
A MICR<XXMPUTER DATA BASE MANAGEMENT SYSTEM

CCNVERSlOO OF

THE RISS DATA BASE MANAGEMENl' SYSTEM

FUR MICROCCMPVIER USE

BY

KATHLEEN AWAI, B .Sc.

A Rep::>rt
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree

Master of Science (Ccrnputation)

McMaster University

December 1980

TO JESSE

MASTER OF SCIENCE (1980)
(Conputation)

McMaster University
Hamilton, Ontario

TITLE: Conversion of the RISS Database System for Microcanputer Use

AUTHOR: Kathleen Awai, B.Sc. (University of West Indies)

SUPERVISOR: Professor N. P. Archer

NUMBER OF PAGES: vi. 122

ii

ABSTRACr

The RISS (Relational Inquiry and Storage System)
data base management system was first implemented at
Forest Hospital in Des Plaines, Illinois. It was
originally written in BASIC-PLUS to run under the RSTS/E
operating system on a DEC PDP-II minicomputer. The RISS
system used the relational data base structure because
of its basic simplicity and because of the ease with
which new relations may be added to the data base
without disturbing existing applications.

The aim of this project was to convert the
existing RISS software from BASIC-PLUS to CBASIC-2 to
run on the Dynabyte microcomputer under the CP 1M
operating system, for use in the McMaster University
Faculty of Business. A simple application program was
also developed to demonstrate the converted RISS system.

iii

First of all I want to thank Dr. N. P. Archer for
assisting me in my choice of a project and then for
supervising this project. His recurrent and
enthusiastic encouragement throughout the course of this
work has been of paramount importance to its progress.
I am grateful too for his helpful comments on the
initial draft.

I would also like to direct special thanks to Dr.
R. Welke for taking an active interest in the project
and for assisting with any difficulties I experienced
with the canputer hardware.

I am especially grateful to the Government of
Trinidad and Tobago, without whose sponsorship, my
studies in Canada would not have been possible.

Finally, I would like to thank my mother for her
devotion to my two children at a time when they most
needed it.

iv

CHAP1'ER I

TABLE OF CCNI'ENTS

INl'RODUCTlOO

1.1 The Data Base Approach
1.2 Advantages of Data Base Systems
1.3 The Three Data Models
1.4 Choice of DBMS
1.5 The Relational Data Model
1.6 Choice of Language
1.7 A Microcomputer Data Base Management

System

CHAPTER II STRUCl'URE OF RISS DBMS FOR MICRCCOMPUTERS

2.1
2.2
2.3
2.3.1
2.3.2
2.4

Logical Structure
Physical Structure
Data Manipulation
The Naive-user Interface Level
The Application Program Interface Level
Integrity and Privacy Controls

CHAl?I'ER III DIFFERENCES BE'IWEEN THE PUBLISHED VERSlOO AND THE
MICRCCCMPUTER CBASIC-2 VERSICN OF 'mE RISS DATA

BASE SYSTEM

3.1 Physical Data Organization
3.2 Differences in Operating System
3.3 Application Program Interface
3.4 Naive-user Interface
3.5 Program Chaining
3.6 Error Recovery
3.7 Differences in CBASIC-2 Statements

v

Page

4
6
8

11
13

15
17

19
20

23
24

,42

48

50

58

59
60

61
63
6[.

CHAPl'ER IV SAMPLE DATA BASE APPLICATICN

CHAPTER V

4.1 Evaluating the Need for an Application
Program

4.2 Purpose of the Application Program
4.3 Logical Data Base Description
4.4 Description of Data Base Files
4.5 Building the Data Base Files
4.6 Loading the Data Base
4.7 Application Program Description
4.8 Privacy Controls

CCNCWSICN

5.1 Disadvantages of the Relational Model
5.2 Limitations of CBASIC-2
5.3 Limitations of Microcomputers
5.4 Future Enhancements
5.5 Concluding Remarks

APPENDIX A Sample Dialogue for Naive-user Interface of
Microcomputer mE

APPENDIX B Listing of Sample Application Program

BIBLIOORAPHY

vi

72

73

73

75
81
82
83
93

96

97

98
99

101

102

116

121

CHAPl'ER I

In recent years, there has been a substantial growth in the use of

Data Base Management Systems by business computer users. This has been

brought about largely by a reduction in the cost of computer hardware,

and the development of a variety of suitable data base software

packages, all combining to make this approach so cost effective in

managing business data.

Concurrently, with the increased business use of small computer

systems, there is now a developing need for data base management

systems with these small computers. This project was directed towards

adapting RISS (Relational Inquiry and Storage System [1]), which was

developed for use on a minicomputer, to run on a microcomputer.

The RISS data base management system was developed at Forest

Hospital, Illinois, on a DEC PDP-II minicomputer, to run under the

control of the RSTS/E operating system. RSTS/E is a time sharing

system designed to accomodate large numbers of interactive users. The

programs were written in BASIC-PLUS, a version of BASIC designed for

1

2

RSTS/E and therefore offering many special features not available in

other versions of BASIC.

In RISS the relational model of data was adopted, as opposed to

hierarchical and network data base structures, because it permits the

user to view data as being stored in two dimensional tables, a logical

design easily grasped by relatively naive users. Also, the relational

approach was preferred because of the ease with which new relations may

be added to the data base without disturbing existing applications.

Some of the applications that have been implemented at Forest

Hospital are payroll, accounts receivable, inventory, test scoring,

research studies and statistical tabulations. The RISS data base

management system has been in use for the past five years, requiring

only minor modifications to take advantage of improvements in the

RSTS/E operating system and the BASIC-PLUS language. The programs have

been well tested and are sufficiently bug free to serve as a reliable

vehicle for a data base management system.

The primary objective of this project was to convert the existing

RISS software to run on the Dynabyte microcomputer under the CP/M

operating system for use in the McMaster University Faculty of

Business. The programs were converted to a widely used commercial

BASIC, CBASIC Version 2 (CBASIC-2). CBASIC-2 will run under the

3

control of any CP/M operating system.

Although a conversion of this sort would represent little

difficulty if the original system were written in a standardized

language, BASIC is not standardized. Hence, there was a great deal of

difficulty in adapting operations written in the original BASIC-PLUS to

CBASIC-2, especially when these operations involved file manipulations

and commands related to time sharing functions.

A secondary objective of this work was to develop an application

program to demonstrate the use of the converted RISS data base

management system in creating, accessing and maintaining a data base.

The remainder of this chapter explains the data base concept and

introduces the relational data model on which RISS is based. A

discussion on the choice of a data model and the subsequent choice of a

data base management system is also included. Chapter II describes the

general structure of the converted data base management system and

provides a detailed outline of its two interface levels, the 'naive'­

user interface and the application-user or programming user interface.

Chapter III points out the differences between the published

version of RISS [1] and the adapted CBASIC version. In Chapter IV, a

sample data base application is given to demonstrate the converted RISS

4

software. Chapter V concludes with an evaluation of the system

developed and suggests future improvements that could be made to the

converted system.

1.1 '!he Data ~ Approach

In early computer systems, a typical approach was to set up one or

more separate files for each data-processing application. Although

this was somewhat satisfactory for each application, it led to several

files with duplicate data, causing serious update problems. The

separate-file approach also made it difficult to extract information

that was scattered through various files.

To meet such information needs, the concept of a data base was

developed. Under this approach a file is not treated as a separate

entity and individual files are not set up for use by just one program.

Instead, data needed by many different data processing applications is

consolidated and integrated into a common 'pool'. Numerous definitions

for the term database exist in contemporary literature. Some of them

are stated here to further explain the concept of a data base:

1. A data base is a collection of stored operational data used by the

application systems of some particular enterprise. [2]

5

2. A database may be defined as a collection of interrelated data

stored together without harmful or unnecessary redundancy to serve

multiple applications; the data are stored so that they are

independent of programs which use the data; a common and

controlled approach is used in adding new data and in modifying

and retrieving existing data within the data base. The data is

structured so as to provide a foundation for future application

development. [3]

3. A database is a set of 'integrated files containing current data

on company personnel and resources, the organizational

environment, the competitive situation, and so on'. [4)

For the purpose of this project a definition of a data base is given in

broad, general terms viz., A data base is an integrated source of data

which is accessed by many users and is controlled by a Data Base

Management System (DBMS). In turn, the DBMS is a package of software

programs designed to operate interactively with a collection of

computer-stored files or data base. The functions of the DBMS are:

(i) Data Base creation - defining and organizing the data needed to

support an information system.

(ii) Data Base maintenance - adding, deleting, updating, correcting

and protecting the data in the data base.

6

(iii) Data Base processing - utilizing the data in a database to

support varirus data processing assignments such as information

retrieval and report generation.

The data base management system is designed so as to allow the user to

deal with the data in abstract terms (ie. logically) rather than as the

computer stores the data (ie. physically).

A data base system is a system that includes both a data base and

a data base management system. A summary of the state of the art in

data base management is presented in a recent issue of Computing

Surveys [5].

1.2 Advantages of Data Base Systems

Data Base Systems were developed to overcome a number of

shortcomings in existing file management systems. Advantages of data

base systems can be listed as follows:

1. Reduction of data redundancy - the proliferation of data

unavoidable in traditional file management systems is eliminated, and

redundant data are maintained only when it is required or economically

beneficial. Independent files are eliminated, so storage requirements

are reduced.

7

2. Increased capability to relate associated data - this allows the

production of reports for multiple, interrelated files, a requirement

difficult to meet in the traditional file-oriented approach.

3. Independence between application programs and data - changes in the

form or representation of the data or in the relationships between the

data do not affect the application programs. This kind of data

independence is referred to as physical data independence.

4. Increased data integrity - certain kinds of consistency constraints

(ie. required properties of the data) can be checked by the DBMS if it

is told to do so. The application programmer has no direct way to

change physical data bases, so it is almost impossible to destroy data,

alter relationships between data, add duplicate records, lose records,

etc.

5. Crash protection and recovery - to protect the data base against

accidental loss, facilities to make regular .backup copies of the data

base and to reconstruct the data base after a hardware or software

error are provided.

6. Security of data - access to data can be easily limited by passwords

to authorized users, so data privacy can be ensured.

8

7. Adaptability and flexibility - physical data can be viewed as

logically different by different users. This permits multiple uses of

the same data.

8. Interface between user and the data base through a high level, non­

procedural language. This language is simply a notational language for

interrogating the data base. It must allow the casual user to deal

directly and effectively with the data base, without consulting a

progranmer.

1.3 The 'lbree Data Mooels

Before one can attempt to understand, design, implement or even

use a data base management system, one needs a data model. A data

mooel is a representation of the entire information content of the data

base, in a form that is somewhat abstract in comparison with which the

data is physically stored. Many data models have been proposed, each

with its own concepts and terminology.

The three principal data models used in data base systems are:

1. 'lbe Network Data Mooel - a major commercial system based on this

model is TOl'AL [6]. Others using this model are Honeywell's Integrated

Store (IDS), ADABAS (Software Ag), Univac's OMS-llOO and Cullinane's

IIJ.1S.

9

2. The Hierarchical Data Model - mM's Information Management System

(IMS) is one of the most heavily used of commercially available systems

and is partially responsible for the importance of the hierarchical

data model on which it is based [7]. Another example of a DBMS using

this data model is System 2000.

3. The Relational Data Model - This is exemplified in the experimental

System R data base management system (8], ROMS and RISS.

A suitable reference for data base system vendors is given in the

Bibliography [9].

The Hierarchical and Network data models are the most widely used

in present data base systems. The Network model is characterized by

the Codasy1 Data Base Task Group (DBTG) proposals (10]. This data

model provides a relatively high performance but requires the user to

specify storage structures, access paths and data structures in

considerable detail. The network model is also characterized by

inf1exibi1i ty, in that access paths not predefined at data base load

time can never be used. The storage structures are generally

constructed of pointers to linked lists and tend to be quite complex.

The Hierarchical approach, like the network approach is based on a

tree structure. But whereas in the network model a child node can have

more than one parent nodes, in the hierarchical model a child node is

10

restricted to only one parent node. As with the network data model,

the hierarchical model requires understanding the use of pointers and

linked lists and is difficult to modify once it is set up. The

hierarchical structure works well with some data bases but it becomes

difficult to design data bases using a hierarchical data base system

when a natural hierarchy fu~ng record types does not exist.

In contrast, the Relational approach generally shields the user

from the complexity of storage structures, data structures and access

paths. Access paths need not be predefined. All data wi thin the data

base is viewed as being in simple tables. Each table is a relational

model of actual data relationships; at the same time, it is a structure

that can be easily understood and one that is sui table for display on

visual-display units. The data base system that supports this approach

performs well defined mathematical operations upon the data base as

normalized relations [11], but the details of these operations need not

be coded by the application programmer.

Although there are few implementations of the relational approach

at present, it is expected to be the primary model in the future.

Hence, in choosing a data base management system for this project, one

based on a relational model of data was selected.

11

1.4 Choice of Il3MS
~~.;:;;.-----

The Relational data base approach has only recently begun to

attract attention. It is being considered, debated and investigated

for future Data Base Management Systems (DBMS). Some of the most

recent papers in this field are those of E. F. Codd [12J, Whitney [13J,

Chamberlain [14] and Astrahan [15].

At present, most of the available DBMS are those based on the

hierarchic and network data models. As a result choice of a relational

DBMS for possible conversion and use on a microcomputer was extremely

restricted. The RISS (Relational Inquiry and Storage) data base

management system was selected because of its availability and because

it was designed for a minicomputer as opposed to a large main frame.

The RISS software consists of an Editor, a Retrieval Package and a

data base Maintenance and Manipulation Package to suit the needs of the

casual user. For the application programmer, RISS provides a set of

primitive functions that enable access to and modification of the data

base.

RISS used the relational approach as opposed to the network and

hierarchical approaches because it provided the following advantages:

12

1. It provides a simpler, more unified, user data model, resulting in

systems that are easier to use and maintain.

2. It is much more data-independent and consequently results in systems

that are more generalized. In addition, relational data bases are

easier to alter, eg., when new data relationships are discovered.

3. It is much easier to express data semantic integrity constraints

(limitations en the permissible data in a data base).

4. Data retrieval and modification requests are easier to express (in

a generalized manner). These requests may be expressed in a way that

is much less procedural.

5. Since information is presented in one and only one way in a

relational data base, only one operator is needed for each of the basic

functions (store, retrieve, etc.) to be performed.

6. The emphasis is on the use of sets (in the mathematical sense, not

the Codasyl Data Base Task Group sense), rather than on handling one

record at a time.

7. Sharing and protection requirements are more easily satisfied, due

primarily to the simplicity of the underlying data base model and

absence of highly distributed access paths.

8. Implementation issues are isolated from the logical data base model.

This results in increased intersystem compatibility and, most

13

significantly, encourages a structured approach to implementation.

1.5 '!be Relational Data Model

The Relational model is a mathematical approach based on the set

theoretic notion of a relation. The logical structure used is the

Relationship in Third Normal Form, which is the type of relation with

the optimal properties for use in the database [11].

All data in the relational model is viewed logically as a simple

table. This is easily understood by the layman, and is sui table for

display on terminals. Mathematically these tables are known as

relations or, strictly speaking, relationships. A relation of degree

Inl has the following properties:

1. It contains In' columns (known as domains).

2. All elements in a given domain are of the same type.

3. The ordering of columns is of no significance, since all columns

are labelled.

4. Each row represents an n-tuple of the relation and contains 'n'

el~nts.

5. The ordering of rows is immaterial.

6. All rows are distinct (there are no duplicate tuples).

7. Columns are assigned distinct names.

14

In conventional terms, a relation can best be equated to a serial

file containing one record type of fixed length. Thus, a tuple is

equivalent to a record: a domain, to all data items of a particular

type in the file. Tuples are identified by their keys, which are

formed from a combination of one or more data-items. The primary key

is defined as that data item or combination of data items used to

uniquely identify one tuple. The primary key is of great importance

because it is used by the computer in locating the tuple by means of an

index or other addressing technique.

The totality of data in a relational data base may be viewed as a

collection of time-varying relations. These relations are of assorted

degrees. As time progresses, each n-ary relation (of degree n) may be

subject to insertion of additional n-tuples, deletion of existing ones,

and alteration of components of any of its existing n-tuples.

The relational model permits a concise definition of the contents

of the data base. This description is called the schema. Since the

user is not concerned with ordering, indexing or access paths, the

schema is defined by naming only the relations and the domains of the

relations and indicating their primary keys.

15

1.6 Choice of Language

The programming language BASIC was chosen to implement the

microcomputer DBMS for the following reasons:

(i) it is a business-oriented language,

(ii) it is an easy to learn, easy to use, interactive programming

language,

(iii) it was available on the Dynabyte microcomputer,

(iv) to avoid making this project unmanageable, it was necessary to

stay as close as possible to the language used in the original

software.

The programming language PASCAL was a likely choice since it is

available on most microsystems. It allows for more structured

programming than BASIC and has a rich domain of data structuring

facilities. However its limited Input/Output capabilities made it a

less likely candidate than BASIC.

Two versions of BASIC were available on the Dynabyte microcomputer

viz., MICOC>SOFT BASIC and CBASIC-2. MICOC>SOFT BASIC was designed

specifically for use on microcomputers and includes features that

enable the user to access the data in any memory location and read it

(PEEK) or substitute something else (POKE). However, CBASIC-2 was

selected above MICOC>SOFl' BASIC for the following reasons:

16

(i) Microsoft Basic lacked the facility for defining multiple-line

functions, a facility which was vital to the project, since the RISS

application-level interface (see Chapter II) consists of a set of

multiple-line functions.

(ii) Random access files were used to store the data in a RISS

relational data base because a record can be located much more quickly,

without having to read through all the information on the disk. In

MICROSOFT BASIC, random access files are stored in packed binary

format, thus requiring less room on the disk. However, creating and

accessing random files in MICROSOFT BASIC is much more complex than

in CBASIC-2. To create a random file in MICROSOFT BASIC, the

following program steps are necessary:

Open the file for random access ('R' mode)

Use the FIELD statement to allocate space in the random buffer

for the variables that will be written to the random file.

Use LSET to move the data into the random buffer. The data must

first be converted to strings using the 'convert' functions

provided.

Write the data from the buffer to the disk using the PUl' statement.

In CBASIC-2 buffer space for files is allocated dynamically. Only two

17

program steps are therefore necessary.

Open the file with a fixed record length indicating that

access is random.

Write data to the file using the PRINI' Statement.

3. MIClO)OFl' BASIC lacked some of the string manipulation functions

that were available in BASIC-PLUS, the version of BASIC used to

implement the original data base management system.

1. 7 ~ Microcomputer Data Base Management System

The development of microcomputers represents a major revolution in

computer science and technology due to accelerating trends in micro­

electronics. The microcomputer is a very small computer, ranging in

size from a 'computer on a chip' to a small typewriter size unit.

Thus, computers of extremely small size and cost but yet of great

speed, capacity and reliability are now a reality.

There are many organizations that have application environments

requiring data base management capabilities but cannot afford spending

large sums of money on a computer system. Microcomputers have become

increasingly important in applications that cannot afford the cost and

do not require the capabilities of a larger minicomputer. Howe~,er,

because microcomputers are more recent than minicomputers, their

18

software library is smaller than that of minicomputers. The

development of a microcomputer data base management system, therefore,

is a worthwhile contribution towards filling the gap that exists.

CHAPTER II

STROC'lURE OF RISS DBMS FOR M[CRCXXMPUTERS

A microcomputer data base management system has been developed for

creating, accessing and maintaining logically related files which make

up a data base. This chapter describes the structure of the converted

RISS data base management system. However, for the sake of simplicity,

the converted DBMS will also be referred to as RISS.

2.1 Logical Structure

Each RISS database consists of a set of normalized relations. A

normalized relation may be viewed by the user as a two-dimensional

table, where each row of the table corresponds to a tuple (record) of

the relation, and each column of the tablE! has a unique name and an

underlying domain. This domain is the abstract set of data values from

which entries in that column may be selected. In RISS, the underlying

domain of a column is not explicitly specified. The user is only

permitted to specify whether the data stored: in a column is integer or

character string.

19

20

Each data base relation is created by naming the relation and its

constituent columns, and specifying the underlying domain of each

column. More than one column in a relation may have the same

underlying domain. In RISS, the ooncept of primary key (ie., a set of

columns that uniquely identifies tuples in the relation) is not

strictly necessary. Normally, relations are ordered in some way. In

this implementation, no more than three relations can be accessed by a

program simultaneously. A further restriction is that each tuple in a

relation may have no more than 25 oolumns.

2.2 Physical Structure

The data base system is based on the representation of data as

relations, which is the only structure provided. Both the data and

relationships among the data are represented as relations. Each RISS

relation is stored in three disk files: a Tuple Descriptor File (TOF),

a Tuple File (TF) and a Column Oeser iptor File (CDF).

The Tuple Descriptor File (TDF) is a CBASIC-2 random - access

Record I/O file. This file stores three pieces of information that are

very vital to programs that perform operations on the data base. The

three pieces of information are stored in one record, thus the tuple

descriptor file is a file consisting of one record. The first two

21

fields of this record store the number of tuples (rows) and the number

of oolumns (domains) of the relation, respectively. This information

is used in processing the data base.

The third field of this record stores the maximum length of a

tuple (or record) and is used to optimize storage utilization. In

defining a relation, the user is asked to specify the name of each

column, a strategy of 1 or 2 indicating whether the data is numeric or

alphanumeric, and also the maximum field length for each oolumn. The

maximum number of oolumns permitted in a relation is 25. In the Tuple

file all data is stored as strings within quotation marks and separated

by commas. The maximum record length (RL%) is therefore calculated as:

RL% = (25 * 3) + sum of individual field lengths + 50

This number represents the maximum number of bytes needed to store the

tuple. Fifty extra bytes are included to allow for adding columns to

or deleting columns from a relation, as provided for by the COLREL

utility (described in a later section in the current chapter).

The Tuple File (TF) is a CBASIC Random-access Record I/O file.

The length of the record varies for each relation and is calculated

when a relation is created as explained above. The maximum number of

fields allowed in a record is 25. The tuple file contains the actual

22

data stored in a relation. This file is modified when insertions

and/or deletions are made and is used for printing reports.

Each record in the tuple file consists of a number of fields

delimited by quotes and commas. Adding a tuple to the tuple file

consists of first printing a record consisting of 25 fields with null

data, and then replacing the appropriate null strings with real data.

Building the data base is therefore a time consuming process.

The Column Descriptor File (CDF) is a CBASIC Random-access Record

I/O file. It stores information al:x>ut the columns of a relation. Each

record in the file contains three pieces of information viz., the name

of a column, the column strategy, the field length for that particular

column. The name of a column can be any alphanumeric character string

of arbitrary length. The column strategy is used to distinguish the

type of data found in the different columns. A code number of 1 is

used to indicate the presence of only numeric data in a column. A code

number of 2 indicates the presence of only alphanumeric character

strings in the column. This information is important in performing

calculations on data in the data base. The value of numeric data must

be obtained before any calculations can be done on the data. The field

length represents the maximum number of bytes necessary to store any

data item in a particular column. One byte is allowed for each

23

char acter stored.

Random-access file organization is used in all three files

described above, because it provides a fast and easy way to access any

record in a file. In random access the program is not limited to

accessing the next record or field, as in sequential access. Any

record in the file is as accessible as any other. Each record, or

position where a record may be placed, is referenced by its relative

record number.

2.3 Data Manipulation

The RISS data base management system provides a set of common

functions which are used to process the data base through a common user

interface. Typically, the set of functions includes definition,

creation, interrogation and update. The interface between the system

and the user has a dual purpose

to permit the user to define the relationships among data items; and

to provide the user with a facility for using meaningful subsets

of the database.

RISS is a host-language system, the user interface being a collection

of data manipulation procedures written in the host language (CBASIC-

2). The RISS routines have been developed for two different classes of

24

users: the naive user and the application programmer.

1. Naive users are routine users of the system, such as data clerks,

managers etc., who are not interested in learning a programming

language. Interface at this level are based on a set of commands

that enable the naive user to access and modify the contents of a

data base relation, without having to know any unnecessary details

about the data base.

2. Application programmers require the ability to access and modify a

data base. The RISS DBMS provides a set of primi ti ve functions to

interface between the programming user and RISS relations and

between the RISS data structures and the CBASIC Record I/O

structure.

These two interface levels are discussed further in the following

sections.

2.3.1 The Naive-User Interface Level

The facilities provided by the DBMS for the naive user consist of

the following:

1. a relation editor

2. a retrieval package

3. a data base manipulation and maintenance package

25

1. The Editor

The relation editor (program name is EDREL) allows the non­

programming user to enter, examine or modify data in a RISS relation.

The editor also allows a user to add and/or delete tuples (rows) of a

relation. The user interacts with this module using a set of built-in

corrmands.

The editor is based on that of a line-oriented text editor. A

relation is viewed as an ordered list of tuples. A 'current tuple

pointer' is maintained, which points to the first tuple in the relation

when the editor is entered, and which may be moved by the editor

commands so that it points to the desired tuple in the relation. The

editor contains commands that allow the user to:

(i) move the pointer an integral number of tuples forward or

backward

(ii) move the pointer by searching a column for a specified value

(eg., for character strings via an 'exact match' or 'substring'

search)

(iii) delete one or more tuples after (and including) the current

tuple

(iv) insert a new tuple after the current tuple

(v) display or change the value of a column of the current tuple

26

(vi) provide descriptive information about the relation (eg., the

name of a specific oolumn).

After the EDREL command module has been accessed, the user is

asked to specify the name of the relation to be edited. Once this is

done, two display parameters are requested by the editor. First, the

user has to indicate if the column name is to be included whenever a

data item is displayed. If so (ie. the user types 'Y'), then the

corresponding column number and name are shown along with any data

item. If not {ie, the user types 'N') , only the column number appears

with the data. For this parameter the default response is 'Y&S'. The

second parameter is the number of data oolumns to display whenever the

current tuple pointer is moved. The user indicates the number of

oolumns to display and the desired column numbers. For this parameter,

the default response causes oolumn 1 to be displayed when the pointer

is moved. Once these parameters are entered, the editor sets the tuple

pointer to the first tuple of the relation, and prints an '*' to

indicate that it is in the oommand mode.

In the command mode the user may select any of the following 13

options:

? (Status)

C (Columns)

Give the location of the current record pointer.

List the name of each oolumn in the relation.

+ (Plus)

- (Minus)

L (Locate)

27

Move the current tuple pointer forward a specified

number of rows. The user may specify this number in

the command line (eg., '+5') or, if only + is

entered, the editor will query for the number of

tuples to advance the pointer. If the number

indicated would place the pointer beyond the length

of the relation, the current tuple pointer is set to

the last tuple in the relation. This is useful for

getting to the end of a relation.

Move the tuple pointer backward a specified number of

rows. As with the Plus option, this number may be

included in the command line (eg., '-9'). Attempting

to move the pointer beyond the range of the relation

causes it to be set to the first tuple of the

relation. This is useful for getting back to the

beginning of a relation.

The Locate option is used to find the first

occurrence of a character string in a specified

column. The user enters the column to search and the

string to be located. The search begins at the

S (Substitute)

E (Examine)

28

current tuple and continues to the end of the

relation; it continues, if necessary, at the first

tuple of the relation until the current tuple is

reached. If the indicated string is not found, a

report is printed to that effect and the current

tuple pointer remains unchanged. If it is found, the

pointer is set to the tuple containing the indicated

string in the column searched.

For the Substitute option, the user enters the column

to search and a character string to locate (search

string). Then as in the LOCATE option, the editor

moves the tuple pointer to the tuple where the column

data contains the search string. The user is then

asked for a substitution string. Once this is

supplied, each occurrence of the search string is

replaced by the substitution string in the located

data item.

The Examine option enables the user to examine the

contents of a column in the current tuple. After the

column number is specified, the contents are

displayed.

V (Value)

I (Insert)

B (Botton)

P (Print)

29

Wi th the Value command, a user may modify the

contents of any column in the current tuple. Once a

column is selected, the current contents are

displayed and the user is prompted to enter the new

data. The new data is then stored in that column

location of the current tuple.

The Insert option is used to add tuples to a

relation. A tuple may be inserted between two

existing tuples or added at the end of the relation,

using this option. A record with null data is first

added after the current record. When this is done,

the number and name of each column are displayed, and

the user may enter the data to be stored in the new

tuple.

The Bottom option functions as the Insert option,

except that the new tuple is always added at the end

of the relation.

The Print option prints a specified number of tuples

of the relation, beginning at the current tuple and

continuing until the specified number of tuples has

D (Delete)

30

been printed or until the end of the relation is

reached. The current record pointer is reset to the

last tuple printed.

: The Delete command allows a user to delete one or

more tuples from a relation. The number of tuples

may be entered as part of the command line (eg.

'D5'). The delete operation begins with the current

tuple and continues until the specified number of

tuples has been removed or the end of the relation is

reached. In this implementation, there are no

safeguards against accidental deletions. The user is

responsible for ensuring that the right tuples are

being deleted, possibly by examining the records

before deletion. After a deletion, the current tuple

pointer points to the tuple immediately following the

deleted tuple (or tuples). If the last tuple in the

relation is deleted, then the tuple pointer points

to the tuple immediately preceding the current tuple.

With the delete command, tuples are not deleted

immediately, but a tuple number pointer in array M2

Q (Quit)

31

is modified. The Array M2 is an integer array that

is used to store the number of each tuple (row) in

the relation. Initially each array element contains

a corresponding tuple number. If an insertion or

deletion is made, the tuple number and the number

position of the array element no longer correspond.

This indicates that the tuple file must be rebuilt

before terminating the editing process. Because of

this, deletion must be the last operation performed

on a relation, before returning to the operating

system.

Terminate editing and return control to the CP/M

monitor. If any tuples were inserted in or deleted

from a relation, the tuple file is first rebuilt.

2. The Retrieval Package

The RISS retrieval package (program name is RETREL) allows the

user to retrieve and analyze the data in RISS relations. It provides

commands that facilitate:

(i) selection of a set of retrieved tuples (retrieved set) on the

basis of a column value comparator (eg., sex = 'male', Age>

18) ,

32

(ii) modification of the retrieved set by forming the union or

intersection of the retrieved set with a new set of tuples

selected by a column value comparator,

(iii) extraction of a subset of the columns of the tuples of the

retrieved set,

(iv) printing a tabular report based on the retrieved set,

(v) printing simple statistical information (eg., mean, median for

numerical data) for the retrieved set,

(vi) forming several groups of the data in a particular column by

common value (eg., STUDENT tuples grouped by SECTION), or by

specifying a range of values for each group (eg., marks 0-45;

45-60; etc.) and obtaining information about the tuples in each

group (eg., a list of all of them or the number of tuples in

each group),

(vii) producing a list of all the distinct values of a particular

column for the retrieved set and the frequency of occurrence of

each distinct value.

Complex combinations of these operations are also possible.

The command module is initialized after the user enters the name

of the relation from which data are to be retrieved and specifies

whether reports should be output to the printer or displayed on the

33

screen. If the reply is 'P', reports are sent to the pr inter. Once

initialized, RE'rREL prints an '*' on the user terminal to signify that

it is in oommand mode.

In oommand mode there are 10 user options:

Q (Quit)

C (Colunms)

A (And)

. . Terminate the retrieval operations and return to the

CP 1M monitor.

Print the name of each oolumn in the relation.

The And command is used to select subsets of the

relation's tuples (records). With this command the

user is asked to supply the criterion for oompleting

the tuple-selection process. All criteria are based

on the data contained in a given column of the

relation, or on the row number of a tuple in the

relation. The tuple selection criterion allowed is

that the data in a column, or a row number, must be

less than, equal to, or greater than a specified

oomparator item. The user is prompted by the oommand

module to supply the oolumn number for the criterion

(column zero is used to signify the tuple number);

the oomparison mode (less than, equal to, or greater

o (Or)

34

than); and the data item comparator. If the

comparison mode selected is 'equal to', the user is

also queried as to whether or not an exact match is

required. If so, then the column data must be

exactly equal to that oomparator item. If not, then

the criterion is satisfied if the comparator item is

a substring of the oolumn datum.

For data columns containing numeric data and for

row-number criteria, numerical comparisons are

performed. For columns with alphanumeric data,

character string (lexicographic) comparisons are

used.

When RETREL is initialized, all tuples in the

relation are flagged as active (retrieved). With the

&~ oommand the user indicates that he or she wishes

to oonsider active only those tuples that were active

at the time the command was issued and that also

satisfied t.~e entered oolumn criterion.

This oommand functions in the same manner as the AND

command. The user specifies a selection criterion

and those inactive tuples that satisfy the criterion

35

are added bo the list of already active tuples.

I (Initialize): The I command initializes the relation and converts

all tuples to the 'active' state.

S (Statistics): When the S command is given, the user is asked to

enter a column number. The module then prints out

the number of currently active tuples along with the

mean, median, and (if desired) the standard deviation

for the data in the indicated column.

P (Print)

T (Tally)

The Print command allows the user to print out in

tabular for one or more columns of each currently

active tuple. The user enters the number of columns

to print and then the column numbers to be printed.

Indicating column zero causes the relation tuple

numbers to be printed. The relation retriever will

than ask if the user would like the data to be

printed in aligned columns. If so tab posi Hons (not

less than one) for each column must be entered.

The Tally command allows the user bo compile a table

of all data items sbored in a relation column for the

currently active tuples. The table includes each of

G (Group)

M (r-bve)

36

the different data items present, the total number of

occurrences for each data item, and the percentage of

the number of active tuples which that frequency

represents. The number of tuples with null data in

the specified oolurnn is also printed.

This command enables printing of a table of frequency

counts for groups based on column data. The user

specifies the data column, number of groups and the

upper bound for each group. Again, only currently

active records are oonsidered.

With this command, all currently active records are

moved to a user-designated relation. The user may

then indicate whether or not the moved records are to

be deleted from the original relation.

3. The Maintenance and Manipulation Package

The RISS data base maintenance and manipulation package allows the

user to perform various cperations necessary for the maintenance and

routine use of a data base. All of these operations need not be

accessible to all users; these operations are probably most useful to

the data base administrator (ie., the authority responsible for

maintaining the data base).

Facilities are provided for:

(i) creating a relation

(ii) deleting a relation

(iii) copying a relation

(iv) sorting a relation

(v) merging two relations

(vi) combining two relations via a 'join'

(vii) adding a column to an existing relation

(viii) deleting a column from an existing relation

These are discussed in detail in the following sections.

CREREL = Creating Relations

37

This module enables the creation of a RISS relation. After

accessing this module, the user is asked to supply the name of the

relation to be created. Specification of the physical storage location

of the CBASIC files that comprise the relation is then possible. The

user then indicates the number of columns in the relation.

At this point the user is permitted to define the name, strategy

and field length of each column. The name of a column may be any

alphanumeric character string of arbitrary length. The strategy is a

code number which is used to indicate the type of data stored in a

38

particular column. A strategy of 1 indicates that the column will

contain only numeric data1 a strategy of 2 means that the column will

contain alphanumeric information. After all columns are defined, the

information entered may t::e edited.

When this is done, a report is printed to the effect that the

specific relation was created.

COLRE:L :: Maintaining Relation Columns

The Colrel module allows a user to perform three distinct column

maintenance functions:

• alter names of columns

delete oolumns

add oolumns to a relation.

After accessing the command module and enter ing the name of the

relation to be maintained, the user selects one of the above three

functions.

In changing a column name, the user has to specify the column

number and the new name for the column. For deleting a column, the

number of the column is entered. To add a new column, the user enters

the number of the column after which the new oolumn should t::e added as

well as the name, strategy and field length for the new column. A

field with null data is inserted in all of the tuples in the correct

-~----------

39

position.

MERREL= Merging Relations

The relation Merger allows a user to create a new relation (join)

from the contents of two existing relations.

After accessing the Merrel command module, the user is asked to

enter the names of the two relations to be merged, as well as the name

of the relation to be created by the merge. The user is then quer ied

as to the number of columns in which the data is the same for the two

relations (the number of comparison column pairs). Following this, the

user is required to specify the numbers of these columns that match in

the two relations. A tuple in the merge relation will then be created

for each pair of tuples in the source relations, that match exactly in

all comparison pairs. Merrel will then create a relation of order N

(ie., N columns) where

N = order of the first relation + order of the second relation -

number of column comparison pairs.

SORREL = Sorting Relations

The Sorrel module allows the user to sort the tuples of a relation

based on the contents of some specified column in the relation. To

sort relations on a column, the user accesses the command module

SORREL, and specifies the column to sort on. This module sorts tuples

40

in ascending order on the specified column. For columns with numeric

data, ie., strategy is 1, the sort is done on a numerical comparison

basis; otherwise, sorting is done on alphanumeric character string

(lexicographic) comparisons. The sort process writes the sorted

records to another CBASIC Random-access Record I/O file. This sorted

file then becomes the tuple file and the old tuple file is deleted.

At the end of the sort, the user is ootified that the sort process was

canpleted.

COPREL = Copying relations

This module allows a user to make an exact copy of an existing

relation. The relation copier is used in creating backup copies of

relations.

When the module is accessed, the name of the existing relation and

the name of the relation to copy to, must be specified. Care should be

exercised in naming the copy relation since any existing relation with

the same name will be overwritten. For each relation, the three files

associated with it are copied to the new relation.

DELREL = Deleting Relations

with the relation-deleter module, a user can remove a relation

from permanent storage. After the user supplies the relation name and

confirms his request to delete that relation, the three disk files

41

associated with the relation are then deleted. A deletion report is

then generated.

kcessing ~ Command Modules

The preceding command modules are accessed by the user by entering

a command of the form:

CRON2 MJDULE

where MODULE is the name of one of the preceding 8 command modules.

eg., CRUN2 EDREL

Some samples of interactive dialogue demonstrating the use of these

modules appear in Appendix A.

Relation Name Specification

Each command module requests the user to specify the name of one

or more relations, at some point in the execution of the module. In

naming relations, the same conventions used in naming files are adhered

to, except that the file type is not specified. Thus a relation name

consists of one to eight letters and/or digits eg., STUDENT, CLASS. If

the relation does not reside on the currently logged drive, then the

user must specify the drive (A or B) containing the diskette on which

the relation resides. The drive letter is separated from the rest of

the name with a cor.a:J.

42

eg., B: STUDENT, A:CIASS

2.3.2 The Application Program Interface Level

The application program interface oonsists of a set of callable

operations or RISS functions. These functions may be used by any

application program, and may return information to the calling routine

or make changes to a RISS data base relation, or both.

The RISS functions are callable from programs written in the

lan;uage (host language) used to implement RISS, the same language that

is used to write RISS applications programs. In this project, the host

lan;uage is CBASIC-2. In effect these functions define an extension of

the host language. Functions are provided to facilitate:

L the initialization of relations

2. the addition and deletion of tuples of a relation

3. the return of information about the columns of a relation

4. the return or alteration of the value of a specified column for a

particular tuple in the relation.

The RISS functions operate on a low level, and, unlike the naive

user interface level, their basic structure is implementation -

dependent. This is because they actually manipulate the relation

representation.

- - - -- - - - - - --- - - -- - - -- - - --~~~~~- - - - -

43

Appending RISS Function Code to Programs

Each RISS function is stored on disk as a file of type BAS. eg.,

FNR1.BAS. To insert the RISS functions into the source code, the

CBASIC-2 %INCLUDE feature must be used.

e.g., %INCLUDE FNRl

This causes the compiler to compile the file, specified in the include

statement, into the source immediately following the %INCLUDE

directive.

RISS Functions

TO interface between the programming user and RISS relations and

between the RISS data structures and the CBASIC Record I/O structure,

RISS provides 13 functions. Seven primary functions enable interaction

between the programmer and RISS relations, and six secondary functions

interface between RISS and CBASIC.

Secondary Functions

FNR5% - reads data from the relation'S Tuple Descriptor File (TDF).

The function has one parameter, which is used to select the

file from which data is to be read. The data in the three

fields of this single-record file are assigned to the variables

Nl'%, NC% and NL% for use in any application program. NT%, NC%

and NL% store the number of tuples, the number of columns in a

44

relation and the length of a relation tuple, respectively. The

function returns a value of zer~

FNR7% - stores data in a relation's TDF. This function has one

parameter which is used to select the file to which data is to

be written. The function stores the number of tuples (NT%),

the number of columns (NC%), and the length of a relation tuple

(NL%) in the single record of the TDF. To alter a field in this

reoord, it is necessary to read the whole record using function

FNR5%, assign the new value to the appropriate field, and then

rewrite the whole record using function FNR7%.

FNR9$ - is used to read a record from any CBASIC Record I/O file. All

fields of a record are read into the array T$. The parameter

1% represents the record to be read and the parameter F% is

the number associated with the file from which data is to be

read.

FNRO$ - is used to write a record to any CBASIC Record I/O file. The

parameters oorrespond to those used in FNR9$.

FNRS$ - is used to store an entire tuple in the relation's Tuple File.

The function has two parameters: 1% represents the tuple to

be stored and R% the logical number of the relation. This is

45

used to calculate the file number associated with the Tuple

File.

FNR7$ - is used to read an entire tuple from a relation's Tuple File.

the parameters correspond to those used in FNR5$.

Primary Functions:

FNRl$ - This is a two parameter function, used for the purpose of

initializing relations. The first parameter is the name of

the relation to be initialized; the second parameter is the

logical number 1, 2 or 3 of the relation in the program.

'Relation 1 is assigned file identification numbers 10,11 and

12. Relation 2 is assigned numbers 7 through 9 and Relation 3

is identified ~ file numbers 4 through 6.

R7% (R%) is set to one less than the file number of the

Tuple Descriptor File for logical relation I%. The three

files of the relation are then opened with the appropriate

file identification numbers. Information from the relation's

Tuple Descriptor File are then made core resident, so that:

R2% (R%) = length of the relation (number of tuples)

R3% (R%) = order of the relation (number of columns)

R4% (R%) = length of a relation tuple in ~s

R4% (R%) = length of a relation tuple in bytes

For each relation opened R% = 1, 2 or 3.

46

FNR2$ - This primary function has three parameters 111%, 122% and R%

and is used to retrieve the data item stored in Row 111% and

column 122% of the relation with logical number R%. R% is

used to calculate the logical file number; this number

pertains to the Tuple File (TF).

FNR2$ uses secondary function FNR7$ to read the whole tuple

into the buffer. The required data item ie., T$(122%) is

returned by assignment to the function name FNR2$. All data

are returned from a relation in character string format. If

the value of data is desired for use in calculations, the

CBASIC-2 function 'VAL' may be used to obtain the desired

conversion.

FNR3$ - Function FNR3$ is used to store data in a particular column of

the relation tuple file. This function has four parameters:

111%, 122% and R% which correspond to the parameters in

function FNR2$; S$ is the data string to be stored.

Secondary function FNR7$ is used to read the desired tuple

from the relation. S$ is stored in the required field and the

whole tuple is written back to the file using secondary

function FNR5$.

47

FNR4$ - Function FNR4$ is used to read the relation's CDF (Column

Descriptor File) and return information about the column C%

in the relation with log ical number R%. The function reads the

data in record C% into the variables N$, S$, F$. These

variables are used directly in any application program. They

store the name, strategy and field length for the column C%.

FNS4$ - Function FNS4$ is used to store data in a relation's Column

Descriptor File (CDF). This function has two parameters; the

column number C%, and the logical number R% of the relation.

The purpose of the function is to write the values of N$, S$,

F$ to the record C% of the CDF. To alter a field of this

record, it is necessary to use function FNR4$ to make the

values of the fields available to the program; assign the new

value to the appropriate field - N$, S$ or F$ and then rewrite

the record to the CDF.

FNR6$ - Primary function FNR6$ adds a tuple to relation R% after an

existing tuple I%. It first determines whether or not the

tuple is to be added to the end of the relation or inserted at

some intermediate p:>int. If the new tuple is not the last one

in the relation, the function transfers the contents of each

48

tuple one position forward from the insertion point onward. A

tuple with null data is then stored in the new location. The

relation length parameter in the Tuple Descriptor File is then

reset.

FNR8$ - Function FNR8$ deletes tuple T% from relation R%. This is

achieved by transferring the data in tuples following the

deleted tuple backward one position. The relation length

parameter in the Tuple Descriptor File is then reset.

2.4 Integrity and Privacy Controls

The integrity of the data base is a user responsibility. The

system provides no procedures for validation of input data. No

recovery procedures or privacy locks are provided. Regular backup

copies of relations can be made using the COPREL utility.

CHAPTER III

DIFFERENCES BE'IWEEN '!HE PUBLISHED VERSICN AND '!HE

MICRClCXM?UTER CBASIC-2 VERSICN OF THE RISS DATA BASE SYSTEM
..-;;.~.;;...;...~..;;..;;;~ ~"';';;"';'-'-- ---- -- -- - -------

The software that constitutes the RISS data base management system

was originally developed and tested in BASIC-PLUS on a DEC PDP-II

minicomputer, which ran under the control of the RSTS/E operating

system. In this project, the DBMS software was converted, for

microcomputer use, to the CBASIC-2 version of the software that appears

at the end of this report.

Before making any changes to the software, it was necessary to

become thoroughly familiar with the published version. This meant

knowing generally what each program did and how all the programs worked

together. It also meant knowing the detailed working of each program

that was to be changed. It was necessary to know what was on each data

file and how the data files interacted. Several changes were made to

the software resulting in an end product that is significantly

different from the original version of RISS. These differences are

discussed in the following sections.

49

50

3.1 Physical Data Organization

In the published version of RISS, each RISS relation is stored in

three on-line disk files: a tuple descriptor table ~), a tuple file

(TF), and an alpha data file (ADF).

The TDT contains two virtual integer arrays: a one dimensional

three-element array, and a 32767 by five-element two dimensional array.

The tuple descriptor table contains pointers and keys used in storing

and retrieving data from the tuple file and alpha data file.

A 5

3

[) F

1
1---- --- ------ ---

• ~

H J K

>

Figure 3.1 Tuple Descriptor Table Arrays

are:

51

The contents of the tuple descriptor table shown in figure 3.1

Location A: Record (block) number of the next free byte in the ADF.

Location B: Offset in that block to the byte.

Location C: Length of a relation tuple in bytes.

Location D: Number of tuples or rows in the relation (ie., the

relation length.

Location E: Order of the relation (ie., number of columns in the

relation).

Location F: These three integers are used to code the physical

distribution of the three Basic-Plus files in the disk­

storage system.

The remaining rows in the two dimensional array hold parameters

for the relation columns. Each row in the array corresponds to a

column of the relation.

Location G: Relation-cx>lumn strategy.

Location H: Offset to the start of the relation - column storage, in

bytes, within a tuple eg., for the sample tuple in figure

3.2 the four values stored in Location H would be 0, 1, 3,

and 7).

52

ID:::ation I: Block number pointer to the storage location of the column

name in the alpha data file.

ID:::ation J: Offset for the column name.

ID:::ation K: Length of the column name in bytes.

The ADF (alpha data file) is used to store variable-length

alphanumeric character string data. The location of data strings

stored in this file is given by the logical record number of the block

containing the start of the data string, the offset in that block to

the start of the string, and the data-string length.

The TF (tuple file) is composed of fixed-length N-tuples, which

correspond to rows of the relation. There is a one-to-one

correspondence between N-tuples and rows in the relation. The length of

an N-tuple (in bytes) is the sum of the data-storage formats (data

strategies) defined for the relation's columns. RISS allows four data­

storage strategies. Strategy 1 is used for storing single ASCII

characters. Strategy 2 allows storage of integer numbers in the range

-32768 to +32767. Data columns with a strategy of 4 are used for

floating point numbers, and strategy 6 columns hold variable-length

alphanumeric character strings.

For example, a sample relation with four columns having data

strategies 1, 2, 4 and 6 is composed of 4-tuples each with a length of

13 bytes (as in Figure 3.2).

Column
Strategies 1

I
z.

1- I I

Figure 3.2 A sample 4-tuple

53

, I ,

For strategy 1 columns, the single ASCII character is stored in

the tuple byte associated with the data column. For strategies 2 and 4

data are converted, using the BASIC-PLUS CVT%$ and CVTF$ functions,

into two- and four-byte length character stings, respectively and then

stored in the corresponding tuple location. Data in columns with a

strategy of 6 are stored in the alpha data file, and the three integers

indicating its location (ie., the block number containing the starting

byte of the string, the offset in that block, and the string length)

are converted to successive two-byte strings by the CVT%$ function and

then stored in the allocated six-tuple bytes.

3.1.1 RISS Storage Structure .::. CBASIC-2 Version

After a very careful study of the information stored in the arrays

and data files used in implementing the original RISS data base

54

management system, it was decided that, for the microcomputer version,

three files would also be used for storing each relation viz., (i) a

tuple descriptor file (TDF) (ii) a tuple file (TF) (iii) a column

descriptor file (CDF). Unlike BASIC-PLUS, CBASIC-2 does not provide

virtual array storage facilities, and therefore all three files were

CBASIC-2 Random-access Record I/O files.

As previously explained in chapter 2, The Tuple Descriptor File

(TDF) is a random access file, used for storing vital information for

processing the data base. The three fields of information are stored

in one record and include the number of tuples in a relation, the

number of columns, and the calculated length of a relation tuple (in

bytes). Data in CBASIC-2 random access files are stored as a series of

ASCII characters, where one byte (a code of 8 bits) is necessary to

store each character. In creating a relation, the user (normally the

data base administrator) has to specify the maximum number of

characters for data (field length) in each column. These field lengths

are summed to obtain the maximum number of bytes needed for a tuple in

the relation. These three pieces of information must be made core

resident at the beginning of each data base application. They are read

in automatically into the arrays R2%, R3% and R4% by the RISS function

FNRl$.

55

The Tuple File (TF) stores the actual data in a relation. This

file is a CBASIC-2 Random-access Record I/O file. All data written to

this file is in ASCII character format. The contents of both string

and numeric variables are written as their representative ASCII

characters, not as binary data. All fields, both numeric and string,

are stored as strings (ie., enclosed in quotation marks). Fields are

separated from one another by either commas or carriage return-line

feed combinations. The CBASIC-2 function, VAL, is used to convert

numerical data stored as strings back to their numerical value for use

in calculations.

The Column Descriptor File (COF) is also a CBASIC-2 Random-access

Record I/O file. This file stores information about the columns of a

relation. For each column, one record is created which contains the

following three fields:

(i) name of column - this could be any alphanumeric character

string of arbitrary length.

(ii) column strategy - a code of 1 or 2 is used to indicate

whether the data stored in a particular column is numeric or character

string respectively. This is necessary for converting numeric data to

be used in calculations.

56

(iii) field length - the maximum number of characters contained in

the data of a particular column. This is equivalent to the maximum

number of bytes needed to store data in that column.

The number of records in this file will equal the number of columns

in a relation.

3.1.2 Differences in the Two Versions

(i) The original version of RISS took advantage of the BASIC-PLUS

virtual array storage facility to store a data matrix in the RSTS/E

operating system, instead of in the user-accessible computer memory.

The disk file system stores data arrays and only portions of them are

in core at any given time. With this facility, any element of an array

in the file can be referenced randomly, for use in any BASIC-PLUS

statements.

CBASIC-2 does not provide the virtual array storage facility.

Hence, all arrays needed are stored in the computer memory and are

restricted to a fixed number of array elements. It was necessary to

convert each array element referenced in the published version of RISS

to a corresponding reference to a record in one of the three files used

in the CBASIC-2 version. References to zero array elements were

converted to references to records with a record number equal to 1,

since numbers less than 1 are not allowed for records in a file.

57

(ii) Random access files are stored differently in the two versions of

BASIC. Whereas CBASIC-2 random access files store data in character

format using the ASCII code, in BASIC-PLUS data in random access files

is stored in packed binary format, thus requiring less room on the

disk. Block I/O (or Record I/O) operations are performed 00 BASIC-PLUS

random access files, necessitating several program steps that were not

necessary in the CBASIC-2 version.

For instance, in creating a BASIC-PLUS random access RECORD I/O

file, space must be allocated in the random buffer for each variable

that will be wr i tten to the file using the FIELD statement; the LSET

statement must be used to move the data into the buffer, numeric data

must first be converted to strings using the BASIC-PLUS CVT%$ and CVTF$

functions. Following this, the PUT statement must be used to write data

from the buffer to the disk. Similar steps using the Gm' statement are

necessary in writing data to the Random-access Record I/O files used in

the BASIC-PLUS version.

In the CBASIC-2 version of RISS, simple Record I/O operations are

performed on random access files. This involves opening a file, with a

fixed record length specified, and using the random form of the READ

and PRINT statements. Each execution of the READ STATEMENT (used

58

randomly) accesses a new record. Therefore, the data in a particular

field of a record is accessed by retrieving the record containing the

data, reading all the record fields into a string array, and then

referencing the appropriate array element. Writing data to these files

was dealt with in a similar manner.

3.2 Differences in Operating System

RISS was originally implemented on a DOC PDP-II minicomputer which

used the RSTS/E operating system (Resource Shar ing Time

Sharing/Extended). RSTS/E is a time sharing system designed to

accomodate large numbers of users. Because of this, the original

version included several operations involving file manipulations and

commands that were related to time-sharing functions. For example, the

current - user job number was retrieved at the beginning of every

program, using the PEEK statement. This number was converted to string

form and used as the file type in file names used in the programs.

The CP/M operating system is a standard operating system for

microcomputers. It is a disk operating system that provides file

management, batch processing and program loading facilities for a

single user. RSTS/E supplies a comprehensive file system in which

user files can be accessed by many terminal users simultaneously.

59

3.3 Application Program Interface

Both the RISS data base management system and the CBASIC-2 version

of RISS use multiple-line functions to implement the application­

programmer interface. However, because of differences in data

organization between the two versions, the function code of the CBASIC-

2 functions is entirely different from that of the original RISS

functions. In most cases, though, the original purpose of the

functions and the function parameters have been retained. In the

CBASIC-2 version it was necessary to include one other function, for

the purpose of writing information to the Column Descriptor File. As a

result, instead of 12 RISS functions, the application-programmer

interface of the CBASIC-2 version consists of 13 functions (refer to

RISS application-user interface, Chapter 2).

Insertion of these functions into the original source code of

application programs is also handled differently by the two versions.

In the published version, all the code of the RISS functions is

collected into a single module. A special BASIC-PLUS program which

acts as a pre-compiler is used to scan this module and insert only the

required functions in the source code. The original source code must

include at line 19999 a statement of the form:

60

! RISS 1, 2, 3 !

to indicate to the pre-compiler that primary functions 1, 2 and 3 are

to be a~nded. Lines 20000 through 29990 of the original source code

must be reserved for the insertion of RISS function code.

To append the function code of the CBASIC-2 RISS functions, the

CBASIC %INCLUDE feature was used. This directs the compiler to compile

the file specified in the INCLUDE statement, into the source code

immediately following the %INCLUDE directive. The file name may

contain a drive reference, but must be of type .BAS.

eg., %INCIlJDE B:FNRl

The %NOLIST and %LIST directives are used together with the %INCLUDE

directive to suppress listing of the function code each time a program

is being compiled.

Of lesser importance, functions written in BASIC-PLUS can be

defined anywhere in a program and are restricted to no more than five

(5) arguments. CBASIC-2 functions must be defined prior to any

reference in the program and may have any number of function arguments.

3.4 RISS Naive-user Interface

The original RISS naive-user interface level consisted of 10

command modules that allow the nonprogramming user to interact with

61

RISS relations. Two of these were omitted from the CBASIC-2 version.

The two not included are:

1. UCREL - used for changing all lower case characters stored in

a relation to upper case. This was omi tted because

it was not considered useful enough to warrant

conversion.

2. <:n1REL - used for recompacting the character string storage of

a RISS relation, thereby minimizing the amount of

physical storage space used by a relation. This

module was not necessary to the new CBASIC-2 version

of RISS because recompacting was done, whenever

modifications were performed on a particular

relation, in the programs that made the

IOOdifications.

3.5 Program Chaining

The original RISS DBMS took advantage of the ability of BASIC-PLUS

to chain from one program to another. This was done in order to

control the size of a program in main memory. Execution of a CHAIN

statement causes transfer of control from the program currently being

executed to the program named in the CHAIN statement. The print

62

buffer is cleared, the return stack is reset, and any open files are

closed. The chained program overlays the program which executed the

CHAIN statement. The form of the CHAIN statement differs in the two

versions of BASIC.

A BASIC-PLUS CHAIN statement is of the following form:

<line number> CHAIN <string> [[LINE] <number>]

where string is the name of the program to be loaded by BASIC-PLUS,

compiled and executed. The line number, if specified, designates the

line where BASIC-PLUS will start the program. If the line number is

omitted, the chained program starts executing at its beginning.

In CBASIC-2, the am:rn statement is of the form:

[<line number>] CHAIN <expression>

where expression must evaluate to any unambiguous file name, and

specifies the program to chain to. A file type is not specified, but a

file of type !NT (ie., in precompiled form) must reside on the

specified disk drive. The CHAIN statement causes execution to continue

with the first statement in the chained program. In chaining from one

program to another, the constant, code, data statement and variable

areas of the main program must not be smaller than those of the chained

program. CBASIC-2 provides a %CHAIN compiler directive to adjust the

size of these areas, if necessary.

63

Examples of chaining are found in the RE'I'RE!L command module, where

the options of tallying, grouping and moving of records from one

relation to another are performed by chaining to the programs

TALLY.BAS, GBOOP.BAS and MOVREL.BAS, respectively (refer to CHAP1'ER 2).

In the MERREL command module, a third relation is created from two

existing relations by chaining to the CREREL command module.

The CBASIC-2 implementation of the CHAIN statement differs from

the BASIC-PWS implementation in two ways:

(i) a COMMON statement was used to pass data from one program to

another,

(ii) special code was inserted in the chained program to direct

CBASIC-2 to the required portion of the program.

3.6 Error Recovery

Each of the RISS command modules in the published version attempts

to recover from common data-entry errors. These errors fall into two

broad areas:

1. computational errors such as division by zero

2. Input/output errors such as reading an end-of-fi1e character

(CTRL/Z) as input to an INPl1r statement.

64

Normally when BASIC-PLUS detects an error, it prints an error

message and terminates execution of the program. However, in some

cases it is possible to recover from errors and continue program

execution by using an 00 ERROR GO ro statement. This causes the system

to transfer control to a specified line number where two variables ERR

and ERL are checked to determine what error occurred and to decide what

action to take. ERR stores an integer number associated with an error

message and ERL contains the line number of the error.

CBASIC-2 does not provide these facilities for error trapping.

However, attempts were made to recover from some data-entry errors by

1. forcing the user to re-enter numeric data if it did not fall

within a required range (eg., a column number must not be greater than

25).

2. using the IF END statement to process an end of file condition.

When an end of file is detected on a file, control is transferred to

the line number contained in the IF END statement, if an IF END

statement has been executed for the file, prior to the attempted read.

3.7 Differences in CBASIC-2 Statements

Though implementations of BASIC on different computers are in many

ways similar, there are some incompatibilities betwen BASIC-PLUS and

65

the version of BASIC used in this project (viz., CBASIC-2). The

differences between CBASIC-2 statements and the BASIC-PLUS statements

used in the original version of RISS are listed in the remainder of

this chapter.

(i) Line numbers - since CBASIC-2 is a compiled language, line numbers

are not required on every program line. They need only be present on

program lines which are referenced by other program lines (GO TO,

GOSUB, CN or IF statements). BASIC-PLUS is partially interpretive and

hence a line number is required for every line. Since each line has a

5-byte overhead for the line number, use of line numbers in the

original version of RISS was minimized py fitting several statements on

one BASIC-PLUS line. This was not necessary in CBASIC-2.

(ii) Initialization of variables - Each variable has a value associated

with it at all times during execution of a program written in CBASIC-2.

Initially numbers are zero and strings are null strings. In the case

of arrays, numeric arrays are initially set to zero and string array

elements are null strings. The BASIC-PLUS version contained statements

to perform this initialization. These statements were removed in the

CBASIC-2 version.

(iii) Multiple Assignments - CBASIC-2 does not allow statements of the

form B, C = O. This statement in BASIC-PLUS would set the variables

66

B and C to zero. In the CBASIC-2 version of RISS, statements like this

were rewritten as separate assignment statements viz., B = 0 : C = o.

(iv) Identifiers - In CBASIC-2, the last character in an identifier

must be a dollar sign ($) to indicate that the identifier is of type

string. If the identifier ends in a percent sign (%), it represents an

integer. Those identifiers not ending with a dollar sign or percent

sign are of type real. BASIC-PLUS handles identifiers similarly but

insists that integer constants also have a % suffix. CBASIC-2 regards

the % sign after an integer constant as an invalid character and prints

a warning message.

(v) IF Statement - The format of the IF statement in CBASIC-2 does not

allow for nesting of IF statements. All nested IF statements used in

the BASIC-PLUS version had to be rewritten as separate IF statements.

In an IF---THEN---ELSE statement in CBASIC-2, the ELSE must be

followed by a statement list. BASIC-PLUS allows a line number after

the ELSE. Statements of this form were converted from ELSE <line

number> to ELSE GO 'ro <line number>. ------
BASIC-PLUS provides one other form of the IF statement to increase

the flexibility and ease of expression within a program line.

<statement> IF <condition>.

67

This is illegal in CBASIC-2 and each statement of the above form was

changed to the CBASIC-2 version:

IF <condition> THEN <statement>

(vi) FOR statement - CBASIC-2 lacks another statement modifier I

provided by BASIC-PLUS to increase the flexibility and ease of

expression within a program line. In BASIC-PLUS, it is legal to use

the following to imply a FOR loop on one line:

<statement> FOR <variable> = <expression> TO <expression>

{STEP <expression>}

eg., PRINT I, SQR (I) FOR I = 1. TO 10.

Several statements of this form appeared in the BASIC-PLUS version.

The CBASIC-2 equivalent was the following FOR---NEXT loop:

FOR I = 1. TO 10.
PRINl' I, SQR (I)
NE}cr' I

(vii) The WHILE Statement - CBASIC-2 provides a WHlLE---WEND

construct for looping that was not available in BASIC-PLUS. Execution

of all statements between the WHILE statement and its corresponding

WEND statement is repeated until the value of the expression contained

in the WHILE statement is zero.

(viii) %INCLUDE directive - this causes the compiler to compile the

file, specified in the INCLUDE statement, into the source immediately

68

following the %INCLUDE directive. The file name may contain a drive

reference, and must be of type BAS.

This feature, available in CBASIC-2, was used to include the

multiple line functions of the RISS application-user interface. Since

the files incorporated with the %INCLUDE directive are of type BAS,

they may be compiled separately. This made it easier to debug the

programs using the functions, because the functions were tested

individually before inclusion in the programs.

(ix) The %CHAIN directive - The %CHAIN directive is used to set the

size of the main program's constant, code, data statement and variable

areas. This directive must appear in the first program of a chained

series to ensure that a chained program will not overwrite a portion of

the data area being passed by the previous program.

The values used in the %CHAIN directive are determined by

separately compiling each program in the chained series, and using the

largest value for each of the four areas. The percent sign must be

placed in column one.

(x) The MATCH function - is a predefined function of the form:

MATOI{A$, B$, I%)

69

which returns the position of the first occurrence of the substring A$

in the string B$, starting with the character position given by I%.

The function INSTR was used in BASIC-PLUS for the same purpose.

The format is slightly different:

INSTR{I%, B$, A$)

This indicates a search for the substring A$ within the string B$,

beginning at position I.

(xi) RIGHT$(A$,N%) - This CBASIC-2 string function returns a string

consisting of the N% rightmost characters of A$.

The corresponding BASIC PLUS function is of the same form: RIGHT

(A$, N%), but returns a substring of the string A$, starting from the

Nth character to the last character. In converting to CBASIC-2, care

had to be exercised in retrieving the correct substring.

(xii) The 'mE function - is a predefined function of the form TAB

«expression», used for positioning the output buffer pointer to the

position specified by the value of the expression. Unlike BASIC-PLUS,

the value of the expression in the 'mB statement must be greater than

or equal to one or a run-time error occurs.

(xiii) The CONSOLE statement - directs subsequent PRINT and PRINT

USING statement output to the CP 1M console.

The LPRINTER statement - directs subsequent PRINT and PRINT USING

70

statement output to the CP 1M list device.

These two statements were used in the Retrieval Program (REl'REL.BAS) ,

to alternatively accept input at the terminal and send output (reports)

to the pr inter.

These statements are not present in BASIC-PLUS, but it is possible

in BASIC-PLUS to OPEN a non-file structured device, such as the

terminal, for input or output. Thus, in the Retrieval program of the

original RISS version, the user is permitted to enter the name of the

output file for printing reports or enter a null string. If a null

string was entered, then the program assigns "KB:" as the output file.

This causes output to be printed on the user terminal. If an output

file was specified, the information was written to this file, which was

then read for printing reports.

(xiv) The CREATE Statement - This is used in CBASIC-2 to activate a

new data file for reading and updating. If a file with the specified

name already exists, it is deleted and a new file is created. BASIC­

PLUS prO\Tides the same OPEN statement for creating new files or opening

existing files.

(xv) The CLCBE Statement - deactivates one or more active files. Each

file identifier listed in a CLOSE statement is released and the

71

associated buffer space deallocated. In CBASIC-2 it was illegal to

close files that were not active. This was not so in BASIC-PLUS.

On the whole, most of the basic statements for handling files in

BASIC-PLUS eg., OPEN, CLOSE, PRINT, READ, INPUT, KILL, NAME-AS etc.,

existed in CBASIC-2 with slight variations.

CHAPI'ER IV

SAMPLE ~ _BASE_ ;;.;;APP;;.;;;..;:L:;;;I..;;;CAT=I;.;;.CN~

One of the objectives that data base systems attempt to accomplish

is to reduce an application program's dependence on the format of the

data which it processes (refer to Chapt. 1). Data independence allows

application programs to be written with little regard to how data is

physically stored. In this chapter, a simple application program for

processing a data base of student records is presented to demonstrate

the ease with which an application program can access and modify data

in the data base, using the facilities of the data base management

system. The application program uses a standard interface between it

and the other components of the system. This interface consists of the

RISS functions of the microcomputer data base management system.

4.1 Evaluating the Need for ~ Application Program

The converted RISS data base management system is a generalized

DBMS, in that it is flexible enough to adapt to any application. This

flexibility, however, makes it difficult for the non-technical user to

access and modify the contents of the data base without having to

consult a programmer. The naive-user interface, provided by the

72

73

converted RISS DBMS, requires the user to know a host of commands and

to be able to use these commands effectively in dealing with the data

base. Whenever possible a non-technical user should be provided with a

facility, in which he need only specify what is wanted and the system

decides how to obtain it. The application program discussed in this

chapter presents such a simpler user interface, but at the expense of

flexibility. Inflexibility in the application program is due to the

fact that the program is desiring for a specific function and therefore

all prompts for the user are strongly tied to that specific function.

4.2 Purpose of the Application Program

The main function of the application program described in this

chapter is to allow the user to interactively update records in a data

base, consisting of student records. Users are permi tted to perform

the following tasks:

(i) enter grades for assignments by section

(ii) enter marks for examinations by section

(iii) calculate and store a term mark for each student

(iv) modify grades or marks in the data base

74

4.3 Logical ~ Base Oescr iption

A sample data base, consisting of student records, was created to

demonstrate the application program. The data base consists of one

relation - 'MARKS'. Fig. 4.1 gives a description of the contents of

the data base. This description is the data base schema. The name of

each domain (column) and relation of the data base is listed in upper

case letters.

Domains:

Relations:

MARKS

NAME

ASSIG-3

ASSIG-8

FINAL

NUMBER

ASSIG-4

ASSIG-9

'IERM MARK

SECrICN

ASSIG-S

ASSIG-l

ASSIG-6

ASSIG-2

ASSIG-7

ASSIG-IO MIDTERM-l MIDTERM-2

(Name, Number, Section, Assig-l, Assig-2, Assig-3,

Assig-4, Assig-S, Assig-6, Assig-7, Assig-8, Assig-9,

Assig-lO, Midterm-I, Midterm-2, Final, Term Mark)

Fig. 4.1 Sample Student Data Base

Relation 'MARKS' contains information on student grades. More than one

column in the relation may have the same underlying domain ie., the set

of values from which entries in that column are selected. Column names

75

are unique within the relation.

The relation 'MARKS' is shown in Fig. 4-2, described by its table

representation. Only five (5) of its columns are displayed here.

Column -> Name Number Section Assig-l Midterm-l

Underlying -> NAME NUMBER SEX:TICN ASSIG-l MIDl'ERM-l

Domain

ADAMS J 7906291 1 S 98

SMITH B 7054555 2 F 76

JCNES Y 7814236 1 87

Fig. 4.2 Relation 'MARKS'

The rows of the table correspond to tuples of the relation, and the

columns corresPJnd to instances of particular domains of the data base.

In traditional file management terms, the relation corresponds to a

flat file, a tuple to a record and a column to a data field.

4.4 Description of Data Base Files

The relation MARKS is stored in three disk files: a tuple

description file, a tuple file and a column descriptor file. The table

below lists these files. The description given for each file includes

a summary of the files' contents and uses, and any special notes that

are pertinent.

Number Name

1 MARKS.TDF

2 MARKS.TF

3 MARKS.CDF

Student Application Data Files

Description

76

Accessing
Method

This is the Tuple Descriptor File Random
of the relation MARKS. This one-
record file contains the number of
tuples in the relation MARKS, the
number of columns in the relation and
the length of a relation tuple (in
bytes). This information is used in
processing the data base.

This is the Tuple File of the Random
relation MARKS. This file holds the
name, number, section and grades or
marks obtained by a student for a
particular course taken during one
term. At the end of the term, an
overall mark for the term is entered.

This is the Column Deser iptor File
of the relation MARKS. Each record
contains the name, strategy and field
length for a particular column of the
relation.

Random

77

File Layouts

File layouts describing the exact record format for each file are

presented in the following pages. Each layout contains the following

items:

DESCRIPrICN - the name used to identify the file in this report

FILE NAME - the name that the programs use to identify the

file

NO. OF REXX>RDS - the number of records in the file

RECORD SIZE - the number of bytes or characters each record

occupies

Each field in a record is listed on a separate line. Its corresponding

variable name, field description, strategy and size are shown.

Strategy indicates the type of characters stored in a particular field;

an alphanumeric field is indicated by a strategy of 2.

FILE IAYOUT

FILE NO. DESCRIPI'ICN

1 MARKS TUPLE DESCRIPIDR FILE

FILE NAME NO. OF ROCOROO

MARKS.'IDF 1

MISCELIANEDUS COMMENTS

VARIABLE

R2% (l)

R3% (l)

R4% (l)

FIELD DESCRIPl'ICN

Number of Tuples
Number of Columns
Length of Tuple

ROCORD SIZE

50

STRATEGY

1
1
1

78

MAX. SIZE

2

512

79

FILE IAYO.Jr

FILE NO. DESCRIPTICN

2 MARKS TUPLE FILE

FILE NAME ---
MARKS.TF 122

MISCELLANEOUS COMMENTS

Any field can be used as a key.
The tuple file contains 1 record for each student.

VARIABLE FIELD DESCRIPTIOO STRATEGY MAX. SIZE

T$ (1) STUDENT NAME 2 40

T$ (2) STUDENT NUMBER 1 7

T$ (3) SECTICN NUMBER 1 1
T$ (4) GRADE FOR ASSIGNMENT 1 2 1

T$ (5) GRADE FOR ASSIGNMENl' 2 2 1
T$ (6) GRADE FOR ASSIGNMENT 3 2 1

T$ (7) GRADE FOR ASSIGNMENr 4 2 1
T$ (8) GRADE FOR ASSIGNMENT 5 2 1
T$ (9) GRADE FOR ASSIGNMENT 6 2 1
T$ (10) GRADE FOR ASSIGNMENT 7 2 1
T$ (11) GRADE FOR ASSIGNMENl' 8 2 1
T$ (12) GRADE FOR ASSIGNMENT 9 2 1
T$ (13) GRADE FOR ASSIGNMENT 10 2 1
T$ (14) MARK FOR FIRST MIDTERM 1 3
T$ (15) MARK FOR SECCND MIDTERM 1 3
T$ (16) MARK FOR FINAL EXAM 1 3
T$ (17) TERM MARK 1 5

80

FILE IAYOtJI'

FILE NO. DEOUPrICN

3 MARKS COLUMN DESCRIProR FILE

FILE NAME --- NO. OF REL'OROO REL'ORD SIZE

MARKS.CDF 17 50

MISCE.t.IANEDUs COMMENTS

This file contains 1 record for each column in the relation

'MARKS' •

VARIABLE

N$
S$
F$

FIELD DESCRIProR

COLUMN NAME

COLUMN STRATEGY

COLUMN FIELD LENG'IH

STRATEGY

2
1
1

MAX. SIZE

VARIABLE
1

VARIABLE

81

4.5 Building the Data Base Files

Each data base relation is created by naming the relation and its

constituent columns and specifying the storage strategy and size of

each column. The microcomputer DBMS provides a facility for creating

relations viz., the command module CREREL. This module requests schema

definitions from the user and creates the three files for the relation

'MARKS'. Besides entering the number of columns in the relation, the

following information is entered under the following headings:

NAME STRATEGY FIELD LENGl'H

NAME 2 40
NUMBER I 7
SECI'IOO I I
ASSIG-I 2 I
ASSIG-2 2 I
ASSIG-3 2 I
ASSIG-4 2 I
ASSIG-5 2 I
ASSIG-6 2 I
ASSIG-7 2 I
ASSIG-8 2 I
ASSIG-9 2 I
ASSIG-IO 2 I
MIOT.ERM-I I 3
MIOT.ERM-2 I 3
FINAL I 3
TERM MARK I 5

82

The above information is stored in the column descriptor file, each

row of the table being stored in one record. As a result, this file

contains 17 records.

At the end of execution of program CREREL, the tuple descriptor

file contains the number zero in the first field of its record, since

at this time there are no tuples in the relation. The second field

stores the number 17 (the number of columns in the relation). As field

lengths are entered for each column, their values are summed and a

relation tuple length is calculated. This value (equal to 122) is

stored in the third field of the record.

The tuple file is an empty data file - there are as yet no tuples

in the relation.

4. 6 wading the Data Base

Tuples are added to the data base by means of the command module

EDREL (refer to Chapt 2.). This is one of the modules provided by the

naive-user interface of the converted data base management system.

Using the insert command (I), a tuple is added to the relation for each

student enrolled in a particular course. The program prints the names

of each column of the tuple and the user enters the values of data to

be stored in the various columns. For the purpose of the application

83

discussed in this chapter, only the columns specified by name, number

and section number are filled with true data~ the remaining columns

are filled with null data. These columns represent grades for

assignments and marks for examinations. The application program will

be used to replace these null strings with actual grades/marks as they

are obtained.

4. 7 Application Program Description

The application program is used to update a data base consisting of

student records. It also demonstrates the use of the RISS functions in

writing application programs to access and modify data in the data

base. The primary functions used are FNRl$ for initializing the

relation 'MARKS', :rnR2$ for retrieving data from a specified column of

the relation, and ENR3$ for storing data in a specified column of the

relation. The programming language used is CBASIC-2, the same language

used in developing the RISS functions.

4.7.1 Input to Application Program

The application program STUDENT (file name is STODENT.BAS) is run

in interactive mode, hence, all input is supplied through the terminal.

In general, a question is asked by the program which prompts the user

for an answer. The information that is required from the user, along

84

with the range of values for each piece of information is listed in the

following table:

Input Range of Values
-

Assignment Number 1 - 10
Examination Number 1- 3
Section Number 1 - 6
Student Number No restriction
Weight on Assignments 0-1
Weight on First Midterm 0-1
Weight on Second Midterm 0-1
Weight on Final Exam 0-1

-

All input data are checked by the application program to ensure

that their values fall within the desired range. No validity checks

are performed on the student number. However, if the user enters a

student number that does not exist in the data base, the program after

searching for the number, prints the student number and reports that it

was not found.

4.7.2 Program Narrative

The program may be divided into five sections, corresponding to the

different functions it performs. These sections are listed here in the

same order in which they appear in the program.

Section 1 - Enter grades for assignments by class section

Section 2 - Enter marks obtained on examinations by class section

85

Section 3 - Modify grades or marks in a student record

Section 4 - Calculate and store an overall term mark for each student

in the data base

Section 5 - Quit operations

These five tasks along with their identifying numbers are

contained in a section of code consisting of CBASIC-2 PRINI' statements.

At the beginning of program execution the tasks, with their numbers,

are displayed on the terminal and the user is prompted to select the

task he wishes to perform by entering the identifying number. At the

end of every operation selected by the user, these tasks are displayed

on the screen so that the user can easily specify what he wants to do

next.

The RISS primary function, FNRl$, is referenced at the beginning of

the program to initialize the relation 'MARKS'. Since there is only

one relation in this application, a logical relation number of 1 is

used in the functions' parameter list. This causes the files

MARKS.TOF, MARKS.TF and MARKS.COF to be opened with file identification

numbers 10, 11 and 12 respectively. Information from the TOF are then

made core resident, so that:

R2% (1) = number of student records

R3% (1) = number of fields in a record

86

R4% (1) = length of a record in bytes

When this is done, the program prints the five user options and

prompts the user to select one, by number. On specification of this

number, the program transfers to one of five sections of code, as

described below:

Section 1= Enter Assignment Marks

To enter assignment marks, the user is first requested to input the

assignment number. A check is made to ensure that this number is a

valid assignment number ie., falls within the desired range. If the

assignment number is not valid, a report is printed to this effect and

the user is forced to re-enter an assignment number. If the number

entered was valid, the program then requests the number of the section

that the student is in. This number is also limited to a specified

range and a check is made to ensure that it falls within this range.

The program then enters a loop in which only those records belonging to

the particular section are retrieved for processing. This is achieved

by checking the third field of the tuple file for the section number.

For each record belonging to the particular section, the name and

student number is displayed on the screen, and a grade is requested.

This grade is then stored in the appropriate column. The number of

87

this column is evaluated to three (3) more than the number given for

the assignment.

As the loop is executed, the record numbers for students in this

particular section are stored in an integer array T%. When all the

grades are entered, this array is used for checking that the entries

made in the data base are correct (without having to search the whole

data base again). Checking of entries is optional. If the user does

not wish to do any checking, he is allowed to exit from this section of

the program and select another task. Otherwise, the name, student

number and grade entered for each student in the section is displayed

on the terminal and for each student displayed the user may choose to

change the grade or leave it unchanged. If the user wishes to change

the grade, he is prompted to enter a new grade for the student and this

new grade is then stored. When all the processing for the section is

completed, a report is printed to notify the user that the assignment

marks have been entered. The program then exits from this section to

display the user option on the terminal and prompt the user to enter an

option, by number.

Section 2 - Enter Examination Marks

Entry of examination marks involves program steps similar to those

used in entering assignment grades. Instead of an assignment number

88

the user is requested to input an examination number. This number is

used to calculate the number of the column in which the examination

mark would be stored. The user is also required to specify a section

number, so that only those records in a particular section are made

available to the user for entering marks. The name and number of each

student in the section is displayed on the terminal and the user is

prompted for a mark. The prcqram then stores this mark in the correct

column. The number of this column evaluates to thirteen (13) more than

the examination number specified. The user may choose to check entries

if he wishes to do so.

Section 1::. Modify Student Marks

This section is used to modify assignment grades or examination

marks. The user is first requested to select which of the two tasks he

would like to perform. He is then asked to enter an assignment number

or an examination number, depending on which task he selected. A range

check is performed on the number specified. This number is then used

to calculate the number of the column in which the data is to be

modified. The user must then specify the number of the student, whose

marks are to be changed. On specification of this number, the records

in the data base are searched for this number. If a record wi th this

89

student number cannot be found, a report is printed to this effect.

Otherwise, the name and number of the student, along with the

grade/mark made for the particular assignment/examination are displayed

on the terminal. The program then asks the user to enter the new mark,

which is then stored in the appropriate column. This procedure Loops

until the user specifies that he no longer wishes to make any changes.

Section 4 - Calculate and Store Term Marks
~---- ---

This section of code calculates an overall mark for the term (term

mark) and stores it in the last (17th) column of the file MARKS.TF.

The user must first enter the following information:

(i) weight on assignemnt - WA

(ii) weight on first mid-term examination -WI

(iii) weight on second mid-term examination -W2

(iv) weight on final exam - W3

For each student, the program calculates the total mark made on

assignments, according to a specified rule: "If the grade obtained for

an assignment is an'S', the student gets a mark, otherwise he gets a

mark of zero". A loop is used to total the amount made on the 10

assignments.

91

program are closed and the following prompt appears on the screen:

A>

4. 7.3 Output of l\PPlication Program

All ootput from the application program STUDENT is displayed on

the terminal. Output is in the form of two kinds of reports.

(i) Exception reports - This report prints all bad transactions with

appropriate error messages. Examples of error messages are:

INVALID ASSIGNMENT NUMBER - 25

INVALID EXAMINATICN NUMBER - 10

(ii) Update reports - This kind of report is printed at the end of a

successful operation on the data base. Examples are:

EXAMINATION MARKS HAVE BEEN ENTERED.

TERM MARKS HAVE BEEN ENTERED.

The emphasis in this program was not on reporting. The naive user

interface of the converted RISS DBMS provides a good retrieval program,

which may be used to send formatted reports, on the updated data base,

to the printer or scree~

4.7.4 Using the Application Program

A. To start the program S'ruDENT.BAS

1. Turn the power on (if necessary).

2. Place the correct disk(s} in the correct drive(s).

92

This prompt should appear:
A>

3. Type the underlined command with the correct password.
A> CRUN2 S'IUDENl' password

4. Choose desired option

B. To end program S'IUDENT.BAS

1. Choose option 5. This prompt appears: A>

2. Remove disk (s) from drive (s) •

3. Turn the power off.

C. Points to note in using the program

1. Each data entry must be accompanied by a carriage return (hit the

key marked ~.

2. If mistakes are made in entering assignment grades or examination

marks, two things can be done:

(i) record the student numbers whose marks were entered incorrectly

and then use option 3 to modify only these marks.

(ii) while still in the particular option for entering grades/marks,

respond with a ! to the prompt 'DO YOU WISH TO CHECK ENTRIES >' The

program will go through all the records in the section and allow the

user to change the erroneous ones.

93

3. If a mistake is made in selecting the task to perform, the user may

exit from that option by typing! when the prompt 'Confirm Option >'

appears on the screen.

4. All key-in mode entries are tested for validity. This test includes

a range check for numeric entries. When some sort of unacceptable

entry is discovered by this test, the user must re-enter the valid

data.

5. To use this program, the user must correctly enter a password before

he can proceed with the task selection. This protects the student data

base from accidental or malicious tampering.

4.8 Pr i vacy Controls

The data base is stored in direct access storage and accessed

directly by an application using standard operating system access

methods. Since the contents of the data base must be confidential for

obvious reasons, the data base will be accessible only to authorized

users. This is accomplished by the use of a password. A user desiring

access to the student data base must supply a password before the

access is allOWed.

START

INITIALIZE
LATION

NO

YES

BRA...l\1CH TO
REQUESTED
SECTION OF
CODE

FLOWCHART OF APPLICATION PROGRAl1

YES

94

END
STUDENT. BAS

c:HAPl'ER V

CCNCWSICN

The original goal of this project was to convert the RISS data

base management system, originally implemented on a minicomputer, for

use on a microcomputer. This goal has been successfully achieved. The

converted DBMS, written in CBASIC-2, has been installed, accepted and

is operational on a Dynabyte microcomputer using the CP/M operating

system. The data base management system may be used to support one or

more data bases on any microcomputer which uses a CP 1M operating system

and handles CBASIC-2.

The secondary objective of the project has also been accomplished.

As seen in Chapter 4, the converted DBMS was employed in creating a

data base of student records for the Faculty of Business on their

Dynabyte microcomputer. The module CREREL successfully created the

single relation in the student data base. The EDREL module was used to

build the data base and also for examining, modifying and deleting

tuples in the relation 'MARKS' of the student data base. For retrieving

data from the data base, the module RETREL was invoked. The AND (A) and

OR (O) commands of RETREL facilitated querying the data base and

retrieving selected subsets of the data base. RE1~ was also used in

producing formatted reports on the screen or at the printer. Thus these

95

96

modules have been sufficiently tested.

The remaining modules of the data base maintenance package ie.,

MERREL, COLREL, COPREL, SORREL AND DELREL were separately tested and

are basically error-free.

The converted data base management system has a high degree of

data independence in that physical storage is separate from the logic

of applications using the data. This aids flexibility and ease of

change in a dynamic environment. Adding a new relation to the data base

or a new column to a relation does not impact existing application

programs. Since the data base system has been designed in a modular and

structured manner, it is easy to expand it to include more application

programs while maintaining data independence.

5.1 Disadvantages of the Relational Model

The relational model is much simpler from the viewpoint of the

user. The number of basic constructs is one, namely the relation (or

table) itself; all information in the data base is represented using

just this one construct. Relations are also easy to manipulate. Adding

a new relation to a data base or a new column to a relation does not

impact existing application programs.

Unfortunately, the price that must be paid for simplicity to the

user is comp1exi ty to the data base system. It is difficult to design

an efficient, effective relational data base system. For large data

97

bases, where the cost of storage space and computer time dominate the

total cost of implementing the data base, the network and hierarchical

models are far superior. As an example, the most simple-minded

implementation technique used in relational data base systems is an

exhaustive search of the data base. For handling single tuple variable

requests, ~his technique has an execution time that is proportional to

the number of tuples in the relation and the overhead incurred in large

data bases is unacceptable. However, the type of data base implemented

on a microcomputer is normally physically small, making a relational

data base structure a suitable choice for such systems.

5.2 Limitations of CBASIC-2

Although BASIC is one of the easiest languages to learn and use,

certain limitations of the language made the experience of programming

in CBASIC-2 an unhappy one.

1. It does not have a very rich set of control structures; (for

example, nesting of IF statements is not allowed) •

2. String handling capabilities are minimal.

3. Input/Output capabilities are incomplete.

4. Execution of a CHAIN statement causes transfer of control from the

program being executed to the beginning of the chained program. Extra

code had to be written to effect the transfer to a desired portion of

the chained program.

S. Routines for error trapping are not available.

98

6. The syntax of the language does not allow building complex block

structures, and the result is a limitation of the complexity of

programs which can be written.

7. CBASIC-2 uses a compiler for language translation. Hence, any

single change to a completed program required that the entire program

be recompiled. This proved to be very time-consuming during program

debugging.

5.3 Limitations of Microcomputers

The advantages of a microcomputer over a traditional minicomputer

are:

1. lower oost (perhaps 10 times less),

2. small size,

3. lower power consumption,

4. availability of new low cost peripherals.

Its main limitations compared to a minicomputer are:

1. lesser processing power - the use of an a-bit microprocessor results

in a slower execution speed. The processing efficiency of the

microcmputer DBMS could be improved by using a hard disk, as opposed to

floppy disks. Access time of floppy disks is slow because of repeated

access to the files of the RISS system. The original implementation of

RISS on a minicomputer which used a hard disk was efficient. Hence, the

microcomputer data base management system is expected to be more

99

efficient if files are stored on hard disk.

2. less software - because microcomputers are less technically advanced

than minicomputers, their software libraries are smaller. However, this

situation should improve over the next few years.

5.4 Future Enhancements

During the development of the microcomputer data base management

system, several areas of improvement were noticed. These were not

implemented here, either because of time restrictions or because they

were beyond the scope of the initial project. Briefly, these

improvements are :

1. Data integrity - there is need for a greater degree of data

integrity in the data base. This implies a need for several constraints

on the data. Constraints may be of two types:

(i) validity constraints eg., a data field may be allowed to contain

only values whose type and format exactly match the characteristics

declared, or the value of a particular field may be required to

fall within a particular range.

(ii) consistency constraints; for example, values of a data field

may be required to appear also as values in some field in another

tuple.

In this implementation , the only constraint imposed on the data

is the specification of the storage strategy, indicating that the data

of a particular column is either numeric or character string. The data

100

base management system should provide for data base integrity through

control of updates to assure validity of the data base. Validation

procedures could be written which would examine the input data when any

storage operation is attempted.

2. Privacy controls on the data base - the data base management system

should provide security capabilities to assist in assuring that

information is available only to those entitled to it and that only

authorized persons may update the data base. At present, no such

privacy controls exist on the converted DBMS.

3. Crash protection and recovery - to protect the data base against

accidental loss, facilities to reconstruct the data base after a

hardware or software error should be provided. This may be accomplished

by the creation of an audit trail (or log) and through special programs

designed to recreate a damaged data base.

4. Query reporting - a further extension of the query reporting program

could be made to improve the interactive capability of the system, over

and above the so-called 'naive-user' interface contained within the

current RISS implementation. Depending on future needs, additional

special report programs can be written to query the data base.

101

5.5 Concluding Remarks

It is quite clear that for small business applications, a very

useful DBMS could be based on a microcomputer. This gives a cheap,

light and portable system yielding results on the spot. The data base

task might once have been thought best solved by time shared access to

a large computer. However, economic considerations in many cases will

show the advantages of microcomputer implementations of data base

management systems.

APPENDIX A

SAMPLE DIAL(X;UE FOR NAIVE-USER INl'ERFACE OF

MI~IJBr.1S

102

CREREL - CRFATING REIATIOOS

A>CRUN2 B :CREREL

CRrJN VER 2.05

NAME THE REIATIOO 'ID BE CRFATED > MARKS

a:NFlm CREATICN OF REIATICN MARKS >? Y
NUMBER OF OOLUMNS (ORDER) IN THE REIATICN > 4

COLUMN 1
OOLUMN NAME > NAME

STRMEGY > 2

FIELD LENGTH > 40

COLUMN 2
COLUMN NAME > NUMBER

STRATEGY > 2
FIELD LENGTH > 7

COLUMN 3

COLUMN NAME > SECrICN

STRA'l'OOY > 1
FIELD LENGTH > 1

COLUMN 4

OOLUMN NAME > MARK
STRATEGY> 1
FIELD LENGI'H > 3

ANY CORREX::TICNS > Y
CDLUMN 'ID CORREX::T > 2

CHANGE COLUMN NAME (Y OR N) > ~
mANGE OOLUMN STRMEGY (Y OR N) > Y

NEW STRATEGY > 1
mANGE FIELD LENGI'H (Y OR N) > N

ANY CORREX::TICNS > N

REIATICN MARKS HAS BEEN CRFATED

103

EDREL - EDITING RELATIOOS

A> CRUN2 B :EDREL

CRIJN VER 2.05

RELATICN 'ro EDIT > MARKS

COLUMN NAMFS (Y OR N)? > !
HC:W MANY COLtmS 'ro DISPIAY? > 1

COLUMN# 1 >? 1:
REIATIOO MARKS: 0 REXX)RDS, 4 COLUMNS.

* ?
REIATION: MARKS

RECORD: 0

* I
1 • > NAME? AJ:W.1S B

2 .> NUMBER? 7005545
3 .> SECTIOO? 1
4 .> MARK? 78

* B
1. > NAME? BENl'LEY F
2. > NUMBER? 7915145
3. > SECTICN? 2

4. > MARK? 83

* ?
REIATION: MARKS

RECORD: 2

* B
1. > NAME? COREY J

2. > NUMBER? 7302789
3. > SECTICN? 1
4. > MARK? 88

104

* -2
1> ADAMS B

* P3

l.NAME >ADAMS B 2.NUMBER >7005545 3.SECI'ICN >1 4.MARK >78

1.NAME >BENTLEY F 2.NUMBER >7915145 3.SECl'ICN >2 4.MARK >83

1.NAME >COREY J 2.NUMBER >7302789 3.SECTICN >1 4.MARK >88

* -1
1 > BENTLEY F

* E
COLUMN > 2
7915145

* V
COLUMN> 4

83
NE.W STRING > 85

* P1

1.NAME >BENTLEY F 2.NDMBER >7915145 3.SECTION >2 4.MARK >85

* B
1 • > NAME? HARPER A

2 .> NUMBER? 7924236
3 .> SECTICN? 1

4 .> MARK? 75

* ?
RELATICN: MARKS
RECORD: 4

* -9
1 > ADAMS B

105

106

* P4

I.NAME >ADAMS B 2.NUM8ER >7005545 3.SEC1'ICN >1 4.MARK >78

I.NAME >BENTLEY F 2.~ >7915145 3 • SEX:TICN > 2 4.MARK >85

I.NAME >COREY J 2.NUM8ER >7302789 3. SEX:TICN > 1 4.MARK >88

I.NAME >HARPER A 2.NUMBER >7924236 3. SEX:TICN >1 4.MARK >75

* ?
RELATlCN: MARKS

RECORD: 4

* L
COLtMN > 4

SFAIOI STRING > 2

STRING ror FtXJND

* L

COLUMN > 3

SFAIOI STRING > 2

2

1 > BENTLEY F

* ?
RELATICN: MARKS

RECORD: 2

* S
COLUMN > 2

SFAIOI STRING > 1

7915145

NEW STRING > 2

1 > BENTLEY F

* PI

I.NAME >B~ F 2.NUMBER >7925245 3. SEX:TICN > 2 4.MARK >85

* B
1 • > NAME? JERCME W
2 .> NUMBER? 7305758
3 • > SECTIOO? 2
4 .> MARK? 64

* ?
RELATIOO: MARKS

RECORD: 5

* -99
1 > ADAMS B

* P99

1.NAME >ADAMS B 2.NUMBER >7005545 3.SEC'l'IOO >1 4.MARK >78

1.NAME >BENTLEY F 2.NUMBER >7925245 3.SECTlOO >2 4.MARK >85

1.NAME >COREY J 2.NUMBER >7302789 3.SECTIOO >1 4.MARK >88

1.NAME >HARPER A 2.NUMBER >7924236 3.SECTlOO >1 4.MARK >75

1.NAME >JEROME W 2.NUMBER >7305758 3.SECTION >2 4.MARK >64

* Q

107

RErHEL - RETRIEVING DATA FRCM REIATICNS

A> CRIJN2 B : REI'REL
CRIJN VER 2.05

REIATICN 'IQ REl'RIEVE DATA FRCM > MARKS

OOTPUI' oro SCREEN OR PRINTER (S OR P) 1 > S

REIATICN MARKS: 5 RECORDS, 4 COLUMNS.

* C
1 = NAME

2 = NUMBER
3 = SECTICN

4 = MARK

* P
NUMBER OF COLUMNS > 5
COLUMN 1 >? 0
COLUMN 2 >? 1

COLUMN 3 >? 2
COLUMN 4 >? 3

COLUMN 5 >? 4

DELIMITER (MAY BE NULL) >
00 YOO WAN!' ALIGNED COLUMNS? > Y

POSITICN 'IQ BEGIN COLUMN 1 >1 1

POSITICN oro BEGIN COLUMN 2 >1 10

POSITICN 'IQ BEGIN COLUMN 3 >? 20

POSITICN 'IQ BEGIN COLUMN 4 >? 30

POSITICN ro BEGIN COLUMN 5 >1 40

NAME NUMBER SECI'ICN

1 ADAMS B 7005545 1
2 BENTLEY F 7925245 2

3 COREY J 7302789 1
4 HARPER A 7924236 1
5 .:J'EKME W 7305758 2

MARK

78

85

88

75

64

108

* A
OJLtm> 3
<, >, OR = (WTTCH ONE) > =
EXACl' MATCH REQUIRED?> Y

VALUE > 1

* P
NUMBER OF OJLUMNS > 3

COLUMN 1 >? 1
OJLUMN 2 >? 2

OJLUMN 3 >? 3
DELIMEl'ER (MAY BE NULL) >

00 YOO WANI' ALIGNED COLUMNS? > Y
POSITIOO ro BEGIN OJLUMN 1 >? 10

POSITICN ro BOOIN COLUMN 2 >? 20

POSITIOO ro BOOIN (x)LUMN 3 >? 30

NAME NUMBER SECTICN

ADAMS B 7005545 1

7302789 1

109

* A
COLUMN > 3
<, >, OR = (WITCH ONE) > =
EXACT MATCH REQUIRED?> Y
VALUE > 1

* p
NUMBER OF COLUMNS > 3
COLUMN 1 >? 1
COLUMN 2 >? 2
COLUMN 3 >? 3
DELIMETER (MAY BE NULL) >
DO YOU WANT ALIGNED COLUMNS?
POSITION
POSITION
POSITION

* I

TO BEGIN COLUMN
TO BEGIN COLUMN
TO BEGIN COLUMN

NAME NUMBER

ADAMS B 7005545
COREY J 7302789
HARPER A 7924236

1
2
3

> Y
>? 10
>? 20
>? 30

SECTION

1
1
1

RELATION MARKS: 5 RECORDS, 4 COLUMNS

* T
COLUMN TO TALLY > 3

SECTION

1
2
#MISSING DATA#

* S
COLUMN > 4

3
2
o

DO YOU WANT STANDARD DEVIATION? > Y

(60.00%)
(40.00%)
(0.00%)

llO

MARK

RECORDS =
MEAN =
MEDIAN =
ST DEV. =

* G
COLUMN TO GROUP > 4
NUMBER OF GROUPS

CUT OFF 1 >?

CUT OFF 2 >?

MARK
< 70
< 80
>=

* 0
COLUMN > 4

70

80

> 3

5
78.00
78.00
8.41

<, >, OR = (WHICH ONE) > >
VALUE > 70

* P
NUMBER OF COLUMNS > 2
COLUMN 1 >? 1
COLUMN 2 >? 2
DELTMITER (MAY BE NULL) >

1 (20.00%)
2 (40.00%)
2 (40.00%)

DO YOU WANT ALIGNED COLUMNS? > Y
POSITION TO BEGIN COLUMN 1 >? 10
POSITION TO BEGIN COLUMN 2 >1 20

NAME MARK

ADAMS B 78
BENTLEY F 85
COREY J 88

111

HARPER A 75

* M
RELATION TO MOVE RECORDS TO > MARKSBCK
ERASE RECORDS AFTER MOVING? > N
A '#' WILL APPEAR FOR EACH RECORD MOVED.

112

MOVED FROM RELATION MARKS TO RELATION MARKSBCK: 4 RECORDS.

A>

COPREL - COPYING RELATIONS

A> CRUN2 B : COPREL

CRUN VER 2.05

RELATION TO COpy > MARKS
NEW RELATION > MARKSBCK
CONFIRM COPY (Y OR N) > Y

RELATION MARKS HAS BEEN COPIED TO RELATION MARKSBCK

DELREL - DELETING RELATIONS

A> CRUN2 B: DELREL

CRUN VER 2.05

RELATION TO DELETE > MARKSBCK

CONFIRM DELETION > Y

RELATION MARKSBCK HAS BEEN DELETED

COLREL - MAINTAINING RELATION COLUMNS

A> CRUN2 B:COLREL

CRUN VER 2.05

RELATION TO MODIFY > MARKS2

DO YOU WISH TO:
S) SET A COLUMN NAME.
D) DELETE A COLUMN.
A) ADD A COLUMN.

OPTION (S, D, OR, A) > S

COLUMN TO RENAME > 1
NEW COLUMN NAME > NAMES
COLUMN ONE IS NOW NAMED NAMES

ANY MORE OPERATIONS ON THIS RELATION (Y OR N) > Y

DO YOU WISH TO:
S) SET A COLUMN NAME.
D) DELETE A COLUMN.
A) ADD A COLUMN.

OPTION (S, D, OR A) > D

COLUMN TO DELETE > 4

COLUMN 4 HAS BEEN DELETED.

113

ANY MORE OPERATIONS ON THIS RELATION (Y OR N) > Y

DO YOU WISH TO:
S) SET A COLUMN NAME.
D) DELETE A COLUMN.
A) ADD A COLUMN.

OPTION (S, D, OR A) > A

COLUMN AFTER WHICH TO ADD THE NEW COLUMN > 4
NEW COLUMN NAME > GRADE
NEW COLUMN STATEGY > 2
NEW FIELD LENGTH > 1

THE NEW COLUMN HAS BEEN ADDED AFTER COLUMN 2

ANY MORE OPERATIONS ON THIS RELATION (Y OR N) > N

A>

MERREL - MERGING RELATIONS

A> CRUN2 B:MERREL

CRUN VER 2.05
FIRST RELATION > MARKS
SECOND RELATION > MARKS2
THIRD RELATION > MERGE

NUMBER OF COMPARISON COLUMNS PAIRS > 2
COLUMN 1

COLUMN NUMBER IN THE FIRST RELATION > 1
COLUMN NUMBER IN THE SECOND RELATION > 2

COLUMN 2
COLUMN NUMBER IN THE FIRST RELATION > 2
COLUMN NUMBER IN THE SECOND RELATION > 4

114

115

2 RECORDS RESULTED FROM THE MERGRE

SORREL - SORTING RELATIONS

A> CRUN2 B:SORREL

CRUN VER 2.05

RELATION TO SORT 7 MARKS

COLUMN TO SORT ON > 5

CONFIRM SORT > Y

RELATION MARKS HAS BEEN SORTED.

Note that in this implementation the data base management systerr
resides on a disk in drive B. Also note that in the sample dialogues,
the user responses are underlined.

116

APPENDIX B

LISTING OF SAMPLE APPLICATION PROGRA~

REM **
REM * THIS IS A SAMPLE APPLICATICN PROORAM ro ILLUSTRATE *
REM * '!HE USE OF THE RISS FUNCrICNS. '!HE PROORAM AI..I..CMS *
REM * THE USER INl'ERl\CTIVELY ro ADD OR M:::>DIFY DATA IN A *
REM * DATA BASE OF STODENT RECORDS *
REM **

PASSIDRD$="PASS"
IF aM-1AND$<>PASSmRD$ '!HEN PRINT "ILLEGAL PAS5mRD":S'roP

%IOCLUDE FNR5%
%INCLUDE FNR5
%INCLUDE Elm7
%INCLUDE ENRl
%INCLUDE FNR2
%INCLUDE ENR3

DIM T%(200),R2%(3),R3%(3),R4%(3),R7%(3)
V$=ENRl.$ (''MARKS'' , 1)

10 PRINI'
PRINT "00 YCX1 WISH ro: "
PRINT " 1) ENTER ASSIGNMEm' MARKS "
PRINT " 2) ENI'ER EXAMINATICN MARKS "
PRINT " 3) M:::>DIFY STUDENl' MARKS "
PRINT " 4) CALCUIATE 'I'ER-1 MARKS "
PRINT " 5) QUIT "
PRINT

20 INPUT "TYPE OPTICN (1,2,3,4 OR 5) >";OP%
IF OP%<l OR OP%>5 THEN 20
PRINT
ON OP% GO TO 100,200,300,400,32010

100 PRINT "OPl'ICN - ENTER ASSIGNMENr MARKS"
INPUT "~IRM OPTION (Y OR N) >"; Y$
IF ASC (Y$) <> 89 THEN 10
INPUT "ENI'ER ASSIGNMENl' NUMBER >" ;AN%
IF AN%<l OR AN%>10 THEN 100
C%=AN%+3
OOSUB 1001
PRINT
INPur "00 YCX1 WISH TO CHECK ENI'RIES >"; Y$
IF ASC(Y$) <> 89 THEN 120
GOSUB 2001

120 PRINI'
PRINT "ASSIGNMENT MARKS HAVE BEEN ENlERED."
PRINI'
GO TO 10

200 PRINT "OPI'ICN - ENI'ER EXAMINATICN MARKS"
INPUT "<DNFIRM OPTICN (Y OR N) >"; Y$
IF MC (Y$) <> 89 THEN 10
INPUT "ENl'ER EXAM NUMBER (1,2 OR 3) >" ;EN%

117

IF EN%<l OR EN%> 3 '!HEN 200
C%=EN%+13
OOSUB 1001
PRINI'
INPUT "00 YOJ WISH 'IO CHECK ENI'RIFS >"; Y$
IF ASC(Y$) <>89 THEN 220
OOSUB 2001

220 PRINI'
PRINI' "EXAMINATICN MARKS HAVE BEEN ENI'ERED."
PRINI'
00 'IO 10

300 PRINI' "OPI'ICN - MJDIFY STUDENl' MARKS"
INPUT "~IRe1 OPl'ICN (Y OR N) >" ; YS
IF M:iC (YS) <> 89 THEN 10
INPUT "CHANGE (l)M:iSIGNMENl' MARKS OR (2}EXAM MARKS (1 OR 2) >" ;M%
IF M%<l OR M%>2 THEN 300
IF M%=l 'IHEN\

INPUT "ENTER M:iSIGNMENl' NUMBER >" ;AN%:\
00 ro 310\

EI.SE\
INPUT "ENTER EXAMINATICN NUMBER >" ;EN%: \
00 'IO 315

310 IF AN%<l OR AN%>10 THEN\
PRINI' " INVALID M:iSIGNMENl' NUMBER - ";AN%:\
PRINl':OO 'IO 300

C%=AN%+3:oo 'IO 320
315 IF EN%<l OR EN%>3 THEN\

PRINr " INVALID EXAMINATICN NUMBER - ";EN%: \
PRINI':oo 'IO 300

C%=EN%+13
320 INPUT "ENl'ER STUDENl' NUMBER >"; ID$

FOR 1%=1 'IO R2% (I)
V$=FNR2$(I%,2,1)
IF V$=ID$ THEN\

PRINl':\

118

PRINl' FNR2$ (1%,1,1) ;" ";FNR2$ (1%,2,1) ;" ";FNR2$ (I%,C%,l) :\
INPUT" EN'JER NEW MARK >";A$: \
V$=FNR3$ (I%,C%,l,A$) :\
00 'IO 330

NE}cr' 1%
PRIm ID$;" - STUDENT NUMBER WI' FaJND"

330 INPUT" ANY MJRE CHANGES? >"; Y$
PRIm
IF ASC(YS)=89 THEN 320
00 'IO 10

400 PRINl' "OPI'ICN - CALCUIATE AND STORE 'lERe1 MARK"
INPUT "CONFIRe1 OPl'ICN (Y OR N) >"; Y$
IF M:iC (Y$) <> 89 THEN 10

REM This function converts the term mark keeping only one
REM digit after the decimal point.
DEE' FNl'R$ (F$)
D%=MA'IOI(II.II,F$,l)
IF D% = 0 THEN\

FNTR$=F$:Rm'URN
F%=v.AL(MID$(F$,D%+l,l»
G%=v.AL(MID$(F$,D%+2,1»
IF G%>=5 THEN F%=F%+l
NF$=LEFT$ (F$,D%)+STR$ (F%)
FNl'R$=NF$
REn'tJRN
FEl'lD

INPUT IIENI'ER WEIGH!' CN ASSIGNMENTS >II;WA
INPUT "ENI'ER WEIGH!' CN FIRST MID-'I'ERw1 > II; Wl
INPUT IIENI'ER WEIGH!' CN SEXXND MID-'I'Em >1I;W2
INPUT IIENI'ER WEIGHT CN FINAL EXAM > 1I;W3
PRINT: PRINT II 'l'ER-1 MARKS ARE: II: PRINT
FOR I%=1 'IQ R2% (1)

'lTA=0.
FOR K%=l 'IQ 10

V$=FNR2$(I%,K%+3,1}
IF V$=IISII THEN TA=1. ElSE TA=O.
'lTA='lTA+TA

NEXT K%
MID1=VAL(FNR2$(I%,14,1}}
MID2=VAL(FNR2$(I%,15,1}}
FINAL-~(FNR2$(I%,16,1»
'IM=WA*TI'A+Wl*MID1+W2*MID2+W3*FINAL
F$=STR$ ('1M): 'lM$=FNl'R$ (F$)
PRINT FNR2$(I%,2,1);1I 1I;'lM$
V$=FNR3$(I%,17,1,TM$)

NEXT I%
PRINT: PRINT IlTEIM MARKS HAVE BEEN ENTERED. II
GO 'IQ 10

1001 REM Subroutine for entering marks or grades by section
INPUT IIENrER SECTICN NUMBER > II; SN%
IF SN%<l OR SN%>4 THEN 1001
PRINT
11%=0
FOR 1%=1 'IQ R2% (1)

N%=VAL(FNR2$(I%,3,1)}
IF N%=SN% THEN\

11%=11%+1:\
PRINT FNR2$ (1%,1,1) ;" ";FNR2$ (I%,2,1) ;:\
INPUT N$: \
V$=FNR3$(I%,C%,l,N$):\
T%(I1%}=I%

119

NEXTI%
RETURN

)01 REM Subroutine for changing any mark or grade.
FOR K%=l TO I1%

PRINl'
PRINl' FNR2$ (T% (K%) ,1,1) ~ II II ~FNR2$ (T% (K%) ,2,1) ~ II
PRINT FNR2$(T%(K%),C%,l) -
INPt1l' II OJANGE MARK (Y OR N) > II ; Y$
IF ASC(Y$) <>89 THEN 2100
INPt1l' II NEW MARK > II ~ N$
V$=FNR3$(T%(K%),C%,l,N$)

lOO NEXT K%
REl'URN

2010 CLOSE 10,11,12
END

II.
t

120

121

BIDLIOORAPHY

[1] Meldman, McLeod, Pellicore, Squire M. RISS: A Relational Data
Base Management System For Minicomputers. Van Nostrand
Reinhold Company, 1978.

[2] Date, C. J. Introduction to Data Base Management Systems.
Addison-Wesley Publishing canpany Inc., 1977.

[3] Martin, James. Computer Data-Base Organization. Prentice-Hall,
Inc., 1977.

[4] Bahl, Marilyn. Information Processing. Science Research
Associates Inc., 1976.

[5] Special Issue: Data Base Management Systems. Computing
Surveys, Vol. 8, No.1, Mar. 1976.

[6] as Total Reference Manual. CINCOM Systems, Inc., Cincinnati,
Ohio, 1978.

[7] Information Management System/Vertical Storage. Utilities
Reference Manual. IDM Corporation, 1974.

[8] Astrahan, M. M. et al. System ~ = ~ Relational Approach to
Database Management. ACM Trans. Data Base Systems, Vol.
1, No.2, 1976.

[9] Data book 70, the 'EDP buyer's bible. Vol. 3, Datapro Research
Corporation, N. J. 1980.

[10] OODASYL Systems Committee. Feature Analysis of Generalized Data
Base Management Systems. New York: Association for
Canputing Machinery, May 1971.

[11] Codd, E. F. (ed.). Implementation of Relational Data Base
Management Systems. Bulletin of ACM-SIGMOD, The Special
Interest Group on Management of Data, Vol. 7, No. 3-4,
1975.

------ - - - - --

122

[12] Codd, E. F. A Relational Model of Data for Large Shared Data
Banks. CA01 vol. 13, No.6, June 1970.

[13] Whitney, V. K. M. ROMS -= ~ Relational Data Management System.
Proceedings Fourth International Symposium on Computer and
Information Sciences, Miami. Plenum Press, 1972.

[14] Chamberlain, D. L. Relational Data Base Management §ystem.
Canputing Surveys, Vol. 8, No.1, March 1976.

[15] Astrahan, M. M. et ale System g -= ~ Relational Approach to
Database Management. ACM 'roDS 12, June 1976.

[16] Haseman and Whinston. Introduction to Data Management. Richard
D. Irwin Inc., 1977.

[17] Ross, Ronald G. An Assessment of Current Data Base Trends.
Data Base Monograph Series Q.E.D. Information Sciences.

[18] Palmer, Ian R. ~ Base Systems: A Practical Reference. QED
Information Sciences, Inc., 1975.

[19] Cohen Leo. Data Base Management Systems: A Practical
Reference. Q.E.D. Information Sciences, Inc., 1976.

[20] Cardenas Alfonso. Data Base Management Systems. Allyn and
Bacon, Inc. 1979.

