands are taken as single

letter unsubscripted variables.

Blanks are ignored in the input expression.

49

as they are encountered. This array holds the resulting
expression in prefix Polish form. Operators (except right
parentheses) are held temporarily in the array OPSTCK
(OPerator STack) and their associated precedence is stored
in the array OHIER (Operator HIERarchy). When an operand
is picked up from the input expression, it is transferred
to the array POLISH immediately and a check is made to see
if the last entry made in the operator array OPSTCK has the
same or a higher precedence than the next operator in the
input string. If so, the last entry operator is placed in
POLISH. If not, the next character of the input string is
examined and the process repeated.

If an operand is not encountered as the next ele-
ment of the input string, a check for a right parenthesis
is made. If one is found, it 1is ignored and its matching
left parenthesis which will always be the last entry in the
operator array, is also ignored.

If a right parenthesis does not turn up, an opera-
tor must have been encountered and thus it is transferred
to the operator array with its precedence placed in the
array OHIER. The next element of the string is then exam-
ined.

The whole process continues until the total number
of characters in the input string (established previously

when precedence was originally being assigned) has been

50

examined.

A few examples are shown below:

INFIX INPUT PREFIX OUTPUT
~ (a**B) /C AB**C/-
A* (B-C)+D ABC-*D+
A+B/ (- (D**E*F) /G) ABDE**F*G/-/+

For a much more detailed and complete description
of both the first and second passes of the evaluator, the

reader is referred to the COMS reference manual (Appendix E).

1.3.2.3. Variables and Arrays

The evaluator dynamically allocates storage for
variables and arrays. For the former this is done by the
assignment of a value to the variable (an example is SPEED=
50.2). For the latter, a statement of the following form

must be passed to the evaluator.

INTEGER<NAME> (<DIM1>,<DIM2>,....)

REAL<NAME> (<DIM1>,<DIM2>,....)

As in Fortran, arrays are classified as integer or real
depending on the mode of the data they are referencing.
<NAME> refers to the name of the array being declared (as
with STRAN variable names, array names may be up to 10

characters in length). Following the array name as many

51

dimensions as desired are listed. These are separated by
commas and enclosed completely by parentheses. A particular
dimension may be stated as a constant, a variable or an
expression. For example, the five dimensional real array

TIMINGS may be declared as

REAL TIMINGS(K,6,2.5*%SQRT(Z),7,{(P+3)/2.8)

Retrieval of a value stored in a variable or array is
caused by the appearance of the variable name or the array
name with subscripts in an expression.

Although the evaluator serves well as an arithmetic
processor for the COMS system, its more important task is
communication with the program library (1.3.3). Examples
of the use of the evaluator in different types of calcu-

lations are shown in program (1) of Appendix C.

1.3.2.4. Communication with the Program Library

The loading and execution of Fortran subprograms
(subroutines and functions) from the COMS library is
carried out by a special assembly language routine in the
evaluator program called LOADIT. The original PL1 version
of COMS made use of the IBM linkage editor program to per-
form the same jobs as LOADIT, but of course this routine
is not available in CDC computer software systems (and

neither is any reasonable facimile). It was therefore

52

necessary to develop such a program specifically for the
current Fortran version of COMS. Details of the set-up
and operation of LOADIT can be found in Appendix F.

A library subprogram is loaded and executed when
either of the following character strings are sent by the

interpreter to the evaluator:

CALL <PROGNAME> fal

CALL <PROGNAME> (<ARG1l>,<ARG2>,....) [bl

In [a] and [b] <PROGNAME> refers to the name given the sub-
program when it was originally placed in the COMS library
(placing subprograms in the COMS library is discussed in
section 1.3.3). Only a subroutine subprogram may be called
with either no arguments (as in [a]) or with an argument
list (as in [b]). Function subprograms must be called with
an argument list. This list is enclosed by parentheses and
each argument (up to thirty allowed) is separated from the
next by a comma.

The only method of communication between a library
subprogram being executed and the rest of the COMS system
(i.e. through the interpreter) is via the argument list

introduced above!. A primary restriction on all subprograms

'The original version of COMS has a second method of com-

munication involving the passing of NAMELIST data input di-

53

placed in the library is that the passing of arguments by any
method which depends on some previous linkage technique be-
tween the calling program and library routine is not allowed.
This in fact means that arguments can in no way be passed
through a common block shared with COMS. The reason for this
major restriction involves the independence of both the 1li-
brary and COMS programs. To change the actual Fortran coding
of COMS every time a new subprogram is to be placed in the
library would lessen the efficiency of a system that was
wholly designed to provide its own communication management,
Also, the library subprogram has to maintain its independence
if it is to be classified as a true "utility" routine.

The type of arguments allowed in a call to a library
routine include nearly all those available in standard For-
tran programming. This includes expressions to be evaluated,
array names, specific array elements and simple numeric var-

jables and constants.

rectly from the evaluator to NAMELIST read instructions lo-
cated in the current library program being executed. Details
of this NAMELIST interface mechanism (which is not currently
available to the present version of COMS) can be found in the

COMS thesis by GAMMILL [3].

54

Correspondence between actual and formal parameters!
is carried out by reference. This means that at runtime,
prior to the subroutine call, the actual parameters are
processed. If they are not variables (simple and array
variables) or constants, they are evaluated and stored in
temporary locations assigned by the calling routine. The
addresses of the variables, constants and temporary locations
are then calculated and passed to the called subprogram.

The subprogram uses these addresses to perform the desired
calculations on the values referenced by them - thus COMS
library programs have the ability to change the formal
parameter values sent them by the evaluator. By use of the
dollar sign character § placed immediately in front of a
simple or array variable name, it is possible to send the
address of such a formal parameter to the called procedure
as the actual value of the variable. For example if the
simple variable A is located at machine address 000122 and

has as its contents the real number 5.2, when a call such as

lPormal parameters are identifiers in a subroutine which
are replaced by other identifiers or expressions when the
subroutine is called. For example in the Fortran statement
SUBROUTINE A(X,Y), X and Y are formal parameters. Actual
parameters are those listed in the subroutine call. For
example, in the Fortran statement CALL A(B,C*D), B and C*D

are the actual parameters.

CALL XYZ ($A) is made, the address of a temporary location
is sent to the subprogram having as its value the integer
000122. The reason this particular feature is available
in the current version of COMS (which has no real use for
it) is simply because it was left over from the previous
IBM 360 Fortran version of COMS which used it to override
the simple variable call-by-value correspondence inherent
in this compiler. Examples of various possible actual
parameters used in a calling statement are shown in Figure
1.7. The following section will discuss the placing of

subroutines and functions in the program library and the

55

organization of these for maximum programming effectiveness.

56

FIGURE 1.7

EXAMPLES OF POSSIBLE ACTUAL PARAMETERS, USED IN CALLING

LIBRARY PROGRAMS

Note: assume the declaration REAL SSQ(50,50) and the wvalues

of I, J and Q have previously been passed to the evaluator.

(1)

(2)

(3)

(4)

(5)

simple variable 1

The address of a temporary location containing

the present value of I is passed.

array element SSQ(12,14)

The address of a temporary location containing

the present value of S$SQ(12,14) is passed.

array name SSQ

The address of a temporary location containing

the present value of the first element of SSQ
is passed.
array element SSQ(1,Jd)

The present value of I and J are used to
calculate the address of a temporary location

containing the present value of SSQ(I,J) which
is then passed,
expression SIN(I)+J+Q

The present value of I, J and Q are used to
evaluate the expression which is then stored in

a temporary location. The address of this

(6)

(7)

57

location is then passed.

constant 7.9E-5

The address of a temporary location containing

this value is passed.

dollar sign operation $I
$58Q(12,14)
$8SQ(1,J)
$58Q
$SIN(I)*J+Q
$7.9E-5

The address of a temporary location containing

the machine address of each of these parameters

is passed.

58

1.3.3. Fortran Library of Programs

1.3.3.1. Placing Programs in the Library

As outlined in the preceding section, the evaluator,

upon recognizing a user call to the program library, requests
an assembly language program called LOADIT to perform this
operation. The information that is automatically passed to
LOADIT includes the called subprogram name, the number of
arguments in the call, the location and value of these argu-
ments and also whether the location of each argument con-
tains its actual value or its address (this refers to the
dollar sign operator as discussed in section 1.3.2).

In the present version of COMS, the library is
stored on a file on disc. The name given this file is
COMSLIB and it is here that LOADIT expects to find library
programs. Each time the COMS program is run this file must
be attached to the job (the full set of control cards needed
to run a COMS job is shown in Appendix G).

Thus before COMS is used at all, the library routines
needed (either now and/or for future COMS programs) must be
placed on COMSLIB. The creation of COMSLIB using the CATA-
LOG control card under Scope 3.4 is shown in Figure 1l.8. Also
shown are the control card set-ups for both placing addition-
al programs on the file and purging the entire file when it
is not in use (a basic knowledge of Scope control cards is

assumed) .

FIGURE 1.8

CONTROL, CARD SET-UP FOR

(1) CREATION OF COMSLIB FILE

(2) ADDITIONS TO COMSLIB FILE

(3) DELETION OF COMSLIB FILE

(1) CREATION OF COMSLIB FILE

JOB CARD

REQUEST,LGO, *PF.

RUN{S)

CATALOG (LGO,COMSLIB, ID=COMSPROG,RP=30,XR=A)
END OF RECORD

[:%UBPROGRAM TO BE PLACED IN LIBRARY

END OF FILE

(2) ADDITIONS TO COMSLIB FILE

This is cdone in two stages to allow testing of the
new file for any errors that might have occurred during the
cataloging process. The user is also cautioned to closely
check the program itself since any errors in the coding of a
program already added to the file means the entire file will
have to be purged and recreated to dispose of this program
(there is no easy method by which the program in error can

be deleted from the rest of the file).

60

Stage 1:

JOB CARD
REQUEST,LGO, *PF.
ATTACH (X ,COMSLIB, ID=COMSPROG,RP=30,PW=A)

RUN (S)

COPYBF (X, LGO)

CATALOG (LGO, COMSLIB, ID=COMSPROG, RP=30,XR=3)
END OF RECORD

[_fUBPROGRAM TO BE ADDED TO LIBRARY

END OF FILE

After testing the newly created file and finding no errors,

the old cycle may be purged.

Stage 2:

JOB CARD

ATTACH (X,COMSLIB, ID=COMSPROG,RP=30,PW=A)
PURGE (X,COMSLIB, ID=COMSPROG,LC=1,PW=A)
END O FILE

(3) DELETION OF COMSLIB FILE

JOB CARD

ATTACH (X,COMSLIB, ID=COMSPROG,PW=A)
PURGE (X, COMSLIB, ID=COMSPROG)

END OF FILE

1.3.3.2. ELfficient Program Organization

A systems programmer in setting up a COMS implemen-
tation may wish to place utility routines in the library
which would be useful not only to a particular problem area
but to all problem areas in general (i.e. the library would
always have these routines placed in it no matter what COMS
application was involved). Examples of these include
input-output routines involving printing, punching, plot-
ting and CRT displays, routines to generate, edit or cor-
rect large data decks, or routines to control the external
storage of information (i.e. on tape, disc, cards, drum,
etc).

To make these routines flexible and easily used by
both experienced and inexperienced programmers, certain
methods by which FORTRAN subprograms can collect directive
information from outside themselves are discussed in this
section. Use of these methods is not directly related to
COMS, but applicaticn programs employing them will help to
make COMS a more versatile system.

Actually, the methods involved may .not only be used
in general routines as sﬁch, but rather in any program
where the collection of information may vary from minimal
(that information absolutely essential for correct execution)
to maximal (settings for all optional parameters). Thus,

the beginning user will find much less mandatory information

62

required and the advanced user will find the ability to

exert much more control over the program.

SET-RESET METHOD

The SET-RESET method of program organization
(discussed by Gammill [3]) involves the use of NAMELIST
input to direct a program which is to be executed several
successive times using various settings of control para-
meters for each execution. NAMELIST input-output is in-
cluded in some FORTRAN compilers (the FORTRAN-RUN compiler
on the CDC 6400 allows it) but is not a part of ANSI (Ameri-
can National Standards Institute) FORTRAN. It involves the
use of an internal symbol dictionary to allow the unformat-
ted input and output of specified variables and arrays.

In the SET-RESET method, NAMELIST 1/0 is specifi-
cally applied to the modification of default values of a
large set of independent variables and control parameters
since only a subset (including none) of NAMELIST variables
need be read in at any particular time. To the inexperienced
programmer this provides a mechanism for obtaining default
results of a program with no input operations necessary,
while the same program in the hands of an experienced user
can provide access to all internal control parameters needed.

The SET-RESET method involves the inclusion of a

logical control parameter among the other program variables

63

to make it possible to reset any, all or none of the
initial settings of these variables at the beginning of
each execution of the program. A Fortran program using the
SET-RESET method is shown in Figure 1.9. The data cards
used will cause the program to be successively executed
three times before stopping. The values of the NAMELIST

input variables for each pass are as follows:

PASS I J RESET
1 5 5782 -FALSE*
2 2400 5782 “TRUE «
3 1 1 *FALSE-

The point of the above mentioned example is that if
the program variables are not reset, their initial wvalues
used for any execution are those left from the previous
execution., This allows the user working on a particuar
problem to make small changes in a few independent variables
which results in a slow step by step progression through the
problem. After all, a typical researcher doesn't make mas-
sive changes in input data to get to a solution, but rather
changes a few things "here" and a few things "there" to see
if the result holds more promise.

Using the SET-RESET method encourages programmers to
write programs which are extremely data directed. Applica-
tions of the method hold for any program which has many

modes of operation or some uncertainty as to the best set-

=0

a0 O ana

wnQ 00

64

FIGURE 1.9

THE SET-RESET METHOD OF PROGRAM ORGANIZATION

PROGRAM SET-RESET

DECLARATIONS
NAMELIST/INPUT/RESET,I,J/OUTPUT/K

LOGICAL RESET

INITIALIZE NAMELIST VARIABLES TO DEFAULT VALUES
I=1

J=1

RESET=+FALSE-

RESET DETERMINES IF A NAMELIST READ IS TO BE DONE
IF (RESET) GO TO 1

READ NEXT NAMELIST INPUT STRING

READ (5, INPUT)

TEST FOR END QF FILE CONDITION

IF (EOF,5) 3,4

WRITE OUT NAMELIST INPUT STRING
WRITE (6 ,INPUT)

ANY CODE USING VALUES OF I&J IS INSERTED HERE
A POSSIBLE EXAMPLE IS THE FOLLOWING

K=I*J

WRITE (6 ,0UTPUT)

END OF INSERTED CODE

EXECUTE THE PROGRAM AGAIN

GO TO 2

STOP THE PROGRAM
STOP

END

DATA CARDS USED:

$INPUT I=5, J=5782 §
$INPUT I=2400, RESET=+T-* $
S$INPUT §

ting of various independent parameters. The ugser is al-
lowed a "good guess" default value for different parameters
until the "true" value can be obtained through calculation.
A convenient implementation of the method is as

a separate subroutine that could be placed in the COMS 1li-
brary and linked to any program needing this type of organ-
ization. The following section describe; two more methods
of program organization which also adapt library programs

for more versatile and flexible use under COMS control.

METHOD OF VARIABLE LENGTH ARGUMENT LISTS

The purpose of this method of program organization
is to relieve the application program user of having to
remember all the arguments a particular subprogram requires.
For example, if a library subprogram requires the passage
of sixteen arguments for its operation but some of these
need be changed only under certain circumstances, it would
be nice for the inexperienced user (under normal operation
of the subprogram) to leave these alone and have the sub-
program itself take care of them. This possibility exists
in the subprogram shown in Figure 1.10. In this example, it
is only necessary to pass three arguments to the subroutine
for its proper execution. All the rest of the arguments are
optional to the programmer and are automatically initialized

inside the subroutine.

66

FIGURE 1.10

VARIABLE LENGTH ARGUMENT LISTS

SUBROUTINE EG(ARRAY,ISIZE,JSIZE,OPARG],OPARG2,

*OPARG3,....)

QOO0 O

@)

=N W

Note:
number
placed.

OPARG REPRESENTS OPTIONAL ARGUMENT
DIMENSION ARRAY (ISIZE,JSIZE)
INITIALIZE DEFAULT VALUES OF OPTIONAL
ARGUMENTS BY EITHER ASSIGNMENT OR
DATA STATEMENT

DATA ARG2,ARG3/0.0,5.0/

ARG1=10.0

ANY MORE INITIALIZATIONS TAKE PLACE HERE

FIND OUT HOW MANY ARGUMENTS THIS SUBROUTINE WAS CALLED
WITH

CALL NUMP (NARG)

IN THIS PARTICULAR SUBROUTINE THREE ARGUMENTS ARE
MANDATORY

IF (NARG.GT.2) GO TO 500

WRITE (6,100)

FORMAT ('TOO FEW ARGUMENTS IN CALL TO EG')

RETURN

NARG=NARG-2

RESET VALUES OF SPECIFIED ARGUMENTS

co 70 (1,2,3,....) NARG

ONE WAY OF RESETTING IS AS FOLLOWS

IF (OPARG3.EQ.0) GO TO 3
ARG3=0PARG3

ARG2=0PARG2

ARG1=0PARG1

CONTINUE

BODY OF SUBROUTINE HERE

END

NUMP is an assembly language routine which counts the
of arguments in the call to the routine in which it is
This count is then stored in NARG.

67

Two methods of initialization are shown. One is
by the DATA statement (for ARG2 and ARG3) and the other by
an assignment statement (for ARGl). In the former case
an argument if changed by a specification in the argument
list will keep this value for all subsequent calls to the
program during execution. In the latter case, the argu-
ment is reassigned its initial value for every call and is
only changed if the proper optional argument is provided.

Thus for subroutine EG, the inexperienced user can
get away with a three argument call, while the experienced
user can specify as many of the optional arguments as de-
sired.

An extension of the variable length argument list
method described above uses NAMELIST input to read in
values of particular optional arguments. This permits the

user to

(1) not have to specify the previous values of
say fifteen arguments in order to change the
sixteenth argument to a new value

(2) not have to specify argument values in any
particular order since NAMELIST input accepts

these in any order.

A program displaying this use of NAMELIST input is shown in
Figure 1.11. It is basically the same as that in Figure 1.10

except that when the first optional argument OPARGl is

100

500

N WO

FIGURE 1.11

NAMELIST ARGUMENT TRANSMISSION

SUBROUTINE EG2 (ARRAY,ISIZE,JSIZE,OPARGLl,OPARG2Z,

*QPARG3,....)

OPARG REPRESENTS OPTIONAL ARGUMENT
DECLARATIONS

DIMENSION ARRAY (ISIZE,JSIZE)
LOGICAL OPARG3,ARG3

NAMELIST /INPUT/NTAPE,ARG4 , ARG5S ,ARG6
INITIALIZE DEFAULT VALUES

DATA ARG2,ARG3,ARG4,ARG5,ARG6,/0.0,
*5.0,+*FALSE.,7.69,10.1/

DATA NTAPE/6/

ARG1=10.0

ANY MORE INITIALIZATIONS TAKE PLACE HERE

-

FIND OUT HOW MANY ARGUMENTS THIS
SUBROUTINE WAS CALLED WITH

CALL NUMP (NARG)

THREE ARGUMENTS ARE MANDATORY FOR THIS ROUTINE
IF (NARG.GT.2) GO TO 500

WRITE OUT ERROR MESSAGE

WRITE(6,100)

FORMAT ('TOO FEW ARGUMENTS IN CALL TO EG')
RETURN

NARG=NARG--2

RESET VALUES OF SPECIFIED ARGUMENTS

GO T0 (1,2,3,....) NARG

ONE WAY OF RESETTING IS AS FOLLOWS

IF (OPARG3) 5,3
ARG3=0PARG3
ARG2=0PARG2
ARG1=0PARG1

continued......

68

IF REQUIRED PERFORM A NAMELIST READ
IF (OPARG1l.GE.0.0) GO TO 6
READ (5, INPUT)

CONTINUE

BODY OF PROGRAM

END

69

70

negative a NAMELIST read is performed to obtain new values
of specified coptional arguments. Here, again all arguments
are initialized to default values for the inexperienced
users' sake.

Using this method of argument transmission does have
disadvantages over the previous variable length argument list
method. These are found in the inefficiency caused by the
slower processes of manipulation of character strings and
dictionary look-up of variable names involved in NAMELIST
reads. However the method really shows its usefulness when

long arguments lists are at stake.

The methods mentioned above were discussed in the
hope that further interpretations of the material will
promote more useful application programs for both inexperi-

enced and experienced users.

71

1.3.4. The Associative Memory

The associative memory is the final element of COMS
to be discussed. It was already introduced in section
1.3.1.4 where the STRAN statements for the storage and
retrieval of ordered n-tuples of symbols (strings of chara-
cters) were described.

The main purpose of the associative memory is to
permit the COMS programmer (i.e. the systems programmer) to
store and retrieve factual information about COMS and the
program library. This information can then be used in the
translation of command languages, developed for the in-
experienced computer user, into formal internal commands
which control the operations of COMS. In other words, it
is the associative memory that serves as the communicator
between the vast computational facilities of a computer and
the inexperienced computer user. In very simple COMS im-
plementations, a satisfactory system can be set up without
the use of the associative memory. Here the user is as-
sumed to already have the basic information needed and
hence no outside help {the associative memory) is needed.

A software system such as COMS that is developed entirely
without an equivalent type of associative memory mechanism
will find itself restricted to a particular class of users -
those that want to take the time and effort learning the

intricate programming details involved in running the system.

72

1.3.4.1. Use of the Set Theoretic Language (STL)

Originally the associative memory was developed for
the specific application of storing and retrieving sentences
in finite set theory. It turned out that although this was
only one of a myriad of potential uses for the associative
memory, it proved extremely fruitful in the development and
interpretation of command languages for inexperienced users.
The reason for this was due to the inherent logic in finite
set theory which could easily be used to produce simple de-
ductive processes. These processes provided COMS with an
"intelligence" to translate a simple command language state-
ment given by the inexperienced user into useful programming
actions. Thus the rigorous formalities c¢f current program-
ming languages could be left up to COMS while the user could
concentrate more specifically on the particular problem be-
ing solved.

To adapt sentences of finite set theory for the
ordered n-tuple form used by the associative memory, the
Set Theoretic Language (STL) was developed by Gammill [3].
This language is simply an encoding of sentences of finite
set theory in a particular form easily adaptable to the
associative memory mechanism. This is shown in Figure 1.12(a).
Finite set theory defines properties and relations between
sets. This is also true of STL but to become meaningful the

individual letters representing sets are expanded to more

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

73

FIGURE 1l,.,12(a)

SET THEORETIC LANGUAGE

Set Theoretic Language Language of Finite Set Theory
(alb) b€a
(d,e,f) <e,f>€d
(g,h,],k) <h,j.k>€g
(C,3i./k) jiCk

€ is a member relation

C is a subset

FIGURE 1.12(b)

Expanded Set Theoretic Language N-Tuples

(MAN ,NORMAN)
(FATHER OF ,NORMAN,ERIC)
(CHAIN OF&AND ,GRANDFATHER OF ,FATHER OF,PARENT OF)

(SUBSET OF ,FATHER OF ,PARENT OF)

74

expressive English words with syvmbols such as & being re-
placed by "SUBSET OF". The result as one possibility is the
four STL n-tuples dealing with human relationships as shown
in Figure 1.12(Db).

In general, there are three types of symbols permit-
ted in STL. One 1s to represent the domain of the problem
space being considered. In Figure 1.12({b), this domain is shown
to be that of people such as NORMAN or ERIC. The second is
either a property of the domain such as MAN or a relation of
the domain such as FATHER OF or GRANDFATHER OF. The third
expresses a property or relation on the properties or rela-
tions already existing. These latter symbols are termed
"primitives" and are used to define relationships occurring
throughout the total associative structure. Examples of
these are SUBSET OF or INVERSE OF,

The ability to state properties and relations of
the properties and relations defined for a problem space
makes STL a very powerful fact retrieval language. This
ability implies that symbols appearing in the first position
of an STL sentence (n-tuples) may also appear elsewhere. An
example of this is (CHAIN OF&AND, SUBSET OF, SUBSET OF) which
using the primitive CHAIN OF&AND states that the relation
SUBSET OF is a CHAIN OF the relation SUBSET OF and the
relation SUBSET QF. Another example, using the primitive

INVERSE OF, is (INVERSE OF, INVERSE OF, INVERSE OF) which

75

states that the relation INVERSE O is the INVERSE OF the
relation INVERSE OF.

Any symbol appearing in the first position of an
STL sentence is either a property or relation. In 2-tuples
such as (BOY,ERIC) it is always a property, otherwise it is
a relation as in the 3-tuples (PARENT OF, MARVIN, NORMAN).

It is not difficult to see that a complicated set
of relationships for a problem space can be gquickly built
up using the simple sentences of STL. The process of model
building using STL becomes one of identifying the relevant
domain (for example humans) and the relations and properties
involved in this domain. Once a set of primitive relations
and properties have been worked out, deductions concerning
relationships between elements of the domain can be drawn

from the model and thence information can be retrieved

which was not actually entered beforehand.

There is a large variety of primitive relationships
available for the STL model builder. The set of these is
bf no means complete but the ones shown in Figure 1.13 have
proven useful in previous work on model building. Once a
model is constructed for a particular problem space, the
properties and relations of that model can be stored in the
associative memory. STRAN procedural definitions (i.e. rule
sets) can then be written for each of the primitives desired.

Using these definitions COMS can in turn produce deductions

76

FIGURE 1.13

A SET CF USEFUL PRIMITIVES

(1) (CHAIN OF&AND,A,B,C)

(2) (SUBSET OF,A,B)

(3) (DISJOINT FROM,A,B)

(4) (LEFT INTERSECTION OF&AND,A,B,C)
(5) (RIGHT INTERSECTION OF&AND,A,B,C)
(6) (INVERSE OF,A,B)

(7) (INTERSECTION QF&AND,A,B,C)

(8) (UNION OF&AND;A,B,C,)

(9) (LEFT HALF OF,A,B)

(10) (RIGHT HALF OF,A,B)

EXAMPLES OF THE ABCOVE PRIMITIVES USING HUMAN RELATIONSHIPS

(1) (CHAIN OF&AND,GRANDPARENT OF,PARENT OF,PARLENT OF)
(CHAIN OF&AND,UNCLE OF,BROTHER OF,PARENT OF)
(2) (SUBSET OF ,FATHER,MAN)
(SUBSET OF,HUSBAND,MAN)
(3) (DISJOINT FROM,CHILD,ADULT)
(DISJOINT FROM,UNMARRIED,MARRIED)
(4) (LEFT INTERSECTION OF&AND,WIFE OF,MARRIED TO,WOMAN)
(LEFT INTERSECITON OF&AND,FATHER OF,PARENT OF,MAN)
(5) (RIGHT INTERSECTION OF&AND,WIFE OF ,WOMAN,MARRIED TO)

continued

(6)

(7)

(8)

(9)

(10)

77

(RIGHT INTERSECTICN OF&AND,FATHER OF,PARENT OF,MAN)
(INVERSE OF,PARENT OF,OFFSPRING OF)

(INVERSE OF,HUSBAND OF ,WIFE OF)

(INTERSECTION OF&AND,GIRL,CHILD,FEMALE PERSON)
(INTERSECTION OF&AND,BACHELOR,UNMARRIED,MAN)

(UNION OF&AND,PARENT ,FATHER,MOTHER)

(UNION OF&AND,SIBLING,BROTHER,SISTER)

(LEFT HALF OF,WIFE,WIFE OF)

{LEFT HALF OF,CHILD,CHILD OF)

(RIGHT HALF OF ,OFFSPRING,MOTHER OF)

{RIGHT HALF OF,OFFSPRING,FATHER OF)

Note: the correct way to translate an STL sentence into

English is as follows:

(SUBSET OF ,HUSEAND ,MAN)

the translation is: HUSBAND is the SUBSET OF MAN.

For a 4~-tuple such as (CHAIN OF&AND,GRANDPARENT OF,

PARENT OF,PARENT OF) the translation is: GRANDPARENT OF is

the CHAIN OF PARENT OF and PARENT OF.

78

from the model required by the inexperienced user.

1.3.4.2. An Exanple Deduction

If the relations (INVERSE OF, ABOVE, BELOW) and
(ABCVE, LAMP, TABLE) are stored in the associative memory,
deductions made by STRAN rules for the primitive relation
INVERSE OF will entail searching for all the ordered triples
that have as their first element INVERSE OF. Upon finding
the sentence (INVERSE OF, ABOVE, BELOW), the STRAN rules
will search for all the ordered triples beginning with
ABOVE. When the triple (ABOVE, LAMP, TABLE) is found the
automatic deduction (BELOW, TABLE, LAMP) is made and stored
in the memory. Thus information is deduced and stored that
was not previously available.

Appendix C contains three STRAN programs dealing
with human relationships which use the associative memory.
Program (3) shows two STRAN rule sets called ASSERT and
ANSWER that store and retrieve ordered n-tuples respectively.
Program (4) tranclates simple English sentences into STL and
stores relevant information obtained from these in the asso-
ciative memory. Finally program (5) uses the information
previously stored by programs (3) and (4) and makes deduc-
tions leading to new information which in turn is stored

away.

1.3.5. Conclusions

The gcftware package introduced in this chapter
describes a system consisting of a number of elements, each
capable of performing certain tasks with regard to the
programming difficulties inherent in any particular study
area. COMS is a flexible system having as a major attribute
extendability of use through modification of rule sets and
additions to both the library and the facts stored in the
associative memnoxry.

The descriptions and examples given really only
touch on the possible systems one can develop using COMS.
The flexibility involved in being able to use some or all
of COMS elements to provide different programming environ-
ments is really one of its great features. Its true
strength however will be shown as more and more sophisti-
cated users produce more and more sophisticated implementa-
tions through the development of a hierarchy of models,
each able to override the statements of those below,.

It is easily seen that provided with a proper set of
grammar rules used to generate sequences of evaluatable
statements as the result of simple commands and provided
with the proper set of well written application programs,
COMS through its ability to make logical deductions of new
information, could assist in a great variety of computer

programming applications in any field where research in-

80

vestigations require the use of a computer. Section 2.3

of chapter 2, as an example of a particular COMS applica-
tion, discusses the development of an operating system
command language using COMS, for use in a parallel program-
ning environment.

At this point mention should be made of the dis-
advantages in using the COMS system. The major disadvan-
tage here is in the massive amount of execution time needed
for the operation of each of COMS program elements. Of
course it would be very hard to develop a system such as
COMS and provide the flexibility it does without using a
great deal of computer time to do this. Overcoming long
execution times would entail the rewriting of some of the
COMS Fortran subroutines in assembly language. One place
where this might be done is in the evaluator program which
is well defined for the particular job it is doing and is
not likely to be changed for different applications of the
COMS system.

A second disadvantage in the use of COMS is the need
for a relatively large machine to provide its memory re-
quirements. There are several ways to alleviate this
problem however, including a garbage collection routine to
clear all unwanted storage locations originally allocated
by COMS and allowing only those rules and n-tuples which

are absolutely necessary for a particular COMS implementation

81

to be stored in memory.

On the whole COMS presents a system that lends it-
self to change and emphasizes simplicity and flexibility
over efficiency. The most exciting possibilities for its
future use lie in the extension of its modelling capabili-
ties since the design of the system was specifically

created for this purpose.

CHAPTER 2

COMS AND CONTROL STRUCTURES

2.1. Introduction

Although the major part of this project centers
around the introduction and implementation of the COMS
system at McMaster, a small amount of research was also
carried out by this author into both the possible in-
corporation of particular control structures into COMS and
conversely, the possible use COMS might have in the field
of control structures. More specifically, both the advan-
tages of using coroutines instead of subroutines in the
COMS library, and the development of a command language
for the simulation of a parallel processing environment
are discussed.

The field of control structures in general refers
to the programming environments or operations which specify
the sequencing and interpretation rules for programs and
parts of programs. Included in this field are such controls
as sequential processing, subroutines, parallel processing,
coroutines, recursion, conditional and unconditional opera-
tions, iteration, continuous evaluation, and monitoring.
Using the communication management system to develop models
for some or all of the above controls would allow investiga-

tion of the processes involved and although simulation

- 82 -

would have to be carried out in current sequential proces-
sing environments, systems could be constructed to allow
the user to formulate new control structures not before
conceived. The goal would be a better understanding of
control structures leading (with particular respect to COMS)
to a more powerful facility for the inexperienced computer
user,

It is beyond the scope of this project to provide
an implementation of the above discussion, but the ideas
are presented for possible future research.

2.2. COMS and Coroutines

One factor on which to base the efficiency of the
communication management system is the way it handles the
external application programs found in the program library.
Since COMS was specifically designed to provide easy user
access to such a set of programs, any method of improving
this accessibility would seem to this author to increase
overall efficiency.

An important aspect involved in accessibility is
found not only in the actual loading and execution of de-
sired routines, but also in the transference of data by
the COMS system to and from these routines. It would seem
in the present version of COMS that due to the loss of

evaluator-program library communication via NAMELIST-in-

84

put (executed by the application routines as discussed in
section 1.3.3.2), the system is not as flexible as it
might be. Thus any method of improvement with regard to
the external data communication of the program library will
certainly benefit the COMS user.

More specifically, if an application program in the
library is so structured that its paths of execution are
entirely dependent on the results produced from a previous
call to it, alot of unnecessary information will have to be
passed to this program to have it run correctly (by this
is meant both the variable settings resulting from the
previous call, and the state of processing within the rou-
tine indicating where the current call is to continue
processing). The reader will immediately say that this
concept is certainly not particular to programs in the COMS
library but is present in many subprogram applications in
general use. This of course is very true, but due to the
significantly greater amount of processing time involved
with argument transference in the COMS system (as compared
with the execution time of typical compiled code for
program—-subprcgram communication in other programming
languages), any method used to avoid unnecessary subprogram
communication in COMS will certainly help the system's
efficiency.

A possible solution to the above problem lies in the

85

replacement of particular subroutines in the program library
by coroutines. The word "coroutine" was coined by Melvin
E, Conway in 1858 after he had developed the concept and
applied it to the construction of an assembly language.
Independent studies of coroutines were also carried out
concurrently by Joel Erdwinn and J. Merner, but the first
published explanation did not appear until 1963 when Conway
wrote an article for the Communications of the ACM on the
design of a seperable transition-diagram compiler [4]. The
coroutine concept has not been widely discussed since its
initial introduction, but its usefulness in particular
program applicaticns can easily be demonstrated through
examples given later in the discussion. Before further
discussion on the incorporation of coroutines into the COMS
system, a brief introductory description of their major
features will be given.

In contrast to the unsymmetric relationship between
a main program and a subroutine, there is complete symmetry
between coroutines. Every subroutine has a return address
which is saved while the subroutine is being performed, and
which is different each time the subroutine is called. When
the subroutine is not being performed, no return address
needs to be saved. Thus this makes a subroutine subordinate
to its main program. If, however, the main program and the

subroutine work as a team of programs where the main program

86

calls the subroutine when it is needed and the subroutine
calls the main program when it is needed, the result is a
set of coroutines, neither subordinate to the other. When
control passes from one coroutine to another, the coroutine
which is being entered takes up where it last left off, and
the address at which the other coroutine transferred control,
plus one, is saved as the return address to that coroutine.
This type of linkage is termed "bilateral".

Coroutines come under the classification of control
structures (as described by D. A. Fisher [5]), their
principle advantage as such being that each of several
processes can be described as a principle routine with
minimal concern for other processes.

To implement the facilities provided by coroutines
in a high level language such as FORTRAN (that is, to re-
tain the state of processing within a subroutine so that
processing can continue from that point at the next call),
the only mechanism that can be used is a "switch" which
selects the proper point of re-entry svecified by a label
attached to each of the desired entry points.

This is the type of program the COMS library can
really do without. The reader at this point may think
that routines such as this will not appear very often in
regular programming practice. The fact of the matter is

that they do, simply because they are frequently based on

87

input and output operations and these nobody will argue
appear very frequently. To illustrate this point, take

a situation where COMS is being used to study the lexical
scan techniques used by different programming language
compilers, Involved in this study is the development of a
simple command language to load and execute sections of
coding from different coméilers and record data (say exe-
cution times) on the efficiency of each scan executed.
Assume that for a particular programming language, part of
the lexical scan process involves reading characters one at
a time from an input card (starting at column 1 of card 1
say) and pairing off any occurrence of two adjacent aster-
isks, replacing these by the single character "t". Also,
any characters encountered between two +'s are output to
the next print line with the symbol %=" used to indicate
the termination of that line. Thus for example take the

input string
DECLARE...**DATA ITIME/S5/**ASSIGN...**y=5,2%%*

The part of the lexical scan described above will first form

the new string
DECLARE, ..+DATA ITIME/5/4ASSIGN...+Y¥=5.2¢%
and then output the following two lines
DATA ITIME/S5/=

¥=5,2=

The program to accomplish this task has been written

88

with both main routine - subroutine and coroutine - co-
routine (i.e. bilateral) linkage techniques. A block dia-
gram displaying the two linkages is shown in Figure 2,1 ({a)
and 2,1{(b). TFigure 2.2 shows the flowcharts of the read
subroutine RDCARD (used to read single characters from a
card) and the scanning subroutine SQUISH (used to replace

** with 4)., The writing subroutine WRITE which is called

by SQUISH for its output operations is shown in Figure 2.3,
Both SQUISH and WRITE have been rewritten as coroutines in
Figures 2.4 and 2.5 respectively. Examination of the sub-
routines SQUISH and WRITE reveals that a switch is necessary
to describe the execution path each time either of these
routines are called. The need for this switch is a direct
result of the entry point of the subroutine always remaining
the same (of course different entry points could be used

but then a switch in the main program would be needed to
select the proper call).

The coroutine approach to the problem accomplishes
the switching of entry points implicitly by use of the
calling sequence. That is, coroutines SQUISH and WRITE are
connected such that SQUISH runs for a while until it en-
counters a write operation which means it needs coroutine
WRITE. Control is transferred to WRITE until this coroutine
finds it needs another character. SQUISH is called and is

entered at the place where it last left off. The point here

is that by careful positioning of calls to other coroutines,

FIGURE 2.1(a)

MAIN ROUTINE - SUBROUTINE LINKAGE

MAIN !

L_ ROUTINE f“— !
| SUBROUTINE | {_;UBROUTINE
’ SQUISH j | WRITE

— l
\V
!
SUBROUTINE |

READ i

]

FIGURE 2.1 (b)

COROUTINE - COROUTINE LINKAGE

!_“__ COROUTINE | > COROUTINE

SQUISH WRITE

§
SUBROUTINE i
READ i

89

FIGURE 2.2

FLOWCHART OF SQUISH, RDCARD SUBROUTINES

SUBROUTINE RDCARD

CALL RDCARD

v

C1=CARD(I)

I=

v

read input
card in
array CARD

SUBROUTINE SQUISH

put C2 in
output area

v

SWITCH1=0FF

\/

Note: I is initialized to 81, SWITCHl is initialized to
OFF, main program calls subroutine WRITE to start

off.

90

I=1I+1

1

No e

put Cl in
output
area

v

RETURN

Cl
quals \195*{>

CALL RDCARD

v

C2=CARD(T)

I=I+1

Cl-’—'“’f"

Yes .

RETURN

c2 No
equals —
'l*"

SWITCH1=0ON

91

FIGURE 2.3

SUBROUTINE WRITE

\/
initialize new
output line tg

iblanks
CALL SQUISH
write out the
) SWITCH2 character
is ?
character
ll+ "
?
SWITCH2=0N
CALL SQUISH

write out
terminatin

n_ng character
symbol = n+u

write out
SWITCH2=0FF character

Note:

SWITCH2 is initialized to OFF

<

CALL WRITE
Cl

FIGURE 2.4

COROUTINE SQUISH

</w START

N

CALL RDCARD

Y

C1=CARD(I)

cl Yes
equals STOP
"E"
No

I=T+1

CALL RDCARD

v

C2=CARD(I)

CALL WRITE
Cl

I=I+1

No

!

CALL WRITE
c2

Cl=“+"

!

set CARD(I-1)="+"

94

FIGURE 2.5

COROUTINE WRITE

START

\/

\/

initialize
new output
line to
blanks

CALL SQUISH

Yes

95

CALL SQUISH

write out
Ccl

write out
terminating
symbol "'="

v

set CARD(I-1)
= wn

96

97

all switching processes are eliminated (this leads to the
important relation coroutines have to multiple pass algo-
rithms as discussed in the next section). An implementa-
tion of the above example is shown in Appendix H. The
programming is done in Fortran except for an assembly
language routine called COR which provides the bilateral
linkage needed for proper coroutine execution.

It is not difficult to find short, simple examples
of coroutines which illustrate the importance of the idea,
but the most useful coroutine applications (for example a
lexical scanner and a syntax analyser acting as coroutines)
are usually quite lengthy.

For the interested reader, a further example is shown
in Figures 2.6 and 2.7. Three coroutines are involved here-
namely GETCHR, IN and OUT. Again, input - output operations
are involved in the translation of a "coded" sequence of
alphabetic characters terminated by a period. The "code"
involves the following: if the next character of the input
string (read from left to right) is a digit, say n, it
indicates (n+l) repetitions of the following character,
whether the following character is a digit or not. A non-
digit simply denotes itself, The program output consists
of the sequence indicated in this manner and separated into
groups of three characters each (where the last group may

have less than three characters). For example the input

28

FIGURE 2.6

MAIN PROGRAM

START
Cem)

g

initialize starting
addresses of coroutine
GETCHR, IN and OUT

v

CALL OUT

COROUTINE GETCHR

read next
input card

initialize
character count
to O

\/

increase character
count by 1

change
character to
a period

\/

99

FIGURE 2.7

COROUTINE IN

START

o)

\/

CALL GETCHR
for next
character

store digit
found in N

v

CALL OUT

CALL GETCHR
for next
input character

100

101

\Vi

CALL GUT

v

decrease N
by 1

P Yes Aished
?

continued.........

102

FIGURE 2.7 (continued)

COROUTINE OUT

START

\/

\/

initialize new
output line
to blanks

CALL 1IN

v

store in next
position in output
output line

store in next
position in
output line

<:E:><1 Yes

CALL IN

v

store in next
position in
output line

store a blank
in next position
in output line

103

1G4

string
A2B5E3426.
should be translated by the program into

ABB BEE EEE E44 446 66.

To accomplish this task coroutine GETCHR is used
to read in one input card at a time and send individual
characters to coroutine IN. The job is complete if no
more input cards can be found in the input file. An
error check is also made for a missing period (the string
terminating symbol) by not allowing the character count on
any one card to exceed 80. If the character count equals
80 and a period is still not found, the 80th character is
set to a period and the next input card is read in (if one
exists). Coroutine IN checks whether each character is a
letter, special character or digit. Letters and special
characters are immediately passed to coroutine OUT for
placement in the output line, whereas digits initiate a
looping process which sends the required number of repeti-~
tions of the following character to OUT (this is done one
at a time). Coroutine OUT stores groups of three characters
separated by a blank in the output line. Printing of this
line is not done until a period is encountered.

The reader should note that the calls form one co-

routine to another have been carefully placed for implicit

105

recognition Qf the required actions to be taken by the
program. Of course writing coroutines (in Fortran at least)
is a little more involved than writing subroutines, but

to reiterate, in longer more complex applications the

extra time is well worth it.

2.2.1. Coroutines and Multiple-Pass Algorithms

It is important at this point to assert the relation-
ship of coroutines to multiple-pass algorithms, and the
effect this relationship can have on the COMS library. With
regard to the second example of section 2.2.1 involving code
translation, the process used could have been accomplished
in two distinct passes rather than just one. This would en-
tail using coroutine IN by itself to write the required
number of character repetitions from the input string onto
(say) magnetic tape, rewinding the tape, and using coroutine
OUT by itself to read these characters from the tape and
write them out in groups of three.

The point is that a process done by say n coroutines
can often be transformed into an n-pass process and con-
versely, an n-pass process can often be transformed into a
single pass process using n coroutines (an exception to
this type of transformation involves forward referencing
where one pass cannot proceed without information returned

from a later pass). Assuming no forward references are

106

needed, Figure 2.8 illustrates the coroutine - multiple-
pass relationship. If coroutines A, B, C and D of Figure
2.8(b) are substituted for the respective passes A, B, C,
D of Figure 2.8(a) the result is as follows. Coroutine

A will jump to B when pass A would have written an item

of output on tape 1; coroutine B will jump to A when pass
B would have read an item of input from tape 1, and B will
jump to C when pass B would have written an item of output
on tape 2; etc. Thus, what previously took four passes to
accomplish now only takes one,

In most cases, the COMS user can take distinct advan-
tages of the coroutine - multiple-pass algorithm relation-
ship in that any group of programs which are to be used in
the COMS library and which depend on multiple-pass algo-
rithms to produce their results can be rewritten as co-
routines and used in a single-pass fashion. The major ad-
vantage here is in the time saved in not having to transfer
data back and forth between the evaluator and the library
(of course there is also the possibility of using secondary
storage to hold the necessary data since this would also
result in some time saved). The disadvantage in using co-
routines to eliminate the above transferral of data stems
from the resulting additional memory requirements. Spec-—
ifically, enough fast core memory is needed to simultaneously

store all the programs involved in the process. This problem

107

FIGURE 2.8(a)

MULTIPLE-PASS ALGORITHM

> PASS A

~{ PASS B Y

?iii
Hh S

N PASS C

> PASS D ;

FIGURE 2.8(b)

ONE-PASS ALGORITHM

is partially remedied by reducing the original number of
passes involved until the memory core limit is reached.
This involves for a four pass algorithm say, writing only
the number of coroutines that will fit into available core.
This may mean that the four pass process is only reduced to
say a three pass process, but with COMS the time saved will
still prove advantageous.

Having seen what a particular control structure can

do for COMS, the next section describes briefly what COMS can

do for control structures.

2.3. Soapsuds

An interesting application of the communication
management system to the field of control structures is in
the development of command languages for the implementation
of a simulated parallel processing environment. The most
common type of parallel system configuration is the multi-
processor, i.e. several central processors with a shared
storage. Soapsuds! is an assembly language program written

for the CDC 6600 which simulates such a configuration provid-

!Soapsuds is an offshoot of "WATCHER", a former debugging aid
for the CDC 6600 which simulated the running of the 6600 cen-
tral processor. Soapsuds, like Watcher, uses the program to
be simulated as data, analyzing the instructions and perform-

ing the operations they request.

109

ing for up to a maximum of sixty central processing units,
each with its own location counter, operating asynchronously,
from a common memory. Thus a possible use of COMS with
respect to the Soapsuds program is in the development of a
parallel operating system? command language to perform such
tasks as (1) re-distributing processors, as they become a-
vailable, to various tasks attempting to run in the simulated
parallel environment; (2) conversely, handling the assignment
of tasks to processors; and (3) accepting and managing the I/O
for all processors. The type of questions that experimenta-
tion with such an operating system will answer include (1) how
to route the CPUs between several jobs in a minimum of time;
(2) how to establish a job mix that keeps all CPUs occupied;
(3) how to define and implement priority and (4) how to opti-
mize throughput.

Linking COMS to Soapsuds should help answer these ques-
tions since the flexibility inherent in the COMS system can
be used to quickly deduce the best way of approaching any of
the above problems given a choice of possibilities. In other
words, the details of the simulation will be left to Soapsuds,
while commands.developed for COMS will stem from both the des-

criptions of the general features available (i.e. what Soapsuds

2such an operating system has been partically developed by E.

Draughton as part of an experimentation with Soapsuds [6].

110

can actually do) and the results recorded on the performance
of the system in a variety of program applications.
Performance characteristics are easily obtained
through the trapping, tracing and checking options avail-
able in Soapsuds. "Trap" options are used for such things
as counting the frequency of opcodes, loads or stores, turn-
ing on or off other available options at particular places in
the program being executed, and checking the values of
special machine locations at particular instants. "Trace"
options are a special form of trap option where a message
is printed out describing the required tracing procedure.
"Checking" options check whether a specified location bears
a particular relation to another specified location. Also
available are timing options which keep track of system time,
program time, idle time and tracing time. Finally, at the
end of a program simulation, Soapsuds prints out the present
status of all processors, and the running and idle times of
the same. Other performance characteristics regarding the
efficiency of programs executed in parallel as compared to
serially executed programs is available (according to the

authors of Soapsuds) from the following calculation:

E =_'£L
*x
n nTn

where E = efficiency of n CPUs

Tl = time required for a serial machine to
perform the program
n = number of CPUs
T = time required for n CPUs to perform the

program.

Incorporating the Soapsuds program into the COMS
system for use in the development of an operating system
command language can be accomplished by writing Fortran
routines (to be placed in the COMS library) to provide the
necessary controls needed in the operating system. These
routines could then make calls to Soapsuds to perform the
required simulations, and the resulting information (as
described in the previous paragraph) could then be recorded
in the associative memory. Deductive processes using the
associative memory data might then lead to further improve-
ments in the system.

A command language developed through COMS for the
control of parallel processing operations would be very
useful in the actual implementation of an operating system
for a real multi-processor computer (including one that if

and when developed has sixty central processing units),

111

since the various techniques for the organization and control

of such a multi-processor system will most certainly become

apparent,

[11

[2]

[3]

(4]

[51]

[61]

[71

[8]

[91

(10]

[11]

[12]

[13]

REFERENCES

Yngve, V.H.: "An Introduction to COMIT Programming"“,
MIT Press, Cambridge, Mass., 1962.

McCracken, D.D.: "A Guide to FORTRAN IV Programming™,
John Wiley & Sons, Inc., New York, 1968.

Gammill, R.C.: "COMS": Communication Management
System", Ph.D. Thesis, University of Colorado, May,
1969.

Conway, M.E.: "Design of a Seperable Transition
Diagram Compiler", Commun. ACM, July, 1963 pp 396-401.

Fisher, D.A.: "Control Structures For Programming
Languages", Ph.D. Thesis, Carnegie-Mellon University,
May, 1970.

Draughon E., Grishman R., Schwartz J., Stein A.:
"Programming Considerations For Parallel Computers”,
New York University, Courant Institute of Mathematical
Sciences, November, 1967.

Draughon, E., Schwartz J., Stein A.: "Individual and
Multi-Processing Performance Characteristics of Programs
on Large Parallel Computers", New York University,
Courant Institute of Mathematical Sciences, April, 1970.

Wegner, P.: "Programming Languages, Information
Structures and Machine Organization", McGraw-Hill,
New York, 1968.

Lorin, H.: "Parallelism in Hardware and Software:
Real and Apparent Concurrency", Prentice-Hall Inc.,
1972,

Knuth D.E.: "The Art of Computer Programming", Vol. 1,
Addison-Wesley, 1969.

Mauer,D.W.: "Programming: An Introduction to Computer
Languages and Techniques", Holden-Dav, Inc., 1969.

Johnson L.R.: "System Structure In Data, Programs,
and Computers", Prentice Hall, Inc., 1970.

Gries D.: "Compiler Construction For Digital
Computers", John Wiley & Sons, Inc., 1971.

- 112 -

APPENDIX A

STRAN SYNTAX

The following shows the complete STRAN syntax in

BNF for the present version of the interpreter:

<STRAN RULE>::= (<RULE NAME> (<TYPE 1 BODY>]
<TYPE 2 BODY>|<TYPE 3 BODY>)
<TYPE 1 BODY>:: =<RULE NAME>{,<RULE NAME>}*)
<TYPE 2 BODY>::=<LITERAL PATTERN>)
<TYPE 3 BODY>::=<RULE BODY>)<GO-TO SECTION>
<RULE NAME>::=<NAME>
<LITERAL PATTERN>::={'<CHARACTER STRING}®'
<RULE BODY>::=<LHS>=<RHS>|<LHS>|=<RHS>
<GO-TO SECTION>::=<RULE NAME>|<RULE NAME>,<RULE NAME>
<NAME> :: = <LETTER><ALPHANUM CH>*
(maximum of ten characters)
<ALPHANUM CH>: =<DIGIT>|<LETTER> |<ZERO>
<DIGIT>::=1]2[3|4]|5|6]|7]8]9
<LETTER>: =A|B|C|D|E|F|G|H|I|T|R|L|M|N|O|P|Q|R]|S]|
Tlu|v|w|x]|Y|z
<ZERO>:: =
<LHS>::= {<VARIABLE NAME>/<DECOMP PAT>/|
+F<DIGIT>/<FIND PAT>/|

+A<DIGIT>/<ACCESS PAT>/}®

A-1

<VARIABLE NAME>::=<NAME>
<DECOMP PAT>::=<DECOMP OP>{+<DECOMP OP>}®
<DECOMP OP>::=$|$<DIGIT>|$<LITERAL>|<VARIABLE NAME>
¥<DIGIT>|<LITERAL>|+-<DIGIT>
<LITERAL>::= '<CHARACTER STRING>'
<CHARACTER STRING>::= (any sequence of one or more basic 6-
bit display BCD characters)
<FIND PAT>::=<FIND OP>{+<FIND OP>}®
(a maximum of 4 find operators is al-
lowed in one find pattern)
<FIND OP>::=$|<LITERAL> |<DIGIT>
<ACCESS PAT>::=<DIGIT>{+<DIGIT>}®
(a maximum of 3 digits is allowed in
an access pattern)
<RHS>#={{*|,}*<VARIABLE NAME>/<COMP PAT>/|
+S/<STORE PAT>/1}®
<COMP PAT>::=<COMP OP>{+<COMP OP>}®
<COMP OP>::=<DIGIT>|XLITERAL>|+<DIGIT> |
=L<NUMB>,<DIGIT> | ZR<NUMB>,<DIGIT>
<NUMB>:: =<DIGIT> |<DIGIT><DIGIT>
(numb has a maximum value of 80)
<STORE PAT>::=<STORE OP>{+<STORE OP>}®
(maximum of 4 store operators in a
store pattern)

<STORE OP>:: =<LITERAL> |<DIGIT>

Note:

* indicates 0 or more repetitions
® indicates 1 or more repetitions

{} indicates multiple construct repetitions

APPENDIX B

STRAN Decomposition and Composition Operators

Decomposition Operators:

1) §

2) literal

3) storage name

4) S$n

5) S$'character string'

- dollar sign matches any arbitrary
character string including the null
string.
- string of characters surrounded
by single quote marks matches only
an exact occurrence of the contained
string of characters.
- this storage location must contain
a sequence of literals separated by
single quotes and terminated by two
right parentheses. The first of
these literals to produce a satis-
factory match is used. An example
of the contents of the storage loca-
tion is:

'"THE'A'AN"))
- dollar sign followed by an integer
matches the first n characters of
the remaining string
- dollar sign followed by a literal,

matches as many repetitions of the

B-1

7) *n

Note (1)

literal as can be found in consecu-
tive order. This does not include
matching the null string - i.e.
there must be at least one occurrence
of the literal present.

- downward arrow followed by an in-
teger indicates the next character
will come from column n. Thus this
operator matches characters through
column n—-1 if the present position
in the character string lies before
column n. If the present position
lies past column n, the operator
matches the null string and backs up
so that the next character will come
from column n.

- period followed by an integer,
causes the contents of pseudo-regis-—
ter n to be inserted (at execution
time) in the operator string for

this operator.

If a literal occurs in the left or rightmost
position of a decomposition operator string, the

left or rightmost portion of the string to be

matched must duplicate the literal exactly.
Note (2) The elements of a match are placed in successive
pseudo-registers where they remain until wip=d

out by the left side of some later rule.

Composition Operators:

1) integer from 1 to 9 - these refer to the nine pseudo-
registers.

2) literal - string of characters surrounded by
single quote marks.

3) ¥n - downward arrow followed by an inte-
ger, causes composition to continue
at column n, either by adding blanks
or truncating.

4) =Ln,m - equivalence followed by an L fol-
lowed by two integers separated by a
comma, causes the leftmost m char-
acters of the string in pseudo-reg-
ister n to be concatenated to the
result., If there are less than m
characters, the string is padded on
the right with blanks.

5) =Rn,m - exactly the same as (4) except the
rightmost m characters are used. If
not enough characters are available

padding with blanks is on the left.

APPENDIX C

'Sample STRAN Programs

The sample programs presented in this appendix show
how each of the software elements of COMS may be used to
perform various operations including arithmetic calculations,
pattern matching of character strings, storage and retrieval
of information and referencing the program library. Examples
will show how combinations of the interpreter, evaluator and
associative memory programs can be used to perform different
tasks,

Program execution for these examples was carried

out on the CDC 6400 computer at McMaster.

PROGRAM 1

A simple STRAN rule set to read in character strings
and send them to the evaluator is shown. Input information
to the evaluator is terminated in each case by a semicolon,
whereas comments used to describe the actions being per-
formed are separated from the evaluator input by use of a
period placed in column one of the comment card. Lines
beginning with INPUT... are echos of the input cards read
by the interpreter., Output from the evaluator is shown
directly beneath each echoed 1line.

The reader should note the use of the dollar sign
operator preceding a variable name (for example $X) to
obtain the relative machine address of the variable.

Errors have purposely been placed in two input
strings to show evaluator response under these conditions.

Sample calculations of formulae using some of the

normal built-in arithmetic functions of Fortran are also

given.

O

BEGIN READIN

INPUT 4«

NPUT 4 a0 {RE
INPUT o s s
INPUT cae
INPUT e e s

L

INTERPRETING RULES.

BEGIN

NCOQ. -
- QO
-
DT
aw
ZZTo
et bt b D
0T
We-al
175 I)
m
L2 L™ I
N DT
7el-1T
OTOT
ar
[781]
Tumx
oot
T
NHHE
[7aR=q ~4
NN A
woma
O
4%
RO
«<a
HKI N
[SE]7sYa sl
(<L oY
[(L1sTe g4
Zujte®
4 O
za
[@ Do
<D
ad P B
OLd—=ns
[TERE I L2 4
(€ PG o
L& <Tm
T
T)
o
4
-4 =
OQ Y
elii o d @
» % _J e
-

Y
N el hd

[T S R

INPUT o n e

INPUT e e e

3
H

=4

INPUT e e« o X:

I
¥
1

4%
p{JT....

N

&

®
.

ARRAY (5429293925173

2929342 410

,I’

ARRAY (X yX 9 X 91) 3

INPUT
REAL
INPUWQQ..

NPUTsse373
3515
INDUT'. LR J

INFUT, ¢ 03X
13517
INPUT s e en

INPUT, + +ARRAYS
12N438
INPUTe s ee

W
Lo
—
»
-
.
[gd
p=J
A
A
=

o
|

[Son® ol et
“nd OV

.

[]

.

.

UTeasIARRAY (151191514105
UTeoee
PUT+0e(700-925)/43 ~

TV 0 Vo
[s)]

Z ZNZ ZoZ ZNZ
(e
-y
.
.
.
.

U4 e e
e
[=}N¢)
o
O
(=28 |
mny
4+
D
oo

e
VOV wo
<N
—4 O —
s COe
& (e
s O
¢ oo

e]

FSQRT (12 .8*%16.923¥ =25.6+C0S (005

INPUT e v es

RPOSELY IN ERROP

Py
I

THE FOLLD

INPUTo ess
~ A_INAPU, I,L > .y

N ERRQR

It¢PU]' o o0

ZFRO.

NED A VALUE OF

INPUT. 00

13

TORAGE OR RETRIEVAL.

9395,2)

-
O (N

INPUT....

INPUT s 00

INPUT e 0w

LATIONS

=R*

800000000

LR K]

v o o NETERM

INPUT. L N)
M

INPUT
_.DETER
INPUT

aveh
oo
» O
<t +
» L)
K. d=}
()
[Nf)
» O
»* O
me
no
o
oo
e
-0
we

—_a .
wil e
*T e
oY o
o 11 |
D=
a. wa
zZ0Z
Ll l o]

¥2-4L40%A*C))/2.0%A 3

¢
¥HO-L,0*A¥C))72, 0%A?

00

1

0030000E+008_

INPUT o o sH=
1.00000
INPUY e ¢ oo

-.H

00E+00%

0O
[l =

[L~}
-

[2 9 —
oD o
[12N]
L Y2

[y =1

D e

a «~a.

Zyz

—a s

93
E+003

°
’

3.1415

31415300000

INPUT e e e

27

IﬁPUT...A

INPUT e oE
27%

INPUT. [N)

_ A

F

N(AIX((HE®4 /16, 03+ (H¥¥ 23 % (P*¥*2))) 3

‘, o

- ;_ m
<8] |
< _ |
4 | H
i o ! !
! b i i
Zen _ ;

L | () A
(Vo] o [§V] o
* Qo [l | o= T
.41 -+ _ + +* |
_ % OV woow w o

Lead _ o il wel oD | eerd seD
P (= n % O en oo | oo e
723e (=] (o] [agl N0 - O | Yo -,
- + (=} [o] K g [=T= N 1 oo
N4 11 .1 oy ~ o L oo [T T

- L = L, H— - Mo 3o na
0.2% o [l <7 L 44 o i "o neo o
* 2~ [o=] [y b0 o - PN -] -~
be of 8 [. O, Yoo < — N [1=
o eeO o any - | «o -0
Loy < o] LN —t o o -

~ O 1 @ oo o e <13¥ [s g) e e
TR A no et (g e | X e .
XA, e EN e O e O e Ocvd 0 <IM ¢ It & <N *
(123K ord @ o> . o< & aY o ejl e il ejf *
LA g .3 e VLl s MY e e § em b tm @
[2N et @ [Xl eCr o oI e ol @ e} o any @
o T R R L] i e e S e e e S N =
D e MDD D el DO UD DD DD THD
Ao fALua aosg Q. s a0 A 00 awo [s 2 43
ZNZ ZeZ ZHDT T2 T2 TwZ T ZeT
[S Lo o B SPS § SR ST IS g%

P N N = PO Y

{S-ARR1{1)) ¥ (S-ARR1{12)) ¥{S-ARRL (35}

%Qi(Z)*ARRi(3))/Z.O?

END OF EXAMPLES

EXAMPLES

PROGRAM 2

Shown in this program are many of the STRAN pattern

matching operators available in the interpreter. Fortran

programs are read in as input data and each statement is

analyzed with respect to its type. The operations performed

include:

(1)

(2)

(3)

(4)

(5)
(6)

(7)

all blanks except those in FORMAT statements
are removed

declaration statements including REAL, INTEGER,
DIMENSION, COMMON, LOGICAL and DATA are headed
with the string 'DECL..."

assignment statements are headed with the
string 'ASN...°

DO statements are broken up into component
parts, each separated by a comma (for example
PO 5 I=1,10 would be changed to DO,5,I1,1,1Q0,1)
statement labels are replaced by blanks
continuation cards indicated by a character
placed in column 6 are concatenated to the
card immediately preceding the first con-
tinuation card.

if more than one statement is found on a card
(i.e. by use of the dollar sign which is per-

mitted in many Fortran compilers) the statements

are separated and re-examined individually.
(8) once a statement has been examined, and the
necessary operations performed, it is output

to the print line.

The above operations are not necessarily meant to
represent those processes which occur in the lexical and
syntactic scans of a true Fortran compiler. Rather, they
are used to demonstrate the many and varied pattern match-
ing operations that one might want to perform on strings
of characters in different situations.

There are two output listings for the STRAN program
given., The first uses the default (ECHO) pseudo operator
to output all lines read by the interpreter. This may be-
come confusing as the interpreter output for particular in-
put card may not appear until after a second input card
has been read in and echoed out. Thus for clarity sake, a
second output of the program is shown with no echoing of
input cards (this was done with the use of the (NOECHO)

pseudo operator).

READ

BEGIN

. 1

| ' = !

, . i I |

, [ay] ' . <T :

A‘ MW%) , L 1

: L ” i !

, — i) i

! ~ ' 0 i

i > ! | - i

4 ~ i AN !

| — , g !

, < i N '

; (= m [J e !

' 53] M CN Z H M

' %] i o ~ I

, ~ ! [S~ - !

i tv : TS >

! ~ L~ P LN “ ,

H [oW o s Y >

Do D Z ~ % O o~

! L e, =T w ' o e

} P P B - 2 > HH

X O XY Sk N H >

h N =z H OO M s i

| M oe o O -~ e '+ Wt x|

: + oo ¢ ¥ e NNO o~ O
A W s s Ol = N oo AL b H
; + c: ~ . D ! L) o e HwJ
~3 o Zem & [on B R G [A Nt
[J <« SRR L b NS 7R an R Y 8} [VUL B 74] Ve o oo
[TR B G ey N C 4+ N o [+ 38 on]
MT + NN ol SR U an B UK, 4 LA “0
N 72 S STY Q. SN) W + NS gt -~ D
| e e et o+ VW ~ N +a o+ = R
Dy e MY e ~C3 5 VR4 8 D oH
- o< XJ O 2 ~ A T N Lolke C Nz
O WiestbN el N M~ e H AW 77 . OO
Z 0 ketat NO b + O 0 O - (] =

b e llem T g ¢ N =N /:4., |N T
P N e N g NP Nl € N k) 4 HO

NN QU 3N WX O % N e (O
W O 0D a4+ T H ZY Lo+ w4 O seut—"m HH
N e DT IS YAV [l NI NN O I
AN o NC o Ny A HIIW 40 e OC+ HO
0 @eih i & LUYIN U Nk O I O om o~ 1
O w4 N 427 gL AN WD N A LN e D
Q PIHND W _IZ QR0 Z ed =0 NPT

O NA+&+ = 2CHR MmN beitw _§ (b 0 e N HLY
Wb O HNOL ST 304 b Y R TR R T e U o i
—~ DO +\ st ,Z LT LIt NN b o 0TI M

O AN WA N D NP O 6 ol oV e TS s U ¥ila o B

A H~ZO N 4 e A0 A0 C % e b N HH
OO e b7 5 + o il LN e T Tt U3 Z0H0NY
QU it 0 P w3 NN LD el — aNCO N Y
AT D + R MG N LA N T+ AN ¢ N SN T L
CPR T O H T N M H et W JOH OV 0 & DN W

v
V
m
ONDGOZT 4 DI+ O+ QD kT o, /10//$ETW
AHET 4+ w40 IHZRORHREOH N~ hhen el NIHRZ |
WOEOH NS e 6% W HOWRHN 8 = Z e |
OHOON ALY HL) el 4+ - Z DR ~e D o #DHZMHH |
o AN = O+ N D+ L TICN+ A b N mSO% Ui (OO
FONSNDDDOLA LT (0 AN b e\ D R RN
FHZZ O L Z NI U D N ZIN U G 0O 41 Nos ™ H L
VDIJNJ\E/TI()/TLQIEN1+/ON//E«EliQA
N0 I el T W e DO ST ek e MW N ST
— T e ZZ Y A e N T e T s i bd _JEA ST G o D L L R e
ZOWH (RO g~ OO 0L NN O 22 N~
CHIDH O~ Z L/ T ZA I b b b N OO b~ s OO <O
(Y ot o it e b B 5t 1T b (37 O bbb V1 OO0 I 0 IR LY
[el 8 Vet a NDai L P Vg S e T X SR T AR ol CRL L S el o ((((C_TT.LT!
D T L = OO I 20 S b O LU D b 2 T L = O]
ﬁNﬁﬁTirgﬁ&NQUCJQ OCOOCCO OO0 DN HLIL O
WHUXALOOLA WOOSaul OuEOO0QNC 0O 0w

o 578 W i Nt Tl W R e ot Wi Rt e it Wt Bt N T NP T Vgt UEF ' W’ T W Rt W Nt St T2l ol

-1

i
{
i

LR SR SR DT T I S 2R TR U N B I T T T B IR B I
t‘"ontoaooa,ononoo-omco-nto-,oannnnoJ
LT S I B L I I 2 Y I I O B I I I Y BT SR I O R IR I
L e B el ol sl ol S o S e R Sl et ol ST S S S ee g S e
DODDITT0TODDDIDDIDIDNIDISDIITODDTDODTDIDITO DI
poannoafdncoanaanopacroo0aNcisconn el
A A - AP A A A AP N A A A A Al A A o
Pt bd b bt b et b e b b e b e b e e b e e e b e et e e e b e
N i

i

BEGIN INTERPRETING RJLES.

_ INPUT...

SUBROUTINE NUMBER(CHARSNBEG,ICHAR)

INPUT e

INPUT. e

CINPUT. .

INPUT 40

INPUT . ¢ »

OINPUT oo —INTEGERFNAM —— - -
DECL W «s LOGICALFLAG,NUMBSH
INPUT .40 INTCGER FNAME(5)
DECLe « « INTEGERFNAM
INPUT.-. REAL x’M’J’I
T £ INTEGERFNANE (5) - e
INPUT... DATA FNAME/3HWOO,bHFL AT+ 3HFIX
DECL. L) REALX’W ’U’I
INPUT s 0w 1 3HABS,3HSIN/
INPUT .. NCHAR = ICHAR =~ NBEG 3 IF(.NIT.NUMBSW) GO TO 3
T T e DR L AT AE AN E MO0, SHFLOAT 5 3HF IXs SHABS » SHS TN/
ASHae s « NCHAR=IZHAR-NBEG
INPUT e CALL G:TNUM(SOURLC(L)9LHA&{N®CFJ,NCHARyi)
IF{NUT «NUMBSW)IGOTO3
INPUT. s SHIERIL)I=D

COMMON/CNTROL/ECHO TRACE,, JUNK {11),INTAP

SUBROUTINENUMBER{CHAR ¢ NBEG 4 IZHAR)
COMMON/ALGEBR/NAIMES{5) ySOURCE (LU0}

ZCL s 0 o COMAON/CNTROL/ECHO 9 TRACZ y JUNKILL) g INTAR
DIMENSION FLOT(iDU)

i DtCL...C
INTEGER SHIER,SOURCE TZ

DECLs ael
LOGICAL FLAG,NUMBSHW

DECL. « o INTEGERSHIER s SOURCE,TEST,LHAR(2) ,SAVE

OM.ON/ALGEJR ﬂA“ES(),SOUOCE(le)
ST,CHAR(2) 4 SAVE
I

T,
MENSIONFLOY (140)

S

[5t®)

- INPUT v

INPUT e

INPUT # e

S
ol CALLGETNUMEFLOTAL) sCHuRINB
{L

CALLGETNUM(SO
T

H
Fy o

h‘\

ASNe e« SHIER
SHIER(L) =1

CALLGETNUALFLOTIL) s CHARINBEG) ¢y NCHAR 4 3)

INPUT .

AQ(NBEG),NCHAR,i)

L=L+1 3 FLAG=,FALSE 5 RETURN

e ASN S SHIER L) m e e e e
ASNes L =L+1
ASHee e FLAG=4FALSE

CALL PACK(CHAR{INBEG) 4F nAis NCHAR)

RETURN

INPUT e e DO S5 Nthy 12
B CALLPAUK(CHARIWIRYG) oFNAM, NCHAR)
INPUT..- DO bl IJK=1 ,Q593
DUs e NF 9L 91241
,V;QEQT'°' IF(FNAM NE.FNAEE(Nf)iﬂEgmjgwéy_u -
D0+53 IJKslyu45,43
INPUT e e IFINF.NE«L1)Y GO TO &4 3 SHIER(L)=5 § SOURCE(L)=6
IF(FNAMNE.FNAME(NF))GOTOS
IFINFWNEL1)GOTOL
ASNees « SHIER(L) =5
wINPUToco SQURCE (L) = NF_ i_“14~‘~ o o o .
ASNee « SOURCE (L) =5
INPUT a0 50 T0 2

INPUT 4445

ASN. s« SOURCE (L) =NF+1
CONTINUE

GOTOZ

—INPUT<wC
C

£€1-0

INPUT e oC

C
INPUT. o s G

INPUT. .,

AND UNS

NOW TREAT S D U3
N TREAT ED AND UNSJR

Jow
[Y219]

W UBSCRIPTE
OW SURSCRIPT

IF{TESTANZ JAHEY GO TO b

e e BONTINUE — e

INPUT. «»
INPUT .o
_INPUT. . .8
INPUT W
INPUT e
TINPUTS
INPUT.. .
INPUT. .

INPUT,. «

INPUT . s

MM o= HM O+ 1

IF({TEST.NC.1H{)GOTOS
IF{MM.GT45) GO TO 777

ASNe s o MM=MM+1
NAMCS(ﬁi) = JAM

IF(MM GTe b)GOTO???
SOURCEI(L) = 13 + MM

ASNas e « NAMES (MM) =FNAM

ASN...DQU&QE(L)~13+MV

-60-TO- 2 e - R
ASNase e SHIERIL) =5
CALL GEINL (CHARINIEG) ¢y NCHAR 4o UURCE (L) 4FLOT (L))
) 60702
IF{SHIZRI(L)WGE.=2) GO TO 2
- CALLGETHHAGHAR LNBEG s NCHARy SOURLCEA Ly FL VT ALY)y i e
WRITE(NJUTAP,7) FNAM
IF{SHIERI(L) wGZ s~=2)G0OT02
7 FORMAT{(*THE VARIABLE *A10* HAS BEEN ASSIGNED®)
WRITE (NOUTAP 47) FNAM

VT

INPUT e e SOURCE(L) =10

FORMAT{*THE VARTABLE *Ai1n%* HAS BEEN ASSISNEDH)
INPUT 4 s SHIERI(L) = D
A:)No s . SOUP\C_EN(—L)=0

TTINPOT Y —GOTFOo 2

ASNe e o SHIER{L) =0
INPUTses 777 WRITE(NIUTAD,773)

G0T0?2
INPUT e e ® 778 FORMAT{*0ERRQOR,y ALGEBRAIC EXPRESSION=®)
- WRITEANOUTAPF7 78y ———— e e e
INPUT e e MM = &5
FORMAT {*0DERROR 4, ALGERRAIC EXPRESSION*)
INPUT e o GO 10 8
) ASNge o MM=5
_INPUT... END s
GOTN8
END

ST-D

BEGIN INTERPRETING

RJLES .

DECL . e« JIMENSIONTLOT (101)

SJ@QOUTLNEVUMBEQ(PHQQ NBREG, ILHAR)
DECL e s a COMION/CNTROL/ECHC s TRACE yJUNK (1133 INTAP
VECLe » o COMION/ ALUGEBR/NAMES (D) ,SOURCE(L1uD])

ECLa .. INIEGERSHIER , SOURSE s TESTCHAR(2) S AVE
DECLe «« LOGLCAL FLAG, NUMBSHW
DECLo oo INTEGFRFNAM
JECL e« s INTCGERFNAME(5)

DECLsaemEALXsMyUsT

DECL e « e DATAFMAME/3HMOD , SHFLODAT 3 3HFI X, 3HABSy 3HSIN/
ASNee o NCHAR=IGCHAR-NBESG

IF(.NUT NU4BSW)COTOS o o

CALLGtTNUM(SOdDCEtL),uHAP(NBEb),NCHAR 1)

ASNaee o SHIER (LY =(

CALLGETNUMIFLOTI(L) yCHAR{NEEG) yNUHAR, 3)

ASN...SHlE&(L)‘l

ASN. o oL =L 41 T e e
ADNO . ."LAG"".FA LSE .

RETURN

9T-0

C
G
C

CALLPACK(CHAR{NSEG) yFNAM,y NCHAR)
DUsy54NF 41,1241

D045sTUKe2al5,3
IF{FNAM.NE.FNAME(NF))GOTOS
IFINF sNZe1)GOTOL
ASN.e o SHIER{L) =5

ASNes « SOURCE (L) =5

ASNes «SIURCELL) =NF+1
GOTO02

NOW TREAT SUBSCRIPTED AND UNSUBSCRIPTED VARIABLES

CONTINUC
IF{TEST .NEL1H(}GOTO06
ASNae s e MM=MM+1 e

TF (MM.6T45) 60T 0777
ASNes s NAMES (M) =F NAM

ASN. .+« SOURGE (L) =13+ MM
ASH. . +SHIER(L) =5

G0T02
CALLGETNL(UHAR (NBEG) yNCHARLSOURCE (L) 4FLOTILY)

LT-D

IF{(SHIER(L}) +GE.=2)G0TO02
WRITE (NOUTA®?,7) FNAM

- FORMAT {(#THt V&QIABLE'*Aiﬂ* HAS BEEN ASSIGNED;;A
ASNe e o SCURCEL(L) =0
ASNae « SHIER{L) =N
GO0T02 B
- TROTEGGLTAR T T T
FORMAT{*QERROR sy ALGEBRAIC EXPRESSTON*)
ASNes e MM=5
_ _soros e

8T~D

PROGRAM 3

Two programs are shown here which carry out ele-
mentary operations for a fact retrieval system using the
Set Theoretic Language. The first program, ASSERT, is
used to store 2-tuples, 3-tuples and 4-tuples of information
in the COMS associative memory. If an n-tuple has pre-
viously been stored, no action is taken by the program.
However an n-tuple not previously encountered is stored in
the memory and output to the print line.

The second program, ANSWER, is used to retrieve
stored n-tuples from the associative memory. If all the
components of the n-tuple being sought are known, the
program will output either that the n-tuple is true or,
that the truth or falsehood of the n-tuple is unknown,
depending of course on whether the n-tuple has been previous-
ly stored or not. If some of the n-tuple components are
not known then the program either outputs a statement say-
ing that n-tuple sought has no answers (meaning it does
not currently exist in the associative memory at all), or
provides a list of all the answers found. Sample output

of the ANSWER program is shown below:

N-TUPLE CLOSED PREVIOQUSLY OUTPUT OF PRQGRAM
OR STORED? ANSWER
OPEN

(A,B,C) CLOSED YES (A,B,C) IS TRUE

NeTUPLE CLOSED PREVIOUSLY OUTPUT OF PROGRAM
OR STORED? ANSWER
OPEN
(A,B,C) CLOSED NO THE TRUTH OR FALSENOOCD
OR (A,B,C) IS UNKNOWN
(a,$,C) OPEN YES (A,$,B) HAS THESE
ANSWERS :

(list of answers)

(A,$,C) OPEN NO THERE ARE NO ANSWERS
TO (A,$,C)

(The dollar sign character is used to indicate the parti-

cular component being sought).

The reader will find a list of the n-tuples being
stored by ASSERT following the program listing. Recall
that lines starting with INPUT... are echos of input cards
being read. Each time an n-tuple is stored, it is also
output. Following this, use is made of the ANSWER program

to retrieve some of the stored information.

PULES.

BEGIN READING

?J
[7s] - -~
- Q O
[oy) -~ Lt
= I Yl
u ozo
- [T0 SR
. LN
+ [
-~ E Nt?u
H = @t D
(38 oV I =L
4N HO~
[Cal Y | e TN
+0O -~ H
INZ D -~ o e
+ul (= * DWN
& -~ = M
+ N\ < Lus + ke
N - N
*+ -~ = [on] +« U}
[aNA 28 O = Lo P4
- + A~ u & H <t -
(- HiO D - H + (o]
=z + e (N ~ il ! =z
Led ot e H L 2% [N
- R RG] ~ CHy -
v N~z - et & .8
(%] Wl o - €~
— N [ad nu. <
%3] NN z vOoOw - am
~ i I e (=] u o< \NWwooe
N e O Ok N~ -~ XTI H e Z
0 % HHIQ (R I- o Io ~od)
' N 720N] ER ~N u ZCO e~ HEdonem
P N Man - * T T HN + =TI\,
O 2D O+H+ O po R L +O MW
Z 0O Zuinile < o Z o Z +NbL! e
W Z UWer+d N wdem Z+u OH el
b WMDY H et any e ot DD
N NHOHO AN P L +Me INH DY
IS G Lo B L I T < HO e ¥ O bl
AN NN AN 4 ST FUI -
b WAL Oy b~ WNZ DH AT e+ N0
IS 2 3gun] wd 4+ LT WD <L - Ld " Nl e 1) M
INWO SN EL) 20 Y-t -~ ITHE oCd +
IR N7 I T N N V0 R T . NG F | Db S+ AL -
INON 936D AD Z i #6h e e ITTRHOU+++H
ST Ed MO g R d) e DHIOANM S
AD e NN D 8 HHNIT Ui Hon o b ot

~0 O ~ ot \NOUV A~ + oS o< I e O AN A
prZ D Nt Mol Z o B e Ol e 06567 e N
P H F 4NNl 4+ NWNZZ e DI C+ vt i
btk e~ AGETHr N DN G e T L O HHLOIN~ 4+
< i NE N Nt R ONOT e N AT NN
o oenEr e RNV e T e MY T DO NS RN T DN
b LA 4 H v o e HL e 4 e r T~ C TN+ NTh 4t D
K +HRS HHRBALULTHE HEARANWLIDED 4N DO
LICH AN T b "t T awr 4+t b NI+ CH b b+ O
Ui £ H + e CCECANN (NN N S HE N HE R H NNt DU
N+ bk bbb T U 4 e F b + L0 62 RGES O C N
T ENFANDT HH R DA 02060 U H R NN HAUH N
Chs= e e e v CONND & & e wOMIT R AR & 3T N

VIAD D H R RH UG T T HHNH A+ + O NNF R
OLIA D0 N+ + +NOWIT D+ 4 b + et b NN N AN D
LAZOAT waa sa6a0A 0 00 0 U 66 SR NF D Dbk NN N0

A Z P AOONNNNN YT E eNANANT 1D C D DD e
N sp b pm b e b=) Qe L b e b pee U U L O e T C O ST < (T
LI U s ST DL s . DI D+ + e DO w4+ LD
AU COCOC JZ O COO QY 3T MN =~ —(Ng)
DN O v s DN TS e I DT ODNM NHOW
O U N3N M HY T2t 3o NT 22 9CCEZTZ000 S50

TSI NNVNNIY N <Z b bbbl Tl b el < e Tt

VLITLIIITJIIIIIIITLIII]IIIIIII
'

|

* L\lﬂ.f\n.ll\.. Bt gt WT Maet Yy Wk N Nt Dt o M 2ot S g St et gt o Bt st St Pt Bt eyl S gt
Q1-.l..1.'.‘.ll'.l.....‘.‘....00'1
a8 ® & €& s e O R PO L et R RS E R S esae vp
of.tn.nontntl.t.nf.o..l..rcoaoa..l
L e e e T o o S S e O N e L ol el aalaed e e aed =
DDOODOD2ITDDDDIDIDIDDIDITUDIDIDIDIDIDIDDIDDDDIDIDDD
PPPPPPD)PDDDPDPO@LDPPDPPP:PJPD)PPm
PRI R E T I LT T T IR T T T ZZTTEZ T IZZZ L
| , _

RULES.,

BEGIN INTERPRETING

. -
i L !

| ! ! ©

M - o

: b3 ! | z

! o . i ! - P

! e v L L W Lo

i ! ! o 0o C©C uno

“ b i , w o

: Z e~ i = - = WO

m [P2 | Z Z Z OZr o~

‘ OOou i Ww W W oeye~u

* IO mAXmE~ XA L O o~

! (7 TH i T Tl OO0 N0 W

— e | acoCcCoC VL = O

- O~ U e~ - . » DlLbLZ

O e eZn = ! WL U=l O 2 =

e C L) ! OZCZCZ~C erd =2

L = ODDu = : woL WTI el <uw

' ~N O - i e B OO B BAOLL OO0 B O
-~ b Ll N e O W e~ - I UITI DO (N s @l
W Ze~<T -l C L O Wo.IToIa << Quu-ao
O HTFELY AMDWLL -~ O -~ Y e e eAY Y OF e

OOCH~CD &« ¥ Z G , - LU <l OL IO WL
W ™ OD U -0 Z VU O u O POFOIOFTu. Y orO=
¢S P nCiDy e bt Z E o e OTOLWe L
0 - Ll e (ALY 2 et bd FT.FQ\FD\ O Oy
SRR TR el 30 N sANY N @T e [sW TS LJQ el H O CZoULICWXY DU - el
L e el I WL QO OoOTCLroOlL W W I TWIOMCUL k0
ZOE - e GHUNNO ol b HOTEr Db U JY O -

= OO0 LI e I WO ¥ XL IZTu <UWUOT O+ bl
LY e DU =GB~ OZ o0 «C L OCOUIATLTITTOU JT «xno
LN 3 Zr-NOW™MuilZ kAL ZOUIULC & O b= ok =D CHOL) &
QOO 4 JUIZ e WS H WCHEHO WZIL <L Oi<t T «OTiu v
U= D {20 O = O, A o uLOHACLOISCELYTQL —OW
W eO-O W IDO>NZ N CECE N o 2 Cultiou' o
ViZr% 4 e300 1 med b T S T Z DD -2 E T 30 =N
RIOOTOSFB a3 e ZUFHNMHZII-NOAZ QT T <COOOZ
Ul ™IV T et S OOZ WO g o8 o« o NCOAUIZTIYINONJIZ «DW
SN UL SR NOOYHZ N «OL Y ONLD s OO 020 HDLU <I o
ZOr .3 «7 o el oty HHOTE=D00U oD o<t o0 o<l T O ol
[el ool sebfan T ochunl & Ton ENRou T ¥ BN oo 17 NN SRS SHREN 4h Fan Ranla B g | ¥ ian Boalt b TanEontdhY ya NN oo T o0
oLl e SOZOTUZITZ ¢ o0 o0 o0 o ZOZOZOZTOZCZWUE
L B T T N L L T U WL 22 ST 2T AT T T Yl b
OXOOD = +N 4+ T cOZOHOHOTCHi+ <L+ T+ T Tkl w(+Z
W 7 Zu-u. DL Ou T w4 o M N XL L LY Zu D
WML OOOUICOOHLIN LW G WD oOOLoUCOUOoOLOo DO
NZN=-uo © L - rNINH <IN TING - - - - - - -
MY Y- ZOZ OO0 ZOVaA YN T IvOZOZ0Z02Z0ZNZ0zn
) o) rl) ept Z T LS el) ed] el el e Z A e T A T e T Z
S SL I T L el Tl Sl I L Sl T L <D <l AT <o <T <L T <T <I < <T <L <L
ZOTOTOTL+T + L +T+2Z20Z0Z0ZC2ZOQ0T+T+IT+T+T+L+T+
o= OO OeEOU I HOH D CLOL OO O Ol
e Lo e K?(Q(O(O(F e L e Lt e O eer O v O 27 O I O > O
s(/3 o/ *() » . . . «l) ¢ (/3 () eSS = ' 8 ® - e | e .
o0t oY «(¥ X nV. €Z 0 oY o oY 2t o e o2 o o2 o T o o
elif ofi) oL} ohd ort st ok eul el) sl alil eli) obd ok ebd of obd obd o
b 23— T T b € b <L e <L b T b e T e Srb— 35 e T3 b T b < €1 b < e €T e <L o €T
DEZDITODITIDADITDIDADOADZ D7 ZDZIIIDIDIIILDOL DI DT
GO - -0 OO Y (A OO HO HO O H0. O 00 00 L ONn O
Tt Z et Tt T ot T e e T Nat T e N T vt Tt e T v T e Lt e T e
I_IIIIT.IIIWIT_II_IIII_,II
1 1

i
. ' i

22

H o~ - '
w L o ;
-— - O - - \
. o o© o o~ “
; e b= D O e~ - —
“ Z u u o 24
. [(o} e —~ O o - Lt
W L W b g~ W o W T -
. — HoOH U T = L O - =
[TH u - -~ QY il Ty 2 0 o~ (a4 o
o [T TS u. OCY) I H ZOT~AZ by n
-~ O o~ O TheTh- oD &) AT O Cy e o
O u ow L T O wzZydocux Dow Zn (7]
Z G Jd - o Z «C e (AO 4 (T b DT e <Ly Q.
- © [T VIR VAR I O J XY wwCoul (030w o -~
D T = N OO0 Y DO SO (] W
CCpZ DULTmZ De O 06 7T oIl k- O ~1C
b e vl CUUN XYYV T5O0ORYYOIIUZ O ~ aWn
N el LOK ~QCIIIWIS I oo e i<t OO Wwor o~ Y
e OUD abi e TETFOUL CULIE TODCe o« IT2700 W biul
WO o 0 Ou T vk o0 DU) 2T el Y S e L8
Or OO &« CHOW<IL T OO HOHLIO LU W <X v -
d MO TZOW ke (NATOLO D oV e, O™ AL O T Wty = 22l
OQU ZHADEIOZD = e« LZ WU L &« NLO X - CeD 3 O
WO o » LIZ0OULYLYOLIOTLOLXIDO0O We O Zh'<ge s~(N<
00 O WG L LI CU T D ClID Zu0 T agSuOca oy

T eZMUrCuriOa<i_g o L ITEMITO W b &P e o000 eldud Wbl
GUOHHlL U WA CQU BT Y TUL ZTOLE IR E-Z~TH—a W
DONNLOUL U e 4O<TOTT I LD IO T Wi eI DT k=N
< e OZO0OZTTUL U AT e 4T 4N MNZUMHNTTHUNODO-WZ
CYu. L skt opqg «O oD - L 2l - TN CDEZ 20 « DN IC

|

aMOCL XiLrtt LZITL ZUW -0 --CZu.Zu <D T ey QLI ecT ()
U. b= OO0 CWOHHHORO HO MO UT¥ X 0L FXCZ0 o' o
OrXZ v U v J T ox el IOZ e eI e (D] el
DUIOZUL ZL ZUZTYZAZTU T LY RN TZ Wb L 00 DY ZZTZ0
WD T sy, L rd e U T) <UD) T i HO T 2 o OO
OIQ ~ONONZ2NWNT AT ke b= b db— OZYNUW T T~ 000 a0 N0
WOITUD D ¢D oD ok = OZCZWY (N ZXIDHYIDE-ITZUL DV, 4
H e OOoOL CLOLOULOZT AT et WA HHZ bt ZOT Y AT LT Lfle (D0 LT
ZUZ O0QOUCOQUCOEIHLHIT I NHUNMHHN_JONNET o0 b OZ0) 0. 3
o e« - - - -~ - oY oY e - - el ol e e ncT e (N e e
[BN I o P-aanl-dmbr-danbiamis Aol R alit N Tk et dml. daltdal Sy ol T ml Sy m Ty Nmn] adomb-d mb-d
ZWZ X ZHHZHZHZ N ZW 20 T L L Z W Z I ZHZ 22020 THZ 0O
LA < TNANTN<L LT T <l 2l el el (OICXIWT TS I
FUF T E DDA D Db b O 4N UNF NI TR D+ VT L+
L OLOLOL. QU QLU T M0 W -l Ol <l Tl «The, Yol Loy
QZCTZoOCCOLOUOZIIOLOC L GTOMONONCOCETOLCLOOOUnON
L -~ [” L - - ”" Ll - - - - - L - ” L o] o -
A Z b Z e i A T A T A T Z b D LT T - Z 2 O CZ 0220 Z0ZC 2
f €T e <L <T <f T UL <I <L € < <T L < <L T T L < < & LT <L <L pAT b <L b4 T, d T bd <Y b4 <L
X4 T H+LH4 L+ T+ T+ T +T 4T > T+ ThdT T+ LT H+TAT+T+Z+T+2Z 4+
CLOLOL CLOQLEOLOULOLCUL CL OLOLOLOLWDL DLW DILDL. 2
hfel el dJel el dul Jol del el el Ll dolysl JolYelldel Jel Jol del del Je]
L] L] _,,. - L4 ” *' . - L 3 - » ., L * L 4 » L] * *
eZ o2 0 «Z 02 e 0 Z w7 07 €7 o2 0 Z ¢Z ¢ Z o Z o Z o Z o Z o Z o Z
D] b ot b @bt fhd Obd by 0k b obd G b BFd 2D D D 6D D) O
b= <L €L b <L b <Y o <Y o <L b <X b €2 b <L T b L e € e € e € b e b e b e et e e e
DIDIDTDIDIDIDLDLUDIEDL I STIDXDL DI DD ZIDZDZDIDZ
QO0VAICACOCOLONAAOAOCLUALACLOAOAQATADN D0 DO DAD
Z ot e Tt st T e e T vt 7wt D et e T et LT et 2t D T et (7 e e T it T e T att
I.lWIIIIwIIIIIIJIIIIIII
! ! i W

' -
m | z
w ! z x
i | - _ < O
! , w : 2 4
M | | - -
H <« . Li. o~
' -~ =z ! o O !
1 (] [T [N - <7
1 - | ' [T ~ e
. P o~ o~ e Z A4 ZAZO _
T T oW lLles < g WXILE
< W O I OE X o eY e ,
- ¥ a o O e mleru .
L=~0 T OFY T L ao0oac ;
(@Yo - T e « Ot |
e e L e WD '

BrdO O Y ¢ OZW, JeT Za 2
ZXT Lol - aZT<a0 wonl
L. I JNCH 2= THI007(NY
O eIl ZIIO e e e
ALLCOCHITWCLTU ZTOwilea o
OO «OZTY X +-COCOC
el O en L ey <IN z =z
WL OVYOyrowZocCoo «C iy Il
~ACOZ T Ol & e U T Y
P OlZas w— T u (Y Ol el b O T T

PERPSON)
PERSON)

Ll

1OT LR ~ODZHLOZOT O s e L

DU SO UL eI) b e ert Ol o -~
A SOy O S0 L DTS (TN
P el ey OO T SWAILIITNE O o~ e Y .~ - O
I OQAW L WY L T IO b «2 0 200 W Wwou w
~ L G IO U e Z U D20 e eOf Tl L O O - O e~ O
d HUWST e Ol <L CL YO0 TOT T~ ' W L
¢ TOoTCLE eNCOCXULOIICD OROFL V- © Z X
(e LN B STUE SR N T N - wy o<l «DOl!) Oz bt e
U eTWTO OOCLCHOXOKOWOLOTT T m™ < W C v Ol
e« > e IOZOZ ZOZT ZUFRIUZ I ZOZ T~ O ~.d DO
> OOILN<T <Cilui<T CcAS LT AT <Th-<L T Zaalh QU0 eIt b Ou O

Claef JEL bl 4 Tt Db dD+<I+TULOIOC bt OTm (OC &
0.y o oL TU L OL-TUHLILCLY U U Y &« e ZZ 1T & (L o oFul
YO TCOOCOCIRCONCEOL OTOOOCCUOXEINYO FWOkt- ~CZZZ4L, T
AT LT e e e 0w g e e e el W TDODZTZO k4T
Dt s IL ZTOZOZOZOZOZOTOZOZOCTIIIT o090l W LCNNEO
Hedb>4+ 1D0Z0Z0Z0CTICZO0OZ0Z0Z0 T b=k Z0L DX IDDON
T3l QU 7 AT HT AL bt AT A T AT A I AT T T OO O eIt T OO XM
QOOMNCE bt b bbb bbb b b e e L TS OO0 CTOOE -
Y RN R A TR &I TR L TR S ITW S TN AT TR &TTIR S T THEE PP SRS NTR I NI N b I A
Y «Z e OuIDWONIOIGOIO IO NI LIOW YU Ve Otub-U L et 220 1)
ZOOZOTZVM VT o N N W) CaoprncCIToZTCO0ONC T
L ALK ZAZ AT ZHZXZYZXYZO™ T T o« O Ul U e
bt s e + LI OLUIOIOUL SWOIIOWOW O DU ==L 2 DY =0 DU O
WO L b b b e e b b b b e b e bt) e SO O At I I 5D Y
COUICIUOZ 2 Zh Zk=Z i S Z e Z - Z <L LI NI D O« O I N
Fel)) OO RO OO OO HOOT o X o3 I 1 ¢ «T o
Zoowzezr W oL W L oW Wow W b b ot W W WL
OZUOUWIOr Wi W= (e e U= (N = U e Ul O e Qe Qb O = O O - O 4 O
(i S od el I VRN 4TI ot Ve S VRN SQ NN 423 T Y o - ENEa 4 DY ¢ P« FINERNY VRGN VSO ¢ I VIR VIR § W U

Z+ - Z e Gl i i b U o e L L e Wl W Wl e e e e e
oo PN T4 Yo TS T = R TS T | S TR 1S TS 5000 0 D U YOG S5 DU N0 JNS [JUNF DU S NP S0 DO |
S e Ll o et T T Zwe v F e ot e e Y it < o T T oL W T e T 5]
L] o) e wpd b bt @kt @b St 0bd b+ ot 2 o1 oL e o1 o1 eI eI
€z o(Y e(Y « . . . - ® * ° ° . . -

O oL tli] @b Bpm Gh— @fw Pl Chm Op— G Gl Qb G A= Ol Sl Bhm Gk @
B e b e o e o L e L B L b L b L b i e bt e b e b U b b b L e b b e L e L e L
DZIDZTODTDOLIDLTWIDWUDL SWDLIDW DL DLWDIUDWDW T DD W
0D QA 0. 0 IO 0 0 J0 0 L0020 10 38 W0 30 J0 G Lin)
5wt ZZ s v T v T v T St STt et X et T e T e T A L et T it vt et et e T e T
L B T e T T e T B e B B e B R = i B T U W o B o B S

_]
1 i i

C-24

{ w P
,_ n L
: - O
! | Lo
j (- . ~ ~ O o X
! AL | w uw . <
| © i o 2o T O -t
]
] ' <t -~
» - O e : T X 40X Zu
! b W ! @ - O
w O - C . o 2
T e~ ' — e~ O el =
‘ o Db - ZuZu ZuO w<
: w DOow I HOHOK IO)
h g < T (o0} Ly = X -~ -~
| e (T .)T\'CI T ZTT IO T O W
o -~ CLOLOLOD A~ O LTSI L3 DHC O
u. L LOFT-S0 C Z TATAOCZem_) eI
~ O O XL Z bm b b ke MY 2N
(T ZEOZHKO mOZ QI HZ O sl W
oo O CUIDSCUY O A WE R R @Y =T I
=z T TN eI TNl (PO s & Ty s ZERAT -
¥ L e b OOk U RYZIXILI I C SO0 Tl
W el e o<l e O el DTS Ll Jbm I I DFCLO

= L UL ZOTC OODZT ST 3T Cllre v g . o
o OO TIRL T OZaob o4 b~ =20 NEZHCWWoGUnY
LT W U LZCEMTZ «O0 My ZOZal -4l Z el Ul T
nNo ey e NI M-I 20 270 =TT e 8 T T T e
e OZ GNA‘O\AA OO0 DO D - Oy o~ ZU.I0 b O e
C T Z UL C YT OOI W= LD YU TZC— 0, OO0 <l
Wty 0 el b4 O fmaC_D ST G W e T T T SN NET NI
P = LU A ZC 2R 232700 OO T L dbm 4 D2 oL & &
SS,SUF Tl I L Tu S =l o~ b OZ20N ZEXTD—L0uL Uy e
HD TN’ OO TN eI U DOZTAZWHHZ Ca<t OZC2y W=
nnrT S DL DM OEZT «aCZT W emi T RN OQ0 okt ey T o T <
- N alD ebd el el ocT oD o0 oM S« - N e . ol YU Y P
WO 27 U i b o W ST Su e L YU ML L Y 20 O D0 ot
QuIC<IO ~OHOMOCCOIOOCHOACWOWOTCLONOI U0 NW X
T_QELN,V\N\)\SHiy,T Dby = -
Lol b b Ol <t =Tl qH:eAqrrO\CnC(E ur-LLC i Zu Dol Ju Lo’
ST e 0 Y Y 0 3 e O I I S O I OIO O W
AN LTI RZANTIECTOIL0aaOUTINadOCaZ QUL AU «I « IT
L e T o X ¢4 T 7 Y o« eI X I o7 «1° «I &« | T Sy
b, W W | FUR ¥ W EJNR VR § SO S 1Y L L U U W wWEFCROuWgIWoO
b Qb O b G e Obe (Do e O G C Qe OO C QOO T X
Lo Louw W oW Lo ol wou b b LW oM e
Lot Tl Lot Lo e ot e Lot L e ol B il g e Ll i g gD D,
A bt ded e b Nl deddd 0T ded D A Y N OO
e Y wor €Y ot] AL wh L Wt e v] (A T] WA e €L W T S I T e T T e
oI oL e s o2 XL oL oL oT, e oI 24X o7 oL aT e & & o) st
e | o . . - P . . s e . . e = . . She O~ @ly) o'y
Ohue! Bl b Wb Ploe Ghm Bhue G Of b Pr Sl Sl S O p— ¢ oL o (N
o U e Wb U e L b= L b L b= Ll b L e b b L b L Pl = W e b W e (O (B e (D)
DWDWDWIDUWDuIDWIDWDIW DI DWW DWIW WD DU DD DD
[S TS To WU ' WP 6 VAU | o VPR | NG ' WS ' WY ' QY T RN J RS Y TP 1 & WO S RS L0 SO [O Yo B 0 6 M0 S e Vo Y W) |
D e L T e L s T e T vt 2 vt T vt T et Tt L et 27 vt 2 v T e vt ot T et T
IWIIII‘IIII_IIIIAIT.IIVIII
W i i |

s WOMAN)

b
0
L
sADULTY

H -_—
| o]
_ . Lt
-~] [
- m | o
= | -~ =
7Y —~ o - g o~
o O A . < Z X el
<t zZ w o= bl 4
Q - = D -— -~) Coudex
- ——b ¥ & N = Z 7 o Wy
Z w8 Y Y O e~ O T s YU
g T OTZD N I W N Z N eamZ e
T ol LD UsemTaml o O & b JOFCT emOm
.o e WOZO a3 W ZTNZa Il b
O 0 g e CZDWDza ¥ A <EKIT e JJ-_J
Z X O ke obd n D sl [T TR .4 e T g sl |
Dl e O eTimoOr - 3T TEAZAL DWI TGO

M Z =Ll S I S0 KD »emad (O oL & n ek ey} oI
NI Z T ZYVDIHNHTI YV LN N T ZTTNT oS 7T TUT -
DT O L T T/ TR OO IO 0 oD
T eXTOXAIOLOZY «CWUIMNIWXZono<Ille g
a2 oD oL & o) o) ¢ WL oY &0 Lo <TU LT Sl
LZUWEL ALl o« el U el !l & 3 LI Z g I
QIO rOOCOZOMNOAOFODCAOZFQ & Dk E1+—(3
o o L W o e IZ oZ *7 67 e em
=) b W e <L G b b e b poe O e b e ZZ b ST A T b T O
WD WS T U T w0 o000 O coc oW
NITNITULNOUVLNOUQUIT_NACNEOEI DIV DIETIY I I
(T oD o o 3 o o el o o0 eNLNLLNL LWL WY
DL2L.DUDL 220D 2w D DWW Dkt o - = - X
VI ONnNoOnCrioNnONCUIC NOUNOO T Che k= C Q- <
s N G W o we et N LT e L e L et T e T s
o~ @F~ O~ Bk~ Ch~ Cb~ Gb~ Gb- @b~ Opw S+d @b o4 Obd @b »
ol ol oyt ol ol el wiu: ely] eli! ot €O 0O o C e «O o
e 2U) () o) o) el el o sl &) 4T eTH T ™)) e
b L0 O e €0 e (e G = O b= C7 o OO0 b= 2 e ED — D b= (N = D) pem D = U e e
DODDDDODDIDDDDIDIDITDIDDIDDDID-IHDI-I-INDID
AN VIQUVCVNCWVILNANACAVG LA Qa0 OO0 D0 a0
Z v T v T Z o L T e T P 2P e T s vt e T Tt T e X T
L I B T e e B R e e e T T A e T

! . ; _

LR]

IN}JUTO » e

INPUT e oee

ROUTINE #ANSWER#
ANSHWERZ

E
?

T 70
ROUT

PUT TO TH
HE POUTINE

NS
7

INPUT. < es

26

e & »e

INPUT e e o (CHAIN OF+AND,$,%,5)

INPUT 60 ee
INPUT e e es
INPUT e e ne
NPUT

L

B

|
§
i
t
i

co (]
P - e b P
= o cc
o b e O (b e [PPN
v Ol wWCcoo
U, Ok b0 0O -~ it P tow b
W L gt el oo
b Com b QN b e b= o [Setgian] sng o |
2 oIl O O -~ «<rldil

HZTDOWHIT T Xm0 - O3 He
OO <t o o<l LI ks WO
NZEFLLZZOHRO0OC L 000 o
N e +<IOO » o UL OO0 <Tgd<g

BOYERIC) (INVERSE OF 33,%) ($,CHILD43$)IF,TREE, 3))

LU Lo w~ p o T

e 0O +C »YOICOCH L TIOIQ Ort<TY & & & -

" o« L LLIZ - EZZ L ol d b =
CLULUDC I IAX VI Y ¢ ¢ d<Ttd VY &~ OCCO lm™
Lo, W Ol VI e lX o~

X OHOFLOANII «000 «& X QOO0 0 ko
N ZZNU D=L Tt » DUNLEZ O eg
ZU) rdb AN LT TIO0Q ¢ O CT L OITTW Y ¥
LAL DN e o3 LZTZ & o0 SO0 WO

MOy & «LL L * e« DOHMHL O L [l L 8 z
WD Tl OOouL LT rxowon Xe Fu 0. i<t
NI OO COrIN A == L (D e e 4] e

Ul o<t & =z HONZ XY « bbbl I
T U ZTZCTILCEZIMNLILLCOL =LY OO0 OMZ

0 OCel J I N DO Oyl O
oz A S INZTOO e<INY YO b () 4
N =z LA T SR OY S R ol TR VS D S ¥ B
(=4 GIZTZH=ZZLL UL O o) e DT TW~0Ou
T - O bt b HHOOCOC W «u PO OT
Zur [$3ad TONL O T Ot +l, 7

S Z 0 WY T2 ZZ0 O O Z U0 - XY
CAOT WX T T 0 W Qe I2Z ;e
eI b= b b T T AU AN O)27 ZZ 7010

BUNIDZUVNOOR DD DIWITOSIT LT oS (D=
eI O A Y e <TOCOOQUUIHHD Z XY ZODZ
ACOOUVNNMOL TOCOWLZZIC U200 UHONE
LB N Y LAY I A R R L T A Y Y &
COMCCOOOOQOCDT IO I aOlcC oo™
22 T TZ ZEI D AT I EZZEEZWnN
LT A T e o < LT Tl «f <L ef f <f «F Y L < rL Tl b
L TR A S s 2 i) L + > et D
pn.wr.. [VU VU T T VI SR TOR UL

+
Wil bt el by Lu
TOCOoO OO OCO »
ZZ

4

Lol
CO0COOCQTCOOCO
" ' ! .

T2 ZEZIZITZTTE 2T TR ZZZZTZZ e
Bt b bt g bomd 4 b e b i b e ek o b g b bt g B bt b bt e
<L L LT <L T F F <L <T T <f <] L <L <L <T f ThL AL T T T eI D
Y rrI I I I IrITY I T T I L ITIITITICIA
(AI&IGIAIGIATAISISIDIGIAISTAISISISIGEP SISIA IS IR IS TS)

Nt st St Dt Nt " nt® st st St St N Ny g s W s Wt Ny st Pt Vst o’ gt Wt o

i i M

IS

FROMyPLANT,ANIMAL)

{DISJOINT

IS UNKNOWN.

OR FALSEHOOD 0OF (B0Y.ERICH

THE TRUTH

i
-
-
PN e
i oy
| —u.
id -~)
[7a 2N e Lt

[s g TH QL. OuZ
W~ O Ors
T U~ DO
NUICTL O 2"
ZUvy OWwIZHZWn
< Q7Z Y i
el e o
WL X Nt o
NZDHL i, e
UIHOXEZNLOD
I e o e O
U e Ol = .
OO Ou, .y)
v o O <L
< OOV QX
TNZZWZ b it
O AL bt ST O
~LIN A 2T
>IN LY
CZ O DT Har My
A-OITT A D
W s e e
PR T TR TR TR TR T TR T
OCOOO0OCOQ
| i
Ll tau it il
[ValvalValvaliaIVelvalValte]
MY Y NIY v oY
Lo WL g e f
SIS e N TS T
- i i
bt et e et e bt et g
f\:}\(l\(l\(l\i
’

| w

»
e~
[s 78
WO e
X = C(S
nweaa wez
Z I rmdd
T Z 0
T IO A
Lit) »rnan
[C2R0 S onl s 328 1
WD duZu
I a0
[NS
ITocoo
O e y.d
«7 8.5 et bd
TLuLOIITIT
(el ATMI &)
- L » s o
¢l Wil
e - CC
CIZ
wd L et e e
= Cldtute
T “HN NN
[ITIR VST i ool)]
LD
A _AONIN

Ton? Wl gt et oe et

3)

($,TREE,

THERE ARE NO ANSHWERS TO

C-28

PROGRAM 4

Here again, use of the associative memory is made
to store information obtained through the parsing of
English sentences into facts encoded as sentences of the
Set Theoretic Language. The particular example given
consists of sentences describing relationships in a part-
icular family. As each sentence is broken down into
STL .form, the information is stored in the associative
memory just as 1f the set of n-tuples formed had been input
to the ASSERT program,

The STRAN rule set involved in this program only
recognizes a few structural English words and hasn't the
need to know the syntactic categories of all the words in
a sentence. The result is that sentences can be parsed
which contain words unknown to the parser and thus many
diverse facts written in English can be stored in the
associative memory without having to write STL n-tuples
for any of them,

The parser recognizes proper names as those words
having a preceeding asterisk. Each sentence is printed
out with the resulting n-tuples following. Once an n—-tuple
has been stored, it is not printed out if encountered a-

gain,

RTIGIN READING PULES.

-
s I ™~ - . ‘
[ea] -~ [¥8] -9 . -
. = . I g - W ; (o]
= e~ e oD J : ¥ -~
[« P . o _JUlem ¥ D - L
uj D.d ' MDOAO e 0O ; - -
[V2R [Sal el L' 2Du o eid : ~ [+
v u o UK o S I o J " <Y
et T e DA D b T3 - - pd
‘ N rEQ e~ - —~ o - o
vy eiin L - T S S - W a. o
wr ! NN O b0 W N a ju] -l
[P nd - TN E - N > Z o <r
- | -~ > N e el -0 W [N -~
i M0 b= 1 e~ PN (YN (73] o o L - N
; ~NZ [&] .o Mo M o o e N = o w
.« free 4 <t O RAOA~H D 0VY o R wn +
> D - L Al Nam N i e W - 3
v o+ -t ™ el e O O™ ~y O 0 ~
o ! oz * o) e LN e 2N ~+ o o
= [o G AT N e HNY W [V =
[TE ~ 4+ P, RN VS T PE A (2 Whaw BENN 75 TR o Shaw | - - L N~
R HOI et 3 N e W D b O oV Mo
! e LIS D AR N WD + O 10p] N«
T8 #iy ama 0 LTS 7o 20 N+ T N MR L H e
> () DHE> e UNHNM D AN L P S
[‘ izl H e ™ DAY = SN Haei oW -0 o<
b= N s W KRYON N I ns b~
< il B Ut ~ NIl N NHR O e - S DN
-t CZ ONS Z N0 N Ne e N COs
W ! XUl oD O EMNYT O™ ONW T T v LN
o LN A~ H N DT> O +ONH NS [N
v el ™ br R ES D O D WO HH +D
W TN ONMHN O M e D D 0 el NI ~* Heh
<1 b Mem+ ®OZ S+l N VO O L MO -~ N ~NH
! V) AdHH s DRI o N e OO P+ D
Z | P SECA T 2~ TR IS0+ AT P SITREECN BN Vo (NERP . §~d @]
bt MNARDRED R WIE D R 40 A BN NN S
| $hs md AN N WA e HI] U OO HR 2R NAWH
(720 Tl .2 0, Dl W osK 0 UM+ T e HH
- HOAMNITH maZHIZN > ZN A ONHZ0N sy o
4 I m~N e U S O RN S e D s DN oML N TSI 4
D b INONL AL NS O DN NOZ T D eI D0
N1 e~ DONIZH> D D r Qe ZDAM N b 0NN+ v 6+
Wi =00 N ek NTODODZ WHHHITNARH | e NN L+
0 N s 0 NOOHOD D NNEFEDUNNUWHAN -~ - AN
WO DNOCT 4> e lINHD OUORR~AO0 NN NNMNEY N IO
N e eQEATTLUHAN NN T IZD \DANHOF+ N> HND
W a0 +lnend HENEEH HHHOHR A NN H N a it
QO (s M- HA B ENTDINN NI hH+~HNH A 0 N O
O LN e ZN W NWMDE D e Na NN N F NI HOA O Ok A
ke Xt UIOYY 0 QAT DM D> HE IR () B W A
w ‘C)\-r+(/l+l—"ﬂ D DDA C0 B MIA & ZZNC HNTDIZN AN
»ﬁvw W N Hbwr AN Hom HUTH DR N 63 NS DL
e U+ Fnm HA NOSANNHBHNIZEOD+D L H 4 5N T - +
Ul | =K HA 4 Satsl B+ AN HLUEZEHBURHEHENA DHRNZH +
w ;za ok A HE e “J-wﬂ-t- S h ket FNNO NN RO
=% ‘H*{H‘hﬁ B HTH HHUHONHURIVUNAOE LN A DN B
<T 'LD+ b+ AL <7 Wl A ll4 e NUWIR] O + H NN D= NN~
0 LIAEEAR N T T IR N T 458U ONN Y NNY 4 N\ ODHLID
ON S SN Z NS TNT N A Z 7 INQ HRS0 H+O8allo On
[v4 ‘,w-»»—b——wo-» Q% ok e ORI R QNN AR SN W2
(@] ,t:‘:)':)“ﬁ()?wmﬂ HHMNOAHCTHHITH6A4TITIAY) THHEANOWD
W IR0 AT HiENNANN NSNS NNTOINT W a0
‘UJZ'/ T L NENAA OO >R HA QA DDA NN HRNDINNZDN
%] 10.’.'#-‘!-4?—40-'2(/‘:(1.1 A SDIZZIoZZEZZZwZ N NDHO NNV WSS
Ul s e e 22 i me IS) e et e e A I e e e (S0 Q0 DO
e T U eI e e M N 0% NSO TINO S I O

\L/ (/“9-4'3(""—'1,1,11-—*'/)?’ SJu W ws i go naan '-‘VV"""-‘_L_'>Z
KOO L DO I DD dodo = ™ S) . IDT WL D NI D b~

T -l WMDA LA DD oD ’D’DW'”QO_/Q’L—P-F-I»—}—F—& O~
on o OECMC YA QO MO SO TTY A A NN, <

¥ Vquuﬂ.'vvvw-«vw_wvwwuvvwvv‘wu*vvwsawuw\av
‘....'O0.000QQG'.'1.'.'...'(0."..0".'..
RIS A L AL L L L A L A A B L 4
thtncooauoo.ooovqccuooo.o’togoo'oc..o.
L R T s Ll el e el e o R e e e ey e e e o o e e o e
DTHMIDTDDDDDDIDIDDIDIDDDIDIDIDIDDDIDDNDDDISDIDIDIDDD
cooneanaCcoaCcOAnNaANTa0A0002AQAAZ 0000
PRZLZRLZZZ LT Z 2L 2T ZIT T2 I ZTTZZ 22T ZZZ X
L] Q—-TH —4}-’HHHHV“'HF*HHP—4.ﬁHHHHHHHHHﬂHHHHHHHHHHHH

| i

‘ \ | |

30

- .

O !
Py L |
(e PO “~ »
[s & [IPEN 1 -
M aWs) e ' v
- -2 -0 ' 73]
L P T ™D T »
PR -8 P Rt ol o ” [
; S [AN | =
O W - C <t ! [T
I = P et L - -~
[54 o~ [l — ~
— TR TR N W ¢ b +
[[%) € WP R (] - L
I SN PR N e TN N o o =
. T Coam m RRLA R HAD ¥ + s <L
PP O Nl ®f o b oy
| =M. TP ! 0 + W0
A AR T IO b2l O oe)
[PO o G N L e e P + O . |
RN TYANG oo CL AL o= s b b —~Z Nz o -
-~ LD Wk T BIETOIWHOR AN +uj]
o [[et V2R TOE S . S YU &+~ =z
L MO e NN S 0 TR T el e~ L S ¢ 73]
J FZHNL M rMNatL) T M MW -
5 T m D+ F L RHT Qb e o Z c
o ! L e R £ s S T N -0 [oVA I S e =
-~ I S - a PN] e T B EW — + o~ L
~ + F) e e L €T T QR D [t} N0 -~
+ I DTN OCTN P L AN Y z + 4 N ~
- M e e DO OO Gl e e wi HY O [Tq)
ul TREZOINIM = QI Mt R TS MO Hoe - ~ + (O ~
Womem | L U) san MN e H Dt [22 Mz [
Lrnem COIHON e 7T) WOI— e oot C o e oD
(2" 1 18 PUINUIMC DA HI 4+ =) =N oo N~ Q.
X N HANCUE SN L ¥ 0w [7g] [S 7} pzd
0. 0 HNEWH DT 2N T < TSV o~ Dt X @ —

[s 3 2 X TGS TR S VA R 2 N e B A T2 12 4 N OO -
DO e E N H S N OH N O N Mg ' [FaTNE o D3 3 SOV § o 3 e T |
R WO 4 B+ o DR e0\} =03 W AN A Ll ~ L
Li & s et e DTN A TN O — LA AL = R 7] b -
DUl MNP DU GO U U0 D C+u4+ b I
H T DI O ™ AN F oo Zuvsidl< oz
S N e OINZNN RO ND RN [TER SR TE I S N ad
[B0 8 AN LN R SR) A USRI N Ja T o b e DTS +
oW LTINS,) (2 i D 3 FICD 2 | QO N NADFXO
b= MO M4 e NUIH R A ZEI06 e T I M Hedn WY +
A== SNORUWNY 4 NIV NS NI\ tUlem™ NN AN
> LY e RO O iR MZM2 G~k HOOL o b
WU OSSNU D% R ZN > ND w3 D e NIV D
N OO DTN NH O lﬁTi N0 RHUNMNA~UW 2O
@ Q<L Y127 G ZNN R AN DN ANUIH dNwb~) N
e INDHEO DH K b b NS O O O NN R ADe~D
MU ZLO NN LD IO bl A NOFY N
- M SN DA N2 ZHLHOTHR -OXNE D e HHH D "~

Ui m IR H O N0 HIIN el QB O CH * e+ \NON~C+
HI N ZTNG AL D INNDA NN AT T e HH UMW ~ZH
N O b O e bR R DN NS NH O Ol H o o Nk NNl
B HILINNW WD WU D N ent ke) b GHEAGE AN DU~ H
AN ONZUIN ST N M AT W I ST NES b odoh N N
HZ O st M Y MFOD 4+ =%l Dby g ot HH N e ¢Zenws
COYO A FINND W &b W H T <O NS R 1RG4 B ~ » o+ NY o4 +
B2 HH A aO0NAZ M+ + 2NN NI RS HRHEN4WUDNR
Wbe U Cid b O DDINAAL 4 B FAHLIL O N Tk b et KT o
QT UIER 32 H N RO ZE + X0 oo + % i 28+ B HANHN R
M 3T L TN EAUT ZLUTIN M e AN U R Z AR AU 4 ok e T b A ek

St 2,2eTet 26 Q+2,248/0

N {0 LU GO N TR N B M AN DT e (AAN Y W N TNl AT W
FRY Wk R TIHANNH NI H N NN NHG Y O\ & ® e oD ONNC »
NOOD R b FeeQ NN N ONNEZ I D DN W R YT Z W
eI ZR NSRS (L de " (3=-"3NWOWA TOA N b e \NCLUWIDI DI+
O TN N NN NN N O > U e Y VTN Z G Z eSO US
Qb= T3 TATIDIIN VAL = D0 DI e e Z DN NN NN, T e
P BN MDA AL U3 D> HIs (O WU P e D e e b e b () O 44 L0V b
IO C OC OO O™ S I vt o e v JUHY sr s LW D DD DD WL v i D
7 UL, B e 1 et et et S N et (he e U e e e Uy TN SIS0 0 OCO OO X OO
UM, DO CNZE T O LU LS ST NI) QO v wer e (NN 2O
QR i L e e et ol ol o S S g Rl S VE D 1l 0 207 o S VATERI S o STl o Lo Yo UR S to et S Be el o}
STHR CIMMIEIMMMNN MMM 0 00D <INV <tz

St N 2 Nl 1t Wy S N UK Bt el St St St Nl® t? e N sttt b W N Y NG St Bt o S T N T N gt P Mt N Nt Nt

€ ® F 2 ¢ © G & A S e & C M ST E B RS O ESE G SN SET EN s D
’OQO‘QQOIOQQ!Q.Q‘W.l...i.ll“.'!'l.'ﬂn..‘
0009”10000‘6200000.O‘Q.Q.!l'n.&‘ﬂb.&ﬂt..l
TT!T!T,T-ITIT Ll e e e e e e el it sl e o X S ol ol Sl ool ol ol ol Sof ol ol S S 3 Sl ol o
DODTONISDDDDDODDDIT 2 DDDITIODIDIDDIDIDIDTIODIIDIIDD
nanooanccadsonaAnC oo oL
NU.V.N.:VN DEZEZL P 2T T LTI Z2Z2T 2T ZII I
Ped bd e lIIIIIIleIIIITiTIIIIIIIIIIIIIIIIITAIII

| _ M

£/)ENDLFOLSD)
OWN-2/)FEND)
Y FHD3,CLOSED)Y

2O LR P
T T HO <IN
(YO R] M eaZ ™
Qi Z + N\t e
Z %W O et

Neo,®3)

<Oy - *enviD

WL + M WOHOO

(£ o Ta 2 IR T - ¢ T
Y+ <D T -

OH -z + 4w

: oy, [I 2 NG PP LI, 2 S |
—_— e~ LN oA 4~

. TR | Ut e LM Hoem
e Hon TODRFHONS S +HN
M I) QDRSO+
HTZ LibienHirQ N Ik ey
ST v ST I R NOH N 4

Homrd Ol b=, DR A o & 4 W
FNUZ DT+ b AN Nt)
¢ieh w T ML OF% RO~ + %
A ONOZ e RO HHN
HHZUTE NANNN Ha D% e
eI OZN G+ +NO=HD |
HEAMULDED+B5608% DWNC
Attty OH b b+ T =t
GIAEG + UL H A SR RN D
e A DN e S RGO N
A 4 A H AN RN N
:09333+$?+l+‘k=/w
#¢¢4++$//£3£++/T~
N P N T ek U7 VT Vs T
AN N~ D= - NN N0
M e D OO D D DD vdirivtwe
Pt b~ LWL L, O v et C O D T L T (D el
I b b o (OO b e LI
OO~ e HUN Z M= o= 2 (N (N
et vt FRYO S N DO NH OO
AMNZ Z 2l OOT Z T OO0 <t
[EVIPEE S €= A URTITI 'R PRI - £ Ta'

Bt Wt St e Ut WS Nt N Tk W W T W Wt e “art gl

Jc»-oooon-a-..-J
4 & 9 # ® 0 H 9 T £E O e 0 e s
L,‘O.C..ll,.'.l!!lA
Lot el Sl sl S el ol ol el e e el e el
IODODIDDDITDDIDTINININDD
[Mo M { W s WR s W0 W oo Y A RS NE 0 Mia B # Wia T e W «
IR TR T I AT I EZZ
=t bbb et b et b b T..IIIT_IT:L,
| h _

RULES .

INTERPRETING

BEGIN

wd <L U
ws=o
[anla g
[ele)ig
sZul
x
LI G
OO
<< W
D4
[SSANRIFY]
7O
L O b=
wn

Xt
74105
—H T
DT
[82k
Z Zx
L=t
. ot
. ,(.c
oYXl =
o) .
ek =
ol J g
DD
00
Zuzz
{

HER OF *NORMAN,

OF #NORPMAN.

PN
Ot
(.

o
et
[a A TRt e o
Wm L O I o

oo =
td O O <N
T XD

(S FRYT he il '
W oo O
L) ebm <l o274~
Tl i) ™
[TR Y
<l ol

OF *ERIC.

NZZO0ZC's

— OO Y
QI .
Whi—- wll e

LR OZTOT e
EOQOZ DO
OOt D
ocalbzZoud
et e T
* -

ER OF *ALICE.

2 MAN)

= T b

iy, <
NZTOa
-t ®

L e
Zhut e
HO Y e
DO e
YD
<10 Q.
A AN, 4
% -

¥ ed
QU =
€ ot bens e b L
L A<
O aw
T D %
(N eI =
DLWIOWu O
LT O+
Ot
ZOZoru!
<< O We
VW — o
(ild WX e
O 20D .
fehelaienl
[el L]
<A Za 00
01 ot ot et o T
x.w L]

i

*NORMAN IS MARRIED TO ®MADELAINE.

IMAN)

R
E

¥*NORMAN.
D 70 *ALICE.

g
I

N s

B0Y.
RR

ey
TON IS A 3ROTHER OF *NORMAN,

¥KEVIN IS A SON CF #BAPTON.

*MERLA.
RLA)

M

=

0
)
'

IEC T
MERLA
ARTON

%
Y e
Tl e
TED
< -
oz
= o
ol
Zade
Ct.of
- O
X<t
< 37
[soh ok

CHILD.

*HE IS A

SON OF ®NOZMAN.

T
A

QZ% Zb=
NG et
Il >
<L eI Uil
S A
NOZe O
O "~
[c 4TV
Z LIO »
00 L]
>TCE
WoNoOD
YZa oo
Ve s N v 27
i (=)
|

GCOMES FROM *MANDRES.

*MADELAINE

¥ FRANCE.

-~ o
o win
o
T o
a o
e =lU
[ud L B (ol a'd
DD
b OO T
e I =
OT T
QI s
<} O oo
- e e
ulzZ o
AT -
<O
L 2T 2
T o e 7
L4 -t

. -
W em (/) o
(@R FTIIN)

VRV 0% -0
C'Law
DOC »
TN Z
<r Q k-
T et st

*

* R
M)
NF 4 *MANDRES)

ROM
FRJ
LAI

_F
S
BE

<t

E.'
M
M

T

0
G
’

O e
= m
L O ww
ZOU. e~
18 .
<I W e
S 1aa) YRR
[V81a gonll o
ANy oOD
«X >0
I e T
% -4

!

34

PROGRAM 5

A final example of the use of the associative memory
is presented here. Using the information stored previous-
ly by programs (3) and (4), program (5) attempts to make
deductions leading to the production of n-tuples that are
relevant to the overall model of family relationships but
have not been introduced previously. The reader should
examine the information presented in programs (3) and (4)
before proceeding to this example. The program given here
is split into sections, each dealing with a particular
primitive (a discussion of primitives can be found in
section 1.3.4.1) which has proven useful in defining the
characteristics of other relations. Those presented here
are CHAIN CF&AND, INVERSE OF ,UNION OF&AND,LEFT HALF OF,
RIGHT HALF OF, RIGHT INTERSECTION OF&AND and MINISET QF&AND.
By using previously stored information it is shown that
with the proper sequence of FIND and ACCESS operations,
new information (in the form of n-tuples) which is rele-~
vant to the area of interest can easily be deduced.

Thus we have the idea whereby the inexperienced
computer user can input simple command to COMS for per-
forming certain desired computer operations. Using this
information (the commands) COMS could be set up to properly
deduce the correct instructions needed to accomplish the

required tasks. For example, if the user was in doubt as

to what partiular commands were available to carry out his
desired tasks, instructions to COMS could result in the
output of such information. As a second example, instruc-
tions for the generation of calls to the Fortran library
could be made available so the user need not be concerned
about the actual programming statements involved.
A important point to note about program (5) is

that one must be careful in programming a STRAN rule set
to perform deductions. Enough information may be present

to allow the eventual deduction of incorrect information.

IN READING RULES,

i ! [es}
i i N
- - ! (P52
3 fan - : L .
— = [: ~4 ~
tad vz - =z o
|- . u o —t =
ned N - =z o ul
iy b= T o« AN -~ -
o -~ z - - AN -t
o " o o i + =
[N -~ - z X . -
™ ., AN ul - - = .
- + H - o =z -~
I L] -~ . i -y Laa] - -
z W ~tZ e~ T ~ o Hoo
- ~0) O el “ - Z
X oy D b T . w [
I TW | & D . zZ W =
(&) > €D N -t — -~ e~
f oz s NN << - [Vl =T
—_~l o4y U MW e T o . ZZ~H
- {19}) emet -~ ald ' e~ 0 o
- Tru. [a X oS D Lt Il w EZZH
Wity Lo ~t o et T I z -~ Ul
V) 4 Nd e LW g =1 N el
D 1! KD o+ + I o (24 HZO+
Z ~ 4 - MY -y L Lol —~
— HD H o el M M T Hobe i -
rTO -0 0 HHRW T IO ro zZ + X H
-z ++ —Z o+ uz O [b DO+
Pee bt & (D L2 S I g e o%x @ oK + LNV
T O Z - L R P ad - nem HOCH 4+
D + 4 «D H M N2 NN NN ol o $
Q') ha S o HO - oD o HEE | HH HNHH -
ol «D ' & bl ~l S - I T
L. >< O o cowl H < HE L WHH IO
I <+ L) 4+ () > + Lt » -+ & 4+ + D4
< ™ X HH el MR I N HOWH
ol N + i) L N TII TR VO sk e % el
®bAi— LR S LA 20 T X HH W +H Hwo)
weD - +2 O, *D - .- S s
[L] Hp~ *O DD "o .z HH AN DD
DL +Z 1 +% NNO -+ + < + + + 4+
QA -~ O A |} St e ¥ 4 i hak 4 3 O~
[TEES -+ ¥ [N] + + L 4+ ~— g
QI b2 S L I 5 HHN\ R D HO HHY LN
Wi - HE NN v+ -~ L e H o b
P) BN by 4 z H NHND
€0 wet Wk | -t DDA T WA HO ' W e IO

P o AN D OCHA e e AN~ DZD%
DOd vt Mimt Od & % B vl Al bt O<IO™
WHRH T AT DO %k H Sml IDC TIDOOZDHT-% +3%
AZOZOACOL A~ AN D e A A C AL O OOt N WL\ +
LAIDZUETIER OCEAZO++ O L O0% Nligvde 0200 3M
< o<T & 0() 2N T o, IZOMULT e 12 eND e o NH ard
Gl NGO DO WILLMON d L+ + U MU JTUIIMN SO S

NUTLT oL 4+ a4+l *HRT oL+ ¢T +-227 4= obliInNl

HOMIIF OO IO ITONL UL TAIL O edZ M D H OO
el OXTW4LIDOEN Z0CQC T ANEIOSNHIMNCYIZINH+S
SV.N\?\:C’ALVI\ISNU eI (T (N N
ENI-I/D NN Z O N O bkl ™ F O™ b e ™ N N L)
LIA33)$SI?3:I/EE€ [R R NN [s nf i s ToR W T TS Y PR T 2 of Vg
D eT A RN FFHNFNZHMUNI SN NN RN N RN KM
Y ZZEONIEALOIN 11N L FANI DD & MR OB W N T O IN A NN M D)

M bkt b Tt b FHONUDDNF 4 Nt F + U bt b bt + i)
Z NN IO M s 4 N AN I HOAI M = AN F MO N
Oﬂl///f!:///lifﬁF///F///////////+//
e O O OID 0 e e O AL NN N o OO A O ANI HE N N IS S et ()
Pl T T <I AN~ LU Al T LU <+l TU < 4 o
CU~+ 4+ 4N+ + I bl +++lL+rrdr+ b+ ++UI+ W
UCN\!\I\(((‘Q et W et L7 b B R et o et] S et e e’ St 2t N Nt Tt e gt ([el N €)
O DA M IO LA N MO~ s e T I M T HONI M e A O M PO N e D
WOST I TI > >N I I I I IX I I Z 22222220
QU OO OT A Z 2 27 2 W U L et b b e bt b bt et b i)

OOYYIYE-HoO o DITDIDD J Jd 1YY XM/ =30

[9 # O 8 & ¢ 2 € R P 8 s B P EC O g YR e NE P N N
P N A I A B BN S B SR SN A S S A R A
BRI ST S I SR BRI B R T R B IR K I I B B IR B R I)
S T ol e e S O e Y ot = Sy W S Sy Wy Sy Sy W W
poadbnoiAaAdiAadcacanaaranaisniascaacasana
ZZ22XTIT LT ZT R ZTZZILEIZTT 2T T2
TLIIIIIIIITL.T..IIIIIIIIIIIIIIIIIIIIIIIII
|

| | | |

RPRETING RULES .

&
£

BECGIN INT

!
m
o~
18] o
Z
[
<<
2= ¢
Wwiod
[ong TR}
<O
~em n el CO~030 I PN
_ 3 emph T U M)\JD [an] o] D\)
-~ el T e TZ2<TI (D Tom Y- _em ~amemAZ
el FeibimcdZ T rml HEF ZAZTOZWdea=HD ZEWETO
Zom T Wb JIC 2T et . od ¢ D0 ZITLT LTSN S~<t 4 U7
CChr LA ZO b= S S o WO W S =N O HZE T DY
0T .} eI #A K DSXUNIZ eNNOEY R ODH «IT<AOITS eli! s¥EI
ZOIA O _ 4O s<IY LT AW T Ol oI TIOTFTCIT IO «I0T W
bt o) L e TV IT A IS ZRITOOIMZ) e e el e e oee el (D
T 2O Y eaT it T3)T V4> o2 bdT b o o el b o b pons o bt et T (Y
Tt e Y 4L 00T e oot AT ZU M & eI Z T T 2O ZTEZ _JAYZZ oY
OTZH-HUHL U T &5 1O M0 NI Y TIII DT Vg DO
O<TTITHDIOOD W k47 4 WL} D.PJL_,ENLLLAHLLLIsﬁ tdex g Z3
LEYOLOZIIE OO »«CLWr-YOIAC AT A A Su. I led -
O e oo oere LITFLIOLW JUi<T & & s 0 o0 oo 5 o & ¢ »w O
DEIFIITTITAINOHEOI HULCITIZITITEITIIETIIINE vow
WOCOLOOOCO ot < ¥ WXO% ¥ ¥ ODOODOCCOOOOOCLIDH
A OO MUY D e el s e e e YUY YN JT
UFL\FFFFFFN L # CVUFFOOOFFFFFFFFFFFFFU -~
o g -t Z OO ,1OROOTv!r! u u.
T.T.rlT b b e e W02 : [l ad il o ool ol S g Sl S o [@16)
OWZZZZZZZZK TXOILOLIILWLAOODZZZZZZZZZZZ2Z2220
Z e b U L e OOV WA S e R e R S b e e e T e
H-OCOCOOOUOT LI TW OOV X O OOoO0D COQOOCOC —wl
eI TITYTY T M T AL 4T W LAY Y Y YT Y TITIT T YD T WD)
DN NNNTNWQO T ZTOAX D> o' rnnnnnumunnivinmoIOem
Y btk b e e 4 O T LU 2 Y OO 2 L € b b bt et et 4 bt 4 et e e (O T DD
WO QCCOOCUL Z DO ODUIHS OO0 O00QC QOO O WUnm
T et St N AT St Nt o W et T Wl P gt Wyt 2 N T el Dt W i St Wl A W gt Ngst W A g et Yot w3 s owtt
W | W] w
! N __ * |

[

ELAINE)

RIEDY

L
£
oF)
PENT OF)
)

IFD
)

|
|
|
|
|
|
L

-
o
prd
b
o
o~ =7
Z a.
o o
) =z W
(e |
Ll Z D cm O e
Q. ZHZ OOk -~
-~ e 1 e Z o
QZUIET S0 Loz
AT LYY - -
VWS AN, T et T T p-d .
AT oG w0, | oaar w — T
FHOL s el <D e - e = Y ~3 =z
T el ZWZ L LY s | % S Y~ el ~<I
OO0 CIDOCUWULL men 0% Zdm ~ZZ2aAZ D WTOXE

=) ¢ Z T T 1T 2T ebs 1T L OIT O memi T O

P YO EZ A T Il T A CH-T 0k — Z~ A X0
OX IR WLIOKSQIES IOV O -0 o« O OTWZ
COFACOLNOLE QX <L I<IOX<S-0 ~—O% %
'?t.J”"’?TsOAN LI QU ZWDa % Z2NH & »
Uolelote b bt b by LU 22T Z2% 50 % % 38 % T < s/ DY
OOCOOOOCOOWS & [B S R iy A0 0 S~ d & S -
_ de sy CONCOOCES WILITOHM
b e b b e e e O O WYL L G L W e YO Z0
L s b WL TR O T TT % % ~0 A
SNV VNNV T T LY 02 YT 0 & o=
OOMOAINCOMN OO D e O~ L Y MYV ITCODZTZ Dl
DODODIDRDTDOCAN AL AL LTI X X ZIOO0OW L
NNNNNINLUILLCLIII T TIXOOUDGNAWO00
W N N s Nt T N et Nt Yeutt S W et Nt Nou Wil S N D ok Nttt N Vst et ot Yot S gt et
w oy Ll
3
1

PROGRAM 6

This final program shows calls made to four dif-
ferent programs located in the COMS library. Since this
is accomplished by use of the evaluator, input strings
(data to the STRAN program) are sent directly to the
evaluator unless they are preceeded by a period in column
one; in which case they are output as comments. The first
two subroutines called are TEST1l and TEST2. These are used
to show the varied type of arguments one may use in a call
to a library program. The reader should be aware that the
actual calling statement is not output by the interpreter
until after the subroutine has completely been executed.
Only the echoed input line (i.e. beginning with INPUT...)
is seen before execution begins.

Subroutines TEST1l and TEST2 have been set up to
simply output the information passed to them by the
evaluator. This is to show the reader that argument trans-
ferrence is infact done correctly. All possible types of
arguments have been used in the two calls. Note that the
dollar sign character placed before a variable name does
not pass the relative machine address of the variable as
was shown in program (1l). Instead, the address of a temp-
orary location containing the value of the variable is
passed, just as if the dollar sign had not been present.

This overriding effect only occurs for variables in the

argument list of a call statement made to the COMS library.
(The reason for this is discussed in section 1.3.2.4). A
listing of subroutines TEST1 and TEST2 is shown following
the output to program (6).

A second example involving sorting routines is also
provided. Here, the two subroutines BBSORT and SORT are
called on to sort a group of numbers stored in array A.
Again, the reader will note that the printing of the call
statement is not done until the termination of execution.

The call to each subroutine éasses only the number
of numbers to be sorted (this is stored in the variable N).
The numbers to be sorted are provided by the subroutine
FRANDN which is called during execution of each of the
sorting routines. This was purposely done to show how

other routines may be loaded during the execution of COMS

library routines., FRANDN generates N real numbers each

having a value between 0 and 1 inclusive. Subroutine BBSORT

performs a bubblesort of the numbers in array A and prints
out the sorted result. Once this subroutine has been
executed, a few elements of the array A are printed out
to show correct argument transferrence back to the evalua-
tor.

The same operations are carried out by subroutine
SORT except that an interchange sort is done rather than

a bubblesort., Listings of BBSORT and SORT are shown im-

mediately following the listings of subroutines TEST1 and

TEST2.

43

PULES «
ARR1(5)3
Ex4

-~
v

BEGIN INTERPRETINM

e LS ONC,

[
UE,J 4D ez
.v

=2

INDJT;..K

T = S T A - R <
i vl e e e o e
< < O o c [o eal [oms}
+ + o+ A e+ o+ o
W WoWwow bt b oW
el orCler D erlCleraeC oD e 2

COOOQCOC OQCCOIOOC D
-oNoMmod oo oo
e o D LD e 8D 200 oD
OO OO a0 C O
AN TN FOINDOODON O D

»
’

&)

T

LT SR VA TN s ONOHOHOHOHNOC DI o
OO Y O eaOeaCaea DO Sl S O
O O O ¥ O ADBNMNOHOMOADNCTHDING
~ N M I W0 *D ST 0O o o) D eI &
[T T T B T B TR R ANTAVE o YoV TR ERo N SN
~ ey e Tl - e S S *D e KD wE 0D
AL L ML N d ped 9t ot o1\ S0\ oD ey e

bad e . e w2 O\ J VS e T e [S [e B W 20

1A.b;l¢wirn.lr HESNHN NN HN DN HOS N
OO C O C YO e YD ~Q Vom0~ o~
OO XOWOXOUAY NI YOI O O I
L HI NI NM<I vy <l {NeT o< o] o] o<l sl o<l &<«
ejl wll o] eli o et ovd o (\i oy ov o e\l ol
Fm B Bl Bomy Gom 2 S 0 0 S e e E NG e %N
Cvd S0 oPY 0t o0 avd sxd o ewd o0\ AN Ay oy
ot N s N e e s et oy Yo e Tt e VO b gt e W o o e St e T e S
PN A AD ADHITNDMN DN DNITIND DN DN
QOO WA CAXACQA U A KA VA (x0 o
| A 2 I Z eI I T Z T YT

AT b € et et L o &L ed <L et L bt €1 bd L bt <L ot <Lt <L b <L

!
! | u

INPUT. [.AQGI‘—'?.B?E-?;

ARG1=2.870000000000E~028

INPUT . @ OAR62=3672. 13

ARG2=3+6721000000005+038

INPUT. s o ARG 3=ARG1S

ARG3=2.870000000000E~028

INPUT e e JARGL=225633;

TARGL=225693%

INPUT s eCALL TESTL (ARG1Ls ARG24ARG3HIIARGL 27, Y*5,0/(SART (164 0)) 9 ARGI¥ARG2,ARRL) $

SUBROUTINE TEST1 ENTEZRED

TO DEMONSTRATE CORREC
ARGUMENT VALUES IT HA

FIRST ARGUMENT= .03
SECOND ARGUMENT= 3672410

?EE, THIS SUBROUTINE WILL LIST ALL THE

THIRD ARGUMENT= .0287

FOURTH ARGUMENT= 225693
FIFTH ARGUMENT= 273

SIXTH ARGUMENT= 2,838

SEVENTH ARGUMENT= 105.389270
THE EIGHTH ARGUMENT IS AN ARRAY NAME - THE ELEMENTS OF THIS ARRAY ARE AS FOLLOWS

10

ooooo
!

1
(ST N
ocooco

Sy-0

EXIT SUBPJOUTINE TESTt
CALL TEST1{ARG1,ARGZ2,ARG3,TARGL 4273, Y¥5,0/70SQPT{16,0)) ,ARGLI*¥ARG2,ARRL)
INPUT.o-CALL YFSTZ(AQRZ(i,Z,i),AQRZ(I,J,K&.%AQGi,%ARRZ(l,Z,Z?,$&R?2(I,I,13,QA°°1)'

T SUBROUTINE TESTZ2 ENTERED T e e e e
TO NEMONSTRPATE LORRECT ARGUMENT TRANSFERRENCE, THIS SURBRROUTINE WILL LIST ALb THF
ARGUVCNT VALUES IT HAS RECEIVED FROM THE CALL
FIRST ARGUMENT= 30.31

SECOND ARGUMENT= 80.310
THIRD ARGUMENT= .0287

_FOURTH ARGUMENT= 40441

FIFTH ARGUMENY= 70.71
THE SIXTH ARGUMENT IS AN ARRAY NAME - THE ELEMENTS OF THIS ARRAY ARE AS FOLLOWS

U GNP
OO0
OOoII

EXIT SUBROUTINE TESY?

CALL TEST?(ARR2(1,291} yARR2 (T, J,K) ySARGL, BARY2(1,2,20 4 3AR®D(by TARR:
ENJ OF FPILE RcAD ON'INPUT Facg-e™’? ? 12121, 3ARPZUI 1,10 13 ARRL)

HADBCUB /7// END OF LISTY 2X77

9%-D

RULES.

BEGIN READING

C-47

BEGIN INTERPRETING RULES.
INPUT s 0 ee
TINPUT ¢ e ee

INPUT, .sa _SOR
,SORTING EXAM

is e eae

INPUT s e 20

GOMS LI3RARY
AR

RT
GENERATED &Y A RANDOM NUMBER GENFRATOP
BOTH =-83S0T- AN -SNo7-

SGRT= AND -SNRT-

INPUT 40 e
TINPUT. . . ARRA
ARALY =A= WIL
INPUT. v &
TNPUT .o »REAL A{1001)3
RZAL A(1361)
INPUY e 0 an

CINPUT e T

?R SORTING

INPUTQQQ. =N IS
~N- IS THE NUMRB
INPUT 46 5

INPUT, e sN=2512
N=25%

T INPUT e ee
INPUT e e

m
=4

T AKE GENERATED BY A RANPOM NUMRER GENERATCR ™ 7

8y-2

INPUT 2 s e

o
L 1
°\ 1
c |
v i H
_ i
I w _
C i
o ,
Iw | i
el o i
% I m
~C : i
(N W ”
[a i v
L e | Mot
KO i o |
i i e
[i e 0 |
= ,
N~] CAT
> ooy |
o | o]
[1Y m . e &
jo'd | !
uwe | i
[| i [AVIVe
Mo, _
=W | o n |
O | i
oo | '
Ly e
~ | —t
L ! p e
te | .
Zim
fod
o 3T ~{ O
20 i [s=To)l
[@lcy MW
(28 T [
[sah d0a
D o i
CrHal 58r0~
Zm PO oC
e ~h oo
Qe D * e
ODZ
[7sl@} LTS
el o~ [oa). o Tnal
ST i s DOIN
O Db O ! STl
v ul - v e
O e
o kb= 57 e Ly
o7y <Y .{9:02%
Lo Z ~ X000
T b= b PJC)OJ\I
[S 3 Y e 1T G (N e o 244
LOu» SRS i
Y B vyoow | ~
Y o BQS?N
< I [0 B IETAR o TR
5 MDel b Do N
s} S Z e Jl\
il O s | —
I b~ <1 O o
ebm @) ¢ O LIONNGO
. Qov - 2 e M AT
ot s Lo o mroneom
e f e ¢ O e e e
O VU Ty !
DODCD D)
2 o i a 78] -
Tz o= T et
= e T B b ©
1

0

NT
A NEW

ME

{

GENERATC

RINTEN TO SHOW THAT A4RGY

pR
PR

S

T
T
VALJATCP

W
5%

£ A FE
FH=

.
b

50

~

INFUT e e

INPUT ¢ e noe
=50%
INPUT a4 ase

INPUT o e

INPUT ¢+ N

M

SORTED

*
-

Y
42

INPUT. 2 CALL SORPTI(A,N

I S¥s Rualt KVe]
-4 oL O
[I J {W L)

v

i
NS C
QIO I OV
—~MINOC
. ¢ o"_ . ®

|

oocckoa
NI
<« MDD T

!
OO
e\ MMC O
-1.3C‘J6DU
* g gt

.
!
T LR
<T O O HEN LN
~HMLCO e
) e @ o 0 @
22
et |
Mmoo
PR R I T NP
DetMmINeZ

KOPIRO O
Oo-m_oos
{

D)
e~
~
~r O
<7 v
« O\
[R
o
o L brewr
DN DD
0o
Z ez
O

c e

[x)

LY XXs]
-
[a= Ve)
[SaR o |
= L0\
I P~
LR]
O
*
b=~ 20
Do
0.0
Z e
O

‘

?Ti(A,B,C,I,J,J,E,K)

i

G00013

CT ARGUM
CARGUMENT VO

=T
ARE

% |

u wn

AILL LT

CALL*)

OQUT INE

NTFRFD®//%0T0 D
HE

N
B
y

TEST1
THIS SUB
€D FRUM

>
Z ey
LUy
OO0
D2
ow
oras
[agRiaivs)]
D
Ul T
Lalalfpl
e~ T
O L g
~ e OV
L <L N
3T 4
Y T
GOZ 4
Zh
Lah ol

MmO
it
el }
[enan
falon)
fonian)

1921 0l 78]
o>
s Ll
a2
Do
NN
oy ™\
Q<IN
0N
WX e
S LD
WOl
Wi e
ot
oz n
-l -
DI Z
N W
(D32
[Jo.45 g
O<T (O
- O
il <

~(; -
<Lrw L
=
o~ L - X
[\SE enivzg &0
o LN
O = o
——T%
L <O
320N
0N
[s3es B o}

XLLO
i vt

[Nelrp]
~iT
oo
S
oo
oo

“NAHE = THE ELEMENTS NF TH —

ENT IS AN ARRAY

750157}

~FN

N
co
oo
oD
oo

s*FEXTT SURROUTINE TFEST1®)

ol ol
[IaXVe}
[oYon
oo
oo
oo

RETURN
END

OMPILER SPACE

~oy
DO,
ﬂun“
[] v
oo
fasTee’

()

EST2(FsGyPyls Qe

0u0011

—-C0T
Y -
L ey

L

e

T
[

W >

SIS NN}
P OIS
D=
Cl.
ﬁ'&?l
D EIN
Dileg
~HL'T
-
~t Z
W e T ey
- _)\~
L <Tp— (N
[
Py b
XYOZ
=2u =<t

Ll

T
-t vd
[ay Lomn]
L= o]
oo
[e Fveed

[¥RLe]
CZu
« D
D
0\
aa~
- 3
Dk e
~N\O
[P '

- -
o~ %
[oWiLanauy |]
Lol o
O e T
L R SURN
Wit T oy
PeTID e
VUMD
[\ el 4 TR
Tl <

it

AP
oo
[ade Jome }
oo
Qo

OF THT

THZ FLEMENTS

RAY NAME

X

SUBROUTTNE TESTZ2¥)

XIT

PETURN
END

%g COMPILER SPACE

OO
(e on)
[=r=Y
=Y s
oo

Us
02

UN
01

SUBROUTINE BBSORT {A4N,M)

& THIS SUSROUTINE PERFORMS A BUIBLESORT ON A SET OF REAL NUMBEZRS
o0o0os U DIMENSION A€1001)
e CALT THE RENTDOM NUNRER GENERATOD: o -= fmrm oo o o
000005 CALL FRANDN {A,N,0)
sooos7 Mz=1
¢ -1 FOR ASCENDING ORDER
000012 © I=1 e e
E FIRST ELEMENT OF ARRAY A
0100013 21 IF(A(T).GT.A{I+1)} GO TO 20
€ £OMPARE FIRST ELEMENT WITH NEXT ONE IN ARRAY
000020 g 24 I=I+4 S e
C IF THE SECOND IS GREATER THAN THE FIRST, INCREMENT AND GO ON
00002z C IF {I-N) 21,2626
€ TEST FOR END OF THE ARRAY
po00zy 20 x=aqD _ i e o
000026 AT = ATTHIT
000031 A(I+1) =X
& INTERCHANGE ONE ELEMENT WITH ANOTHER
000032 U J=1
0600%4 23 1P Ig(g;.LT;A(J-l)I GO Tn 22

€6-0

c .
€ START WORKING BACKWARDS FROM THIS POINT COMPARING FACH ELEMFNT TO PRTYTIONHS
C ONE AND INTERCHANGE IF NECESSA™Y
000040 ’ GO TO 24
000041 22 Y=A L)
000043 A{JI=A(S=1)
0008046 AQd=1)=Y e
(AT N J=J=1
(o3
¢ INTERCHANGE
000052) 27 IF (J.EQe1) GO TO 24
¢ TEST SC DONT GO BEYOND BEGINNING OF ARRAY WHEN WORKING BAGKWORNS
B 117011151 — ol R o RO T T e ST s S e e e e © s i T e
800055 25 WRTTF(5,39)
930261 99 FORMAT{*0 THE SNRTFEDG NUMBERS ARF s se¥)
A
¢ WRITE QUT SORTED ARDAY
000061 WPITE(6,101) (A{I), I=1,N)
000102 101 FOIMAT (& Xy10F643)
000102 RETURN
_ 800103 _ENDY o o e
UNUSED COMPILER SPACE
0102080

ASES]

SUBROUTINE SORT (AN}

§ THIS SUJROUTINT PEPFOOMS AN EXCHANGE SORT ON A SET OF OEAL NUMIEDS
000295 E DIMENSTON A{1201)
AT THE RSN 00 NUMRER ™ GENERATSR T e e s e
000065 U CALL FRANDNIA,N)
030006 1 I=1
§ INDEX OF FIRST ELEMENT
_ 000807 TFLAG=A _ . L
8 FLAG RESET
000010 t b TF {A(TI) «G6T. A(T+1)) GO TO 3
§ COMPARISON
000016 5 I=I+1 o e
¢ INGREMENT
000029 E 2 IF {I-N) 546,46
¢ TEST FOR END OF 'ARRAY
000023 3 TFLAG=1 e
000024 X=A11)
000026 ATTYZA(T+1)
000031 A(T+17=X
G INTERGHANGE
000932 G0 T0 5
000033 6 IF {IFLAS .NE. 0) GO T0 1

b

P

[
()
=
v
-
oo
-
-3
-
$—
-
oD
vx
<1
o
o
<7
x
W
D
o
o7 -
x %
- .
.
(o] .
o »
[¥8]
[[+
/) «Y
o
= [%]
D\
. i
[us]
ud pl
o] D
<< =z
X,
[T
4] W
<< - o
= ol [a'd
O <
u! (%)
(8] [
by W by
<X ~X —
I Ok (¥
B oo o
(24 - (7
[T N e X0
|t [N S .
Z owa D
- Yy O
ey
O w
Z 2L -
< 4
L e
w2 =
o
QO OO
O
M
oo
oo
oo
oo

Neprarx
ot b}
-7Z
e oy
P TTE—D
0 T =D
o OOt
T O

o
kol

MMM D
DN
oo o
DoHOOO
_nUﬂ.LG oy Yo}
[R o Tiow Rave o]

UNUSED COMPILER SPACK

.. 811030¢

APPENDIX D

STRAN Error Messages

ERROR MESSAGE

ERROR HAS OCCURRED IN
INTERPRETATION OF ...

VARIABLE NAMED ... IS
NOT YET STORED

ERROR IN EVALUATION OF
ARITHMETIC EXPRESSION

ERROR, ALGEBRAIC EXPRESSION
CONTAINS MORE THAN 5 SUB~-
SCRIPTED VARIABLE NAMES

THE VARIABLE ... HAS BEEN
ASSIGNED A VALUE ZERO

ERROR IN NUMERIC STORAGE
OR RETRIEVAL

NUMERIC STORAGE HAS OVER-

FLOWED

ERROR IN INDICES

DICTIONARY FULL, EXECUTION
TERMINATED

RESULTING ACTION

Interpretation of new rule
name popped up from stack

Interpretation of new rule
name popped up from stack

Expression not evaluated -
next section of originating
rule body is interpreted

Excess variable names ig-
nored ~ evaluator continues
on

Does what it says - eval-
uator continues on

Variable in question is
either not stored or not
retrieved - evaluator
continues on

No further results from
arithmetic expressions
evaluated are stored by
the evaluator - evaluator
continues on

Subscripted variable for
which error occurred is

ignored - evaluator con-
tinues on

Interpreter is immediately
halted

APPENDIX E

COMS REFERENCE MANUAL

The major program elements of COMS are:

1) The STRAN interpreter
2} The Evaluator
3) The Associative Memory

4) The Program Library

The original versicn of COMS was implemented in PL/l for the
IBM 360/65 computer. A second but incomplete implementation
for the CDC 6600 was carried out at Colorado University and
NCAR in 1970 using - FORTRAN IV - . This version was up-
dated and reimplemented at McMaster University for the CDC
6400 under Scope 3.4 by MARC S. BADER as part of this M.Sc.
project in 1972--73.

The present version does not have all of the features
of the original version but this has not lessened any of COMS
capabilities. The differences in the two versions are out-
lined in Chapter 1 of this report.

COMS is not written in ANSI FORTRAN (due to the use
of such CDC FORTRAN statements as BUFFER IN and BUFFER OUT)

and at present will not compile under the FORTRAN extended

compiler (FTN) at McMaster due to the COMPASS! routine LOAD-
IT which involves transferrence of subroutine arguments

under control of the CDC RUN compiler.

Heavily commented routines of the original FORTRAN
version were rigorously tested and found to be satisfactorily
applicable to the present version. Lightly commented rou-
tines however, were found to be either in need of further
updating (where this was true more comments were entered) or
completely incomprehensible to this author due to the unavail-
ability of the algorithms involved. Thus, these routines
(mainly the ones dealing with the hash coded associative
memory) were left alone. A list of updated and nonupdated
routines can be found below.

Any sections of coding needing more detailed expla-
nations than could be explicitly entered via comment state-
ments have the message ***NOTE() preceding them which gives
a number reference to a section in this appendix where fur-
ther details are given.

Another FORTRAN version of COMS was prepared by this
author for the specific use of debugging certain routines
which the interested programmer may have trouble understand-
ing. This program is called COMSTR and is available on

punched cards. The output consists of the contents of var-

lcoMPASS is the assembly language used in the CDC 6000 series

computers.

iables and arrays durincg the actual execution of a typical
COMS run. This may be compared to the DEBUG facility of FTN
but has nowhere near the detail. For a complete execution
breakdown of the COMS operation, the user is advised to
first adapt COMS for FTN compilation (by rewriting the LOAD-
IT compass routine) and then use the DEBUG facility of that
compiler. The work for this was started by this author (as
can be seen in the PRISM compass routines which are capable
of running under either RUN or FTN) but time ran out before

its completion.

UPDATED ROUTINES:

Stran, Load, Interp, Ibody, Ipatrn, Setdict, Initial, Push,
Eval, Number, Flcater, Fixer, Bugout, Getnum, Getchr, Execute,
Rdcard, Wrcard, Locate, Index, Page, Pack, Unpack, Mcve,

Prisms.

NON-UPDATED ROUTINES:

Find, Locsym, Cont, Lnbr, Lnbl, Id, Strind, St4ind, Npart,

Nucell, Rcell, Indices, Alloc, Getnl.

ROUTINES ADDED:

Loadit

Functjpn LCAR

Note (1

The purpose of the function LOAD is to:

1) Read the rivles, store them (packed) in the
array STORE and store their lengths in the
array LSTORI.

2) Return a value of 1, 2 or 3 to the calling
program (subroutine STRAN)

(1): restart the entire COMS program by
entering subroutine STRAN at state-
ment 100

(2)

stop execution of the entire program
(3): call the interpreting subroutine

INTERP to begin executing the rules

Notg_}2)
COM is an array of ten elements which is equivalenced
to the variable BEGIN. This variable is the first of the

common block RESRVD thus giving the following correspondence:

COM(1l) BEGIN
coM(2) ECH
COM(3) ECHOFF

CO%(10)..... READL

The contents of the variables REGIN, ECH and so on are in-

itialized in subroutine SETDICT.

Nete (3)
The variable NAMLIM is initialized to 10 in the sub-
routine SETDICT. It applies to names of STRAN rules and

names of variables used in these rules. If a name encoun-—

tered is longer than ten characters (one 6000 series word),

the characters after the tenth are ignored.

Note (4)

The first index of array STORE refers to the word
numbers into which the rule has been packed. The second
index corresponds to the index of LSTORE. Thus a rule and
its length are referenced by the same number.

The array DICT serves as the dictionary of names of
rules and variables. The position (i.e. index) in DICT
assigned to a rule is then correspondingly given as the index
of LSTORE and second index of STORE for that rule. To il-

lustrate, examine the following STRAN rule:
(READ (INPUT/1/=QUTPUT/1/)END)bb......

The name of the rule (i.e. READ) is stored in the dictionary
(a hash code is calculated for the position in the dictionary)

as say DICT(57). Then the rest of the rule
(INPUT/1/=0UTPUT/1/)END)bb......
will be stored as

STORE (1,57)=(INPUT/1/=
STORE (2,57)=0UTPUT/1/)

STORE (2, 57) =END) bbbbbb

STORE (8,57) =bbbbbbbbbb

Thus LSTORE (57) will equal 74.

pote (5)

The following pseudo operator commands are available:

(RESTART)

(DUMP)

(RETURN)

(READLX)

restarts the entire COMS program

used when an error condition has developed

in COMS and a dump of the associative memory

is required

stops execution of the COMS program

sets the current rule name to END and in-
itiates a NAMELIST read whereby a user may
redefine the value of specified COMS vari-
ables (given in subroutine SETDICT) that
were originally initialized by DATA state-
ments during the compilation of COMS. On
completion of the NAMELIST read, if the
current command (i.e. the one just read in
by NAMELIST) stored in the variable RNAME

is still END, then the STRAN interpreter

will continue in the rule reading mode. If

the current command is not END then RNAME

is re-examined for the interpretation of a

(ECHO) -

(NOECHO) -

(TRACE) -~

(NOTRACE) -

(PUNCH) -

(NOPUNCH) -

new command
causes an echo of each input card to be
printed. Iach line given by the echo command
begins with the phrase
INPUT. ..

to distinguish it from the output lines of
the interpreter
echoing is discontinued
causes each rule currently being interpreted
to be output in the form

INTERPRETING RULE...
and also causes the contents of each variable
change during rule execution to be output in
the form

VARIABLE (name) =
turns off the (TRACE) command
causes punching of a card for each cutput
line produced by a rule. That is, the out-
put line produced by the (TRACE) command is
also punched on cards {without the two words
shown above)

punching is discontinued

The above mentioned pseudo operators can be more

easily looked upon as a set of switches controlling certain

cperations of the interpreter. The initial or default set-

tings (where applicable) are (NOTRACE), (ECHO) and (NOPUNCH).

Subroutine INTER?

Note (1)

The purpose of subroutine INTERP is to:

1)

2)

Obtain the current STRAN rule to be inter-
preted. This rule is identified by a rule
name which has either been passed directly
to this subroutine from the function LOAD or
has been "popped up" from the pushdown stack
of rule names.

The current rule is unpacked into the
array CHAR one character per word. All fur-
ther references to the rule contents by oth-
er COMS routines are done using CHAR as the
information source (CHAR is in common with

these other routines).

Once the rule has been obtained (from the
array STORE where it was originally placed
by the function LOAD), the rule type is es-
tablished as either a "push-down" rule or a
string manipulation rule; the former con-

taining only a list of rule names, the latter

a middle or "body" section.

(3} Place rule names on the push-down stack.

(4) Break down the "go-~to" section of a rule
to determine if a path exists for both the
success and failure of the rule,

(5) Send the body of a rule (if one exists) to
the function IBODY.

(6) Receive information (from the function IBODY)
on how successfully a rule was interpreted

by the rest of the COMS routines.

Note (2)
The variable BREAK is in the common block RE3RVD
with the variable PRNR immediately following it. BREAK and

PRNR are initially set in subroutine SETDICT.

Note (3)

A STRAN rule can either succeed or fail depending
on the outcome of the left hand side cf the rule. If the
left hand gide fails (whether through a‘decomposition or an
associative memory operation) then the right hand side of
the rule (the part to the right of the equals sign) is not
executed and control is passed to the second rule name in
the go-to section (if only one rule name is present control

is passed in any case). Otherwise control is passed to the

first rule name. Keeping this in mind, one sees the fol-
lowing possibilities. Assuming RNAME (the present rule name)
is not END, it can either be the first of the two go-to rule

names (stored in TNAME) or the second of these (stored in

FNAME) or it can be neither. This is illustrated below.

CASE 1 Successful left hand side:

(RULEL (rule body)RULE2,RULE3)

4 4 +
RNAME TNAME FNAME

RNAME is set to TNAME and control is passed to

RNAME.

(RULEl (rule body)RULEl,RULE3)

Control is passed to the same rule for re-exe-

cution (RNAME doesn't change).

CASE 2 Unsuccessful left hand side:

(RULE1 (rule body)RULE2,RULE3)
RNAME is set to FNAME and control is passed to
RNAME.

(RULE1l (rule body)RULE2,RULE1l)

Control is passed to the same rule for re-exe-

cution (RNAME doesn't change).

Function IBODY

Note (1)

E-11

The purpose of the function IBODY is to:

1)

2)

3)

Note (2)

Examine the section of a STRAN rule between
the second opening bracket of the entire rule
(i.e. the opening bracket after the rule name)
and the pair of terminating characters con-
sisting of an oblique stroke / followed by a
closing bracket.
Break this same section down into left and
right sides and send these to the function
IPATRN for further interpretation.
Return a value of 1, 2, 3 or 4 to the sub-
routine INTERP.
(1): no errors have occurred
(2): some operation on the left hand side
(i.e. the side to the left of the
equal sign) has failed
(3): error has occurred in the storage of
a variable

(4): interpretation error has occurred

ISIDE=1 indicates we are on the right side of the

equals sign in a rule body and are doing a composition

operation (because the associative store operation [i.e. +S]
is taken care of elsewhere in the coding). Thus one can
assume the result of the composition will be placed in a
variable not previously defined. This assumption may be
false but will not upset anything since if the name is found
by the function DEFINE to be already in the dictionary, if
just redefines it, giving it the exact dictionary location
it had before. This reasoning also holds true for IREAD =
*TRUE+ where a read input data operation takes place put-
ting the result in a variable we assume has not previously

been defined.

Note (3)

It should be understood by the reader that strings
of characters (to be referenced by COMS wvariables) which
either are read from the input file by the function IBODY
or are formed by the function IPATRN as the result of a
right hand side pattern operation are placed (packed ten
characters per computer word) in the array STORE with the
corresponding string length in array LSTORE.

When work is to be carried out on these strings,
they are taken out of their packed form in STORE and placed
in unpacked form (one character per computer word) in the
array TEMP with their corresponding lengths in array LTEMP.

The array STORE {(as noted in subroutine INTERP) is

also used to hold the packed form of the STRAN rules when
they are first read in by the function LOAD. When work is
to be done on these, they are transferred in unpacked form
to array CHAR with their corresponding lengths placed in

array LCHAR.

Note (4)

There is a possibility of having a slash as a 1lit-
eral character being used in a composition operation as

shown the following example

(RULE1L (=COMP/1+'/'/)END)

Note (5)

If the function IPATRN returns a value of 1 (meaning
no errors in pattern matching have occurred) the variable
IOP becomes an indicator to the function IBODY telling it
through the calculation of IOP=JOP+1 whether or not one of

the three associative memory operators has been encountered.

Function IPATRN

Note (1)
The purpose of this function is to:

1) Examine the strings of pattern operators
found between the two oblique strokes im-
mediately following a variable name on ei-
ther the left or right side of a rule body.

2) Check the syntax of these strings and perform
the operations required through other COMS
routines called by IPATRN.

3) Return a value of 1, 2, 3 or 4 to the func-
tion IBODY, each number having the same
meaning as those returned by IBODY to the
subroutine INTERP (see note (1) of subroutine

INTERP) .

The term "pattern operator" refers to the legal
STRAN operators for pattern decomposition, composition or

transformation. These include the following:

dollar sign $
quote '
letter(s) A,B,C,...Z
number 0,1,2,...9
period .
downward arrow +

equivalence L =
equivalence R =

A detailed description of the meaning of the above operators

can be found in Appendix 3.

Note (2)

If a plus sign is found the program must check
whether or not it lies inside a literal string (i.e. between
quotes). This checking is done beginning at statement label
35. If the plus sign is in a literal string, a further test
is made for another plus sign. If one is not found, the end

of pattern indicator is set.

Note 1}2

At this point, if IPLUS=1, this indicates there were
no characters between the two outer slashes; for exemple
(R1(XYZ//)R2). This of course is an error and pattern match-
ing is terminated with a return to function IBODY (via the
statement GO TO 33). An error condition in this case is not
flagged to IBODY but rather this section of the rule body is

ignored and the next section is picked up to be processed.

Note (4)

The calculation of ICHAR gives a pointer to an
element in the array IVAL. ICHAR will be a number from 1
to 63 inclusive, having a one to one correspondence with the
63 possible characters allowed under the current FORTRAN

compiler (RUN) in use, For example if ICHAR contains the

dollar sign character $ (i.e. left justified octal code 53),
ICHAR will be equal to 43 (a summary of octal display codes
for all the available FORTRAN characters can be found in the
CDC RUN FORTRAN manual, Appendix A).

The array IVAL is arranged so that a lexical scan of
pattern operators is accomplished by a reference to it. 1In
other words the variable L (used in a group of computed
go-to's) indicates to the program the section of coding which
should be executed next depending on which pattern operator
has been encountered.

The legality of this pattern operator is also exam-
ined and if an illegal operator is encountered (i.e. a char-
acter other than those mentioned in note (1) of function
IPATRN), control is returned to the function IBODY which in
turn gives control to subroutine INTERP. Here an error
message is printed out and the next rule to be interpreted
is picked up.

The array IVAL is initialized in subroutine SETDICT.
An outline of its contents and corresponding character refer-

ences is given below.

{L is used as a computed go-to

pointer indicating the particular
. pattern operator in use)
(translate => as "indicating")

)= 1
)= 1 L=1 => 1letter A-Z
)= 1

Note {(5)

pattern matching operation to be performed.

IVAL (27)=2
(28)=2

-
L0
[

RS

f
]

i

e~
L L2
' oo -2
e
0@

L=2

ool o o o o
wnonno
Gy L WO s O W

i

number 0-9

+l"r*r(l)l/

$

blank
comma
period

1,02

gqucte

SZAA)

The variable K is used as a pointer to the specific

-7

This in turn is

E~-18

determined by the two variables ISIDE and IOP. ISIDE de-
termines whetﬁer we are dealing with the left side (ISIDE=0)
or right side (ISIDE=1) of the rule body. IOP determines
which associative memory operation is to be performed (if
any). Both ISIDE and IOP are set in function IBODY. The
following chart shows all the possible combinations of ISIDE

and IOP with the resulting value of K.

ISIDE I0P

| =

OPERATION

Left side pattern match
Error (1)

Left side associative find
Left side associative access
Right side composition

Right side associative store
Error (2)

Error (3)

T S R S e S e B e B
W N = O W N = O
0o 1 O U o W

Error (1) IOP indicates an associative store operation but
ISIDE indicates the left side of the rule body. Associ-
ative stores can only be done on the right side.

Error (2) & (3) IOP indicates associative access and find

operations respectively, but ISIDE indicates the right
side of the rule body. Associative finds and accesses
can only be done on the left side.

K is used to determine the general pattern matching

operation needed, while the variable L determines the par-

ticular operator within this operation that is presently in

use. This is illustrated in the following example:

K=1 K=2 K=3
(R1 (ABC/$+ D'+s 5/+Fl/l+$/-+S/2+3/)S F)

S A

L=3 L=2

Note (6)

The following coding is broken up into sections,
each dealing with particular decomposition or composition
operators. At the end of each section of coding the pro-
gram exits to one of four statement labels. These include
33, 76, 77 or 78. Statement 33 tests for the existence of
any more operators in the string and if none are found the
program returns to function IBODY . Statements 76, 77 and
78 perform "clean-up" operations (these are described in

later notes).

Note (7)
The +n operator positions the output string pointer
such that composition will continue at the column specified

by the integer n.

Note (8)

For all associative memory operations (that is, FIND,
ACCESS and STORE), the +F, +A or +S has already been picked
up by the function IBODY. Also, IBODY picks up the pseudo
register number following a +F or +A and stores it in the
variable NTRACK. This means that the function IPATRN need
only be concerned with the dollar signs, literals and pseudo
register numbers found between the oblique strokes immedi-

ately following the +F, +A or +S.

Note (9)

From experimentation with the following section of
code, it was found that the dot operation is not working
the way the original COMS manual claims. The reason is
probably due to a mistake in coding during the translation
of the PL1 version of COMS to the Fortran version. At

present the dot operator has the same effect as a

dollar sign operator.

Note (10Q)

If the current decomposition operator is the last
operator in the current pattern matching string (i.e. a
terminating oblique stroke follows it) and if this oper-
ator is a dollar sign by itself (operators of more than

one character begin with dollar signs - e.g. $'ABC' or $5),

then the whole or remaining part of the string being oper-
ated on (this would depend on what decomposition operations
were previously performed on this string) is moved into the
current pseudo register WORK(1l,NVARB) with its length

placed in LWORK(NVARB).

Note (11)

Even though at this point the program knows no more
operators exist; to be consistent with the rest of the
program a test for moure operators is again made at state-

ment 33.

There are more decomposition operators to be
examined and thus the result of the $ coperator (i.e. just
how many characters it matches) will not be known until
the next operator in line is picked up and executed. 1In
the meantime, the dollar sign character is stored in the
current pseudo register to be replaced "next time arcund"

by the actual character string it matches.

The pattern matching operator § followed by a
literal (i.e. a character string enclosed in quotes) will

match consecuvtive occurrences of the literal in the input

string.

The four lines of coding starting at statement

label 70 form a loop to accomplish this operation. The

program exits from this loop when either of the following

conditions occur:

1)

2)

Note (14)

All the characters in the input string have
successfully been matched, as in the following
example:

/$+$'ABC'+$/
operating on the input string ABCABCABC (the
loop will be executed three times)
An exact occurrence of the required literal is
not immediately found each time a match is
attempted (i.e. each time through the loop), as
in the following example:

/$+$'ABC'+S/
operating on the input strings
DABC (failure during first loop)
ABCDEF (failure during second loop)

ABCABCABD (failure during third loop)

When a successful match is found the characters

matched are moved into the next position (as determined

by the variable J) in the current pseudo register (as

determined by NVARB). Thus, /$+$'ABC'+$/ matching say

ABCABC will result in

WORK(1,NVARB) = A

" (2 . ") =B

L] (3 , " y = C

" (4 , s)y = A
etc.

Note (15)

The variable NFND is initially set to a value one
more than the length of the string being operated on (i.e.
the string stored in TEMP). If a pattern match involving
the literal collection is found, NFND is reset to the
character position number where the match begins.

For example if

TEMP (1) = T
(2) = 4
(3) = E
(4) = blank
(5) =C
(6) = A

i
H

(7)

(8) = blank

(80) .

and the literal collection pattern being used is 'DOG'CAT'))
a match is found for the literal CAT at the fifth character
position in TEMP and thus NFND is set to 5.

It is very important to understand that the search
here is for the left most match that can be made in the
input string. This is the reason the program must test
every one of the literals in the collection pattern given -
i.e. one of these might cause a match further to the left
than a previous one. This is shown in the following
example,

input string: CATDOGMOUSEHENCOWbD. ..
literal string: 'COW'MOUSE'CAT'))

The first element of the literal collection, namely
COW, will cause a match immediately since the whole input
string is searched each time around. However even though
at this point the current pseudo register WORK(1l,NVARB) is
set to COW, the process does not stop because the rest of
the collection must still be considered. A match will
again be found for MOUSE but the end result is that

WORK (1,NVARB) will contain CAT, it being the leftmest match.

r

Thus the statement
IF(IQ.EQ~0.0R.IQ.GE,NFND) GO TO 82

continues the matching process if either a match is not
found or all the literals have not been considered. The
only exit from this part of the program occurs when all
literals have been considered.

At this point, if the value of NFND has not changed
from its original setting, the program knows a match was

not made and an error is signalled.

Note (16)

One must be extremely careful in programming STRAN
pattern operations as the coding at this point shows. Here
a test is made to see if every character in the input string
has been accounted for in matching operations. This is dcne
by considering the length of the input string (stored in
LTEMP) and checking that the current pseudo register con-
tains characters that match this string exactly to its end.
For example if the operation /'ABC'/ is performed on the

input string ABCbb......... where LTEMP = 80, an error

would result as shown by the following code execution:

IST=LTEMP-LWORK (NVARB) +1 (1)
NIFND=IST~IWORK+L (2)

IF (INDEX (TEMP (IST) ,LWORK (NVARB),
WORK (1 ,NVARB) ,LWORK (NVARB) .NE.1)GO TO 602 (3)

In (1), IsT=80-3+1=78. Thus in (3) the INDEX function will
not be egual to 1 but instead will equal zero. The reason
is that TEMP(78), TEMP{79) and TEMP(80) are being examined,
rather than the expected TEMP(1l), TEMP(2) and TEMP(3) which
do in fact contain the characters A,B and C respectively.
If the same match was performed on the input string
ABC where LTEMP=3 (i.e. this string was not read in but
was formed by a previous composition operation) an error
would not have resulted as IST in that case would equal 1.
Thus the point here is that unless the STRAN user
knows exactly what string is being operated on by decomp-
osition operators, an error {(i.e. GO TO 602) could result,
A successful match for the first input string (ABCbbb...)
weuld be caused by an operator string such as /S$+'ABC'+$/
where any doubts are éaken care of by the two extra dollar
signs, The above discussion also holds for the other oper-
tors which transfer control to this section of coding after

pattern matching has taken place.

Note (17)

If the $ operator was stored in the pseudo register
used immediately before the current pseudo register all
characters of the input string up to but not including
the first character stored in the current pseudo register

(there may be more of them) are placed in the previous

pseudo register. For example an coperation such as
/S+'AY/ working on the input string CDA (where LTEMP=3)
would first have p.r. (1) = "$" and p.r.(2}) = "A". Execu-
tion of the code starting at statement 78 would then

result in p.r. (1) = "CD" and p.r.(2) = "A™.

Note (18)

NFND is a variable used to indicate where a match
was found in the input string (i.e. what character posi-
tion). If the previcus pattern matching operatox was not
a dollar sign, this means an exact match of the current
operator was made in the input string., If this is not so,

an error is signalled.

Subroutine PUSH

Note (1)

The purpose of this subroutine is to store the rule
names listed in a STRAN type 1 rule in the 100 element
array PUSHDN. The first rule stored is placed in PUSHDN (1),
the second in PUSHDN(2) and so on. The variable ITOP is
used as the index to this array, and is incremented by one
each time a new rule name is stored. "Popping-up" the next
rule name to be used is carried out in subroutine INTERP,
where ITOP is decremented by one each time a rule name is

referenced.

Note (2)

Each time a comma is encountered, a test is made
to see if any characters (cther than the comma) have been
picked up. Thus if ILST is equal to NXT one of the follow-
ing conditions has occurred:

(1) a comma was found immediately preceeding the

first terminating bracket as shown below.
(STK1(R1,R2,))
(2) two or more commas were found together as
shown below.
(STK1(R1,R2,,R3))
(3) no characters at all were found between the

second opening bracket and the first termin-

ating bracket as shown below.

(STK1())

In each of the above cases, ILST is decremented by
one to allow the next character (remember the string is
being searched backwards) to be examined (if one exists).
For (3) an automatic return to subroutine - INTERP - is

executed.

Note (§__)

If only one rule name is encountered then ILST will
be zero at this point. However if more than one name
occurs, the very last (going backwards) is taken care of
here. The reason for this is dve to there being no comma
at the end of the list (going backwards) but rather an
opening bracket; thus a special section cf coding is needed

for this situation.

Subroutine EVAL

yote (L

The purpose of subroutine EVAL is to:

(1) evaluate algebraic formulae using most of the

arithmetic and built-in functions of Fortran

(2) allocate storage for subscripted and unsub-

scripted variables

(3) store values in and retrieve values from these

variables

(4) pass the necessary information to the compass

routine LOADIT for the generation of argument
lists for the Fortran programs in the COMS
library.

Subroutine EVAL operates on input character strings
dealing with numeric data in a two pass fashion. Details
of this operation are described in section 1.3.2.1 and
the reader is referred here for background information.
The input string is stored in array CHAR with the number
of characters in the string stored in the variable N.

Explanation of the operation of the major sections
of subroutine EVAL is given in the comments associated with

the routine.

Subroutine NUMBER
Compass Routine LOADIT

Compass Routine PRISMS

Explanations for the major sections of coding in

these routines are given in the comments of the program.

E-32

Subroutine BUGQUT

Note (1)

If the STRAN pseudo operator (DUMP) is encountered
during the rule reading mode, an automatic call to subroutine
BUGOUT occurs. The purpose of this subroutine is to print
out the entire contents of the hash table and symbol table

used by the associative memory routines.

Subroutine Getnum

Note (1)

Both this subroutine and subroutine GETCHR contain
programming statements used in CDC Fortran; in particular,
ENCODE and DECODE statements. These are comparable to BCD
write/read statements but with no peripheral equipment in-

vovlied. Information is transferred from one area of stor-

age to another under FORMAT specification.

Note (2)

The purpose of this subroutine is to examine stor-
age locations (words) which contain the character codes of
numbers originally read in under “A" formats (that is, left
justified with blank fill), and output words containing the
integer, real or octal representation of these numbers.

For example the number 1, input in character code as

34555555555555555555

would be output in one of the following representations:

integer:

00000000000000000001
real:

17204000000000000000

octal:

000000000600000000034

With the above forms, a number may be used in
various arithmetic calculations (character code 55=blank,

34=the number 1).

Note (3)

XMAT will contain the format specification needed
to transfer the unpacked characters stored in the array BUFF
to the two word array TEMP where they will be stored in

packed form, Thus, consider the following example:

In function IPATRN a dollar sign operator has just
been encountered followed by two digits. That is, say,
$12. Subroutine GETNUM is called with the following re-

sults -

BUFF (1)=1= 34555555555555555555
BUFF (2)=2= 35555555555555555555
MCHR= number of characters = 2
KTYP= type required = say, integer
MX= 20-2

= 18
XMAT= the string (18X,2Al)
TEMP (1)= 55555555555555555555

TEMP (2)= 55555555555555553435

XMAT= the string (I20)
B= 00000000000000000014

(recall the number stored in B is an octal number, i.e.

Thus B is returned to function IPATRN in its

1 =
,48 1210).

proper form for arithmetic use.

=l

Subroutine GETCHR

Note (1)

The purpose of this subroutine is to examine storage
locations (words) which contain the inteqger, octal or real
representation of a number and change the contents of these
words to the character code representation of that number,
In other words this subroutine provides the opposite opera-

tion to subroutine GETNUM,

Note (2)
The real, integer or octal representation of the
nunber stored in NUMB is transferred in character code

representation to the two words of array TEMP. For example

if NUMB=8, 1i.e.

NUMB= 00000000000000000010

then the contents of TEMP(l) and TEMP(2) would be

TEMP (1)= 55555555555555555555

TEMP (2)= 55555555555555555543

(43 is the character code for the number 8).
The contents of TEMP (1) and TEMP(2) is then unpacked

one character per word into the array BUFF. Thus,

BUFF (1)= 55000000000006000000

BUFF(2)= 55000000000000000000

BUFF (20)= 43000000000C000000000

(for details of the unpacking operation see the notes on

subroutine UNPACK).

Note (3)

The DO LOOP variahle I counts the number of blanks
encountered as each word of the array BUFF is examined.
Subtracting I from 21 gives the number of digits present.
This is stored in the variable NCHAR. The digits are then
transferred from BUFF to the array CHAR to be passed back

to the calling routine.

Subroutine WRCARD

Note (1)

If two arguments were used in the call to WRCARD,
the second provides the means to determine exactly how many
words of the array BUFF are to be printed. The integer
divide (LENGTH+9)/10 gives the number of words. For example,

in the function INDICES the following error message is set

up in array MESAGE:

DATA MESAGE/17HERROR IN INDICES/

The call to WRCARD to print this is CALL WRCARD (MESAGE,17).
Thus LENGTH=17 and (LENGTH+9)/10=2, so BUFF(l) and RUFF(2)
are output. In this way, unnecessary use of core (usually

to hold blank characters) is prevented.

Function LOCATE

Note (1)

The purpose of this function is to store and retrieve
STRAN rule names using the array DICT. A maximum of 257
names may be stored since four of the 261 available elements
of DICT are used to hold special information which describes
the current contents of the dictionary. An attempt to store
more than 257 names results in the output of an error message
to this effect, followed by complete program termination
(via a STOP statement).

The contents of DICT(1l) is initialized in subroutine
INITAL to 257. Also in this subroutine the elements DICT (2)

through DICT(261) are initialized to zero.

Note (2)

The word containing the left justified character
code of the rule name being stored or retrieved is left-
circularly shifted by 23 bits. The new word formed is
added to the original word and the lower 48 bits are masked
off. The resulting value is divided by LIMIT and the re-
mainder (which will always be between 0 and 256 inclusive)
is placed in the variable LOC. This allows a hash calcu-
lation for one of the 257 available locations in the array

DICT.

Note (3)

For stbrage of a rule name each location of DICT
starting from LOC-+5 is tested for availability. This is
indicated by a zero value being present. When one is found
the rule name is entered in that location, the dictionary
contents (i.e. the first four elements of DICT) are updated,
and the location where the rule name was stored is returned
to the calling program.

For retrieval of a rule name the location where the
variable was previously stored {i.e. LOC45) is checked for
a zero value. If a non zero value is found it is tested
for eguality with the word containing the rule name. A
match causes the location of the rule name in DICT to be
passed to the calling program. A non-matching word causes
the next location (i.e. LOC=LOC+1l) to be examined and this
process continues until either the rule name is found or a
zero word is detected. A zero word during the retrieval
process indicates the name cannot be found in the dictionary

and the function returns a zero value to the calling program.

Function INDEX

Note (1)

This is a general purpose function used to search
a string of characters (stored consecutively in an array)
for the presence of either a particular character or
group of characters. The position in the string being
searched of the first occurrence of the desired character(s)
is returned as the value of the function. For example if
the string ABCDEF is being searched for the character D, a
value of 4 will be returned. Searching for the group of
consecutive characters BCD will return a value of 2. If
the character (s) reguired cannot be found at all, a value

of zero is returned.

Note (2)

For efficiency sake, to save time, a limit to the
number of searches that need be done is calculated. For
example if the string in array A is ABCDEFGHIJ (N1l=10) and
that in B is EFGH (N2=4), only the first seven characters

of the string in A need be examined.

Subroutine PAGE

Note (1)

Each time the program switches from the rule read-
ing mode to the interpreting mode a new page of output
headed with a title is printed. There is a problem involved
here in that some of the output in either of the above two
modes may take more than one page of printing (i.e. 60
lines), and thus when a new page is automatically begun by
the line printer, no title will be given and the page number
will not be incremented, The result is that the title may
not be printed at the top of each new page and this causes
the page counter present in this routine to be incorrect.

The problem could be solved by placing a line count-
ing statement such as LCOUNT=LCOUNT+1l whereever the print-

ing of a line of information occurs. Thus when the line

counter reached sixty, the page counter could he incremented.

Subroutine PACK

Note (1)

Both subroutine PACK and UNPACK use non-ANSI
Fortran coding to accomplish their tasks. The former uses
the CDC ENCODE statement to pack up to a maximum of 80
characters stored one per word into 8 words having 10 char-
acters each. The latter rcutine performs the reverse oper-
ation of unpacking 10 characters per word into a one char-
acter per word form by use of the CDC DECODE statement. In
both cases an 80Al1 format statement is used.

The above operations are needed when packed chara-
cters are to be examined singly and then repacked into

their original form with any necessary changes made.

APPENDIX F

COMS FORTRAN PROGRAM LISTING

=256Vl iNAINg =Y 3gry?

NINI=gaavl*HaMNd LNy

prem

n
i

{
~
19}

Wi g

(&S5

n By
E SPRING OF

AOH“OI .
OO | WX o
b= D .
Vr<<aIOZ OO0
e o
UDuwe -~
IQoCT a0
- 20 W
Zr-Zozne
rarylivd o
oOFXraI--Ca D
LU AayLwZow
X ==z
ruuvaoZ <t
Ui XL Z
-0 T+C
Wt J | W0

WX CCH Ut
cCyay >
ZUZT X o ek
[T 7179
aaZouua<«g
LWL OQOM
Ot Wt b O
Z . oo >no
. e
wwneoxxTo
L e >
Z | TNy
- CDOul
T OLul
QW =oo
LT e O
T iweraxo
—li>> >
w 'z nIT

LY ORIENTED TOWARDS

QLU C e
I aooOw
L = 94 <)

T o o

CUNaT-ZCUNLCOr- O

XN A JNN M>>I OO0
IO <IN VY TH-ZT Z2T3W T Z2=eZNu. OC
KYTT X EL U DRl C X
PLOERHD2D> COoO> - N0 =
N <Ol = U rSY o LIZD = | -

Zuwe | CcZrncaJcluoe ©

Z2TH CSCUVOX Hoe

va oo

H= D0 O0OMm

g
Qu X

0 «JO TONICT Qe ey

UTSTmSAQO
o> .

ENLLWONO
D W

ITOTTIO I

<
4
-
7]

SNTRﬁTC b

UZOROCCO U0 CZ 20w <a0
—Ir LI CUETargaI-Z>CI L

XX CETDLOT =T
O oD e o o DU HIWV) |

123# O X

[

| X O e DY Y
WOHWHEHOAF
_FTSTRCYGH

)
o
oo
w

%CCCCCCC%CCCCCCC&CCCCCC

~0D~

_—
4
-
g
=z
J
-
J
| -
pd Q
w [-4
x -
| ben]
o > O
- - Z
a b4 L
w O o
c <t
X =
w < | Z
[&] [+ AN]
— Cloe
ol O |-
<> [
X a |«
[Ty L) -~
| T Zz | X
o - =z
T < | D
CES- I D
i I e
cOoOZO W|w
| auiD T Q
@ - T_A
ST . 34 o
Y+ T8 o] = e
Qb O e
| S - x O
_C <[~ | TR of
cOxTXET (&)
PN ol w
lTOTIT [TER N
I P o
- O
< | X
Q|+
2
“Q
N
=z
t [©
2z X
o =
@ O
- O

w

J

LCOLLOLAL O
| !

8 ~INITAL- INITIALIZES ALL JICTIONARIES ANO LIST S
éQG CALL INITAL
G ENTIR RULE REAUING MODE. PAGE PRODUCES A PAGE HCEADINS

e e e

g
)
9
p=]
D
(]

101 5
wi‘ruwoum p,207)
éoo FORMAT(* UIGIN RFADING RULES.* /)

¢

-
(]

Nl") AVC_PT ;O HA J{?b

[V}

~2

o
3

)
‘)1{}7?1—39)‘?I e —

-
C-HO

MoOn

INTERPRITING M0ODE

r
M

N

OO0
g
Z
=M

- 2
m
G

0

Py221)

I
|
4
|
1
|
f
1

r
e T I
2
D 1 O

e O Z
~paZ I T
lan “OD

W)

&

LN INTP3°°FTIW RULES.#/)

<
w
MTEOEO 4 Ko o

ZOOr U
UA
X

FUNCTION LOADI(X)

-STRAN- ONLY

INE

SUBROUT

IS CALLED FROM

-L0AD-
FENOT L4

CCCCJ’C

<¥
a o« = om
Y m L 04
- X0 |er
=D (DY e
L ol P =
o~ Y .o -
c T L PR FEl
b e - s B Cn

T e JOI TN
T b e
g G ol Ao)
MVHH:\LQNDAI:V\J
TN e T T
DU el iy
e DT e e
- e 0D ey
Qs &T =NV I -
B AR VIS Gt G MO I
NS N

TN el Y e
C) o7 o NN
ZIC =0, S

= (o= o TRW Pt
O Y e <X 7D
sl S e
AN L DI T -
e el 7AWL
~ L ey gl
AN T 2T
~ e 1 e gz
D L T e
N w3~ ¢ el
e e DAY
NI F TR YO M
THL T O, T .
LTI IO, L C
WRTZD e'™ 47T
£y oD T e (D
ST SEEA NS B SN e
O e e e LA
Pt OGN, &Y T O T
UM T Z DT -
O~ QU =L S 102y
e s b (D e A
YU SLITG TS eT
TV o™ 7 e, ™
NSO N U AN Cob-
N 2T e SN .
U IS TN Ty
Dy 4~ ey T
O AL S = O
T ey T2 LIGL OO
ND V2 IoaENU A S n S N |
NN s N TN
ZANX e T Al e
OO YDy~ TIDEy
SIIOYIT Z(S U
FELRYWT N T (D
OOLIIDZIaIDZ0O
(XD « 0],
D L] A

|
,
!

> '
B
wDu <3
| T
L <X (&)
' '
j
=g >
_r.l <1
: n
| = o'
MI <T
- (e}
Ll (28
[oy z
i - i
!)
L VR AT R,
-QQJ S
OO0 o
 dad
y O
[B &
¢ [] <y
R [a’d
lwz
T B of
o D
, X
i 1 w2
| beb— O
TOOWY At
._LL..N
L o
~ ot o
z'c <1
O O
(G IR
Ll o - ~
M T D v
L -, <L
e~ = T
-t ,OM &)
hand oz "
bl P g I
(@] < uwu.
O Z e o
~ Y Y ™
TETH Y e
ut Y 1 DY
[TS T« N« &)
Z , wa . agg
o TA Y
R Yl
< D
= 1y =
S T YO0 R~ QR WS |
oD g 2.4
haad N o o <I<1
wWow Hie o OO
[P T? e
e} R N ¢4
= .
¥ '

sh
Cr O QOO0

CONTAINS A LEFT

~CHAR~

IN

STRING

ER

1AR $80 4 PARTNL)

IF THE CHARAZT

INDZ XL
IF NOT CARD IS IGHOPED

2HIHNE
NTHESIS

TE
RE
[=

|

IF4TeENe0)- 30 —T0- 4
N5 = I 4+ 1

I
It

|

|
w
|

VOOV VOO !

(@]

F-5

| 1
OO OO 000 OO0

i
l

!

OOOOOOOO

®wN

!
|
|

FT PAPENTHESIS IN THE REMAINING CHARACTERS
Iﬁg),ﬁ yPARENL)

I O3

S L ING T O F T4 UL E—HAME

GT.NAMLIM) NIH2=MNAMLIM

D80 THE RULE-NAHE-INTI THE VARIASLE ~RNAME~ AND ENTER_TL IM THE
DICTIQIHARY

CALL PACKICAHARIIBG)Y yRNAME,LZMNCHR)
UEFINZ- IS AN £EnTRY POINT IN THE FUNCTION -LOCATE-
I = FIJK(?NA1;,UICY)

34}6%“ THM LENGTH OF Tﬁ~ ATST OF THE RULE AND PACK IT INTO THE ARAY
-3 £=-
LSTORE(I=-4) = 81 - I36 - J
JTE(4)
GALL PACKICHARIIZGHN) ST ORE {1 Tris} o STOREL{T 43— -
GO 10 1
TONTROL COMES HERE WRHEN NNLY ANE LEST DAREN H REEN SQUND ON_A CARD
wHIQa iN auin NEAJLNG 1 JE THE 55?0 Mugf CON?AIﬂrh Camn%w PSEUI0
CPERATOR OR GI-TI (RULS NAME) SURFPUUNDERD BY PARIONTHESTS
TEST FOR A 9IGAT PARENTHESIS = IF NONT FOUND THE CAPN IS IGMOREN.
IBTAIN-THE LENGRH_ 2 24 0 NAME Ai}hrdfﬁﬁﬁtEVGTJ IS ol S -
J = INDOX{CHARI(CIZG) ¢81=I14PARLNRP)

9"';&

IFLJ.EQ. 0} GO 10 1
NCHR=.J-1
. IFINSHR.GT o NAMLIMI NMIHR=NAMLIM
g PACK THE RULT NAJE INTD THF VARTIARLZT -RNAME-
yb CALL PACKE(CHAR(IBGY20AMEy NCHR) o
g SHEZK TO 3EE IF =RNAME- IS AHY PSEUUD OPERATAR (COAMAND)
c
é*#worE(S)
16— DO 24 T=14800 e
TF (00 (I)2ENRNAME) 50 TOIL1u092L92241074N8,102,103,1069105,106) 41
2u CONTINUE
Gn To 139
21 LOAHDE . T2US .
cé iy
22 0N = FALST.
. 69 To 1
g"'ééIMITIALxéﬁwfﬁEmkﬁﬁlé PROGRAM - T
100 Lg4ap=1
BUTUIN
102 TRAUE=.TRUE.
G 19 1
103 T@ACL=.FALSE.
T Go i3 -t
04 LPNUH=.TRUE,
Ga 79 1
105 LPNCH=,FAL3Z.
. Go 1o 1
g -QDLEX- IS AN ENTRY POINT IN THE SUPROUTINE -SETDICT-
i0H— RNAMZ =N S —
CALL POLEX
IFIRNAME JHELENDY 6O T3 113

GO T0 1

G

8 STGP THE RUNNING 0OF THZ PROGRAM

107 gOAO 2
- DETURAN

138 CaLL %UrOUT

c GO T2

G ~3INAME- WAS NOT A PSEUIS JPERQATO? £70MYANDY IT MUST BZ 4 60-79
e Ruuveg WNAMLI

C

1813 LOAD=3
T RPTORN e N - ——

£ND

SUBROUTINE INTERP

~STRAN- ONLY
T
Pl
S
9
A
i

i
¢
8

YL N I ST

o~ T * e j<I

] W DS PO NS T

<3y D AT

e 1T T .

e DT Ty

ML e &0 3

Z 3N T

XSO X

ey TGl ~

el Dar it -

Uy «COTIETTDIM

AT el oV

<Cr Yo} eon &TT Y

O feTlm > = »

[BdiNaR St Wi

e ZOLMNINID

o Too TR Rt N T Vi i

LD e (e}

LI D1 4D

I TP ey)

NN T D e e

A0 e OO L

YT A= DU0sTey

[M IS TR 4

be (NELU]O ¢ T Y

QO b=~ O

Y e AT

TN - T

TICZY el Z

CIAOIV VDT O 0

ZNT OIS

T M TR T k(D

ZEAD JOZCDW
(Mo ST B 8T 4

~ N

SUBROUTIN

CALLED FROM

I3

<

UN/GN
N/

COMMO

SJUBRIUTINE

GCOMM

THIS

Ll

FENOTE (13

THTONUMRTR -

-
+

oo NT-

DR

STACK- AND-

TriF

L

XT UL

Nz

fat
I
b 27
—4
=z
bt bg
<f <Xl
=7
T
(w3 g

[RIN
e lyd 4t
— 0
bS]
e 2 b
0

(o]
QOOL% O —AOOOO™Mm

X)

; oo N

| .= ,,

| o :

1 _ g i
| D :
[T !
- |2 1
<f , = -
e I ¢ N>
oo . w
[P (@)

j | 18 s
(72 [(o4
- [l e

I (ko]
14| S}]
= ' ! <t <t 7
<f ! | g oD
= ! S Tr4

! P x T e
1 w ’ (] (1]
FE I 1 RN
ol | w 1N
x ! o ;o b2
=, 1§91 \ (158

i % Y .
- ol RS e

- p] . 59 P s Jass
v [&) bt e RN

' [& -~ < VT
o [ey 2% I
Li} -t (U oo §
L 7] T < ! Y R]
Vil -1 Z% e ~ (78]
o o & o b (RSN TR ¢
N, . «T O
o (¢4 -~ - T
W o) STTRETY G Y
Lo 0’4 [. L e P
ZoM (Y N e —_~ KD
= L Q- F N ¥

(@] [a] []
[FU I et T [BRI VY]
o PURTS NS S = ~ TIT
o —Me D 1D o~ et e
S VW e OMDr ZY Tw»
o V) = T Let | ISV AU
~ b T JT e O
ny ¢ % ~—)0 o Qs R TR
~ 2z oWl wnr oulid L (@]
s BN ¥3 SOy L) YU Ll
o o dm <DV~ TI> Y™ 4D
(&K o T4 T ¥l - Y
- 4 Z 6~ —4 X N X
> . hadi = PO IS o R L= §
iy Ly A Uy el T 0 3D
A M VLR S e 1 A no I .2
<X O LT 13 R]
uy Z O O Y n T a4 o
T o CriAba? D <113 I
-~ b e (Y s g B O |
W o HLLu O XXO Od9d X
L el Ok 3O <Ird
144 [E% o PPt Ly
(8] -t n - U=

[)
QLOILTLLCQ NOOO IO QO

C

C
FEEMOTEL
C

OOQCOO

QOO0 [vlelelNelelyl aAOO0

QOO OO0

2)
IRREAK = TNDEALGHAR L CHAR G 3REAK G2 - oo oo o S
IF{IBREAKANELD) G0 T3 5
SEARCH THI RJLc FO2 THI PAIR OF TONSECUTIVE LHARACTSRS #3)7
IF WEITHER OF THESE CHARACTER PAIRS A2E FOUNU THEN AN £5R0R HAS
JCCURRED
I = INDEX{CHAR LCHAR, PRNR,2)
IF(ILFQ.C) GQ 10 777 e
RULE IS & PUSH=0DWN RULS, CONTAINING A SEGUzNGE OF PULE NAMIS,
P ACZ THE RULES ON THE PUSHDOWN STAGK
CALL PUSH(CHAR,I-1)
GO 7O 3
BEGIN INTERPRITING THE RULE o = ot e e e el
N3G = IBREAK + 2 ‘
FIND THE RIGAT PAREN ENJING THE 6O-TO SEGCTION OF THeo 2ULE
NEND = INDEX(CHAR(NBIG) ,LCHAR=NBEGHL ,OARPEND)
IF{NCNUSEQLA) 60 T0 777
NCNT = NEND - 1 , - e
FIND THE COMMA WHICH MAY 3E In TiF GO=-TO SECTION
NCOM = IPDEXiCHA&(NB G) s NONT € 0iiA)
IF(NCOMJLNE,0) GO T0
NO_COMYA FOUND, SO ONLY ONE GO-TO NAME., SET -FNAME- AND -TNAME-
THE SAME S B e

IF(NCNTSGTNAMLIM) NINT = NAMLIM
PACK THE FIRST RULE NAME INTD ~-TwAMe-
CALL PACK(CHAR(MBEG) s TNAMEZNCNT)

Fuhie = TNAME
GO TJ 10 : e e e

0T-4

c
) TWO NAMES PRESENT. SEF =-TNAME~ T0O THZI FIRST AND =FudME- 10 THL
8 SECOND
& NCNT = \NCOM - 1 el
IFINCHNTGT-NAM_IMY NINT=NAMLIM
CALL PACKISHARI(NBEG) s TNAMZ 9 NONT)
NEZG = NBESG + {T0M
e NONT = NEND = NGCUM = 1 3 IS(HNOUNTLGT.NAMLIM) WNONT=NAMLTH
8 PACK THE SECOND RULE NMAME INTD ~FAML~
. CALL PACKICHAR (NBCGY e FNAMF g NUNT) oo o oo
8 JEGIN BRAEAKING D2WN THE RBpUY SECT10H CF THE PULET
éﬂ I = IBDNY{IBREAK) & G0 T2 (0014300247724 777) 41
*¥=NIOTE (3}
g
C THE FOLLOAING £090< QEFINZS THZ vaxIOUs #A4YS 1RAT INTERPRETATION OF A —
L:a RULE 430L0Y MAY COHMe YO 8 END
E CONTROL CIMFS HERE IF NGO ZR?PIRS dAVE 2CJOUPREQU, AM) all OPERATINMNS ON
c THS LEFT SINDz QF THE RJJY WexE SJUCLSSFULLY UARRIND NUT,
g RNAME=END INDBICATES THAT THE PReSaNT RULD HAS MODIFIZD ITSELF
6501 TF{RNAME e NEocNJeANDRNAME, EQ T HAMT) 6370 40 - e
c RNAME = TNAML 5 GO T2 4
8 CUNTROL COMES HERIZ IF SOME 2JRPERATION ON THE LEFT 3IDac HAS FATILED
602 TE(RNAMEIZNE s ENJeANDJRRMNAMELEJLFNAME) GO T0O 17
c RNAME = FNAME 5 GO 1D 4
8 SONTRCL CoMES HER WHEN Al SRR0OR Qoo UNnRS o
775 WRITE INJUTARPLT776) yNAME 5 GO Tyg 612 . A
775 FORMAT(*OVARTIAZLE NAMIN *413% IS ®0T YLT STORUD. ¥)
777 WRITZ (NOUTAP L7731 RNIYE » LI TO 3
778 EO%M&T(*GE?ROR HAS QOCURRPED In ANTIRPRETATIUN OF *A1n0)
N

-~
v

FUN

F-12

TION IBODY(IBREAL)

- i
T r 1
o <y T) |
e b ! !
T IR B V0 B ‘ | - .
) 37D o= =z " L X = ,
i o 1] o ! (@ ! (S |
> | or e 1o ; 4 \
-~ L oy b . =z o i
= i cLoe [BN : =) | |
< i —~ it O B e U VY ' — | 14} !
, FOOC T . N S S - i . :
v N co < o — |
e} i N IR S > 0T i I i i
o IO YT e oo - , v L |
(o] i el DO AL - gt Cue ot ' c ; o :
b— Tyl et eI T e S - W ;
=z DAL B IMH T BTt _ noox ! &) i
- I ORI e TS w1y D HENECH IS a1 . O bl i - i
q | T SRV UG Yo s a o owoo ! O A bt ,
L2 TRt () - ol & e i : =z ,
wd R LV IV LS A Ry Tl ul s BRSNS TSI U =z "
Z ! Dh= 20 e T e —a4 X po - |
- QD oMY T e ey o< o (=T &) !
[H b = To N Vol SR T S 8 T o, 1] X A%} |
D L AN S ALk APl —~ ODW YO o X c !
o | (S b iel g I T e Ly b=idr T [t i |
o <D JINYIT Ty e T A ke T L. : u ,
(3o T b D) oY T Ol w0 HZW AT > ' T i
o ! T ATl ey P ey [I [T o VAT S ol S P zZ > , [,,
[S I e WA Vo TN F oo) Z e H e D -~ ‘ |
! e el e el (LT (RS SRS SR I PR & =T : (&5
b3 : Pt STE RV TS F R RN S SV Ta S [N ST S] T Gl Pz (]
) NATSAL D I N e L e R S et A o v st -~
o ALY e 37D e TN e e -4 TR eo R Tenl o)] — v
u. Sl A T TR0 O ViiLul TYIN0 ulow <
Yool o ehe T IO ODLL SCUI o] oo}
-3 TXD L A eemddbe T 13 b T UteeaT oY - X -y o
7Y DAOT U LY Y ZUee NS Y (n o] -l
- TYT DML T LS L = (D 2T L L - Z o
| cL Ll D0 CRIn (e e LT S = o (Sl
o 4 Ui g »CASTTITD e 1 Nl DL, D (22 O
[} (% eI T oY) TT Nl T OO0 b =z = —~i0
L (3. S ©TTIT T U M g0 O 4 [N I
n O N3 T e e O TAACY P A IO - e T L <2 (N
4 el oD QL sl O QWL Y A -Gl WY X N D2
Lot T T S Ko Bl TR N S S TWVCEZ I I o] o]
[O pr2ldag~eoy 1% (D AN). D vetld L)l N wh
> Tel(D elt—~r e eT 7l QLT =Y Teal-ii iy & ¥ . .
m QUIIN O 2 T e b (AT IO TOA LD T Ll —~ < uno
o WHADD 7 e e >y T Y Ber TTAOODA — T [Zu!
m NNNWERTDO e o0 NN INY'Y) OW N Z > e
=4 UM e DN OU! - - AT -T2 N L D N LTS VS Ron BN Nl
¥ L™ 11BN E S AW b= LTS G I 1S B A z o D
OEVY Y i eTal ™ Tl T O ey ul LI ¥ Tos BENREY L451
z (S A D T TO e YONTALOIOR~D 2 D u) I o
(o) ZR o e T O A2 e WO UL — W el =
d Iy O oMy IO W b Y| o I -
- NANN N =Y NTZ NIYD>T e s e X v ¥~ i
(& CTETTOIN ol <@ bdb4D Ul LI s ¢ e e < C <
=z DO DI YD Dy 4 HWhe bbbt @ v o 0 B 3 M owl Tul
o - EIEETNTOC vt I 1t ™Y T (LR =z [T o R
b ot FTEIIA I ZT) NI LL E O) Y -~ N by
- OO0 TIO 1IN0 LT OREAQ U D > o O W
Led W WD O e dHk4 1 D U2 >WO/0 0 O ZO D e
T - ~0N SO ZZTZTNZZVHOOOO a0 T
[- R S L oW IS T P [$Tsa] (&1
=
*
% © B
GOOL* O (OO OVOCOLUOO HOODLOOOL []

=0,

vlely

OO OOCREHOOO LrOOOH

QOO OCOO0 O0O00K

[a¥]

(4]

vie

(o]
4.

0K FOR / INDING THE NEXT VARIABLE NAME OR ASSOCIATIVE JOPERATOR
NDEXA{GAAR (NSEGY s NEND EuyBRCAK) & IFL{I.EQedy UGN TN 777

S IJU%—.F&Lbﬁ- 5 IEVAL= FALSIe- 5-NBG=NATE-5- IREAS= FLLSE,.
FOR THE * (THE I=0 UPERATOR) IW FRONT OF THY VARIABLE NANMD
RINAG).Nu_.llSli

.ThU~ 3 IF(I:
N3G 4+ L 5 NULNT

m ZZe
—Z i
" o—i
] H

(9
XI

(@]
it >

SO O U O
. AN

Gl TMww
p=2
ol

N 10
Netd IOUT=,TRUZ.
N 1

it

[}

X

M

oMM O

KN L~ A
h=T e

> O

W0 Ju

o Z -
- Y

-t AIG e

Ce in

o (T <.
« =

(@]

x

(]

<

> &

.._*

-

=Z O

Ve 3
-’-—(

> O

¥4

(V3]

O

a

[

>

—

9

-t
nn

VARIAZLZ NAWME INTO -vHNAME-
CALL PACKICHAR{INBG) VNAMI,NCNT?

¥ENITE(2)

o

~

IF(ISIDELEQ.1.01RCAY} 60 70O 10 . .
LOS = LORATEZ (VNAME,OIST) 5 IFtLUC.EQ.N) GO TO 775 3 50 T0 20
DO 17 I0P=1,3
-30MND- IS AN ARRAY WHIGH IS INITIALIZED IN SURROUTINE =-SIZTDINT-
COMND(1)=1HS, (2)=1HF, (3)=1HA
IF{CHAR(NBEG+1) «NELCIMNOLIOP)) GO TN 17
D3ITAIN THZ PSCUDU REGISTER NU4SER WHIGCH FOLLUWS THE FIND 2P
ACCESS ASSOCIATIVE MEMIRY OPEPATOR A&1iN ¢UT IT IN -NTRAGK=-
IF{I0P«5T+1) CALL GEINUAINTACK,CHARINGEG+2) 51-1) 3 61 To 30
CONTLNGE
INCORRE

CT FORM OF AN ASSHCIARTIVE HMZuORY CALL

EVALUATION OPFQATOR) -IN FRONT- OF NEXI- yAQIARLE -MAMI

E1-4

HAS-0RVIOUSLY NOT-BEEN-STARER————
N -LOCATE-

-
»
*
-l
-t
<X
(&)
>
(4
(o]
Tz >
w o >0
¥ = e
z T
e O pd &y
O oz
O - -2
[79 B —u
(7o = (&)
< Ow [T
ox
NZ Wz [
cH T ZO w!
O =D =
L [ea]™8 e bt
CO Zure
PO IEH Z-
(&) =z —Z
o wmo i
va ¥ o wo
C e a
o zow <
- o zZ>
-0 EWR 9
My Y [39]
oy mows)4
Ny < ocu
O HUZ <r
00 &.J<a ~Z
<z < o<t
Pt Sl <1
oo —Z >
O% (Ll =

DEFINE(VNAME,DICT)

¥EENCTE(D)

CIATED WITH A VARIABLE NAMF THROUGH THE

Y -STORE=-

80 COLUMNS) OFF NEXT INPUT CARD AND STOR® TN
D{STORE11,L0N=4))

<

TION (I.E,.
N

= 8N
NRE{LOC-4)

CAR
LOC-0)
LsT
G -UNPACK GONTENTS. OF -ARRAY ~STORE= INTA THE ARRAY =~TEMD-

Ow N

-LTEMP- GCONTAINS THE NUMBFR OF rHARACTERS TO BE UNPACKED

o
Wi
Ix
[F3] o
b (o4
| u>
Cu
u
(=) Ze
- oo
Q. - [ol T
o o -
L <t o
= Wz
wd wn (751
- o
- 18] L€ -
] X ¢ a
- (4 O
- G i
-~ U - b2
- Cod =z m
- wc
[« X =z -
-~F C z =~ O
a u! - oo D
b g o (4 we=z o
[T P e - D
— e e -l
e O <« ,
e¥Xmo ao axc w
Q <eC pd —p— <€
TZ e D w T
ui>t ZUu TN
- b | - Z X
P Rm -—u O
-3 o x> o
TR (| ow (74
to - — Zuw W
O @2 [ani +5 :
o et Wiy <uj P-4
AL D WIo <«
o)| ot
- Ty [TER o T agt
-0 xrm IO Z
WZW <« | = = 2
e~ IO z O
ouwm OH <+« =NO W
- i < -
U > O 7l B
- TO b NHO O
¥IEI -G O Tw 2
o > QL Z owew
< - v | o o w
Gl® U H =X
< O (o) C —C
DA)] e TN
el = O Olbeb-
T 0 @ L el
A < " eDX
SUO kb) Y
Okl N0 - O O«
[l Okl
[LTBFJ
e ;
o i [~ !
NOOLOMO OO0

WNOCCO ¥ COOO

COOONOO0
[av]

)

—
<

OO0 QCOO0VO %

QOO0

OO0

SO
[==i¥e]

.= IS THE LENGTH OF THAE SECTION
L o= INDEX{OHAR(ISTART) ¢NEND-TSTART » ARIAY -5 -TF{L-EN.)- GO-T¢

[\
-~
4y
™
f

I

i

FENOTE(W)

CHEGCK TO SEE IF THE / W¢ HAVE FOUND IS SJURROUN3ED 8Y QUITES
IF{CHAR(TISTART +L~2) 2N 2 QUOTE 40w AR ISTARTL) WNF. QUOTTY GU TO 32
I=INDEX(CHARCISTART4LE yNEND~ISTART =L, B AKY 5 -LFLTeE2,M0) G0 T8 777
L =L+ 560710 31

SEND THE SURRINT 3EGT

IIN OF BJUY 7O FUNCTION ~IPATRN-
NBEG=ISTART S I=IPATRNITOR,ISIART L) 3 GO TO (589,6024775.777) 41
PATTEZRN IS COMPLETLD, 30 FU APPRUPRIATE SUClISnN 0OF COIING

#ANJTE(5)

JOP = I3P + 1 (600,010,6114612) ,J0F
IF{ISIDELEQ. D) "O TO 11

ALL THE EVALUATOR SENDING IT THC STRIN.
ROY =-TEAP=e THE NUMDLR OF CHARACTERS 10 R

IF{IZVAL) CAtL EVAL(TEMP,LTEMP)

Vr
[ep]

o
—
w

v

PACK THE CHARACTzRS IN ARRAY =T tk- (STOREZD ONE PER W232Jd) INTO
ARRAY =-STORE= {WHcRe THREY AT SUOR4g 10 PER WIRD)
CALL DACK(TEMP,>1O%-(1,L3' ﬁ),uT?ﬁ“) 5 LSTOR:(LOC=-4) = LT=4P
IF(VNAHMZ L Qe RNAMTS 2N& A2 NO - S S
TEST IF CUTPUT OF RIGHT HAND SIDu {le.te 2IGHT HANI SIJE JF EQuaL
SIGN} VARIAXLE CIONTENTS IS =28 UlREQ
TF(TRACZ) WRITZ{HNOUTAP234) VNAMESLITEMP{J) 9J=1,LTEMD)
IS PUNGCHING OF TH4Z SAME REJUIRED e

Si-d

9T-4

NN, OCO

NN D b b e
NI i

T et $ord g b et bt bk pet ()
WD DO e
| RO EOIE OIS b
I, s
ha S Gt e] N2 2]
HHuoH N [P
AN DL DU
(VAT e 1P
ARG el (N = >
VD]
A AT NI IND
POV s (1150 e
o e B B I AR 4
CCC I o Z oy
PR DACIEN B VR ot WL T)
Sl LA
[N e I W A
P TUE e e
R e
P v L
“d L0 g0
VELE O
DS RE O
(R N |

T

=
A
=
4
&

ZHY

3INOC

Sih

4G

IHL

N
[we)

=réArde

{ob 547147

<

FUNSTION IRATRN{IOP,ISTART,L)

¥ h
' - P |
. < ' > m
i [s AN W T pe !
' A S P o« - ,_ tu (] |
| Paghs atas TN 2] o — | 2l i
: LIRS o x4 x D a4 ;
> ' T e (e g4 c] (%)] w! I
4 it T u ! <1 ! = :
= L 77 e €L - Yo s 4 J ! - :
o , C i b e T ' T O) n :]
. [T TR S le. [®] e K =
! ' N1 O~ o oz et (%] tt <t '
o -0 I~ I I To T = - ! |
23 , «2Z e X e =] ‘i 4 n g ,
w DO DT~ e N (G ‘o 3 rt [} !
- ; g DL O T ZO 1 =z (Sl s !
= ab e e T D O il | L4 [E e
-t PLTO Q0 DT e Yn 1z o > =
1 O e (D)o e - " ud D d i v
) L e SRR A 4 ol] sy Qo+ X o
Ly 07 T 2 e b o - (%] b
=z OXuNINNTZTT o Y4 ke D Y v,
- ! W N RN I | : V7 T I b YIRS
- N WY e el e Y i ud O ted - Lt ot
o —_Y e NV O [Jo = a |n 2% <
O ! LD Sa R X a0 X e 4 < b~
V i b D3 e Y X | <r [T «r
Inel) YD T e . s e bt . Z ¢ w a4
o C o0 T U b= Ir 10 1 Wl = L
" R Z T e e Q= a3 S il
YA O Nl K T t Z er ' sal Y | &
pixd RN G T AT oA o g of > =z
C Xt ety e IOy Y O [T G d
[x SO N - e b L b= tn = b ™
. HERE N LN S A e 5 7 ey AN -
(ST NN o W Relt Dzdie- b, SR = Z T, he Z D T un >
o ell. s «0 e | HNARE Ok by b= I XY =z
Led TCU A~ o~ T <t o — - W bt
-3 YTV 30O 'y Z 3 Za W NnZ >
- ZOOL YT~ T CH> =0 O O r4 we =
< AUDIOCTA & X a. [N s R 75 TR S Y 1€ Lo
[wd SCITI TN O D [s34 s Y r 4
e et e Y (D (& P T2 b=)) T . [#4]
7 D e e) (72 =IO TR d ' Al T o Whr g
— M DT e e =T 4 lollis) il o\ st N D 3
W e ZON0 s = Az U Ay D o OO D
! —~ NN QA 43¢ uity I (U5 = e on SN S
= ALY - N L ST %} PR & B S G I TR = iJd on
a4 ES ORI NTRTSEE S U R — TLIO ZT O OTe W g XY
b =38l B NS LN B ¥ - b T N4 bw=t T ~ —
1 O e Y e e <t o LY 6 b= A urd oo
a NNUMDDD wE < G wn b (N t —%
b= A e Gmt-m» 3 A UD N ke D g e =
[T AU N L O n —_—O O (a2 TE R N TR R o SN T
EYY IV AL Ym (@] I 4 Y <TU)l ke N 0 Y
=z e DT O oLl << W) u. Ot D QU 0 L
< ST LG ST Y (i D Zew PO LY et - T
P (N Y N T w - fid ox Y O ks, T
b MN RN Y =) o N ZXw T ZA OO N e X
(&) ZZITOTIY ey << Z 4 HOY Y Z o Q
= OO Y'D ot W o g [T ¢ BYoH ua N o
oD ~ ET TTZTASIOCL QA b < v - =T T T oW
ts ~ I I T b A g k4 M LY (O P n of
~ DOZAQIDZT e O O k- ZILx oL o) m win N Y
wd [T deTdh) [I N T B 7 S S R LIy ol OO S b4)
T [L [AS TS XV —4 Pt —HYe T D Z Tu @]
- o] — 1<IT0O thk— -)
=
»
o3
L3VLOL* O (00 O VOOLLOLOLLLLLOLWLWLNM QLOLOW

IPLUS = INJEX(SHARIIDRIVE),[ENU-IORIVE,PLUS)
NITEL2)
IF(IPLUS.NEsQ) G2 TO

3
N3 + STIGN CAN B35 FOUND ArF
INDICATES {dcz ENO QOF TAHc

L

-
oo - - 0O G OO

THE NEXT COHUMK CF PATTERN, THTS
ERM

OO OO0 CQOCOOO0 O $#0OWw

SET -I7LUS- T3 ONS MORI THAN NUMIZx OF CHARACTERS B3ETWUTEN 3LASHES
IPLUS = IEND = IORIVE # 1 - o o e
SCT END OF PATTERN INDICATOR
ISTOP = JIRUE.
FENQTE (33
IFTIPLUS.EQ.1) GO TO 33 . e .) .
. 60 TD 25
g 3HECK FOR QUOTE AT BEGINNING OF STRING
és IF{CHAR{IDRIVE) «NE.QJOTE) 33 79 35
C LOOK FOR SECOND QUOTE
é IGUOTE = INDEX(CHAR(IDRIVE+1),LlENO=T0°IVE=-1,QU0TSY 42 777
¢ TEST IF PLUS SIGA IS TVNAETWEEW THE THO QUOTED (£ebs ZAA+DE+3/)
IF(IPLUS. bE.IuUOTE) 30 TO 3%
. IPLUS = IQUITE
¢ 3HEGK FOR NO FOLLOWING PLUS SIGNS AFTFR THE ONS_ FOUND -INBETWEEN o
C QUOTES (Ea.G. /72A+327
c
. IF(IPLUS+IDLRIVE-1,EQefidd) ISTOP = .T7UF.
€ =JSTRT- INDICATES THE 20SITLOd OF THE FIST PATTERN OPERATOR IN
g THE SURIRCNT SECTION OF PATTERN BTING FXANINED
35 JSTRT = IDRALVE e
)
!
'_J

(9lely)

~JSTOP~ INDIGATES THE 205ITIUN OF THE

LAST PATTERN QJPERATNR

L IN THE

- JSTOP = IPLUS + ITRIVE - 1
§ -TDRIVZI- INDISATES THE £0SITION OF IHE NEXT PATTERN 0PZRATOR
¢ CURKENT SECTION OF PATIEON
¢ IDRIVE = IDLVc + IP_US
€ - JCHAP= CONTAINS FIRST SATTERN OPFRATOR NR FIRST CHARALTER OF FIT
¢ PATTERN UCERATOR
Z JCHAR = CHAR(JSTRT) - o
2 ENOTE (4)
° ICHAR = LCS(JUHAR,6)4ANDL773 § L = IVAL{ICHAR)
g* NOTE (5)
éo=r5L§§é§f?§%f§5§,ggg,goﬁ,365,777,777>,K
335 IDIVE = TIRIvE +T1T8T607Th 56
¢ LEFT SIDt PATTERN MATCHING OPZRATION
§61 GO TO (B1,777,57,535,66,777,75,73,777),L -
¢ LEFT SIUE, ASSOCIATIVE FIND OPERATION
62 GO TO (777463501, 3330777+777+62,777,7771 5L
€ LEFT SIDE, ASSOCIATIVE AGGESS OPcRATION
635 60 10 (777,60,777 1333277727772 777277727773 5L
¢ RIGHT SIDF, CIMPISITION OPERATTON - o
gsq GO TO (7779519777 9833577740337,38,777) L
¢ RIGHT SIOS, ASSOCIATIVE STORE OPERATION
%as GO TO (777,54 s777,353,777,777,509,777,777) 5L

6T—od

<x

COOO0 WwOOOoO0 C.OOO(ONOCCUOCZ QOO0 KOO
Ne]

CALCULATION OF =NDIFF= SNSURES (0 MOOE THAN 81 CHARACTERS ARE 0OMPOSFO
INTO ONE STRINGe =L INoLIM= Io INITIALTZOO IN SUSRSUTING -sEi0TCT- B
7 NCAR=IPLUS~3 I MDIFF=LINLIM-LTRMP
TF(NGHR.GT NNLFF) NC42 = NJOIFF
MOVE THC RTAUIRED CHARACTERS FROY THE OGPIRATOR STRING TO THT SToLMG
BEING SOMP0STD AWD RESIT =L1oliP= TO INDIFATE THE CURENT NUMBER OF
CHARACTERS IN THIS STRING
CALL HMOVELCHAR(JSTRT+L) s TEMPILTEA=+1) 4, NCHRY
CTEMP=LTEMP+NCAR $ 63 T3 33
W]
C PROCESS + FOLLOWE] RY A4 INTIGER
1
g THE INTEGER FILLOWING THE ¢ JPTRATOR IS FOUNS fued SLACID IN =T~
ga CALL GETHUMII CHAR (USTRT #1403 USTOP=USTRT=151) oo
EX#NOTE(7)
i
. I =71-1
E IF -T- EXJEEUDS ~LINLIM= IT IS RESET YO =~LTNLIM-

PROCESS RIGHT SIDZ COMPOSITION STRINGS

*NOTE (5)

PR0CESS QUOTED STRINGS FOR ASSOCTATIve oTORE OPE<ATION
“NST= KEEPS TRACK OF THE PARTICULAR ZSLEMcHT OF THE SURRSNT N=TUPLE

SEING CONSIDERED (T 1AT 1S. =NST= CAM F£aUdL Ly 2, 3 02 4]

DJEFINE THE STRING 45 ®ANT 0F AN M=TJPLE IN THE ASS0CLATIVE MEMOPY
NSTENST+1 5 NTUPINSTY=DEFSYM(CAARIJSTRT+1} ,IPLUS=3) & GNn TO 33

520CZSS QUOTEZ) STRING SOMPOSITLION OPERATOR

~NCHR=~ CONTAINS THE LENGTA OF TH:- QUOTEJ STRLIWG

IFILeRTLINLIM) I = LINLIM e e e e e

0Z—~d

€ DETERMINE IF THE COMPOSITION POINTER IS Tn BE POSITIONED BEFORF,
C AFTER OR AT THE CURPENT COMPOSITION POSITTON

- —IFALFEMP-T) 30432440

€ GQMPOSITION TS TO CONTINUE AT A COLUMN BEYOND THE CURRENT ©OMPOSITTON
G -LIM- INDICATES THE NUMBER OF COLUMNS PAST THE RUPRENT POSITTON
39 LIM = I - LTEMP

—§-—PAD~IHE-INBE¥wEENvGGbUHNS-w}¥H~BEANKS-

391 TeMPLIeLTENB) = 1M

€ RESFT THE COMPOSITION POINTER TQ -T=

% LTEMP=T § Gn TO 33

_§ "~ WORK ON THE TWn EQUIVALENGE OPERATORS ZULN,M AND S9N, M

C LONK FOR THE COMMA SEPARATING THE PSEUDO REGISTER NUMBER FROM THE
C NUMBER OF CHARACTERS TO BE GONCATENATED TO THE RFSULT

41

LEINDEX(CHAR (JSTRT+2) L JSTOR-JSTRT-2,COMMA) § IF(L.EQ.0) GO TO 777
CALL GETNUM(IZCHARIJSTRT +2)40L-1

o Zatr CEInOMimCHAR ISR e s S e ys TRt 1y

§ -L- IS SET TO THE NUMBER NF CHARAGCTFRS TN PSFUON REGISTER -~

L = LUHORK(T)

C

C IF THE NUMRBER NF CHARACTERS ALRFADY IN THF COMPOSED STRING PLUS THF
c NUMBER TO BE CONCATENATEN IS GRFAT F THAN ~-LINLTM=-, RFSET =M~ TO
—%mw—MAKEAIHF TOTAL-EQUAL-TO =L INL T M=

o IF(M+LTEMP.GT.LINLIM) M=LINLIM-LTFMP

c TEST FOR AN -R- OR AN —L- TO SFE IF THE LEFTMOST OR RIGHTMOST =M=

8 CHARACTFRS ARE YO RE USF

c IF(CHAQ(JSTRT+1).NF 1HR| GO YO 3873

T2-4

<

C IF THZ NUMBER GF CGHARASTERS REQUESTEUD Is GREATER THAN [HE NUMARED
C SRESINTLY AN THE STRING IN PIRUDD REGISTIR ~I=-, THenN 3JLANKS 4RF
C 40DED ON THE LEFTSIDE JF THE CURPENT CCOvPOSED STRING T =TEMP-
8 T2 MAKE U2 THE D LSFERENCE
IF{L.CE.M) GC T2 382
LIM = M - L
DO 381 J=1,.1IM
381 TEARP(JHLTEMP) = 1H
g COMCATCONATE THF STRING IN PSEUND REGISTcER =I- 79 THAT IN =-TEMP-
CALL MOVEIWIRKA{AL 4T} oI oM ILIM+ L TEMPHLY L) —-F-00 -TD 3R> o
832 CALL MOVE{WIRK{L=1+1,1),TEMP (th“Pri},MJ o GJ T 85
8 AN ZLNyit OPERATOR WAS ENCOQUNTeRED
383 IF{LGELM) 530 TO 335
LIM = M - |
CALL MUOVE{WIRK (L 13,TEMP(LTZ Mpb1)9L)
c 0O 334 J=1,L1IM S U - .
g 3LANKS ARS ADDED TO THI RIGHT SIDE OF THt CURPENT COMPOSED STRING
384 TEMPILTEMP+L+Y) = 1H
GO TO 396
35 CALL MIYELWORK(LaI) sTUMPLLTSHUP+L) 4%
RESET THFE NUMBER 0OF CHARACTLRS IN THE RESULTING-GOAROSED STRING o oo
36 LIEMP = LTEAP + M 3 G0 TO 33
FENITE (8
PROCESS A RIGAT SIDE ASSOCIATIVE STORE,. FUR *XANDLk +°/1+?+5/

O8TAIN THE PSZUDJ REGISTER NUM3LR RE
CALL GRTHNUM{T,CHAR{I3ITRT) 4JdST0P-J
L{

T

INCReMENT THE NTUPLE PISITION IN b
REGISTzR =I- WILL BE STITI, AND S

FLPENCED ANU STORc LT IN -T-
STRT, 1)

ICH THE CCMTINTS OF 2SEUDO
’)’_': IT I!‘ '{‘Lg DOQITTJN

COOONNOOOOO0 XOWOOOW
[om)

C‘)C")C)OO&C)\T‘)OO

OOOCOOOQ0IOOOCOOO0 OOOOOOCOD

oAl

NST=NoT+1 3 NTJPINST)=DEFSYM (WORK(L,T) ,LWORKA(I}} 5 50 TO 33

PROCESS THE RIGHT SIODE COMPO0SITINN OPERATOR CONSISTING 07 A PSEUID
REGLISTEZR NUMBEIR

CALL GrTNU‘(I,u%AP(J)TQF),JBIOP JbTRx,i)

IF MORC CHARASTERS 4RZ TO R PLANTED IM TdT COMPUSED STRING THAW ARF

ALLOWED {IoE. THZ STRING AOULU EXotcd =LINL{M- CHAXADTEBS) THE

NUMBER IS RISTT SO THIS MAXLYUM 4ILL MUG BE £XCroltd
NOHR=LWORKAT) 8 NOIFT=LINLIN=LTewP 3 LEINGH<ST.WILFF) NOHR=NIIFS
CALL MOVE(WORK {1, I)TEA-ILTCEHP +13 (NGHD) - e
LTEAP=LTEMP+NCAR 3 GJ [J 33

WORK ON PATTERN MATGCHING FOR LEFT S.i0Z OF RPULT 3nDY

BEGIN PROZESSING OPERATORS FIR FInD AND ACGESS

PROCZISS ASSOCIATIVE AC3ESS T

NST = NST + 1
CALL GETNUMINTUP(NST) s CHAAR{JUSTRT)Y,,JISTOP-JSTRT,, L) & GO Tn 3

PROCESS ASSOCIATIVE FING RENUEST OFALING WITH A uOLLAR SIGN
NST=NST+1 3 NTUPINSTI=J 3 G0 T 33
SROCISs ASSOCIATIVE FIND RFQUSST OJEALING WITH A LITERAL

W

IPLUS-3 CONTAINS THL NJM3IR OF CAARACTERS IN THe LITERAL STRING
NST=NST+1 5§ NTJUPINST) =LOSSYM(CHARIJSTRT#1) ,IPLUS=-3) § owJ T0O o5

iig%EgS ASSQOCIATIVE FIND REQULST DeALING WITH-A-PSLUD) RELGISTER 0
NUMBE

CALL GETNUM(IZCHAR(ISIRT)Y (JSTOP-JSTRT,1)
GHECK IF THFE 2SEUDY ReSGISTER CONTALNS A DALLAR SIGN

IF(WORK{1,1) O TO A1
NST=NST#L 3 SYMAHOPK{1 9 I) gLWORKATI Y oo

-

85 TF(NTUPINST) wEJey) G TO 532 3 GO TO 33
WORK ON « OPZRATOR
g S L
2 ¥NITE (3)
¢
€ O3TAIN THI NUMBER FOLLOWING THE 00T AND STORE IT IN -T-
66 CALL GETNUMIIsGCHAR (JSTRT414) 3JSTOP=-J3TRT=1,1)
NCHR = MIMO(BL-LIWQRKII} JSTOP-UsTRT4+1)
J = LWORK(T) + 1 ‘ o e
CALL MQVE(C%A&(JSTQI‘i),NQ&K(JqT),HPH7)
CALL MOJVE (WORK (1910 434AR(ISTRT =1) JLWORKLLI) +H0HR)
5 JSTOP=USTOP+LANRKLT) 5 WEND=NEND+LWOFK(IY & RNAME=TND ¢ GO TO 37
€ WORK ON DECOMPOSITION IPERATIRS 9° GINNING WITH 3
¢
€ INGREMENT THE PSEUDRD KIGISTER NUMRFR . oo o o o o
67 NVARZ = NVARS + 1
C TEST IF THE 9PERATOR IS SIMPLY A COLLAR SIGN BY ITSzLF OR ONL NF THE
C OTHER OPERATORS [HAT AZGIN WITH A DJCLAR STG
; IF(JSTOP=JsTRT.NEL.1) GO TO 69
FrENOTE(10) ' e
¢
G IF -ISTOP- IS TRUE THEN THERE ARE NO MORE OPERATORS IN THE CURPENT
g JPERATOR STRING
- TF(oNUT. ISTOP) GO TO 58
C RECALL THAT STRINGS DIING OPIRATED uN A®E STUREJ IN THE ARPAY =-TFupP-
¢ AITH THEIR LoNGTHS IN =LTEMPS
LWIORK(NVARB) = LTEMP = IWORK + 1
c CALL HMOVEL(ToMPIIWORK) s WORK(L Iy NVARBY s LWORKINVART))
TeeNOTE(LD)

¥¢-4

*

4@

*

<

Q

—

m &

-~

[

[ACEEE |

-~ Q
N
4

o TR

3 WORK{14NVARBI=JGHAR 5§ LWIRKINVARDI=4—5-G0--

THE JOLLAR SIGN - LITERAL JPERATOR {E.
- INTEPL:Q dp RATOJ (L..a. b[;; AR«_ L'.XA)".[

IF(CHAR(JSTRT+ 1) . NZ.QUOTE)Y GO TO 71
START WURK ON & F3LLOWZD 3Y JU“E;D 3T7IWG

C#) ANJ THF JOLLAx STAHN

G

*¥ANJITE (13)

:%g};ﬁIS A TEMPORARY POINTER TO THE QURRCSMT PISITION IN THE INPUT
DI <1INo

INITIALIZE NUMBer OF UHARACTERS IN CURRENT PSEUDO REGISTER T2 ZE°Q

-I- IS THE NUMBER OF GHARAUTERS IN (HE CITERAL FULLOWING THy 3
JPERATOP

IST=u $ LWORK{NVARBI=0 § I=IPLUS-4

TEST IF PRESENT POSITION IN LNPUT SIRING IS GREATER THAM THE NUMBER
OF CHARACTERS IN INPUT STRING

IF{IAORK+IST#I-4.G6T.LTEMPY GO TN 76

COMPARZ =I=- CHARAJGTERS STARTI RREN
POSIYIOV WITH THC ~I=- SHARACTE TCRAL TO BE ~ATCOHED
I

IF{INDEX{TEMP {TWORK+IST), L,)oNE1) GO TN 76
*ENOTE (L4) S
JSLWORKINVARS) +1 3 CALL MOVE(CHAR(JSTRT+2) ;WORK(Jy NVARBY ,T)
EMENT NUM3ER OF CHARACTERS I.4 CURKENI PSEUDD RFSISTER AND
%“;NT THz POSITION IN THZ INPUT 517LNu, THRN RcPZAT THE

S
ORK(INVARBYSLAWORK INVARDB) +I 3 IST=IST+I & GU-TO0- 20 —

[

I INPUT STRING

LI L.
~

QOO0 O xO OOCOONOCOO0O OOOCOOO0O0 *O0OCOTOOOOT0

E QXD

R AK:

OO0 OO0 QOO OO0OONOOOOO0 O0O00O0 OOOCCONOOOOO

[

(o]

START WURK ON THZ UgOLLAR SIGN FOLLOWED 3Y AN INTEGE
O3TAIN THE NUMBER FOLLOWING THE OOLLAR STGN AND bT“D: IT IN =-I-

CALL GETNUM(IL,GHAR{JSTRT#1) yuSTOP=-JSTOT=1,1)

IFAT4E CURRENT PISTTION (STORiED IN =IAOxK=} IN THE THRPUT STRING PLUS
THE NUMBER OF KEMAINING CHARACTIEZERS 7O R~ MATCHcD {THIS NUYMILR 57020
IN ~=I=) IS GRCATIR THAY THE TUTAL LENGTA OF THO INPUT STRING (S5{0722Z0
IN -LTzMP2=) AN ERRIK I5 SIGIAALLEY
IF(L+THWIRK=1.6T.LTEM?) GO TO byl - T e e e e e e e
MOVE THE =1- CHARAUTERS SPPCIFIEU BY THE DOLLAR =~ TNTEGLZR OPFERATOR
FRO0M THL JURENT INPYT STRING Inil THE CURkeNT P3ICUDN RFGISTER,
ALSC, PLACE THE WNUMBER OF CHARALIEZRS MOVED 1N -LWIRX(NVLA?2) -
CALL MOVE(TCHMP (IWNORK) ¢WORK{L,NVARB) , I & LHORK{NVARR) =T 5 GO TN 76

O3TAIN THE NUM3ER AFTER THE ¥ AND PLACE IT IN -I-
NVARB=NVARR+1 § CALL GETNUMALI,CHARI{JUSTRT+1),U3T0P=-JSTRT-1,1)

DETERMINE IF THE OCURRENT POSITION IN THE INPUT STRING (STORED IN
~IWORK=3 IS PASSZU THE UZSIREZD COLUMN NUM3CZ

IF(IWORK.GELTI) GJ TO 74

IF 74E OLSIRZD COLUMN YU 35? IS GRUATER THAN THE T0OTAL LENGTH 0OF THF
INPUT STRLNG AN ERROR I5 SIGNALLEZD

IF(LTEMP . LT.TI=-1) GO TU /(2

I-IWIRK GIVES THE NUMBIR NF UHARALLTERS TO BE MOVEJS FROM T4YT INPUT
STRING TO THZ CURRENT 3520n0C REGISTE®R

CALL MOVE(TEMP (IWORK) ¢ WORK {14 NVARR] 4 I=1WGRK)
THE NUMZCZR OF CHARALTEAS HMCVED IS PLACED IN =LuWlRKINVAR?) -

LWORKINVARD) = T = IWORK 3 50 T0 7R oo

{
WORK UN & FOLLOWED BY AN INTEGE®R o o i b

{'.3
R OASTORED AN =T=)

+

o}

OOOOSOOOC’)OQOOO OOOINOCOIIOOD~NOCGOOO

OOO0 OO0 OO6ChH

SONTROL COMES HERE IF THZ CURRENT POSITION IN TAE InPJT STRINo IS

PAST ThHe REQJIRED COLUYN NUMBER = T THLS CASc THZ POSITION POINTZIR

~IWORK~ I3 RESET AND 7+% NULL STRING IS INUTCATED 8y LyNKINVARI)=]
IWORK = I 3 LWURK{NVARA)=0 3 GU TO 7b

OJRK ON LITERALS

THE NUMRER OF GCHARALTERS IN3cTWezN THZT QUOTCSS IS 6GIvVoN BY IPLUs=3
NJYARB=NVARB+1- 5§ LHORKINVARBY=TIPLUS-3 - o e e e e
MOVE THt MATCZAED CHARAITERS INTO TAE CHRRENT PSEU20 REGISIER
CALL MOVE{CHAR(USTRI#L) yWORK (L NVARD) sLWORKINYAREY) § 50 TC 75

THE FOLLOWING COJZ WILe FAND THEL LEFY-MDSI STJAJG WHITH WILL ATCﬁ
A LITE<AL FROM THs COLLESTION OF LITL“ALQ S1OLKEU Uwug\ A VAPI LT
NA#Ce THE FORM OF ITHE SOLLECTION OF LITIRALS To 2LI11slT] ZﬁLIT’L})

INCRzMENT THE PSZUNO RIGISTCR NUMBEPR
PACK AND LOOK UPp THZ VARIABLI NAME
NVARZ=NVARB+L 3§ CALL PAGK(CHAR(JSTRT) 4I1,JSTUP-4STRT)

50@63% NAME CANNOT BE TOUNG IN THE OTGTIONARY AN ERROR-HAS o o

LOC = LOCATE(I,LO0ICT) 5 IF(LOC.cQs0) GU TO 775

OBTAIN THz NUMBER OF CHARAUTERS IN THE STRING ReFERENCID AND SLAGF
IN =JcHaR-

JCHAR = LSTORE {LOC=~4) e
UNPACK THE CONTENTS INTO THS 80 WORD ARRAY =EXTRA-
CALL UNPACK(STIREL1,L00=4) sEXTRA,JUHAR)

FIND THe PAIR OF RIGHT PARINS AT THE ENU OF THE COLLFSTLON OF
TERAL
TF TWOTBISHT SARCNTHESIS AXE NOT FUUND, AN ERRUR-HAS. OCGURREN. . _

FIND THE JQUOTE AT THE END OF THE NEXT LITFRAL

IF NO MORE QUDTES CAN 3E FOUND THE LTITERALS I THE COLLFCTION
PATTERN HAVE ALL BEEN TeSTED

2 NQ = INDEX(EXTRACIST), JEND-IST, QUOTEY 5 IF(MQ.EQ.G) GO TO 83
JUHAR "= NQ <1

SEt IF THE LITERAL CAN BE FOUWNJ IN THE STRING ScING MATOHED

IQ = INDEXA(TEMP(IWORK) 4L TeMP = TWORK + 1,6 XTRA{IST) 4JCHAR)
SONTAINS THe LITIRAL STRING POSITION-NF THe LITRERAL JUST e
SATTZNEU FOR A MATCH

0 THE FIRST POSITION OF THE NexXT LITZRAL IN THE

Lo . o

IS STToL A-PUSSE3TLITY 9
I 0 ERUN

T
NE, THE SCARCH IS Bf

D‘T)

T = ISU + NO 3 TE{iGc¢2Qe0e0ReINGRNFND)Y 62 TO 82
LITERAL FCUND TO THE LefFT OF ALL PREVICUSLY FOUNJ LTTZ2ALS
STORZ THE MATZHCD LITERQAL IN THE PRoSENT PSEUSBG REGISTER -RFFIRINGEDy ——

COO0 CcOOOoOOOOOCON OO0 OOQO0OH0 OOOOOO 0 OOOOO

-PRNR IS IN THE COMMON BLOCK =-RESRVO- AND IS IM4EDTATELY FOLLOUWFD

BY SAAZNS-. BOTH THLST VAKTASLES ARE INTTIALIZES Id S3BeGUTINC

-SETIICT-
JEND = INDEX (EXTRA,J3HAR,PPNR,2) 3 IF (JEND.cQ.2) GO TO 777

*#NOTE (15)

~IST- IS A CHARACTER POSITION POINTER IN_THT LITcRAL _COLLERTION

PATIARY STRING Ay ALWEYS INOICATES THE FIgsT CHARACTER PASTTICN OF

THE CITERAL NOW JEING JSPU FOR MATOHING-- - ST -
IST = 2 3 NFWD = LTEYP = IAORK + 2

8¢-d

NITH THE NUMBER 9F CHARAZTERS IT HAS IN -LWORK-

CALL MOVLE(LEXTRACILT) ¢ WIORKI(Ls NVARS) 3 JCHLP)
LWORK{NVARB) = JCHAR % NFND = IC & GO TN 82

CIF -NFND=- HAS NOT CHANGED SINGE INITIALIZATIONs; THCA NONE WESE

o0

FOUND
3 IF(NFNDLEQ.LTEMP=-TWORK+2) 60 TN €02 & GO TO 73
THE FOLLOWING CO2E TAKES CARc OF CLcAN UP AFTER ANY OF THE
OPEPATOPS GIVEN ASLOW ART EXESUIEDI
5 FOLLOWEY BY A QUOTED_STRING ’ S
v FOLLOWZD B8Y AM INTEGIS
LITERAL
CITERAL COLLECTION PATTERN

DETERMINE IF THeRE ARC MORE OPERATORS TO FOLLOW

O RONCOOOOOACOOOOxOOO0

76 IF(JNOT.ISTOP) GO TO 77
*XNITE(16)
IST = LTEMP = LWORKINVARD) + 1
NFNO = IST = INORK # 1
IFLINDEX (TEMPULST) JLAORK (NVARBS) s WORK (1, NVARB) s LWORKINVARS) § WNEL 11
1 60 TQ 502 : s
. GO 1O 73
C THE POS I]ION IN THE IN?UT STRING WHERE THE CUR2ENT “ATOH WAS 4ADT 1S
8 PLACED IN =HFND=-
27 NFND = INDEX(TEMP{IWIRK) yLTEMP=IHIRK+1,HORKIL 4 NVARE) yLAURK {NVAPI})
8 THE NULL STRING IS MAT3HcD IF LWIRKINVARZY =0 . . .
IF(LWNORK (NVARE) .c0.0) NFND = 1 “
és TECRE NS EQeTeURs (NV3eFQaNVARB Y ANDJNFNOJNELL)) 6O TO 602
C TEST THE NUMRER OF MATIHFES MADE INUICATEDN BY THE NUMBE® OF PSEUDN
g REGLISTERS USER
IF(NVARS.LE.1) GO TO 83 U

YA

FEENATE (LT
IFUAORKIL s NVARS=1) »NELOQLLARY GO T0O 73

OBTAIN IHI WUMBER CF!C%ARAC?ﬁ&SMQA{CHEQhiY“TQEAbQEVIOUa 5 QQEéAro\
AND MOVE THESZ CHARAGTZIRS INTO Trp SPECTFTED PSEUBO REGISTE

OO O *0

LUORK{NYARB=1) = NFN) = 1
Eé %OMQVC(TCMD(IWORKE,NOKK(inVA& S=1 3, LWUPK {(NVARA=1))
G 30

*¥NOTE (18) TS

c
»
c
59 IFINFND.NE.L) GO TO 502
C THE PRcSEWNT POSITION POINTER FOR THE INPUT STRING IS FSET
8 ACCORDING TO THE HMATGHES JJST MAODE
80 IHOKK = IWORK + NFENJ + LWORKINVARSZ) = 1
g THIS IS THEL END JF THE PATTERN LOOP o) -
33 IF(.NOT.ISTOP) GO TO 34
RETURN
602 IPAT2N=? 4 RETURN
775 IPATRM=% 3§ RETURN
777 gﬁéTxNzu ¢ RETURN

0€-d

SET3ICT D)

SUBROUTINE

P
O
[
Lo Z b
PRV
T
oo L T
DU
DA, G
Ly o
NT
w - —
Ji e il
TO = wn
1 O
O X ®)
ZT e
L= I
S 1
Tl =
[FER I | —
[P | o
WO T o]
Z =
cy 24
LL b)
S {aad
[S S Zu
k-1 UL
. X [e
b-ad T
Al R | d
Lt D a.n
LY iz
(K3} ¥ o
24 (@]
T b =
) e Z i
L | N
o0]
1 =i >)
bee N -x
[SAFE R i
—HI o O
3 D Z
- Z <17
[SURVHRKY] =4
/3¢ 1y
] tad z0
|55 o of =
[At <<
“ o 3
L e B <IU
b (OO L s
DO —
DD < 0
o'u. <L
[aacen B S Nz
D et =0
[7227a1s]]
[ga B Lo4) e
b adle 0D
T 3 T
bt ()} b Y
[SISIM &IOS IOI&I&]S)

|

t

B -

lex
[anlERED RN o S N
[S o—
<TI0 =T
TSN ed

[TEWR WU) G b R
et e 4 LA
AT ™ »
e O 0T T
TP ST Y
DEYDITII
AL T NA -
il e e 3T
Qe Ted
T e e)
e N L~ T
[D=4 G ol SR RR L ob¢
C YLIDNINT =
ma) (¥ »OJ<T o
ey e
[(SN o Nglomdon)
~0. A » 0
> I N I B g
IO LNNE T AT
O & IO
e T T e b
Llsg o R ogral PR
Abe el e ey
IS Y I PO Y A
2D DT
oe O 1)
LAY DEZE
el e eThe o
TOOLMA S ey
CTHY YT
ZOC Y T
ALLDaOTe,
A SARTD
T eI o0l
~lDd e~ e
AL T b o @
O eDDZOMCL
~ ZYONNT
AU e
< D ey b~
> D0 O
[SETaa R iy XU e W N
NN DDO e~
(N7 «ON~OT
Do P L TS 3725 oX dh)
QWYY 3~
e NIl 0 QA
heAUN IUT T ol o S |
NV el M
e NI A N i |
TZITOINY eg
IO S
ST NT Ot
bag il ¢ 38 Ll i A)]
OQEZ LS00
(Y] [€ I DU I
R AAVIREE o ToV]

»
14t
=
1
PR}
4
=
o]
78
ﬂ.
%
D.\
1! b~
br i
D =
«r —~
(a4 -4
<
by w0
[<
fa—
L, x
[t e
w
24
[¥8] o
jos !
= e
D)
prd <1
ne
=z <
L] I
~ (&
hadd o
. D
Tulo@
] -
A D
& O
=T 1
—Z b
W+ D
=z A,
' =
ST B]
73]
Lt g
x T
—() b=
58]
(770 BV |
e
L
[1
T =
Lan D QR |
PSS D= T |
= =z
= S B S
Zz 4
[[}
QOOOLO

yIH Uy 1H) y1H,/

FS IS

L

i G gas

Q. U~

"le/

e e

Zagz

e
NY L
LIT 7w
oYY
- aniey
[o RRNINTY
-0 o7
N e
FAMD o
e
RN el
Z et
O T
~220.Wv
Y -~
T e TN
O
ALY
ST TN -
< TN
Z i <TI

C T Lot
Sy SR
<t g e e
Yo Yo te)

-5YQORE~,

MANDS

b4
i

MURY 204

P
o

N

VE

~FIND=-

_S..,

[&1616 1]

T CHAR, PN AM!

-7

D el
oOIXra~o
ZNTD e
L: eZTONC
T o
MONN -
T « e
[n e SRV YN
O b= &g,
< T TN =
D ens
n\o oz
W ZI el
WD T Y
T oI
L dme
NEZ T & T
L <IN _jd
.8 ! w27
NOIT /N
LD o W<
ey NeT 7
) e 0 e
e oy TN el
wXu A% Do
T2 D=t
) e e Y
o oZ7 T el —
NV eAN »
TN <O
) e N Dl
N o7 T
NZ0O o N\N0OD
Zwdb—TT NGO
T A2
DWW YIZ>U) -
Oma G0 22
1<T O D>
L el <l)b~ 20
b b= o b e BT e b
<L = L L <Y <Y bl
Qoo .z W
4

¢

A2

§

RE

LIST-

-NAME

A FORTRAN

RFIRM

Pz

C
G
C

F-32

=1

CN 3
NaN i3y
¥ (VivVOCdYINTIOU3Y

SUBRIUTINE INITAL

Ly

ONY

-S TR LN -

SUBROUTINE

CALLED FROM

Is

ITIAL~

SUBXROUTINZ ~1IN

G
C
G

o8
L]
[
i .
, - !
~~ 1
i [t} !
”‘ = |
.]
A !
= i
| = m
2 '
) !
c N
L e~ - 0
| [Sa &) — &
' foak e SR N SN
[T SR} -
i ~D N [
! o R) L BN
' DZ 0 %2
e !
=0 L T
>t Y [RF
V- O e
LS S S
[REES] N L
N e - L
L S D
e et D Y
™ w4 - e
W& e) A
o w at TN
X o T e o],
D W Xt
Lan Rl s T S0 P
LA T e] [7g]
e~ sy -
Ty - Tz
SN e o e
€3 (v -~ < n
DT~ O Tex
-d - o o - b
e o gt Z
AN T e = 3
i)ty DIer D -
THOTI EY g
DL N A
o g R I B a4
NS N D
OV Y T OO

(4RI Val S v B AR T I
P N T b 20O
AT Y TN T
NN N e 301D
TN LT a gl
COQODZOHFCID
FIWICT W I vl e
W I E YT I Db b
OODDO™DD L XY
WAL «O « 4D
4 i

~DUsH~

NEZ

T

SUBR3UT

N

~PJSHDN-
N
{

INDEX TO A"RAY
£

c
S

AS TH
it}
3 F
= I

Is USED
L

IT2P
J
7

-1702-

OO VLLW

|

I

!

1

|

|

M

I
- —~
1
1 (o]
-~ — o
(- - bt
v +0O >
Lol o %
J LR .) Ad
b e A T
[T oaNa 4T v W
YOV DT < O

OM O DT
~i0 e X
Xl XN et
~4 [
1o 1N~
Lo} o} e
L} =ipee T Y
Ul b= Ot AN T WL
Y o n<tn<t () e
L ORI O
st o U [B S Ve sl

~ N QOQOC

£ NAME

OR RPULL

£

-LOCATE-

0 IN FUNCTION

RRAY =DICT=- IS US
c

AR
AG

a7

10 4
NSO

H =i

—~ o~

—t b
— ~— (7
=D
CooO=D
I
ODC

e

w

SUBROUTINE PUSH{CHAR, IM1)
SUBRCUTINE =rPuUsSH- Lo CALLED FROM SUBROUTINE =-INTERP- JNLY

O HOCOHO

COMMON/STORG/DTIST {261) yH00K 13U 29) 2SI NRE(8,2573 »PUSHIN(L00) , TTOF

1,LHIRK () L5 TO3E (257)

INTEGER COMMA, SHAR (2}
A DATA COMMA/ZLr,/
C =Itl= DJINT5 TO THE LAST CHARACTER BEFORT THC FIRST 05 THE Tud- — = - .
C TERMINATING 52ACKITS

I = I%1 + 1
. ILST = 1M1
C THE D0 LOOP SOUNTS OUT THE TOTAL NUASER OF CHARAGTEZ2S TN THFE SToING
G STARTING WITH TH= LAST CARRASTFR ANU HORKING DACK4ADS ONT AT A Triv
. 00 5 J=1,IM1 ’ E
C =MXT= IS USED TO POINT TO ZACH CHARAGTER OF THI STRiiG, STARTING
G WITH TAS LAST GHARAUTER AND WORKING SACKWARDS OWe AT A TTHF
) NXT = I = J
C SEARCH FOR A GCOMAA SEPERATING TWD NR MORE PYULT NAMCS IN THE STRING - .
C (THeRT IS ALSD THE POSSISILITY OF OHLY UdE RULE NARE T Trc STRINA)
5 IF(CHARINXT) «NELCOMMA) 52 TO 5
IERNOTE (2)
5 IF{ILST.EQ.NXT) GO T9 &
C IF =ITJP=- IS EAUAL TO 190, IT IS NUT INJRLMENTED ANU CACH RULS NAwE
C ENCOUNTERIU FRJ# THoN ON IS PLAC"U LHTPUSHON(1J0) THUS WIPTNG 0UT
C THE PRIVIIUS RULE NEME STARED THES
. IFIITOP.NELLuD) ITOP = IT0 + 1
C -NCNT- IS SCT TO THE NJM3ER OF CHARACTERS IN THE RULE NAMI, IF THTS
C IS GREATER THAN 1uy ONLY THE FIRST 10 A7 BONGAOCRED

O

OCOO O xONEOCoed: OO0

] ™ -
e~ L
Ty O

> Iz

L T

ez
o

e

v,
Sy T ==

e

<

-z
7 -

Pt

ZW

-

-

4

FENITE(3)
IFCILSTSEQeTY RETUPN

i bl
pid
MAUO R O

—

~

[

maesmT

GV

[T gl PN
Crrr- 2
A N |

()

~ g
M

ZTnC M

>—0U AL

ILST = NAT
+GTa10) NONT = 49

N
=PUSADN-

CKACHARINXT #19 4 RPUSHONA{LTITOP) 4 NCMT)

[A

NP + 1
0r) ,ILST)

]
i

HZT o
—~ i

O e

(e s
x
T
oo
L=
(%)
Cr-4
[V Vol]
IO
O
< U
LY

Ll ol
— D~

-

G
AME STORED UNPACGKED IN ~CHAR~- IS--PAOKZD-INT) THE-MEXT -
o

STT TO PUINT T2 THI LAST OoHARACSTER OF THE NZXT 2ULE NAM
INZ

PERATIONS AS ARQVE APE PEPEATL) FOR THE LAST 2ULE HNaM:

M

YMRBOL {539}

DO o~
—c 0
ZIIND
- ld
ZY
hadl e
< bk A
ZIT e
b eZTO
WX e
ne
Tl M
DTTW
- _J0 . 4
P SN)
3O INCD
ZOun e 1D
DN DL A
L2
<Lhd & @
6 U)
2o
Oy

b ZT OO et T

ZoAuroo
Lol S Lo R SRR F)

"oy

0
W O bt T b

!
1,1
P T
b
_ .
;- :
e “
~ ;
,E e :
) o %
Rl T o ,
= ;
N A :
Ak !
- ;
B Ko BERPEN !
[1s O e
| =g . !
D L i
N7 i
124 » f
= ATERPN .
IR e A
b b = ;
' 4 {
oo '
el <
- MmO @
=z 1D -
Lt %] !
o ' o d
tu Lijhen <T
- T o
«I -~ b 4
- [TR]
92 - Pr B 5
3 B |
[R | Lo 2
J . 54 |82 &) -
P S YU R S —
SIS N
pad] I+
¥y o .
= o oy | -1
— X DY X F
b~ O A% r)
s b} LAt BC -+
O e~ (ST
v Xo Ou' o]
T W e X AL g
o It 1) L= <
N Zur W [SR
- e O v
S S S CR I Y4 TT |
W .J pri A VU b S T NG
c < ikt DL
[T TS TS S~ S I
[CTR T R FY Ben SN fup S 8
T LT b T
e Ol =Y L0
[I Y] £ HOX L
18] [T
b +1N

OOOIF VLOLO

T THz

—Mw

SIGN AND

ZAUALS

SET T THE 20sITION OF THE

,J -
[FaX™
Byl SRR PR
<« AT
D L -
[ETESuvl i a
A=
Lo T e O
:
oo oL
(e S
; WO >
LTIl T
PureT ot
I oo
AT OW
e
L AN
O
TG
LU
<D Cin
Ty e
,,T!Cs\u IS
1T 2 A
I e (Rl

[TERFU RN S0
N AL
vy ZF
Z T
O <Tr—~L7%
O Ny
el 0L, O v
“) Oet<x
Wit » —
NZY T LN
[12 1]
DYV erdt 1
Zi— WD
PN <
T eZM
092 L2 VsX 2 S X
S Do R g MPug S §
B ile W s
OZ =D du
U =N OO
]
[FERTED=slan LEWIRY
TXwdZZ TN
bone e 57 <L T

-
tu
tn
-
<T
u.

e B}

[t}
o
N n
SRS AT
fon SN I

e 43T

N O000VON OLOLOLLLO®

I
-0 T

"
(]
oy
i

bt e
e
V=D
whd o
=0
tZ !
Lo by
O -
e 174l
DI
0
=i
g s b2
Ao

Sl
wox oo
T~

il
L
(<
< (L
i)
=M
T
ZWNYD
it

T
O b
b Z X

bl
Qi
=t 37 5

4

na D
D -
-~
V. T
bed LLIC D P
AT Z
] i
L~ S 2
al
LU0
L <L
-3 vty
bt)

OO0V

<5

A

COCO0O O000 OO0 O0O0 W O

[N

OGOOCOOR

O OOCO OCOO

LEVEL = 0
L= L + 1
TF(L.GTa102) GO TO 777
INCREMENT THE STRING PISITION POINTER
ICHAR = ICHAR + 1
TEST IS THE =NTIRE INPUT STRING HAS REEN EXAJTNED
IF(ICHARLGT M) GO TO 43
s¥g§§ THE GURRENT CHARAGTER POINTIED TO AY -ICHAR~- It THE YARLASLE
TEST = CHAR(ICHAR)
DETERMINE IF THEC GURRENT CHARACTER L3 A4Y OF THISL STORFO IN ARRAY
=SYB= AND IF SO, 60 TJ THE STOTION OF PROGRAMAING JIFALTING WITH [HAT
CHARACTER R
DO 11 I=1,8 .
TE (TESTeEQeSYMBUT)) 30 TO(15,16,20+23,25927+428+29) 1
COMTINUYSE
IF THi CURRENT CHARAGTIR IS NOT 0HE OF THOSE STORFEN LN -3YM3-
THEN A TEST IS MADE FOR A PFRIOu GR A ULGLIT FROY 7920 Tu NIN:,
THIS TEST IS ONLY MADE ONGCE SINGT L1F.A-SFAL.UR.INIEGLR HUMAFR I3 e
NOT FOUND A CLAG IS SET TO INJICATE THIS AND THT TEST NEEN NUT 3F
MADE AGAIN
IF(FLAG) GU TO 10
IF A PERIID (I.c. NECIMAL POINT) OR_A OLulT FROM 7ERO TJ NI IS
ENCOUNTEREL, THE FUAG =MUMBSH= IS 5FT. o o e
IF{TcSTeEQePERIVDORM {TEST 4G e LHO ANULTESTLLEL 1H®)) NUMASW=.TRUI,
FLAS- IS SET TO .TRUS. INDICATING THT TEST FuR A NUM3ER HAS 327N
MADE ONCE AiNd NEED NOT 3E @ADE AGAIN
FLAG = .TPUS.

Le~-3

L’

NUM3

HE

7

WHED

N

C4AARACTER POSITIN

THE

Is SET T8

£S5~

-NB

(&1 &)

ICHAR
HA

(o]

=z

t 4
: o
i S X7
[
[RS TR SR EARON
O g et
! wiLne =
{ P I ol A B
i T SO E
. L DO Ca ¥ S |
; Tlef g b (0
. =z T
14l e e Mo
, [SVIR Vo TS DA g 'y
{ Pl PR SRS e
‘ 50 Rot B RY
6 S SR)
(RSP~ & V- |
Lot X
(X (L d bt e
Q7 &) N

[S 8

NED e

A
1

XAMI
7
2

W s~mnsIrD
Ot b
SR 1 AV NS
(DD LY
S TarD
bt T s o 5
OO Lh
ownZu ol
[] o O
! D
LAY vtbe ee
T et @ T
el NTYE T
0 2 el deT R
tr NN
[L=+ SV I BT
g Nl
= Lde= DT
NT PO
- ¢ G O
[P U
CV117) 3
L (23O
T Uy T
(SR 17a 17 R I TN
o O i
ZXOINT I
L i B e B e

TER IS N3W E

=A3

~
)

NEXT
G0 70 10

THE

RTINS LYY B Lo
AT ™Y
[aals Gatieing
Lol e e
e O boed N0 g
e VI
= T eY o
> > >
[.
[anie) iR Ean]
S L SR WY |
b= b £ e
TR A
O AN
LA O
e ACNNED
[7a)pe1 7% Reglvp]
s 6un Jns o § o0}
DO AD
128202}
+ 3 o [So T
-t b T T
B b DD b (D T A2 b
T Z0 DO D0
B e SO T 1ua Pl g Sl BUN Fex €5 1AWt Alan ¥ 20
ZT 4 O e b)< e UV T e U L
DL IV Ot
Lrrr et
LR B N N I NN
v\ F DO T
L OUPT ST A 2D T e o vt et e o ed
[LT I 2 I T O E T O O T T AT A L I T D B T |
(SRS v IS AU A IR ER L TN PN S SUANS DU N S I S L VR
BIGIAIAISIGIGIATAISIOISISIA IR IS I
[oRNe e AT P 4 v ol o Ba0e MR I Ia Mt gia'q
DDDITITIDDDDITDIDDDDDITD
NOCCCOOOOoOoCOCOInNa
NN AT RD DAL NN

OISTINGUISA THRE

10

usc

Is

-SHIER-

FOLLQUWING?

-
uitt o
VN
[S 3 F
«I <t Z
o T
maor
N +
N 0 nen ~
[AETE B TS pragbra o
[RO Y e TN gt
O JTU LT
WD O T
Wel WaZa od
O OM%
4+ ¢
Lt Tt r e
N =
t oot
oy n
oYY Y Y
bl Al Judilotad
b bt b bt e bt
IITTTTTYTT
[V NV e 1 Vel Vel Valvalialos]

QOO VLLLLLVLOOONOEIVDIOOOWIDOLVCLLLLLOLLOOCLLL

(o3

oo

COOOrOCOOOCORr OO0 OOOROGO FPOOOOOOGCOOONOOOO

SHIER=5 » *¥* AND “OD
SHIER=2 o UNARY IJIPZRATORS, FUNCTTONs AMD SUDSCRIPTED VARIABLES
SHIER=7 » LOMMA
WAEN SHIER=F, ~SOURCE- DUTERMINIS WHICH U“uMY JD?QQTO?S, FU“”TTOV\
X SUBSCRIPTED VARITABLIS 4REC IMVILVID- e e S e
~OPSYCSK= IS5 USED T0 oToRE THE OP?NASQDo 5”3
~QHIER= IS Uxscy TU_STORE THE OrPERATOR HIFKAZCHY AND HAS JALUES
ASSIGHZD {FRJIM =3 TO +7) IN EXAUTLY THE SAME MANKRIR A5 IS DOMI
WITH =SHIIP-
“FLAT- 15 EQUIVALENGCC T3 -50UFL - AT T Ao PUGLUNING OF THS £2J624Y
PO DAL WITH ANY REAL JJANTTITISS TwAT AY B o ustY Iy JALDALATIONS
NGVL TAGT =500<Ge= 15 AN INTZboR Aweay
PROCESS A BLANK

IF(FLAGY CALL NUMBERICHARZNBEG,ICHAR)

G0 TO 19
PROCESS A PLUS

IFCNOT-FLAGY GO TO 17
TEST FOR A PLUS EXPONENT (E.Gs 10.E+45)
IF(CHAR(ICHAR-1} +EQeLtHELANDLNUMASSYHE GO TC 10

OBATIN THE MNUMBER FOLLOWING THE biUs SIGN AND STNRE IT IN THE
ARKAY =SOURCE~e cACH TIME A NUMARLR I3 RUGUIRES THIT-SURROUTING-n - -
~NUM3ER- IS J3£0 TO JUBTAIN IT

CALL NUMBER(ICHAR,NBSG,ICHAR
SO0uRGEIL) = 1

TEST FOR JUNARY QOPZRATIOM
IF L=1 ONLY ONc oHARAGTER HAS BEEN ENCOUNTERLD SO WE Axe DSALTHNG
WITH A UNARY 2LUS O MINUS
IFIL.EQ.1) 50 10 22
IF EITHFR OF THc FOLLOWING CONDITIONS AR TRUE WE ARE DEALING WTIH
A UNARY PLUS OR AINUS

5¢-4

OOONOOOOO0 -
<

NN
N

OCC?O(F\:OOO

NOOO NNOOO
GiE

(0]

(]

TE{L-
(L) =

IF ~FLAG= IS NUT TRUEL W5 ARE UDEALING

IF({.NCOT.FLAG) GO T0 21
TZST FOR A NISATIVE

x
>

9

e
",
~I>
~NO A
ol |
pog
Tl
- ®
2T
J)D
r,:»»

mz

Y O C9
~ GJ bt

4 CF o~
T AT G

Uik I QU8 20
X L~

b A F >

CITCO»TN
u
o

v
AJ
V:

O3
fax’

n

A

Z~ - O VOV
>

[l
~4[m
on

~
nIx

..\
S peitd 3

NE.1iH¥)

= (/)—'!
V1.0 A
<+
o+
g

O

WL AN

i

O OITOoO0OMm
s LSO WP
— 1}, T =2
Ul OGO
- 17
¢ D~k MM
klr-
H]
Ui

fam |

NGLZ ASTERISK

v
e
o OTo
—C
~A V)
—~T
O —
-
At
u
i
.
W

0
A :
U~ O GUU, O QUi

(48]

mi>
(@]
x> L

Com~
N ~G
o2 e

-0 U
SO o QAU
w1
e
>
wn

OO

Lt NUMBER{CHAR,

RISK OR DNJBLE ASTERLSK
ALL NUMBERICHAR ¢NBFOLLICHAR])
He R MULTIPLICATION

G0 10 24

(ONE ASTeRISK?

1o 5T42.0R(SHIERIL-1).EQ. L) 60 TN 22

WITH A VARIAZ

EXPONCINT {Z+Ge 1d.E-5)

HELAND W NUMRSH)
vI HARY)

GO TO 10

NBEG,ICHAR)

Lo NAME

OR EXPONENTIATION

ov—-4

OO

nNOOO

OOC‘)OOQC’?OO

<

OOOOO0 OOO0O&sFOO00O0

PROCESS LEFT PARENTHESIS
IF(FUAGY CALL NJUMUER{CHARGNRBEG,ICHAR)
SHIER (L) = 1
LLVEL = LEVEL + 1 - e e s
GU T2 9
PRUCESS RIGHT PARENTHESIS
IF(FLAG) GALL NUMBER{CHAR,ZNABFG,ICHAR)
SHIC?2 (L) =
LEVEL = LEVEL - 1
GU T3 9 - e R -
PROCZSS COmMMA
IF(FLAG) CALL WUMBER{CHAR,N2TuL,ICHAR?
ZACH TIME A COMMA IS ENCQUNTEREZD IT I6 R9PLAGLy 3Y THe CHARACTEIR
STRING J)4(ANJ IN THIS 4AY LJALUATION OF EXPRFESSIONS [5 FORDED 7Y
PARENTHFSTS o e e e
SHIER (L) = 2
SHIZRIL+1) = 7
SHIER(L+2) = 1
SOURCE({L+1) = 1
L = L ¢ 2
Gg 10 9

DONE WITH FIRST PASS
AT THIS POINT THE SECOND PASS AS DESORIBED IN SEOGTION 1.3.2.1 BEGTNS
IFIFLAG) CALL NJMBER{CHARsNBEG ,ICHAR)

EXYOR EXISTS IF ONLY ONF OPL2ATOR HAS BEEN PISKED UP 03 IF THESE
S IAPROPCR NIZSTING OF IRACKETS o BN T
F

(LeE0e1.0.LCVELLNZWLD)Y GO TO 777

=I=-, ‘J-s ANJ =K= CORRISPOND TO THE SA&M7 VARTABLES GIven IN FIGURPE

1.6 J3F SECTION 1.3.2.1

THE COJING FRIM TAIS PIINT TQ THeo EN3 OF THE SU3ROUTINE ARRANGES

THE INPUT STRING IN PRIFIX POLI>H FORPM. IO FSTA3LISH- PREGEDENCE R

Ty—-d

[@le)

OOO0 OOO&EOO00 O0OC

OO0 OOCO

FOO0

[xN

Q
-
Q

8]
[ad

R
L I]
H(\N“‘ =

SHILP(L)
INTTIACLTIZE
CHIZR 1)

TEST £J= AN
OR AN INTEGE

IF{SHIER(I).LT.1)

TEST FOR A

PLACE ThE OPFRATOR OR SUUSAHRIPTEY VARIADLE NAAT IN TRE.
STACK AND ITS HIZ2ARCH! 1IN TAS ARRAY =nHIER-

OPSTCK{J) = SQURSE (D)

OHIER (J) = SHIER(I)
-JOP= KLEPS _TRAGK OF T4¢ NUMBER (FRUYM 1-5) OF TAZ SUBSZRLPTED
VARIABLE BEING EXAAINFD

JOP = 02S1CK(J) = 13 -
TEST FOR THE OCCURRENGCE OF A SUBSCRIPTEU VARIABLE AND _STORT TTS
STACK 20SITION (FoR PREFIXK POLISH REPRESINTATION IN THE ARRAY
~ARGLOC-

IFL0ATER L)+ EQe 5 AND. OPSTCKIJY 46T 1T) ARGLOCEJOP) = K

= + - o - e e e S

J = J+1

GO TO 41
TSST FOR A PEAL NUMBER

IF(SHAIER (1) EQa=L) 5 TO 43

SCURZE(L]) = 50URCE (D)

60 TO a4 e

= 9
FIRST

= ~40

EVALUATES THE

L MENT OF

or

"?<02 OR A N)‘3L

r”\

VL.OJ

GO YO 42
NG BRASKET
5O TD 45

W

RESULT

ERATOR HILRARCHY ARRAY

HICH IS

OPERATOR L

[A7Aal:!

i
—— W
Y
-t
o 4
b 2
AW
[V
t
1 4 v
o~ D
—_— 3+
N
~ YN DT
-l -
Dl won
~T O
Lo DAMLD e

s [{g)te)
S g B g o

|

zZ i

AM t

I ;
Lot ”
=z :
[atN! !

03 ;
Lz !

I !
10 ;

L1} '

e’ !
ity :

LR 43 i
TN !
~ i

e .
il i
DX .
< !
-t “
nzr !
tileY)
sy -
- o

< i
LT o
e b
Q.o O
DO Lt
[

I -~ O
Lot Wi = [
Tt =4
00~ O

o ¥oAD
(3 “ !
g e R

= Tt~
ST o N Vo IS 3 |
Q0D v .
b Ve IO
DT OO~)
XY © -
[TREEERNY PN @ R
(23RN 1o R S KR B |
[N § L]

[4
T S g
TUNT oY efv
- T Lty

e A S L
e 1T o1
LD O

RIS TR
|l ol
(Vo RURARS BN L T o |
[SERs
b Y b

I~
QOO S

e
[SA s3]
T

C 7T <X
| I O
(LT
P!
DT .
Pa- g aniip]
e e
O3 (N
[T S B
DA X
e QL
(L
T Z
e dan] i e
T
LD =D
Tl
e YN
(G
(ST S g3
QN<T D
=
Zo0 oy
Cclut
YISO
3l
g DN
b Z T
EAEE R
b -
e Jd
LGRS I Y s
0Tz
0. s
Shtus
[agin W sl
—_ 3
,\— Y
(VY o b
ST
O+
—
Y ~4 T
[IAN g
b T
£y~ T
<{ L -
[a MR 24
LSS b
T
(S)]
NIz
(PR N
ITZ
b fo- o ()
—
Zowm
LE NI |
<X 20D
-0
COb— e ¥
O

OOLOOL

Y

STRING IS NIW INJREASTD

HRy sURCE (K~1)51)-
INPUT

~
-~

CHARAGCTERS IN THE

GETOHALUHAR (NSAY+1) o N
CALL GETCHR{CHARINSAV+L) ¢ HIHRZFLOTIK=1) 4,0}

NUMBER OF

THE

0 o
TO0C0O0F

td
[VauN |
Wi

]
'y
D
=0
‘N1x

s
et
< n
DY
X d
L1
(@S]
FerZ
QXD
L
W Tt
—

143

CHAR NI

Lt

DOVLOWL COLOLOL

PLK=-11)

[

RATION - .

NLICHARYN,SQURSEIK=11 ,FLOT{K~1) 4SH1:
UNARY 07P¢

BINARY OR

-
<1

CALL ST2
RETURN
TEST FOR A

L n ﬁ.
(s < ! i !
n b : | ,,, |
4 it | “ , |
C - ! | - w
o - { ‘ ! + *
o . =] ' -
o > W “ T w
i i ! ' [% |
Lt - i | =1 i
o prd ! ! o !
! ~ ! ; -3 h
ol T i : | -
L N | i jaa}
/ oD M i f ™
o 1 ,_ : | ~
o \ Aol ! ~ “ P ,H
r— —~ : o~ ! N I
< . 1 P i ™ !
X e !) _ t+ W
ul o | C. . N~ :
A |l - . - ¢ ~ i
| e« ,_ — _ P ﬁ
' — ! bag | N~ :
X L | LN 1S i
< | e : JETN N~ ,
- o Ple [!
ho o : o N ,
[(%} {028) _ ’ ,V
— ! . Yy | [ond .
P -~ X el ’
o o ! bR 4 i I !
< - b - - » !
o, . 3 L) . s~ - —~ |
. o n , z -~ o
LN TV ~ <T ‘ - 3 %) [
n X ' o8] o T) O
[[o Y = ~N N Lo
o :) e o~ 4 < + =]
[. x o~ ~— - B - [
(44 i =N [@ P -