
Improving Scheduling in Heterogeneous Grid and Hadoop

Systems

Aysan Rasooli, B.E., M.S.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree PhD of Software Engineering

McMaster University

McMaster University c© Copyright by Aysan Rasooli

August 7, 2013

Abstract

Advances in network technologies and computing resources have led to the deployment of

large scale computational systems, such as those following Grid or Cloud architectures. The

scheduling problem is a significant issue in these distributed computing environments, where a

scheduling algorithm should consider multiple objectives and performance metrics. Moreover,

heterogeneity is increasing at both the application and resource levels. The heterogeneity in these

systems can have a huge impact on performance in terms of metrics such as average completion

time. However, traditional Grid and Cloud scheduling algorithms neglect heterogeneity in their

scheduling decisions. This PhD dissertation studies the scheduling challenges in Computational

Grid, Data Grid, and Cloud computing systems, and introduces new scheduling algorithms for

each of these systems.

The main issue in Grid scheduling is the wide distribution of resources. As a result, gathering

full state information can add huge overhead to the scheduler. This thesis introduces a Compu-

tational Grid scheduling algorithm which simultaneously addresses minimizing completion times

(by considering system heterogeneity), while requiring zero dynamic state information. Simula-

tion results show the promising performance of this algorithm, and its robustness with respect to

errors in parameter estimates.

In the case of Data Grid schedulers, an efficient scheduling decision should select a combination

of resources for a task that simultaneously mitigates the computation and the communication

costs. Therefore, these schedulers need to consider a large search space to find an appropriate

combination. This thesis introduces a new Data Grid scheduling algorithm, which dynamically

makes replication and scheduling decisions. The proposed algorithm reduces the search space, de-

creases the required state information, and improves the performance by considering the system

heterogeneity. Simulation results illustrate the promising performance of the introduced algo-

rithm.

Cloud computing can be considered as a next generation of Grid computing. One of the main

challenges in Cloud systems is the enormous expansion of data in different applications. The

MapReduce programming model and Hadoop framework were designed as a solution for execut-

ing large scale data-intensive applications. A large number of (heterogeneous) users, using the

same Hadoop cluster, can result in tensions between the various performance metrics by which

such systems are measured. This research introduces and implements a Hadoop scheduling system,

which uses system information such as estimated job arrival rates and mean job execution times

to make scheduling decisions. The proposed scheduling system, named COSHH (Classification

and Optimization based Scheduler for Heterogeneous Hadoop systems), considers heterogeneity

at both the application and cluster levels. The main objective of COSHH is to improve the av-

i

erage completion time of jobs. However, as it is concerned with other key Hadoop performance

metrics, it also achieves competitive performance under minimum share satisfaction, fairness and

locality metrics, with respect to other well-known Hadoop schedulers. The proposed scheduler

can be efficiently applied in heterogeneous clusters, in contrast to most Hadoop schedulers, which

assume homogeneous clusters.

A Hadoop system can be described based on three factors: cluster, workload, and user. Each fac-

tor is either heterogeneous or homogeneous, which reflects the heterogeneity level of the Hadoop

system. This PhD research studies the effect of heterogeneity in each of these factors on the

performance of Hadoop schedulers. Three schedulers which consider different levels of Hadoop

heterogeneity are used for the analysis: FIFO, Fair sharing, and COSHH. Performance issues are

introduced for Hadoop schedulers, and experiments are provided to evaluate these issues. The

reported results suggest guidelines for selecting an appropriate scheduler for different Hadoop

systems. The focus of these guidelines is on systems which do not have significant fluctuations in

the number of resources or jobs.

There is a considerable challenge in Hadoop to schedule tasks and resources in a scalable man-

ner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase

this challenge. This thesis analyzes the performance of widely used Hadoop schedulers including

FIFO and Fair sharing and compares them with the COSHH scheduler. Based on the discussed in-

sights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable

and heterogeneous Hadoop systems with respect to the number of incoming jobs and available

resources. The proposed hybrid scheduler considers the guidelines provided for heterogeneous

Hadoop systems in the case that the number of jobs and resources change considerably.

To improve the performance of high priority users, Hadoop guarantees minimum numbers of

resource shares for these users at each point in time. This research compares different scheduling

algorithms based on minimum share consideration and under different heterogeneous and homo-

geneous environments. For this evaluation, a real Hadoop system is developed and evaluated

using Facebook workloads. Based on the experiments performed, a reliable scheduling algorithm

is suggested which can work efficiently in different environments.

ii

Acknowledgements

First and foremost, I am heartily thankful to my supervisor, Dr. Douglas Down, whose encourage-

ment, supervision and support from the preliminary to the concluding level enabled me to develop

an understanding of the subject. I would like to express deep gratitude to my present and past

PhD committee members: Dr. Alan Wassyng, Dr. Frantisek Franek, Dr. Skip Poehlman, and Dr.

Kamran Sartipi for agreeing to serve in my PhD committee, and for their insightful comments

and discussions. Finally, and most importantly, I am indebted to the love and support that I

have received from my family members. In special, I am thankful to my fiancee, my parents, and

siblings who made several sacrifices to ensure that I could realize my dream of pursuing a PhD.

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

The LCG Grid traces are provided by the HEP e-Science group at Imperial College London. A

major part of this work was done while the author was visiting UC Berkeley. In particular, the

author would like to thank Randy Katz, Ion Stoica, Yanpei Chen and Sameer Agarwal for their

comments on this research. Also, the author gratefully acknowledge Facebook and Yahoo! for

permission to use their workload traces in this research.

iii

Dedications

I dedicate this dissertation to my beloved family and friends, especially ...

to my mother who taught me loving someone unconditionally and with no expectations;

to my father for instilling the importance of hard work and higher education;

to my fiancee, Mehran, for his love, patience, advice, encouragement, generosity, and

goodness of spirit supported me the hurdles of graduate school;

to my older brother and sister, Aidin and Aylar, for their patience and advices;

iv

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly

stated the contribution by others to jointly authored works that I have included in my thesis. The

PhD Research problem, i.e., demands for efficient schedulers in heterogeneous Computational and

Data Grids and Hadoop systems, and the proposed scheduling systems including COSHH (Classi-

fication and Optimization based Scheduler for Heterogeneous Hadoop systems) are all my original

ideas/work and contributions during my PhD program at McMaster University. Throughout each

step of my research, I received valuable consultations/ feedback/ supervision from my supervisor

Dr. Down.

v

Contents

1 Introduction 1

1.1 Characteristics of the Problem Domain . 2

1.2 Research Motivations . 4

1.3. Goals of the Research . 5

1.4 Contributions of the Research . 6

1.5 Structure of the Thesis . 8

2 Grid Background 9

2.1 Grid Systems . 9

2.1.1 Grid Services . 10

2.1.2 Grid Architecture . 10

2.2 Grid Scheduling Process . 12

2.3 Evaluation . 13

2.3.1 Performance Metrics . 13

2.3.2 Evaluation Method . 14

2.4 Conclusion . 15

3 State Independent Resource Management for Distributed Computational Grids 16

3.1 Introduction . 16

3.2 Computational Grid Scheduling Algorithms . 18

3.3 Workload and System Model . 20

3.4 Shadow Routing Algorithm . 20

3.5 Grid Shadow Routing Algorithm . 22

3.6 Experimental Environment . 24

3.7 Experimental Results . 25

3.7.1 Over and Under Estimation . 25

3.7.2 Over Estimation . 28

vi

3.8 Conclusion . 29

4 Reducing the Search Space and State Information in Data Grids 30

4.1 Workload Model . 31

4.2 Data Grid Model . 32

4.3 Proposed Scheduler . 34

4.4 Computation Intensive Algorithm . 35

4.5 Data Intensive Algorithm . 37

4.6 Experimental Results . 40

4.7 Related Work . 44

4.7.1 Data Replication . 45

4.7.2 Computation and Data Scheduling Interaction 46

4.7.3 Performance goals of schedulers . 47

4.8 Conclusion . 49

5 Hadoop Background 50

5.1 MapReduce Programming Model . 51

5.2 Hadoop System . 52

5.2.1 Hadoop MapReduce . 53

5.2.2 Hadoop Distributed File System (HDFS) 53

5.2.3 Common . 53

5.2.4 Other Hadoop projects . 54

5.3 Hadoop Architecture . 55

5.4 Hadoop Execution Process . 57

5.5 Conclusion . 61

6 COSHH: A Classification and Optimization based Scheduler for Heterogeneous

Hadoop Systems 62

6.1 Motivation . 64

6.2 Proposed Hadoop Scheduling System . 65

6.2.1 Hadoop System Model . 66

6.2.2 Task Scheduling Process . 68

6.3 Queuing Process . 70

6.3.1 COSHH Classification . 70

6.3.2 COSHH Optimization . 73

6.4 Routing Process . 76

6.5 Hadoop Performance Metrics . 78

vii

6.6 Experimental Results - Synthetic Workload . 79

6.6.1 Experimental Environment . 79

6.6.2 Compared Schedulers . 81

6.6.3 Results and Analysis . 82

6.7 Experimental Results - Real Hadoop Workload . 85

6.7.1 Experimental Environment . 86

6.7.2 Results and Analysis . 88

6.8 Discussion . 91

6.9 Sensitivity Analysis . 93

6.10 Related Work . 95

6.10.1 Simple schedulers . 96

6.10.2 User Fairness based Schedulers . 97

6.10.3 Formal Model based Schedulers . 99

6.10.4 Job Deadline based Schedulers . 100

6.11 Conclusion . 101

7 Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 102

7.1 Performance Issues . 103

7.1.1 Problem I: Small Jobs Starvation . 103

7.1.2 Problem II: Sticky Slots . 104

7.1.3 Problem III: Resource and Job Mismatch 106

7.1.4 Problem IV: Scheduling Complexity . 106

7.2 Heterogeneity in Hadoop . 108

7.3 Evaluation: Settings . 109

7.3.1 Experimental Environment . 109

7.4 Evaluation: Homogeneous Hadoop System . 111

7.4.1 Case Study 1: Homogeneous-Small . 111

7.4.2 Case Study 2: Homogeneous-Large . 112

7.5 Evaluation: Heterogeneous Hadoop System . 113

7.5.1 Case Study 3: Heterogeneous-Small . 114

7.5.2 Case Study 4: Heterogeneous-Large . 115

7.5.3 Case Study 5: Heterogeneous-Equal . 117

7.6 Guidelines for Scheduler Selection . 119

7.6.1 Homogeneous Hadoop . 120

7.6.2 Heterogeneous Hadoop . 121

7.7 Related Work . 121

viii

7.8 Conclusion . 122

8 A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems 125

8.1 Introduction . 125

8.2 Scalability in Hadoop Systems . 126

8.3 Motivation . 127

8.3.1 Scalable Hadoop Schedulers . 127

8.3.2 Heterogeneity Aware Scheduling . 127

8.3.3 Considering Critical Hadoop Performance Metrics 128

8.3.4 Avoiding Large Scheduling Overhead . 128

8.3.5 Scheduling for the MapReduce model . 129

8.4 Performance Issues . 129

8.5 Analysis . 130

8.5.1 Case Study 1: Job Number Scalability . 130

8.5.2 Case Study 2: Resource Number Scalability 132

8.6 Hybrid Solution . 133

8.7 Conclusion . 136

9 The Effect of Minimum Shares on Performance of Hadoop Schedulers 137

9.1 Minimum share effects on Hadoop schedulers . 138

9.2 Analysis . 140

9.3 Experimental Results . 145

9.3.1 Experimental Environment . 145

9.3.2 Results . 146

9.4 Discussion . 148

9.5 Related Work . 150

9.6 Conclusion . 152

10 A Prototype System 153

10.1 Design Diagram . 153

10.2 Implementation Challenges . 159

10.3 Lessons Learned . 160

10.4 Installing the COSHH scheduler . 161

11 Discussion and Future Work 163

11.1 Applications . 164

11.2 Challenges . 166

ix

11.3 Future Work . 167

11.4 Relevant Publications and Submissions by the Author 169

Bibliography 169

x

Chapter 1

Introduction

The topic of this thesis is improving the performance in heterogeneous Grid and Hadoop systems.

Our focus of attention is how to efficiently integrate system heterogeneity in the scheduling process

to provide better performance levels while considering the critical requirements and priorities of

each system.

The increasing number of computational problems in various fields such as science, engineer-

ing, and business are not tractable using the current generation of high-performance computers

(Luther et al. [2006]). In fact, due to their size and complexity, these problems need to work

with distributed application models and components. Advanced networks, data and computing

resources, and networks of clusters were consolidated into many national projects to establish

wide-area computing infrastructures, known as Grid computing. Computational Grid systems

could be used to solve computation-intensive large scale problems. However, the next generation

of these problems were more data-intensive, where the input data was generated in geographically

distributed resources. Researchers further developed the Grid computing paradigm to address

these new problems, producing large-scale Data Grid systems. More recently, there has been a

surge of interest to analyze massive data, thus motivating greatly increased demand for comput-

ing. Using low-cost virtualization along with the availability of commercial large-scale commodity

clusters containing hundreds of thousands of computers has led to the development of Cloud com-

puting systems. Operating at this increased scale, and analyzing increasingly large amounts of

data demands fundamentally different approaches. The MapReduce programming model (Dean

and Ghemawat [2008]), and its open source implementation Hadoop (Apache Hadoop Foundation

[2010b]) have been introduced with a goal of providing highly efficient and scalable solutions for

massive data analysis.

Scheduling is a significant issue in any distributed computing environment. A scheduling al-

gorithm should consider multiple objectives, including managing the system based on resource

1

features and application requirements. An efficient scheduler should adapt to changes in the sys-

tem. Based on the experiments and observations in this work, considering system heterogeneity

is a significant challenge in scheduling of Grid and Hadoop systems. The choice of scheduling

algorithm can highly affect the performance in term of metrics such as average completion times.

There may also be additional constraints on a scheduler, imposed for various reasons (one example

is guaranteed resource shares in Hadoop).

Traditional Grid and Hadoop scheduling algorithms either ignore system heterogeneity or con-

sider it with the cost of adding significant overhead. This research proposes new scheduling

algorithms for each of the Computational Grid, Data Grid, and Hadoop models. The proposed

algorithms are designed to improve performance in heterogeneous environments. This chapter

briefly discusses characteristics of Grid and Hadoop systems (Section 1.1). The intent and mo-

tivation behind the proposed schedulers are discussed in Section 1.2. The research goals and

objectives are addressed in Section 1.3, ending with the problem statement of the thesis. Section

1.4 briefly discusses the contributions of this dissertation. Finally, the outline for the remainder

of the dissertation is presented in Section 1.5.

1.1 Characteristics of the Problem Domain

Grid systems were proposed as the next generation computing platform and global infras-

tructure for solving large scale problems (Luther et al. [2006]). Grids allow sharing of scientific

instruments, which have high cost of ownership, such as a particle accelerator (The Large Hadron

Collider, CERN [2004]). Moreover, they make it possible to support on-demand and real-time

processing and analysis of data generated by these scientific instruments. This capability signifi-

cantly enhances the possibilities for scientific and technological research and innovation, industrial

and business management, application software service delivery and commercial activities. With

respect to this thesis, the important characteristics of a Grid computing environment are listed

as follows:

• The scheduler is a critical part of any Grid computing system, having a direct effect on

system performance. The scheduler assigns submitted jobs to the Grid resources. To achieve

the goals of Grid systems, effective and efficient scheduling algorithms are fundamentally

important (Dong [2009]).

• Grid schedulers are evaluated with different performance metrics such as flowtime (average

completion time of all tasks), makespan (maximum completion time of all tasks), average

resource utilization, and data availability (availability of data for each task).

2

• The Grid scheduling problem is known to be NP-complete (Abraham et al. [2000]). Several

optimization criteria are considered for scheduling in Grids, making it a multi-objective

problem.

• A typical Grid system includes heterogeneous resources which may be widely distributed.

To achieve promising performance levels, a Grid scheduler needs to reduce the completion

times and communication costs in this heterogeneous environment.

• There are different types of Grid computing systems (such as Computational Grids and Data

Grids), employing different schedulers. For example, a scheduler which targets computa-

tion times is suitable for Computational Grids, while a Data Grid needs a scheduler which

considers both computation and data transfer times. Due to the considerable differences

between various Grid types, it is extremely difficult to define a single scheduling algorithm

that performs uniformly well for all Grid systems. Therefore, a practical approach is to

study and define a scheduler for each Grid system based on its specific concerns.

• To schedule a job in a Data Grid system, the scheduler needs to search through possible

combinations of computational resources (for executing the job) and storage resources (for

locating the job’s input data) to find the appropriate combination. Moreover, for a job to

be executed in a Data Grid system, its input data is transferred from the storage resource

to the computational resource; therefore, the data transfer cost varies based on the selected

computational and storage resources (when the data have multiple replicas). The scheduler

is responsible for reducing this communication cost.

The Grid computing paradigm has many applications, particularly in scientific fields. Some no-

table ongoing Grid projects include: LHC Computing Grid (LCG) (Worldwide LCG Computing

Grid [2012]) (a global collaboration for analysis of LHC experiments in the CERN project (The

Large Hadron Collider, CERN [2004])), NEESgrid (The NEESGrid System Integration Team

[2004]) (a Grid system linking earthquake researchers across the United States), and BIRN (Jovi-

cich et al. [2005]) (Bioinformatics Information Research Network).

As a successor to Grid systems, Cloud systems and particularly Hadoop (Apache Hadoop Foun-

dation [2010b]) clusters are gaining a lot of attention for their various applications for individuals

and enterprises. The MapReduce (Dean and Ghemawat [2008]) and Hadoop frameworks were de-

signed to support efficient large scale computations. Some of the important Hadoop characteristics

for this dissertation are as follows:

• Hadoop was implemented based on the MapReduce programming model, where each job

is divided into number of map and reduce tasks. A Hadoop scheduler is responsible for

assigning map and reduce tasks to the available Hadoop resources.

3

• Hadoop schedulers can be evaluated using different metrics such as average completion time

of jobs, minimum share satisfaction, fairness (among users), data locality (higher values indi-

cate lower data transmission cost), and scheduling time (lower value leads to less scheduling

overhead).

• Hadoop has been used for efficient processing of Big Data (Agrawal et al. [2011]) (massive

and rapidly growing collection of data sets). Hadoop schedulers are critical elements for

preserving system scalability. The scalability of Cloud infrastructures has significantly in-

creased their applicability. Therefore, Hadoop is required to be highly scalable for providing

desired performance levels independent of the system scale.

• Similar to Grid, various Hadoop systems require different schedulers, and there has been no

evidence that a unique scheduler works best in all Hadoop systems. For instance, a Hadoop

scheduler ignoring system heterogeneity may perform well in a homogeneous system, but

result in poor performance for a heterogeneous Hadoop system.

1.2 Research Motivations

This PhD research is motivated by various problems in the scheduling process of Grid and

Hadoop systems. The main motivations are listed as follows:

1. Simplicity is considered as the key feature in selecting a scheduler for Hadoop systems.

There are several examples of using simple and fast schedulers in very complicated systems

such as applying the Fair Sharing (Apache Hadoop Fair Scheduler [2010]) and Capacity

(Apache Hadoop Capacity Scheduler [2010]) schedulers in large scale Hadoop clusters used

by Facebook and Yahoo!, respectively. The main intuition behind these schedulers is to

reduce the scheduling time and overhead. This results in ignoring several key performance

metrics in their scheduling decisions. One of the main motivations in this thesis is how

to improve the completion time as well as several other performance metrics (e.g. fairness,

minimum share satisfaction, and data locality) even if it requires adding some complexity

to the decision making process.

2. A transition from a homogeneous Hadoop environment to a heterogeneous environment can

be observed in many applications. However, existing Hadoop schedulers are not appro-

priately customized for heterogeneous systems. This research was originally motivated by

addressing the scheduling challenges arising from the increase in heterogeneity of distributed

systems. Heterogeneity is increasing in both applications and Hadoop clusters. For instance,

Facebook defines various applications including business intelligence, spam detection, and

4

ad optimization running on its Hadoop cluster (Zaharia et al. [2010]); the New York Times

uses Hadoop to convert millions of different size articles and images into PDF files (Gottfrid

[2013]), and there are also Hadoop clusters executing many other experimental jobs, ranging

from multi-hour machine learning computations to 1-2 minute ad-hoc queries (Zaharia et al.

[2010]). Heterogeneous systems introduce new scheduling challenges, directly affecting the

system performance. A state of the art scheduler should address challenges introduced by

these environments.

3. The nature of Cloud and Grid systems is dynamic, meaning that the number, size, and

complexity of jobs as well as the number and types of available resources may vary over time.

For example, a medium-sized company with data privacy concerns would prefer to have a

private Cloud system. This Cloud system may have a large number of jobs to be scheduled

on several available resources during business hours, while after business hours, less work

stations are available for a smaller number of jobs. There may be no single scheduler which

performs well in all conditions of these distributed computing environments. Therefore,

instead of using a single scheduler, an appropriate approach would be a combination of

different powerful schedulers with a smart switch to change the schedulers based on the

current environmental context.

4. Grid scheduling based on gathering system state information and searching over all possible

options leads to large overheads (Dong and Akl [2006]). As in the case of the CERN

project (The Large Hadron Collider, CERN [2004]), resources are generally provided by

different organizations which are geographically distributed (Baker et al. [2002]). To tackle

the issue of system heterogeneity, Grid schedulers typically gather system state information,

and search through a large space of all possible options to find an appropriate matching.

Involving the state information can add huge overhead and increases the scheduling time

(and consequently the completion time). However, ignoring the state information could

significantly affect the performance. One of the motivations for this PhD thesis is to reduce

this overhead while considering the system heterogeneity.

1.3. Goals of the Research

This PhD research considers the scheduling problem in heterogeneous Grid and Hadoop systems.

As discussed in the Motivation section, several performance issues arise from ignoring heterogene-

ity in making scheduling decisions. As a result, performance can be improved by considering the

following two issues:

5

• System heterogeneity: a scheduler which makes decisions with respect to the heterogeneity in

both workload and resources can improve performance metrics such as average completion

time.

• System state information: schedulers that reduce the required state information to be gath-

ered from all distributed resources can improve the performance in terms of overhead and

communication cost.

Most traditional schedulers in distributed computing systems either neglect these issues or

consider only one of them, with a resulting large degradation in the other.

The goal of this research is to design schedulers for heterogeneous Grid and Cloud sys-

tems, which improve performance in terms of quantities related to the completion time

of jobs for both data and computation-intensive applications. Moreover, the overhead

should be negligible compared to the improvement in the performance.

1.4 Contributions of the Research

In what follows, the key contributions of this dissertation are listed.

1. Three schedulers are introduced for Computational Grid, Data Grid, and Hadoop systems,

respectively. All of the proposed schedulers are designed to reduce the average completion

time by considering resource and application heterogeneity in their scheduling decisions.

• A scheduling algorithm is introduced for Computational Grid systems, which simultane-

ously addresses several objectives namely, minimizing completion times, while requiring

zero dynamic state information. Simulation results show the promising performance of

this algorithm, and its robustness with respect to errors in parameter estimates.

• The scheduler proposed for Data Grid systems makes scheduling decisions based on

system heterogeneity. The introduced approach simultaneously considers reducing the

search space and decreasing the required state information. The proposed scheduler

adjusts its scheduling and data replication decisions dynamically based on changes in

system parameters, such as arrival rates.

• A new Hadoop scheduling system is introduced and implemented, named COSHH (Clas-

sification and Optimization based Scheduler for Heterogeneous Hadoop systems), which

considers heterogeneity at both the application and cluster levels. The main objective

of COSHH is to minimize the average completion time. However, as it is concerned with

6

other key Hadoop performance metrics, the proposed scheduler also achieves competi-

tive performance under minimum share satisfaction, fairness and locality metrics (with

respect to other well-known Hadoop schedulers). This approach can be efficiently ap-

plied in heterogeneous clusters, in contrast to most Hadoop scheduling systems, which

assume a homogeneous Hadoop cluster.

2. A comprehensive analysis of the proposed Grid schedulers is performed in simulated Grid

environments. The schedulers are evaluated using different real Grid workloads from the

CERN Grid project (The Large Hadron Collider, CERN [2004]), and the Blast application

suite (Altschul et al. [1990]) used by biologists to perform searches on nucleotide and protein

databases. The proposed schedulers are compared with other well-known schedulers in each

of the Computational Grid and Data Grid systems.

3. Several guidelines are proposed for selecting schedulers in both heterogeneous and homoge-

neous Hadoop systems. For this purpose, the Hadoop system is described based on three

main factors: cluster, workload, and user. Each factor is either heterogeneous or homoge-

neous, which reflects the overall heterogeneity level of the Hadoop system. This research

studies the effects of heterogeneity in each Hadoop factor on the Hadoop schedulers’ perfor-

mance. Three schedulers which consider different levels of Hadoop heterogeneity are used

for the analysis: FIFO, Fair sharing, and COSHH. Performance problems of these Hadoop

schedulers are discussed, and experiments are provided to evaluate the impact of these

problems.

4. A hybrid Hadoop scheduler is introduced for dynamic systems. This thesis analyzes the per-

formance of widely used Hadoop schedulers including FIFO and Fair sharing, and compares

them with the COSHH scheduler. Based on the developed insights, a hybrid solution is

introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous

Hadoop systems with respect to the number of incoming jobs and available resources.

5. A complete analysis of COSHH is presented on a simulated system using real Hadoop work-

loads from Facebook and Yahoo!. Based on these experiments, a complete analysis (in terms

of system heterogeneity and scalability) is provided for COSHH.

6. For further analysis and verification of the simulation results, COSHH is implemented in

a real Hadoop environment. The developed scheduler is installed on a cluster of multiple

nodes. Experimental results from the real environment confirm the simulation results per-

formed earlier. The COSHH software prototype can be used as a starting point for future

implementation work.

7

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides an introduction to Grid

computing systems and the corresponding scheduling processes. A scheduler for Computational

Grids is proposed and evaluated in Chapter 3. A scheduler for Data Grid systems is then intro-

duced in Chapter 4. Chapter 5 provides necessary background information on Hadoop systems.

A new Hadoop scheduling system is proposed in Chapter 6. Chapter 7 presents some guidelines

for selecting Hadoop schedulers based on different levels of system heterogeneity. The scalability

analysis of Hadoop schedulers is provided in Chapter 8, which is followed by the introduction of

a hybrid scheduler for Hadoop. The evaluation of COSHH on a real Hadoop cluster is presented

in Chapter 9, including an analysis of Hadoop schedulers in different settings of minimum shares.

Chapter 10 describes some implementation details and lessons learned from developing COSHH

on a real Hadoop system installed on a cluster. Finally, Chapter 11 discusses the conclusions

reached and outlines some potential future research directions.

8

Chapter 2

Grid Background

The availability of powerful computers and high speed network technologies have led to a solution

for increasingly large scale problems. This solution is popularly known as Grid computing (Livny

and Raman [1999]). Grid systems enable the sharing, selection, and aggregation of a wide variety

of distributed resources including supercomputers, storage resources, data sources, and specialized

devices. The Grid resources can be geographically distributed, owned by different organizations,

and are used for solving large scale problems in science, engineering, commerce, and various other

fields. The concept of Grid computing was originated as a project to link geographically dispersed

supercomputers, but now it has grown far beyond its original intent. The Grid infrastructure can

benefit many applications, including collaborative engineering, data exploration, high throughput

computing, and distributed supercomputing. An introduction to Grid computing systems, its ser-

vices, and architecture is provided in Section 2.1. The Grid scheduling process and corresponding

message flows are discussed in Section 2.2. Section 2.3 presents the Grid performance evaluation

process, and the last section concludes this chapter.

2.1 Grid Systems

A high level view of activities involved within a seamless, integrated computational and collab-

orative Grid environment is shown in Figure 2.1. In a Grid system, a task is an atomic unit to be

scheduled and assigned to a resource, while an application is a set of atomic tasks that are carried

out on a set of resources. The end users interact with the Grid resource broker, which performs re-

source discovery, scheduling, and task monitoring processes on the distributed Grid resources. In

order to provide users with a seamless computing environment, Grid middleware needs to address

several inherent challenges (Livny and Raman [1999]). One of the main challenges is heterogene-

ity in Grid environments, which results from the multiplicity of heterogeneous resources and the

vast range of encompassed technologies. Another challenge involves autonomy issues due to geo-

9

Figure 2.1. A world wide Grid computing environment (Baker et al. [2002]).

graphically distributed Grid resources across multiple administrative domains owned by different

organizations. Other challenges include scalability (potential performance degradation as the size

of a Grid increases) and dynamicity/ adaptability (volatility of resources). The Grid middleware

must dynamically adapt and use available resources and services efficiently and effectively.

2.1.1 Grid Services

From the end-user point of view, Grid systems can be used to provide different types of services.

The most general services are listed as follows:

• Computational services: provide (often secure) services for executing large scale computation

intensive tasks on distributed computational resources (individually or collectively). A Grid

providing computational services is often called a Computational Grid. Some examples of

computational Grids are: NASA IPG (Johnston et al. [1999]), and the World Wide Grid

(Buyya [2001]).

• Data services: are concerned with providing and managing secure access to distributed

datasets. To provide scalable storage and access, data sets may be replicated, catalogued,

and even stored in different locations to create an illusion of mass storage. The processing

of datasets is carried out using Computational Grid services, resulting in a combination

commonly called a Data Grid. Sample applications of these services are in high-energy

physics (Hoschek et al. [2000]) and the use of distributed chemical databases for drug design

(Buyya et al. [2003]).

2.1.2 Grid Architecture

Figure 2.2 shows the hardware and software stack within a typical Grid architecture. It consists

of four layers: fabric, core middleware, user level middleware, and applications and portals layers.

10

The Grid fabric level consists of distributed resources such as computers, networks, storage devices

and scientific instruments. The computational resources represent multiple architectures such as

clusters, supercomputers, servers and ordinary PCs, running a variety of operating systems (such

as UNIX variants or Windows). Scientific instruments such as telescopes and sensor networks

provide real-time data that can be transmitted directly to computational resources or stored in a

database. Core Grid middleware offers services such as remote process management, co-allocation

of resources, storage access, information registration and discovery, security, and aspects of Quality

of Service (QoS) such as resource reservation and trading. The Core Grid services abstract the

complexity and heterogeneity of the fabric level by providing a consistent method for accessing

distributed resources.

Figure 2.2. A Layered Grid Architecture and components (Baker et al. [2002]).

User level Grid middleware utilizes the interfaces provided by the low level middleware to define

higher level abstractions and services. The services of user level middleware include application

development environments, programming tools and resource brokers for managing resources and

scheduling tasks on Grid resources. Grid applications and portals are typically developed using

Grid enabled languages and utilities such as HPC++ (Gannon et al. [2009]) or MPI (Denis et al.

[2001]). An example application, such as parameter simulation or a grand-challenge problem,

would require computational power, access to remote data sets, and may need to interact with

scientific instruments. Grid portals offer web-enabled application services, where users can submit

and collect results for their tasks on remote resources through the Web.

11

One motivation of Grid computing is to aggregate the power of widely distributed resources,

and provide non-trivial services to users. To achieve this goal, an efficient Grid scheduling system

is an essential component of the user level Grid middleware.

2.2 Grid Scheduling Process

Generally, the scheduling process can be divided into three stages: (i) resource discovery and

filtering, (ii) resource selection and scheduling according to certain objectives, and (iii) task sub-

mission (Shan et al. [2003]). Figure 2.3 presents a model for Grid scheduling in which functional

components are connected by two types of data flow: resource or application information flow

and task or task scheduling command flow. A Grid scheduler receives tasks from the users, se-

lects feasible and available resources for these tasks according to acquired information from the

Grid Information Service (GIS) module, and finally generates task-to-resource mappings based

on certain objective functions and predicted resource performance. Figure 2.3 shows one Grid

scheduler, while in practice multiple such schedulers might be deployed, and organized to form

different structures (centralized, hierarchical and decentralized (Li [2005])) according to different

concerns, such as performance and/or scalability.

Figure 2.3. A logical Grid scheduling architecture: broken lines show resource or application infor-
mation flows and solid lines show task or task scheduling command flows (Dong and Akl [2006]).

The status information of available resources is an important factor to make appropriate schedul-

ing decisions; in particular when the heterogeneous and dynamic nature of a Grid system is taken

into account. The GIS is responsible to provide such information for the Grid schedulers. It

12

collects and predicts resource state information, such as CPU capacities, memory size, network

bandwidth, software availabilities and resource load. To make a scheduling decision, in addition

to the raw resource information from the GIS, the task properties (e.g., approximate instruction

quantity, memory and storage requirements, task dependencies, and communication volumes), as

well as resource performance for different tasks are also required. The cost estimation module

computes the cost of all candidate resource and task matchings. The computed costs are used

by the scheduler to select the matchings which optimize the desired performance metrics. The

Launching and Monitoring module implements a scheduling decision by submitting tasks to se-

lected resources, staging input data and executables if necessary, and monitoring the execution of

the tasks. A Local Resource Manager (LRM) is mainly responsible for two tasks: local scheduling

inside a resource domain for the tasks submitted from both the exterior and domain’s local users,

and reporting resource information to the GIS. Within a domain, one or multiple local schedulers

run with locally specified resource management policies. A LRM also collects local resource in-

formation using tools such as Network Weather Service (Swany and Wolski [2002]), and Hawkeye

(Zhang et al. [2003]), and reports the results to the GIS.

2.3 Evaluation

This section introduces typical Grid performance metrics, and the methods and toolkits used

to evaluate Grid scheduling algorithms.

2.3.1 Performance Metrics

There are a number of key performance metrics, the importance of which depends on the Grid

system and the applications being executed. The metrics are defined as follows, where the first

two metrics are used for Computational Grid algorithms, and Data Grid scheduling algorithms

are evaluated using all three metrics.

• Makespan : the maximum completion time of all tasks.

• Flowtime : the average completion time of all tasks.

• Data availability : measures the task data access time for each resource. More precisely, it

measures how much time a task requires to obtain a unit of data. This measure will tell us

how close the computing resource is to the resource which stores the required data. Let al,j

denote the availability of data for task l when its computation resource is j. It is computed

as:

13

al,j =
tl,j
dl

where dl is the amount of data required by task l (e.g. in MBytes), and tl,j is the time

that task l needs to gather all its required data from the selected storage resources to

the computational resource j (e.g. in seconds). The quality of a scheduling algorithm in

choosing a resource for executing data intensive jobs can be defined based on the average

data availability over all tasks and resources. This can be written as

ā =
PM

j=1

Pnt

l=1 al,j

nt ,

where nt is the total number of tasks executed, and M is the total number of resources in

the system.

2.3.2 Evaluation Method

A full scale evaluation on a Grid testbed can require significant interference with production

workloads. In addition, it is difficult to evaluate new replication strategies and scheduling algo-

rithms in a repeatable and controlled manner. Therefore, another method is required for testing

Grid scheduling algorithms over a range of complex Grid systems and workloads.

Simulation appears to be a feasible way to analyze algorithms on large scale distributed systems

of heterogenous resources. Unlike using the real system in real time, simulation avoids the overhead

of coordination of real resources; therefore, it does not add unnecessary complexity to the analysis

mechanism. Simulation is also effective in working with very large problems that would otherwise

require the involvement of a large number of active users and resources.

This need has led to the development of various Grid simulators. Among the available simula-

tors, GridSim (Buyya and Murshed [2002]) was selected for this research, because of its complete

set of features for simulating realistic Grid testbeds. Some of the main features of GridSim in-

clude: modelling heterogeneous computational resources, scheduling tasks based on time or space

shared policies, differentiated network service, and simulation of workload traces from real sys-

tems. Moreover, GridSim allows incorporating new components into its existing infrastructure.

GridSim has been extended in (Sulistio et al. [2008]) to handle features which specifically target

Data Grid environments: (1) replication of data to several resources; (2) queries for location of

replicated data; (3) access to replicated data, and (4) complex queries about data attributes.

This simulator facilitates integrated studies of novel and on-demand data replication strategies

and task scheduling approaches.

14

2.4 Conclusion

This chapter provided an introduction to Grid systems, architecture, performance metrics,

and the associated scheduling process. In the next two chapters new scheduling algorithms are

proposed for different types of Grid systems. The proposed schedulers will be an extension to the

user level middleware layer of the Grid architecture.

15

Chapter 3

State Independent Resource

Management for Distributed

Computational Grids 1

In Computational Grid systems, there are typically two kinds of objectives. The first is the sys-

tem performance in terms of quantities related to the completion time of tasks. The second is

the amount of required state information, which is often measured in terms of quantities such as

communication costs. These two objectives are often in tension with one another. For example,

gathering large amounts of state information can lead to low completion times. In this chapter,

a scheduling algorithm is introduced, which simultaneously addresses the objectives listed above

namely, minimizing completion times, while requiring zero dynamic state information. The eval-

uation demonstrates promising performance of the proposed algorithm, and its robustness with

respect to errors in parameter estimates.

3.1 Introduction

Innovations in computational and network technologies have led to the emergence of computa-

tional Grid systems (Livny and Raman [1999]). Task scheduling is an integral part of a distributed

computing system. The scheduling algorithms involve matching of task needs with resource avail-

ability. Several optimization criteria are considered for scheduling in Grids, making the problem

a multi-objective one in its general formulation. Grid scheduling is an NP-complete optimization

problem targeting several criteria (Abraham et al. [2000]).

1This chapter is mostly based on the paper: A. Rasooli and D. G. Down, State Independent Resource Man-
agement for Distributed Grids, Proceeding of the 6th International Conference on Software and Data
Technologies (ICSOFT 2011), July 18-21, 2011, Seville, Spain.

16

In recent years, several analogies from natural and social systems have been leveraged to form

powerful heuristics for Grid scheduling. These heuristics have proven to be successful in attacking

several NP-hard global optimization problems (Abraham et al. [2000]). These scheduling policies

may use different types and amounts of system information to make reasonable scheduling deci-

sions; some parameters are typically periodically estimated (e.g., resource execution rates), and

some are highly dynamic in nature, needing to be gathered in real-time (e.g., current resource

loads).

To the best of our knowledge there is no single Grid scheduling algorithm which is effective

over all Grid systems with their different applications and features. This chapter addresses the

scheduling problem of Grid systems whose resources are widely distributed, resulting in a con-

siderable communication cost between the resources. The most well known application of these

Grid systems is in the Enabling Grids for E-sciencE (EGEE) (Erwin and Jones [2009]) project,

which aims to provide a Grid platform as a service to the broader e-science community. The main

contributions in this chapter are:

• A theoretical idea is taken from the literature (the so-called Shadow Routing algorithm

(Stolyar and Tezcan [2009])) to develop a practical scheduling algorithm for Grid systems.

• This basic theoretical approach is modified to be efficient for Grid systems, and the advan-

tages of the proposed algorithm for widely distributed Grid systems are discussed.

In general, Grid scheduling algorithms aim to improve the system performance, which can be

evaluated by various criteria such as flowtime or makespan. Furthermore, if an algorithm reduces

the amount of state information required at the time of scheduling, it leads to reductions in the

communication cost and synchronization overhead.

The Shadow Routing method is a robust, generic scheme, introduced in (Stolyar and Tezcan

[2009]) for routing arriving tasks in systems of parallel queues with flexible, many-server pools.

This algorithm has proven to achieve good performance levels in queuing systems. However, it

needs to be customized and adjusted to be applicable in Grid systems. This research modifies

the structure of the Shadow Routing approach, and introduces a scheduling algorithm for Grid

systems, called the Grid Shadow Routing algorithm. First, the structure of the basic Shadow

Routing algorithm is changed to be applicable for a typical Grid workload model (Iosup et al.

[2006]). Second, the algorithm is extended in a way that leads to significant improvement of its

performance in Grid systems.

The Grid Shadow Routing algorithm defines virtual queues to keep track of the loads on re-

sources. These virtual queues are estimates of the actual queue lengths, and remove the need for

gathering real-time load information. The only information required by the proposed algorithm

17

is estimates of task lengths and resource execution rates. These two parameters are used in most

Grid scheduling algorithms, and various prediction methods have been introduced (Zhang et al.

[2006], Lu et al. [2004]). An important advantage of the Grid Shadow Routing algorithm is that

it does not require highly accurate estimates to provide efficient scheduling results.

The scheduling algorithms can be classified as either static or dynamic, based on their required

information and the timing of scheduling decisions. Static scheduling algorithms do not use any

dynamic state information, but there can be a huge performance degradation in comparison to dy-

namic algorithms. On the other hand, dynamic algorithms can make better scheduling decisions,

while increasing the communication cost. Therefore, there is a trade-off in algorithm selection. If

a system has low communication overhead, a dynamic algorithm with full state information can

significantly improve performance. On the other hand, widely distributed systems may require a

significant amount of time to gather full state information (this chapter targets these systems).

In such systems, a dynamic scheduling algorithm can potentially require significant overhead and

have resulting performance degradation. The Grid Shadow Routing algorithm requires zero state

information from resources, yet it can achieve better performance than commonly used dynamic

algorithms that use full state information. This is particularly advantageous for large, highly

loaded systems with widely distributed resources, where communication costs are significant.

The Grid Shadow Routing algorithm is evaluated using simulation, and compared with two

well known Grid scheduling algorithms: Minimum Completion Time (MCT) and Join the Shortest

Queue (Braun et al. [2001]). The former is a dynamic algorithm, which greedily aims to reduce the

average completion time without considering the communication overhead. The latter algorithm

uses partial state information, and does not require estimation of task lengths for its scheduling

decisions. To analyze the sensitivity of the proposed algorithm to accuracy of the estimated

parameters, it is evaluated in a system with various levels of error in its estimates.

The remainder of this chapter is organized as follows. Section 3.2 provides an overview of

several Grid scheduling algorithms. The task scheduling problem and workload model are intro-

duced in Section 3.3. Sections 3.4 and 3.5 propose the Shadow Routing algorithm and details

of the proposed scheduling algorithm, respectively. In Section 3.6 the evaluation environment

is described. The experimental results are provided for various Grid systems with various error

models for parameter estimates in Section 3.7. Finally, some concluding remarks are given in the

last section.

3.2 Computational Grid Scheduling Algorithms

A large number of algorithms have been proposed to schedule independent tasks on Computa-

tional Grid resources. This section presents several of these.

18

Opportunistic Load Balancing (OLB) (Armstrong et al. [1998]) assigns each task in a random

order to the next available resource without considering the task’s expected execution time on

that resource. The major advantage of this approach is its simplicity, but its performance is often

far from optimal (Fidanova and Durchova [2005]).

Minimum Execution Time (MET) (Braun et al. [2001]) assigns each task to the resource with

the smallest expected execution time for that task. While assigning the fastest resource to each

task, this algorithm does not consider the current load of each resource. This can cause a severe

load imbalance among resources. The advantage of this algorithm is that it does not require any

state information.

K-Percent Best (KPB) (Maheswaran et al. [1999]) uses the same approach as the MCT algo-

rithm, but instead of searching for the minimum completion time among all resources, it only

examines a subset of the resources; thus, it reduces the communication costs. This subset consists

of a percentage (KM/100) of all the resources with the smallest execution times for the incoming

task, where 100/M ≤ K ≤ 100. Although the KPB policy can reduce the required state informa-

tion, it may cause severe performance degradation if K is not chosen correctly. This algorithm

considers the same number of resources for all types of tasks, which may not be desirable.

Linear Programming Based Affinity Scheduling (LPAS) is an algorithm first introduced in

(Al-Azzoni and Down [2008b]), as a mapping heuristic for Heterogeneous Computing Systems.

LPAS DG (Al-Azzoni and Down [2008a]) adapts this algorithm for Desktop Grid systems. The

algorithm uses an optimization approach to find the best set of candidate resources. It aims to

combine the advantages of the MCT and MET algorithms, in the spirit of the KPB algorithm.

The LPAS algorithm simultaneously reduces the state information and average completion time

of tasks, but it requires the arrival rates and mean execution times for each class of tasks on each

resource.

The following are two well-known algorithms used as benchmarks for evaluating the proposed

algorithm.

• Minimum Completion Time (MCT): assigns each task to the resource with the minimum

expected completion time for that task (Dong and Akl [2006]). The expected completion

time for an arriving task is computed at each resource, and is sent to the scheduler. The

scheduler selects the resource with the minimum expected completion time for the incoming

task. This algorithm has the cost of requiring full state information, and consequently may

have a large communication cost. The MCT algorithm requires the following parameters:

1) estimated length of the incoming task, 2) current estimated resource execution rate

(considering the fluctuations in the execution rates of the resources), 3) estimated currently

available bandwidth between resources as well as between resources and the scheduler, and 4)

19

real-time load on each resource. The last three parameters are collected from each resource

at the time of each scheduling decision.

• Join the Shortest Queue∗ (JSQ∗): assigns each task to the resource with the minimum

number of waiting tasks in its queue. The advantage of this approach is that it does not

require the task length for its scheduling decision. It only requires one parameter: the real-

time number of tasks in each resource queue. This parameter is collected from all of the

resources at the time of each scheduling decision.

3.3 Workload and System Model

This section defines a workload model based on a typical Grid workload (Iosup et al. [2006]).

Let the number of resources in the system be M . The actual resource execution rate for resource

r is given by µr, and the length of task k is defined by Lk. Typically, existing Grid scheduling

algorithms assume that estimates of task lengths and resource execution rates are available at the

time of scheduling. The defined workload model uses one of the available estimation methods to

provide estimates of resource execution rates for all resources and the length of each incoming

task. The estimated length of task k is defined as L̂k, and the estimated execution rate of resource

r is denoted by µ̂r.

To model a widely distributed Grid system, the network is defined to have associated delays.

Delay in the network is calculated based on the bandwidth and the load on the Grid network.

When a task arrives, the Grid scheduling algorithm is used to route the arriving task to an

available resource. It is assumed that all local schedulers are using the classical FIFO algorithm;

however, in general each resource can use its own local scheduling algorithm.

3.4 Shadow Routing Algorithm

The Shadow Routing algorithm was first introduced in (Stolyar and Tezcan [2009]) as a routing

algorithm for parallel queues in a virtual queueing system. It is a generic routing algorithm that

appropriately balances the loads, and automatically identifies the best set of matchings without

requiring the flow input rates, or explicitly solving any optimization problem.

A brief description of the model used in the basic Shadow Routing algorithm is provided here;

more details of this model are presented in (Stolyar and Tezcan [2009]). The queuing model is

defined as follows: it is assumed to have I classes (types) of tasks, and J pools of resources in the

system, where the resources in each pool are homogeneous. The mean execution time of a task in

class i running on a resource of pool j is given by µi,j ≥ 0 (if µi,j = 0, tasks of class i can not be

executed on resources of pool j).

20

Figure 3.1. The Basic Shadow Routing Algorithm (Stolyar and Tezcan [2009]).

According to (Stolyar and Tezcan [2009]), in a heavily loaded queuing system, if the routing

algorithm chooses only certain matchings of tasks to resource pools, it can keep task queues stable

and provide asymptotically optimal performance. To be more precise, if the number of resources

in all pools and the input rates of tasks scale up simultaneously by a factor r (which grows to

infinity), the Shadow Routing algorithm keeps the load of the queueing system within O(
√
r) of

its optimal capacity.

Figure 3.1 presents the basic Shadow Routing algorithm. This algorithm maintains a virtual

(shadow) queue Qj for each resource pool j - the virtual queues are used to keep loads balanced.

The algorithm makes each routing decision based on the values and simple updates of virtual

queues; virtual here means that the queues are simply variables maintained by the algorithm.

The parameter η > 0 is a small number (defined later), which controls the tradeoff between the

algorithm’s responsiveness and its accuracy.

Upon the arrival of a task, its class is determined, and the ratio of the length of the virtual

queue to the execution rate of that task on each resource pool is computed. Then, the resource

pool with the smallest ratio is selected. The algorithm keeps track of the load in each pool by

21

using virtual queues. In fact, the length of the virtual queue provides an estimate of the (relative)

time that the pool will be busy with executing previously assigned tasks. The algorithm trades off

selecting a pool with a small (virtual) queue length versus a fast execution rate. After selecting a

pool for the arriving task, the mean execution time of the task on the selected pool is added to the

virtual queue of that pool. The increased load on faster resource pools may reach a point where

the appropriate load balancing is impossible. At this point, the total virtual queue length of all

pools reaches a predefined limit. Consequently, the algorithm reduces the virtual queue lengths

of all pools. In this way, the virtual queue lengths of slower resource pools become shorter, and

the chance of choosing slow pools for executing future tasks increases.

The advantage of the Shadow Routing algorithm is its appropriate load balancing without re-

quiring any state information. However, as discussed before, the original shadow routing algorithm

has limitations in the Grid systems. The following section extends this algorithm, and introduces

a new scheduling algorithm for Grid systems.

3.5 Grid Shadow Routing Algorithm

The proposed algorithm, called the Grid Shadow Routing algorithm (Grid Shadow), is intro-

duced in Figure 3.2. Instead of using the class based model, the algorithm is based on the typical

Grid workload model defined in Section 3.3. There are various estimation methods introduced in

the literature for the estimates of task lengths and resource execution rates in Grids (see (Zhang

et al. [2006], Lu et al. [2004]) for example). Rather than going into detail of any particular esti-

mation method, it is assumed that such estimates have been provided, with associated possible

errors. Therefore, the required parameters of the Grid Shadow Routing algorithm are: 1) esti-

mated incoming task length, and 2) estimated resource execution rate. Consequently, the expected

execution time of task k on resource r is calculated by L̂k

µ̂r
.

In Grid scheduling, it is important to consider the load that any incoming task may add to each

resource; particularly, when the resources are heterogeneous, and the system load is moderate or

light. Therefore, here the first step of the basic Shadow Routing algorithm is modified to include

the expected load of the incoming task on each resource. Instead of comparing the current loads,

the proposed algorithm considers the size of the virtual queue plus the expected load of the

incoming task on the corresponding resource. Another way to look at this is from the analytic

perspective, if the load on the system approaches 1 as in (Stolyar and Tezcan [2009]), then the

effect of the incoming task is negligible. This may not be true in practice, and should be accounted

for.

For each incoming task, the Grid Shadow Routing algorithm aims to increase the virtual queues

by the minimum possible amount. As a result, the normalization step will be triggered less

22

Figure 3.2. The Grid Shadow Routing Algorithm

frequently. This results in less overhead due to scheduling. Typically, Grid systems have a large

number of resources, where searching over all resources and updating all virtual queues (as in step

3 of the basic Shadow Routing algorithm) may cause a large overhead. The proposed modification

reduces the number of times that step 3 is triggered, and leads to improving the performance.

The introduced algorithm considers three factors for selecting a resource for each incoming

task: the current load of all resources, the estimated execution time of the arriving task on each

resource, and the load that the incoming task adds to each resource. In the first step, the proposed

algorithm compares the quantity ((Qr + L̂k

µ̂r
)× L̂k

µ̂r
) for all resources, and selects the one with the

smallest value. There is a trade-off between selecting a resource with the earliest completion time

for the currently assigned tasks versus a resource with the fastest execution for the incoming task.

Moreover, the algorithm aims to minimize the load which will be added to each resource. When

a resource is selected, the estimated execution time of the incoming task on the selected resource

is added to the virtual queue of the corresponding resource, which is given by L̂k

µ̂m
for task k on

23

resource m. There is a normalization step in the proposed algorithm, in which the virtual queues

are reduced by the maximum load that the incoming task can add to the resources. In this way,

the virtual queue lengths of the slower resources will be smaller, and consequently, their chance

to be selected for executing future incoming tasks is increased.

The parameter η in the Grid Shadow Routing algorithm is system dependent. If η is a large

number, the algorithm aims to equally divide the loads, which reduces the impact of resource

heterogeneity on the scheduling decisions. Therefore, η should be a small number, and the smaller

its value, the more accurate matching of resources to tasks would be. This leads to appropriate

load balancing based on both the load and speed of each resource. However, the rate at which

the algorithm adapts to changes in the system parameters is proportional to η (the smaller η, the

slower the rate) and thus η should not be chosen too small. This parameter can be chosen by

running a few experiments, and tracking how fast the normalization step (step 3 in the algorithm)

is triggered. If step 3 is triggered each time that a virtual queue is updated, we need to reduce

η. On the other hand, if the load for one resource is quickly increasing, and multiple subsequent

jobs are assigned to that resource, while other resources are free, we need to increase η to trigger

step 3 more often. For the workloads used in this work, a good value of η was determined to be

1/300. As the value of η just affects the number of times that the normalization step is triggered,

the algorithm’s decisions are not too sensitive to small changes in η.

As the Grid Shadow Routing algorithm is based on the lengths of the virtual queues, if the

task input rates and/or resource execution rates change, no explicit detection of such an event

(or any other input rate measurement/estimation) is necessary. The virtual queues automatically

re-adjust and the algorithm adapts its decisions accordingly.

3.6 Experimental Environment

The experiments were run on a simulated Grid system consisting of 50 dedicated resources

with different CPU speeds. In a widely distributed Grid system, there is typically low bandwidth

between system elements located far from each other. Therefore, in our simulated environment,

the bandwidth inside the elements is set to be 1 Gbps, and the bandwidth between the scheduler

and the 50 resources is defined to be 10 Mbps. The GridSim simulator calculates the network

delay between any two elements of the system using the bandwidth and load on each network at

any given time.

As the proposed algorithm is mostly advantageous for EGEE Grids, it is evaluated in a real

workload from the CERN Grid project (The Large Hadron Collider, CERN [2004]). The evaluation

workload is collected from the LCG project, where the LCG testbed represents the Large Hadron

Collider (LHC) Computing Grid. The LCG trace version 0.1 is used, which is provided by the

24

Grid Workloads Archive (Iosup et al. [2006]) in a typical Grid Workloads Format (GWF). Each

simulation is run until the first 20, 000 tasks of the trace arrive; the arrival stream is then turned

off, and the experiment continues until the system empties.

The Grid Shadow Routing algorithm uses estimates of the task lengths and resource execution

rates. However, various estimation methods may have different levels of accuracy. Therefore, the

algorithm is evaluated in a system with various levels of error in the estimated task lengths and

resource execution rates. To study the robustness of the algorithm, it is evaluated in cases with

0% to 40% error in the estimates; however, typically these errors are on the order of 10% (Akioka

and Muraoka [2004]). An error model is defined based on the model discussed in (Iosup et al.

[2008]) for estimating task lengths and resource execution rates. Generally the two models of

error in these estimates are:

• Over and Under Estimation Error. Consider actual task lengths and resource execution

rates to be Lk for task k and µr for resource r, respectively. Let L̂k denote the (correspond-

ing) estimated task length, and µ̂r denote the estimated resource execution rate. In the

simulations, L̂k and µ̂r are obtained using the following relations: L̂k = Lk × (1 + Ek) and

µ̂r = µr × (1 + Er). Here, Ek and Er are the errors for task lengths and resource execution

rates, respectively, which are sampled from the uniform distribution [−I,+I], where I is the

maximum error.

• Over Estimation Error. This error model is obtained using the relations L̂k = Lk× (1 +E ′k)

and µ̂r = µr× (1+E ′r). The variables E ′k and E ′r are the errors for task lengths and resource

execution rates, respectively. These errors are sampled from the uniform distribution [0,+I],

where I is the maximum error. This model is used for systems which always over estimate the

parameters (resource powers are estimated to be the maximum amount without considering

fluctuations in their power caused by increase of the load, and task lengths are always

conservative).

3.7 Experimental Results

The Grid Shadow Routing algorithm is evaluated for both parameter estimation error models.

3.7.1 Over and Under Estimation

The experiments in this section apply the over and under estimation error model for the pa-

rameter estimates. First, the algorithms are evaluated in an environment with accurate resource

execution rates, and errors in estimating task lengths. The results are provided in Figures 3.3

and 3.4, from the flowtime and makespan perspectives, respectively. Then, the experiments are

25

run in an environment with errors in estimating both task lengths and resource execution rates.

The results of these experiments are provided in Figures 3.5 and 3.6. A range of error levels are

presented in each of the figures.

Figure 3.3. Flowtime-over & under estimating task length

Figure 3.4. Makespan-over & under estimating task length

In these results, the MCT algorithm is the only algorithm that uses full state information

in making scheduling decisions. Therefore, it is expected that in the absence of overhead, this

algorithm achieves the smallest makespan and flowtime, and leads to a good balance between the

loads on the resources. As the simulations consider a highly loaded system, in which gathering full

state information causes large overhead, the MCT algorithm results in poor flowtime performance

compared to the Grid Shadow Routing algorithm. However, the MCT algorithm achieves the best

makespan performance by reducing the completion time for each incoming task.

In general, minimizing flowtime can happen at the expense of increasing the largest task’s

completion time. On the other hand, minimizing the makespan aims to reduce the completion

time of each individual task; however, in practice this generally leads to increasing the completion

times of most tasks. In summary, reducing the makespan may result in increasing the flowtime.

By considering this issue, and the greedy approach of the MCT algorithm in minimizing the

26

completion time for each individual task, this algorithm can lead to poor performance in terms of

the average completion time of all tasks. The poor performance of the MCT algorithm in terms

of flowtime results from its high overhead and greedy approach.

Figure 3.5. Flowtime-over & under estimating task length and resource rate

Figure 3.6. Makespan-over & under estimating task length & resource rate

These results suggest that the Grid Shadow Routing algorithm can yield significant improvement

of the flowtime compared to the MCT algorithm. The use of zero state information in the

Grid Shadow Routing algorithm might lead one to believe that it leads to poor performance

compared to the MCT algorithm. However, the fact that the algorithm is not greedy, along with

its long term approach in minimizing completion times and balancing loads, leads to improving

aggregated metrics such as flowtime. Moreover, unlike the MCT algorithm, the Grid Shadow

Routing algorithm has no overhead due to gathering state information. As the Grid Shadow

Routing algorithm considers overall balancing of loads, and does not concentrate on minimizing

the completion time of individual tasks, it can increase the completion time for a small number

of tasks, which results in larger makespans.

The proposed algorithm is most useful for EGEE-like Grid systems in which gathering full

state information for scheduling each incoming task causes significant overhead for the system.

27

Figure 3.7. Flowtime-over estimating task length

Figure 3.8. Flowtime-over estimating task length and resource rate

In these Grid systems the average completion time (flowtime), interpreted as QoS (Maheswaran

et al. [1999]), is generally more important than the maximum completion time of individual tasks

(makespan), interpreted as throughput of the system. According to the results, even in systems

which have large estimation errors, the Grid Shadow Routing algorithm still has much better

flowtime than the MCT algorithm.

3.7.2 Over Estimation

In this section, the algorithms are first evaluated in an environment with accurate resource

execution rates, but various error levels in estimating task length. Figures 3.7 and 3.9 present the

results from the flowtime and makespan perspectives, respectively. Then, the environment is set

to include errors in both task length and resource execution rate estimates. Figures 3.8 and 3.10

compare the flowtime and makespan of the scheduling algorithms in an environment with errors

in all estimates. Different error levels are considered in these figures. The results show that the

Grid Shadow Routing algorithm can tolerate up to 40 percent over estimation, without significant

degradation in its performance.

To summarize the observations in this section, in a real Grid workload, the Grid Shadow

28

Figure 3.9. Makespan-over estimating task length

Figure 3.10. Makespan-over estimating task length and resource rate

Routing algorithm has significantly better flowtime than the MCT algorithm, and it achieves this

performance level without collecting any state information. The MCT algorithm leads to the best

makespan at the cost of collecting full state information. The proposed algorithm is a promising

candidate for widely distributed, and highly loaded Grid systems.

3.8 Conclusion

A new Grid scheduling algorithm is introduced, called the Grid Shadow Routing algorithm.

The performance of this algorithm is evaluated by simulation, and the results show its promising

performance for aggregate measures such as flowtime. The introduced algorithm and the MCT

algorithm use the same system parameters, but they differ in the amount of dynamic state in-

formation used for scheduling, in which the Grid Shadow Routing algorithm requires zero state

information. The results and analysis conclude that in Grid environments where the system ele-

ments are not tightly coupled, and the communication cost is considerable, applying the proposed

algorithm can be a good alternative to the MCT algorithm.

29

Chapter 4

Reducing the Search Space and State

Information in Data Grids 1

Data Grid systems are designed to enable the access, modification and transfer of large amounts of

geographically distributed data (Allcock et al. [2005]). These applications generally include loosely

coupled tasks and large data sets, and are found in fields such as high-energy physics, astronomy

and bioinformatics. As scheduling decisions have a direct effect on the system performance, it

is crucial to employ an appropriate scheduling algorithm for each Grid system. For instance, an

algorithm seeking to assign the best computational resource to each task may perform well for

computation intensive tasks but lead to significant performance degradation in Data Grids. The

scheduling problem in Data Grids involves several challenges such as finding appropriate resources

for both the data location and the computation on the data.

The basic approach in most Data Grid scheduling algorithms is to search through all possible

combinations of computational and data storage resources, compute each combination’s cost, and

select the combination with the minimum cost (Dong and Akl [2007], Alhusaini et al. [1999]).

The calculated cost may include different factors such as the communication and computation

times. As the search space in this approach is typically very large, different Data Grid scheduling

algorithms attempt to reduce the search space. Moreover, the scheduler should take into account

heterogeneity in resources and tasks. In this chapter, a new scheduler is introduced, which reduces

the search space, and simultaneously requires less state information than typical Data Grid sched-

ulers. Considering the system heterogeneity in the scheduling decisions leads to improvements in

the average completion time of the proposed scheduler.

This chapter introduces the Data Grid workload model and the system models in Sections 4.1

1This chapter is mostly based on: A. Rasooli and D. G. Down, Improving Overhead of Scheduling in Compu-
tational and Data Distributed Computing Systems, Poster presented in IBM CASCON 2010 Technology
Showcase, November 1 4, 2010.

30

and 4.2, respectively. A new Data Grid scheduler is proposed in Section 4.3, where the scheduler

consists of computation intensive and data intensive algorithms, introduced in Sections 4.4 and

4.5, respectively. The proposed scheduler is evaluated using a Data Grid simulator in Section

4.6. An overview of Data Grid scheduling algorithms is provided in Section 4.7. Finally, the last

section presents concluding remarks.

4.1 Workload Model

Generally in Data Grid systems, a large volume of data is generated by a small number of

resources, and this data is analyzed by various users from different scientific points of view.

Moreover, the tasks submitted by a user are mostly in the same scientific field with similar

computational and storage requirements. Therefore, classifying tasks based on their users is

reasonable in most Data Grid systems.

This chapter introduces the following workload model which was inspired by the studies of

the real Data Grid workloads presented in (Goddeau [2005]): it is assumed that the tasks are

classified into a number of classes. Each class has two sets of requirements: computation and

data, where for each class they are defined based on the average requirements of the included

tasks. The task’s computation time (length) and its required data size define its computation and

data requirements, respectively. Similarly, each resource has two parts: the computation and the

storage parts, which are called the computational resource and storage resource, respectively.

• M : is the total number of resources.

• N : is the total number of classes.

• λi: is the arrival rate of tasks in class i.

• µci,j: is the computation rate of class i on resource j.

• µdi,j: is the rate of accessing class i’s required data from resource j.

The mean data access time of class i from resource j is 1/µdi,j, and the mean computation time

of class i on resource j is 1/µci,j. The value of µdi,j depends on the average data size required by the

tasks in class i, and the storage capacity and bandwidth of the storage resource j. In particular,

it does not consider the transmission rate between the resources. All the tasks in the model are

assumed to be independent from both data and computation perspectives.

31

4.2 Data Grid Model

A Data Grid model is defined based on a model of its organization and the network topology.

The organization model concerns how the storage resources are organized and located. It also

defines the number of replica managers, and how specific data can be located and accessed.

Selecting an organization model for a Data Grid system depends on various factors such as the

data size, the data sharing mode, and the source of generated data - single or distributed. There

are four commonly used models for organizing storage resources, defined as follows (Venugopal

et al. [2006]).

1. Monadic. This model gathers all of the data at a central repository, which replies to

user queries and provides the data. It has been applied in the NEESgrid Project (The

NEESGrid System Integration Team [2004]) in the United States. The key feature of the

monadic model is its single point for accessing data. In contrast, for the other models,

the data can be entirely or partially accessed at different points, being available through

replication. This model is employed in systems where the impact of the replication overhead

is greater than the potential improvement in efficient data access.

2. Hierarchical. This model has been used in Data Grids which have a single source of data,

and the produced data needs to be distributed to worldwide collaborators. An example is the

MONARC (Models of Networked Analysis at Regional Centres) group within CERN, where

a tiered infrastructure model is proposed for distribution of CMS data (The Large Hadron

Collider, CERN [2004]). This model is used to transfer data from CERN to various groups of

physicists around the world. In the hierarchical model of this project, the first level consists

of the computational and storage resources at CERN, which store the generated data of the

detectors. The produced data is distributed to worldwide resources called Regional Centers.

From the Regional Centers, the data is passed downstream to national and institutional

centers and finally on to the physicists.

3. Federation. This model is used in Data Grids created by institutions who wish to share

data in existing databases (Rajasekar et al. [2004]). One example of a federated Data Grid

is the BioInformatics Research Network (BIRN) (Jovicich et al. [2005]) in the United States.

Researchers at a participating institution can request data from any of the databases within

the federation as long as they have the proper authentication. Each institution preserves

control over its local database. This model is used in (Venugopal et al. [2004]), where a

Belle analysis Data Grid testbed is used for evaluating their Grid scheduling model.

32

Figure 4.1. A Hierarchical Replica Catalog model (The European DataGrid Project [2007]).

4. Hybrid. This model is a combination of the above models, and has begun to emerge as

Data Grids mature and enter into production usage.

This research targets Data Grid systems where the massive amount of data generated at a

central resource needs to be distributed using a robust mechanism. Each user’s tasks may require

only a subset of the entire data set generated at the central resource. Therefore, this research uses

a hierarchical model, which also simplifies the process of maintaining consistency in the system.

The experiments in this chapter follow the same approach used by the EU DataGrid project

(The European DataGrid Project [2007]), in which the hierarchical model is constructed as a

tree (Figure 4.1). In this model, some information is stored in the root of the tree, and the

rest is located in the leaf nodes. There is a root Replica Catalog (RC), and a number of leaf

RCs. This approach enables the leaf RCs to process some of the queries from users and resources;

thus, reducing the load on the root RC. The network topology of the Data Grid system used

in this chapter is presented in Figure 4.2, which is the same as the network topology of the EU

DataGrid TestBed 1 (Hoschek et al. [2000]). This research follows the data model (read-only,

atomic) that has been applied for most of the experiments on the EU Data Grid, where a data

set is a non-splittable unit of information.

In a DataGrid system each resource consists of two parts: a computational part (which includes

the processing elements), and a storage part with a specific size and bandwidth for accessing the

data. Each resource has a replica manager which protects the consistency of replicas with the

original data. Moreover, the system has a central scheduler that decides where and when to create

the data replications, and where to submit the incoming tasks.

33

Figure 4.2. The Network Topology of EU DataGrid TestBed 1 (Venugopal et al. [2006]).

4.3 Proposed Scheduler

In this section, a novel Data Grid scheduler is introduced, called DATALPAS (DATA intensive

Linear Programming based Affinity Scheduler), which consists of two parts: a computation in-

tensive algorithm and a data intensive algorithm. The former only considers the computational

requirements of each class, and provides a set of suggested computational resources for each class

i, Computei. On the other hand, the data intensive algorithm considers the data requirements

of each class i, and computes a set of suggested storage resources for that class, Storagei. Both

the data intensive and computation intensive algorithms use a class-based workload model and

optimization methods to reduce the search space and required state information. Moreover, they

consider system heterogeneity in their optimization methods to improve the system performance.

The proposed scheduler, presented in Figure 4.3, uses both sets of suggested computation and

storage resources.

The values of Completion(task, j1) and Transmission(task, j1, j2) are received as state informa-

tion from resources j1 and j2, respectively. The expected transmission time depends on the current

available bandwidth inside resource j2, and the current available bandwidth between resources j1

and j2. If any of the system parameters such as arrival rates, resource computation rates, or

resource data access rates changes, the scheduler recomputes its computation and data intensive

optimizations based on the new parameters, and updates the sets Computei and Storagei.

34

Figure 4.3. The Proposed Scheduler

In typical Data Grid schedulers, Computei and Storagei sets include all the computational and

storage resources, respectively. Although this approach may provide the minimum completion

time for the incoming task, it leads to significant overheads due to the large search space and

corresponding state information. The DATALPAS scheduler aims to reduce the number of re-

sources in the sets Computei and Storagei through its computation intensive and data intensive

algorithms. The following two sections introduce these two algorithms.

4.4 Computation Intensive Algorithm

This section proposes an algorithm for providing a set of suggested computational resources

for each class of tasks. The algorithm solves the following Linear Programming (LP) problem, in

which the decision variables are λc and δci,j, and the corresponding optimal solution is defined by

λc∗, δc∗i,j. The main idea of this LP is to determine which computational resources are the best

choices for each class when the system is highly loaded.

35

maxλc

s.t.
M∑
j=1

µdi,j
µci,j + µdi,j

× µci,j × δci,j ≥ λcαi, for all i = 1, . . . , N, (4.1)

N∑
i=1

δci,j ≤ 1, for all j = 1, . . . ,M, (4.2)

δci,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . ,M. (4.3)

The variables and constraints of the above LP are defined as follows:

• δci,j is the proportion of computational resource j allocated to class i.

• The computation proportion of each class i on each resource j is extracted as follows:

mean computation time of class i on resource j

mean total execution time of class i on resource j
=

1/µci,j
1/µci,j + 1/µdi,j

=
µdi,j

µci,j + µdi,j
.

• Constraint (4.1) enforces that the total computation capacity allocated for a class should be

at least as large as the scaled arrival rate for that class. This constraint is needed to keep

the computational resources stable, and it allows the computational load to increase only by

an amount that can be satisfied by the available computational resources. Constraint (4.2)

prevents over allocating a computational resource, and (4.3) states that negative allocations

are not allowed.

• λc∗ can be interpreted as the maximum capacity of the computational resources.

• δci,j∗ is defined as the long run fraction of time that computational resource j should spend

for class i to keep the load of all computational resources stable under maximum capacity

conditions.

The above LP solution presents a set of suggested computational resources for any class i, as

follows:

Computei = {j : δci,j
∗ 6= 0}.

The LP solution aims to provide the best set of resources for each class by considering the het-

erogeneity of tasks and resources.

36

4.5 Data Intensive Algorithm

An optimization method is used to provide the best set of storage resources for each class. The

proposed method considers heterogeneity in the storage resources and the input data sizes. Using

the suggested set of storage resources, the algorithm generates replicas of each class’s input data

on the suggested storage resources. Generating a large number of replicas can improve the data

access rate. However, doing so can lead to significant overhead due to the cost of maintaining

consistency between the replicas. Moreover, the storage resources may become overloaded, which

degrades the performance. An LP to find the best matching of storage resources for each class

requires the following variables:

• The decision variables δdi,j represent the proportion of storage resource j which is allocated

to the input data of tasks in class i.

• As the goal is to find appropriate storage resources, the proportion of time that each class

spends on accessing data from each resource is required:

mean data access time for class i on resource j

mean total execution time of class i on resource j
=

1/µdi,j
1/µci,j + 1/µdi,j

=
µci,j

µci,j + µdi,j
.

The proposed LP, presented as follows, considers the data access costs for all storage resources

to find the best set of storage resources for each class. For this purpose, it maximizes the capacity

of the system by finding the best choices for each class when the data load on storage resources

is very high.

maxλd

s.t.
M∑
j=1

µci,j
µdi,j + µci,j

× µdi,j × δdi,j ≥ λdαi, for all i = 1, . . . , N, (4.4)

N∑
i=1

δdi,j ≤ 1, for all j = 1, . . . ,M, (4.5)

δdi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . ,M. (4.6)

• The left-hand side of (4.4) represents the total data storage capacity assigned to class i

by all of the storage resources. The right-hand side represents the arrival rate of tasks

37

that belong to class i scaled by a factor of λd. Thus, (4.4) enforces that the total storage

capacity allocated for a class should be at least as large as the scaled arrival rate for that

class. This constraint is needed to keep the storage resources stable. The satisfaction of

this constraint guarantees that the system can provide the required bandwidth and required

storage capacity with its available storage resources.

• The constraint in (4.5) prevents over allocation of the storage resources, and (4.6) states

that negative allocations are not allowed.

• The optimal solution λd
∗

is interpreted as the maximum capacity of the storage resources,

and δdi,j
∗

is the long run fraction of time that storage resource j should spend retrieving class

i’s data to stabilize the load on storage resources under maximum capacity conditions.

The physical meaning of λd
∗

requires that its value is greater than or equal to one. Therefore,

if λd
∗

is less than one, the data access rate for storage resources is insufficient. This situation

implies that the system is overloaded in terms of the data load. In this case, it is recommended

to use the main storage resource rather than generating a replica on low rate resources.

The LP solution suggests the best set of replication resources for each class. A set Replicai is

defined as a set of suggested storage resources for class i, where:

Replicai = {j : δdi,j
∗ 6= 0},

and |Replicai| denotes the size of the set Replicai. Using the suggested storage resources, the

scheduler generates replicas as follows. Storagei is defined as the set of all storage resources

for the required data for class i. Whenever a new replica of class i’s data is generated, the set

Storagei is updated with the new replica information. Based on the available network bandwidth,

the following replication methods can be used:

• Method 1. For systems with high available bandwidth, it is suggested to generate all the

replicas at the beginning of scheduling as follows:

1. For each class i generate a replica of its input data on each storage resource in the set

Replicai.

2. If any of the system parameters change (data access rates of the resources or the arrival

rates of classes), the LP is solved again with the updated parameters. Consequently,

if the relation δdi,j
∗ 6= 0 changes for any of the (i, j) pairs, the set Replicai is updated

for the corresponding class.

38

3. If the set Replicai changes for any class i, new replicas are generated for that class.

The storage resources which are not in Replicai remove the input data of class i from

their storage.

Simultaneously generating all of the replicas may add a considerable load to the network

when the data is being transferred to the corresponding resources. This research considers

Data Grid systems where the system is underloaded at the beginning of scheduling; therefore,

the extra load on the network is acceptable at this time. However, in some Data Grid

systems the benefits of generating all replicas at the same time may not compensate for its

overhead cost. These Data Grid systems, called low bandwidth systems, require replicas

to be generated whenever performance is sufficiently degraded. To determine if a system is

low bandwidth, different factors must be considered, such as available network bandwidth,

replicated data size, and data access rate on the storage resources. The following introduces

a possible replication method for low bandwidth Data Grid systems. However, as these Data

Grid systems are not the main focus of this research, the further analysis of low bandwidth

systems is left as future work.

If the transmission time of data required by class i is greater than the mean data access time

on their storage resources, it is suggested to use Method 2 for replication. In this situation

the transmission cost would be greater than the access time using a single point for accessing

data. Therefore, using Method 2 is a means to attempt to mitigate the high overhead.

• Method 2. The following method is introduced to reduce the replication overhead of

Method 1.

1. For any class i, and any storage resource j in the set Replicai, compute the expected

time to transmit the required data from the main database to resource j. This requires

the value of the currently available bandwidth in the network from the main database

to resource j.

2. The resource with the minimum expected transmission time is selected, and a replica

of class i’s input data is generated on the selected resource. By generating a replica

on any resource j for any class i, the corresponding resource is removed from the set

Replicai, and is added to the set Storagei.

3. To generate extra replicas, the scheduler monitors the system performance in terms

of the data access times. For this purpose, it defines the data availability metric,

introduced in Section 2.3.1, for each class. The average data availability over all tasks

of class i (āi) can be written as

39

āi =

∑M
j=1

∑nt
i
l=1 al,j

nti

where nti is the total number of tasks in class i. The data availability time (āi) for each

class i is updated when a new task of class i arrives to the system.

If the value of āi for any class i reaches a predefined thresholdi, the scheduler generates

a new replica. The thresholdi value can depend on different factors such as the available

bandwidth, the load on the system, and the data access rates for storage resources. One

possible value for thresholdi is:

∑M
j=1

1
µd

i,j

M
.

Using this thresholdi value for each class i, it is guaranteed that the time for accessing

one unit of data for a class i is less than its average mean data access time over all

resources. As considering the low bandwidth Data Grid system is beyond the main

focus of this research, deeper analysis on defining the thresholds is left as future work.

The scheduler monitors the values of āi for all classes. If in any class i, āi reaches a

defined threshold and |Replicai| 6= 0, or if there is any change in the system parameters,

steps 1 and 2 are repeated for class i.

This method generates replicas at the beginning of scheduling, and it generates additional

replicas only when a small number of replicas leads to performance degradation. As the

network overhead of this method is lower than the first one, it is expected to perform better

for low bandwidth systems.

4.6 Experimental Results

A heterogeneous Data Grid system is defined to evaluate the proposed scheduler. An extended

version of GridSim (called Data GridSim (Sulistio et al. [2008])) designed for simulation of Data

Grids is used for the experiments. An evaluation component is added to this simulator to calculate

the desired performance metrics and provide the final results in the log files. The simulated Data

Grid system consists of six heterogeneous resources, each capable of processing five classes of

tasks. Each resource has a computational part and a storage part, where the characteristics of

each resource are provided in Table 4.1. The arrival rates are defined as follows, in which the

arrival rate of the tasks in class i (λi) is the ith element of the array

λ =
[

21.3 7.2 8.1 0.5 1.1
]
.

40

The computation rates are presented in the following matrix. The (i, j) element of the matrix

is the computation rate of a task from class i on the computational part of resource j.

µc =

6.85 6.45 6.78 13.63 9.48 39.61

20.06 30.43 41.18 79.42 76.10 139.10

16.63 23.23 34.29 44.88 48.58 71.05

2.82 2.61 6.08 6.69 6.72 8.35

0.99 1.01 2.7 2.84 2.73 2.88

The following matrix presents the data access rates. The (i, j) element of the matrix is the data

access rate for a task of class i from the storage part of resource j.

µd =

9.85 18.35 17.42 15.37 16.13 8.69

10.34 17.87 36.52 4.18 59.80 5.80

2.27 0.97 14.01 0.92 23.93 1.45

0.18 0.39 1.52 0.91 1.58 0.35

0.01 0.09 0.3 0.06 0.27 0.12

The data access rates depend on the input data size in each class, and the speed of data retrieval

in the corresponding storage resources. The parameters for our experiments are taken from a real

system, which is implemented for executing BLAST applications (Goddeau [2005]). The arrivals

of class i tasks follow a Poisson process with rate λi, while computational and data access times of

tasks in class i on resource j follow exponential distributions with rates µci,j, and µdi,j, respectively.

The simulation runs until 20, 000 tasks arrive to the system, at which point no further arrivals

occur, and the simulation then continues until the system becomes empty.

Table 4.1. Resources used in the Data Grid experiments
Resource CPU Memory Disk

Type 1 733 MHz 256 MB 40 MB/s IDE
Type 2 525 MHz 8 GB 60 MB/s SCSI
Type 3 2.8 GHz 256 MB 40 MB/s IDE
Type 4 2.8 GHz 256 MB 60 MB/s SCSI
Type 5 2.8 GHz 1.5 GB 40 MB/s IDE
Type 6 2.8 GHz 1.5 GB 60 MB/s SCSI

In the simulated system, there are two central data bases which generate the data for the system.

The BLAST application suite has two databases, named NR (which stores protein sequences),

and NT (which stores nucleotide sequences). The input data of classes 2 and 3 are generated in

database NR, and database NT stores the generated data used by the rest of the classes. Therefore,

at the beginning of the experiment, all data sets are placed on the NR and NT databases. Copies

of the data sets will then be replicated based on the scheduler’s decisions.

41

To evaluate the DATALPAS algorithm, its performance is compared with four benchmark Data

Grid scheduling algorithms. In order to have a fair comparison, the same number of replicas is

generated for all of the schedulers. In the experiments, when the first task of any class i arrives,

the replication method generates replicas of its required file on all storage resources of the set

Replicai. However, upon arrival of subsequent tasks of the same class i, no extra replication is

generated unless there is a change in any of the data access rates, in which case the set Replicai

is modified. The four simulated scheduling algorithms used for comparison are as follows:

• Minimum ComPutation Time (MCPT): searches among all the possible combinations of

computational and storage resources, and chooses a combination with the minimum Com-

putation time. This algorithm is used as a representative of algorithms which have full state

information about the computational resources.

• Minimum Data Access Time (MDAT): searches all possible combinations of computational

and storage resources, and selects a combination with the minimum data access time. The

data access time from storage resource j1 to computational resource j2 is calculated by:

Data access time from j1 to j2= Data retrieval time in j1+Transmission time from j1 to j2

This algorithm is a representative of algorithms with full state information about the storage

resources.

• LPAS: is mainly used in Computational Grid systems, and it does not consider the com-

plexities of accessing data in its scheduling (Al-Azzoni and Down [2008b]). It uses an LP

and partial state information to find the best resource and task matching. This algorithm

is used as a representative of algorithms which consider resource and task heterogeneity in

their scheduling decisions.

• Minimum Response Time (MRT): searches all possible combinations of computational and

storage resources, and selects a combination with the minimum response time. As the MRT

requires full state information, and uses an exhaustive search, it is not applicable in real

systems. However, it can be used as a benchmark.

The algorithms’ performance is compared in terms of the four main performance metrics for

Data Grids, as introduced in Section 2.3.1. Figure 4.4 compares the algorithms based on the time

that each algorithm spends on making their scheduling decisions. Each experiment was repeated

30 times to construct 95%-confidence intervals. The lower and upper bounds of the confidence

intervals are presented with lines on each bar. The LPAS algorithm, which only needs to gather

42

Figure 4.4. The Schedule Generation Time of Algorithms

the completion time of tasks from some of the resources, has the minimum scheduling time among

the considered algorithms. On the other hand, the MRT algorithm has the maximum scheduling

time due to gathering full state information from all of the computation and storage resources.

The large search space of the MRT algorithm is the cause of the large overhead. The MCPT and

MDAT algorithms gather state information only from the computational and storage resources,

respectively. As a result, their scheduling times are similar. As the DATALPAS algorithm gathers

state information from some of the computation and storage resources, it has less scheduling

overhead compared to the MRT, MCPT and MDAT algorithms.

Figure 4.5. Makespan of the Algorithms

Figures 4.5 and 4.6 present the makespan and flowtime results, respectively. The LPAS al-

gorithm, which makes scheduling decisions based on available computation rates, and does not

consider data issues, leads to poor makespan and flowtime. As expected, the MRT algorithm has

the best flowtime and makespan with the cost of using full state information, and maximizing

the communication cost. As the MDAT algorithm uses more state information compared to the

MCPT algorithm, in this data intensive workload, it leads to better performance than the MCPT

algorithm. The results suggest that the DATALPAS algorithm can achieve competitive makespan

43

Figure 4.6. The Flowtime of Algorithms

and flowtime with the MRT algorithm. Compared to the MRT algorithm, the DATALPAS algo-

rithm has two main advantages: first, it requires much less state information; therefore, it reduces

the network communication load generated for scheduling decisions. Second, the MRT algorithm

uses an exhaustive search approach, but the DATALPAS algorithm searches over a much smaller

space, which leads to using less computational resources for scheduling.

Figure 4.7. The Data Availability Time of Algorithms

Finally, in Figure 4.7, the average data availability is presented. As the MCPT algorithm aims

to select the best computational resources, it leads to poor data availablity time. The MDAT

algorithm, which makes scheduling decisions based on minimizing the data access time, results in

the minimum average data availability. Here, the DATALPAS algorithm performs well.

4.7 Related Work

In general, when the scheduling problem with data movement is considered, there are two main

approaches: whether data replication is allowed or not. This section provides an overview of

relevant scheduling techniques categorized from different perspectives.

44

4.7.1 Data Replication

An approach which does not allow replication can serve better in Grid systems where the

overhead of replication is not compensated by an increase in efficiency of accessing data (e.g.

systems where all accesses are local). This approach is used in the NEESgrid (The NEESGrid

System Integration Team [2004]) Data Grid project, where there is only a single point for accessing

data. In Pegasus (Luther et al. [2005]), it is assumed that accessing an existing data set is always

preferable to generating a new one. The vast amount of data produced in one place and the wide

distribution of computational resources lead to significant performance degradation in Data Grids

using a single storage resource (or no replication). The proposed scheduler in this chapter defines

replication methods for improving the performance.

Replication is performed using different models. A brief overview of various replication strategies

is presented as follows:

• Ranganathan and Foster [2003] consider the data sets in the Grid as a tiered system, and use

dynamic replication strategies to improve data access time. These data replication strategies

work at the system level instead of the application level, aiming to reduce the bandwidth

consumption and the workload at data hotspots, to decrease the network message traffic.

However, the data mapping of this approach is not optimal.

• Economy based replication (Park et al. [2004]) is a long term optimization technique aiming

to minimize the overall file access cost given a finite amount of storage resources. In (Lame-

hamedi et al. [2002]), a replication algorithm is proposed which uses a cost model to predict

whether replicas are worth creating or not. This approach is found to be more effective in

reducing average task completion time than the basic case where there is no replication.

• Bandwidth Hierarchy based Replication (BHR) (Ranganathan and Foster [2001], Park et al.

[2004]) extends resource level replica optimization to the network level based on the hierarchy

of bandwidth appearing in the Internet. As the bandwidth within a region is typically

larger, BHR aims to increase the size of required data in the same region to fetch replicas

faster. The proposed replication algorithm in this chapter uses the same tiered structure

as (Ranganathan and Foster [2003]). However, the proposed algorithm is in the application

level meaning that each task’s requirement is considered to generate replicas close to the

tasks which use them most. The tiered structure reduces the search and access time for

specific data, and provides more convenient maintenance for consistency of the replicated

data in all resources.

45

4.7.2 Computation and Data Scheduling Interaction

In Data Grids the scheduling process includes two separate parts to schedule the computation

part and the data part of each task. There are two different approaches with respect to the

interaction of computation scheduling and data scheduling: decoupling them or conducting joint

scheduling.

Decoupled scheduling is used in (Ranganathan and Foster [2002]) to consider dynamic task

scheduling with data staging requirements. They perform the computation scheduling and data

replication strategies independently. They suggest four simple and dynamic computation schedul-

ing algorithms as follows: TaskRandom (selects a random resource for computation); TaskLeast-

Loaded (selects the resource with minimum load); TaskDataPresent (selects a resource where

the required data is already located), and TaskLocal (runs a task at the local resource). More-

over, three data scheduling algorithms are used: DataDoNothing (performs no active replication);

DataRandom (replicates a popular data set to a random resource), and DataLeastLoaded (selects

the least loaded resource as the destination for a new data set replication). Using various combi-

nations of these computation and data scheduling algorithms, 12 schedulers are defined. In the no

replication case (DataDoNothing replication algorithm), a task execution is preceded by a fetch

of the required data, leading to a strong coupling between task scheduling and data movement.

By contrast, the other two replication strategies are loosely coupled to the task execution.

Joint scheduling is defined based on the fact that in general, selecting a computational resource

and a storage resource for a task are two interrelated issues. The choice of a computational

resource may depend on the input data location, and the storage resource selection may depend

on where the computation will take place. If the data sets involved in a computation are large, it is

preferable to move the computation close to the data. On the other hand, if the computation size

is very large compared to the data transfer cost, selecting the best possible computational resource

will have higher priority than selecting the best data location. Based on this idea, Alhusaini et al.

(Alhusaini et al. [1999]) combine scheduling of computation with data replica selection to reduce

the makespan for a collection of tasks unified as a Directed Acyclic Graph (DAG). The data access

and data transfer costs are combined to compute the total time cost of a task in the DAG. A

static level-by-level algorithm is used to search for an optimal schedule. In this algorithm, the

original DAG is partitioned along with the directed edges into levels, where all tasks in the same

level are assumed to be independent. Well known min-min and max-min algorithms are applied

to schedule tasks in the same level. However, this paper does not discuss the problem of finding

levels in an unbalanced task graph; moreover, a level-by-level partition can not harness locality

to facilitate tasks with dependencies.

46

Dong et al. (Dong and Akl [2007]) introduce an algorithm that jointly considers data and

computation scheduling; the proposed workflow scheduling algorithm is called JDCS (Joint Data

and Computation Scheduling). It is assumed a workflow can be represented by a DAG, and

the objective is to minimize the total schedule length of the entire workflow. The algorithm

uses the possibility of overlapping the input data preloading time and the computation time to

reduce the task waiting time. This is achieved by using a back-trace technique. To overcome

the difficulties of performance fluctuation, JDCS takes advantage of mechanisms such as Grid

performance prediction and resource reservation (Yang et al. [2003]). These mechanisms can

capture resource performance information and provide performance guarantees. The problem

with this approach is that most Grid workflows can not be represented as a DAG.

The research in (Desprez and Vernois [2006]) aims to maximize the throughput for independent

tasks in a Grid, where each task requires a certain data set, and there is a constraint for storage

capacity in each computational resource. The algorithm is based on the following assumptions:

(i) data replication is allowed; (ii) a task can only use the local data on the same resource (whose

storage capacity is limited); (iii) the execution time of a task is linear with its input data set size,

and (iv) the number of each task type in a task set follows a fixed proportion. The objective

is to maximize the total size of completed tasks in a specified time interval. As the problem

itself is NP-complete, an integer solution to the defined linear programming problem is used as an

approximation. Using simulation, the authors verified their method by comparing with the MCT

and max-min algorithms. As the algorithm is static, it is clearly not applicable for long tasks on

highly loaded resources (or when the load cannot be predicted). As a result, this heuristic does not

always give the best mapping of data. Moreover, this algorithm does not consider communication

costs.

4.7.3 Performance goals of schedulers

The Data Grid scheduling algorithms can also be classified based on their performance goals,

which generates the following classes: system-centric, economy-based and application-centric

schedulers. A system-centric scheduler focuses on the overall performance of the entire set of

tasks and the entire Grid system. An example of this is Condor (Litzkow et al. [1988]), which

aims to increase workstations’ utilization by using idle workstations for sharing task execution.

An economy-based scheduling system is based on the idea of market economy. Under this scheme,

scheduling decisions are made based on an economic model. For example Nimrod-G (Abramson

et al. [2000]) implements a producer and consumer mechanism for Data Grids. The economic

methods compare different costs of replica replacement and remote access.

47

Buyya et al. [2005] propose a scheduling algorithm considering two kinds of costs: the economic

budget and time. The algorithm aims to optimize one cost while constraining the other, e.g.,

minimize the budget, while not missing a specified deadline. The incoming tasks consist of a set

of independent tasks each of which requires a computational resource and access to a number of

data sets located on different storage resources. The algorithm assumes that each data set has

only one copy in the Grid; therefore, the resource selection is only for computational resources.

As a result, the algorithm has to take into account the communication costs from data storage

resources to different computational resources as well as the computation costs. Instead of search-

ing thorough the number of data sets requested by a task, whose search space is exponential,

the resource selection procedure simply performs a local search, which only guarantees that the

current mapping is better than the previous one. Therefore, the search procedure cost is linear.

The main drawback of this strategy is that it is not guaranteed to find a feasible schedule even if

there is one.

An application-centric scheduling system tries to maximize the performance of individual tasks.

An adaptive scheduling model, such as AppLes (Berman et al. [2003]), is one of the most important

application-centric scheduling systems. AppLes focuses on the run-time resource availability and

the development of scheduling agents. The scheduling agents consider different requirements of

tasks based on load prediction and dynamic resource availabilities. To gain precise information

about dynamic resource availabilities and other influencing factors, AppLes uses NWS (Network

Weather Service) (Swany and Wolski [2002]).

The choice of scheduling model based on access cost, such as Chameleon (Karypis et al. [1999]),

is a type of application-centric scheduling strategy. Chameleon calculates the cost by considering

the location of resources holding data sets, and the location of resources performing computation.

A task is scheduled by comparing the access costs in different Grid resources. The access costs are

defined according to five possible situations of data and computational resources. The scheduler

monitors dynamic system attributes including network bandwidth and the number of available

resources, and makes scheduling decisions based on this information. Then, a data mover element

decides the location and movement of data.

The Access Cost scheduling algorithm (AC) (Cameron et al. [2003]) schedules data intensive

tasks on Grid resources with minimal access cost. Access cost is an estimated value based on the

network status for obtaining all files required by each task. This scheduling algorithm considers the

importance of file distribution, whereas it neglects the task length as an influencing factor in the

waiting queues. In contrast to the algorithm proposed in this chapter, the AC algorithm assumes

that the data distribution will be static in both the scheduling and execution times. However, the

distribution differs when replica replacements occur frequently in each Grid resource.

48

4.8 Conclusion

This chapter studies Data Grid models and associated workload models. A new scheduling

algorithm is introduced for Data Grids, whose main objective is reducing the required state

information and search space of the scheduler. The proposed algorithm is evaluated in a simulated

high bandwidth Data Grid system.

We address the average completion time in various distributed computing systems, by con-

sidering the system heterogeneity. The previous chapters addressed this goal in Grid comput-

ing systems. First, a scheduler was introduced for Computational Grids, which concentrate on

computing-intensive tasks. Then, a more complicated version of Grid computing systems, Data

Grids, were addressed, and a scheduler was introduced for the tasks which are both data-intensive

and computation-intensive. As the Cloud computing paradigm and Hadoop systems deployed

in the Cloud were proposed as a successor to the Grid framework, the rest of this PhD thesis

will concentrate on introducing schedulers for Cloud and Hadoop environments. The proposed

schedulers address the idea of improving performance by considering system heterogeneity.

49

Chapter 5

Hadoop Background

As the demands for processing large scale data increase, more computation and storage resources

are required. The Big Data paradigm (Agrawal et al. [2011]) has emerged from the data generated

every day from various sources such as sensors used to gather climate information, posts to social

media sites, digital pictures and videos, purchase transaction records, and cell phone GPS signals.

The problem of Big Data is more than a matter of storage size; it is the issue of analyzing

huge data sets to gain insight in new and emerging types of data and content. Distributed

computing methods such as Grid computing (specifically Data Grids) address the storage problem

of Big Data. However, to harness the available resources for improving the performance of large

applications running on Big Data, more efficient methods are required for processing data on

distributed and scalable resources. MapReduce (Dean and Ghemawat [2008]) is a programming

model, introduced by Google (Lämmel [2008]), that provides an efficient framework for automatic

parallelization and distribution of large scale computations and data analysis.

Hadoop is a well known open source implementation of the MapReduce programming model

(Apache Hadoop Foundation [2010b]). It is designed to scale up from a single server to thousands

of resources, with a high degree of fault tolerance. The distributed file system underlying the

Hadoop system provides efficient and reliable distributed data storage for applications involving

large data sets. Node failures are automatically handled by the Hadoop framework (Apache

Hadoop Foundation [2010b]), which enables applications to work with thousands of computers

and petabytes of data.

The Hadoop system is widely being used for Big Data analysis in various scientific (e.g., natural

language processing (Manning and Schütze [1999]) and seismic simulation (Pratson and Gouveia

[2002])) and web applications. Yahoo! and Facebook are employing Hadoop clusters with thou-

sands of cores for their massive data analysis requirements. Hadoop is deployed in several other

large companies such as Cloudera, Amazon, and Salesforce Inc. for managing their massive daily

50

Figure 5.1. The MapReduce model.

data analysis requirements (Pike et al. [2005]). However, there is a growing number of small busi-

nesses intending to use Hadoop (Apache Hadoop Foundation [2012]). For instance, Able Grape

company (Apache Hadoop Foundation [2012]) uses a small Hadoop System with a two node cluster

for analyzing and indexing its textual information.

An introduction to the MapReduce programming model and the Hadoop system is provided

in Sections 5.1 and 5.2, respectively. The Hadoop architecture is presented in Section 5.3, and

Section 5.4 describes the execution process for the Hadoop system.

5.1 MapReduce Programming Model

Google’s MapReduce programming model (Lämmel [2008]) provides processing of large data

sets in a massively parallel manner. The model is inspired from the map and reduce functions in

Lisp and other functional programming languages (Dean and Ghemawat [2008]). It was designed

for processing unstructured data on large clusters of commodity hardware. The model divides the

execution of each job into a number of map tasks and reduce tasks.

Figure 5.1 presents the MapReduce model, which consists of the following steps: (i) iteration

over the input data sets and slices; (ii) computation of <key, value> pairs from each slice of input

data (executed by the map tasks); (iii) grouping of all intermediate values by key; (iv) iteration

over the resulting groups, and (v) reduction of each group (executed by the reduce tasks).

The following example, reported in (Apache Hadoop Foundation [2010b]), explains the process

of a MapReduce job. The Word Count problem asks for the number of occurrences of each word

in a large collection of documents. In this example, the map function could be programmed as

the following pseudo-code. The EmitIntermediate method generates the <key, value> pairs as

it processes the input data.

51

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, “1”);

The reduce function could be coded as follows, where the Emit method generates a single result

given all the previously emitted values for a given key.

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The MapReduce system runs a number of tasks based on the defined map and reduce functions.

Figure 5.2 presents the MapReduce steps for running the WordCount job on an example input

data set.

Figure 5.2. The MapReduce process of a Word Count example.

5.2 Hadoop System

Hadoop is a popular open source implementation of the MapReduce programming model. It is

implemented by the Apache foundation in the Java programming language (Apache Hadoop Foun-

dation [2010b]). There are three main projects in the Apache Hadoop system (Apache Hadoop

Foundation [2010b]): MapReduce, HDFS, and Common. HDFS is a distributed file system that

52

underlies the Hadoop system; MapReduce provides a framework for automatic parallelization and

execution of jobs, and the Common project manages the collaboration of the MapReduce and

the HDFS projects. There are various other projects developed for the Hadoop system to pro-

vide different services for Hadoop users and developers. Some well known projects include: Pig

(Apache Hadoop Foundation [2010f]), Hive (Apache Hadoop Foundation [2010e]), HBase (Apache

Hadoop Foundation [2010c]), and Zookeeper (Apache Hadoop Foundation [2010g]). This section

introduces different projects for the Hadoop system.

5.2.1 Hadoop MapReduce

Hadoop MapReduce is a software framework for easily writing MapReduce jobs. It splits the

jobs’ input data sets into independent chunks, which are processed by the map tasks in parallel.

The framework sorts the outputs of the map tasks, which are input to the reduce tasks. Typically,

both the input and output of a job are stored in the Hadoop file system. The framework performs

task scheduling, task execution monitoring, and re-executing failed tasks. Moreover, it offers

various features such as application deployment, task duplication, and aggregation of results. The

functional style of Hadoop MapReduce automatically parallelizes and executes large jobs over a

computing cluster. For the programmer, it abstracts various aspects of distributed and parallel

programming.

5.2.2 Hadoop Distributed File System (HDFS)

HDFS is a distributed file system designed to handle very large files on clusters of commodity

hardware. It is the primary distributed storage used by Hadoop applications. While HDFS has

many similarities with existing distributed file systems, it provides several important features.

HDFS is highly fault tolerant and is designed to be deployed on low-cost hardware. It provides

high throughput access to application data and is suitable for applications that have large data

sets. Moreover, HDFS relaxes several POSIX (Portable Operating System Interface) (Zlotnick

[1991]) requirements to enable streaming access to file system data. However, HDFS is not fully

POSIX compliant because the requirements for a POSIX filesystem differ from the target goals

of a Hadoop application. The tradeoff of not having a fully POSIX compliant filesystem leads to

improving performance for data throughput.

5.2.3 Common

The Common project contains the required files and scripts for starting the Hadoop system. It

provides utilities and access to other Hadoop projects, such as:

53

• File system abstraction. The file system shell includes various shell-like commands that

directly interact with the HDFS as well as other file systems that Hadoop supports.

• Service level authorization. The initial authorization mechanism is provided to ensure that

clients connecting to a particular Hadoop service have the necessary pre-configured permis-

sions and are authorized to access the given service. For example, a Hadoop cluster can use

this mechanism to allow a configured list of users to submit jobs.

5.2.4 Other Hadoop projects

• Hive (Apache Hadoop Foundation [2010e]): is a framework designed on top of the Hadoop

system for performing ad-hoc queries on data. It supports HiveQL language, which is similar

to SQL, but does not include complete SQL constructs. Hive converts a HiveQL query into

a Java MapReduce program and then submits it to the Hadoop cluster. The same outcome

can be achieved using a Java MapReduce program directly, but compared to HiveQL, it

requires a lot of code to be written and debugged.

• Pig (Apache Hadoop Foundation [2010f]): provides a higher level abstraction over Hadoop

MapReduce. It supports the PigLatin language, which is converted to Java MapReduce, and

then submitted to the Hadoop cluster. While HiveQL is a declarative language like SQL,

PigLatin is a data flow language. This means that the output of one PigLatin construct can

be sent as input to another PigLatin construct. In effect, PigLatin programming is similar

to specifying a query execution plan, making it easier for programmers to explicitly control

the flow of their data processing task.

• HBase (Apache Hadoop Foundation [2010e]): provides real time read and write access on

top of the HDFS. Apache HBase is an open source, non-relational, distributed database

modeled after Google’s BigTable (Chang et al. [2008]). Its goal is to provide hosting of very

large tables in the Hadoop cluster. HBase features compression, in-memory operation, and

Bloom filters on a per-column basis as outlined in the original BigTable. Tables in HBase

can serve as the input and output for MapReduce jobs running in Hadoop.

• Zookeeper (Apache Hadoop Foundation [2010g]): is a centralized service for maintaining

configuration information, naming, providing distributed synchronization, and providing

group services. These services are widely used in distributed applications. However, dif-

ferent implementations of these services lead to the need to manage complexity when the

applications are deployed. Zookeeper addresses all of these issues for Hadoop developers. Its

architecture supports high availability through redundant services. Zookeeper nodes store

54

their data in a hierarchical name space, where the users can read and write from/to the

nodes, and use a shared configuration service.

5.3 Hadoop Architecture

There are two layers in the Hadoop architecture: MapReduce and HDFS, where both layers

follow a master-slave model. The high level architecture of the Hadoop system is presented in

Figure 5.3. In the MapReduce layer, there is a master node with a Job Tracker, and there are

multiple slaves with Task Trackers. In the HDFS layer, the master and slave nodes include a

Name Node and Data Nodes, respectively.

Figure 5.3. The Hadoop Architecture.

In general, small Hadoop clusters include a single master and multiple slave nodes, in which

the master node acts as both the Job Tracker and Name Node. In a larger cluster, the HDFS is

managed through a dedicated Name Node resource, and similarly, there is a dedicated resource

for the Job Tracker.

• MapReduce Layer: Figure 5.3 presents MapReduce as the top layer of each resource in

the Hadoop cluster. The Job Tracker daemon, located in the master node, receives the

submitted jobs. It is responsible for distributing the job’s tasks to the slaves, and scheduling

them on the Task Trackers. Moreover, it monitors task execution, and provides status and

diagnostic information to the users. The Task Trackers execute the tasks as directed by the

Job Tracker.

55

The Hadoop system allows parallel processing of the map and reduce tasks in each job. Each

map task is independent of the others; this means that all map tasks can be performed in

parallel on multiple resources. In practice, the number of concurrent map tasks is limited

by the data source and/or the number of CPUs near that data. Similarly, a set of reduce

tasks can be performed in parallel. All outputs of map tasks that share the same key are

presented to the same reduce task. Parallelism in MapReduce offers some possibility of

recovering from partial failure of resources during operation. In other words, if one map

or reduce task fails, the task can be rescheduled, assuming the input data is still available.

Input data sets are in most cases available even in the presence of resource failures, because

each data set normally has three replicas stored on three different resources.

The scheduler, which is a fundamental component of the Hadoop system, is part of the Job

Tracker in the MapReduce layer. Scheduling in the Hadoop system is pull based, which

means that when a resource is free, it sends a heartbeat to the scheduler. Consequently, the

scheduler searches through all of the queued jobs, selects a job based on some performance

metric(s), and sends a task of the selected job to a free CPU of the pulling resource. The

heartbeat message contains some information such as the number of currently free CPUs on

the resource. Various Hadoop scheduling algorithms consider different performance metrics

in making scheduling decisions.

• HDFS Layer: the master node in the HDFS layer has a single Name Node, which manages

the file system namespace and regulates access to files by the file system’s clients. The slaves

in the HDFS architecture have Data Nodes (usually one per resource in the cluster), which

manage the storage process of their resource. HDFS exposes a file system namespace and

allows user data to be stored in files. Internally, a file is split into one or more blocks and

these blocks are stored in a set of Data Nodes. Typical block sizes used by HDFS are 64 or

128 MB.

A user or an application can create directories and store files inside these directories. The

Name Node maintains the file system namespace, and records any change to the file system

namespace or its properties. It also executes the operations of the file system namespace

such as opening, closing, and renaming files and directories. Moreover, it determines the

mapping of blocks to Data Nodes. The Data Nodes are responsible for serving read and

write requests from the file system’s clients. They also perform block creation, deletion, and

replication upon instruction from the Name Node.

The HDFS is designed to reliably store very large files across resources in a large cluster.

The blocks of a file are replicated for fault tolerance. The replication factor is specified at

56

file creation time and can be changed later. The Name Node makes all decisions regarding

replication of blocks. It periodically receives a heartbeat and a blockreport from each Data

Node in the cluster. Receiving a heartbeat from a Data Node implies that it is functioning

properly. A blockreport contains a list of all blocks on a Data Node.

Figure 5.4. The HDFS Architecture (Apache Hadoop Foundation [2010d]).

Figure 5.4 presents more details of the HDFS architecture. The architecture does not pre-

clude running multiple Data Nodes on the same resource, but in reality this is rarely done.

The existence of a single Name Node in a cluster greatly simplifies the system architecture.

The Name Node is the arbitrator and repository for all HDFS metadata. The system is

designed in a way that user data never flows through the Name Node. Applications that are

compatible with HDFS are those that deal with large data sets. These applications write

their data only once but read it one or more times and require these reads to be performed

at streaming speeds.

5.4 Hadoop Execution Process

Following the two layers of the Hadoop architecture, the execution process is defined in two

layers. In the MapReduce layer, the execution process can be divided into two parts, namely, a

Map section and a Reduce section.

1. Map execution process: assigns each map task to a portion of the input file called a

slice. By default, each slice contains a single HDFS block, and the total number of file

blocks normally determines the number of map tasks. Execution of a map tasks consists of

the following steps:

57

(a) The task’s slice is read and organized into records (<key, value> pairs), and the map

function is applied to each record.

(b) After the map function’s completion, the commit phase registers the final output with

the Task Tracker, which informs the Job Tracker about the task’s completion.

(c) The Output Collector stores the map output in a format that is easy for the reduce tasks

to consume. Intermediate keys are assigned to reduce tasks by applying a partitioning

function. Thus, the Output Collector applies this function to each key produced by the

map function, and stores each record and partition number in an in-memory buffer.

(d) The Output Collector spills this information to the disks when a buffer reaches its

capacity. A spill of the in-memory buffer involves sorting the records first by partition

number, and second by key values. The buffer content is written to a local file system

as a data file and an index file. The index file points to the offset of each partition in

the data file. The data file contains the records, which are sorted by the key within

each partition segment.

(e) During the commit phase, the final output of a map task is generated by merging all

the spill files produced by this map task into a single pair of data and index files.

These files are registered with the Task Tracker before the task is completed. The Task

Tracker reads these files to service requests from reduce tasks.

2. Reduce execution process: contains three steps: shuffle, sort, and reduce.

(a) In the shuffle step, the intermediate data generated by the map phase is fetched. Each

reduce task is assigned a partition of the intermediate data with a fixed key range; so

the reduce task must fetch the content of this partition from every map task’s output

in the cluster.

(b) In the sort step, records with the same key are grouped together to be processed by

the reduce step.

(c) In the reduce step, the user defined reduce function is applied to each key and corre-

sponding list of values.

The Job Tracker has the information about the location of Task Trackers which store the

map outputs, and provides this information to the Task Trackers which execute the reduce

tasks. A reduce task can not fetch the output of a map task until the map task has finished

its execution and committed its final output to the disk. After receiving partitions from all

of the map tasks’ outputs, the reduce task enters the sort step. The output generated from

58

map tasks for each partition is already sorted by the reduce key. The reduce task merges

these runs together to produce a single run that is sorted by key. The task then enters the

last reduce step, in which the user-defined reduce function is invoked for each distinct key in

a sorted order, passing it the associated list of values. The output of the reduce function is

written to a temporary location on the HDFS. After the reduce function has been applied to

each key in the reduce task’s partition, the task’s HDFS output file is automatically changed

from its temporary location to its final location.

Figure 5.5. A client reading data from the HDFS (Venner [2009])

The execution process in the HDFS layer consists of two main functions: file read and write as

follows:

1. File Reading Process: includes the following steps (Figure 5.5):

(a) The client opens the file by calling open() on the DistributedFileSystem.

(b) The DistributedFileSystem calls the Name Node to determine the locations of the first

few blocks of the file. For each block the Name Node returns the addresses of the Data

nodes which have a copy of that block.

(c) The DistributedFileSystem returns an FSDataInputStream to the client from which

to read data. An FSDataInputStream wraps a DFSInputStream, which manages the

Data Node and Name Node I/O.

(d) The client calls read() on the stream DFSInputStream, which has stored the Data Node

addresses for the first few blocks in the file. It connects to the first (closest) Data Node

for the first block in the file. Consequently, data is streamed from the Data Node to

the client, which calls read() repeatedly on the stream.

59

(e) When the end of the block is reached, DFSInputStream will terminate the connection

with the Data Node, and find the best Data Node for the next block. This happens

transparently to the client.

(f) Finally, when the client has finished reading, DFSInputStream calls close() on the

FSDataInputStream.

Figure 5.6. A client writing data to the HDFS (Venner [2009])

2. File Writing Process: has the following steps (Figure 5.6):

(a) The client creates a file by calling create() on DistributedFileSystem.

(b) The DistributedFileSystem makes an RPC (Remote Procedure Call) to the Name Node

to create a new file with no blocks associated with it in the filesystem’s namespace.

Name Node performs various checks; if all checks pass, DistributedFileSystem returns

an FSDataOutputStream for the client to start writing data to it.

(c) FSDataOutputStream wraps a DFSOutputStream, which handles communication with

the Data Nodes and the Name Node.

(d) The client writes data. DFSOutputStream splits data into packets, which it then

writes to an internal queue, called the data queue. The data queue is consumed by the

DataStreamer.

(e) Consequently, the DataStreamer streams the packets to the first Data Node in the

pipeline, which stores the packets and forwards them to the second Data Node in the

pipeline. The second Data Node stores the packets and forwards them to the third

(and last) Data Node.

60

(f) The DFSOutputStream maintains an internal queue (called the ACK queue) of packets

that are waiting to be acknowledged by Data Nodes. A packet is removed from the

ACK queue only when it has been acknowledged by all the Data Nodes in the pipeline.

(g) When the client has finished writing, it calls the close() function on the stream. This

action flushes all of the remaining packets to the Data Node pipeline and waits for

acknowledgments.

(h) Finally, the client contacts the Name Node to signal the file’s completion.

5.5 Conclusion

This chapter provided an introduction to the MapReduce programming model and Hadoop

system. The following chapters of this thesis address the scheduling problem in Hadoop systems,

and propose new Hadoop schedulers. The proposed schedulers will be an extension to Hadoop’s

MapReduce layer, and its Job Tracker daemon.

61

Chapter 6

COSHH: A Classification and

Optimization based Scheduler for

Heterogeneous Hadoop Systems 1

Hadoop systems were initially designed to optimize the performance of large batch jobs such

as web index construction (Zaharia et al. [2010]). However, due to the increasing number of

applications running on Hadoop, there is a growing demand for sharing Hadoop clusters amongst

multiple users (Zaharia et al. [2010]). Various types of applications submitted by different users

require the consideration of new aspects in designing a scheduling system for Hadoop. One of the

most important aspects which should be considered is heterogeneity in the system. Heterogeneity

can be at both the application and the cluster levels. Application level heterogeneity is taken into

account in some recent work on Hadoop schedulers (Ghodsi et al. [2011]). However, to the best of

our knowledge, cluster level heterogeneity is a neglected aspect in designing Hadoop schedulers.

This PhD thesis introduces a new scheduling system designed and implemented for Hadoop, which

considers heterogeneity at both application and cluster levels.

From the user perspective, there are two critical issues. First, Hadoop guarantees a minimum

share of resources for every user at any time. Therefore, satisfying the minimum shares of all

users is the first key point in designing a Hadoop scheduler. Second, the resources should be

divided among the users in a fair way (to prevent starvation of any user). Unlike most existing

Hadoop schedulers (Zaharia et al. [2010]), COSHH makes scheduling decisions based on the system

1This chapter is mostly based on the following papers:
1. A. Rasooli and D. G. Down, COSHH: A Classification and Optimization based Scheduler for Heterogeneous

Hadoop systems. Future Generation Computer Systems (FGCS), 2012, (Submitted).
2. A. Rasooli and D. G. Down, An Adaptive Scheduling Algorithm for Dynamic Heterogeneous Hadoop Systems,

In Proceeding of the 21st Annual International Conference hosted by the Centre for Advanced
Studies Research, IBM Canada (CASCON 2011), November 7-10, 2011, Toronto, Canada.

62

heterogeneity, while considering fairness and minimum share objectives. COSHH has two stages

to consider these issues. In the first stage, the algorithm aims to satisfy the minimum share

requirements, and in the second stage, it considers fairness over all users.

The main approach in the proposed scheduler is to use system information to make better

scheduling decisions, which leads to improved performance. To gather this information, COSHH

employs a component which was first introduced in (Morton et al. [2010]) and is further developed

in (Agarwal and Ananthanarayanan [2010]). This component estimates the job mean execution

time based on the job’s structure, and the number of map and reduce tasks in each job.

Using the system information, COSHH classifies the jobs, and finds the appropriate job class and

resource matchings based on the job classes requirements and resource features. Then, COSHH

uses the job class-resource matching as well as user priority, required minimum share, and fair

share to make scheduling decisions. The proposed scheduler is dynamic, and updates its decisions

based on changes in the system parameters.

The COSHH scheduler is intended mainly for Hadoop systems with large workloads, where the

number of jobs waiting in the queue at scheduling instants is large. In such a system, an exhaustive

search to find an appropriate matching of jobs and resources can result in significant overhead for

the scheduler. However, the proposed scheduler reduces the search space by using a classification

approach. Moreover, the classification and optimization approaches in the COSHH scheduler

provide suggestions for the location of data replicas. The suggested replication resources could

lead to considerable improvement in the locality metric, in particular for large Hadoop clusters.

In this chapter, a Hadoop simulator, MRSIM (Hammoud et al. [2010]), is extended to evaluate

the proposed scheduler, and four of the most common Hadoop performance metrics: locality,

fairness, minimum share satisfaction, and average completion time, are implemented. The per-

formance of COSHH is compared with two commonly used Hadoop schedulers, the FIFO and the

Fair Sharing schedulers (Zaharia et al. [2009]). Moreover, the sensitivity of the proposed scheduler

to errors in the estimated job execution times is examined.

The remainder of this chapter is organized as follows. Section 6.1 provides motivation for the

proposed scheduler. The high level architecture of COSHH is introduced in Section 6.2. Details

of the two main components in the proposed scheduler are presented in Sections 6.3 and 6.4.

Section 6.5 introduces the Hadoop performance metrics. In Sections 6.6 and 6.7, the performance

of COSHH is studied using synthetic and two well-known real Hadoop workloads, respectively.

Section 6.8 provides further discussion about the performance of the COSHH scheduler. Sensitivity

analyses are presented in Section 6.9. Current Hadoop scheduling algorithms are given in Section

6.10. Finally, the last section concludes the chapter.

63

6.1 Motivation

The following discusses a number of observations and motivations to develop a Hadoop scheduler

for a heterogeneous environment.

• Multi-factor Hadoop scheduler. In a Hadoop system, satisfying the minimum shares

of users is the first critical issue. The next important issue is fairness. Traditional Hadoop

schedulers address the fairness and the minimum share objectives without considering het-

erogeneity of jobs and resources. One of the advantages of the COSHH scheduler is that

while it addresses the fairness and the minimum share requirements, it makes efficient as-

signments by considering the heterogeneity. The system heterogeneity is defined based on

job requirements (such as estimated mean execution time) and resource features (such as

execution rate). Consequently, the proposed scheduler typically reduces average completion

times.

• Reducing the communication cost. The Hadoop system distributes tasks on multiple

resources in parallel to reduce completion times. However, communication costs are not

considered in the task distribution process of Hadoop. In a large cluster with heterogenous

resources, maximizing a task’s distribution may result in overwhelmingly large communica-

tion overhead. As a result, job completion times will be increased. COSHH considers the

heterogeneity and distribution of resources in the task assignment.

• Reducing the search overhead for matching jobs and resources. To find the best

matching of jobs and resources in a heterogeneous Hadoop system, an exhaustive search

is required. COSHH uses classification and optimization techniques to restrict the search

space. Jobs are categorized based on their requirements. When a resource is available, the

COSHH scheduler searches through the classes instead of the individual jobs to find the

best matching (using optimization techniques). The solution of the optimization problem

provides a set of suggested classes for each resource, which is used for making routing

decisions. Moreover, to prevent potentially large overheads, COSHH limits the number of

times that classification and optimization are performed in the scheduler.

• Increasing locality. If the scheduler increases the probability of assigning tasks to the

resources which store the corresponding input data, locality can be increased. COSHH

makes scheduling decisions based on the suggested set of job classes for each resource.

Therefore, the required data of the suggested classes for a resource can be replicated on that

resource. This can lead to increasing locality, in particular in large Hadoop clusters, where

locality is more critical.

64

6.2 Proposed Hadoop Scheduling System

The high level architecture of COSHH is presented in Figure 6.1. This section presents a brief

overview of the components in the proposed scheduler. Further details of the main components

are provided in the following two sections.

Figure 6.1. The high level architecture of COSHH

A typical Hadoop scheduler receives two main messages from the Hadoop system: a message

signalling a new job arrival from a user, and a heartbeat message from a free resource. Therefore,

COSHH consists of two main processes, where each process is triggered by receiving one of these

messages. Upon receiving a new job, the scheduler performs the queuing process to store the

incoming job in an appropriate queue. When a heartbeat message is received, the scheduler

triggers the routing process to assign a job to the current free resource. In Figure 6.1, the flows

of the job arrival and heartbeat messages are presented by solid and dashed lines, respectively.

The high level architecture of COSHH consists of four components: the Hadoop system, the

task scheduling process, the queuing process, and the routing process. The task scheduling process

estimates the mean execution time of an incoming job on all resources. These estimates are passed

to the queuing process to choose an appropriate queue for the incoming jobs. The routing process

selects a job for the available free resource, and sends it to the task scheduling process. Using

the selected job’s characteristics, the task scheduling process assigns tasks of the selected job to

available slots of the free resource. The Hadoop system and task scheduling process are introduced

in this section, and the detailed description of the queuing and routing processes, which are the

main contributions of this chapter, are discussed in Sections 6.3 and 6.4, respectively.

65

6.2.1 Hadoop System Model

The Hadoop system consists of a cluster, which is a group of linked resources. The data in

the Hadoop system is organized into files. The users submit jobs to the system, where each job

consists of a number of tasks. Each task is either a map task or a reduce task. The Hadoop

components are described as follows:

1. The cluster consists of a set of resources, where each resource has a computation unit, and a

data storage unit. The computation unit consists of a set of slots (in most Hadoop systems,

each CPU core is considered as one slot), and the data storage unit has a specific capacity.

A cluster of M resources is defined as as follows:

Cluster = {R1, . . . , RM}

Rj =< Slotsj,Memj >

• Slotsj is the set of slots in resource Rj, where each slot (slotkj) has a specific execution

rate (exec ratekj). Generally, slots belonging to one resource have the same execution

rate. A resource Rj has the following set of sj slots:

Slotsj = {slot1j , . . . , slot
sj

j }

• Memj is the storage unit of resource Rj, which has a specific capacity (capacityj) and

data retrieval rate (retrieval ratej). The data retrieval rate of resource Rj depends on

the bandwidth within its storage unit.

2. Data in the Hadoop system is organized into files, which are usually large. Each file is split

into small pieces, called slices (usually, all slices in a system have the same size). Assuming

that there are f files in the system, and each file is divided into li slices, the files are defined

as follows:

Files = {F1, . . . , Ff}

Fi = {slice1
i , . . . , slice

li
i }

3. It is assumed that there are Z users in the Hadoop system, where each user (Ui) submits a

set of jobs to the system (Jobsi) as follows:

66

Users = {U1, . . . , UZ}

Ui =< Jobsi >

Jobsi = {J1
i , . . . , J

ni
i },

where Jdi denotes job d submitted by user Ui, and ni is the total number of jobs submitted

by this user. The Hadoop system assigns a priority and a minimum share to each user based

on a particular policy (e.g. the pricing policy of (Sandholm and Lai [2010])).

The priority is an integer which shows the relative importance of a user. Based on the

priority (priorityi) of a user Ui, its corresponding weight (weighti) is defined, where the

weight can be any integer or fractional number. The number of slots assigned to user Ui

depends on their weight (weighti). The minimum share of a user Ui (min sharei) is the

minimum number of slots that the system has guaranteed to provide for user Ui at each

point in time.

In a Hadoop system, the set of submitted jobs of a user is dynamic, meaning that the set

of submitted jobs for user Ui at time t1 may be completely different than at time t2. A job

Ji is represented by

Ji = Mapsi ∪Redsi,

where Mapsi and Redsi are the sets of map tasks and reduce tasks of this job, respectively.

The set Mapsi of job Ji is denoted by

Mapsi = {MT 1
i , . . . ,MT

m′
i

i }.

Here, m′i is the total number of map tasks job in Ji, and MT ki is map task k of job Ji. Each

map task MT ki performs some processing on the slice (slicelj ∈ Fj), where the required data

for this task is located. The set Redsi of job Ji is denoted by

Redsi = {RT 1
i , . . . , RT

r′i
i }.

Here, r′i is the total number of reduce tasks of job Ji, and RT ki is reduce task k of job Ji.

Each reduce task RT ki receives and processes the results of some of the map tasks of job Ji.

The value mean execT ime(Ji, Rj) defines the mean execution time of job Ji on resource Rj,

and the corresponding execution rate is defined as follows:

67

mean execRate(Ji, Rj) = 1/mean execT ime(Ji, Rj).

6.2.2 Task Scheduling Process

Upon a new job arrival, an estimate of its mean execution times on the resources is re-

quired. This component is a result of research in the AMP lab at UC Berkeley (Agarwal and

Ananthanarayanan [2010]). The task scheduling process component uses the Chronos task

duration predictor to estimate the mean execution times of the incoming job on all resources

(mean execT ime(Ji, Rj)). The Chronos prediction algorithm is described briefly here, more de-

tails can be found in (Agarwal and Ananthanarayanan [2010]). To define the prediction algorithm,

first various analyses are performed in (Agarwal and Ananthanarayanan [2010]), to identify im-

portant log signals. Then, the prediction algorithm is introduced using these log signals, and

finally the accuracy of the prediction algorithm is evaluated on real Hadoop workloads.

To analyze the correlation between task execution times and various log signals, analyses were

performed on 46 GB of logs from Yahoo! and Facebook clusters comprising of around 2000

machines and 3000 resources, respectively. Using Pearson’s correlation coefficients (Benesty et al.

[2009]), it was determined that task execution times showed a high positive correlation with HDFS

bytes read, HDFS bytes written, and map input bytes. Moreover, there was a relatively low but

positive correlation with combine input records, local bytes read, local bytes written, map output

bytes, map input records, and map output records. Two other important signals were determined

to be the cluster utilization intervals and input file name. The intuition behind including these

signals was that generally tasks operating on the same file and in similar utilization intervals tend

to have similar execution times.

Almost every machine learning based prediction algorithm is a trade-off between speed and

accuracy (Mair et al. [2000]). The prediction algorithm used for Hadoop systems is required to be

extremely fast and fairly accurate. This is because the prediction algorithm is invoked each time

a job arrives to the system. The analysis performed on various logs from Facebook and Yahoo!

Hadoop clusters shows that at any time, there can be anywhere between 0 to 3000 tasks running

on the cluster. This requires that the prediction scheduler should be able to make a decision within

a matter of microseconds, with fairly high accuracy. To achieve this goal, Chronos consists of two

parts: the first part, chrond, refers to the Chronos daemon that runs in the background. It is

responsible for analyzing Hadoop history log files as well as monitoring cluster utilizations every

specified time interval. For example, for Facebook and Yahoo! workloads, an interval of every six

hours could provide the desired accuracy (Mair et al. [2000]).

68

Algorithm 1 Refined Predictor for COSHH
When a new Job J arrives:

for Each resource r in the system do
Get the execution rate ri of slots in r
Classify ri into Rc

for Each map task ti of J do
Get the following information:
ci: combine input records ti requires to read
hi: HDFS bytes ti requires to read
fi: the input file of ti

Classify (ci, hi) into Cluster Lc;
Construct S= Set of all task durations which operate on fi, and belong to Clusters Lc, Rc;
if S = ∅ then

Construct S= Set of all task durations which operate on fi, and belong to Cluster Rc;
end if
if S = ∅ then

Construct S= Set of all task durations which operate on fi;
end if
if S = ∅ then

return −1;
end if
if S 6= ∅ then

use median(S) as execution time of ti on each slot
end if

end for
Using:

Execution time of each task of J on each slot in r
Number and order of all tasks in J
Number of slots in r

Compute the execution time of J on r
end for
return the execution time of J on all resources

69

Periodically, Chronos applies k-means clustering (Ethem [2004]) on this data and keeps track of

the cluster boundaries. On the other hand, the second part, Predictor, is an on-the-spot decision

engine. Whenever a new job arrives, the Predictor classifies its tasks into various categories

depending on the file they operate on, the total cluster utilization at that point in time, and the

input bytes they read, by consulting the lookup table populated by chrond. Finally, it returns the

median task durations. The refined Predictor algorithm for COSHH is provided in Algorithm 1.

Accuracy experiments for Chronos are provided in (Agarwal and Ananthanarayanan [2010]) on

46 GB of Yahoo! and Facebook cluster logs. The results confirm that around 90% of map tasks

could be predicted within 80% accuracy. Further, about 80% of reduce tasks are predicted within

80% accuracy. Most importantly, the addition of Chronos to the existing Hadoop Delay Scheduler

did not result in any significant performance degradation (Agarwal and Ananthanarayanan [2010]).

6.3 Queuing Process

Figure 6.2 shows different stages of the queuing process. The two main components in the

queuing process are a classifier (Section 6.3.1), and an optimizer (Section 6.3.2). At a high level,

when a new job arrives, the classification approach specifies the job class, and stores the job in

the corresponding queue. If the job does not fit in any of the current classes, the list of classes

is updated with a new class for the incoming job. The optimizer finds an appropriate matching

of job classes and resources, by solving an optimization problem that is defined based on the

properties of the job classes and features of the resources. The result of the queuing process,

which is sent to the routing process, contains the list of job classes and the suggested set of classes

for each resource. The classifier and optimizer methods used in COSHH can reduce the search

space in finding an appropriate matching of resources and jobs. Moreover, these methods are

used to consider the system heterogeneity in the proposed scheduler, which leads to reducing the

completion times. However, the classification and optimization processes can add overhead to

the scheduling process. To prevent a large overhead, the proposed scheduler limits the number

of times that these steps are performed, as well as using efficient classification and optimization

methods with low overheads.

6.3.1 COSHH Classification

Investigations on real Hadoop workloads show that it is possible to determine classes of “com-

mon jobs” (Chen et al. [2011]). The well-known k-means clustering method is used for classifying

jobs in real Hadoop workloads (Chen et al. [2011]). Accordingly, the proposed COSHH scheduler

uses this method in its classifier.

70

Figure 6.2. The Queuing Process

This thesis designed a Hadoop scheduler based on the fact that there are two critical criteria

with different levels of importance in the Hadoop system. The first criterion, imposed by the

Hadoop provider is satisfying the minimum shares. The Hadoop providers guarantee that a user’s

minimum share will be provided at all points in time while their jobs are executing. The second

criterion, important to improve the overall system performance, is fairness. Considering fairness

prevents starvation of any user, and divides the resources among the users in a fair way. Minimum

share satisfaction has higher criticality than fairness. Therefore, COSHH has two classifications,

to consider these issues for first minimum share satisfaction, and then for fairness. The primary

classification (for minimum share satisfaction), targets only jobs with min share > 0, while in the

secondary classification (for fairness) all of the jobs in the system are considered. As a result, jobs

with min share > 0 are considered in both classifications. This is due to the fact that when a user

asks for more than her minimum share, first her minimum share is given immediately through

the primary classification. Then, the extra share should be given in a fair way by considering all

users through the secondary classification.

In both classifications, jobs are classified based on their features (i.e, priority, mean execution

rate on the resources (mean execRate(Ji, Rj)), and mean arrival rate). The set of classes gener-

ated in the primary classification is defined as JobClasses1, where an individual class is denoted

71

by Ci. Each class Ci has a given priority, which is equal to the priority of the jobs in this class.

The estimated mean arrival rate of jobs in class Ci is denoted by σi, and the estimated mean

execution rate of the jobs in class Ci on resource Rj is denoted by ψi,j. Hence, the heterogeneity

of resources is completely addressed with ψi,j. The total number of classes generated with this

classification is assumed to be B, i.e.

JobClasses1 = {C1, . . . , CB}.

The secondary classification generates a set of classes defined as JobClasses2. Similar to the

priority classification, each secondary class, denoted by C ′i, has priority equal to the priority of

the jobs in this class. The mean arrival rate of the jobs in class C ′i is equal to σ′i, and the mean

execution rate of jobs in class C ′i on resource Rj is denoted by ψ′i,j. The total number of classes

generated with this classification is B′, i.e.

JobClasses2 = {C ′1, . . . , C ′B′}.

As an example of a system with multiple classes, Yahoo! uses the Hadoop system in production

for a variety of products (job types) (Bodkin [2010]): Data Analytics, Content Optimization,

Yahoo! Mail Anti-Spam, Ad Products, and several other applications.

Figure 6.3. The primary classification of the jobs in Exp1 system at time t

User Job Type min share priority

User1 Advertisement Products 50 3
User2 Data Analytics 20 2
User3 Advertisement Targeting 40 3
User4 Search Ranking 30 2
User5 Yahoo! Mail Anti-Spam 0 1
User6 User Interest Prediction 0 2

Table 6.1. The Hadoop System Example (Exp1)

72

User Job Queue

User1 {J4, J10, J13, J17}
User2 {J1, J5, J9, J12, J18}
User3 {J2, J8, J20}
User4 {J6, J14, J16, J21}
User5 {J7, J15}
User6 {J3, J11, J19}

Table 6.2. The job queues in Exp1 at time t

Figure 6.4. The secondary classification of the jobs in Exp1 system at time t

Typically, the Hadoop system defines a user for each job type, and the system assigns a minimum

share and a priority to each user. For example, assume a Hadoop system (called Exp1) with the

parameters in Table 6.1. The corresponding jobs at a given time t are given in Table 6.2, where

the submitted jobs of a user are based on the user’s job type (e.g., J4, submitted by User1, is an

advertisement product job, while job J5 is a search ranking job). The primary classification of

the jobs in the Exp1 system at time t is presented in Figure 6.3. Note that this example has one

resource in the system. The secondary classification of system Exp1 at time t is shown in Figure

6.4.

6.3.2 COSHH Optimization

After classifying the incoming jobs, and storing them in their appropriate classes, the scheduler

finds a matching of job classes and resources. The optimization approach used in the proposed

73

scheduler first constructs an LP which considers properties of the job classes and features of the

resources. The scheduler then solves this LP to find a set of suggested classes for each resource.

An LP is defined for each of the two classifications. The first LP is defined for classes in the

set JobClasses1 as follows:

max γ

s.t.

M∑
j=1

ψi,j × θi,j ≥ γ × σi, for all i = 1, . . . , B, (6.1)

B∑
i=1

θi,j ≤ 1, for all j = 1, . . . ,M, (6.2)

θi,j ≥ 0, for all i = 1, . . . , B, and j = 1, . . . ,M. (6.3)

Here γ is interpreted as the maximum capacity of the system, and θi,j is the proportion of

resource Rj allocated to class Ci. As a reminder, M is the total number of resources, and B

is the total number of classes generated in the primary classification (i.e, |JobClasses1|). This

optimization problem increases the arrival rates of all the classes by a fixed proportion, to minimize

the load in the system, while constraint (6.1) keeps the system stable. The solution of this LP

provides the allocation matrix θ, whose (i, j) element is θi,j. Based on the results of this LP, the

set SCj is defined for each resource Rj as

SCj = {Ci : θi,j 6= 0}.

For example, consider a system with two classes of jobs, and two resources (M = 2, B = 2),

in which the arrival and execution rates are σ =
[

2.45 2.45
]
and ψ =

[
9 5

2 1

]
, respectively.

Solving the above LP gives γ = 1.0204 and θ =

[
0 0.5

1 0.5

]
. Therefore, the sets SC1 and SC2 for

resources R1 and R2 will be {C2} and {C1, C2}, respectively. These two sets define the suggested

classes for each resource, i.e. upon receiving a heartbeat from resource R1, a job from class C2

should be selected. However, upon receiving a heartbeat from resource R2, either a job from

class C1 or C2 should be chosen. Even though resource R1 has the fastest rate for class C1, the

algorithm does not assign any jobs of class C1 to it. It is observed in the experiments that when

the system is highly loaded, the average job completion time decreases if resource R1 is dedicated

to jobs in class C2.

74

The second optimization problem is used for the secondary classification. The scheduler defines

an LP similar to the previous one, for classes in the set JobClasses2. In this LP the parameters

γ, ψi,j, θi,j, σi, and B are replaced by γ′, ψ′i,j, θ
′
i,j, σ

′
i, and B′, respectively:

max γ′

s.t.
M∑
j=1

ψ′i,j × θ′i,j ≥ γ′ × σ′i, for all i = 1, . . . , B′, (6.4)

B′∑
i=1

θ′i,j ≤ 1, for all j = 1, . . . ,M, (6.5)

θ′i,j ≥ 0, for all i = 1, . . . , B′, and j = 1, . . . ,M. (6.6)

The solution of this LP yields the matrix θ′, whose (i, j) element is θ′i,j. The set SC ′j is defined

for each resource Rj as the set of classes allocated to this resource, where SC ′j = {C ′i : θ′i,j 6= 0}.
The COSHH scheduler uses the sets of suggested classes SCR and SC ′R for both making schedul-

ing decisions and improving locality in the Hadoop system. The scheduling decision is made by

the routing process, and locality can be improved by replicating input data on multiple resources

in the Hadoop system. Most current Hadoop schedulers randomly choose three resources for

replication of each input data (Zaharia et al. [2009, 2010]). However, COSHH uses the sets of

suggested classes, SCR and SC ′R, to choose replication resources. For each input data, the initial

incoming jobs using this data are considered, and from all the suggested resources for these jobs,

three of them are randomly selected for storing replicas of the corresponding input data. As this

research evaluates the proposed scheduler on small Hadoop clusters, only the initial incoming jobs

Algorithm 2 Queuing Process

When a new Job (say J) arrives
Get execution time of J from Task Scheduling Process

if J fits in any class (say Ci) then
add J to the queue of Ci

else
use k-means clustering to update the job classification

find a class for J (say Cj) , and add J to its queue

solve optimization problems, and get two sets of suggested classes, SCR and SC ′R
end if

send SCR, SC ′R and both sets of classes (JobClasses1 and JobClasses2) to the routing process

75

are considered for determining the replication resources. However, in large Hadoop clusters with

a high variety of available network bandwidths, developing the proposed replication method to

consider the updates caused by later incoming jobs, could lead to significant improvement in the

locality. This is left as future work.

The IBM ILOG CPLEX optimizer (IBM ILOG CPLEX Optimizer [2010]) is used to solve the

LPs. A key feature of this optimizer is its high performance in delivering the power needed to

solve very large optimization problems, and the speed required for highly interactive analytical

decision support applications (IBM ILOG CPLEX Optimizer [2010]). As a result, solving the

optimization problems in COSHH does not add considerable overhead. The proposed queuing

process is presented in Algorithm 2.

6.4 Routing Process

When the scheduler receives a heartbeat message from a free resource, say Rj, it triggers the

routing process. The routing process receives the sets of suggested classes SCR and SC ′R from

the queuing process, and uses them to select a job for the current free resource. This process

selects a job for each free slot in the resource Rj, and sends the selected job to the task scheduling

process. The task scheduling process chooses a task of the selected job, and assigns the task to

its corresponding slot.

Here, it should be noted that the scheduler does not limit each job to just one resource. When

a job is selected, the task scheduling process assigns a number of appropriate tasks of this job to

available slots of the current free resource. If the number of available slots is less than the number

of uncompleted tasks in the selected job, the job will remain in the waiting queue. Therefore,

at the next heartbeat message from a free resource, this job will be considered in making the

scheduling decision; however, tasks already assigned are no longer considered. When all tasks of

a job are assigned, the job will be removed from the waiting queue.

Algorithm 3 presents the routing process. There are two stages in this algorithm to select jobs

for the available slots of the current free resource. In the first stage, the jobs of classes in SCR

are considered, where the jobs are selected in the order of their minimum share satisfaction. A

user who has the highest distance to achieve her minimum share will get a resource share sooner.

However, in the second stage, jobs of classes in SC ′R are considered, and the jobs are selected in

the order defined by the current shares and priorities of their users. In this way, the scheduler

addresses fairness amongst the users. In each stage, ties are broken randomly.

76

Algorithm 3 Routing Process

When a heartbeat message is received from a resource (say R)
NFS = number of free slots in R

while NFS 6= 0 and there is a job (J) whose

U.min share− U.currentShare > 0
and
class ∈ SCR

and
((U.min share− U.currentShare)× U.weight) is maximum do
add J to the set of selected jobs (Jselected)

NFS = NFS − 1

end while

while NFS 6= 0 and there is a job (J) whose

class ∈ SC ′R
and
(U.currentShare/weight) is minimum

do
add J to the set of selected jobs (Jselected)

NFS = NFS − 1

end while

send the set Jselected to the Task Scheduling Process to choose a task for each free slot in R.

77

6.5 Hadoop Performance Metrics

There is a range of performance metrics that are of interest to both users and Hadoop providers.

This section introduces the Hadoop performance metrics considered in this PhD thesis. Two

functions are used to define these performance metrics: the function Demand(U, t) returns the

set of unassigned tasks for user U at time t; and the function AssignedSlots(U, t) returns the set

of slots executing tasks from user U at time t. The run time of an experiment is assumed to be

T . Using these definitions, five Hadoop performance metrics are defined as follows:

1. Average Completion T ime: the average time to complete all submitted jobs.

2. Minimum Share Dissatisfaction: measures to what degree the scheduling algorithm is

successful in satisfying the minimum share requirements of the users. A user whose current

demand is not zero (|Demand(U, t)| > 0), and whose current share is less than her minimum

share (|AssignedSlots(U, t)| < U.min share), has the following UserDissatisfaction:

UserDissatisfaction(U, t) =
U.min share− |AssignedSlots(U, t)|

U.min share
× U.weight,

where U.weight denotes the weight, and U.min share is the minimum share of user U . The

total distance of all users from their min share is defined as follows:

Dissatisfaction(t) =
∑

∀U∈Users

UserDissatisfaction(U, t).

3. Fairness: measures how fair a scheduler is in dividing the resources among users. A fair

scheduler gives the same share of resources to users with equal priority. However, when the

priorities are not equal, then the user’s share should be proportional to their weight.

The number of slots assigned to each user beyond her minimum share is computed as

∆(U, t) = Assigned Slots(U, t) − U.min share. The set Usersw = {U |U ∈ Users ∧
U.weight = w} includes all the users with the same weight w. The average additional

share of each set Usersw is defined as:

avg(w, t) =

∑
U∈Usersw

∆(U, t)

|Usersw|
.

78

Fairness(t) is computed by the sum of the distances of users in each set Usersw from the

average user share (avg(w, t)) in the corresponding set:

Fairness(t) =
∑

w∈weights

∑
U∈Usersw

|∆(U, t)− avg(w, t)|.

Comparing two algorithms, the algorithm which has lower Fairness(T) achieves better

performance.

4. Locality: is defined as the proportion of tasks which are running on the same resource as

where their stored data are located. A map task is defined to be local on a resource R if it

is running on resource R and its required slice is also stored on resource R. Since the input

data size is large, and the map tasks of one job are required to send their results to the reduce

tasks of that job, the communication cost can be quite significant. Comparing two scheduling

algorithms, the algorithm which has larger Locality(T) delivers better performance.

5. Scheduling T ime: is the total time spent for scheduling all of the incoming jobs. This

measures the overhead of each Hadoop scheduler.

6.6 Experimental Results - Synthetic Workload

This section evaluates the proposed scheduler using synthetic Hadoop workloads. First the

implemented evaluation environment is described, and later the experimental results are provided.

6.6.1 Experimental Environment

The experimental environment in this section consists of a cluster of six heterogeneous resources

with the features presented in Table 6.3. The bandwidth between the resources is 100Mbps. In

these experiments an extreme case of heterogeneity is used to identify the boundaries, limitations,

and advantages of each algorithm. A moderate case of heterogeneity is used for evaluations on a

real Hadoop cluster in Chapter 9. MRSIM (Hammoud et al. [2010]), a MapReduce simulator, is

used to simulate a Hadoop cluster and evaluate the proposed scheduler. This simulator is based

on discrete event simulation, and accurately models the Hadoop environment.

This thesis extends the MRSIM simulator to measure the five main Hadoop performance metrics

defined in Section 6.5. The extended simulator includes scheduler component and a performance

79

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 1 500MHz 4GB 40Mbps
R2 1 500MHz 4TB 100Gbps
R3 1 500MHz 4TB 100Gbps
R4 8 500MHz 4GB 40Mbps
R5 8 500MHz 4GB 40Mbps
R6 8 4.2GHz 4TB 100Gbps

Table 6.3. Experiment resources

evaluator component (to calculate the desired performance metrics). Moreover, a job submission

component is added to the simulator. Using this component it is possible to define various users

with different minimum shares and priorities. Each user can submit various types of jobs with

different arrival rates. Moreover, a scheduler component is developed in the simulator to receive

the incoming jobs and store them in the queues chosen by the scheduler. Also, upon receiving

a heartbeat message, the simulated scheduler sends a task to the free slot of the corresponding

resource. COSHH implementation details are described in Chapter 10.

The workloads in this section are defined using a Loadgen example job in Hadoop, which is

used in the Gridmix (Apache Hadoop Foundation [2010a]) Hadoop benchmark. Loadgen is a

configurable job, in which choosing various percentages for keepMap and keepReduce, can make

the job equivalent to various workloads used in Gridmix, such as sort and filter. Four types of

jobs are generated in the system:

• Small jobs: small I/O and CPU requirements (1 map and 1 reduce task),

• I/O-heavy jobs: large I/O and small CPU requirements (10 map and 1 reduce tasks),

• CPU-heavy jobs: small I/O and large CPU requirements (1 map and 10 reduce tasks), and

• Large jobs: large I/O and large CPU requirements (10 map and 10 reduce tasks).

Using these jobs, three workloads are defined: an I/O-Intensive workload, in which all jobs are

I/O-bound; a CPU-Intensive workload; and a mixed workload, which includes all job types. The

workloads are given in Table 6.4.

Considering various arrival rates for the jobs in each workload, three benchmarks are defined

for each workload in Table 6.5. Here, BMi,j shows the benchmark j of workload i; for instance,

BM1,1 is a benchmark including I/O-Intensive jobs, where the arrival rate of smaller jobs is higher

than the arrival rate of larger jobs. In total, nine benchmarks are defined to run in the simulated

Hadoop environment.

80

Workloads Workload Type Jobs Included

W1 I/O-Intensivei small, I/O-heavy
W2 CPU -Intensivei small, CPU -heavy
W3 Mixedi All jobs

Table 6.4. Experimental workloads

Benchmarks Arrival rate Ordering

BMi,1 Smaller jobs have higher arrival rates
BMi,2 Arrival rates are equal for all jobs
BMi,3 Larger jobs have higher arrival rates

Table 6.5. Experiment benchmarks

Each experiment submits 100 jobs to the system, which is sufficient to contain a variety of the

behaviours in a Hadoop system, and is the same number of jobs used in evaluating most Hadoop

scheduling systems (Zaharia et al. [2009]). The Hadoop block size is set to 64MB, which is the

default size in Hadoop 0.20. In these experiments, job input data sizes are generated similar to

the workload used in (Zaharia et al. [2009], Zaharia et al. [2010]), which is driven from a real

Hadoop workload. The input data of a job is defined based on the number of map tasks and

considering the corresponding data set size (there is one map task per 64MB input block). There

are four users, where each user submits a mixture of different job types. The user properties are

presented in Table 6.6.

Users MinimumShare Priority

U1 10 1
U2 30 2
U3 10 2
U4 0 1

Table 6.6. User properties

6.6.2 Compared Schedulers

In this thesis, the COSHH scheduler is evaluated from different critical aspects such as hetero-

geneity, scalability, and the main Hadoop performance metrics. Therefore, the compared sched-

ulers in the evaluations are selected by considering these issues: (1) simplicity, (2) required state

information, (3) consideration of the main Hadoop performance metrics, (4) heterogeneity, (5)

scalability, and (6) approach with respect to the minimum shares.

There are three schedulers compared in the evaluations: FIFO, Fair Sharing, and COSHH. As

these schedulers have completely different approaches in terms of the above six issues, they can

81

provide an overall picture of the effectiveness of different approaches. The FIFO and the Fair

Sharing schedulers are used as the basis of a majority of Hadoop schedulers (Zaharia et al. [2010],

Sandholm and Lai [2010], Apache [2007], Ghodsi et al. [2011]). These two schedulers are the most

widely used Hadoop schedulers, and are implemented in the default Hadoop package (Apache

Hadoop Foundation [2010b]).

FIFO is a simple and fast algorithm provided as the default scheduler in the Hadoop package

(Apache Hadoop Foundation [2010b]). It only requires a small amount of state information (only

the arrival times of the jobs) to make scheduling decisions. In terms of the Hadoop performance

metrics, this scheduler does not take into account the main metrics such as fairness, minimum

share satisfaction, and average completion time. FIFO neglects heterogeneity at the user, job

and cluster levels. However, it does scale as the number of jobs and resources increases. Due to

the simple implementation of this scheduler, it is widely being used in various current Hadoop

clusters.

The Fair Sharing scheduler is more complex than the FIFO scheduler, but simpler than the

COSHH scheduler. It requires state information about job progress and user status; however,

it does not require any information about job execution times. This scheduler considers user

heterogeneity, but neglects resource and job heterogeneity. Therefore, it has partial heterogene-

ity consideration. Fair Sharing considers minimum share satisfaction as its main performance

goal. Therefore, it is sensitive to changes in the minimum share settings. This algorithm is the

backbone of various other Hadoop schedulers (Zaharia et al. [2010], Apache Hadoop Capacity

Scheduler [2010], Wolf et al. [2010], Isard et al. [2009]), and is used in various real Hadoop clusters

implemented at companies such as Facebook and Cloudera.

6.6.3 Results and Analysis

The experiments in this section compare the proposed scheduler with the FIFO scheduler and

an implemented version of the Fair Sharing scheduler presented in (Zaharia et al. [2009]). The

comparison is based on the dissatisfaction, fairness, locality, and average completion time perfor-

mance metrics. Each experiment was repeated 30 times to construct 95%-confidence intervals.

Figures 6.5, 6.6, and 6.7 present the dissatisfaction metric for the schedulers running the bench-

marks of the I/O-Intensive, CPU-Intensive, and Mixed workloads, respectively. The lower and

upper bounds of the confidence intervals are presented with lines on each bar.

Based on these results, the proposed scheduler can lead to considerable improvement in the

dissatisfaction performance metric. There are a couple of reasons for this improvement. First,

the COSHH scheduler considers the minimum share satisfactions of the users as its initial goal.

When receiving a heartbeat from a resource, the highest priority user who has not yet received

82

Figure 6.5. Dissatisfaction performance metric of the schedulers for I/O-Intensive workload

Figure 6.6. Dissatisfaction performance metric of the schedulers for CPU-Intensive workload

her minimum share will be considered first. However, as the scheduler considers the product of

the remaining minimum share and the priority of the user, it does not let a high priority user

with high minimum share starve lower priority users with smaller minimum shares. Similar to

COSHH, the Fair Sharing scheduler has the initial goal of satisfying the minimum shares.

Figures 6.8, 6.9, and 6.10 present the average completion time of the schedulers running the

benchmarks of the I/O-Intensive, CPU-Intensive, and Mixed workloads, respectively. The results

show the significant improvement in average completion time using the COSHH schedulers in

all of the benchmarks. This significant improvement can be explained by the COSHH scheduler

considering heterogeneity to make appropriate scheduling decisions.

Table 6.7 presents the fairness metric of the schedulers for the defined benchmarks. Comparing

the schedulers, the Fair Sharing algorithm has the best fairness. This is as expected, because the

main goal of this algorithm is minimizing the fairness metric. In some benchmarks, the COSHH

83

Figure 6.7. Dissatisfaction performance metric of the schedulers for Mixed workload

Benchmarks FIFO FAIR COSHH

BM1,1 (14.88, 15.05) (11.59, 11.65) (14.68, 16.08)
BM1,2 (14.93, 15.00) (11.57, 11.72) (12.68, 14.60)
BM1,3 (14.63, 15.26) (11.59, 11.76) (17.23, 17.65)

BM2,1 (14.77, 15.22) (11.63, 11.98) (11.99, 12.34)
BM2,2 (14.83, 15.09) (11.81, 12.12) (13.99, 14.36)
BM2,3 (14.42, 15.73) (11.81, 11.94) (17.37, 17.72)

BM3,1 (14.94, 15.37) (11.47, 12.71) (14.11, 15.05)
BM3,2 (14.73, 15.62) (11.72, 12.46) (14.41, 14.98)
BM3,3 (15.00, 15.44) (11.89, 12.07) (12.11, 13.31)

Table 6.7. Fairness performance metric of the schedulers for all workloads

scheduler leads to an increase in the fairness metric. However, a small increase in fairness may be

considered acceptable for most Hadoop systems, if it results in better satisfaction of the minimum

shares, and significant reduction in average completion time.

Table 6.8 presents the locality metric for the defined benchmarks. For each benchmark, the

table shows the 95%-confidence interval for locality when the corresponding scheduling algorithm

is used. The locality of the proposed scheduler is very competitive with the Fair Sharing scheduler.

This can be explained by the fact that the COSHH scheduler chooses the replication locations

based on the suggested classes for each resource. Therefore, it tends to assign the job to the same

resource, as where its required data is stored.

It should be noted here that although COSHH uses sophisticated approaches, it does not add

considerable overhead to the system. This is due to the limited number of times required to

perform classification. Moreover, as in a typical Hadoop system, there are several jobs submitted

multiple times, the scheduler’s classification does not need to change each time that these jobs

84

Figure 6.8. Average completion time performance metric of the schedulers for I/O-Intensive workload

Benchmarks FIFO FAIR COSHH

BM1,1 (96.60, 98.03) (98.12, 99.08) (98.62, 99.98)
BM1,2 (47.39, 57.81) (89.84, 91.76) (93.82, 95.38)
BM1,3 (62.93, 65.07) (71.43, 74.57) (66.44, 71.55)

BM2,1 (90.38, 94.42) (97.12, 98.08) (98.56, 99.87)
BM2,2 (68.65, 82.15) (93.93, 96.87) (91.78, 95.42)
BM2,3 (78.73, 84.07) (94.14, 97.86) (93.78, 97.42)

BM3,1 (73.48, 86.92) (78.77, 83.63) (99.12, 100.00)
BM3,2 (92.36, 95.24) (81.27, 87.13) (95.11, 99.69)
BM3,3 (79.23, 88.37) (78.02, 86.37) (66.86, 76.73)

Table 6.8. Locality performance metric of the schedulers for all workloads

are submitted.

6.7 Experimental Results - Real Hadoop Workload

The previous section evaluated the COSHH scheduler under various synthetic computation and

I/O intensive workloads. To complete the analysis and confirm the obtained results in the previous

section for real Hadoop workloads, this section extends the evaluations using traces of workloads

from real Hadoop systems. Various challenges and features of real workloads (such as large sized

jobs with high arrival rates) can further evaluate the applicability of the COSHH scheduler for

current Hadoop systems.

85

Figure 6.9. Average completion time metric of the schedulers for CPU-Intensive workload

Figure 6.10. Average completion time metric of the schedulers for Mixed workload

6.7.1 Experimental Environment

This section performs experiments on a cluster of six heterogeneous resources. The resource

features are presented in Table 6.9. The bandwidth between the resources is 100Mbps. It should

be noted that these experiments use rather extreme settings in terms of heterogeneity to clearly

expose the differences among schedulers.

Two production Hadoop MapReduce traces, presented in (Chen et al. [2011]), are used in the

experiments. One trace is from a cluster at Facebook, spanning six months from May to October

2009. The other trace is from a cluster at Yahoo!, covering three weeks in late February/early

March 2009. Both traces contain a list of job submission and completion times, data sizes of the

input, shuffle and output stages, and the running times of map and reduce functions. The arrival

86

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4TB 9Gbps
R2 16 500MHz 400KB 40Kbps
R3 16 500MHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 16 500MHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 6.9. Experimental resources

time of the jobs in our experiments are defined by considering the number of jobs in each Facebook

and Yahoo! trace, and the total number of submitted jobs in each experiment. The proportion of

the number of each job class to whole number of jobs in our workload is the same as the actual

trace. However, the arrival time of the jobs in the traces are reduced with the same amount to

include all types of the jobs in our workload. The analysis in (Chen et al. [2011]) provides classes

of “common jobs” for each of the Facebook and Yahoo! traces using k-means clustering. The

details of the Facebook and Yahoo! workloads are provided in Table 6.10 (Chen et al. [2011]).

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Facebook trace
Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10KB 0 4.2GB 26321 0
Large data load 4200 10 405KB 0 447GB 66657 0
Huge data load 18300 3 446KB 0 1.1TB 125662 0
Fast aggregate 900 10 230GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418GB 2.5TB 45GB 1076089 974395
Data transform 2100 14 255GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6TB 51GB 104KB 4843452 853911
Yahoo! trace
Small jobs 60 114 174MB 73MB 6MB 412 740
Fast aggregate 2100 23 568GB 76GB 3.9GB 270376 589385
Expand and aggregate 2400 10 206GB 1.5TB 133MB 983998 1425941
Transform expand 9300 5 806GB 235GB 10TB 257567 979181
Data summary 13500 7 4.9TB 78GB 775MB 4481926 1663358
Large data summary 30900 4 31TB 937GB 475MB 33606055 31884004
Data transform 3600 36 36GB 15GB 4.0GB 15021 13614
Large data transform 16800 1 5.5TB 10TB 2.5TB 7729409 8305880

Table 6.10. Job categories in both traces. Map time and Reduce time are in Task-seconds, e.g., 2
tasks of 10 seconds each is 20 Task-seconds (Chen et al. [2011]).

It should be clarified that the job sizes are defined based on their mean execution times reported

in (Chen et al. [2011]). Heterogeneous users with different minimum shares and priorities are

defined. Table 6.11 defines the users in the Facebook and Yahoo! experiments. The minimum

share of each user is defined based on its submitted job size, where each user submits jobs from

one of the job classes in Table 6.10.

87

Users MinimumShare Priority
Facebook experiments
U1 5 1
U2 0 2
U3 0 2
U4 5 1
U5 10 2
U6 15 1
U7 4 2
U8 10 1
U9 10 1
U10 15 1

Yahoo! experiments
U1 5 1
U2 0 2
U3 10 2
U4 15 1
U5 10 1
U6 15 2
U7 10 1
U8 15 1

Table 6.11. User properties in experiments for both workloads

In each experiment 100 jobs are submitted to the system. The Hadoop block size is set to

128MB, which is the default size in Hadoop 0.21. The data replication number is set to three for

all schedulers.

6.7.2 Results and Analysis

In each experiment the COSHH scheduler, the FIFO scheduler, and the version of the Fair

Sharing scheduler presented in (Zaharia et al. [2009]) are compared. The comparison is based on

the performance metrics introduced in Section 6.5.

Figure 6.11. Average completion time for Facebook workload

88

Figures 6.11 and 6.12 present the average completion times of the schedulers running the Face-

book and Yahoo! workloads, respectively. The results confirm that compared to the other sched-

ulers, COSHH achieves the best average completion time in both workloads, which is caused

by considering heterogeneity in its scheduling decisions. On the other hand, the Fair Sharing

scheduler has the highest average completion time compared to the other two schedulers. Both

the Facebook and Yahoo! workloads are heterogeneous, in which the arrival rates of small jobs

are higher. In a heterogeneous Hadoop workload, jobs have different mean execution times (job

sizes). For such workloads, as the FIFO algorithm does not take into account job sizes, it causes

the problem that small jobs potentially get stuck behind large ones. Therefore, when the Hadoop

workload is heterogeneous, the FIFO algorithm can significantly increase the completion time of

small jobs. The Fair Sharing and the COSHH algorithms do not have this problem. Fair Sharing

puts the jobs in different pools based on their sizes, and assigns a fair share to each pool. As a

result, the Fair Sharing algorithm executes different size jobs in parallel. The COSHH algorithm

assigns the jobs to the resources based on the size of the jobs and the execution rates of the

resources. As the Fair Sharing scheduler first satisfies the minimum shares, it executes most of

the small jobs after satisfying the minimum shares of the larger jobs. Therefore, the completion

times of the small jobs (the majority of the jobs in this workload) are increased.

In the Yahoo! workload, the COSHH scheduler leads to 74.49% and 79.73% improvement in

average completion time over the FIFO scheduler, and the Fair Sharing scheduler, respectively.

Moreover, for the Facebook workload, the COSHH scheduler results in 31.27% and 42.41% im-

provement in the average completion time over the FIFO scheduler, and the Fair Sharing scheduler,

respectively. It should be noted that the COSHH scheduler leads to a more substantial improve-

ment for average completion time in the Yahoo! workload than in the Facebook workload. The

reason is that the jobs in the Facebook workload are smaller and less heterogeneous than the

Figure 6.12. Average completion time for Yahoo! workload

89

jobs in the Yahoo! workload. As a result, taking the heterogeneity into account in the Yahoo!

workload leads to more improvement. Moreover, as the experimental environment here is set to be

extremely heterogeneous, it leads to a considerable level of improvement in the COSHH scheduler

over the other two schedulers. This chapter defines the experimental environment such that the

differences between the schedulers are emphasized. In the following chapters, the schedulers are

further compared in other experimental environments.

The overheads of the scheduling algorithms are presented in Figures 6.13 and 6.14 for the Yahoo!

and the Facebook workloads, respectively. The overheads show that the improvement for average

completion time in the COSHH scheduler is achieved at the cost of increasing the overhead of

scheduling. However, the additional 5 second overhead for the COSHH algorithm, compared to its

improvement for average completion time (which is more than 10000 seconds) is negligible. The

time spent for classification and solving the LP at the beginning of the COSHH scheduler leads

to a higher scheduling time. The scheduling times for both the Fair Sharing and the COSHH

schedulers increase considerably at around the point of scheduling the 50th to 60th jobs. These

schedulers need to sort the users based on their shares to consider fairness and minimum share

satisfaction. In the first stage of satisfying the minimum shares, they need to sort a smaller

number of users. However, after satisfying the minimum shares, the number of users to be sorted

is increased. Also, the order of users is changed based on the fairness. As a result, the process

of sorting users takes longer, and causes an increase in the scheduling time for both algorithms.

The FIFO algorithm has the least overhead.

Fairness, dissatisfaction, and the locality of the algorithms are presented in Tables 6.12 and 6.13

for the Yahoo! and the Facebook workloads, respectively. The results for both workloads show

that COSHH has competitive dissatisfaction and fairness with the Fair Sharing algorithm. Because

the COSHH scheduler has two stages to consider minimum share satisfaction and fairness, it is

successful in reducing the dissatisfaction along with improving the fairness. First the scheduler

only satisfies the minimum shares based on the priority of the users, and then it focuses on

improving fairness. As COSHH considers the weights of the users, it does not allow starvation of

low priority users who have small minimum shares.

Metrics FIFO Fair COSHH

Dissatisfaction 8.618 7.16E − 04 1.209
Fairness 4.974 0.965 2.779
Locality(%) 95.6 97.4 96.5

Table 6.12. Dissatisfaction, fairness, and locality for Yahoo! workload

Based on the results, the locality of COSHH is competitive with the Fair Sharing scheduler. As

the experimental environment is a small Hadoop cluster, the scheduler’s replication method can

90

Metrics FIFO Fair COSHH

Dissatisfaction 10.782 8.31E − 02 0.294
Fairness 6.646 2.537 0.663
Locality(%) 97.7 95.7 95.0

Table 6.13. Dissatisfaction, fairness, and locality for Facebook workload

not lead to considerable improvement in the locality. However, the advantages of using COSHH’s

replication method could be significant on large Hadoop clusters. This is left for future research.

6.8 Discussion

The priorities and the minimum shares of users are usually defined by the Hadoop providers.

The minimum shares may be defined without taking the job sizes into account. The minimum

shares can help in improving average completion times, in particular when the minimum shares

are defined based on the job sizes. Therefore, to complete the COSHH analysis, the performance

of the schedulers is also studied with no minimum shares assigned to the users. The experimen-

tal environment in this section is the same as the previous section, except that the users are

homogeneous with zero minimum shares, and priorities equal to one.

Figures 6.15 and 6.16 present the average completion time metric for the schedulers running the

Facebook and Yahoo! workloads, respectively. The results show that when the users are homo-

geneous, and no minimum share is defined, the average completion time of the FIFO algorithm is

higher than the Fair Sharing algorithm. Unlike the FIFO algorithm, the Fair Sharing algorithm

does not have the problem of small jobs stuck behind large ones. In addition, the minimum share

satisfaction of large jobs will not defer the scheduling of smaller jobs. In the Yahoo! workload,

the Fair Sharing algorithm achieves a 37.72% smaller average completion time than the FIFO

Figure 6.13. Scheduling overheads in Yahoo! workload

91

Figure 6.14. Scheduling overheads in Facebook workload

Figure 6.15. Average completion time for Facebook workload

algorithm, and the COSHH algorithm reduces the average completion time of the Fair Sharing

algorithm by 75.92%. Moreover, in the Facebook workload, the Fair Sharing algorithm achieves

a 26.42% smaller average completion time than the FIFO algorithm, and the COSHH algorithm

reduces the average completion time of the Fair Sharing algorithm by 42.97%. Because of the

job sizes, and level of heterogeneity, the average completion time improvement of COSHH for the

Yahoo! workload is higher than for the Facebook workload.

The overheads of the scheduling algorithms are presented in Figures 6.17 and 6.18 for the Yahoo!

and the Facebook workloads, respectively. Because most of the jobs in this workload are small,

and have fewer tasks, the scheduling overheads are low. The classification and LP solution time

in the COSHH algorithm lead to a large initial scheduling time. The overheads of both the Fair

Sharing and the COSHH algorithms are lower when the users are homogeneous. In this case these

algorithms no longer have the minimum share satisfaction stages.

Fairness and locality of the algorithms are presented in Tables 6.14 and 6.15 for the Yahoo!

92

and the Facebook workloads, respectively. Because there is no minimum share defined in these

experiments, the amount of dissatisfaction for all schedulers is zero. The results show that the

Fair Sharing algorithm has the best fairness.

Metrics FIFO Fair COSHH

Fairness 1.032 0.504 0.856
Locality(%) 94.9 97.9 98.1

Table 6.14. Fairness and locality for Yahoo! workload

Metrics FIFO Fair COSHH

Fairness 1.188 0.429 0.926
Locality(%) 93.4 95.2 98.3

Table 6.15. Fairness and locality for Facebook workload

The locality of COSHH is close to, and in most cases is better than the Fair Sharing algorithm.

This can be explained by the fact that COSHH chooses the replication places based on the

suggested classes for each resource.

6.9 Sensitivity Analysis

The COSHH scheduler uses the estimated job mean execution times, which makes it dependent

on the accuracy of the estimation method. It is important for the COSHH scheduler to tolerate

some level of inaccuracy in the estimated mean execution times. This section evaluates the

COSHH scheduler from the sensitivity point of view.

The task scheduling process component in the COSHH scheduler provides an estimate of the

mean execution time of an incoming job. To measure how much the performance of the proposed

Figure 6.16. Average completion time for Yahoo! workload

93

scheduler is dependent on the estimation error, the scheduler is evaluated with various workloads

under different levels of error. In order to completely study the robustness of the proposed

scheduler, we examine cases that have 0% to 40% error in the estimates; however, typically these

errors are on the order of 10% (Akioka and Muraoka [2004]). The error models discussed in (Iosup

et al. [2008]) are used for estimating the mean execution times, which are the same error models

used in Section 3.6 for estimation errors in Computational Grid systems. Generally the error

model for these estimates in Hadoop is an Over and Under Estimation Error model, which is as

follows. Define the actual execution time of job i on Resource j to be L(i, j). Let L̂(i, j) denote

the (corresponding) estimated mean execution time. In the simulations, L̂(i, j) is obtained from

L̂(i, j) = L(i, j) × (1 + Er). Here, Er is the error for estimating the job mean execution time,

which is sampled from the uniform distribution [−I,+I], where I is the maximum error.

First, the proposed scheduler is evaluated in an environment with accurate estimated mean

execution times, and then the amount of error in estimating the mean execution times is increased.

Figures 6.19 and 6.20 present the average completion times for the Yahoo! and the Facebook

workloads, respectively. Different error levels are considered in these Figures, where COSHH-n

denotes the COSHH scheduler with n% error in estimating the mean execution times. For each

experiment, 30 replications are run to construct 95%-confidence intervals. The lower and upper

bounds of the confidence intervals are represented with lines on each bar.

Based on the results, up to 40 percent error in estimation does not significantly affect the

average completion time of the proposed scheduler. The reason is that the COSHH scheduler

uses the estimated mean execution times to provide suggestions for each resource; the estimates

themselves are not directly used in the final scheduling decisions. Small amounts of error lead to

only a slight change in job classes. As a result, the average completion time is not increased for

10% error levels. When the error level is higher, it leads to more changes in the job classes, which

Figure 6.17. Scheduling overheads in Yahoo! workload

94

Figure 6.18. Scheduling overheads in Facebook workload

Figure 6.19. Average completion time for Yahoo! workload - Sensitivity to error in estimation

modifies the suggested set of classes considerably, and affects the average completion time. The

results show that the COSHH algorithm is not very sensitive to the estimated mean execution

times, and it maintains better average completion time than the other algorithms in up to 40%

error in estimating the mean execution times.

Figures 6.21 and 6.22 present the scheduling times for the Yahoo! and the Facebook workloads,

respectively. The error level causes a slight increase in scheduling time, due to longer classification

processes. When there are estimation errors, the k-means clustering method may need to run more

steps to reach the appropriate classification.

6.10 Related Work

The scheduler is the centrepiece of MapReduce and Hadoop systems. Desired performance levels

can be achieved by an appropriate submission of jobs to resources based on the system parameters

and the performance metrics. The following presents current Hadoop schedulers categorized based

95

Figure 6.20. Average completion time for Facebook workload - Sensitivity to error in estimation

Figure 6.21. Scheduling time for Yahoo! workload - Sensitivity to estimation error

on their main features.

6.10.1 Simple schedulers

MapReduce was initially designed in (Dean and Ghemawat [2008]) for performing large batch

jobs in small teams. A simple scheduling algorithm like FIFO, which makes fast scheduling

decisions with low overhead could achieve an acceptable performance level in initial Hadoop

systems. However, experience from deploying Hadoop in large systems shows that basic scheduling

algorithms such as FIFO can cause severe performance degradation; particularly in systems that

share data among multiple users (Zaharia et al. [2009]).

The next generation of Hadoop schedulers, called Hadoop on Demand (HOD) (Apache [2007]),

addresses cluster sharing issues by setting up private Hadoop clusters based on user demands.

HOD allows users to share a common file system while owning private Hadoop clusters on their

allocated nodes. The FIFO scheduler is used for allocating the jobs in each of these private Hadoop

clusters. This approach failed in practice because it violates the data locality design of the original

96

Figure 6.22. Scheduling time for Facebook workload - Sensitivity to estimation error

MapReduce schedulers. As the processing nodes only cover a subset of the data nodes, more data

transfers were required between data nodes and the compute nodes. Creating small sub-clusters

for processing individual user jobs in HOD leads to high maintenance costs, poor scalability, and

degraded performance. The poor performance of simple Hadoop schedulers led to the design of

more complicated schedulers as a practical solution for Hadoop systems with multiple users.

6.10.2 User Fairness based Schedulers

To address some of the shortcomings of the FIFO algorithm, the Fair Sharing scheduling system

is introduced in (Zaharia et al. [2009]). The Fair Sharing scheduler uses system parameters such as

user priorities and minimum shares to make scheduling decisions. The Delay scheduler (Zaharia

et al. [2010]) is a complementary algorithm for Fair Sharing to improve data locality. To achieve

this goal the Delay scheduler uses additional state information such as the input data locations

for each job. However, both the Fair Sharing and Delay schedulers neglect system heterogeneity

in their scheduling decisions.

The Capacity scheduler proposed in (Apache Hadoop Capacity Scheduler [2010]) was originally

developed at Yahoo! to address the case where the number of users is large, and the users should

receive fair allocations of resources. The scheduler defines multiple queues with configurable

numbers of map and reduce slots. The jobs in a queue are given the configured capacity of the

queue, and the extra capacity is divided among the jobs in other queues. Each queue uses the

FIFO algorithm with priorities. The percentage of running tasks per user can be limited to share

a cluster equally among the users. Upon receiving a heartbeat message from a resource, the least

loaded queue is chosen, from which the oldest remaining job is selected. This scheduler enforces

sharing of cluster capacity among users, rather than among jobs. The Capacity scheduler cannot

always match the resource allocations with the task demands, especially when these demands

97

are widely heterogeneous. This mismatch may lead to either low cluster utilization or poor

performance due to resource oversubscription.

A flexible scheduling allocation scheme (Wolf et al. [2010]), known as Flex, extends the Fair

Sharing scheduler, while avoiding its job starvation problems. The goal of the Flex algorithm is

to optimize any variety of specified metrics while ensuring the same minimum and maximum slot

guarantees as in the Fair Sharing algorithm. The metrics in Flex can be chosen by the system

administrator on a cluster-wide basis, or by individual users on a job-by-job basis. These metrics

can be selected from a menu that includes response time, makespan (dual to throughput), and

any of several metrics which (reward or) penalize job completion times compared to possible

deadlines. Generally, this approach could be considered as negotiating Service Level Agreements

(SLAs) with MapReduce users, where the penalty of missing an SLA depends on the achieved

service level. Flex defines a speedup function for each job based on its allocated slots. While

the speedup function is used to model each job, it is not clear how to derive this function for

different jobs and different sizes of input datasets. Flex does not provide a detailed MapReduce

performance model, but instead it uses a set of simplifying assumptions about job execution and

progress over time. Moreover, no case study is provided to evaluate the proposed job model and

the approach in achieving the targeted job deadlines.

The Quincy scheduler (Isard et al. [2009]) is proposed for the Dryad environment (Isard et al.

[2007]). The Dryad distributed execution engine (Isard et al. [2007]) has a similar low level com-

putational model as the MapReduce and Hadoop systems. The challenge of scheduling introduced

in (Isard et al. [2009]) shows that there is a conflict between satisfying the fairness and locality

metrics. Intuitively this is because a strategy that achieves optimal data locality will typically

delay a job until its ideal resources are available. On the other hand, for improving fairness, the

best available resources should be allocated to a job as soon as possible, even if the communica-

tion cost between the computation and data resources is not minimized. This scheduler achieves

fairness by modelling the fair scheduling problem as a min-cost flow problem. It maps the schedul-

ing problem to a graph data structure, where edge weights and capacities encode the competing

demands of data locality, fairness, and starvation avoidance. Then, a standard solver is used to

compute the online schedule according to a global cost model. Quincy does not currently support

multi-resource fairness, and it has problems in incorporating multi-resource requirements into the

min-cost flow formulation. Similar to the Fair Sharing scheduler, Quincy does not provide any

special support for improving job completion times.

98

6.10.3 Formal Model based Schedulers

The MapReduce scheduling problem is formalized in (Moseley et al. [2011]) as a generalized

version of the classical two-stage flexible flow-shop problem with identical machines. It defines

a two stage scheduling problem, where there are constraints defined between each map task

and reduce task of a job. This scheduling method considers two scenarios: offline and online

job arrivals. In the offline scenario, jobs arrive together, and the focus is on optimizing the

approximation ratio. In the online scenario, jobs arrive over time, where the scheduler makes

decisions without knowing the jobs that are yet to arrive; the focus is on optimizing the competitive

ratio. The theoretical study is done in two processing time configurations. First, in the identical

machines setting, where all map machines have the same speed, and similarly, all the reduce

machines have the same speed. Second, in the unrelated machines setting, in which the processing

time for each task is a vector, specifying the task running times on each of the machines. The

paper generalizes the flexible flow-shop problem by having a set of map tasks per job that need

to be scheduled on the map machines and a set of reduce tasks that are to be scheduled on the

reduce machines. However, it does not take into account other common Hadoop performance

metrics such as fairness or average completion time. Moreover, as it aims to provide a simple

formalization of the MapReduce scheduling problem, it abstracts some of the main requirements

in the system such as the relations between reduce and map tasks within a job. The abstractions

lead to elimination of the parameters in real MapReduce systems, which often have a significant

affect on the performance.

In (Aboulnaga et al. [2009]), the authors introduce a scheduling algorithm for MapReduce sys-

tems to minimize the total completion time, while improving the CPU and I/O utilizations of the

cluster. The algorithm defines Virtual Machines (VM), and decides how to allocate the VMs to

each Hadoop job, and to the physical Hadoop resources. For this purpose, a constrained opti-

mization problem is formulated and solved. To define the optimization problem, a mathematical

performance model is required for different jobs in the system. The algorithm first runs all job

types in the Hadoop system to build corresponding performance models. Then, assuming these

jobs will be submitted repeatedly, scheduling decisions for each job are made based on the defined

optimization problem’s solution. The algorithm assumes that job characteristics will not vary

between runs, and also that when a job will be executed on a resource, all its required data is

located on that resource. The problem with this algorithm is that it can not make any decisions

when a new job is submitted. Moreover, the assumption that all of the job’s required data is

available on the running resource, without considering the overhead of transmitting the data is

not realistic. Furthermore, virtualization can add significant overhead to the scheduling system.

The work of (Phan et al. [2010]) explores the feasibility of enabling real-time scheduling of

99

MapReduce jobs. They present a formal model for capturing real-time MapReduce applications

and the Hadoop system. Using this model, they formulate the offline scheduling of real-time

MapReduce jobs on a heterogeneous distributed Hadoop architecture as a constraint satisfaction

problem, and introduce search strategies for the formulation. Finally, they propose an enhance-

ment of the MapReduce execution model and a range of heuristic techniques for online scheduling.

However, all the proposed heuristics can only perform in homogeneous systems. Tian et al. [2009]

suggest the TripleQueue scheduler that seeks better system utilization via scheduling jobs based

on (predicted) resource usage. Ganapathi et al. [2010] use Kernel Canonical Correlation Analysis

to predict the performance of MapReduce workloads. However, they concentrate on Hive queries

and do not attempt to model the actual execution of the MapReduce job.

6.10.4 Job Deadline based Schedulers

The ARIA framework, proposed in (Verma et al. [2011]), aims to allocate the appropriate

amount of resources to each job to meet a required Service Level Objective (SLO). First, for a

production job that is routinely executed on a new dataset, it builds a job profile that compactly

summarizes critical performance characteristics of the underlying application during the map and

reduce stages. Second, a MapReduce performance model is constructed for a given job (with a

known profile) and its SLO (soft deadline), which estimates the amount of resources required for

job completion within the deadline. Finally, a deadline-based scheduler for Hadoop is introduced

that determines job ordering and the amount of resources to allocate to each job. This scheduler

extracts job profiles from past executions, and provides a variety of bounds-based models for

predicting a job’s completion time as a function of allocated resources. However, these models

apply only to a single MapReduce job.

A deadline constraint scheduler (Kc and Anyanwu [2010]) is defined for jobs with deadlines,

and focuses on increasing system utilization. To address the deadlines, a job execution cost

model is introduced based on parameters such as map and reduce runtimes, input data sizes, and

data distribution. The scheduling algorithm receives user deadlines as its input, and determines

whether the incoming job can be finished within the specified deadline or not. Jobs are only

scheduled if specified deadlines can be satisfied. If a job can not be finished before its assigned

deadline, the scheduler will inform the user to adjust the job deadline. There are some strict

assumptions in this scheduler such as all nodes are homogeneous, unit cost of processing for each

map or reduce node is equal, and input data is distributed uniformly. The assumptions and

requirement of defining deadlines by users makes this scheduling algorithm impractical for most

Hadoop systems. Moreover, the assigned deadlines may lead to increasing the average completion

time of the jobs.

100

An online job completion time estimator is introduced by Polo et al. [2010], and is used for

adjusting resource allocations for different jobs. The Adaptive MapReduce Scheduler is then

introduced to meet user defined performance goals such as deadlines. The provided results show

that the adaptive scheduler provides dynamic resource allocation across jobs. However, their

estimator tracks the progress of the map tasks alone and has no information or control over the

reduce tasks. This thesis does not consider Hadoop systems with specified deadlines for individual

jobs. It rather concentrates on overall improvement of job completion times.

6.11 Conclusion

In order to keep Hadoop schedulers simple, minimal system information is typically used in

making scheduling decisions, which in some cases results in poor performance. Growing interest

in applying the MapReduce programming model in various applications gives rise to greater

heterogeneity, and thus must be considered in its impact on performance. However, heterogeneity

is for the most part neglected in designing Hadoop scheduling systems. It has been shown that

it is possible to estimate Hadoop system parameters. Using the system information, this thesis

designed a Hadoop scheduling system which classifies the jobs based on their requirements and

finds an appropriate matching of resources and jobs.

The results show that even with around 40% error in estimating job mean execution times, the

COSHH scheduler provides a significant improvement in the average completion times. The pro-

posed scheduler (COSHH) is adaptable to variations in the system parameters. The classification

part detects changes and modifies the classes based on the new system parameters. Also, the job

mean execution times are estimated when a new job is submitted to the system, which makes the

scheduler adaptable to changes in job mean execution times. The scheduling times of different

schedulers are provided to evaluate their overheads. Based on the results, the COSHH scheduler

improves the average completion time at the cost of increasing scheduling overhead. However,

compared to the improvement in average completion time, the additional overhead of the COSHH

scheduler is in most cases negligible.

This chapter evaluated the COSHH scheduler in a heterogeneous Hadoop system with different

synthetic and real Hadoop workloads. However, the considered heterogeneous Hadoop systems

were only one possible case of heterogeneity in Hadoop. In the next chapter various possible cases

of Hadoop heterogeneity are considered, and performance of different schedulers are evaluated in

these cases. The goal is to provide a more detailed analysis of the root causes of performance

degradation that may occur due to heterogeneity and a more thorough study of how different

schedulers perform in the face of heterogeneity in different aspects of a Hadoop system. As such,

this chapter can be seen as a “proof of concept” of the COSSH scheduler.

101

Chapter 7

Guidelines for Selecting Hadoop

Schedulers based on System

Heterogeneity 1

A Hadoop system can be specified using three main factors: cluster, workload, and user, where

each can be either heterogeneous or homogeneous. A Hadoop cluster is a group of linked resources.

Organizations could use existing resources to build Hadoop clusters - small companies may use

their available (heterogeneous) resources to build a Hadoop cluster, or a large company may specify

a number of (homogeneous) resources for setting up its Hadoop cluster. There can be a variety

of users in a Hadoop system who are differentiated based on features such as priority, usage, and

guaranteed shares. Similarly, workload in the Hadoop system may have differing numbers of user

jobs and corresponding requirements. Heterogeneity in Hadoop is defined based on the level of

heterogeneity in the Hadoop factors.

To increase the utilization of a Hadoop cluster, different types of applications may be assigned

to one cluster, which leads to increasing the level of heterogeneity in the workload. However,

there are situations where a company assigns a Hadoop cluster to specific jobs as the jobs are

critical, confidential, or highly data or computation intensive. Accordingly, the types of appli-

cations assigned by different users to a Hadoop cluster define the heterogeneity levels of the

workload and users in the corresponding Hadoop system. Similarly, the types of resources define

the heterogeneity of Hadoop clusters.

The heterogeneity level of each Hadoop factor potentially has a significant effect on performance.

It is critical to select a scheduling algorithm by considering the Hadoop factors, and the desired

1This chapter is mostly based on the following paper: A. Rasooli and D. G. Down, Guidelines for Selecting
Hadoop Schedulers based on System Heterogeneity. Journal of Grid Computing, 2012, (Submitted).

102

performance level. This chapter provides guidelines for selecting scheduling algorithms based on

Hadoop factors, and their heterogeneity levels. The performed analysis and proposed guidelines

are based on three Hadoop schedulers: FIFO, Fair Sharing, and COSHH. These algorithms are

selected as representatives of schedulers which consider heterogeneity at different levels. The FIFO

scheduler does not consider heterogeneity in its scheduling decisions. However, the Fair Sharing

and COSHH algorithms consider partial and complete heterogeneity, respectively.

In this chapter, performance issues for Hadoop schedulers are introduced (Section 7.1). To

reduce the dimensionality of the space of heterogeneity factors, this research performs a catego-

rization of Hadoop systems (Section 7.2). The scheduler performance in each category is also

experimentally analyzed and discussed. Section 7.3 presents the experimental framework. Sec-

tions 7.4 and 7.5 provide the experimental results and analysis for homogeneous and heterogeneous

Hadoop environments, respectively. Finally, using the experiments and discussions, Hadoop sched-

uler selection guidelines are proposed in Section 7.6. The guidelines are evaluated using different

Hadoop systems. Related work is discussed in Section 7.7, and Section 7.8 provides a conclusion.

7.1 Performance Issues

This section analyzes the main drawbacks of each scheduler for various heterogeneity levels in

the Hadoop factors. For this purpose, two example systems are defined, one heterogeneous and

one homogeneous. Example A is used to define problems I, II, and III, and Example B illustrates

problem IV. The choice of system sizes in these examples are only for ease of presentation, the

same issues arise in larger systems.

7.1.1 Problem I: Small Jobs Starvation

Example A- Heterogeneous Hadoop System: includes four heterogeneous resources and three

users with the following characteristics:

• Task1, Task2, and Task3 represent three heterogeneous task types with the following mean

execution times. Here, mt(Ti, Rj) is the mean execution time of task Ti on resource Rj.

mt =

 2.5 2.5 10 10

2.5 2.5 5 5

10 10 2.5 2.5

• Three users submit three jobs to the system, where each job consists of a number of similar

tasks. Jobs arrive to the system in the following order: Job1, Job2, and Job3.

103

• Users are homogeneous with zero minimum share and priority equal to one. Each user

submits one job to the system as follows:

User1: Job1 (consists of 10 Task1)
User2: Job3 (consists of 10 Task3)
User3: Job2 (consists of 5 Task2)

Figure 7.1 shows the job assignments for the FIFO, Fair Sharing, and COSHH schedulers. The

completion time of the last task in each job is highlighted to show the overall job completion times.

The FIFO algorithm assigns incoming jobs to the resources based on their arrival times (Figure

7.1a). Consequently in the FIFO scheduler, execution of the smaller job (Job2) will be delayed

significantly. In a heterogeneous Hadoop workload, jobs have different execution times. For such

workloads, as the FIFO algorithm does not take into account job sizes, it has the problem that

small jobs potentially get stuck behind large ones.

The Fair Sharing and the COSHH algorithms do not have this problem. Fair Sharing puts the

jobs in different pools based on their sizes, and assigns a fair share to each pool. As a result, the

Fair Sharing algorithm executes different size jobs in parallel. The COSHH algorithm assigns jobs

to resources based on the job sizes and the execution rates of resources. As a result, it can avoid

this problem.

7.1.2 Problem II: Sticky Slots

Figure 7.1b shows the job-resource assignment for the Fair Sharing algorithm in Example A. As

the users are homogeneous, the Fair Sharing scheduler searches through all of the users’ pools, and

assigns a slot to one user at each heartbeat. Upon completion of a task, the free slot is assigned

to a new task of the same user to preserve fairness among users.

Resource2 is an inefficient choice for Job3 with respect to completion time, but the Fair Shar-

ing scheduler assigns this job to this resource multiple times. There is a similar problem for

Job1 assigned to Resource3 and Resource4. Consequently, the average completion time will be

increased.

This problem arises when the scheduler assigns a job to the same resource at each heartbeat.

This issue is first mentioned in (Zaharia et al. [2010]) for the Fair Sharing algorithm, where the

authors considered the effect of this problem on locality. However, our example shows Sticky Slots

can also significantly increase average completion times, when an inefficient resource is selected

for a job.

The FIFO algorithm does not have this problem because it only considers arrival times in making

scheduling decisions. The COSHH algorithm has two levels of classification, which helps avoid

104

(a) FIFO Scheduler

(b) Fair Sharing Scheduler

(c) COSHH Scheduler

(d) Average Completion Time of Schedulers

Figure 7.1. Job assignment by a) FIFO, b) Fair Sharing, and c) COSHH schedulers, and their average
completion times in Example A.

the Sticky Slot problem. Even when the same resource is assigned for a job in different rounds,

the optimizations in the COSHH algorithm guarantee an appropriate selection of resource for the

corresponding job.

105

7.1.3 Problem III: Resource and Job Mismatch

In a heterogeneous Hadoop system, resources can have different features with respect to their

computation or storage units. Moreover, jobs in a heterogeneous workload have different require-

ments. To reduce the average completion time, it is critical to assign the jobs to resources by

considering resource features and job requirements.

As the FIFO and the Fair Sharing algorithms do not consider heterogeneity when making

scheduling decisions, they both have the problem of Resource and Job Mismatch. On the other

hand, the COSHH algorithm has the advantage of appropriate matching of jobs and resources,

applying the following process (Figure 7.1c). The COSHH algorithm classifies the jobs into three

classes: Class1, Class2, and Class3, which contain Job1, Job2, and Job3, respectively. This

scheduler solves an LP to find the best set of suggested job classes for each resource, as follows:

Resource1: {Class1, Class2}
Resource2: {Class1, Class2}
Resource3: {Class2, Class3}
Resource4: {Class2, Class3}

After computing the suggested sets, the COSHH scheduler considers fairness and minimum

share satisfaction to assign a job to each resource. Although the COSHH algorithm assigns Job1

exclusively to Resource1 (Sticky Slot Problem), it does not increase the completion time of Job1.

This is one of the main advantages of the COSHH algorithm over FIFO and Fair Sharing in a

heterogeneous system.

7.1.4 Problem IV: Scheduling Complexity

Example B - Homogeneous Hadoop System: includes four homogeneous resources, and three

homogeneous users as follows:

• There is one task type, and one job class, where each job consists of 10 tasks. Tasks are

homogeneous, and they have execution time of 1 second on all resources.

• There are three homogeneous users similar to Example A.

• Users submit three jobs to the system, where each job consists of a number of similar tasks.

Jobs arrive to the system in this order: Job1, Job2, and Job3.

The scheduling and completion times for the schedulers are presented in Figure 7.2. Figures

7.2a, 7.2b, and 7.2c show the job assignments in the FIFO, Fair Sharing, and COSHH schedulers,

respectively.

106

(a) FIFO Scheduler

(b) Fair Sharing Scheduler

(c) COSHH Scheduler

(d) Average Completion Time of Schedulers

Figure 7.2. Job assignment by a) FIFO, b) Fair Sharing, and c) COSHH schedulers, and their average
completion times in Example B.

In a fully homogeneous Hadoop system, a simple algorithm like FIFO, which quickly multiplexes

jobs to resources, leads to the best average completion time compared to the other, more complex

algorithms (Figure 7.2a). As the users are homogeneous, at each heartbeat the Fair Sharing

algorithm assigns a task of a user to the current free resource (Figure 7.2b). In the case of the Fair

Sharing scheduler, at each heartbeat there is the overhead of comparing previous usage of resources

107

to make a fair assignment. Finally, for the COSHH scheduler, as the system is homogeneous, and

there is only one job class (i.e., jobs have similar features), solving the LP suggests all job classes

for all resources. In this system, the scheduling decisions of the COSHH algorithm are identical to

those of the Fair Sharing algorithm (Figure 7.2c). However, its scheduling complexity is greater

than the Fair Sharing algorithm. The complexity of scheduling algorithms can result from different

features, such as gathering more system parameters and state information, and considering various

factors in making scheduling decisions. In a homogeneous system such as Example B, collecting

system parameters and state information and a complex scheduling process add more complexity

to the system which can not be compensated for by the more precise job and resource assignment.

As a result, a simple and fast algorithm like FIFO can achieve better performance.

7.2 Heterogeneity in Hadoop

Reported analysis on several Hadoop systems found their workloads extremely heterogeneous

with very different execution times (Chen et al. [2012]). However, due to privacy issues, most

companies are unable or unwilling to release information about their Hadoop systems. Therefore,

reported information about heterogeneity in Hadoop may be only partial. This PhD research

considers various possible settings of heterogeneity for the Hadoop factors to provide a complete

performance analysis of Hadoop schedulers in terms of system heterogeneity.

In a Hadoop system, the incoming jobs can be heterogeneous with respect to various features

such as number of tasks, data and computation requirements, arrival rates, and execution times.

Also, Hadoop resources may differ in capabilities such as data storage and processing units. The

assigned priorities and minimum share requirements may differ between users. Moreover, the type

and number of jobs assigned by each user can be different. As the mean execution time for a job

on a resource, mean execT ime(Ji, Rj), reflects the heterogeneity of both workload and cluster

factors, this chapter considers four possible cases of heterogeneity of users and mean execution

times, as follows:

• Homogeneous System: both the workload and cluster are homogeneous, and the users can

be either homogeneous or heterogeneous. In these systems, the job sizes can significantly

affect the performance of the Hadoop schedulers. Therefore, two case studies are defined for

this category:

– Homogeneous-Small (all jobs are small).

– Homogeneous-Large (all jobs are large).

108

• Heterogeneous System: both the workload and cluster are heterogeneous, and users are

either homogeneous or heterogeneous. In this system, the challenging issue for the schedulers

is the arrival rates of different sized jobs. There are three case studies in this category:

– Heterogeneous-Small (higher arrival rate for small jobs).

– Heterogeneous-Equal (equal arrival rates for all job sizes).

– Heterogeneous-Large (higher arrival rate for large jobs).

Overall, five case studies are defined which are evaluated in Sections 7.4 and 7.5. The real

Hadoop workload experiments provided in Section 6.7 were samples of the Heterogeneous-Small

case study.

7.3 Evaluation: Settings

This section defines the experimental environment and performance metrics. As the previous

chapter performed evaluations that correspond to the Heterogeneous-Small case study, for ease of

comparison, the same experimental environment is used for Heterogeneous-Small evaluations in

this Chapter.

7.3.1 Experimental Environment

The general settings of the Hadoop factors in our experiments are defined as follows:

1. Workload: jobs are selected from Yahoo! production Hadoop MapReduce traces, presented

in Chapter 6. The details of the workloads used for evaluating the schedulers are provided in Table

7.1 (which is similar to the workload in Table 6.10).

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time

Small jobs 60 114 174MB 73MB 6MB 412 740
Fast aggregate 2100 23 568GB 76GB 3.9GB 270376 589385
Expand and aggregate 2400 10 206GB 1.5TB 133MB 983998 1425941
Transform expand 9300 5 806GB 235GB 10TB 257567 979181
Data summary 13500 7 4.9TB 78GB 775MB 4481926 1663358
Large data summary 30900 4 31TB 937GB 475MB 33606055 31884004
Data transform 3600 36 36GB 15GB 4.0GB 15021 13614
Large data transform 16800 1 5.5TB 10TB 2.5TB 7729409 8305880

Table 7.1. Job categories in the Yahoo! trace. Map time and Reduce time are in Task-seconds, e.g.,
2 tasks of 10 seconds each is 20 Task-seconds (Chen et al. [2011]).

The job sizes are defined based on the execution times reported in (Chen et al. [2011]). Wherever

it is not defined explicitly, “small jobs” and “large jobs” mean the Small jobs and Large data

109

summary classes in the Yahoo! workload, respectively. Similar to the experiments in the previous

chapter, the default number of jobs is 100, which contains a variety of the behaviours in our

Hadoop workload.

2. Clusters: have different configurations for the heterogeneous and homogeneous case studies.

Here, the heterogeneous cluster is defined the same as in Section 6.7, where for ease of presentation

the information is repeated in Table 7.2. The bandwidth between the resources is 100Mbps.

Experiments with a homogeneous cluster use a cluster consisting of six R3 resources.

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4TB 9Gbps
R2 16 500MHz 400KB 40Kbps
R3 16 500MHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 16 500MHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 7.2. Resources in the heterogeneous cluster

3. Users: have two different settings in these experiments. In both settings, each user submits

jobs from one of the job classes in Table 7.1. Heterogeneous users are defined with different

minimum shares and priorities (Table 7.3). The minimum share of each user is defined to be

proportional to its submitted job size. Therefore, the minimum share of U2 (who is submitting

the smallest jobs) is defined to be zero, and the minimum share of U8 (who is submitting the

largest jobs) is set to the maximum amount. In the case of homogeneous users, there are eight

users, each with zero minimum share, and priority equal to one.

User MinimumShare Priority

U1 5 1
U2 0 2
U3 10 2
U4 15 1
U5 10 1
U6 15 2
U7 10 1
U8 15 1

Table 7.3. Heterogeneous Users

MRSIM (Hammoud et al. [2010]) is again used to simulate the various systems. The Hadoop

block size is set to 128MB, and the data replication number is set to the default value of three in

all algorithms.

110

7.4 Evaluation: Homogeneous Hadoop System

This section includes the performance analysis of three schedulers on a homogeneous Hadoop

system. An example of these systems is the use of storage and computing power from Amazon

Web Services to convert 11 million public domain articles in the New York Times archives from

scanned images into PDF format (Gottfrid [2009]).

7.4.1 Case Study 1: Homogeneous-Small

This case study analyzes the performance of Hadoop schedulers for a homogeneous cluster and

workload, where all the jobs are of small size. The workload consists of 100 “Small jobs” as defined

in Table 7.1. Two experiments are performed. In the first experiment the users are heterogeneous,

while in the second they are homogeneous (as defined in Section 7.3.1).

Figure 7.3. Scheduling time - Homogeneous-Small

In this homogeneous environment, the average completion times of all schedulers are almost

equal. As the cluster and workload are homogeneous, the COSHH algorithm suggests all resources

as the best choices for all job classes. Therefore, its performance is similar to the Fair Sharing

algorithm. Moreover, due to the homogeneity in users, the Fair Sharing algorithm defines similar

job pools for all users, where each job pool uses the FIFO algorithm to select a job. Therefore,

despite the heterogeneity of users, the average completion time of all the algorithms are almost

the same (around 98.8 seconds).

The scheduling overheads in the homogeneous-small Hadoop system are presented in Figure

7.3. The Scheduling Complexity problem in the COSHH algorithm leads to higher scheduling

time and overhead. This is caused by the classification and LP solving processes. As the job sizes

are small, the scheduling overhead of the COSHH algorithm does not lead to a significant increase

in its average completion time. The total scheduling overhead here is less than a second, which is

negligible compared to the processing times.

111

Tables 7.4 and 7.5 present the fairness, dissatisfaction, and locality when the users are het-

erogeneous and homogeneous, respectively. As the main goal of the Fair Sharing algorithm is to

improve the fairness and minimum share satisfaction, it leads to better fairness and dissatisfaction.

Metrics FIFO Fair COSHH

Dissatisfaction 8.615 0.801 0.824
Fairness 4.004 2.043 2.198
Locality (%) 97 97 97

Table 7.4. Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH

Fairness 0.447 0.447 0.447
Locality (%) 97 97 97

Table 7.5. Fairness and locality - homogeneous users

7.4.2 Case Study 2: Homogeneous-Large

Here , an experiment is run in a homogenous cluster and workload in which all the jobs are of

large size. A workload consisting of 100 Large data summary jobs was used (Table 7.1) . The

evaluation was performed for both homogeneous and heterogeneous users.

Figure 7.4. Average completion time - Homogeneous-Large

Figure 7.4 presents the average completion times for this system. Because the jobs are large, the

scheduling complexity problem in the COSHH and the Fair Sharing algorithms leads to increases

in their average completion times. The scheduling overheads are presented in Figure 7.5. As the

COSHH algorithm suggests all job classes as the best choice for each resource, and all jobs are large

(with a large number of tasks), the sort and search spaces are large. Therefore, the scheduling time

112

Figure 7.5. Scheduling time - Homogeneous-Large

of the COSHH algorithm is higher compared to COSHH for the small homogeneous workload.

This leads to an increase in average completion time for the COSHH algorithm.

Tables 7.6 and 7.7 present the fairness, dissatisfaction, and locality of the large homogeneous

Hadoop cluster for heterogeneous and homogeneous users, respectively. The results show the

competitive performance of the Fair Sharing and the COSHH algorithms for these metrics.

Metrics FIFO Fair COSHH

Dissatisfaction 8.345 5.470 6.954
Fairness 4.183 1.753 1.870
Locality (%) 97 97 96

Table 7.6. Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH

Fairness 0.278 0.247 0.322
Locality (%) 97 97 97

Table 7.7. Fairness and locality - homogeneous users

7.5 Evaluation: Heterogeneous Hadoop System

In this section, experimental results are provided to analyze the performance of schedulers in

more heterogeneous environments. In these experiments, a cluster of six heterogeneous resources

is used as presented in Table 7.2. Each experiment is performed for both heterogeneous and

homogeneous users.

113

7.5.1 Case Study 3: Heterogeneous-Small

This case study evaluates the schedulers when the system is heterogeneous, and the proportion

of small jobs is high. This workload is similar to the Yahoo! workload, where the arrival rates

of small jobs are higher. This case study is considered for the evaluations in Section 6.7, and

here it is further analyzed in both heterogeneous and homogeneous users settings. Figure 7.6

presents the average completion times for this system when the users are either homogeneous or

heterogeneous.

Figure 7.6. Average completion time - Heterogeneous-Small

Figure 7.7. Scheduling time - Heterogeneous-Small

As the Fair Sharing algorithm does not have the problem of Small Jobs Starvation, it is expected

to have better average completion time for this scheduler than for the FIFO algorithm. However,

in the case of heterogeneous users, because the minimum shares are defined based on the job sizes,

and the Fair Sharing algorithm first satisfies the minimum shares, it causes Small Jobs Starvation

in this scheduler. As a result, most of the small jobs are executed after satisfying the minimum

shares of the larger jobs, and the completion times of the small jobs (the majority of the jobs in

114

this workload) are increased. As the COSHH algorithm solves the Resource and Job Mismatch

problem, it leads to 74.49% and 79.73% improvement in average completion time over the FIFO

algorithm, and the Fair Sharing algorithm, respectively.

In the case of homogeneous users, where there is no minimum share defined, the Fair Sharing

algorithm achieves better average completion time than the FIFO algorithm. The Fair Sharing

algorithm achieves a 37.72% smaller average completion time than the FIFO algorithm, and the

COSHH algorithm reduces the average completion time of the Fair Sharing algorithm by 75.92%.

The overhead of the scheduling algorithms is presented in Figure 7.7. Because most of the

jobs in this workload are small, and they have fewer tasks, the scheduling overheads are low.

Fairness, dissatisfaction, and the locality of the algorithms are presented in Tables 7.8 and 7.9

for heterogeneous and homogeneous users, respectively. The results show that the Fair Sharing

algorithm has the best performance in these metrics, followed by the COSHH algorithm.

Metrics FIFO Fair COSHH

Dissatisfaction 8.618 7.16E − 04 1.209
Fairness 4.974 0.965 2.779
Locality (%) 95.6 97.4 96.5

Table 7.8. Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH

Fairness 1.032 0.504 0.856
Locality (%) 94.9 97.9 98.1

Table 7.9. Fairness and locality - homogeneous users

7.5.2 Case Study 4: Heterogeneous-Large

In this case study, the schedulers are evaluated in a heterogeneous cluster with a greater pro-

portion of large jobs. In this workload, the number of jobs from larger size Yahoo! classes (classes

4 and higher in Table 7.1) is greater than the number from the smaller size job classes. Figure 7.8

presents the average completion times for heterogeneous and homogeneous users. When the users

are heterogeneous, the Fair Sharing algorithm achieves the best average completion time. The

reason is that this algorithm satisfies the minimum shares first, where the minimum shares are

defined based on the job sizes. As a result, minimum share satisfaction helps reduce the average

completion time. The COSHH algorithm has the second best average completion time as a result

of addressing the Resource and Job Mismatch problem. In this system, the Fair Sharing algorithm

reduces the average completion time of the FIFO and the COSHH algorithms by 47% and 22%,

respectively.

115

Figure 7.8. Average completion time - Heterogeneous-Large

However, when the users are homogeneous, and no minimum share is defined, the average

completion time of the Fair Sharing algorithm becomes higher than the COSHH algorithm. As

the Fair Sharing algorithm does not have the problem of Small Jobs Starvation, it achieves better

average completion time than the FIFO algorithm. Based on the simulation results, the COSHH

algorithm reduces the average completion time of the FIFO and Fair Sharing algorithms by 86.18%

and 85.17%, respectively.

Figure 7.9. Scheduling time - Heterogeneous-Large

As the job sizes of this workload are larger than for the workload in Section 7.5.1, the scheduling

times in Figure 7.9 are correspondingly higher. When the users are homogeneous the scheduling

overhead of the COSHH algorithm is lower, as the classification and LP solving processes are

shorter. When there are no minimum shares defined, the Fair Sharing algorithm has to spend

more time on computing the fair shares, and sorting the jobs accordingly. This leads to higher

scheduling times.

Tables 7.10 and 7.11 present the dissatisfaction, fairness, and locality when the users are het-

erogeneous and homogeneous, respectively. The COSHH algorithm has competitive performance

with the Fair Sharing algorithm with respect to all three metrics.

116

Metrics FIFO Fair COSHH

Dissatisfaction 8.223 3.12E − 04 0.141
Fairness 6.523 1.651 0.697
Locality (%) 93.5 97.4 97.6

Table 7.10. Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH

Fairness 2.152 1.264 0.605
Locality (%) 95.3 98.0 98.1

Table 7.11. Fairness and locality - homogeneous users

7.5.3 Case Study 5: Heterogeneous-Equal

In this case study, an equal number of jobs are submitted from each of the Yahoo! classes. Figure

7.10 shows the average completion times when the users are homogeneous and heterogeneous. As

the jobs and resources are all heterogeneous, it is important to consider the Resource and Job

Mismatch problem in making scheduling decisions.

Figure 7.10. Average completion time - Heterogeneous-Equal

The COSHH algorithm achieves the best average completion time compared to the other sched-

ulers. Because the arrival rates of all job classes are similar, the Sticky Slot problem in the Fair

Sharing algorithm happens with higher frequency. Therefore, the Fair Sharing algorithm has

larger average completion time than the FIFO algorithm. The COSHH algorithm reduces the

average completion time of the FIFO and Fair Sharing algorithms by 49.28% and 65.24%, respec-

tively. In the case of homogeneous users, where no minimum shares are assigned, the Fair Sharing

algorithm has the highest average completion time, which is caused by the Sticky Slot problem.

When the users are homogeneous, the COSHH algorithm reduces the average completion time of

the FIFO and Fair Sharing algorithms by 90.28% and 97.29%, respectively. When the users do

117

not have minimum shares, the COSHH algorithm has just one class. Therefore, its overhead is

reduced, which leads to a greater reduction in the average completion times.

The overheads in Figure 7.11 show that the improvement of average completion time in the

COSHH scheduler is achieved at the cost of increasing the overhead of scheduling. The additional

10 second overhead for the COSHH algorithm, compared to the improvement for average com-

pletion time (which is around 200K seconds) is negligible. Further studies in Chapter 8 will show

that even if the number of resources in the Hadoop cluster scales up, the COSHH algorithm can

still provide a similar level of improvement in the average completion time. Because both the Fair

Sharing and the COSHH algorithms search over the users and jobs to satisfy the minimum shares

and fairness, they both have higher scheduling times than the FIFO algorithm.

Figure 7.11. Scheduling time - Heterogeneous-Equal

Metrics FIFO Fair COSHH

Dissatisfaction 8.287 0.0158 0.0247
Fairness 5.961 2.939 2.309
Locality (%) 93.7 95.2 87.6

Table 7.12. Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH

Fairness 1.195 1.127 1.085
Locality (%) 92.5 97.7 98.6

Table 7.13. Fairness and locality - homogeneous users

Tables 7.12 and 7.13 present the dissatisfaction, fairness, and locality when the users are het-

erogeneous and homogeneous, respectively. The COSHH algorithm has competitive performance

with the Fair Sharing algorithm in improving the fairness and dissatisfaction.

118

7.6 Guidelines for Scheduler Selection

The provided experimental results and analysis show that a scheduler should be selected based

on the heterogeneity levels of the Hadoop factors. Figure 7.12 presents guidelines suggested by the

observations in this chapter. The main performance metric used for determining these guidelines

is the average completion time. However, the selected algorithms are also either competitive with

or better than the other schedulers with respect to the other performance metrics. To determine

small size jobs, a threshold is defined based on the mean job execution times on resources and the

time between heartbeats from the system. In these experiments, if the mean execution time of a

job is less than the interval between two heartbeats, the job is considered to be small. However,

the threshold can be customized for different Hadoop systems. How to do this (and which features

are important to take into consideration) would be a useful topic for further work.

Figure 7.12. Suggested schedulers. Here αl and αs are the arrival rates for large and small jobs,
respectively.

It should be noted that these guidelines are not tailored or defined for just the experiments in

this chapter. The performance issues discussed for different algorithms happen in any case that the

specified relations in terms of heterogeneity and job sizes hold. To evaluate the proposed guide-

lines, another real Hadoop workload is used, as presented in Table 7.14. The workload contains

100 jobs of a trace from a cluster at Facebook (FB), which is the same Facebook workload used for

evaluations in Section 6.7. In the evaluation, there are 10 homogeneous users with zero minimum

shares and equal priorities. Moreover, there are 10 heterogeneous users as presented in Table 7.15.

119

Each user submits jobs from one category in Table 7.14. The experimental environment here is

identical to that in Section 7.3.

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time

Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10KB 0 4.2GB 26321 0
Large data load 4200 10 405KB 0 447GB 66657 0
Huge data load 18300 3 446KB 0 1.1TB 125662 0
Fast aggregate 900 10 230GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418GB 2.5TB 45GB 1076089 974395
Data transform 2100 14 255GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6TB 51GB 104KB 4843452 853911

Table 7.14. Job categories in Facebook trace. Map time and Reduce time are in Task-seconds (Chen
et al. [2011]).

User MinimumShare Priority

U1 5 1
U2 0 2
U3 0 2
U4 5 1
U5 10 2
U6 15 1
U7 4 2
U8 10 1
U9 10 1
U10 15 1

Table 7.15. Heterogeneous Users in FB workload

7.6.1 Homogeneous Hadoop

Figures 7.13-7.15 show the average completion time and the scheduling overhead in two case

studies of homogeneous Hadoop systems. As the average completion time of all the algorithms in

the Homogeneous-Small case are almost the same (around 98.8 seconds), its corresponding chart

is not included in the figures. The results confirm the observations for the Yahoo! workloads.

The guideline selects the FIFO algorithm when the system is homogeneous in all three factors.

When the job size is small and the users are heterogeneous, the guideline suggests the Fair Sharing

algorithm to improve the fairness.

120

Figure 7.13. Scheduling time - Homogeneous-Small

Figure 7.14. Average completion time - Homogeneous-Large

7.6.2 Heterogeneous Hadoop

Figures 7.16-7.21 show the average completion times and the scheduling times in the three

case studies involving heterogeneous systems. In these experiments, the COSHH algorithm is the

recommended scheduler in the majority of cases.

7.7 Related Work

Desired performance levels can be achieved by an appropriate submission of jobs to resources

based on the system heterogeneity. The previous chapter provided an overview of Hadoop sched-

ulers, and this section concentrates on the current Hadoop schedulers with respect to heterogeneity.

The main concern in most popular Hadoop schedulers is to quickly multiplex the incoming jobs

on the available resources. Therefore, they use less system parameters and state information,

which makes these algorithms an appropriate choice for homogeneous Hadoop systems. However,

a scheduling decision based on a small amount of parameters and state information may cause

some challenges such as less locality, and neglecting the system heterogeneity. Later proposed

algorithms, such as (Aboulnaga et al. [2009]), improve scheduling decisions by providing the system

parameters and state information as an input to the scheduler. However, the poor adaptability,

and the large overhead of this algorithm (which is defined based on virtual machine scheduling),

121

Figure 7.15. Scheduling time - Homogeneous-Large

Figure 7.16. Average completion time - Heterogeneous-Small

make it an impractical choice for the systems considered in this research.

There are a number of Hadoop schedulers developed for restricted heterogeneous systems such

as Dynamic Priority (DP) (Sandholm and Lai [2010]) and Dominant Resource Fairness (DRF)

(Ghodsi et al. [2011]). The former is a parallel task scheduler which enables users to interactively

control their allocated capacities by dynamically adjusting their budgets. The latter addresses the

problem of fair allocation of multiple types of resources to users with heterogeneous demands. Fi-

nally COSHH (Rasooli and Down [2011]) is specifically proposed for heterogeneous environments.

This chapter evaluates Hadoop schedulers to propose heterogeneity-based guidelines. Although

COSHH has shown promising results for systems with various types of jobs and resources, its

scheduling overhead can be a barrier for small and homogeneous systems. DP was developed

for user-interactive environments, differing from our target systems. Similarly, DRF was initially

considered to be used instead of COSHH, but DRF only considers heterogeneity in the user

demands while ignoring resource heterogeneity.

7.8 Conclusion

This chapter studies three key Hadoop factors, and the effect of heterogeneity in these factors

on the performance of Hadoop schedulers. Performance issues for Hadoop schedulers are analyzed

122

Figure 7.17. Scheduling time - Heterogeneous-Small

Figure 7.18. Average completion time - Heterogeneous-Equal

and evaluated in different heterogeneous and homogeneous settings. Five case studies are defined

based on different levels of heterogeneity in the three Hadoop factors. Based on these observations,

guidelines are suggested for choosing a Hadoop scheduler according to the level of heterogeneity

in each of the factors considered.

So far all of the provided analysis and experiments for Hadoop have been performed in a fixed

size Hadoop system, where the number of jobs and resources were not changed. However, one

critical issue is scalability - Hadoop systems must perform well when the numbers of jobs and

resources increase. The next chapter performs a scalability analysis of the Hadoop schedulers.

123

Figure 7.19. Scheduling time - Heterogeneous-Equal

Figure 7.20. Average completion time - Heterogeneous-Large

Figure 7.21. Scheduling time - Heterogeneous-Large

124

Chapter 8

A Hybrid Scheduling Approach for

Scalable Heterogeneous Hadoop

Systems 1

The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop,

which provides efficient processing of Big Data, is being used widely by most Cloud providers.

Hadoop schedulers are critical elements for providing desired performance levels. There is a

considerable challenge to schedule the growing number of tasks and resources in a scalable manner.

Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this

challenge. This chapter analyzes the scalability of widely used Hadoop schedulers including FIFO

and Fair Sharing and compares them with the COSHH scheduler. Based on the introduced

insights, a hybrid solution is proposed, which selects appropriate scheduling algorithms for scalable

and heterogeneous Hadoop systems with respect to the number of incoming jobs and available

resources.

8.1 Introduction

Cloud computing promises three distinct characteristics: elastic scalability, pay as you go,

and manageability (Armbrust et al. [2010]). The advantages of Cloud computing have led to

a significant increase in diversity and scale of cloud applications. One of the fastest growing

applications is Big Data analysis (Agrawal et al. [2011]). The scalability and fault tolerance

1This chapter is mostly based on the following paper: A. Rasooli and D. G. Down, A Hybrid Scheduling
Approach for Scalable Heterogeneous Hadoop Systems, In proceeding of the 5th Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS), Co-located with Supercomputing 2012, Salt
Lake City, USA, November 12th, 2012.

125

in Cloud computing make it a great solution for these applications. However, the storage and

processing requirements of Big Data applications make it extremely challenging to provide desired

performance levels.

A common enterprise practice is to have a private Hadoop system installed on an intranet.

In these Hadoop systems, the jobs and resources may change significantly during a day. As

the experiments in this thesis show, a single scheduling algorithm may not provide the best

performance in terms of average completion time. This chapter proposes a hybrid approach

which uses alternative scheduling algorithms for specific situations. This approach considers

average completion time for submitted jobs as the main performance metric. The proposed hybrid

scheduler is based on the three Hadoop schedulers that we have considered throughout this thesis:

FIFO, Fair Sharing, and COSHH. The hybrid scheduler chooses the best scheduling algorithm for

different scales of jobs and resources to address average completion time and fairness.

The remainder of this chapter is organized as follows. Section 8.2 discusses the scalability of

Hadoop systems. In Section 8.3 some of the motivations for proposing a scalable Hadoop scheduler

are discussed. Section 8.4 presents important performance issues that Hadoop schedulers should

consider for scalability in the face of heterogeneity. In Section 8.5 experimental results and analysis

are provided. The proposed hybrid solution is introduced and analyzed in Section 8.6. Finally,

conclusions are provided in the last section.

8.2 Scalability in Hadoop Systems

Most enterprise Hadoop systems have a higher load during the day, and lighter load during

the evening. Similarly, resource numbers are subject to change at different times. Consequently,

using a non-scalable Hadoop system could lead to resource underutilization during off-peak hours

or resource overloading and poor performance during peak hours. Scalability of Cloud systems

makes it possible for Hadoop systems to scale up and down based on the load to improve the

utilization. A scalable Hadoop system considers both job numbers and complexity as well as the

number of available resources to provide sufficient flexibility to adapt.

The heterogeneity of a Hadoop system can make scalability more complicated and challenging

for the schedulers. The challenges of heterogeneity discussed in the previous chapter can be

magnified as the numbers of jobs and resources in the system grow. Moreover, heterogeneity is

increasing in current Hadoop systems as a result of new and emerging applications. Reported

analysis on Hadoop systems found their workloads extremely heterogeneous with very different

execution times (Chen et al. [2012]). Moreover, the number of small jobs (with short execution

times) exceeds larger size jobs in typical Hadoop workloads such as the Facebook and Cloudera

workloads discussed in (Chen et al. [2012]). This chapter analyzes the Hadoop schedulers in

126

scalable and heterogeneous environments. For this purpose, the average completion time reduction

is addressed as the main goal, while considering the impact of fairness and scheduling overhead.

8.3 Motivation

A job scheduler is an essential component of every Hadoop system. Some of the main motiva-

tions of the proposed scheduling solution are listed in the following subsections.

8.3.1 Scalable Hadoop Schedulers

In a Hadoop system the numbers and features of jobs and resources may fluctuate at any time.

Therefore, selecting an appropriate scheduling algorithm for a scalable heterogeneous Hadoop

system is critical to achieve a desired performance level. However, scalability is for the most

part a neglected issue in most currently used Hadoop schedulers. Facebook uses the two well-

known schedulers, Fair Sharing and Delay Scheduler (Zaharia et al. [2009, 2010]). Delay Scheduler

(Zaharia et al. [2010]) is a complementary algorithm for Fair Sharing to improve data locality. The

Yahoo! large Hadoop cluster uses the Capacity scheduler (Apache Hadoop Capacity Scheduler

[2010]). It provides capacity guarantees for queues while having elasticity in the sense that unused

capacity of a queue can be harnessed by overloaded queues. Based on the analysis and experiments

in (Sandholm and Lai [2010]), the Fair Sharing scheduler could not handle the experimental

workload for two concurrent queues, whereas the Capacity scheduler was not able to handle the

workload with ten queues. The results in (Sandholm and Lai [2010]) confirm the poor scalability

of the Fair Sharing, Delay, and Capacity schedulers. Although these algorithms perform well in

terms of fairness, they can provide poor performance when the system scales up in terms of the

number of jobs.

8.3.2 Heterogeneity Aware Scheduling

As discussed before, heterogeneity is an increasing factor in a Hadoop system, which can be

categorized at three levels: cluster, workload, and users. The scalability of Hadoop schedulers

should be provided along with consideration of system heterogeneity. The default Hadoop sched-

uler, FIFO, can be considered as a scalable scheduler. However, as discussed in the previous

chapter, both the FIFO and Fair Sharing schedulers neglect resource and job heterogeneity in

their decisions. Moreover, there are a number of Hadoop schedulers developed for restricted scal-

able systems such as Dominant Resource Fairness (DRF) (Ghodsi et al. [2011]). This scheduler

addresses the problem of fair allocation of multiple types of resources to users with heterogeneous

demands. However, it only considers heterogeneity in the user demands while ignoring resource

127

heterogeneity. This can lead to poor average completion time of this scheduler in a heterogeneous

Hadoop system.

In (Tang et al. [2012]), a task execution time model is proposed by evaluating task data pro-

cessing unit times and data transfer unit times. This model is used to compute the number of

map and reduce tasks which should be scheduled to satisfy deadline constraints. Based on the

insights, a flexible, fine grained, dynamic and coordinated resource management framework, called

MROrchestrator, is designed. Results from the implementation of MROrchestrator demonstrate

the scheduler can lead to increases in resource utilization. However, this scheduler is only defined

based on homogeneous Hadoop clusters.

8.3.3 Considering Critical Hadoop Performance Metrics

There are number of Hadoop schedulers which are designed for scalable systems. However, these

schedulers neglect the critical Hadoop performance metrics such as fairness, locality, and average

completion times. For instance, the Hadoop on Demand (HOD) (Apache [2007]) scheduler allows

users to meet their changing demands over time. Increasing the number of users in this scheduling

system is handled by scaling up the number of private clusters. However, this approach failed in

practice due to violating the locality designed in the original MapReduce scheduler, and resulted

in poor system utilization.

The experiments in (Sandholm and Lai [2010]) show better scaling of the Dynamic Priority

(DP) (Sandholm and Lai [2010]) scheduler than the Capacity and Fair Sharing schedulers in the

number of queues. As the Dynamic Priority scheduler permits more queues, it allows providers

to assign more service levels. The scalability of this scheduler is due to its light weight design.

However, this scheduler requires users to have accurate information about their job’s resource

requirements. As this is not true in most Hadoop systems, performance degradation may result.

8.3.4 Avoiding Large Scheduling Overhead

In (Sandholm and Lai [2009]) scheduling is considered in virtual machine hosted Hadoop clus-

ters. They generally addressed the problem of how to scale up and down a set of virtual machines

to complete jobs more cost effectively and faster, based on job and resource information. This

approach performs well if each user works with a separate data set. However, when groups of

users share large data sets, it leads to significant overhead to load the data into multiple virtual

clusters. Moreover, if file system clusters are shared, the data locality reduction issue (similar to

Hadoop On Demand) could add several challenges. Similarly, the proposed scheduler in (Qin et al.

[2009]) uses kernel-level virtualization techniques to reduce resource contention among concurrent

MapReduce jobs. As Hadoop is very I/O intensive both for file system access and MapReduce

128

scheduling, virtualization incurs a high overhead in this system. Although COSHH has shown

promising results for systems with various types of jobs and resources, its scheduling overhead

can be a barrier for small and under-loaded systems. This was one of the main motivations

for composing different schedulers to provide a hybrid scheduler for scalable and heterogeneous

systems.

8.3.5 Scheduling for the MapReduce model

In (Cardona et al. [2007]), the MapReduce scheduling model is extended to account for hetero-

geneity of the compute resources in terms of availability and CPU performance, common in large

scale Grid systems. The Mars system (He et al. [2008]) implements MapReduce optimizations on

GPU platforms mainly by aggressively taking advantage of the massive threading capacity. A large

number of map and reduce tasks can thus be physically collocated but run in multiple threads.

A similar extension is implemented in the Phoenix system (Ranger et al. [2007]). However, one

issue of these approaches is that they can not enforce the different priorities of users.

Mesos (Hindman et al. [2011]) is a resource scheduling manager that provides fair shares of re-

sources across diverse cluster computing frameworks like Hadoop and Message Passing Interface

(MPI). Next Generation MapReduce (NGM) (Murthy [2011]) has been introduced as a new ar-

chitecture of Hadoop MapReduce that includes a generic resource model for efficient scheduling of

cluster resources. NGM replaces the default fixed size slot with another basic unit of resource al-

location called a resource container. Condor (Litzkow et al. [1988]) is another resource scheduling

manager that can potentially host Hadoop frameworks.

As the focus of this thesis is on providing scheduling solutions for the clusters designed based

on the original Hadoop system, this chapter only considers the schedulers defined for Hadoop.

Chapter 7 introduced the common problems of schedulers in the heterogeneous Hadoop systems.

As the scalability issues are magnified in heterogeneous systems, this chapter uses the results

of the previous chapter, and extends them by considering the scalability issues. To analyze the

behaviour of Hadoop schedulers in different scalable and heterogeneous Hadoop configurations,

we continue the use of the three Hadoop schedulers: FIFO, Fair Sharing, and COSHH. Each of

these schedulers considers one or more of the motivations listed in Sections 8.3.1 - 8.3.5.

8.4 Performance Issues

The key performance issues for different schedulers in heterogeneous Hadoop systems were

introduced in Section 7.1, and are summarized as follows:

129

• Problem I. Small Jobs Starvation: in a heterogeneous Hadoop workload, jobs have different

execution times. For such workloads, the algorithms that do not take into account job sizes

have the problem of small jobs potentially get stuck behind large ones.

• Problem II. Sticky Slots: this problem arises when the scheduler assigns a job to the same

resource at each heartbeat. The problem can significantly increase average completion times,

when an inefficient resource is selected for a job.

• Problem III. Resource and Job Mismatch: resources can have different features with respect

to their computation or storage units. Moreover, jobs in a heterogeneous workload have

different requirements. To reduce the average completion time, it is critical to assign the

jobs to resources by considering resource features and job requirements.

• Problem IV: Scheduling Complexity: if the scheduling algorithm aims to improve its per-

formance by using more complicated solutions, it may increase the overhead and complexity

of scheduling. The increased overhead may even degrade the performance. This problem is

more critical in homogeneous systems, however it can also cause challenges in heterogeneous

systems.

These challenges are the main issues that each scheduler should consider in a scalable and

heterogeneous Hadoop system, which are analyzed in more detail in the following section.

8.5 Analysis

This section analyzes the schedulers’ performance for a real Hadoop workload in a scalable and

heterogeneous environment. The result of this analysis is the justification of a hybrid approach

for Hadoop scheduling. The provided experiments include two heterogeneous Hadoop systems:

one with a varying number of jobs and one with a varying number of resources. For the purpose

of extending the results in the previous chapters, the same experimental environment as Section

6.7 is used here with required modifications made to investigate scalability.

8.5.1 Case Study 1: Job Number Scalability

A heterogeneous cluster of six resources as defined in Section 6.7 is used in these experiments.

First, to measure the performance of the schedulers in an under-loaded system, a Hadoop system

with 5 jobs in its workload was evaluated. Then, multiple experiments were run by increasing the

total number of jobs in the workload to investigate how performance scales with the number of

jobs.

130

Figure 8.1(i) shows the average completion times for these experiments. Based on the results,

when there is a small number of jobs in the workload, and the system is very lightly loaded,

the COSHH algorithm has the highest average completion time. This trend continues until the

number of submitted jobs reaches the total number of slots in the system (there are 31 map slots

and 23 reduce slots on all six resources). After there are around 30 jobs in the workload, the

system load reaches the point where all of the submitted jobs can not receive their required slots

in the first round of scheduling. Therefore, they must wait until a slot becomes available. From

this point on, the improvement in average completion time for the COSHH algorithm overcomes

its scheduling overhead, and its average completion time is better than the other algorithms.

Moreover, at around 30 jobs, the largest size jobs enter the system, which leads to a considerable

increase in the average completion times for all of the schedulers.

The average completion time for the Fair Sharing algorithm is initially low. However, once the

load in the system increases, and submitted jobs need to be assigned to resources at different

heartbeats, its average completion time increases. This is because at each heartbeat, the Fair

Sharing algorithm needs to perform sorting and searching over a large sort and search space.

Moreover, when the system is underloaded there is almost no Sticky Slot problem in the Fair

Sharing scheduler; however, by increasing the number of jobs, this problem is magnified. The

Resource and Job Mismatch problem of the Fair Sharing scheduler is not dependent on the

number of jobs, but the larger number of jobs leads to longer waiting times for small jobs. Both

the magnified Resource and Job Mismatch and Sticky Slot problems of the Fair Sharing scheduler

result in larger average completion times for this scheduler compared to the COSHH scheduler.

In the case of the FIFO scheduler, there are two factors degrading its performance: Small Job

Starvation and the larger ratio of small jobs in the workload. When the large jobs enter the system

(between 20 and 30 total jobs), the average completion times significantly increase. However,

when there are multiple small jobs in the workload, (between 40 and 50 total jobs), the average

completion time decreases.

Figure 8.1(ii) shows the scheduling time for this experiment. The overheads of all algorithms

increase as the number of submitted jobs increases. The growth rate for the COSHH algorithm is

higher than the others as a result of its more complicated scheduling process. However, its growth

rate decreases as the number of jobs increases. Generally the jobs in Hadoop workloads exhibit

some periodic behaviour. The initial submitted jobs of a job class can cause a longer classification

process. However, because subsequent jobs of the same job class do not need new classes to be

defined, the overhead due to the classification process of the COSHH algorithm is reduced.

Figure 8.1(iii) shows the fairness for these experiments. Comparing the algorithms, the Fair

Sharing algorithm has the best fairness, and the COSHH algorithm has competitive fairness with

131

the Fair Sharing algorithm. This order of fairness between the schedulers does not change by

increasing the number of jobs; this is completely as expected.

8.5.2 Case Study 2: Resource Number Scalability

This case study varies the number of resources. The workload in these experiments consists of

100 jobs from the Yahoo! traces as presented in Section 6.10. To define different size clusters, six

types of resources are used, as presented in Table 8.1. The initial experiment was started with six

resources, one from each type. For each succeeding experiment, one resource was added to reach

102 resources for the final experiment (i.e. 17 resources of each type).

Resources Slot Memory
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4TB 9Gbps
R2 2 500GHz 400KB 40Kbps
R3 2 500GHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 2 500GHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 8.1. Resource Types

Figure 8.1(iv) shows the average completion times for these experiments. Increasing the number

of resources reduces the load in the system and improves the average completion time for all of

the schedulers. However, this can reduce the chance of local execution for the jobs, which tends

to increase the average completion time. Therefore, by increasing the number of resources, first

the average completion time of the schedulers reduces until the number of resources reaches

approximately 54. Beyond this point, the average completion times increase slightly, because of

the locality issue. Moreover, increasing the number of resources can reduce the Sticky Slot and

the Small Job Starvation problems in the Fair Sharing and FIFO schedulers, respectively. By

increasing the number of resources, these problems are reduced, but still exist in the Fair Sharing

and FIFO schedulers.

Figure 8.1(v) shows the scheduling times for the different schedulers. The overheads of the

COSHH and the Fair Sharing algorithms get larger as the number of resources increases. The

reason is the longer search and sort times in these algorithms. Moreover, the larger numbers of

resources leads to an increase in the classification and LP solving times for the COSHH algorithm.

The rate of increase in the COSHH algorithm is higher than the Fair Sharing algorithm. However,

its growth rate decreases as the number of jobs increases.

Figure 8.1(vi) presents the fairness for these experiments. As the number of resources scales

up, the fairness metric improves in all algorithms. However, the Fair Sharing algorithm achieves

better performance in terms of fairness.

132

Figure 8.1. Performance Metrics for Yahoo! Workload. (i)-(iii): Scaling by Number of Jobs, (iv)-(vi):
Scaling by Number of Resources

8.6 Hybrid Solution

Based on the experimental results and analysis, a hybrid scheduler is proposed (Figure 8.2). This

scheduler is a combination of the three analyzed algorithms. The selector chooses an appropriate

scheduler as the number of jobs and resources scales up or down. However, the overall solution is

to use the COSHH algorithm when the system is overloaded (e.g., during peak hours), the FIFO

algorithm for underloaded systems (e.g., after hours), and the Fair Sharing algorithm when the

system load is balanced. We define the load to be balanced when the increased difference between

the number of waiting tasks in two subsequent heartbeats is less than the total number of slots.

When the system is underloaded, and the number of free slots is greater than the number of

waiting tasks, the scheduler switches to the FIFO algorithm. This can happen when the system has

just started or during low load periods. Here, the simple FIFO algorithm can improve the average

completion time with minimum scheduling overhead. However, as the system load increases such

that the available number of slots is less than the number of waiting tasks, the hybrid scheduler

133

selects the Fair Sharing algorithm. A good example of this case is when the system has warmed up

after starting, and the workload has not yet peaked. In this case, the FIFO algorithm may degrade

the system performance with respect to both the average completion time and the fairness metrics.

Moreover, as the system is not yet overloaded, using the complex COSHH algorithm can result

in unacceptable overhead in terms of scheduling overhead and fairness. When the load increases

such that the system is overloaded, and the number of waiting tasks is quickly increasing, the

Fair Sharing algorithm can greatly increase the average completion time. Therefore, the scheduler

switches to the COSHH algorithm, which improves the average completion time, while avoiding

considerable degradation in the fairness metric. The selector needs to define two thresholds to

determine the status of the system. Thresholds can be defined based on the system load. One

possibility is to use the total number of slots, and the total number of tasks waiting in the

scheduling queue, to define the threshold. In this chapter the thresholds are defined by comparing

the waiting jobs in the queues and the total number of slots in the resources. When the number

of waiting jobs is less than the number of slots, the system is considered to be underloaded. The

threshold of detecting an overloaded system is defined to be the point that the increased difference

between the number of waiting tasks in two subsequent heartbeats becomes greater than the total

number of slots. Optimum thresholds can be obtained by performing some experiments and

analysis on the target system. Other practical guidelines could be developed for this purpose,

which are left for future work.

Figure 8.2. Suggested Hybrid Scheduler

To evaluate the proposed hybrid solution scheduler, another real Hadoop workload is used

here. The workload contains 100 jobs of a trace from a cluster at Facebook, spanning six months

from May to October 2009. It is the same Facebook workload used in Chapter 6, and it is

provided in Table 8.2 again for ease of presentation. In the evaluation, there are 10 users with

134

zero minimum shares, and equal priorities. Each user submits jobs from one category in Table

8.2. The experimental environment is defined similar to that in Section 8.5.

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time

Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10KB 0 4.2GB 26321 0
Large data load 4200 10 405KB 0 447GB 66657 0
Huge data load 18300 3 446KB 0 1.1TB 125662 0
Fast aggregate 900 10 230GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418GB 2.5TB 45GB 1076089 974395
Data transform 2100 14 255GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6TB 51GB 104KB 4843452 853911

Table 8.2. Job categories in Facebook trace. Map time and Reduce time are in Task-seconds (Chen
et al. [2011]).

Figure 8.3(i)-(iii) shows the average completion time, the scheduling overhead, and fairness as

the number of jobs scales. These results confirm our observations for the Yahoo! workloads. The

hybrid scheduler uses the FIFO, the Fair Sharing, and the COSHH algorithms when the system

is underloaded, balanced, and overloaded, respectively. When the number of jobs is scaling up,

the first switch between schedulers happens at around 25 jobs in the workload. At this point the

total number of waiting tasks becomes greater than the total number of slots (31 map slots and

23 reduce slots) on all six resources. The second switch between schedulers is when the number

of jobs in the workload is at around 45. To determine this point, the scheduler monitors the

increasing difference between the number of waiting tasks in the subsequent heartbeats, when

this difference gets larger than the total number of slots, the scheduler switches to COSHH.

Figure 8.1(iv)-(vi) shows the average completion time, the scheduling time, and fairness, when

the number of resources in the system varies. In these experiments, one switch between schedulers

happens when the number of resources is at around 70. This is where the system moves from

overloaded to balanced due to the increase in the number of resources.

Finally, it should be noted here that there is a transition period to observe the improved

performance after each switch. The transition happens due to the tasks that have already been

scheduled or are running as a result of the previous algorithm. The resources first need to complete

their tasks assigned by the previous algorithm to be available for tasks scheduled by the newly

selected algorithm. In these experiments, the transition period after switching from FIFO to Fair

Sharing is around 250 sec, and after the switch from Fair Sharing to COSHH is around 847 sec.

The transition time depends on the sizes of tasks which are currently being executed, but note

that the duration here is negligible comparing to the average completion times.

135

Figure 8.3. Performance Metrics for Facebook Workload. (i)-(iii): Scaling by Number of Jobs, (iv)-(vi):
Scaling by Number of Resources

8.7 Conclusion

This chapter introduced a hybrid scheduler for scalable and heterogeneous Hadoop systems. The

effect of scalability on the performance issues of Hadoop schedulers are analyzed and evaluated.

These results suggested that a combination of the FIFO, Fair Sharing, and COSHH schedulers is

effective, where the selection is based on the system load and available system resources.

One of the critical metrics in a Hadoop scheduler is satisfying the user minimum shares. As the

minimum shares defined for each user may change over time, the Hadoop scheduler must handle

these changes. The scheduler should satisfy the varying minimum share settings while preventing

degradation of other key performance metrics, in particular average completion times. This issue

along with the further evaluation of the COSHH scheduler on a real Hadoop cluster are discussed

in the next chapter.

136

Chapter 9

The Effect of Minimum Shares on

Performance of Hadoop Schedulers

There are a variety of users in a Hadoop system, differentiated based on features such as priority,

the submitted job types, and required shares. Guaranteed minimum shares is a means to enforce

priorities, without giving strict priorities to users. The scheduler is responsible for providing the

defined minimum shares for the users. Moreover, the Hadoop scheduler can directly affect the

system performance with respect to various metrics such as average completion times.

In a Hadoop system, the two critical processes of setting minimum shares, and selecting a

scheduler are independent. The minimum shares are generally defined by the Hadoop providers

and/or users to specify a guaranteed share for users at each point in time. The minimum share

settings can be changed dynamically. On the other hand, the Hadoop scheduler is selected (gener-

ally once and permanently) by the system designer or administrator. The sensitivity of a Hadoop

scheduler to changes in minimum shares can be addressed in two terms: speed of satisfying the

new minimum shares, and the effect of new minimum share values on other performance metrics,

such as the average completion time. While the scheduler should be concerned with minimum

share satisfaction, its average completion time should not be significantly degraded by changing

the minimum shares.

Hadoop providers may define the minimum shares based on different technical (such as job

requirements) and non technical (such as business priorities) factors. For instance a Hadoop

provider may determine the criticality of its advertisement jobs, and in turn define a corresponding

minimum share. Different Hadoop schedulers may use various approaches when dealing with

minimum shares. For instance, the FIFO scheduler make scheduling decisions independent of the

minimum share values. On the other hand, the Fair Sharing algorithm is highly sensitive to the

defined minimum shares. The COSHH scheduler simultaneously considers system heterogeneity

137

and minimum share satisfactions. This chapter analyzes the effects of minimum share modification

on performance of these three Hadoop schedulers. These algorithms are selected as representatives

of schedulers which consider minimum share satisfaction at different levels.

Based on the results, there are schedulers which despite their good performance in immediate

minimum shares satisfaction, result in poor average completion times as a result of ignoring the

system heterogeneity. Our analysis can be seen as counter to the intuition that defining a higher

minimum share for users guarantees providing better performance for them.

This chapter introduces six case studies based on possible settings of the minimum shares

(Section 9.1). The performance of Hadoop schedulers is analyzed in these case studies (Section

9.2). The results are evaluated and further discussed using a real Hadoop system with traces from

a Facebook workload (Sections 9.3 and 9.4). Section 9.5 discusses related work, and Section 9.6

provides concluding remarks and a discussion of future work.

9.1 Minimum share effects on Hadoop schedulers

A minimum share is an input to a Hadoop system reflecting several factors such as pricing

policies, job criticality, and system performance (Sandholm and Lai [2010]). Regardless of the

factors that define the minimum shares, the ultimate goal is to provide better performance and

completion time for jobs with high priority (jobs with minimum shares).

Hadoop schedulers consider the minimum shares in the job-resource assignments without hav-

ing control over the defined minimum share settings. As the distribution of minimum shares is

dynamic, and the Hadoop system is normally set-up with a specific (generally permanent) sched-

uler, the performance provided by the scheduler should be robust to changes in the minimum

shares. The main focus of this chapter is to analyze how different minimum share distributions

can affect the performance of Hadoop schedulers. For this purpose, six case studies are defined

as follows. Two main technical factors for calculating the minimum shares are the job size and

system heterogeneity. The case studies are defined base on these two factors.

1. Case 1 (Largest Job Priority): the user with the largest job size gets the largest minimum

share, and most of the other users get little or no minimum share. A practical example of

this case can be assigning the greatest minimum share to emergency backup jobs.

2. Case 2 (Large Jobs Priority): majority of the users are assigned a minimum share, where

the distribution of the minimum shares is based on the job sizes. An example of this case

is a Hadoop system with different large production jobs (jobs which generate revenue), and

some small non-production jobs. In this system, the largest job gets the maximum minimum

share, and the smallest jobs get no minimum share.

138

3. Case 3 (Equal Priority): the users are homogeneous with equal minimum shares and pri-

orities. An example of this case is a Hadoop cluster specified for production jobs with the

same size.

4. Case 4 (Short Jobs Priority): majority of the users receive a minimum share, where the dis-

tribution of minimum shares is the opposite of job sizes. As an example of this case consider

a system which assigns large minimum shares to different small queries like interactive jobs

and small shares to the (few) large jobs, such as long term analysis jobs.

5. Case 5 (Shortest Job Priority): only the user with the smallest job size gets the largest

minimum share, and the rest of the users get almost no minimum share. An example of this

case is a system with the largest minimum shares assigned to real time ad-hoc queries.

6. Case 6 (Homogeneous System): the system cluster, workload, and users (including the as-

signed minimum shares) are homogeneous. This case study is defined to analyze the schedul-

ing algorithms in a homogeneous environment, where all the users have similar minimum

shares.

There are a number of performance issues in the Hadoop scheduling algorithms which were

introduced in detail in Chapter 7.1. These issues, presented as follows, can be magnified by

different settings of minimum shares.

• Problem I. Small Jobs Starvation. This problem arises in a heterogeneous Hadoop

workload, where the jobs have different execution times.

• Problem II. Sticky Slots. This problem arises when the scheduler assigns a job to the

same resource at each heartbeat.

• Problem III. Resource and Job Mismatch. To reduce the average completion time, it is

critical to assign the jobs to resources by considering resource features and job requirements.

• Problem IV: Scheduling Complexity. This problem can result from different features,

such as gathering more system parameters and state information, and considering various

factors in making scheduling decisions. In a fully homogeneous system, collecting state

information and using a complex scheduler can add considerable overhead, which may not

be compensated for by the more precise job and resource assignment.

139

9.2 Analysis

This section analyzes the performance of scheduling algorithms using the first five defined case

studies (in Section 9.1). The sixth case study is analyzed in more detail in Section 9.3. For

this purpose, an example system is used, which includes four heterogeneous resources and three

users with five different settings for the minimum shares. The characteristics of the system are

presented in the following (the choice of system size is only for ease of presentation, the same

issues arise in larger systems):

• Task1, Task2, and Task3 represent three heterogeneous task types with the following mean

execution times. Here, mt(Ti, Rj) is the mean execution time of task Ti on resource Rj.

mt =

 2.5 2.5 10 10

2.5 2.5 5 5

10 10 2.5 2.5

• Three users submit three jobs to the system, where each job consists of a number of similar

tasks. Jobs arrive to the system in the following order: Job1, Job2, and Job3. Each user

submits one job to the system as follows:

User1: Job1 (consists of 10 Task1)
User2: Job3 (consists of 20 Task3)
User3: Job2 (consists of 5 Task2)

This example includes five cases, each is a representative for the five minimum share case studies

(Table 9.1).

Table 9.1. The minimum shares in each case study of the example
Cases Minimum Shares

User1 User2 User3
Case1 0 3 0
Case2 1 2 0
Case3 0 0 0
Case4 1 0 2
Case5 0 0 3

Figure 9.1 presents the scheduling decisions of the FIFO algorithm. Job completion times are

highlighted in the time line. As this algorithm does not take into account the minimum shares

and system heterogeneity, the same scheduling decisions are made for all of the cases. The FIFO

algorithm has the Resource and Job Mismatch problem, which leads to increasing the completion

140

time for some jobs. The main drawback of the FIFO algorithm is ignoring the minimum share

satisfaction, which is a critical metric for Hadoop providers.

Figure 9.1. Job assignment by FIFO algorithm.

Figure 9.2. Job assignment by Fair Sharing algorithm in a) Largest Job Priority, b) Large Jobs
Priority, c) Equal Priority, d) Short Jobs Priority, and e) Shortest Job Priority case studies in the
example Hadoop system.

The scheduling decisions for the Fair Sharing algorithm in each of these case studies are pre-

sented in Figure 9.2. This algorithm assigns the guaranteed minimum shares to the users. How-

ever, two of the performance problems, the Resource and Job Mismatch problem and the Sticky

Slots problem arise. The former problem appears in multiple places of the presented case stud-

ies, such as in assigning J3 to R1, and J1 to R3 in Figure 9.2. Where this problem arises,

the assignment of jobs to resources without considering resource features and job requirements

141

leads to increasing the completion times. The Sticky Slots problem happens in all the presented

case studies (such as repeated assignment of J3 to R1 and R2 in Figure 9.2). This problem can

significantly increase the average completion times, when an inefficient resource is selected for a

job.

Figure 9.3. Job assignment by COSHH algorithm in a) Largest Job Priority, b) Large Jobs Priority,
c) Equal Priority, d) Short Jobs Priority, and e) Shortest Job Priority case studies in the example
Hadoop system.

We see that the Sticky Slots problem in the Fair Sharing algorithm can be magnified in some

case studies. For example, in Case2, this problem has led to very poor performance. When a job

is finished, the minimum share of its user drops. The immediate requirement of minimum share

satisfaction in the Fair Sharing algorithm, forces the instant assignment of the same resource

to the same job. This leads to increasing the number of Sticky Slots occurrences. When this

problem is mixed with the Resource and Job Mismatch problem, it can significantly degrade the

performance.

142

Figure 9.3 presents the scheduling decisions of the COSHH algorithm. The results show less

fluctuation in the average completion time compared to the Fair Sharing algorithm. COSHH

may be less successful in immediate minimum share satisfaction. However, it leads to better job

completion times. Recall that the COSHH algorithm has two levels of classifications: minimum

share satisfaction and fairness, respectively. Changing the minimum shares only affects the first

level of classification.

The first level classification in COSHH varies for different case studies. For instance, in Case2,

the COSHH algorithm classifies the jobs into two classes: First-Class1 and First-Class2, which

contain Job1 and Job3, respectively. Then, it solves the following LP, which is defined using the

execution rates of these classes on all the resources, and their arrival rates:

maxλ

s.t.

0.04× δ1,1 + 0.04× δ1,2 + 0.01× δ1,3 + 0.01× δ1,4 ≥ 1× λ,

0.02× δ2,1 + 0.02× δ2,2 + 0.08× δ2,3 + 0.08× δ2,4 ≥ 1× λ,
3∑
i=1

δi,j ≤ 1, for all j = 1, . . . , 4,

δi,j ≥ 0, for all i = 1, . . . , 3, and j = 1, . . . , 4.

The optimization results suggest the following first classes for each resource. Resource3 and

Resource4 are assigned to just First-Class2 to avoid the Resource and Job Mismatch problem.

Resource1: {First-Class1, First-Class2}
Resource2: {First-Class1, First-Class2}
Resource3: {First-Class2}
Resource4: {First-Class2}

In the second level of classification, the COSHH algorithm classifies the jobs into three classes:

Class1, Class2, and Class3, which contain Job1, Job2, and Job3, respectively. This level of

classification considers all of the jobs in the system, and it is independent of the minimum share

settings. This scheduler solves an LP to find the best set of suggested job classes for each resource,

as follows.

After computing the suggested sets, the COSHH algorithm considers fairness and minimum

share satisfaction to assign a job to a resource. Although the COSHH algorithm assigns Job1

exclusively to Resource1 (Sticky Slots Problem), it does not increase the completion time of

143

Resource1: {Class1, Class2}
Resource2: {Class1, Class2}
Resource3: {Class2, Class3}
Resource4: {Class2, Class3}

Job1. The reason is that COSHH considers the execution times of jobs on resources in selecting

Resource1 for Job1. This is one of the main advantages of the COSHH algorithm over Fair Sharing

in a heterogeneous system. As in both levels of classification, the resources are assigned to the jobs

by considering the heterogeneity, the completion time of the jobs are robust to different settings

of the minimum share. This makes the COSHH algorithm a more reliable choice in heterogeneous

Hadoop systems with dynamic minimum share settings. In the following, the effects of different

minimum shares on schedulers are analyzed from two points of view:

• System Performance: Figure 9.4 compares the schedulers based on average completion time.

As evidence to our initial insight, the average completion times depend (very significantly in

some of the cases) on the minimum share settings. The overall average completion time for

the COSHH algorithm is better than for the Fair Sharing algorithm. As the FIFO algorithm

does not have the Sticky Slots problem, in this example it provides better average completion

time than the Fair Sharing algorithm.

Figure 9.4. Average completion times of the schedulers in example case studies.

• High Priority Job Performance: as the main goal of the minimum shares is to improve

the performance for the high priority users, Figure 9.5 compares the completion times of

users with highest minimum shares. The results show that the COSHH algorithm is more

successful in improving the performance for the jobs of users with highest minimum shares.

Moreover, Figure 9.6 presents the average completion time for jobs with minimum shares

assigned to them. The critical drawback of the FIFO algorithm in neglecting the minimum

shares is exposed in Figures 9.5 and 9.6.

144

Figure 9.5. Completion time of the highest priority job in example case studies.

Figure 9.6. Average completion times of the jobs with minimum shares in example case studies.

9.3 Experimental Results

The performance of Hadoop schedulers in all six case studies is evaluated by running experiments

using a real Hadoop workload on a Hadoop cluster.

9.3.1 Experimental Environment

In experiments with heterogeneous resources (Case1 to Case5), a cluster of four quad core nodes

is used (Table 9.2). The bandwidth between the resources is 2Gbps. For Case6, a cluster of four

homogeneous nodes is used, where all the nodes are the same as R4 in Table 9.2. Hadoop 0.20

is installed on the cluster, and the Hadoop block size is set to 128MB. Also, the data replication

number is set to the default value of three in all algorithms.

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 4 100MHz 500MB 3.2GB/s
R2 4 800MHz 16GB 3.2GB/s
R3 4 400MHz 4GB 3.2GB/s
R4 4 3200MHz 32GB 3.2GB/s

Table 9.2. Resources in the heterogeneous cluster

145

The jobs in the experiments are selected from Facebook production Hadoop MapReduce traces,

presented in (Chen et al. [2011]). The workload is the same one used in Section 6.7, which is from

a cluster at Facebook, spanning six months from May to October 2009. In the Case6 experiments,

the workload contains 100 homogeneous jobs, where jobs are set to be Small Jobs in the Facebook

workload (Table 6.10). Table 9.3 presents the minimum shares assigned to the users in these

experiments. It contains the different sets of users defined for the five heterogeneous case studies

(Case1 to Case5) in Section 9.2. In all case studies, each user submits jobs from one of the job

classes for the Facebook workload in Table 6.10. The minimum share of each user is defined to

be proportional to its submitted job size and the available slots in the system.

Users Case1 Case2 Case3 Case4 Case5

U1 0 5 0 0 0
U2 0 3 0 1 0
U3 0 1 0 3 0
U4 0 2 0 2 0
U5 0 1 0 3 0
U6 0 5 0 0 0
U7 0 0 0 4 0
U8 0 0 0 6 0
U9 0 0 0 8 8
U10 8 6 0 0 0

Table 9.3. User minimum shares

The experiments for Case6 are set to have 10 users with the same submitted jobs. This case

study includes a homogeneous Hadoop system with equal job sizes, which is similar to Case3

(Equal Priority) in the defined minimum shares in Table 9.3.

9.3.2 Results

In this section, the results for the case studies are presented. Figure 9.7 presents the dissatis-

faction performance metric for the schedulers. As the Fair Sharing algorithm has minimum share

satisfaction as its main goal, it is successful in reducing the dissatisfaction rate compared to the

other schedulers. The COSHH algorithm also considers the minimum shares as the first critical

issue in making scheduling decisions. It assigns the minimum shares while it takes the system

heterogeneity into account. This results in competitive dissatisfaction with the Fair Sharing al-

gorithm. However, the FIFO algorithm significantly increases the dissatisfaction rate by ignoring

the minimum shares.

Generally, the minimum shares are defined for some users to improve their jobs’ completion

times. Therefore, to analyze the success rate of schedulers in achieving this goal, the average

completion times of the jobs with minimum shares are presented in Figure 9.8. The results show

146

Figure 9.7. Dissatisfaction of schedulers.

that the Fair Sharing algorithm is successful in immediate assignment of minimum shares to the

jobs. However, as it does not consider job and resource heterogeneity (Resource and Job Mismatch

problem) it increases the average completion time.

Figure 9.8. Average completion time of jobs with minimum shares.

In Figure 9.9, the average completion times for the three schedulers are presented. The FIFO

algorithm achieves better average completion time than the Fair Sharing algorithm in most of the

case studies. Both the FIFO and the Fair Sharing algorithm have the Resource and Job Mismatch

problem. However, due to the increased Sticky Slots problem in the Fair Sharing algorithm, it

repeats the same inefficient decision for a long time. Moreover, the minimum shares assigned by

the Fair Sharing algorithm magnify the Sticky Slots problem. Therefore, the average completion

time of the Fair Sharing algorithm is larger than the other schedulers. When there are no minimum

shares (Case3), the Sticky Slots problem of the Fair Sharing algorithm is reduced. Due to the

Small Jobs Starvation problem, the average completion time of small jobs is increased in the case

of FIFO.

Figures 9.10 and 9.11 present the fairness and locality of the schedulers, respectively. The Fair

Sharing algorithm provides the best fairness, while the COSHH scheduler has competitive locality

and fairness. The scheduling overheads in the case studies are presented in Figure 9.12. The

Scheduling Complexity problem in the COSHH algorithm leads to higher scheduling time and

147

Figure 9.9. Average completion time of schedulers.

Figure 9.10. Fairness of schedulers.

overhead. However, the total scheduling overhead of COSHH is less than 35 seconds, which is

negligible compared to the processing times.

The discussed advantages of the COSHH algorithm are achieved in the heterogeneous Hadoop

systems (Case1 to Case5). To provide a broader view, this chapter also evaluates the schedulers

in a homogeneous Hadoop system (Case6). For this purpose, experiments are performed on a

cluster of homogeneous resources with homogeneous workload.

In this fully homogeneous system, the FIFO algorithm achieves lower overhead and better

average completion time. The Scheduling Complexity problem in the COSHH and the Fair Sharing

algorithms leads to increases in their average completion times. Based on these results, due to

the extra overhead introduced by the COSHH algorithm, it is not a good option for homogeneous

Hadoop systems.

9.4 Discussion

The analysis and experimental results in the previous two sections yields the following insights

for selecting a scheduler for a Hadoop system:

• Both Fair Sharing and COSHH are sensitive to the changes in the minimum shares. They

adapt their scheduling decisions based on any modification in the defined minimum shares.

148

Figure 9.11. Locality of schedulers.

Figure 9.12. Scheduling time of schedulers.

The Fair Sharing algorithm provides better minimum share satisfaction than both the

COSHH and the FIFO algorithms. However, as COSHH considers minimum shares in its

scheduling decisions, it provides competitive dissatisfaction compared to the Fair Sharing

algorithm.

• The sensitivity of some Hadoop schedulers to the minimum shares can significantly degrade

their average completion times. For instance, the experiments in this chapter show that the

average completion time of the Fair Sharing algorithm can highly fluctuate as the minimum

shares change. This problem leads to poor performance of the Fair Sharing algorithm in

Case2. On the other hand, COSHH has less fluctuations in its performance. Although the

average completion time of COSHH does respond to the minimum shares, its performance

is more robust.

• The experimental results confirm the promising performance of the COSHH algorithm in

terms of the average completion time for both high priority and the remaining submitted

jobs. The results suggest that even though the Fair Sharing algorithm provides immedi-

ate shares for the high priority users, it can lead to poor completion times for them in

heterogeneous environments.

149

Figure 9.13. Comparison of schedulers in homogeneous Hadoop system (Case6).

• The COSHH algorithm has competitive performance with the Fair Sharing algorithm in

terms of the locality and the fairness metrics.

• To find the appropriate scheduler for each Hadoop system, it is first important to consider

cluster and workload heterogeneity. If the system is heterogeneous, then the COSHH algo-

rithm can be a better option, even if the assigned minimum shares by the Hadoop provider

change during operation.

• The analysis in this research highlights a question about the correlation between a minimum

share and the resulting average completion time. As discussed in this chapter, the main

intent of defining minimum shares in Hadoop is to provide better performance for some

high priority users. Although in a homogeneous Hadoop system, a higher minimum share

indeed provides better performance for a user, this may not be the case for heterogeneous

Hadoop systems. Based on the experiments in this chapter, in some cases even a higher

minimum share of a user may degrade the performance provided for her. This is a critical

issue, which suggests further studies as to whether it is still feasible to define minimum

shares or whether it is preferable to eliminate the whole minimum share concept in Hadoop

(at least for systems that display cluster heterogeneity). This is left as future work.

9.5 Related Work

Minimum shares are defined to improve the performance of jobs submitted by high priority

users. The initial idea of defining minimum shares in Hadoop was introduced in Hadoop On

Demand (HOD) (Apache [2007]). The HOD approach uses the Torque resource manager for node

allocation based on the needs of the virtual cluster. With allocated nodes, the HOD system

automatically prepares configuration files, and then initializes the system based on the nodes

within the virtual cluster. Once initialized, the HOD virtual cluster can be used in a relatively

independent way. Therefore, HOD defines the minimum shares in terms of the actual number

150

of physical nodes that it allocates to the jobs of each user. This approach guarantees that these

users can receive their required shares at each point in time. However, it has serious drawbacks

such as removing the shared memory advantages of Hadoop, and can lead to poor utilization of

resources.

The Fair Sharing algorithm and its improved version, the Delay Scheduler (Zaharia et al. [2010])

have a similar approach in dealing with the minimum shares. However, the Delay scheduler relaxes

the minimum share satisfaction in order to improve the data locality in the system.

The Capacity scheduler (Apache Hadoop Capacity Scheduler [2010]) introduced by Yahoo!

(Bodkin [2010]), uses a different approach in considering the guaranteed shares for high priority

jobs. It was defined for large clusters, which may have multiple, independent consumers and

target applications. For this reason, the Capacity scheduler provides greater control as well as the

ability to provide a minimum capacity guarantee, and share excess capacity among users. The

queues defined in this scheduler are assigned a guaranteed capacity (where these capacities are

similar to the minimum shares defined in other schedulers). Queues are monitored; if a queue is

not consuming its allocated capacity, this excess capacity can be temporarily allocated to other

queues. The Capacity scheduler provides the ability to prioritize jobs within a queue. Therefore,

jobs with a higher priority have access to resources sooner than lower-priority jobs. The Capacity

scheduler does not take into account heterogeneity in either jobs or resources, which can lead to

poor performance in such settings.

There are a number of Hadoop schedulers developed to improve other performance metrics,

while allowing guaranteed shares for users. These include Dynamic Priority (DP) (Sandholm and

Lai [2010]) and FLEX (Wolf et al. [2010]). The DP scheduler allows users to bid for map and

reduce slots by adjusting their spending over time. The FLEX scheduler extends the Fair Sharing

algorithm by proposing a special slot allocation schema that aims to optimize explicitly a given

scheduling metric. FLEX relies on the speedup function of the job (for map and reduce phases)

that produces the job execution time as a function of the allocated slots.

This chapter evaluates Hadoop schedulers based on the performance levels that they provide

for different minimum share settings. Although COSHH has shown promising results for hetero-

geneous systems with different settings of the minimum shares, its scheduling overhead can be a

barrier for small and/or homogeneous systems. DP was developed for user-interactive environ-

ments, which are different from our target systems. DP allows dynamically controlled resource

allocation. However, it is driven by economic mechanisms rather than a performance model and/or

application profiling. Similarly, FLEX relies on a performance function which aims to represent

the application model, but it is not clear how to derive this function for different applications

and for different sizes of input datasets. FLEX does not provide a technique for considering dif-

151

ferent system settings or a detailed MapReduce performance model, but instead it uses a set of

simplifying assumptions about job execution, task durations, and job progress over time.

9.6 Conclusion

Generally, Hadoop schedulers do not have any control over defining minimum shares. However,

the minimum shares can vary over time, which can significantly affect performance. This chapter

studies the effects of different minimum share settings on the performance of Hadoop schedulers

(FIFO, Fair Sharing, and COSHH). Six case studies are defined based on different settings of

minimum shares and heterogeneity. Based on the analysis and experimental results, the COSHH

algorithm is a promising solution for heterogeneous Hadoop systems with different minimum share

settings. However, in a homogeneous system, the FIFO algorithm is preferred.

152

Chapter 10

A Prototype System

This section provides an overview of the implementation process of the COSHH scheduler proto-

type, and the challenges and lessons learned from this process.

10.1 Design Diagram

As introduced in Section 6.3, there are two main message flows in the COSHH scheduler: job

arrival flow and heartbeat flow. Figure 10.1 presents the design diagram of COSHH for the job

arrival flow. In this diagram, a user submits a job using the Hadoop terminal. The submitted

jobs are first received by the components in the Hadoop core and mapreduce packages. In Figure

10.2, the design diagram of the heartbeat flow is presented. This flow is triggered when there is a

free resource in the Hadoop cluster. Three main Hadoop components (presented in blue) are used

in the design diagrams of the COSHH scheduler. Some of the main components in these design

diagrams are as follows:

• JobClient: is a Java class in the mapreduce package of Hadoop. It is the primary interface

for the user job to interact with the Hadoop cluster. JobClient provides facilities to submit

jobs, track their progress, access component and tasks’ reports/logs, and get the MapReduce

cluster status information. The job submission process involves:

– Checking the input and output specifications of the job.

– Computing the input data slices for the job.

– Copying the job’s jar and configuration files to the MapReduce system directory on

the distributed file system.

– Submitting the job to the cluster and optionally monitoring its status.

153

Figure 10.1. Design Diagram - Job Arrival Flow.

Normally a user creates the job, describes its various facets via the JobConf class, and then

uses the JobClient to submit the job and monitor its progress.

• JobConf: is the primary interface for a user to describe a MapReduce job to the Hadoop

framework for execution. The framework executes the job as is described by JobConf.

However, some configuration parameters might have been marked as final by administrators,

and hence cannot be altered. While some job parameters are easy to set (e.g., setting number

154

Figure 10.2. Design Diagram- Heartbeat Flow.

155

of reduce tasks), some parameters (e.g. setting the number of map tasks) interact implicitly

with the rest of the framework and job configuration, and are relatively more complex for

the user to control.

• JobTracker: is the central location for submitting and tracking MapReduce jobs in the net-

work environment of Hadoop. All schedulers in Hadoop, including the COSHH scheduler,

inherit from the TaskScheduler abstract class. This class provides access to a TaskTrack-

erManager, which is an interface to the JobTracker as well as a Configuration instance. It

also asks the scheduler to implement three abstract methods: the lifecycle methods start

and terminate, and a method called assignTasks to launch tasks on a given TaskTracker.

The task assignment in Hadoop is reactive. TaskTrackers periodically send heartbeats to the

JobTracker with their TaskTrackerStatus, which contains a list of running tasks, the number

of slots on the resource, and other information. The JobTracker then calls assignTasks on

the scheduler to obtain tasks to launch. These are returned with the heartbeat response.

• Job Execution and Arrival Rates Estimator: using the algorithm provided in Section 6.3,

these estimates are provided for each incoming job. The estimated values are used to classify

the incoming jobs. This component is based on work in the AMP lab at UC Berkeley

(Agarwal and Ananthanarayanan [2010]), which is tailored for our scheduler.

• Classifier: if the incoming job can not fit in any of the available job classes, this component

is triggered to define new job classes. Algorithm 4 presents the pseudocode of the classifier

component in COSHH.

Algorithm 4 COSHH Scheduler’s Classifier Algorithm
for all newly created job class i do

Calculate the mean arrival rates (σi) and mean execution rates (execi) of all jobs in the class (σi, execi)
end for
repeat

Use calculated means, and estimated arrival rates and execution rates of jobs to classify them into classes
for all class ∈ JobClasses do

Replace (σi, execi) with the means of all jobs’ arrival rates and execution rates in each class i
end for

until there is no change in any mean

• JobClass Updater: modifies current job classes. It receives different change requests from

other components including an updated list of current JobClasses, modified mean arrival

rates and/or mean execution rates of job classes, or an updated list of jobs in the class. The

modifications are received either from the classifier component, or from assigning a job to

a class. The former may change all of the job classes, while the latter only leads to adding

156

a job to a class. If a job fits in a class it does not modify its mean execution rate or mean

arrival rate, and it only updates the job queues.

• LP Solver: this component solves the proposed LP in Section 6.3 to find the suggested

resources for each job class. It is triggered when the JobClass Updater changes the Job-

Classes rates or adds a new class to the JobClasses list. As discussed in Chapter 6, the

IBM ILOG CPLEX Optimizer is used for solving the LP in the COSHH scheduler. The full

IBM ILOG CPLEX Optimization Studio consists of the CPLEX Optimizer for mathemat-

ical programming, the IBM ILOG CPLEX CP Optimizer for constraint programming, the

Optimization Programming Language (OPL), and a tightly integrated IDE. The CPLEX

Optimizer has three forms to consider different ranges of users’ needs: 1) The CPLEX In-

teractive Optimizer, 2) Concert Technology, and 3) The CPLEX Callable Library. The

COSHH scheduler uses the Concert Technology of CPLEX, to embed the LP solver in the

code for the scheduler. As introduced in Section 6.3, the LP to be solved is:

max γ

s.t.
M∑
j=1

ψi,j × θi,j ≥ γ × σi, for all i = 1, . . . , B, (10.1)

B∑
i=1

θi,j ≤ 1, for all j = 1, . . . ,M, (10.2)

θi,j ≥ 0, for all i = 1, . . . , B, and j = 1, . . . ,M. (10.3)

CPLEX is used in the LP Solver component of COSHH, based on the following steps:

1. Create the model. IloCplex object functionality is used to create our optimization

model to be solved by CPLEX. The interface functions for doing so are defined by

the ILOG Concert Technology interface IloModeler and its extension IloMPModeler.

These interfaces define the constructor functions for modeling objects of the following

types, which can be used with IloCplex:

– IloNumVar: modeling variables

– IloRange: ranged constraints of the type lb <= expr <= ub

– IloObjective: optimization objective

– IloNumExpr: expression using variables

157

Modeling variables are represented by objects implementing the IloNumVar interface.

The continuous variables of our LP are:

γ, ψi,j, θi,j, where i = 1, . . . , B, and j = 1, . . . ,M .

These variables are modelled to be used for building expressions (of type IloLinear-

NumExpr in our LP). The defined expressions are used to create constraints or an

objective function for a model.

2. Solve the Model. The following method is called to solve the defined LP model:

IloCplex.solve()

The returned value indicates whether ILOG CPLEX could find an optimal solution or

only a feasible solution, whether it proved the model to be unbounded or infeasible,

or whether nothing at all has been determined at this point. Even more detailed

information about the termination of the solver call is available through the method

IloCplex.getCplexStatus.

3. Query the Results. After the solve method succeeds in finding a solution, its objec-

tive value is queried using the following statement:

double objval = cplex.getObjV alue();

Similarly, solution values for all the variables in the array x can be queried by calling:

double[] xval = cplex.getV alues(x);

The solve method returns a Boolean value reporting whether (true) or not (false) a

solution (not necessarily the optimal one) has been found. The most important solu-

tion information computed by IloCplex is usually the solution vector and the objective

function value. The method IloCplex.getValue queries the solution vector and IloC-

plex.getObjValue queries the value of the objective function. Most optimizers also

compute additional solution information (for example, dual values, reduced costs, sim-

plex bases, none of which are required in our application). The results are extracted

for each resource and are stored to be used in the Job Selector component.

• Job Adder: this component adds the incoming job to the waiting list of jobs in its defined

class. It sets the information of the incoming job, and prepares it to be selected for execution

in the heartbeat flow.

158

• User Shares Updater: once a job is added to the waiting list, the required share of its

corresponding user is updated.

• Suggested Classes Updater: based on the LP results, the list of suggested classes for each

resource is updated and stored to be used in the heartbeat flow.

• TaskTracker: receives the heartbeat messages from its corresponding resource, and sends out

the number of free slots on the resource, and their information to the JobTracker. Moreover,

the heartbeat message may include task termination information. The COSHH scheduler

first checks the completion of a job to update the users shares, and the job classes.

• JobSelector: the JobTracker calls the JobSelector to select a job for the available resource.

The JobSelector is implemented based on the algorithm introduced in Section 6.4.

10.2 Implementation Challenges

Hadoop is a large, complicated system. Modifying its internal components along with imple-

menting an entirely new scheduling system for it led to different challenges. Some of the main

challenges are listed as follows:

• Overhead Challenge. The biggest implementation challenge of COSHH was reducing the

overhead of the LP solving and classification phases. If implemented naively, (i.e. solving the

LP and performing classification for all job arrivals) then the completion time of COSHH

would be inferior to that of the other Hadoop schedulers, especially for small systems. The

implementation aims to make COSHH lightweight so that even for light workloads (small

number of jobs), it would not add considerable additional overhead and its overhead would

be negligible compared to the processing times involved. The potential overhead of our

COSHH scheduler is due to two factors: (1) performing numerous classification and LP

solving phases, and (2) using complicated LP solvers and classifiers. The analysis provided

in this thesis shows that the number of times the classifier and LP solver are executed is

typically reduced over time, and the classes become more stable as they are calculated for

a large number of jobs. Moreover, using a fast classifier and LP solver helped reduce the

overhead in the scheduling process.

• Lack of performance monitoring for developers of Hadoop schedulers. As the Hadoop pack-

age was developed for users to receive the computational results of their submitted jobs, it

is not well organized for Hadoop scheduler developers. The Hadoop package provides some

analysis of the submitted jobs and Hadoop cluster, which is generally useful for users and

159

administrators of the Hadoop system. However, to compare the proposed Hadoop sched-

ulers, more performance metrics were required to be implemented and defined. For this

purpose, the implemented COSHH scheduler modified some of the main Hadoop classes to

extend them for measuring more performance metrics.

• Compatibility. Different versions of the Hadoop system have compatibility issues with some

hardware or software, which should be considered in implementing a new scheduler. For in-

stance, the cluster used in this research is an IBM blade server, with Linux nodes, which can

only support non-SUN JREs. However, the versions of Hadoop released after Hadoop0.20.3

are not compatible with this version of JDK. The compatibility issue leads to some imple-

mentation limitations in using Hadoop on different clusters.

• Lack of benchmarks for Hadoop users. Hadoop is generally used in industry. As a result,

companies are conservative about releasing their Hadoop workloads, and information related

to them. Most of these companies do not release their workloads at all, and those who have

done so have made them available in a limited manner. One neglected issue is the lack

of comprehensive user benchmarks for Hadoop. User features such as priorities and mini-

mum shares can highly affect the performance of developed Hadoop schedulers. However,

to the best of our knowledge there is no accepted benchmark for evaluating Hadoop sched-

ulers. This research handles these limitations by testing schedulers under similar simulated

workloads, as well as two real workloads that have been released.

10.3 Lessons Learned

The following are some of the lessons learned while developing the COSHH scheduler and

extending the Hadoop system:

• While Big Data is growing rapidly, the applications and systems which can benefit from

the analyzed results of Big Data are increasing as well. Hadoop has been developed as

a tool for analyzing Big Data for clients; however, as this PhD research demonstrated,

Hadoop itself can be a client for Big Data analysis, in the following manner. The COSHH

scheduler uses information about previous jobs to calculate estimates for future incoming

jobs. These estimates are obtained from analyzing log and history files from previous job

submissions. Big Data analysis can be applied to improve the performance of the COSSH

scheduler. For instance, the generated job logs can be further used to improve the estimates

for future incoming jobs. These more accurate estimates could improve the performance of

the COSHH scheduler, and the Hadoop system.

160

• Hadoop APIs specify complex infrastructure and backend systems which are not easy to

use or modify. Moreover, there are various difficulties for programming in Hadoop, such as

the lack of easy debugging tools and graphical user interfaces. The researcher has to scroll

through lines of logs to figure out a minor problem. Therefore, it is suggested to debug

and evaluate the scheduler first on a simulator, and then implement it in a real Hadoop

system. The other motivation toward using a simulator as the first evaluation tool is the

limitations of real clusters in terms of available resources and cost. Using a simulator, the

size of a cluster can be easily increased or decreased, different levels of heterogeneity can be

evaluated, and the behaviour of schedulers can be evaluated for different system loads. For

example, in our experiments, we could evaluate the scheduler on a real Hadoop cluster, but

accessing a large number of resources was not possible without using simulation.

A good practice employed in this research is evaluating the simulation results by a developed

scheduler on a real Hadoop system. There are several factors which are not easily tested

on a simulator such as: the computation and memory cost that the schedulers may add to

JobTracker’s resource, the set up complexity of schedulers, and the effect of actual network

delay on schedulers’ performance.

• Hadoop uses parallel processing approaches to reduce the computation time. However, the

Hadoop resource management process is an integrated and central process. The two main

components of Hadoop, JobTracker and NameNode, are the central points for allocating

the computation and storage. The Hadoop scheduling process is designed such that the

JobTracker component is the central place which makes the final scheduling decisions. This

gives rise to a single point of failure and potential network congestion caused by the central

scheduling approach. This is one of the drawbacks of Hadoop which should be considered

in the next generations of architectures developed for Big Data processing.

10.4 Installing the COSHH scheduler

The COSHH scheduler is implemented in the contrib package of Hadoop, and is plugged into

the Hadoop system. The following are the steps to set up the COSHH scheduler:

1. Download, and copy the COSHH.jar file in the lib folder in Hadoop. The source code can

be found in: http://www.cas.mcmaster.ca/∼rasooa/.

2. Download CPLEX, set it up on your system. The installation guide is available in: http://www-

01.ibm.com/support/docview.wss?uid=swg21437813.

3. Modify HADOOP CLASSPATH to include the COSHH and CPLEX jar files.

161

4. Set the following property in the Hadoop config file HADOOP CONF/mapred-site.xml:

< name > mapred.JobTracker.TaskScheduler < /name >

< value > org.apache.hadoop.mapred.COSHH < /value >

5. Configure the XML file, located in HADOOP CONF/COSHH.xml, which includes minimum

shares of users, class numbers, running job limits and preemption timeouts. This file can be

modified without restarting the Hadoop cluster as it is reloaded periodically at runtime.

Once the Hadoop cluster is restarted the system starts to use the COSHH scheduler. The

scheduler’s process can be monitored at http://<JobTracker URL>/scheduler on the JobTracker’s

web user interface.

162

Chapter 11

Discussion and Future Work

This thesis presents solutions for improving performance in two critical distributed computing

environments: Grid and Cloud. First, a scheduler is introduced for Computational Grid systems,

addressing computational requirements of jobs and resources. Then, including data requirements,

a scheduler is proposed for Data Grid systems. The proposed schedulers in both Grid systems aim

to reduce the required state information, while improving the performance. However, the major

focus of this thesis is on proposing scheduling solutions for the widely used distributed computing

environment, Hadoop, which includes both computing and data challenges. The proposed Hadoop

schedulers are analyzed from the viewpoints of scalability, sensitivity to the estimated parameters,

heterogeneity, and minimum share sensitivity.

The proposed scheduler for Computational Grid, called the Grid Shadow Routing algorithm,

defines virtual queues to reduce the required state information (Chapter 3). Its performance

is evaluated using the GridSim simulator, where the results show its promising performance for

aggregate measures such as flowtime. This scheduler is recommended for Grid environments where

the system elements are not tightly coupled, and the communication cost is considerable.

The scheduler introduced for Data Grids (called DATALPAS) reduces the required state infor-

mation and search space for scheduling decisions (Chapter 4). Its main objective is to improve

average completion times by considering the system heterogeneity. The proposed scheduler con-

sists of two parts for addressing the data and computational issues of Data Grids. The scheduler

is evaluated using real Grid workloads and the Data GridSim simulator. The results show the

promising performance of the DATALPAS scheduler in terms of metrics such as flowtime and data

availability.

The major part of this research concentrates on providing scheduling solutions for Hadoop

systems (Chapter 6). Heterogeneity is for the most part neglected in designing Hadoop schedulers.

Growing interest in applying the MapReduce programming model in various applications gives rise

163

to greater heterogeneity, and thus must be considered in its impact on performance. The COSHH

scheduler is introduced for Hadoop, consisting of a classifier and an optimizer. The proposed

scheduler classifies the jobs based on their requirements and finds an appropriate matching of

resources and jobs. The COSHH scheduler is evaluated using various artificial and real Hadoop

workloads in terms of different performance metrics. The COSHH scheduler improves the average

completion time, and has promising performance in terms of fairness, minimum share satisfaction,

and locality. Moreover, the experiments show that compared to the improvement in average

completion time, the additional overhead of the COSHH scheduler is in most cases negligible.

Chapter 7 studies three key Hadoop factors, and the effect of heterogeneity in these factors on

the performance of Hadoop schedulers. Performance issues for Hadoop schedulers are analyzed

and evaluated in different heterogeneous and homogeneous settings. Five case studies are defined

based on different levels of heterogeneity in the three Hadoop factors. Based on these observations,

guidelines are suggested for choosing a Hadoop scheduler according to the level of heterogeneity

in each of the factors considered.

There is a considerable challenge in Hadoop systems to schedule the growing number of tasks

and resources in a scalable manner (Chapter 8). Moreover, the potential heterogeneous nature of

deployed Hadoop systems tends to increase this challenge. A hybrid scheduler is introduced for

scalable and heterogeneous Hadoop systems. This research analyzes the performance of widely

used Hadoop schedulers including FIFO and Fair Sharing and compares them with the COSHH

scheduler. Performance issues for Hadoop schedulers are analyzed and evaluated for heterogeneous

and scalable Hadoop systems. These results suggested a combination of the FIFO, Fair Sharing,

and COSHH schedulers can be effective, where the selection is based on the load on the system

and available system resources.

Generally, Hadoop schedulers do not have any control on defining minimum shares (Chapter

9). However, the minimum shares can vary over time, which can significantly affect performance.

This thesis studied the effects of different minimum share settings on the performance of Hadoop

schedulers (FIFO, Fair Sharing, and COSHH). Six case studies are defined based on different

settings of minimum shares and heterogeneity. Based on the analysis and experimental results,

the COSHH scheduler is a promising solution in a heterogeneous Hadoop system with different

minimum share amounts. However, in a homogeneous system, the FIFO algorithm is preferred.

11.1 Applications

The proposed schedulers and guidelines in this thesis have various applications. The following

list provides several of them.

1. In a Computational Grid system with widely and geographically distributed resources, gath-

164

ering state information can be very costly (in terms of time and network traffic). Moreover,

analyzing the collected information to make a scheduling decision can add considerable com-

plexity and overhead. The Grid Shadow Routing algorithm can be a promising candidate for

such Grid systems as it provides good average completion time performance while requiring

minimal state information. Furthermore, as it considers system heterogeneity, this sched-

uler is suggested for Computational Grids with heterogeneous jobs and resources. A good

example of such a system is in the Enabling Grids for E-sciencE (EGEE) project (Erwin

and Jones [2009]), where a Grid platform is provided as a service to the broad e-science

community.

2. The Data Grid systems used for the CERN project utilize huge data sets on large numbers of

geographically distributed resources (Gagliardi et al. [2002]). In these large heterogeneous

Data Grid systems, gathering full state information and performing searches over large

search spaces requires significant time. Moreover, the data in these systems is analyzed by

different scientists all around the world, where the submitted jobs generally have similar

requirements (Gagliardi et al. [2002]). The DATALPAS scheduler can be a good candidate

for such Data Grid systems. This scheduler can simultaneously improve both the average

completion time and the communication time.

3. Due to significant advantages of Hadoop, different companies have built their own Hadoop

clusters using their current heterogeneous resources (Zhang et al. [2010]). Generally, these

heterogeneous Hadoop clusters are highly loaded. The COSHH scheduler can significantly

increase the benefits by reducing the average completion times and satisfying minimum

share requirements. Moreover, our sensitivity analysis shows that this scheduler can provide

desired performance levels even in a system where accurate estimates of job lengths are not

available.

4. Selecting an appropriate Hadoop scheduler should be based on detailed information of the

system. If the scheduler is not appropriately selected for the corresponding Hadoop system,

it can lead to significant performance degradation. The guidelines provided in Chapter 7

should be used when a company wants to build its Hadoop cluster. Whether the resources are

in-house or obtained from Cloud providers, these guidelines should help set up an appropriate

scheduler for the system.

5. Reducing the resource rental cost can greatly increase the benefits for small companies

building their own Hadoop clusters using Cloud resources. These systems can result in

significant savings by adjusting the number of resources based on the system load. The

165

scalability in these Hadoop systems can be provided by using the proposed hybrid scheduler

in Chapter 8.

6. The minimum share satisfaction analysis provided in Chapter 9 can be used by Hadoop

administrators. They can select an appropriate scheduler based on the minimum share

settings of the corresponding Hadoop system.

11.2 Challenges

The main challenges of the proposed schedulers are as follows:

1. The Grid Shadow Routing algorithm requires estimates of two parameters: task length and

resource execution rate. If in a Computational Grid system these parameters have very

large and frequent fluctuations, providing the estimates of new parameters can increase

the overhead. Therefore, this scheduler may not be a good candidate for such systems.

It should be noted that based on the sensitivity analysis in Chapter 3, the Grid Shadow

Routing algorithm can tolerate up to around 40% fluctuations in estimation errors for these

parameters.

2. The proposed DATALPAS scheduler is designed to reduce the completion time of highly

loaded systems. Therefore, if the Grid system is generally under loaded, using this scheduler

can increase the overhead without adding considerable improvements. Moreover, in a Data

Grid system with very large and frequently varying job requirements, the performance of

the DATALPAS scheduler may degrade.

3. The significant improvements of the COSHH scheduler are provided with the cost of increas-

ing the complexity and overhead of scheduling system. Therefore, as discussed in Chapter 7,

this scheduler may perform poorly in homogeneous or underloaded Hadoop systems. More-

over, if in a Hadoop system the parameters are frequently and highly varying, the overhead

of the COSHH scheduler can increase. However, based on the sensitivity analysis in Chapter

6, small variations do not degrade the scheduler’s performance.

4. The proposed guidelines for selecting schedulers are defined based on heterogeneity levels

of the system to improve the average completion time. Although it improves the current

situation, where there are no specific guidelines provided for selecting a Hadoop scheduler, it

needs to be extended to consider other factors such as combinations of performance metrics.

5. The proposed hybrid scheduler is designed for heterogeneous Hadoop systems. Therefore

it does not target homogeneous Hadoop systems. In a dynamic case where a system varies

166

between homogeneous and heterogeneous status (due to adding different types of resources),

a solution can be provided by combining the hybrid scheduler with the results of Chapter 7.

11.3 Future Work

The following items present potential future extensions to the research presented in this thesis,

that could be of benefit to future developments in Grid computing and Hadoop systems.

1. Grid Shadow Routing algorithm (Chapter 3): refining the virtual queues and their compar-

ison process to minimize the data transfer and storage costs. The modified algorithm could

find appropriate matchings of resources and tasks while it reduces both the costs of data

transfer and storage, in addition to what it currently considers.

2. DATALPAS scheduler (Chapter 4): extending the low bandwidth replication method to

define thresholds and time intervals for other Data Grid systems. Moreover, further Data

Grid models and workload models can be considered in an extended version of this scheduler.

The scheduler can also include more system constraints such as memory limitations, and

economic objectives for users and resources.

3. COSHH scheduler (Chapter 6): further analysis of this scheduler on large scale Hadoop

clusters to determine its power in increasing the locality. Moreover, its performance can be

improved by using other light weight classification and optimization methods such as GLPK

(GNU Linear Programming Kit) (Makhorin [2012]). The scheduler can also be extended to

provide separate classifications for data-intensive and computation-intensive jobs leading to

more precise matchings of resources and jobs.

4. Guidelines for selecting schedulers (Chapter 7): evaluation in larger systems by scaling up

the number of jobs, resources, and users. The required threshold specifying small versus large

jobs can be further investigated. The outcome will be a selection function that considers

system parameters including type, number, and complexity of jobs as well as specification of

available resources. Moreover, other performance metrics can be considered in the guidelines.

The end result will be a guideline suggesting an appropriate scheduler based on desired

performance levels for different metrics.

5. Hybrid scheduler (Chapter 8): extending the scheduler to also consider homogeneous en-

vironments. The future hybrid scheduler will be smart enough to recognize the degree of

heterogeneity in a system and then select the best scheduler for a heterogeneous or homo-

geneous environment. The hybrid scheduler has the potential to also consider other perfor-

167

mance metrics. The scheduler can be extended to receive a desired performance metric as

an input, and select an appropriate algorithm with respect to the corresponding metric.

6. Minimum share suggestions (Chapter 9): further analysis in this direction may question the

minimum share setting process in Hadoop. As can be seen in this thesis, in some cases

defining minimum shares for users may even degrade performance for high priority users.

Further analysis in various real Hadoop systems can propose a general critical conclusion as

to whether or not it is recommended to define minimum shares. Moreover, this work could

be extended in a way that the schedulers can provide suggestions for setting the minimum

shares. Therefore, a Hadoop provider could factor these suggestions into their decision

making process.

168

11.4 Relevant Publications and Submissions by the Author

• Refereed Journal Articles

1. A. Rasooli and D. G. Down, COSHH: A Classification and Optimization based Sched-

uler for Heterogeneous Hadoop systems. Journal of Future Generation Computer

Systems (FGCS), 2012, (Submitted).

2. A. Rasooli and D. G. Down, Guidelines for Selecting Hadoop Schedulers based on Sys-

tem Heterogeneity. Journal of Grid Computing, 2012, (Submitted).

• Referred Conference and Workshop Proceedings

1. A. Rasooli and D. G. Down, A Hybrid Scheduling Approach for Scalable Heterogeneous

Hadoop Systems, In proceeding of the 5th Workshop on Many-Task Comput-

ing on Grids and Supercomputers (MTAGS), Co-located with Supercom-

puting 2012, Salt Lake City, USA, November 12th, 2012.

2. A. Rasooli and D. G. Down, An Adaptive Scheduling Algorithm for Dynamic Hetero-

geneous Hadoop Systems, In Proceeding of the 21st Annual International Con-

ference hosted by the Centre for Advanced Studies Research, IBM Canada

(CASCON 2011), November 7-10, 2011, Toronto, Canada.

3. A. Rasooli and D. G. Down, State Independent Resource Management for Distributed

Grids, In Proceeding of the 6th International Conference on Software and

Data Technologies (ICSOFT 2011), July 18-21, 2011, Seville, Spain.

• Posters

1. A. Rasooli and D. G. Down, Heterogeneous Hadoop Scheduling Algorithms, Poster

presented in IBM CASCON 2011Technology Showcase, November 1- 4, 2011.

2. A. Rasooli and D. G. Down, Improving Overhead of Scheduling in Computational and

Data Distributed Computing Systems, Poster presented in IBM CASCON 2010

Technology Showcase, November 1 4, 2010.

169

Bibliography

Ashraf Aboulnaga, Ziyu Wang, and Zi Y. Zhang. Packing the Most onto Your Cloud. In Pro-

ceedings of the First International Workshop on Cloud Data Management, pages 25–28, 2009.

ISBN 978-1-60558-802-5. doi: 10.1145/1651263.1651268.

Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s Heuristics for Scheduling Jobs

on Computational Grids. In Proceedings of the 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM), pages 45–52, Tata McGraw -Hill, India, 2000.

David Abramson, Jon Giddy, and Lew Kotler. High Performance Parametric Modeling with

Nimrod/G: Killer Application for the Global Grid? In Proceedings of the 14th International

Symposium on Parallel and Distributed Processing, page 520, Los Alamitos, CA, USA, 2000.

IEEE Computer Society. doi: http://doi.ieeecomputersociety.org/10.1109/IPDPS.2000.846030.

Sameer Agarwal and Ganesh Ananthanarayanan. Think Global, Act Local: Analyzing the Trade-

Off between Queue Delays and Locality in MapReduce Jobs. Technical report, EECS Depart-

ment, University of California, Berkeley, 2010.

Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big Data and Cloud Computing: Cur-

rent State and Future Opportunities. In Proceedings of the 14th International Conference on

Extending Database Technology, EDBT/ICDT ’11, pages 530–533. ACM, 2011. ISBN 978-1-

4503-0528-0. doi: 10.1145/1951365.1951432.

Sayaka Akioka and Yoichi Muraoka. Extended Forecast of CPU and Network Load on Computa-

tional Grid. In Proceedings of the 4th IEEE International Symposium on Cluster Computing and

the Grid(CCGrid’04), pages 765–772, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

ISBN 0-7803-8430-X.

Issam Al-Azzoni and Douglas G. Down. Dynamic Scheduling for Heterogeneous Desktop Grids. In

Proceedings of the 9th IEEE/ACM International Conference on Grid Computing (GRID ’08),

pages 136–143, Washington, DC, USA, 2008a. IEEE Computer Society. ISBN 978-1-4244-2578-

5. doi: 10.1109/GRID.2008.4662792.

170

Issam Al-Azzoni and Douglas G. Down. Linear Programming-Based Affinity Scheduling of In-

dependent Tasks on Heterogeneous Computing Systems. IEEE Transactions on Parallel and

Distributed Systems, 19(12):1671–1682, 2008b. doi: 10.1109/TPDS.2008.59.

Ammar H. Alhusaini, Viktor K. Prasanna, and Cauligi S. Raghavendra. A Unified Resource

Scheduling Framework for Heterogeneous Computing Environments. In Proceedings of the 8th

Heterogeneous Computing Workshop, page 156, Los Alamitos, CA, USA, 1999. IEEE Computer

Society. doi: http://doi.ieeecomputersociety.org/10.1109/HCW.1999.765123.

Bill Allcock, Ann Chervenak, Ian Foster, Carl Kesselman, and Miron Livny. Data Grid Tools:

Enabling Science on Big Distributed Data. Journal of Physics: Conference Series, 16(1):571,

2005. URL http://stacks.iop.org/1742-6596/16/i=1/a=079.

Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J. Lipman. Basic Lo-

cal Alignment Search Tool (BLAST). Journal of Molecular Biology, 215:403–410, 1990. doi:

doi:10.1016/S0022-2836(05)80360-2.

Apache. Hadoop On Demand Documentation, 2007. URL http://hadoop.apache.org/

common/docs/r0.17.2/hod.html. [Online; accessed 30-November-2010].

Apache Hadoop Capacity Scheduler, 2010. URL http://hadoop.apache.org/docs/r0.20.2/

capacity scheduler.html. [Online; accessed 30-November-2011].

Apache Hadoop Fair Scheduler, 2010. URL http://hadoop.apache.org/docs/r0.20.2/

fair scheduler.html. [Online; accessed April-2010].

Apache Hadoop Foundation. Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy, June

2012.

Apache Hadoop Foundation. The GridMix Hadoop Benchmark. http://hadoop.apache.org/

docs/stable/gridmix.html, May 2010a.

Apache Hadoop Foundation. Hadoop. http://hadoop.apache.org/hadoop, May 2010b.

Apache Hadoop Foundation. The Hbase Project. http://hadoop.apache.org/hbase, May 2010c.

Apache Hadoop Foundation. HDFS Architecture Guide. http://hadoop.apache.org/docs/

r1.0.4/hdfs design.html, May 2010d.

Apache Hadoop Foundation. The Hive Project. http://hadoop.apache.org/hive, May 2010e.

Apache Hadoop Foundation. The Pig Project. http://hadoop.apache.org/pig, May 2010f.

171

Apache Hadoop Foundation. The Zookeeper Project. http://hadoop.apache.org/zookeeper,

May 2010g.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-

winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A View of

Cloud Computing. Communications of the ACM, 53(4):50–58, April 2010. ISSN 0001-0782.

doi: 10.1145/1721654.1721672. URL http://doi.acm.org/10.1145/1721654.1721672.

Robert Armstrong, Debra Hensgen, and Taylor Kidd. The Relative Performance of Various Map-

ping Algorithms is Independent of Sizable Variances in Run-Time Predictions. In Proceedings

of the 7th Heterogeneous Computing Workshop, page 79, Los Alamitos, CA, USA, 1998. IEEE

Computer Society. doi: http://doi.ieeecomputersociety.org/10.1109/HCW.1998.666547.

Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and Grid Technologies for Wide-

Area Distributed Computing. SoftwarePractice & Experience, 32(15):1437–1466, 2002. ISSN

0038-0644. doi: 10.1002/spe.488.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson Correlation Coefficient.

Springer Topics in Signal Processing, 2:1–4, 2009. doi: 10.1007/978-3-642-00296-0 5.

Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail, Marcio Faerman,

Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer Schopf, Gary Shao, Shava Smallen, Neil

Spring, Alan Su, and Dmitrii Zagorodnov. Adaptive Computing on the Grid Using AppLeS.

IEEE Transactions on Parallel and Distributed Systems, 14(4):369–382, 2003. ISSN 1045-9219.

doi: 10.1109/TPDS.2003.1195409.

Ron Bodkin. Yahoo! Updates from Hadoop Summit 2010. http://www.infoq.com/news/

2010/07/yahoo-hadoop-summit, July 2010.

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Lasislau L Bölöni, Muthucumara Maheswaran,

and Albert I Reuther. A Comparison of Eleven Static Heuristics for Mapping a Class of In-

dependent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel and

Distributed Computing, 61(6):810–837, 2001. ISSN 0743-7315. doi: 10.1006/jpdc.2000.1714.

Rajkumar Buyya. The World-Wide Grid, June 2001. URL http://www.buyya.com/ecogrid/

wwg/.

Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling and Simulation of

Distributed Resource Management and Scheduling for Grid Computing. Concurrency and Com-

putation: Practice and Experience(CCPE), 14(13–15):1175–1220, 2002. doi: 10.1002/cpe.710.

172

Rajkumar Buyya, Kim Branson, Jonathan Giddy, and David Abramson. The Virtual Labora-

tory: A Toolset to Enable Distributed Molecular Modelling for Drug Design on the World-

Wide Grid. Concurrency and Computation: Practice and Experience, 15(1):1–25, 2003. doi:

10.1002/cpe.704.

Rajkumar Buyya, Manzur Murshed, David Abramson, and Srikumar Venugopal. Scheduling

Parameter Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-

Time Optimization Algorithm. Journal of Software: Practice and Experience (SPE), 35(5):

491–512, 2005. ISSN 0038-0644. doi: 10.1002/spe.646.

David G. Cameron, Rubén Carvajal-Schiaffino, Paul Millar, Caitriana Nicholson, Kurt Stockinger,

and Floriano Zini. Evaluating Scheduling and Replica Optimisation Strategies in OptorSim.

In Proceedings of the 4th International Workshop on Grid Computing (GRID ’03), page 52,

Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2026-X.

Kelvin Cardona, Jimmy Secretan, Michael Georgiopoulos, and Georgios Anagnostopoulos. A Grid

Based System for Data Mining Using MapReduce. Technical Report TR-2007-02, AMALTHEA,

2007.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage System

for Structured Data. ACM Transactions on Computer Systems, 26(2):4:1–4:26, June 2008. ISSN

0734-2071. doi: 10.1145/1365815.1365816.

Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy H. Katz. The Case for Eval-

uating MapReduce Performance Using Workload Suites. In Proceedings of the 19th An-

nual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Com-

puter and Telecommunication Systems, pages 390–399, Washington, DC, USA, 2011. doi:

http://doi.ieeecomputersociety.org/10.1109/MASCOTS.2011.12.

Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive Analytical Processing in Big Data

Systems: A Cross-Industry Study of MapReduce Workloads. Proceedings of the International

Conference on Very Large Data Bases (VLDB) Endowment, 5(12):1802–1813, 2012. URL

http://dl.acm.org/citation.cfm?id=2367502.2367519.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM - 50th Anniversary Issue: 1958 - 2008, 51(1):107–113, January

2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.

173

Alexandre Denis, Christian Pérez, and Thierry Priol. Towards High Performance CORBA and

MPI Middlewares for Grid Computing. In Proceedings of the 2nd International Workshop on

Grid Computing, GRID ’01, pages 14–25. Springer-Verlag, 2001. ISBN 3-540-42949-2. URL

http://dl.acm.org/citation.cfm?id=645441.652842.

Frederic Desprez and Antoine Vernois. Simultaneous Scheduling of Replication and Computation

for Data-Intensive Applications on the Grid. Journal of Grid Computing, 4(1):19–31, March

2006. ISSN 1572-9184. doi: 10.1007/s10723-005-9016-2.

Fangpeng Dong. Workflow Scheduling Algorithms in the Grid. PhD thesis, Queen’s University,

Kingston, Ontario, Canada, April 2009.

Fangpeng Dong and Selim G. Akl. Scheduling Algorithms for Grid Computing: State of the Art

and Open Problems. Technical Report 504, School of Computing, Queens University, Kingston,

Ontario, Canada, 2006.

Fangpeng Dong and Selim G. Akl. A Joint Data and Computation Scheduling Algorithm for the

Grid. In Proceedings of the 13th International Euro-Par Conference, Lecture Notes in Computer

Science, pages 587–597. Springer, August 2007. ISBN 978-3-540-74465-8. doi: 10.1007/978-3-

540-74466-5 62.

Laure Erwin and Bob Jones. Enabling Grids for e-Science: The EGEE Project, EGEE-PUB-

2009-001, 2009. URL http://www.eu-egee.org/.

Alpaydin Ethem. Introduction to Machine Learning (Adaptive Computation and Machine Learn-

ing). The MIT Press, 2004.

Stefka Fidanova and Mariya K. Durchova. Ant Algorithm for Grid Scheduling Problem. In

Proceedings of the 5th International Conference on Large-Scale Scientific Computing (LSSC),

pages 405–412, Sozopol , Bulgaria, 2005. doi: 10.1007/11666806 46.

Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. European DataGrid Project:

Experiences of Deploying a Large Scale Testbed for e-Science Applications. In Performance

Evaluation of Complex Systems: Techniques and Tools, Performance 2002, Tutorial Lec-

tures, pages 480–500, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44252-9. URL

http://dl.acm.org/citation.cfm?id=647414.760331.

Archana Ganapathi, Yanpei Chen, Armando Fox, Randy H. Katz, and David A. Patter-

son. Statistics-Driven Workload Modeling for the Cloud. In Proceedings of the 26th In-

174

ternational Conference on Data Engineering (ICDE), pages 87–92. IEEE, March 2010. doi:

10.1109/ICDEW.2010.5452742.

Dennis Gannon, Peter Beckman, and Elizabeth Johnson. HPC++. http://www.extreme

.indiana.edu/ sage, December 2009.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. In Proceedings of

the 8th USENIX Conference on Networked Systems Design and Implementation, pages 24–37.

USENIX Association, 2011. URL http://dl.acm.org/citation.cfm?id=1972457.1972490.

David Goddeau. Profile Driven Scheduling for a Heterogeneous Server Cluster. In Proceedings

of the 2005 International Conference on Parallel Processing Workshops(ICPPW ’05), pages

336–345, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2381-1. doi:

10.1109/ICPPW.2005.73.

Derek Gottfrid. The New York Times Archives + Amazon Web Services = TimesMachine.

http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-archives-amazon-web

-services-timesmachine/, May 2013.

Derek Gottfrid. Self-Service, Prorated Super Computing Fun. http://tinyurl.com/2pjh5n,

March 2009.

Suhel Hammoud, Maozhen Li, Yang Liu, Nasullah K. Alham, and Zelong Liu. MRSim: A Discrete

Event based MapReduce Simulator. In Proceedings of the 7th International Conference on Fuzzy

Systems and Knowledge Discovery (FSKD 2010), pages 2993–2997, Yantai, Shandong, China,

2010. IEEE.

Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars:

A MapReduce Framework on Graphics Processors. In Proceedings of the 17th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages

260–269. ACM, 2008. ISBN 978-1-60558-282-5. doi: 10.1145/1454115.1454152. URL

http://doi.acm.org/10.1145/1454115.1454152.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy

Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-Grained Resource Shar-

ing in the Data Center. In Proceedings of the 8th USENIX Conference on Networked Sys-

tems Design and Implementation, NSDI’11, pages 22–22. USENIX Association, 2011. URL

http://dl.acm.org/citation.cfm?id=1972457.1972488.

175

Wolfgang Hoschek, Francisco Javier Jaén-Mart́ınez, Asad Samar, Heinz Stockinger, and Kurt

Stockinger. Data Management in an International Data Grid project. In Proceedings of the 1st

IEEE/ACM International Workshop on Grid Computing (GRID ’00), pages 77–90, London,

UK, 2000. Springer-Verlag. ISBN 3-540-41403-7. doi: 10.1.1.16.3897.

IBM ILOG CPLEX Optimizer, 2010. URL http://www-01.ibm.com/software/integration/

optimization/cplex/. [Online; accessed 30-November-2010].

Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, and Catalin Dumitrescu. The Grid Work-

loads Archive, Nov 2006. URL http://gwa.st.ewi.tudelft.nl/.

Alexandru Iosup, Ozan Sonmez, Shanny Anoep, and Dick Epema. The Performance of Bags of

Tasks in Large-Scale Distributed Systems. In Proceedings of the 17th International Symposium

on High Performance Distributed Computing, pages 97–108, 2008.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07, pages 59–

72. ACM, 2007. ISBN 978-1-59593-636-3. doi: 10.1145/1272996.1273005.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Gold-

berg. Quincy: Fair Scheduling for Distributed Computing Clusters. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, pages 261–276. ACM,

2009. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629601.

William E. Johnston, Dennis Gannon, and Bill Nitzberg. Grids as Production Comput-

ing Environments: The Engineering Aspects of NASA’s Information Power Grid. In

Proceedings of the 8th IEEE International Symposium on High Performance Distributed

Computing, page 34, Los Alamitos, CA, USA, 1999. IEEE Computer Society. doi:

http://doi.ieeecomputersociety.org/10.1109/HPDC.1999.805298.

Jorge Jovicich, Carey Priebe, Michael M. Miller, Randy Buckner, and Bruce Rosen. Biomedical

Informatics Research Network: Integrating Multi-Site Neuro Imaging Data Acquisition, Data

sharing and Brain Morphometric Processing. In Proceedings of the 18th IEEE Symposium on

Computer-Based Medical Systems (CBMS ’05), pages 288–293, Washington, DC, USA, 2005.

IEEE Computer Society. ISBN 0-7695-2355-2. doi: 10.1109/CBMS.2005.38.

George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. Chameleon: Hierarchical Cluster-

ing Using Dynamic Modeling. Journal of Computer, 32:68–75, 1999. ISSN 0018-9162. doi:

http://doi.ieeecomputersociety.org/10.1109/2.781637.

176

Kamal Kc and Kemafor Anyanwu. Scheduling Hadoop Jobs to Meet Deadlines. In Proceedings of

the 2010 IEEE Second International Conference on Cloud Computing Technology and Science,

CLOUDCOM ’10, pages 388–392, Washington, DC, USA, 2010. ISBN 978-0-7695-4302-4. doi:

10.1109/CloudCom.2010.97.

Houda Lamehamedi, Boleslaw Szymanski, Zujun Shentu, and Ewa Deelman. Data

Replication Strategies in Grid Environments. In Proceedings of the 5th Interna-

tional Conference on Algorithms and Architectures for Parallel Processing, page 378,

Los Alamitos, CA, USA, 2002. IEEE Computer Society. ISBN 0-7695-1512-6. doi:

http://doi.ieeecomputersociety.org/10.1109/ICAPP.2002.1173605.

Ralf Lämmel. Google’s MapReduce Programming Model – Revisited. Science of Computer

Programming, 70(1):1–30, January 2008. ISSN 0167-6423. doi: 10.1016/j.scico.2007.07.001.

Keqin Li. Job Scheduling and Processor Allocation for Grid Computing on Meta Computers.

Journal of Parallel and Distributed Computing, 65(11):1406–1418, 2005. ISSN 0743-7315. doi:

10.1016/j.jpdc.2005.05.015.

Michael Litzkow, Miron Livny, and Matt W. Mutka. Condor - A Hunter of Idle Workstation.

In Proceeding of the 8th International Conference of Distributed Computing Systems, pages

104–111. Springer-Verlag, June 1988. ISBN 0-8186-0865-X. doi: 10.1109/DCS.1988.12507.

Miron Livny and Rajesh Raman. The Grid: Blueprint for A New Computing Infrastructure,

chapter High-Throughput Resource Management, pages 311–337. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1999. ISBN 1-55860-475-8.

Dong Lu, Huanyuan Sheng, and Peter Dinda. Size-Based Scheduling Policies with Inac-

curate Scheduling Information. In Proceedings of the 12th IEEE International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-

tems, pages 31–38, Los Alamitos, CA, USA, 2004. IEEE Computer Society. doi:

http://doi.ieeecomputersociety.org/10.1109/MASCOT.2004.1348179.

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal. Alchemi: A .NET-

Based Enterprise Grid Computing System. In Proceedings of the 6th International Conference

on Internet Computing (ICOMP’05), Las Vegas, USA, June 2005.

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal. High-Performance

Computing: Paradigm and Infrastructure. Wiley Series on Parallel and Distributed Computing.

John Wiley & Sons, Hoboken, NJ, USA, October 2006. ISBN 978-0-471-65471-1.

177

Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and Richard F.

Freund. Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous

Computing Systems. In Proceedings of the 8th Heterogeneous Computing Workshop (HCW’ 99),

page 30, Los Alamitos, CA, USA, 1999. IEEE Computer Society. ISBN 0-7695-0107-9. doi:

http://doi.ieeecomputersociety.org/10.1109/HCW.1999.765094.

Carolyn Mair, Gada F. Kadoda, Martin Lefley, Keith Phalp, Chris Schofield, Martin J. Shepperd,

and Steve Webster. An Investigation of Machine Learning based Prediction Systems. Journal

of Systems and Software, 53(1):23–29, 2000.

Andrew Makhorin. GNU Linear Programming Kit. http://www.gnu.org/software/glpk, 2012.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-13360-1.

Kristi Morton, Magdalena Balazinska, and Dan Grossman. ParaTimer: A Progress Indicator for

MapReduce DAGs. In Proceeding of the ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’10, pages 507–518. ACM, 2010. doi: 10.1145/1807167.1807223.

Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. On Scheduling in MapRe-

duce and Flow-Shops. In Proceedings of the 23rd ACM Symposium on Parallelism in Algo-

rithms and Architectures, SPAA ’11, pages 289–298. ACM, 2011. ISBN 978-1-4503-0743-7. doi:

10.1145/1989493.1989540.

Arun C. Murthy. Hadoop. Next Generation MapReduce Scheduler. http://goo.gl/GACMM, March

2011.

Sang-Min Park, Jai-Hoon Kim, Young-Bae Ko, and Won-Sik Yoon. Dynamic Data Grid Replica-

tion Strategy Based on Internet Hierarchy. In Proceedings of the 2nd International Workshop

on Grid and Cooperative Computing (GCC ’03), volume 3033 of Lecture Notes in Computer

Science, pages 838–846. Springer, 2004. ISBN 3-540-21993-5. doi: 10.1007/b97163.

Linh T.X. Phan, Zhuoyao Zhang, Boon T. Loo, and Insup Lee. Real-Time MapReduce Scheduling.

Technical Report MS-CIS-10-32, Department of Computer and Information Science, University

of Pennsylvania, January 2010. URL http://repository.upenn.edu/cis reports/942/.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the Data:

Parallel Analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005. URL

http://dblp.uni-trier.de/db/journals/sp/sp13.html#PikeDGQ05.

178

Jorda Polo, David Carrera, Yolanda Becerra, Malgorzata Steinder, and Ian Whalley. Performance-

Driven Task Co-Scheduling for MapReduce Environments. In Proceedings of the IEEE Net-

work Operations and Management Symposium (NOMS), pages 373 –380, april 2010. doi:

10.1109/NOMS.2010.5488494.

Lincoln Pratson and Wences Gouveia. Seismic Simulations of Experimental Strata. In American

Association of Petroleum Geologists (AAPG) Bulletin, pages 129–144, 2002.

An Qin, Dandan Tu, Chengchun Shu, and Chang Gao. XConveryer: Guarantee Hadoop Through-

put via Lightweight OS-Level Virtualization. In Proceedings of the International Conference

on Grid and Cloud Computing, volume 0, pages 299–304. IEEE Computer Society, 2009. ISBN

978-0-7695-3766-5. doi: http://doi.ieeecomputersociety.org/10.1109/GCC.2009.62.

Arcot Rajasekar, Michael Wan, Reagan Moore, and Wayne Schroeder. Data Grid Federation. In

Hamid R. Arabnia and Jun Ni, editors, Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA ’04), volume 2, pages 541–

546, Las Vegas, Nevada, USA, June 2004. CSREA Press. ISBN 1-892512-24-6.

Kavitha Ranganathan and Ian Foster. Decoupling Computation and Data Scheduling

in Distributed Data-Intensive Applications. In Proceedings of the 11th IEEE Interna-

tional Symposium on High Performance Distributed Computing (HPDC ’02), page 352,

Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1686-6. doi:

http://doi.ieeecomputersociety.org/10.1109/HPDC.2002.1029935.

Kavitha Ranganathan and Ian T. Foster. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1(1):53–62, 2003. doi:

10.1023/A:1024035627870.

Kavitha Ranganathan and Ian T. Foster. Identifying Dynamic Replication Strategies for a High-

Performance Data Grid. In Proceedings of the 2nd International Workshop on Grid Computing

(GRID ’01), pages 75–86, London, UK, 2001. Springer-Verlag. ISBN 3-540-42949-2.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.

Evaluating MapReduce for Multi-Core and Multiprocessor Systems. In Proceedings of the 13th

IEEE International Symposium on High Performance Computer Architecture, HPCA ’07, pages

13–24. IEEE Computer Society, 2007. ISBN 1-4244-0804-0. doi: 10.1109/HPCA.2007.346181.

URL 10.1109/HPCA.2007.346181.

Aysan Rasooli and Douglas G. Down. An Adaptive Scheduling Algorithm for Dynamic Hetero-

geneous Hadoop Systems. In Proceedings of the 2011 Conference of the Center for Advanced

179

Studies on Collaborative Research, CASCON ’11, pages 30–44, Toronto, Ontario, Canada, 2011.

IBM Corp. URL http://dl.acm.org/citation.cfm?id=2093889.2093893.

Thomas Sandholm and Kevin Lai. MapReduce Optimization Using Regulated Dynamic Pri-

oritization. In Proceedings of the 11th International Joint Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’09, pages 299–310. ACM, 2009. doi:

10.1145/1555349.1555384.

Thomas Sandholm and Kevin Lai. Dynamic Proportional Share Scheduling in Hadoop. In Proceed-

ings of the 15th Workshop on Job Scheduling Strategies for Parallel Processing, pages 110–131.

Heidelberg, 2010.

Hongzhang Shan, Leonid Oliker, and Rupak Biswas. Job Super Scheduler Architecture and

Performance in Computational Grid Environments. In Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing (SC ’03), page 44, Washington, DC, USA, 2003. IEEE Computer

Society. ISBN 1-58113-695-1.

Alexander L. Stolyar and Tolga Tezcan. Control of Systems with Flexible Multi-Server Pools: A

Shadow Routing Approach . Bell Labs Technical Memo, Revised, 2009.

Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut Robic, and Rajkumar Buyya. A Toolkit

for Modelling and Simulating Data Grids: An Extension to GridSim. Concurrency and Com-

putation: Practice & Experience, 20(13):1591–1609, September 2008. ISSN 1532-0626. doi:

10.1002/cpe.v20:13.

Martin Swany and Rich Wolski. Representing Dynamic Performance Information in Grid

Environments with the Network Weather Service. In Proceedings of the 2nd IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGRID), page 48,

Los Alamitos, CA, USA, 2002. IEEE Computer Society. ISBN 0-7695-1582-7. doi:

http://doi.ieeecomputersociety.org/10.1109/CCGRID.2002.1017111.

Zhuo Tang, Junqing Zhou, Kenli Li, and Ruixuan Li. MTSD: A Task Scheduling Algorithm

for MapReduce Base on Deadline Constraints. In Proceedings of the 26th IEEE International

Parallel and Distributed Processing Symposium Workshops & PhD Forum, volume 0, pages

2012–2018, Los Alamitos, CA, USA, 2012. IEEE Computer Society. ISBN 978-1-4673-0974-5.

doi: http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2012.250.

The European DataGrid Project, October 2007. URL http://eu-datagrid.web.cern.ch/

eu-datagrid.

180

The Large Hadron Collider, CERN, January 2004. URL http://lhc-new-homepage.

web.cern.ch/lhc-new-homepage/.

The NEESGrid System Integration Team, August 2004. URL http://it.nees.org/

documentation/pdf/TR 2004 13.pdf.

Chao Tian, Haojie Zhou, Yongqiang He, and Li Zha. A Dynamic MapReduce Scheduler for

Heterogeneous Workloads. In Proceedings of the 18th International Conference on Grid and

Cooperative Computing, GCC ’09, pages 218–224, Washington, DC, USA, 2009. IEEE Computer

Society. ISBN 978-0-7695-3766-5. doi: 10.1109/GCC.2009.19.

Jason Venner. Pro Hadoop. Apress, Berkely, CA, USA, 1st edition, 2009. ISBN 1430219424,

9781430219422.

Srikumar Venugopal, Rajkumar Buyya, and Lyle Winton. A Grid Service Broker for Scheduling

Distributed Data-Oriented Applications on Global Grids. In Proceedings of the 2nd Workshop

on Middleware for Grid Computing (MGC ’04), pages 75–80, New York, NY, USA, 2004. ACM.

ISBN 1-58113-950-0. doi: http://doi.acm.org/10.1145/1028493.1028506.

Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A Tax-

onomy of Data Grids for Distributed Data Sharing, Management, and Process-

ing. ACM Computing Surveys (CSUR), 38(1):3, 2006. ISSN 0360-0300. doi:

http://doi.acm.org/http://doi.acm.org/10.1145/1132952.1132955.

Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. ARIA: Automatic Resource Infer-

ence and Allocation for MapReduce Environments. In Proceedings of the International Confer-

ence on Autonomic Computing (ICAC), Karlsruhe, Germany, June 2011. IEEE/ACM.

Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vibhore Kumar, Sujay Parekh,

Kun-Lung Wu, and Andrey Balmin. FLEX: A Slot Allocation Scheduling Optimizer for MapRe-

duce Workloads. In Proceedings of the ACM/IFIP/USENIX 11th International Conference on

Middleware, Middleware ’10, pages 1–20. Springer-Verlag, 2010. ISBN 978-3-642-16954-0.

Worldwide LCG Computing Grid, November 2012. URL http://wlcg.web.cern.ch.

Lingyun Yang, Jennifer M. Schopf, and Ian Foster. Conservative Scheduling: Us-

ing Predicted Variance to Improve Scheduling Decisions in Dynamic Environments.

In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, page 31, Los

Alamitos, CA, USA, 2003. IEEE Computer Society. ISBN 1-58113-695-1. doi:

http://doi.ieeecomputersociety.org/10.1109/SC.2003.10015.

181

Matei Zaharia, Dhruba Borthakur, Joydeep S. Sarma, Khaled Elmeleegy, Scott Shenker,

and Ion Stoica. Job Scheduling for Multi-User MapReduce Clusters. Technical Report

UCB/EECS-2009-55, EECS Department, University of California, Berkeley, April 2009. URL

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html.

Matei Zaharia, Dhruba Borthakur, Joydeep S. Sarma, Khaled Elmeleegy, Scott Shenker, and Ion

Stoica. Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster

Scheduling. In Proceedings of the 5th European Conference on Computer Systems, pages 265–

278, Paris, France, 2010. doi: http://doi.acm.org/10.1145/1755913.1755940.

Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-art and Re-

search Challenges. Journal of Internet Services and Applications, 1(1):7–18, May 2010. doi:

10.1007/s13174-010-0007-6.

Xuehai Zhang, Jeffrey L. Freschl, and Jennifer M. Schopf. A Performance Study of Moni-

toring and Information Services for Distributed Systems. In Proceedings of the 12th IEEE

International Symposium on High Performance Distributed Computing (HPDC ’03), page

270, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1965-2. doi:

http://doi.ieeecomputersociety.org/10.1109/HPDC.2003.1210036.

Yuanyuan Zhang, Wei Sun, and Yasushi Inoguchi. Predicting Running Time of Grid

Tasks based on CPU Load Predictions. In Proceedings of the 7th IEEE/ACM

International Conference on Grid Computing (Grid06), pages 286–292, Los Alami-

tos, CA, USA, 2006. IEEE Computer Society. ISBN 1-4244-0343-X. doi:

http://doi.ieeecomputersociety.org/10.1109/ICGRID.2006.311027.

Fred Zlotnick. The POSIX.1 Standard: A Programmer’s Guide. Benjamin Cummings, Redwood

City, USA, 1991. ISBN 0-8053-9605-5.

182

