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Abstract

In this thesis we are concerned with the complexity of formalizing reasoning in

Combinatorial Matrix Theory (CMT). We are interested in the strength of the

bounded arithmetic theories necessary in order to prove the fundamental results of this

field. Bounded Arithmetic can be seen as the uniform counterpart of Propositional

Proof Complexity.

Perhaps the most famous and fundamental theorem in CMT is the König’s Min-

Max Theorem (KMM) which arises naturally in all areas of combinatorial algorithms.

As far as we know, in this thesis we give the first feasible proof of KMM. Our results

show that Min-Max reasoning can be formalized with uniform Extended Frege.

We show, by introducing new proof techniques, that the first order theory LA with

induction restricted to ΣB
1 formulas—i.e., restricted to bounded existential matrix

quantification—is sufficient to formalize a large portion of CMT, in particular KMM.

ΣB
1 -LA corresponds to polynomial time reasoning, also known as ∃LA.

While we consider matrices over {0, 1}, the underlying ring is Z, since we require

that ΣA compute the number of 1s in the matrix A (which for a 0-1 matrix is simply

the sum of all entries—meaning ΣA). Thus, over Z, LA translates to TC0-Frege,

while, as mentioned before, ∃LA translates into Extended Frege.

In order to prove KMM in ∃LA, we need to restrict induction to ΣB
1 formulas.
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The main technical contribution is presented in Claim 4.3.4, Section 4.3.3. Basically,

we introduce a polynomial time procedure, whose proof of correctness can be shown

with ∃LA, that works as follow: given a matrix of size e× f such that e ≤ f , where

the minimum cover is of size e, our procedure computes a maximum selection of size

e, row by row.

Furthermore, we show that Menger’s Theorem, Hall’s Theorem, and Dilworth’s

Theorem—theorems related to KMM—can also be proven feasibly; in fact, all these

theorems are equivalent to KMM, and the equivalence can be shown in LA. We believe

that this captures the proof complexity of Min-Max reasoning rather completely.

We also present a new Permutation-Based algorithm for computing a Minimum

Vertex Cover from a Maximum Matching in a bipartite graph. Our algorithm is

linear-time and computationally very simple: it permutes the rows and columns

of the matrix representation of the bipartite graph in order to extract the vertex

cover from a maximum matching in a recursive fashion. Our Permutation-Based

algorithm uses properties of KMM Theorem and it is interesting for providing a new

permutation—and CMT—perspective on a well-known problem.
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Chapter 1

Introduction

“A major goal of my field is to sort
out which kinds of computer
problems can be solved efficiently,
and which are intractable.
Impossibility proofs can help in
constructing useful algorithms in the
same way that the conservation of
energy principle helps in the design
of machines: Don’t waste your time
trying to build a perpetual motion
machine.”

Stephen A. Cook

Our main goal is to formalize concepts from Combinatorial Matrix Theory using a

Proof Complexity approach.

We show a feasible framework to analyze and formalize concepts in Combinatorial

Matrix Theory—concepts which are a cornerstone in different fields of Discrete Math-

ematics and Computer Science. We take a proof-complexity approach to formalizing

Min-Max type of reasoning within our feasible framework. Also, we will see some

examples—inside of our framework—of combinatorial-graph theoretical theorems such

as Menger’s Connectivity Theorem, Hall’s System of Distinct Representative Theorem,

and Dilworth’s Decomposition Theorem for Partially Ordered Sets.
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1.1 Motivation

There are two fundamental pillars with respect to the motivation of this thesis:

Combinatorial Matrix Theory and Bounded Reverse Mathematics. Inside each of these

vast fields, we show what motivates us.

From Combinatorial Matrix Theory

Combinatorial Matrix Theory is a branch of mathematics that combines Graph

Theory, Combinatorics and Linear Algebra; it is concerned with the use of matrix

theory and linear algebra to prove combinatorial theorems.

Combinatorial Matrix Theory studies patterns of entries in a matrix rather than

values, using graphs or digraphs to describe patterns. In some applications, only the

sign of the entry—or whether it is nonzero—is known, not the numerical value, and

in other cases, some entries are missing. In some sense, it considers matrices as two

dimensional strings.

From the computational-algorithmic point of view, we were motivated with the

Combinatorial Matrix Theory field by showing that its application in Theoretical

Computer Science field, for instance, yields not only a new Permutation-Based Al-

gorithmic approach to a well-known problem (e.g., Minimum Vertex Cover Problem,

see Chapter 3) but also several advantages like simplicity, more understanding of the

structural concepts behind the Permutation-Based Algorithm, all this, maintaining a

good performance in the running time, as we show in Chapter 3.

The algorithmic problem, named Vertex Cover Problem, roughly speaking, says

that “Vertex Cover (VC) on input 〈G, k〉 graph G and parameter k asks if there is a

cover C of G of size at most k, where a cover C is a subset of vertices in VG such that

each edge in EG has at least one end point in C.”

2
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In a bipartite case, there is a close link between V C and matching; a V C can be

obtained from a maximum matching by selecting one end point from each edge in the

matching.

There is—in the finite case—no feasible algorithm which means that there is no

algorithm that goes through the graph and, as it finds each edge, decides whether to

put it into the required matching, and if so, which vertex goes into the desired cover.

In order to understand more the motivations related to this particular problem,

let us see some historical events. In 1916, in two nearly identical papers—one

in German [Kön16b], the other in Hungarian [Kön16a]—König proved that every

doubly stochastic matrix1 with non-negative entries must have a non-zero term in

its determinant. In the same papers König also proved that every regular2 bipartite

graph has a perfect matching. In the late 1950’s Dulmage and Mendelsohn published

papers ([DM58a, DM58b]) in which they worked out a canonical decomposition

theory for bipartite graphs in terms of maximum matchings and minimum vertex

covers. In 1972 the problem of finding a minimum vertex cover was proven to be

a typical example of an NP-hard problem; in fact, it was one of Karp’s 21 original

NP-complete problems [Kar72]. (For more details on NP problems see [GJ79]). In

the 1980’s excellent surveys of Min-Max results appeared, such as [Sch82] and [LP86].

The original paper presenting the HK-Algorithm is [JEH73].

On one hand, it is well-known that for general graphs, the maximum matching

problem can be solved in polynomial time by Edmond’s blossom shrinking algo-

rithm [Edm65], and for bipartite graphs also in polynomial time by Hopcroft-Karp

1A doubly stochastic matrix of order n is a non-negative n× n matrix A in which all rows and
columns sums are equal to 1.

2A graph is regular is every vertex has the same degree, where degree of a vertex v is the number
of edges incident with v.

3
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algorithm [JEH73].

On the other hand, the minimum vertex cover problem, as we mentioned before, for

general graphs is NP-complete, but surprisingly, for bipartite graphs, it is polynomial

time. In this last case, König’s Min-Max Theorem makes the difference, because it

relates matchings and covers allowing minimum vertex cover and maximum matching

to be computed feasibly.

From Bounded Reverse Mathematics

Studying the complexity of mathematical practice, some structures are more

complicated than others, some constructions more complicated than others, and some

proofs more complicated than others. Understanding how to measure this complexity

is interesting. From a computational viewpoint, it is important to know what part of

mathematics can be done by mechanical algorithms, and, even for the part that can

not be done mechanically, we want to know how constructive are the objects we deal

with.

The main goal of Bounded Reverse Mathematics is to find the weakest theory

capable for proving a given theorem—in our case we “use” as “a source of theorems”

the mathematical field of Combinatorial Matrix Theory—and in general these can

be proved in weak theories. The adjective Bounded refers to bounds on quantified

variables.

The point of Proof Complexity is to see which combinatorial theorems have feasible

proofs. Then, Proof Complexity takes the P vs. NP problem from computation and

“translates” it into NP vs. co-NP in proofs.

More precisely, Proof Complexity is an area of Mathematics and Theoretical

Computer Science that studies the length of proofs in propositional logic. It is

4
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an area of study that is fundamentally connected both to major open problems of

Computational Complexity Theory and practical properties of Automated Theorem

Provers [BP98].

A propositional formula γ is a tautology if γ is true under all truth value assignments.

Let TAUT be the set of all tautologies. A propositional proof system is a polytime

predicate P ⊆ Σ∗ × TAUT such that:

γ ∈ TAUT ⇐⇒ ∃xP (x, γ)

P is poly-bounded if there exists a polynomial p such that:

γ ∈ TAUT ⇐⇒ ∃x(|x| ≤ p(|γ|) ∧ P (x, γ))

The existence of a poly-bounded proof system is related to the fundamental

question:

P
?
= NP

In 1979 S. Cook and R. Reckhow [CR79] proved that NP=co-NP if and only if there

is a poly-bounded propositional proof system for tautologies. On the other hand,

if P = NP then NP = co-NP. Thus, if there is no poly-bounded proof system, then

NP 6= co-NP, and that in turn would imply that P 6= NP.

A fundamental notion that appears throughout this thesis is that of feasible proof

(and feasible computation, or polynomial time computation). Feasible proofs were

introduced by Cook in [Coo75], and they formalize the idea of tractable reasoning;

a theorem can be proven feasibly, if all the computations involved in the proof are

polynomial time computations, and the induction can be “unwound” feasibly. (For

5
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more details about why we want to find feasible proofs see Section 4.1.1). Combinatorial

theorems of interest in computer science often have polynomial time proofs, and

appear throughout all corners of Combinatorial Matrix Theory field, examples of

such theorems are König’s Min-Max Theorem, Dilworth’s Theorem, Hall’s Theorem,

Menger’s Theorem, etc. (For more details see Chapter 4).

From the complexity-theoretic point of view, the idea is to find the smallest

complexity class such that a theorem can be proved using concepts in that class.

In this thesis we concentrate our study into the LA-Theory (see [Sol01]). The

main reason is that LA was designed for reasoning in matrices.

From a Proof Complexity

The Proof Complexity (PC) of Combinatorial Matrix Theory (CMT) is related to

the Proof Complexity of linear algebra, and hence we are going to use LA-Theory

in order to formalize reasoning in CMT.

The PC has two aspects, the uniform concerns the power of logical theories

required to prove a given assertion, and the nonuniform aspect which concerns

the power of propositional proof systems required to yield polynomial size proofs

of a tautology family representing the assertion. Here we are concerned with

the uniform case.

We concentrate on theorems involving concepts of smaller complexity especially

below the polynomial hierarchy. More specifically, we classify these theorems

based on the computational complexity of concepts needed to prove them. This

is a fundamental issue of PC, which it will shed light on complexity classes, by

providing proofs of low complexity.

6
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The Proof Complexity of Linear Algebra, that is, the LA-Theory, roughly

speaking, is the complexity of concepts needed to prove the basic properties of

linear algebra operations.

More precisely, LA-Theory is a field-independent logical theory for expressing

and proving matrix properties. LA proves all the ring properties of matrices

(i.e., commutativity of matrix addition, associativity of matrix products, etc.).

While LA is strong enough to prove all the ring properties of matrices, its

propositional proof complexity is low, that is, all the theorems of LA over the

standard field of two elements, translate into families of propositional tautologies

with polynomial size bounded-depth Frege proofs, with “⊕” gates of unbounded

fan-in, that is, AC0[2]-Frege, in general, LA-Theory over fields Zp: polynomial

Bounded Depth Frege with MOD p gates translate into the complexity class

AC0[p] (see [Sol01] for this result).

While we consider matrices over {0, 1}, the underlying ring is Z, since we required

that ΣA compute the number of 1s in the matrix A (which for a 0-1 matrix is

simply the sum of all entries—meaning ΣA). Thus, over Z, LA translate to

TC0-Frege, [SC04, §6.5].

So, we investigate a formalization of Min-Max theorems in the LA-Theory, with a

detailed proof complexity analysis, with the main goal of “extracting” the weakest

fragment of LA that can prove feasible, for instance, König Min-Max Theorem.

To be more specific, sometimes we use a conservative extension named ∃LA or

∀LA which incorporates bounded existential (universal) matrix quantifiers to the

quantifier-free LA formulas, sometimes, we refer to these conservative extensions

7
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of LA like a Bounded Matrix Algebra3 Theory, bounded because of the

bounds in matrix quantifiers and Matrix Algebra because, to be more specific,

LA-Theory is a Matrix Algebra Theory. The theory ∀LA is the extension of

LA that also includes induction axioms for ∀LA formulas, and ∃LA extension

is similar. Besides, these theories translate into Extended Frege.

We use the approach—the Proof Complexity view—outlined in [CN10] which

also constitutes the main reference to the field of Proof Complexity for our

propose. The reader interested in general treatises in Proof Complexity should

check [Kra95, Bus98], and the references contained in these.

The following note has the propose of summarizing what is Reverse Mathematics

about.

Inside computability theory, Reverse mathematics analyzes the complexity of

mathematical theorems in terms of the complexity of the constructions needed for

their proofs.

The questions of which axioms and rules are necessary to do mathematics is of

great importance in Foundations of Mathematics and is the main question behind

Simpson and Friedman’s program of Reverse Mathematics. To analyze this question

formally it is necessary to fix a logical system. Reverse Mathematics deals with the

system of Second Order Arithmetic. Second Order Arithmetic, though much weaker

than set theory, is rich enough to be able to express an important fragment of classical

mathematics.

The idea of Reverse Mathematics goes as follows. We start by fixing a basic

system of axioms as a base. The most commonly used base system is called RCA0,

3In particular we use this name in the mind-map depicted at the end of this section.

8
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that roughly speaking says that the natural number form an ordered semi-group

and that a computable set exists. More formally, RCA0 is the most fundamental

subsystem4 of GF (2), named for the Recursive Comprehension Axiom. This restrict

the comprehension scheme to ∆0
1-formulas, i.e., those which define recursive sets5. The

subscript 0 in the name indicate that RCA0 only has limited induction.

In our case, we use the axioms of LA-Theory, that is, all the axioms for equality

(for indices, field elements, and matrices), the axioms for indices which are the usual

axioms of Robinson’s Arithmetic in LA together with axioms defining div, rem, and

cond; the axioms for matrices (including those that define the behaviour of constructed

matrices, as well as the axioms defining Σ function), and finally, the axioms for field

elements are the usual field axioms.

Also we use the axiom convention: All substitution instances of axioms are also

axioms. Thus, our axioms are really axiom schemas.

Recall that, ΣB
0 = ΠB

0 formulas are those which correspond to the set of matrix-

quantifier-free bounded formulas, for instance, bounded index-type element formula.

ΣB
1 formulas are those which when presented in prenex form, contain a single block of

bounded existential matrix quantifiers—ΠB
1 are defined similarly, except the block of

quantifiers is universal.

In general, ΣB
i is the set of formulas which, when presented in prenex form, start

with a block of bounded existential matrix quantifiers, followed by a block of bounded

universal matrix quantifiers, with i such alternating blocks. The set ΠB
i is defined

similarly, except it starts with a block of universal quantifiers.

4A subsystem if GF (2) is a formal system S in the language of Second Order Arithmetic where
each axiom φ ∈ S is a theorem of GF (2).

5A set A ∈ N is recursive if and only if its characteristic function f : N → {0, 1} is total and
computable.

9
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Finally, we restrict the induction rule to ΣB
i -formulas (eventually ΠB

i -formulas),

getting the ΣB
i -IND rule, respectively ΠB

i -IND rule. (For more details about LA see

Section 4.1.2 , and Appendix A.5).

Now, given a theorem of “ordinary” mathematics (we work mainly with Combina-

torial Matrix Theory theorems), the question we ask is what axioms and rules do we

need to add to the base system to prove this theorem. It is often the case in Reverse

Mathematics that we can show that a certain set of axioms and rules are necessary to

prove a theorem by showing, using the base system that the axioms and rules follow

from the theorem. Because of this idea, this program is called Reverse Mathematics.

(For more details see [Sim99, Sim92]).

Motivation Mind-Map

The following mind-map summarize the fundamentals sources of motivations and

their relation within this thesis.

10
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1.2 Contributions

In this section we present the contributions of this thesis in order of major importance.

The main contributions of this thesis are concentrated in Chapter 4 in which we

present a feasible proof of König’s Min-Max Theorem, by consequence an important

series of proofs of several main theorems in different areas, like Combinatorics, Graph

Theory, Order Theory, etc. We present feasible proofs of Dilworth’s Decomposition

Theorem for partial order sets (see Section 4.3.5.3), a feasible proof of Hall’s System

of Distinct Representatives Theorem (see Section 4.3.5.2), and a feasible proof of

Menger’s Connectivity Theorem (see Section 4.3.5.1), a particular case of the well-

known Max-Flow Min-Cut Theorem.

To be more precise, in Chapter 4 we show that the well-known König’s Min-Max

Theorem (KMM), a fundamental result in Combinatorial Matrix Theory, can be

proven in the First Order Theory LA with induction restricted to ΣB
1 formulas. The

standard proofs of KMM which requires ΠB
2 induction (see Appendix A.1), and hence

does not yield feasible proofs (see Section 4.1.1)—while our new approach does. In

order to prove KMM in ∃LA, we need to restrict induction to ΣB
1 formulas. The

main technical contribution is presented in Claim 4.3.4 Section 4.3.3. Basically, we

introduce a polynomial time procedure, whose proof of correctness can be shown with

∃LA, that works as follow: given a matrix of size e× f such that e ≤ f , where the

minimum cover is of size e, our procedure computes a maximum selection of size e,

row by row.

LA is a weak theory that essentially captures the ring properties of matrices;

however, equipped with ΣB
1 induction LA is capable of proving KMM, and a host

of fundamentals combinatorial-graph theory theorems such as Menger’s, Hall’s and

12
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Dilworth’s Theorems. Therefore, our result formalizes Min-Max type of reasoning

within a feasible framework.

More formally, in Chapter 4 we show the following two theorems :

Theorem ∃LA ` KMM.

Theorem The theory LA proves the equivalence of KMM, Menger’s, Hall’s and

Dilworth’s Theorems.

Besides, in Chapter 4 we show the standard KMM Theorem is stated as an

implication (see Equation (4.9)), and hence it makes no assertions about the actual

existence of a minimal covering or maximal selection of 1s, let alone how to compute

them. It only says that if they do exist, they are equal. However, the proof of

Lemma 4.3.2 suggests an algorithm for computing both.

Note that computing a minimal cover can be accomplished in polytime with

the well-known Karp-Hopcroft (KH-Algorithm)—sometimes called HK-Algorithm,

see [JEH73]—as follows: First use the KH-Algorithm to compute a “maximal matching,”

which in this case is simply a maximal selection of 1s (when we view A—in the natural

way —as the adjacency matrix of a bipartite graph). Then in Chapter 3 we present

an algorithm to convert, in linear time, a maximal selection into a minimal cover.

Certainly the correctness of the algorithms mentioned in the above paragraph can

be shown in ∃LA (as it captures polytime reasoning—see [Sol01]), and so it follows

that we can prove in ∃LA the existence of a minimal cover and maximum selection.

Therefore, ∃LA can prove something stronger than (Equation 4.9). Namely, it can

not only show that if we have a minimal cover and a maximal selection, then they

have the same size, but rather, that there always exists a minimal cover and maximal

selection, and the two are of equal size.

13
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However, instead of doing the heavy lifting necessary to formalize the correctness

of HK-Algorithm and [SF12] in ∃LA, we present a new simple polytime algorithm

for computing minimal covers based on the proof of Lemma 4.3.2. Note that using a

similar argument we show the existence of the dual polytime algorithm for maximal

selection too.

On the other hand, in Chapter 3 we present a new linear-time Permutation-Based

Algorithm for computing minimum vertex covers from maximum matching. More

precisely, we present our new algorithm that on input G = (V,E) and a maximum

matching MG, constructs a vertex cover for G in time |V |2, and therefore substantially

faster than the natural reduction from search to decision when the number of edges,

|E|, is large.

In other words, the contribution is a new Permutation-Based Algorithm for com-

puting a Minimum Vertex Cover from a Maximum Matching in a bipartite graph. Our

algorithm is linear-times and computationally very simple: it permutes the rows and

columns of the matrix representation of the bipartite graph in order to extract the

vertex cover from the matching in a recursive fashion. Our algorithm uses properties of

König’s Min-Max Theorem and it is interesting for providing a new permutation—and

Combinatorial Matrix Theory—perspective on a well-known problem.

In Section 3.4 we study in more detail the computational complexity of our

Permutation-Based Algorithm, inside of this section we show that we make use of

the concept of cycle decomposition of permutations to use linear representation of

permutation matrices, and to operate on them.

14
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1.3 Summary of results

In this section we summarize—again in order of major importance—the main results

of this thesis in a table format.

Table 1.1: Summary of results by Chapter[Section]

Chapter[Section] Summary

4[4.3.3] We present a feasible proof of König’s Min-Max Theorem.

More formally, we prove ∃LA ` KMM (Theorem 4.3.1).

Continued on next page

15



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

Table 1.1 – Continued from previous page

Chapter[Section] Summary

4[4.3.4] The standard König’s Min-Max Theorem is stated as an

implication (see Equation 4.9), and hence it makes no

assertions about the actual existence of a minimal cover-

ing or maximal selection of 1s, let alone how to compute

them. It only says that if they do exist, they are equal.

However, the proof of Lemma 4.3.2 suggests an algo-

rithm for computing both. We present such new simple

polytime algorithm for computing minimal covers and

maximum matching based on the proof of Lemma 4.3.2.

Besides, we show that ∃LA can prove something stronger

than Equation 4.9. Namely, it can not only show that if

we have a minimal cover and a maximal selection, then

they have the same size, but rather, that there always

exists a minimal cover and maximal selection, and the

two are of equal size. In short, we emphasize that there

is a difference between the following two statements:

• if minimum cover and maximum selection exists,

then they are equal, which is how it is KMM stated

in Equation 4.9.

• minimum cover and maximum selection exists and

are equal, which is what we proved.

Continued on next page
16
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Table 1.1 – Continued from previous page

Chapter[Section] Summary

4[4.3.5] We prove that the theory LA proves the equivalence of

KMM, Menger’s, Hall’s and Dilworth’s Theorems. To be

more specific, we prove the following important lemmas:

• LA ∪Menger ` KMM (Lemma 4.3.3), and

LA ∪KMM ` Menger (Lemma 4.3.4),

• LA ∪ Hall ` KMM (Lemma 4.3.6), and

LA ∪KMM ` Hall (Lemma 4.3.5),

• LA ∪KMM ` Dilworth (Lemma 4.3.7), and

LA ∪Dilworth ` KMM (Lemma 4.3.9).

In other words:

• We formalize concepts in LA-Theory, and

• all are equivalents in LA.

Continued on next page
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Table 1.1 – Continued from previous page

Chapter[Section] Summary

3[Sec. 3.3] We present a new linear-time Permutation-Based Al-

gorithm for computing Minimum Vertex Covers from

Maximum Matchings. Expressed in the following theo-

rem (Theorem 3.3.1):

Theorem Given a bipartite graph G = (V = V1∪V2, E),

we obtain a procedure for computing a minimum ver-

tex cover from a maximum matching that runs in

time |〈A,MA〉| = |V |2. That is, given a matrix and

the corresponding maximum matching, we can compute

the vertex cover in linear time (in the size of the input).

With the follow characteristics:

• It’s interesting for providing a new permutation

perspective on a well-known problem Minimum

Vertex Cover Problem.

• It’s linear-times and computationally very simple.

• It works directly on a given maximum matching

M .

• It doesn’t recompute the bipartite graph G.

• It’s much faster when |E| >> |
√
|V ||.

• It uses a simple and more accurate data Structure.

Continued on next page
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Table 1.1 – Continued from previous page

Chapter[Section] Summary

3[Sec. 3.4.1.2] We use of the concept of cycle decomposition of per-

mutations to use linear representation of permutation

matrices, and operate on them.

3 [Sec. 3.4.1.3] Tight Complexity Analysis of our Permutation-Based

Algorithm, with R(n) ≤ n2 where R(n) is the maximum

number of steps in the worst-case that our procedure

takes on matrix of size n. (See Claim 3.4.2)

Appendix[ A.1] We give a ΠB
2 -Inductive proof of König’s Min-Max The-

orem in LA.

Appendix[ A.2] Give a more detailed LA-proof of Lemma 4.3.1 Sec-

tion 4.1

Appendix[ A.3] Give a detailed partial correctness and termination proof

of our Permutation-Based Algorithm (Chapter 3)

19



Chapter 2

Background

In this chapter we shall see two major algorithms to solve the problem of finding a

maximum matching, they are the well-known approach called Hungarian algorithm,

and the most effective approach known named Hopcroft-Karp algorithm.

Given a bipartite graph G = (V = V1 ∪ V2, E), i.e., a graph where E ⊆ V1 × V2,

and let |E| = m and |V | = n, both algorithm are polynomial time, the first one with

a running time of O(mn), and the second one improving the running time of the first

one by O(m
√
n).

The main goal of this chapter is show these different approaches to the maximum

matching problem, in order to have enough background to continue with the exposition

of our Permutation-Based Algorithm in Chapter 3.

We finish this chapter with a slightly formal and small introduction to what is

Combinatorial Matrix Theory, which not only is a very rich mathematical field by “its

ingredients”—graph theory, linear algebra, and combinatorics—but also it is a rich

source of algorithmic concepts and very useful theorems to Computer Science.
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2.1 Definitions

In this section we are going to review a few definitions that are used in the analysis of

the Hungarian algorithm (Section 2.2), the Hopcroft-Karp algorithm (Section 2.3),

and throughout the rest of the thesis.

Sometimes, in order to make more self-contained each chapter or section, we shall

review a few definitions, and add another.

All the definitions, lemmas, and theorems that we present in this section, and some

classical result that we shall show in this chapter come most from [We01], and [Zwi09].

For more detail turn to [ADH98, CLRS09, Als99].

We begin with the basic terminology,

Definition 2.1.1 A graph G is a triple consisting of a vertex set VG or simply V

when the context is clear, an edge set EG or simply E, and a relation that associates

with each edge two vertices—no necessary distinct—called its endpoints.

Every graph mentioned in this thesis is finite—vertex and edge sets finite—unless

explicitly constructed otherwise. When in an edge the endpoints are equals, the edge

is called loop. A graph that has no multiple edges and it has no loops is a simple

graph. When u and v are the endpoints of an edge, they are adjacent and neighbours.

Some useful concepts and terminology about the structure of graphs are expressed

in the following important definition:

Definition 2.1.2 The complement G of a simple graph G is the simple graph with

vertex set VG defined by (u, v) ∈ EG ⇐⇒ (u, v) /∈ EG. A clique in a graph is a

set of pairwise adjacent vertices. An independent set in a graph is a set if pairwise

nonadjacent vertices.
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Definition 2.1.3 A directed graph or digraph G is a triple consisting of a vertex set

VG or simply V when the context is clear, an edge set EG or simply E, and a function

assigning each edge an ordered pair of vertices. The first vertex of the ordered pair is

the tail of the edge, and the second is the head; together, they are the endpoints. We

say that an edge is an edge from its tail to its head.

The previous concept—Definition 2.1.2—is used, for instance, in the core of

Dilworth’s Theorem.

Definition 2.1.4 Let G = (V,E) be a graph, we say that G is a bipartite graph if

V = V1 ∪ V2 and E ⊆ V1 × V2, with V1 ∩ V2 = 0.

Sometimes, according to the context, we will use the equivalent classical definition.

Let G = (V1 ∪ V2, E) be a bipartite graph, where V1 and V2 are set of vertices of G

and E a set of edges of G, with |V1|+ |V2| = |V | = n and |E| = m.

The follows are some definitions which will be useful, particularly, in the context

of Menger’s Theorem.

Definition 2.1.5 A path of length n from a vertex u to a vertex u′ in a graph

G = (V,E) is a sequence v1, v2, . . . , vn of vertices such that u = v1, u
′ = vn, and

∀i ∈ {1, 2, . . . , n − 1} (vi, vi+1) ∈ E. A path is simple if all vertices in the path are

distinct. In a directed graph, a path v1, v2, . . . , vn form a cycle is v1 = vn and the path

contains at least one edge. Te cycle is simple if, in addition, v1, v2, . . . , vn are distinct.

A self-loop is a cycle of length 1.

Definition 2.1.6 A subgraph of a graph G is a graph H such that VH ⊆ VG and

EH ⊆ EG and the assignment of endpoints to edges in H is the same as in G. Then we

say G contains H, meaning H ⊆ G. A graph G is connected is each pair of vertices in
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G belongs to a path, otherwise, G is disconnected. A maximal connected subgraph of

G is a subgraph that is connected and is not contained in any other connected subgraph

of G, it is called component of G.

We are not using the cycle definition explicitly throughout the thesis, but what we

do is to use it implicitly because sometimes we are going to mention a special class

of bipartite graphs named tree—a connected, simple and acyclic graph. A union of

disjoint trees is called forest.

Now we define two of the most useful representation of graphs.

Definition 2.1.7 Let G be a graph with vertex set VG = {v1, . . . , vn} and edge set

EG = {e1, . . . , em}. The adjacency matrix of G, denoted AG, is the n× n matrix in

which each entry aij is the number of edges in G with endpoints {vi, vj}. The incident

matrix WG is the n × m matrix in which entry wij = 1 if vi is an endpoint of ej,

otherwise wij = 0. The degree of vertex v is the number of incident edges.

Note that an adjacency matrix is defined by a vertex ordering. Every adjacency

matrix of an undirected graph is symmetric. An adjacency matrix of a simple graph

G has entries 0,1—if the edges have no associated cost—with 0s on the main diagonal.

The degree of v is the sum of the entries in the row for v in either AG or WG.

We finish this section introducing an important problem called Maximum Matching

Problem, for which we shall define some concepts and lemmas to be more clear the

context of the problem. Before continue, note the difference between “maximum” and

“maximal”, as adjectives, maximum means “maximum-sized”, and maximal means

“no larger one contains this one”. So, every maximum set is a maximal set, but

maximal set need not have maximum size. When describing numbers rather than

23



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

containment, the meanings are the same, for instance, maximum vertex degree equals

to maximal vertex degree. Dual aspect has same definition, that is, minimum and

minimal concepts.

Let G = (V,E) be an undirected graph. A set M ⊆ E is a matching if no two

edges in M share a common vertex. A vertex v is matched by M if it is part of (is

contained) in an edge of M , and unmatched otherwise.

Definition 2.1.8 Let G be a graph and let M be a matching in G. A path P is an

alternating path with respect to M if an only if among every two consecutive edges

along the path, exactly one belongs to M .

Definition 2.1.9 Let A and B be sets. We define their symmetric difference by

A⊕B = (A−B) ∪ (B − A).

For the proofs of the follow lemmas and theorems consult [Zwi09], and the classical

textbooks of algorithms, for instance [CLRS09, AHU74, AHU83].

Lemma 2.1.1 If M is a matching and P is an alternating path with respect to M ,

where each endpoint of P is either unmatched by M or matched by the edge of P

touching it, then P ⊕M is also a matching.

Proof: See, for instance, [Zwi09, pg. 2]. �

Definition 2.1.10 An augmenting path P with respect to a matching M is an alter-

nating path that starts and ends in unmatched vertices.

Observe that letting G be an undirected graph and let M1 and M2 be matchings

in G, then, the subgraph (V,M1 ⊕M2) is constituted by isolated vertices, alternating

paths with respect to both M1 and M2.
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The following lemmas and concluding theorem clarify the relation among matching,

alternating paths, and augmenting paths.

Lemma 2.1.2 Let G be an undirected graph and let M and M ′ be matchings in G

such that |M ′| = |M | + l, where l ≥ 1. Then, there are at least l vertex disjoint

augmenting paths in G with respect to M . At least one of these augmenting paths is

of length at most (n/l)− 1.

Proof: See, for instance, [Zwi09, pg. 3]. �

Theorem 2.1.1 ([Ber57]) Let G be an undirected graph and let M be a matching in

G. Then, M is a maximum matching in G if an only if there are no augmenting paths

with respect to M in G.

Proof: See, for instance, [Zwi09, pg. 3]. �

We finish this section announcing the well-known problem called the Maximum

Matching Problem:

Let G = (V1 ∪ V2, E) be a bipartite graph, let M a matching in G. The problem is

to find a maximum matching in G.

The problem arises in many applications, particularly in areas of communication

and scheduling. The problem is interesting in its own right, and it is indispensable as

a building block in the design of more complex algorithms. In short, the problem is

often used as a subroutine in the implementation of many practical algorithms.

We shall see in the next two sections two different algorithms to solve this important

problem in polynomial time.
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2.2 Hungarian Algorithm

We give a brief overview of the historical works of matching problem ([LP86, ADH98]).

Immediately following World War II, computer scientists focused attention on the

development of algorithms, and in particular, a fundamental algorithmic question has

been with us since the earliest days of matching theory: how do you find a maximum

matching? Its importance is perhaps belied by its simplicity of its statement.

The rudiment for finding maximum matching in a bipartite graph had already

appeared in the works of König—one in German [Kön16b], the other in Hungar-

ian [Kön16a]—König proved that in a bipartite graph G the size of a largest matching

is equal to the size of a smallest set of points which together touch every line in G.

In the middle 1950’s Kuhn [Kuh55] and M. Hall [Hal56] presented the first formal

procedures for finding a maximum matching in a bipartite graph. It seems to have

been Kuhn whom at this time first used the phrase “Hungarian Method” to distinguish

algorithms of this type. So, in the next section we show in detail how the “Hungarian

algorithm” works, mainly, we will make use of [Als99] to discuss it.

Recall a classical theorem—Theorem 2.1.1—which states a relation between maxi-

mum matching and augmenting paths. More precisely, let G be an undirected graph

and let M be a matching in G, then there are no augmenting paths with respect to

(w.r.t.) M in G if an only if M is a maximum matching. We can see that implicitly

there is an algorithm for finding a maximum matching which proceed like follows:

start with an initial matching M , possibly the empty one, and as long as there is an

augmenting path P w.r.t. M , augment M using P (that is invert the condition of

matched to unmatched and vice-versa of the edges of P ) and repeat.

Hence, we need a procedure for find augmenting paths, if they exist, so, in this
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section we try a natural1 approach, called Hungarian Method or Hungarian algorithm,

(which will succeed only in bipartite graphs) for finding an augmenting path with

respect to a matching, say M if one exists. So, in order to analyze how Hungarian

algorithm works, and make this section self-contained, we review some definitions.

Let G = (V1 ∪ V2, E) be a bipartite graph, where V1 and V2 are set of vertices of

G and E a set of edges of G, with |V1| + |V2| = |V | = n and |E| = m. A matching

M in a graph G is a subset M ⊆ E such that no two edges meet at the same vertex.

An edge e ∈ E is matched if it is in M , otherwise it is unmatched. Similarly, a vertex

v ∈ V = V1 ∪ V2 is matched if it is incident to a matched edge, otherwise is unmatched.

Notation: We denote vertices that are in Vi with the superscript vi, where i ∈ {1, 2},

for example, a vertex, say u, in V1 is denoted by a v1-vertex, say u1.

2.2.1 Hungarian Trees2

Starting from level 0 of the under construction tree, we are going to label vertices at

the even levels of a particular kind of tree (an alternating path tree, defined below),

as even and vertices at odd levels asodd. Vertices that belong to a tree are labelled

while those that are not in a tree are considered unlabelled. Initially all vertices are

unlabelled.

So, we choose an unlabelled and unmatched v1-vertex named the root of a new

tree, say r, and declare it unexplored and label it even. If there are no unmatched

vertices then we obtained a maximum matching3. Otherwise, from r, we are going to

construct a tree in which each path from the root to the leaf is an alternating path

1Natural in the sense that was the first attempt to solve the problem.
2Actually, we are constructing a forest of Hungarian trees, i.e., a Hungarian Forest, that is,

undirected, acyclic and possibly disconnected graph.
3A maximum matching is a “maximum-sized” matching
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(for more details see Section 2.1) with respect to a matching M . This tree is called

alternating path tree denoted by T .

We construct T as follows, as long as there is an unexplored even vertex in the

tree, at the beginning only the root, we choose one such v1-vertex, say u, and examine

all the edges adjacent to it4, that is (u, v) ∈ E, where v is an v2-vertex.

For each (u, v) ∈ E:

• if v is unmatched, that is, if we are going to add an unmatched vertex other than

the root, to an alternating path tree, then we are in present of an augmenting

path.

• if v is matched and unlabelled, we let v′ be the v1-vertex matched to v, that is,

(v′, v) ∈ M . So, we add v and v′, and declare v′ to be unexplored, and label v

odd and v′ even. Note that if v is unlabelled then v′ is also unlabelled, because

v′ is in a more depth level than v, and we do not explored in order to label it.

• if v is already labelled odd, we do nothing, because we found an alternative

odd length alternating path from an unmatched vertex to v. Note that v may

be part of a previously constructed tree, because may be we explored it in the

existent alternative path.

• if v is already labelled even, it cannot belong to a previous constructed tree,

because the edge (u, v) would have been explored from u, and we are in the case

that v is unexplored. So, v belong to the same tree as u, but this cannot happen

because we are in the presence of an odd cycle in a bipartite graph. Hence, that

this last case cannot happen in our algorithm.

4We assume that such edge exists, otherwise we have a isolate node and we can ignore without
affecting our goal.
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When all the edges of the v1-vertex u are examined, we will declared it to be

explored.

Repeat the above procedure and extend the tree until either:

• an unmatched v2-vertex other than the root is found (an augmenting path), or

• there are no more unexplored even vertices, in other words, T cannot be extended

any more, i.e., T is blocked, note that no vertex is added to T more than once.

Now, if T is blocked then T is named a Hungarian Tree.

In the next step, we start from another unmatched v1-vertex, if some one exists,

and repeat the above procedure, creating a new alternating path tree. The algorithm

terminates when there is no more unmatched v1-vertices.

First of all, if our tree T is a Hungarian tree, then it is blocked, therefore each

alternating path from the root finishes at some even vertex, and the only vertex in T

which is unmatched is its root r.

Besides5, if (u, v) is an edge with u a v1-vertex such that u ∈ T and v a v2-vertex

such that v /∈ T , then u must be labelled odd, otherwise, u is connected to an

unmatched vertex (but the only unmatched vertex is the root) or T is extendable

through u (but this means that T is not a Hungarian tree).

It follows that no vertex in a Hungarian tree can occur in an augmenting path6,

because, suppose that p is an alternating path that shares at least one vertex with T ,

there are two ways to share at least one vertex, “entering” T , or “leaving” T , in the

first one must be to an odd vertex, the second one, must be also to an odd vertex.

5When we say that vertex doesn’t belong to the tree, we are doing reference to the actual tree
that it is under construction.

6Remember that in an augmenting path we found a unmatched v2-vertex, say v, which is part of
the edge of the form (u, v) such that u ∈ T and v /∈ T .
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Because, like we mention before, our Hungarian tree T starts in an even vertex, the

root, and finish from the root at some even vertex, so, we “enter” or ”leave” T , to an

odd vertex. In both situations go to a contradiction because that means that p is not

an alternating path.

Therefore, if in the process of searching for an augmenting path, we found a

Hungarian tree we can remove it permanently without have effect in the process.

Before continue with the complexity analysis, we mention some assumptions which

are that the Breadth-First Search (BFS) procedure assumes that the input graph G is

represented using adjacency list, and, of course, it maintains several additional data

structures with each vertex in the graph, e.g., distances from the root, the predecessor

of a vertex, etc. Also, it is assume that BFS procedure uses a FIFO (First-In,First-Out)

Queue to manage the set of discovered vertices.

The running time of the algorithm is computed as follows: the creation of each

alternating tree costs O(|E|) times which comes from total time scanning the adjacency

list using BFS.7 Since at most |V1| = O(n) trees are created, the total running time of

the Hungarian algorithm is O(|V1||E|) = O(n ·m) = O(n3).

2.2.2 Example

Consider the following bipartite graph G = (V1 ∪ V2, E), such that V1 = {1, 2, 3, 4, 5}

and V2 = {1′, 2′, 3′, 4′, 5′}, and E ⊆ V1 × V2 set of edges represented in the following

figure, and consider the edges that belong to the matching M denoted by meandering

edges.

7 Note that no vertex is added to the tree more than once, therefore the total time devoted o
queue operations is O(|V |). Thus the well known total running time of BFS is O(|V |+ |E|), i.e., it
runs on linear time in the size of the adjacency list of G.
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1

2

3

4

5

1’

2’

3’

4’

5’

V1 V2

We pick some unmatched v1-vertex, in our example there are two, vertex 2 and 5.

We choose 2 like the root of our alternating path tree, and we declare it unexplored

and label it even. Afterwards, we add all edges adjacent to the root, i.e., (u, v) ∈ E,

where u is a v1-vertex, at beginning r = u, and v is a v2-vertex. Then we have:

2r

1′ 2′ 3′

So, the next step will be explored each of (u, v) ∈ E, then we examined all vertices

that touch u, that is, 1′, 2′, and 3′.

• For (u, 1′) we have that 1′ is unlabelled and matched, therefore we add to the

tree, say T , the edge that correspond to the matching, i.e., (1, 1′) ∈M . Label 1

even and 1′ odd, respectively, and declare 1 to be unexplored.
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• For (u, 2′) we have that 2′ is unlabelled and matched, therefore we add the

edge (3, 2′) ∈M to T , and label 3 even and 2′ odd, respectively, and declare 3

unexplored.

• For (u, 3′) we proceed similar, adding (4, 3′) ∈ M to T , and labelling 4 even

and 3′ odd, respectively, and declare 4 unexplored.

After examine all this vertices, we declare r to be explored. The following picture

show this instance:

2r

1′

1

2′

3

3′

4

Continue with the unexplored even vertices, in our case are {1, 3, 4}, we choose

one such vertex and examine all the edges touching it.

• For 1 we have:

� (1, 1′) where 1′ is odd and matched, so we do nothing, this edge is exactly

the same that was added before but in the other direction.

� (1, 2′), where 2′ is odd and matched, so we do nothing because, we are in

present of an alternative odd length alternating path from an unmatched

vertex (i.e., 2) to 2′. Finally, we declare 1 to be explored.

• For 3 we have:
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� (3, 2′), where 2′ is odd and matched, again we are in present of the same

edges in the opposite direction, and we do nothing. Finally, we declare 3

to be explored.

• For 4 we have:

� (4, 3′), where 3′ is odd and matched, so we do nothing. Idem like previous

case.

� (4, 4′), where 4′ is unlabelled and unmatched, so, here we found an aug-

menting path. Finally, we label 4 even.

� (4, 5′) observe that this edge was not analyzed by the algorithm, because

it has found an augmenting path, therefore, on the one hand, the vertex

5′ remain unexplored and unlabelled,and it does not belong to the tree,

on the other hand, with respect to the vertex 4′ obviously we do need to

explore it because a new tree is going to be created.

This is illustrated in the Figure 2.1.

2r

1′

1

2′

3

3′

4

4′

Figure 2.1: In this alternating path tree we found the augmenting path, say p, such
that p = (2, 3′), (3′, 4), (4, 4′) in which we encounter an unmatched v2-vertex, i.e.,
v = 4′. So, we get an increasing of the current matching by p.
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At this point we need to rearrange G, such that we alternate the roles of the edges

in p (see Figure 2.1), i.e., matched to unmatched and vice-versa, getting (Figure 2.2):

1

2

3

4

5

1’

2’

3’

4’

5’

V1 V2

Figure 2.2: Maximum Matching found with Hungarian algorithm.

So, we start with a new tree, in this case choosing the next unmatched v1-vertex,

which is 5. We choose 5 to be the root of our new alternating path tree, and we

declare it unexplored and label it even. Afterwards, we add all edges adjacent to the

root, i.e., (u, v) ∈ E, where u is a v1-vertex.

So, we proceed like before, we explore each of (u, v) ∈ E, then we examine all

vertices that touch u, in this case we have only one, i.e., 3′. For (u, 3′) we have that 3′

is unlabelled and matched, so we proceed to add the matched edge to which 3′ belongs

to, that is, (2, 3′) ∈M , and label 3′ odd and 2 even and unexplored.

Afterwards, we declare 5′ to be explored and continue with the next even and

unexplored v1-vertex, in our case, 2. Then we explore that vertices that touch 2.

• For (2, 1′), where 1′ is matched and unlabelled, again, we add the matched
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edge (1, 1′) ∈ M to the tree and label 1 even and 1′ odd, and declare 1 to be

unexplored.

• For (2, 2′), where 2′ is matched and unlabelled, so, like before, we add (3, 2′) ∈M

to the tree and label 3 even and 2′ odd, and declare 3 to be unexplored.

• For (2, 3′), is just the same edge that was added to the tree, but exploring it in

opposite direction, so, 3′ is odd and matched, then we do nothing.

Finally, we declare 2 explored and continue with the even and unexplored vertices,

which are 1 and 3.

But here we found that, from 3 the only edge that touch it is (3, 2′) which it was

in the tree, and correspond to exploring the edge in the opposite direction, and 2′ is

matched and odd, so we do nothing.

And, with respect to 1, we have an identical situation with the edge (1, 1′), so we

do nothing, and there is another edge (1, 2′) which correspond to an alternative odd

length alternating path from the unmatched vertex , i.e., 5 to 2′, so we do nothing,

and also we have that 2′ is odd and matched, so we do nothing either. Finally, 3 and 1

became explored.

This situation is depicted in the Figure 2.3.
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5r

3′

2

1′

1

2′

3

Figure 2.3: The tree corresponds to a Hungarian Tree, because the tree becomes
blocked.

Repeating the procedure we get that there are no more unmatched v1-vertices,

therefore the algorithm terminates and the matching of the Figure 2.2 is maximum

2.3 Hopcroft Karp Algorithm

In this section we study the well-known polynomial time algorithm for find a maximum

matching in a bipartite graph introduced by John Hopcroft and Richard Karp in

1973 [JEH73]. In the previous section we gave an O(n3)-time Algorithm for finding a

maximum matching in bipartite graphs, in this section we show a classical result that

improves to O(n5/2).

Instead of building the alternating trees (Section 2.2) one at a time, we can use

Breadth-First Search (BFS) to simultaneously build alternating trees from all un-

matched vertices of V1. This allows us to find shortest augmenting paths. Furthermore,

we can find a maximal collection of shortest augmenting paths.
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The Hopcroft-Karp algorithm [JEH73] work in phases. In each phase it constructs

a maximal collection of vertex disjoint shortest augmenting paths and uses them to

augment the matching.

In this section we shall restrict our attention to finding a maximum matching

in bipartite graphs, that is, graphs in which the vertex set can be partitioned into

V = V1 ∪ V2, where V1 and V2 are disjoint and all the edges in E go between V1 and

V2, note that this direction is arbitrary because we are working with an undirected

graph. Arbitrarily, we will use V1 to be the set from which we are going to take the

unmatched vertices.

We start describing a faster algorithm due to J. Hopcroft and R. Karp, for finding

maximum matching in a bipartite graph. The algorithm runs in O
(
E
√
V
)

time.

Given an undirected bipartite graph G = (V = V1 ∪ V2, E) where all the edges have

exactly one endpoint in V1, let M be a matching in G.

We say that a simple path, i.e., a path with all edges in the path are distinct, P in

G is an augmenting path with respect to M if it starts at an unmatched vertex in V1,

ends at an unmatched vertex in V2, and its edges belong alternately to E/M and M .

Here paths are treating as a sequence of edges, rather than as a sequence of vertices.

A shortest augmenting path with respect to a matching M is an augmenting path

with a minimum number of edges.
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The general structure of the algorithm is the following 8:

Algorithm 1: Hopcroft-Karp (HK)-Algorithm

input : Undirected Bipartite Graph G

output : Maximum Matching M in G

1 M ← ∅; /* Initialized with the empty set */

2 repeat

3 let P = {P1, P2, . . . , Pk} be a maximal set of vertex-disjoint shortest

augmenting paths w.r.t M ;

4 M = M ⊕ (P1 ∪ P2 ∪ · · · ∪ Pk);

5 until P == ∅;

6 return M ;

Before continue with the correctness proof of HK-Algorithm, let us review how

it works. The goal is to find a maximum matching in a bipartite graph G. Using

Breadth-First Search (BFS) “simultaneously” 9 from all the unmatched vertices of V1.

This allows us to find many paths of the same length with one examination of the set

of edges, in particular, find shortest augmenting paths.

Also, Hopcroft and Karp proved that subsequent augmentations—denoted in the

algorithm by the symmetric difference—must use larger paths, so the search can

be grouped in “phases” finding paths of the same lengths. Then, in particular the

HK-Algorithm find a maximal collection of shortest augmenting paths.

The Algorithm works in phases, in each phase the Algorithm construct a maximal

collection of vertex-disjoint shortest augmenting paths and uses them to augment

the matching. Combining this ideas of simultaneously BFS, and that subsequent

8See Definition 2.1.9.
9This means that simultaneously search in all the alternating trees, i.e., in an alternating forest.
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augmentations requires larger paths, Hopcroft and Karp show that a few phases (in

order of
√
|V |) are needed to get a maximum matching in time O(n5/2).

Now, we proceed with the Correctness of the Algorithm.

Proof: Correctness of HK-Algorithm

Let M be the result of running HK-Algorithm on a graph G. And let M ′ be a

bigger matching |M ′| ≥ |M |. Then, we proceed as follow

1 - Pick a left vertex v1 ∈M ′ that is not in M , it exists because M ′ is bigger.

2 - Let (v1, u1) ∈M ′ for some right vertex u1.

3 - If u1 /∈M , then we found two vertices one in V1 and other in V2, but then we

found an augmenting pat with respect to M , and so contradiction.

4- If u1 ∈ M , and so there is a v2 on the left such that (v2, u1) is an edge in M .

Then we have two more cases:

a- If v2 /∈M ′ then we found v1 ∈M ′ but not in M , and v2 ∈M but not in

M ′, or

b- If v2 ∈ M ′ then it connects to some u2 on the right, and repeat the

procedure.

5- Eventually, we have a situation like in 4, sooner or later, since otherwise we

create an augmenting path w.r.t. M , and get a contradiction.

This proves that HK-Algorithm outputs—if it terminates—a maximum matching.

On the other hand, we have that |M ⊕ P | = |M |+ k, where P is a set of vertex-

disjoint augmenting path w.r.t. M , give us a measure of increment, and hence

termination.
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We show first that if M is a matching and P an augmenting path w.r.t. M then

|M ⊕ P | = |M |+ 1.

Consider the following matching M = {(u1, v1), (u2, v2), . . . , (un, vn)}. Now, con-

sider the following augmenting path P = {(a1, b1), (b1, a2), (a2, b2), . . . , (al+1, bl+1)}

such that (ai, bi) /∈M and (bi, ai+1) ∈M with i ∈ {1, . . . , l + 1}, this is because, for

instance, a1 6= ui since u is an unmatched vertex, and b1 = vj for some j; and let

|P | = 2l+ 1 for l ∈ N. So, for l = 0 we have P = {(a1, b1) /∈M}, where l = 1 we have

P = {(a1, b1) /∈M, (b1, a2) ∈M, (a2, b2) /∈M}, and so on until |P |, so we have exactly

l of these edges which are in M . Then, |M ⊕ P | = |M | − l + (l + 1) = |M |+ 1.

Note that the l factor comes from those edges that belong to P ∩M , and the l+ 1

factor comes from those edges that belong to P but not to M .

Now, if P1, P2, . . . , Pk are vertex-disjoint augmenting paths w.r.t. M , and let

|Pk| = 2lk + 1 for [k] the length of each one. Without lost of generality, let P =

{(a1, b1), (b1, a2), . . . , (al+1, bl+1)} for l ∈ N, and |P | = 2l + 1, now we keep (a1, b1)

and a1 was free (unmatched) vertex, and b1 becomes free because we remove (b1, a2),

afterwards we keep (a2, b2), and a2 is free because (a2, b2) /∈ M , and we remove

(b2, a3) matching b2 free as well. Proceeding in this way we get that |P | = k then

M⊕(P1, P2, . . . , Pk) is a matching with cardinality |M⊕(P1∪P2∪· · ·∪Pk)| = |M |+k.

Note that l and P are used for the augmenting path result of the k-union. This complete

the correctness of HK-Algorithm. �

Therefore, the Hopcroft-Karp algorithm find a maximum matching, if someone

exists, such that the termination of the algorithm yields when no more augmenting

paths exists. At that point the matching is maximum.

We finish this section enunciating some important properties that are used in
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the kernel of the Hopcroft-Karp algorithm, for their proofs consult [Zwi09], and the

classical textbooks of algorithms, for instance [CLRS09, AHU74, AHU83].

Claim 2.3.1 Let P be a shortest augmenting path with respect to M and let P ′ be an

augmenting path with respect to M ⊕ P . Then |P ′| ≥ |P |+ 2|P ∩ P ′|.

Proof: See, for instance, [Zwi09, pg. 6]. �

Claim 2.3.2 Let G be a bipartite graph and let M be a matching in G. Assume that

P = {P1, P2, . . . , Pk} is a maximal collection of disjoint shortest augmenting paths

with respect to M . Let M ′ = M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk be an augmenting path with

respect to M ′. Then, |P ′| > |P1| = |P2| = · · · = |Pk|.

Proof: See, for instance, [Zwi09, pg. 6]. �

Theorem 2.3.1 The Hopcroft-Karp algorithm finds a maximum matching in a bipar-

tite graph after at most 2
√
n phases.

Proof: See, for instance, [Zwi09, pg. 6]. �

2.4 Combinatorial Matrix Theory

In this section we intend to show the basic concepts behind the mathematical field

called Combinatorial Matrix Theory. The main reference to this field is the book of

Richard Brualdi and Herbert J. Ryser entitled Combinatorial Matrix Theory [BR91].

Citing Brualdi10, he wrote “Combinatorial Matrix Theory is concerned with the use of

matrix theory and linear algebra in proving combinatorial theorems and in describing

10Richard A. Brualdi, together with Herb Ryser and R. Craigen, among others, are the pioneers in
the field called Combinatorial Matrix Theory.
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and classifying combinatorial constructions, and it is also concerned with the use of

combinatorial ideas and reasoning in the finer analysis of matrices and with intrinsic

combinatorial properties of matrix arrays”

Throughout all this thesis we will see different concepts from Combinatorial Matrix

Theory, but, in particular we center our attention on a cornerstone result due to

König Dénes, named König’s Min-Max Theorem, which has its application in many

different areas of Mathematics and Computer Science. Combinatorial Matrix Theory

is a branch of Mathematics that combines Graph Theory, Combinatorics and Linear

Algebra. The Matrix Theory is concerned with combinatorial properties including, for

instance, permanents.

Relationship between matrices and graphs:

• knowledge about one of the graphs that can be associated with a matrix is used

to illuminate matrix properties and to get better information about the matrix,

and

• linear algebraic properties of one of the matrices associated with a graph is used

to get useful combinatorial information about the graph.

On one hand, Combinatorics is the study of configurations resulting from the

discrete combinations of objects and the structure and relationships within, and

between, systems of discrete elements.

On the other hand, Matrix theory is the study of matrices, which are rectangular

arrays of numbers (or other things, like variables, expressions, or elements of arbitrary

algebraic systems).

The distinction between Combinatorics and Matrix Theory is sometimes confusing

since a matrix can often be viewed as a combinatorial object, called graph.
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Combinatorial matrix theory deals with matrices whose entries, or whose sub-

matrix structure, satisfy some combinatorial restraints. Typically, one might study

matrices whose elements are 0 or 1, i.e., 0-1 matrices; we also often deal with (0, 1,−1)-

matrices, (1,−1)-matrices or matrices whose elements are taken from a set

{x1, . . . , xn,−x1, . . . ,−xn}

where x1, . . . , xn are commuting variables. There are many other variations. We

then ask—and try to answer—questions about such matrices that deal with existence

structure, classification, relationships, and properties precipitated by the combinatorial

restraints.

For example, given two lists of positive integers, does a 0-1 matrix exist whose row

sums form the first list and whose column sums form the second list? That is, give a

simple condition from which we can determine the answer, for any such pair of lists.

We see now one of the most important theorem in Combinatorial Matrix Theory.

2.4.1 König’s Min-Max Theorem

The next it is the fundamental Min-Max Theorem of König [Kön16b, Kön36], this

theorem has a long history and many ramifications, some of which are described in

Section 2.4.2 where we present different applications.

Given an m × n matrix A with entries over the Galois field of two elements

GF (2) = {0, 1}, let S be a set of pairs

{(i1, j1), (i2, j2), . . . , (ik, jk)}
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where Aipjp = 1 for every p ∈ [k], and all the ip’s, as well as all the jp’s, are distinct.

In other words, S is a set of positions in the matrix A containing 1s, and no two of

those 1s are on the same row or the same column, i.e., no two of them are on the

same line. Given A, the maximum possible size of such a set S is called the term rank

of A. Notice that if AG is the adjacency matrix of a bipartite graph G, then the term

rank is in fact the size of the maximum matching in G. Recall that a bipartite graph

G = (V = V1 ∪ V2, E), i.e., a graph where E ⊆ V1 × V2, and a matching M is a subset

of E consisting of a “pairing” of the vertices of G in such a way that no two edges of

M meet at the same vertex.

On the other hand, given a matrix A of size m× n with entries over the Galois

field of two elements GF (2), a set C of lines (i.e., a collection of rows and columns of

A) is called a cover if every 1 in A is in at least one row or column of C. Then, given

a bipartite graph G, the size of the minimum VC corresponds to the minimum cover

of AG. Recall that a vertex cover (VC) is a subset C of V = V1 ∪ V2 such that each

edge in E has at least one end-point in C.

Theorem 2.4.1 (König’s Min-Max) Let A be a matrix of size m× n with entries

over the Galois field of two elements GF (2). The minimal number of lines in A, that

cover all of the 1s in A, is equal to the maximal number of 1s in A, no two of the 1s

on a line.

A detailed Combinatorial Matrix Theory proof of König’s Min-Max Theorem is

presented in Section 4.2, and an ∃LA-proof of this Theorem is presented in Section 4.3.

Note that König’s Min-Max Theorem deals exclusively with properties of 0-1 matrix

that remain invariant under arbitrary permutations of lines of the matrix.
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2.4.2 Some applications of König’s Min-Max Theorem

In this section we are going to present some important applications of König’s Min-Max

Theorem related to different fields of Discrete Mathematics and Theoretical Computer

Science. The importance of this section is to provide some background to Chapter 4

Section 4.3, in which we prove that all the following applications rely on the same

Min-Max principle, i.e., the König’s Min-Max Theorem. Therefore, some applications

are the following:

• Application on Systems of Distinct Representatives.

Let S1, S2, . . . , Sn be n subsets of a given set M . Let D be a set of n elements

of M , D = {a1, a2, . . . , an}, such that the elements ai are all distinct and such

that ai ∈ Si for each i = 1, 2, . . . , n. Then D is said to be a system of distinct

representative, or S.D.R. for the subsets S1, S2, . . . , Sn.

If the sets S1, S2, . . . , Sn have a S.D.R., then any k of the sets must contain

between them at least k elements. The converse proposition is the combinatorial

Theorem of P. Hall. Let S1, S2, . . . , Sn denote n subsets of a set M . For each

k = 1, 2, . . . , n, suppose that every k of these sets contain between them at least

k distinct elements of M . Then there exists a S.D.R. for these subsets. (For

more details see [Hal87, EW49, HV50]).

• Applications to the Theory of Partial Order Sets.

Let P be a finite partially ordered set or poset. We say that a, b ∈ P are

comparable elements if either a < b or b < a. A subset C of P is a chain if any

two distinct elements of C are comparable. A subset S of P is an anti-chain

(also called an independent set) if no two elements of S are comparable.
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We want to partition a poset into chains; a poset with an anti-chain of size k

cannot be partitioned into fewer than k chains, because any two elements of the

anti-chain must be in a different partition. Dilworth’s Theorem states that the

maximum size of an anti-chain equals the minimum number of chains needed to

partition P. (For more on Dilworth’s Theorem see [Dil50, Per63]).

• Applications to the Theory of Connectivity.

Given a graph G = (V,E), an x, y-path in G is a sequence of distinct vertices

v1, v2, . . . , vn such that x = v1 and y = vn and for all 1 ≤ i < n, (vi, vi+1) ∈ E.

The vertices {v2, . . . , vn−1} are called internal vertices; we say that two x, y-paths

are internally disjoint if they do not have internal vertices in common.

Given two distinct vertices x, y ∈ V , we say that S ⊆ E is an x, y-cut if there is

no path from x to y in the graph G′ = (V,E − S). Let κ(x, y) represent the size

of the smallest x, y-cut, and let λ(x, y) represent the size of the largest set of

pairwise internally disjoint x, y-paths.

Menger’s Theorem states that for any graph G = (V,E), if x, y ∈ V and

(x, y) /∈ E, then the minimum size of an x, y-cut equals the maximum number

of pairwise internally disjoint x, y-paths. That is, κ(x, y) = λ(x, y). For more

details on Menger’s Theorem turn to [Meng27, Go00, Pym96].

Menger’s Theorem, first proved in 1927, turns out to be one of the many

consequences of a fundamental theorem about flows in directed graphs, the

well known Max-Flow Min-Cut Theorem, that is, Menger’s Theorem is Min-Cut

Max-Flow Theorem where all edges have capacity 1.

• More applications.
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Finally, there exists more applications of König’s Min-Max Theorem, we mention

the following applications here, not only because these applications rely on the

same Min-Max principle, but also by their importance on Computer Science field;

we have application to the Theory of Permanents which it is a important field

not only in Mathematics but also in Computer Science; another application is to

the Theory of Doubly Stochastic Matrices, those matrices have the characteristic

that are non-negative n × n matrices in which all lines (rows and columns)

sums are equal to 1. For more details about applications of König’s Mini- Max

Theorem see [BR91].
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Chapter 3

Permutation-Based Algorithm

In this chapter we present a new Permutation-Based Algorithm for computing a

Minimum Vertex Cover from a Maximum Matching in a bipartite graph. Sometimes,

we refer to the Permutation-Based Algorithm as “our algorithm”. So, our algorithm is

linear-time and computationally very simple: it permutes the rows and columns of the

matrix representation of the bipartite graph in order to extract the vertex cover from

a maximum matching in a recursive fashion. Besides, our algorithm uses properties

of König’s Min-Max Theorem and it is interesting for providing a new permutation

perspective on a well-known problem.

König’s famous Min-Max Theorem ([Kön16b, Kön36]) assures that the existence

of a maximum matching of size ρ is equivalent to the existence of a minimum vertex

cover of size ρ. On the other hand, the Hopcroft-Karp algorithm computes maximum

matchings in bipartite graphs in polynomial time.

These two facts yield a natural way of computing vertex covers using standard

reductions from search to decision problems that work in time O(|V | 32 |E|). (See

Algorithm 1).
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On the other hand, in this chapter we show how rich is the field of Combinatorial

Matrix Theory from an algorithmic point of view, insomuch in our algorithm we make

use, purely, of combinatorial matrix properties to compute the Minimum Vertex Cover.

Unless otherwise specified, we assume that our matrices are over GF (2), that is,

the Galois field of two elements {0, 1}.

Sometimes, we shall apply function f : Mm×n(GF (2)) −→ Z, that is, function

from 0-1 matrices of size m × n to integers. We require the integers as one of

our fundamental operations will be counting the number of 1s in a 0-1 matrix, i.e.,

compute f := ΣA, the sum of all the entries of A. In fact, we will just do Boolean

Matrices since we are interested in combinatorial properties more than arithmetical

ones.

It does not matter if we view matrices as (1) GF (2), (2) {0, 1} over Z, (3) Boolean

matrices. Since we are only concerned with patterns of 0s and 1s, any of these 3

formalisms will do—however, given Σ(A) equals the number of 1s in A, {0, 1} over Z

is the most natural view.

3.1 Introduction

Suppose that we are given a bipartite graph G = (V = V1 ∪ V2, E), i.e., a graph

where E ⊆ V1× V2. Let AG be the adjacency matrix of G, of size |V1| × |V2|, and with

entries over the Galois field of two elements GF (2) = {0, 1}. Thus, (i, j) ∈ E if and

only if (AG)ij = 1. A matching M is a subset of E consisting of a “pairing” of the

vertices of G in such a way that no two edges of M meet at the same vertex. Again,

we can represent a matching as a set of pairs of nodes of V , i.e., M ⊆ E, or as an

adjacency matrix. A matching is maximum if |M| is as large as possible. We talk of
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bipartite graphs and their adjacency matrix representations interchangeably. We use

script M in order to distinguish it—set representation—from its matrix representation

denoted with MA, or just M .

It is well known that given a general graph, its maximum matching can be

computed with Edmond’s blossom shrinking Algorithm in polynomial time [Edm65].

For bipartite graphs we can compute a maximum matching slightly faster using the

Hopcroft-Karp algorithm (HK-Algorithm)—see Chapter 2 Section 2.3. On the other

hand, while minimum vertex covers can be computed in polytime for bipartite graph,

for general graphs it is an NP-hard problem.

Let MA = HK(A) be the output of running the HK-Algorithm on A, i.e., MA is

the adjacency matrix of a maximum matching produced by the HK-Algorithm.

The dual of a maximum matching for a bipartite graph is the graph’s Minimum

Vertex Cover. Given a bipartite graph G = (V = V1 ∪ V2, E), a vertex cover (VC)

is a subset C of V = V1 ∪ V2 such that each edge in E has at least one end-point

in C. A VC C is minimum if |C| is as small as possible. In this chapter we present an

algorithm that on input 〈A,MA〉 produces the minimum VC of A. Our algorithm relies

on König’s famous Min-Max theorem—for a combinatorial matrix theory proof of this

theorem see, for example, Chapter 4 Section 4.2 or [BR91], and for a ΠB
2 -Inductive

proof in LA-Theory see Appendix A.1, recall that ΠB
2 -Induction does not yield feasible

proofs. We find it useful to give two equivalent formulations of König’s Min-Max

Theorem.

Theorem 3.1.1 (König’s Min-Max version I) Given a bipartite graph G, if ρG

is the size of the maximum matching of G, and ρ′G is the size of the minimum VC

of G, then ρG = ρ′G.
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Given an m× n matrix A with entries over GF (2), let S be a set of pairs

{(i1, j1), (i2, j2), . . . , (ik, jk)}

where Aipjp = 1 for every p ∈ [k], and all the ip’s, as well as all the jp’s, are distinct.

In other words, S is a set of positions in the matrix A containing 1s, and no two of

those 1s are on the same row or the same column, i.e., no two of them are on the

same line. Given A, the maximum possible size of such a set S is called the term rank

of A. Notice that if AG is the adjacency matrix of a bipartite graph G, then the term

rank is in fact the size of the maximum matching in G.

On the other hand, given a matrix A of size m × n with entries over GF (2), a

set C of lines (i.e., a collection of rows and columns of A) is called a cover if every 1

in A is in at least one row or column of C. Then, given a bipartite graph G, the size

of the minimum VC corresponds to the minimum cover of AG.

Theorem 3.1.2 (König’s Min-Max version II) Let A be a matrix of size m× n

with entries over GF (2). The minimum number of lines in A, that cover all of the 1s

in A, is equal to the maximum number of 1s in A, no two of the 1s on a line.

Therefore, we can use the HK-Algorithm to also compute the size of the minimum

vertex cover of G: let MAG = HK(AG), and ρG is given by the number of 1s in MAG

(let’s denote that by |MAG|). Thus, we know from the Min-Max theorem that the

size of the smallest VC of G is also given by |MAG| = ρG = ρ′G. Once we know the

size of the smallest VC, we can also compute the actual VC using a reduction from a

search to a decision problem; see the Algorithm 1. Our Permutation-Based Algorithm

is faster, especially when there are many edges in G.
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As a “Proof Complexity” aside, note that König’s Min-Max Theorem has many

other equivalent formulations and we later show that these equivalences can be proven

in low complexity (Chapter 4); note that this means that our proof of equivalences is

such that in each step it uses only feasible—polytime reasoning.

Some of these “reformulations” are as follows: Menger’s Theorem (Section 4.3.5.1),

counting disjoint paths; Hall’s Theorem (Section 4.3.5.2), giving necessary and sufficient

conditions for the existence of a “System of Distinct Representatives” of a collection

of sets (SDR); Dilworth’s Theorem (Section 4.3.5.3), counting the number of disjoint

chains in a poset. (For more details see Chapter 4, Section 4.3.5).

3.1.1 Background and context

As is well known, vertex cover (VC) is an NP-complete problem for general graphs,

and a polynomial time for bipartite graphs. We mentioned that the HK-Algorithm

computes a Maximum Matching for a given bipartite graph in polynomial time—

specifically, in time O(
√
|V ||E|), where G = (V = V1 ∪ V2, E). And by König’s

Min-Max Theorem, we know that a bipartite graph G has a maximum matching

of size k if and only if it has a minimum VC of size k. Putting all those elements

together, we can use the HK-Algorithm for maximum matchings in order to compute

a minimum vertex cover in a bipartite graph.

We use the following notation in algorithms, the end of line is denote by “;”,

the Z ← ∅ denote initialization statement, and sometime, we use an alternative

notation Z = 0 denoting assignment statement, also, we use Z == 0 to denote testing

equality condition statement. Finally, we use | · | to denote the cardinality of a set.
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Algorithm 1: On input G = (V = V1 ∪ V2, E), the algorithm, by repeatedly

invoking the Hopcroft-Karp algorithm, computes a minimum vertex cover C.

input :G = (V = V1 ∪ V2, E)

output : minimum Vertex Cover C

1 C ← ∅;

2 k ← |HK(G)|; /* k is the size of minimum VC of G */

3 for every node u ∈ V = V1 ∪ V2 do

4 if u ∈ Vi then

5 Create new G′ = (V ′, E ′) from G by:

6 V ′ ← {u′1, u′2} ∪ V3−i;

7 E ′ ← {(u, u′1), (u, u′2)} ∪ E;

8 k′ ← HK (G′ = (V ′, E ′));

9 if k == k′ then

10 C ← {u} ∪ C;

11 delete from G all edges adjacent on u;

12 delete from G all singleton nodes;

13 k ← k − 1;

Observe that in lines 6 and 7, we add two new nodes u′1, u
′
2 to V3−i to obtain V ′,

and add two new edges (u, u′1), (u, u′2) to E to obtain E ′, getting in that way the new

graph G′.

Lemma 3.1.1 The procedure described in the Algorithm 1 works correctly and runs

in time O(|V | 32 |E|).

Proof: If we add two new edges (u, u′1) and (u, u′2) to G—and obtain G′—the
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“cheapest” way to cover those two new edges is with their common vertex u. That is,

by adding the gadget (u, u′1), (u, u
′
2), we force u to be part of a minimum cover of the

resulting graph.

If there was a cover of G that included u, then the same cover works for G′;

essentially, we cover the two new edges “for free.” This corresponds to the case k = k′,

where we know that u was part of a cover, and so we add it to C, we delete from G

the edges adjacent on u and we delete all singleton nodes.

If, on the other hand, k < k′, then no minimum cover of G contained u, and thus

we needed to add u to the cover of G′ in order to take care of the two new edges; in

this case we do not put u in C.

We repeat the same procedure on G (with the edges adjacent on u removed in

case k = k′, and G unaltered otherwise) on the next vertex in V = V1 ∪ V2, each time

running the HK-Algorithm, giving the stated running time bound of O(
√
|V ||E||V |).

Note that it is immaterial in which order we examine the nodes of G; any ordering

works. �

Note that the reduction described in Lemma 3.1.1 would not work over general

graphs (i.e., not necessarily bipartite). First, for the obvious technical reason that re-

quires u′1, u
′
2 to be added to “ the other vertex set,” i.e., to V3−i if u ∈ Vi, where i = 1, 2.

But, more importantly, say that instead of the Hopcroft-Karp algorithm we invoke

Edmond’s blossom shrinking algorithm [Edm65] that works over general graphs. Could

we then modify the Algorithm 1 somehow to make it work over general graphs? The

answer is: “not in polynomial time, unless P=NP”. The reduction given by the

Algorithm 1 relies deeply on the graph being bipartite.

It is not difficult to see (and we show it in Lemma 3.2.1 below) that given a
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maximum matching M of a bipartite G, the minimum VC C can be constructed by

taking, for each e ∈M, one end point node. Recall that we use script M in order to

distinguish its set representation from its matrix representation denoted with M . Of

course, not all selections of end-points works, but at least one selection of end-points

works. Our algorithm in Section 3.3 works directly on a given maximum matching,

not rerunning the HK-Algorithm. Our algorithm is therefore much faster when the

number of edges is large (in the order of |E| >>
√
|V |), as its running time is O(|V |2).

3.2 Preliminaries to our algorithm

We start with terminology for denoting lines: given a matrix A, we can denote the

lines as r1, r2, . . . , rm and c1, c2, . . . , cn where A is m× n, and the r’s denote the rows

and the c’s denote the columns. It will also be advantageous to denote lines with the

following terminology: lo(i,j) where o ∈ {0, 1}, and lo(i,j) denotes a line going through

entry i, j, where i ∈ [m] and j ∈ [n], and

o =


0 lo(i,j) is vertical, i.e., lo(i,j) = cj

1 lo(i,j) is horizontal, i.e., lo(i,j) = ri

Then, a cover is a set of lines C~o,~ı,~
A = {lo1(i1,j1), l

o2
(i2,j2)

, . . . , lok(ik,jk)}, with orientation

~o = o1o2 . . . ok, and ~ı = i1, i2, . . . , ik, ~ = j1, j2, . . . , jk, and it is such that any 1 in A

is covered by one of these lines; i.e., if there is a 1 in position (i, j) of the matrix A,

then there exists a p ∈ [k], such that l
op
(ip,jp)

∈ C~o,~ı,~
A and

[i = ip ∧ op = 0] ∨ [j = jp ∧ op = 1].
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Thus, as was pointed out in the last paragraph of the previous section, if MA is a

maximum matching, the Min-Max Theorem tells us that there exists an ~o ∈ {0, 1}k

such that C~o,~ı,~
A , where k = |MA|. Recall that MA represents a maximum matching as

a matrix with entries over GF (2), and that a 1 in position (i, j) means that (i, j) is an

edge in the matching (i.e., i ∈ V1 and j ∈ V2 are “paired”). But in terms of “Matrix

Combinatorics” this means that the 1s in MA are positioned in such a way that no

two 1s are on the same line (vertical or horizontal). Thus, we know that whatever ~o

is, C~o,~ı,~
A is such that it must have lines through all the 1s of MA; further, any such

line cannot cover more than a single 1, and since we know that the size of C~o,~ı,~
A is the

size of MA, each 1 of MA claims exactly one line.

Lemma 3.2.1 Suppose that G = (V = V1 ∪ V2, E) is a bipartite graph, and let A be

its adjacency matrix, and MA a maximum matching. Suppose

MA = {(i1, j1), (i2, j2), . . . , (ik, jk)}

i.e., MA is a list of all the positions of MA with a 1 in them (k = |MA|). Then, it

must be the case that

C~o,~ı,~
A = {lo1(i1,j1), l

o2
(i2,j2)

, . . . , lok(ik,jk)}.

is a cover for some ~o ∈ {0, 1}k.

Proof: We know that for all p ∈ [k], A(ipjp) = 1, and so our cover must contain, for

every p ∈ [k], either rip or cjp . By the Min-Max Theorem, there is a cover of size k,

and so, by the pigeonhole principle, we can say something stronger: our cover must

consist, for every p ∈ [k], of either rip or cjp .
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But that is the same as saying that our cover must consist, for every p ∈ [k], of

l
op
(ip,jp)

, for op = 0 or op = 1. The Lemma follows from that. �

Recapitulating, given 〈A,MA〉, in order to compute C~o,~ı,~
A , all we need to compute

are the orientations: ~o = o1o2 . . . ok, since the (ip, jp)’s are imposed by MA.

Our algorithm works with permutations, and we adopt the following notation to

describe permutations; as bijections:

π : [m] −→ [m]

τ : [n] −→ [n]

and permutation matrices; that is, Pπ and Qτ permute the rows and columns, re-

spectively, of MA. The matrix Pπ is obtained from the identity matrix by exchang-

ing the rows according to π, and the matrix Qτ is obtained from the identity ma-

trix by exchanging the rows according to τ . Then the relationship is as follows:

(PπMAQτ )ij = (MA)π−1(i)τ−1(j).

Our permutations P,Q work in such a way that they place the 1s on the main

diagonal in the original order of the rows; that is, if the 1s of MA where in positions:

(i1, j1), (i2, j2), . . . , (ik, jk)

with i1 < i2 < · · · < ik, then our permutations π, τ are given as follows:

i1 7→ 1

i2 7→ 2

...

ik 7→ k

j1 7→ 1

j2 7→ 2

...

jk 7→ k
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We call such permutations order preserving (according to rows).

Observe that we have the following invariant.

Lemma 3.2.2 Suppose that π, τ are order preserving permutations. Then, if

C~o,~ı,~
A = {lo1(i1,j1), l

o2
(i2,j2)

, . . . , lok(ik,jk)}

is a covering of A, then

C
~o,π(~ı),τ(~)
PπAQτ

= {lo1(π(i1),τ(j1)), l
o2
(π(i2),τ(j2))

, . . . , lok(π(ik),τ(jk))}

is a covering of PπAQτ .

Proof: Suppose that C~o,~ı,~
A = {lo1(i1,j1), l

o2
(i2,j2)

, . . . , lok(ik,jk)} is indeed a covering of A.

Consider any entry (p, q) of PπAQτ , i.e., (PπAQτ )pq = Aπ−1(p)τ−1(q). If Aπ−1(p)τ−1(q) = 1,

then either rπ−1(p) ∈ C~o,~ı,~
A or cτ−1(q) ∈ C~o,~ı,~

A . This last statement means that there

exists an a ∈ [k] such that at least one of the following two statements is true:

• loa(ia,ja) ∈ C
~o,~ı,~
A where ia = π−1(p) ∧ oa = 1, or

• loa(ia,ja) ∈ C
~o,~ı,~
A where ja = τ−1(q) ∧ oa = 0,

which in turn means that at least one of the following is true

• loa(π(ia),τ(ja)) ∈ C
~o,π(~ı),τ(~)
PπAQτ

where π(ia) = π(π−1(p)) ∧ oa = 1, or

• loa(π(ia),τ(ja)) ∈ C
~o,π(~ı),τ(~)
PπAQτ

where τ(ja) = τ(τ−1(q)) ∧ oa = 0,

and as π, τ are permutations, they are bijections, and so π(π−1(p)) = p and τ(τ−1(q)) =

q, and so restating once again we obtain:

• l1(p,τ(ja)) ∈ C
~o,π(~ı),τ(~)
PπAQτ

, or
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• l0(π(ia),q) ∈ C
~o,π(~ı),τ(~)
PπAQτ

.

In either case, this means that there is a line covering entry (p, q) of PπAQτ if that

entry is a 1. Hence, C
~o,π(~ı),τ(~)
PπAQτ

is indeed a covering for PπAQτ . �

It is this lemma that ensures that our algorithm, while permuting matrices, in

an order preserving way, it computes the correct orientations of the original matrix.

However, permuting a matrix, even if the permutations are not order preserving, does

not destroy its covering properties; we only must account for the permutation in the

orientations. We state it in the following corollary.

Corollary 3.2.1 A general permutation of the 1s in MA, where we place them on the

diagonal of a contiguous block as in Lemma 3.2.1, but we also reorder them according

to some permutation µ still yields a corresponding covering where we account for µ as

follows:

C
µ(~o),π(~ı),τ(~)
RµPπAQτRµ

= {loµ(1)(µ(π(i1)),µ(τ(j1)))
, l
oµ(2)
(µ(π(i2)),µ(τ(j2)))

, . . . , l
oµ(k)
(µ(π(ik)),µ(τ(jk)))

}.

The point of these rather technical corollary is to show that we can preserve

coverings under permutations; that is, we can permute MA at will in our algorithm,

and recover the lines easily. (For more details see Section A.3.1.4).

3.3 Permutation-Based Algorithm

On input 〈A,MA〉, our algorithm computes C~o,~ı,~
A . More precisely, as was shown in

Lemma 3.2.1, given MA we know a priori that

C~o,~ı,~
A = {lo1(i1,j1), l

o2
(i2,j2)

, . . . , lok(ik,jk)},
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where the (ip, jp) are the non-zero entries of MA. Hence, all that we need to compute

in our algorithm is the orientation vector ~o = o1o2 . . . ok. The analogy of this in the

graph theoretic setting is that given a bipartite graph G, and a maximum matching M ,

the minimum vertex cover can be selected from M by choosing for each edge e ∈M ,

one of its end-points; a particular choice of end-points corresponds to a particular

orientation. We now present the algorithm for selecting a particular orientation that

works.

Input: A,MA, m× n matrices, with entries over GF (2), where MA is a maximum

matching for A, and A is the adjacency matrix of a bipartite graph G:

Step 1 If k = |MA| = min{m,n}, then

• {r1, r2, . . . , rm} is a cover if m ≤ n; i.e., return ~o = 1m and exit

• {c1, c2, . . . , cn} is a cover if m > n; i.e., return ~o = 0n and exit

Step 2 Else, k = |MA| < min{m,n}, and we let P,Q be two permutation matrices

(P is m×m and Q is n×n) such that P is order preserving, diag(E) = diag(Ik),

where:

PAQ =

 E A1

A2 0(m−k)×(n−k)

 =



1

1

. . . A1

1

A2 0


That is, the 1s corresponding to MA are all permuted to be on the diagonal of

the upper-left k× k quadrant; call this quadrant E. The first thing to observe is
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that the lower-right (m− k)× (n− k) quadrant consists entirely of zeros. This

assertion is a consequence of König’s Min-Max Theorem: all the lines in C~o,~ı,~
A

pass through a 1 in E; none of these lines can possibly touch this lower-right

quadrant, so it must be full of zeros.

Step 2a Suppose that A1 = 0 ∨ A2 = 0 (note that A1 is k × (n − k) while A2

is (m− k)× k).

• If A1 = 0 then return ~o = 0k and exit

• If A2 = 0 then return ~o = 1k and exit

Step 2b Else, A1 6= 0 ∧ A2 6= 0. The 1s on the diagonal of E are grouped into two

sets of sizes k1 and k2, respectively, with k = k1 + k2.

The first group, the black 1s, have the property that both row i of A1 and

column i of A2 have no 1s in them. That is, the white portion of the upper-right

quadrant in Figure 4.2, and the white portion of the lower-left quadrant in

Figure 4.2, contain only 0s.

This situation, as represented in Figure 4.2, is simplified for the sake of clarity:

the black 1s and the green 1s are depicted as two separate groups, but in general

they are interspersed. We could block them together to be as in Figure 4.2, but

that would require in general a permutation that is not order preserving (see

Section A.3.1.4); this could still be done by Corollary 3.2.1, but it introduces

a technical overhead, as the orientations would no longer match (but we could

recover the original orientations by inverting the permutation).
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Figure 3.1: Step 2b

Note that under the assumption A1 6= 0 ∧ A2 6= 0, we know that k2 > 0, so we

know that not all 1s in the upper-left quadrant are black; but it may well be

the case that none are black, i.e., all the 1s are green, which would correspond

to k = k2.

We now compute the orientations of the lines going through the green 1s. Note

that each green 1 can claim at most one line (by Lemma 3.2.1).

For each green 1 in position (j, j):

• If there is a 1 in row j of A1, then we let oj = 1.

• Else, we let oj = 0.

We know that it is not possible for both row j of A1 to have a 1, and column j

of the A2 to have a 1, since that would require two lines through (j, j), which is

not possible by Lemma 3.2.1.

Further, the square that encloses the green 1s must be successfully covered by

the above scheme: we have no choice as to the orientation of the lines covering
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the green 1s, and by the Min-Max Theorem a successful covering exists, and

thus the covering imposed by the green portions of A1 and A2 must necessarily

work for the square enclosing the green 1s. Again, this argument is formalized

in Lemma 3.2.1.

We must now compute the orientations of the lines covering the black 1s.

We do so recursively, by repeating the procedure from Step 2 with the matrix

obtained from the k × k upper-left quadrant of PπAQτ , i.e., the upper-left

quadrant of the matrix in Figure 3.2, but with the following modifications:

the square enclosing the green 1s, represented in dark green, is zeroed

out—as by the above argument and Lemma 3.2.1, it is successfully

covered with the lines oriented by the green 1s —and we also place zeros

wherever those lines crossed the rest of the quadrant. In Figure 3.2,

we place zeros in the upper-left quadrant wherever the horizontal red

lines crosses.

End of algorithm
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1

1

1

1

Figure 3.2: Repeat Step 2 with the upper-left quadrant, emphasized with a thicker
border, with the “green square” zeroed out, as well as the entries under the red lines,
arising from the cover of the “green square,” zeroed out.

Conceptually, the algorithm is rather simple. The technical complication is the

permutations.

We are computing the orientation of a covering for a permuted version of A; then,

we must “extract” the correct orientation for the original version of A. This is what

introduces a certain technical overhead. On the other hand, these permutations help

to maintain a simple data structure (reconfigurations of the |V1| × |V2| matrix) that is

essential for the computation.

As far as the complexity of this procedure, the loop is the repetition of Step 2;

more precisely, we need to compute the orientations of the black 1s. As was mentioned

above, if there are no green 1s, then the procedure terminates (outputting all horizontal

or or vertical orientations, according to which one of A1 or A2 is all zero). Thus,

if k2 = 0, we are done.
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Otherwise, k2 > 0, and the number of black 1s decreases by at least 1. Thus this

loop, in the worst case, can repeat at most

k = |MA| ≤ min{m,n} = min{|V1|, |V2|}

many times. Inside each loop, we scan the entries of the matrix looking for zeros,

which can be done in time proportional to the size, i.e., m × n, and we compute

the permutations π, τ directly from MA (from the positions of its 1s, so they are

particularly easy to compute if MA is given as a list of positions of 1s) again in

time (|V1|+ |V2|). (For more precise treatment see next Section 3.4).

We finish with a short discussion of how to compute the permutation matri-

ces P and Q that arise in the algorithm (for more details see Section A.3.1.1 and

Section A.3.1.2). These matrices are computed from the permutations π and τ , or

rather, they are the natural matrix representations of π and τ . Let n be the size of A,

i.e., A is n×n. Let i1, i2, . . . , ik be the non-zero rows of MA such that i1 < i2 < . . . < ik.

Let {j1, j2, . . . , jn−k} be the remaining rows, also ordered; thus, row jp has only zeros

in it.

The important thing, as explained in the algorithm, is that π and τ have to be

order preserving, and in order to maintain this property, we initialize r = 1 and q = 1,

and two integer arrays i, j of size n. Now for every p = 1 . . . n, if row p of MA is not

zero, we let q = q + 1 and let i[q] = p. On the other hand, if row p of MA is zero, we

let j[r] = p, and let r = r + 1.
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We now construct π from the two arrays i and j which encode the following

mapping:

i[1] 7→ 1

i[2] 7→ 2

...

i[k] 7→ k

j[1] 7→ k + 1

j[2] 7→ k + 2

...

j[n− k] 7→ n

From π we construct P as follows: P has 1s in positions

(1, i[1]), (2, i[2]), . . . , (k, i[k]), (k + 1, j[1]), (k + 2, j[2]), . . . , (n, j[n− k])

and zeros everywhere else. The permutation matrix Q is constructed in a similar

manner from τ .

We summarize it in the following theorem.

Theorem 3.3.1 Given a bipartite graph G = (V = V1∪V2, E), we obtain a procedure

for computing a Minimum Vertex Cover from a Maximum Matching that runs in

time |〈A,MA〉| = |V |2. That is, given a 0-1 matrix and the corresponding maximum

matching, we can compute the vertex cover in linear time (in the size of the input).
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Corollary 3.3.1 The correctness—partial correctness and termination—of our algo-

rithm can be formalized in ∃LA-Theory (or perhaps even LA-Theory).

Proof: See Appendix A.3. �

3.4 Complexity Analysis

3.4.1 Complexity

In this section we investigate more closely the complexity of our algorithm, i.e., our

Permutation-Based Algorithm (Section 3.3). We divide this section into two parts,

the first one consist of the high level complexity analysis description of our algorithm,

and the second one is a more tight complexity analysis of our algorithm.

Recall that our algorithm works from a perfect matching already in place, from

these complexity analyze we get that the complexity of our algorithm is at most O(n2),

where n = |V |, i.e., it is the cardinality of the set of vertices of a given bipartite

graph G.

Our complexity measure is informal—like we will show—we measure number of

steps of our algorithm. Finally, in Section 3.4.2 we give a very short discussion about

different data structures concerning to the implementation of our algorithm.

3.4.1.1 Introduction

Let G = (V = V1 ∪ V2, E) be an undirected bipartite graph. Let |V1| = |V2| = n be

the number of vertices and let |E| ⊆ V1 × V2 such that |E| ≤ n2.

Also, we use the matrix representation of the G by its adjacency matrix AG,

and we know that AG is symmetric with respect to the main diagonal. As a “data
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structure” aside, note that using this structure on matrices we are going to need to

represent our matrices 1
2
n (n+ 1) bits. We will do use of AG and A indistinguishably

when the context be clear. Also, from the correctness of HK-Algorithm—Chapter 2

Section 2.3—we know that the matching M is maximum and it is, for instance, of

size k, that is |M| = k. Recall that we use script M in order to distinguish its set

representation from its matrix representation denoted with MA, or just M .

On the other hand, our algorithm works using two matrices with entries over GF (2),

but we are going to do a padding process before that our Permutation-Based Algorithm

use them. So, the two matrices are:

1- The matrix representation of the maximum matching M plus a padding with

zeros rows and/or columns, if necessary, that is, for example, suppose that the

maximum matching output of HK-Algorithm is of size 2, say M = {(1, 2′), (3, 4′)}

but our bipartite graph is G = (V1 ∪ V2, E) given by V1 = {1, 2, 3, 4} and V2 =

{1′, 2′, 3′, 4′} and E = {(1, 2′), (2, 4′), (3, 4′), (4, 2′)}, so our matrix representation

of M will be:

M =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


where rows two and four were padding with zeros. Note that we use prime in

the second components of the element of the matching just to be consistence

with the set of vertices of G.

2- The adjacency matrix representation of G and padding with zeros rows and/or
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columns, if it is necessary.

AG =



0 1 0 0

1 0 0 1

0 0 0 1

0 1 1 0


where was not necessary to pad it to zero.

In this process of padding matrices, we use n be the maximum value between the

two set of vertices i.e., max{|V1|, |V2|}. So, after padding the matrices , we defined

arbitrarily, the size of both matrices such that |M | = k× k where k correspond to the

maximum index1 of the maximal matching output of HK-Algorithm, and |AG| = n×n,

where n is defined below. Hence, M and AG are going to be square matrices which

will make more simple the calculations. So, we begin to analyze the time consuming

by the our algorithm dividing it by its steps. But before, let us start defining our

“elementary steps” or “atomic operations” with a cost O(1).

Definition 3.4.1 The following operation are named atomic operations and have

cost O(1):

• write a new value in any entry (i, j) of a 0-1 matrix, and

• check if an entry (i, j) of a 0-1 matrix is 0 or 1.

So, suppose that we would check if an arbitrary line—row or column—p of a

1Remember that M = {(i1, j1), (i2, j2), . . . , (ik, jk)} i.e., M is a list of all the positions of M with
a 1 in them (k = |M|).
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matrix A with entries over GF (2), is zero we define the following LLA predicate P,

P(A, p) := λij〈1, c(A), e(p, j, A)〉 = λij〈1, c(A), 0〉

where the 0 on the right side of the equality, i.e., λij〈1, c(A), 0〉 correspond to an

element of Z, the ring of integers. Besides, P(A, p) in terms of atomic operations is:

c(A)-many atomic oprations


for i = 1, 2, . . . , c(A)

e(p, i, A) == 0 } is a single atomic operation

Recall that P(A, p) costs O(n), where n is the length of the line.

3.4.1.2 High Level Complexity Analysis

In this section we investigate in a high level, the complexity of our Permutation-Based

Algorithm. Remember that another thing to consider is that our input instances are

of size, for example, input of size(n) = n2. So, when we talk about input size n, we

really mean parameterized inputs of size n2.

We are going to analyze each algorithmic step through the worst case, which for us is

when at least two green 1s “appear” in every recursive call that the Permutation-Based

Algorithm does. This comes from the following claim:

Claim 3.4.1 Let k = |M | be the size of the matrix representation of the maximum

matching M , let G = (V1 ∪ V2, E) be a bipartite graph, let A
k×(|V1|−k)
1 and A

(|V2|−k)×k
2

be submatrices of PAGQ. If A1 6= 0∧A2 6= 0, then must exist at least two green 1s on

the main diagonal of PAGQ matrix.

Proof: We know by assumption that A1 6= 0, so, must be an arbitrary nonzero entry
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on A1 denoted by A1(i, j) 6= 0, similarly on A2 must exists an arbitrary nonzero entry

denoted by A2(s, t) 6= 0. Therefore, we are in the situation of PAGQ depicted in

Figure 3.3.

PAGQ =

[
E A1

A2 0(n−k)×(n−k)

]
=

i

s

jt

n−k

k

k n−k

Figure 3.3: Two green 1s condition. The black boxes represent the nonzero entries
of A1 and A2

Hence, we know that at least exist two green ones inside the k×k upper left corner

of PAGQ, because otherwise we are in the following case: suppose that exist only one

green 1 inside the k × k upper left corner, then that means that i = t but this is not

possible, because it means that exist an entry with a 1 on it such that require two

lines to be cover which is a contradiction by König’s Min-Max Theorem.

Therefore we have that i 6= t, and our Claim follows. �

Note that we are not adding any restrictions on j and s because, by construction

of PAGQ, s and j never cross it inside of the k × k upper left corner. That is, the

situation described below is valid for any s, and j.

Recall that is in the recursion call of our algorithm that computes the orientation
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of the lines over the black 1s. Therefore, in order to investigate more closely the

recursive step, we analyze the following cases:

Case 1: if there are only greens 1’s on the k elements on the main diagonal then there

is not recursive step because the fact that all ones are green means that our

algorithm has determined before the recursive call all the k lines orientation

hence it terminates.

Case 2: if there are only black 1s there is no recursion step because our algorithm is in

the Step 2a, that is, (A1 = 0 ∨ A2 = 0), therefore recursion doesn’t happens.

Case 3: according to Case 1 and Case 2, our algorithm make use of recursion steps only

when there are a mix of green 1s and black 1s among the k first elements on

the main diagonal. But, by Claim 3.4.1, we know that there are at least two

green 1s among the black 1s on the main diagonal, therefore our algorithm enters

in a recursive step when that happens. For example, an instance of a Case 3 is

depicted in Figure 3.4.
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1

1

1

k

k

1

Figure 3.4: Recursive Situation. At least two green 1s and the remainder black 1s.
The shared blocks denote nonzero blocks.
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So, our recursive procedure will continue until reach to the following situation

Figure 3.5, always in the context of the worst case scenario.

1

1

Figure 3.5: Last Step, we have a 4× 4 matrix with two green 1s on the diagonal of
the 2× 2 upper left corner

Therefore, our Permuted-Based Algorithm in the worst case scenario makes k/2

recursive calls, where k = |M |. For each recursive call we start working on a matrix of

size n× n, where n = |V | the cardinality of the set of vertices of G. The entire matrix

is schematized in the Figure 3.6.

1

k

k

1

|V| − k

|V| − k

1

1

Figure 3.6: First Recursive call
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At every recursive step our matrix decreases at least by two rows and two columns

which corresponded to the green 1s. This can be expressed formally by the following

recursive formula:

R(n) = O(n2)︸ ︷︷ ︸
(1)

+O(n2)︸ ︷︷ ︸
(2)

+R(n− 2)︸ ︷︷ ︸
(3)

(∗)

= c1n
2 + c2n

2 +R(n− 2)

= cn2 +R(n− 2)

≈ n2 + (n− 2)2 + (n− 4)2 + · · ·+ 1

=
n(n− 1)(2n+ 1)

6

= O(n3)

(3.1)

In (∗) term (3) correspond to the recursive call discussed previously. Also in (∗) the

term (1) correspond to the complexity extracted from Step 1 of our algorithm, which

is (k = |MA| = min{m,n}), Step 2 which is (k = |MA| < min{m,n}), and Step 2a

which is (A1 = 0 ∨ A2 = 0), such that, like we are in the worst case scenario, Step 1

and Step 2a are zero and the entire complexity factor O(n2) comes from Step 2

which is divided in the follow two main tasks.

Before continue with the description of each task performed by Step 2 let us make

some observations: first of all, at the beginning, we need to compute permutations

matrices P and Q and yields PAGQ where AG is the adjacency matrix of a bipartite

graph G, then we need to multiply two matrices use O(n2) steps. So, we are going

to explain how we will manage multiplication of permutations by using, for example,

the µ permutation which split black 1s and green 1s on the main diagonal. (See

for more details about computing permutations Appendix A.3). Secondly, the same
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process of multiplication mentioned below is used to get any multiplication computed

by our algorithm.

Therefore, the tasks computed in Step 2 of our algorithm are:

Task 1: we make use of the structure of the permutation matrices involved in Step 2 in

order to store them with exactly n bits, using in memory a linear representation,

we show this by the follow example:

For instance, let Rn×n, or just R, be the permutation matrix associated to the µ

permutation—like a bijection—which is used to split green 1s and back 1s, hence,

let µ defined by µ = (i1, i2, i3, . . . , in) where il represent the (l, il) entry where R

has a 1, that is,

R(l, il) = 1 ⇐⇒ il represent the (l, il)-entry for il ∈ {i1, i2, i3, . . . , in}

Hence, we are using only |µ| = n bits.

Note that in the process of Compute P ,Q (Appendix A.3 Section A.3.1.1,

Section A.3.1.2), and finally yield PAGQ, we require O(n2) steps using the cycle

decomposition—see below—and more important it is that our algorithm does

this process only once at the beginning. In short, the linear representation of the

permutation involved in Step 2, and the computation of P,Q and their product

“once” at the beginning are two key concept of Task 1.

Task 2: using the fact that we are representing our permutations like

µ =

 1 2 . . . n

i1 i2 . . . in


75



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

and doing use of a cycle decomposition (for more on permutation and cycle

decomposition see Appendix A.4) we will use only O(n2) steps to do the products

involved in the splitting process of green 1s and black 1s. We do that in the

following way:

Give µ like defined above, we use a cycle decomposition of µ such that an n-cycle

will be

(i1, in)(i2, . . . , in−1)

where the commas can be omitted and the simple cycle (i1in) represent the

permutation that send 1 7→ n and n 7→ 1, i.e., a transposition, and the order

between permutation and the cycle ordering within a permutation does not

matter, so (i1in) = (ini1).

– This kind of representation correspond to a product of disjoint cycles—two

cycles are disjoint if they do not have any common elements. For instance,

consider the permutation π on the set of integers J3 = {1, 2, 3} where the

sub-index represent the cardinality of the set, given by π(1) = 3, π(2) = 2,

π(3) = 1, then the cycle decomposition of π is: π = (13)(2), that is, a

product of two cycles (13) that maps 1 7→ 3 and 3 7→ 1 and cycle (2) that

maps 2 to itself, we can ignore cycles of size one, so π = (13).

We can called this process swap decomposition meaning writing n-cycles like

a products of cycles. We are using n swapping in order to swap two arbitrary

lines—rows/columns—such that, every swap has a cost of 4 atomic operations,

because, again, we give an example, suppose that we want to swap position a

and position b, see Figure 3.7.
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n

n

1

1

a

b

Figure 3.7: Swapping lines

First, we check if position a has a 0 or a 1, afterwards we check if position b has

a 0 or a 1, then in case of be necessary swap the values, we proceed to write a

new value in a as a new value in b (see Definition 3.4.1).

Therefore, putting all together we use 4 atomic operations for each position of

our arbitrary row/column. Then we have 4n elementary steps/atomic operations

in order to swap two lines.

Finally, in the worst case scenario we use 4n2 steps to swap the n lines of an n

square matrix, getting then the required O(n2) steps from Step 2.

Note that we are using of auxiliary position of memory to make possible this

swap, but this increase the constant factor, so, does not affect the calculus of

the running time of Step 2.

In Equation 3.1 in (∗) the term (2) correspond to the Step 2b which is when both

submatrix A1, A2 are not zeros, i.e., (A1 6= 0∧ A2 6= 0), to be more specific correspond–

inside this Step 2b–to the tasks that fill the lines with zeros in which was a green
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one and fill of zeros the lower right corner, in every recursive call. Also, and more

important–according to the contribution to the complexity of Step 2b–is a factor of

O(n2) steps that come from the task of splitting green 1s from black 1s on the main

diagonal in every recursive call and updating the orientation vector ~O according to

the new distribution of the diagonal elements; a more detailed complexity analysis of

this step can be found in the next section—Tight Complexity Analysis.

It is clear that we are overestimating the cost of this process because we have a

reduction of two rows and two columns in every recursive call because we are in the

worst case scenario.

3.4.1.3 Tight Complexity Analysis

We start this section remembering the Theorem 3.3.1 showed in this chapter Section 3.3,

that is,

Theorem (Theorem 3.3.1) Given a bipartite graph G = (V = V1 ∪ V2, E), we obtain

a procedure for computing a Minimum Vertex Cover from a Maximum Matching that

runs in time |〈A,MA〉| = |V |2. That is, given a 0-1 matrix and the corresponding

maximum matching, we can compute the vertex cover in linear time (in the size of the

input).

We will define a more tight formula of the recursion relation—Equation 3.1—found

it in Section 3.4.1.2.

Let R(n) be the maximum number of steps, in the worst-case, that our Permutation-

Based Algorithm takes on a matrix of size n. Recall that a “step” is a single

“atomic/elementary operation” defined in Definition 3.4.1, and our worst case is when

at least two green 1s “appear” in every recursive call that the Permutation-Based
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Algorithm does.

As we apply the permutation matrices P,Q only at the beginning of the procedure,

the cost of these permutations is O(n2)—as can be seen in Section 3.4.1.2. Once P,Q

are computed, we deal with PAGQ where the 1’s associated with the matching are

given in the main diagonal, that is, the diagonal of submatrix E.

Let us make the following remark about some cases which we call entangle cases—

see at the end of this section: if there are many green 1’s, the procedure has fewer

recursive calls; if there are few green 1’s, the procedure has more recursive calls.

Suppose that k is the number of back 1’s, and n− k is the number of green 1’s. Then,

we can see that the worst-case analysis yields the following bound on the number of

atomic steps:

R(n+ 1) = max
1<k<n

{k(n+ 1− k) +R(k)} (3.2)

First note that there must be at least one black 1, for otherwise, there are no more

steps. There must also be at least two green 1’s (see Claim 3.4.1), if there were only

one green 1, then either A1 or A2 would be all zero, which would also terminate the

algorithm. Finally, no green 1’s would imply termination as well. Hence the maximum

is computed over 1 < k < n for size n+ 1.

Note that in the recursive Equation 3.2, k represents the number of black 1’s, and

so the corresponding sizes of A1 and A2 are given by k× (n+1−k) and (n+1−k)×k,

and hence the term k(n+ 1− k)—we are ignoring constants in Equation 3.2; it should

really be 2k(n+ 1− k), but its does not change the order of R(n). The recursive step

is repeated on the black 1’s, and hence we add R(k) in Equation 3.2.

Now, we proceed to a more formal definition and we prove by induction on n

that R(n) ≤ n2, under the assumption that R(0) = R(1) = 1. That is,
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Definition 3.4.2 Let n be input size of our Permutation-Based Algorithm defined in

Section 3.3, let k be the size of the maximum matching. Then, let R(n) be defined

recursively by:

R(0) = R(1) = 1

R(n) = max
1<k<n

{k(n− k) +R(k)}

Graphically (Figure 3.8),

PAGQ =

[
E A1

A2 0(n−k)×(n−k)

]
=

1

1

(n − k) x k

k

k n−k

n−k

k x (n − k)

Figure 3.8: Recursive instance

From Definition 3.4.2 we have that the term k × (n− k) comes from the fact that

we need to explore (n− k)j rows and (n− k)j columns in order to determine if the j

position on the main diagonal is green or black. Hence, we have a contribution time

complexity of O(k(n− k)) omitting the constant. The other factor of Definition 3.4.2,

i.e., R(k), correspond to recursive call over the k by k upper left corner.
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Keep in mind that our input instances are of size input size(n) = n2. So, when we

talk about input of size n, we really mean parameterized inputs of size n2.

Claim 3.4.2 Let n be input size of our Permutation-Based Algorithm defined in

Section 3.3, let R be defined like Definition 3.4.2, then R(n) ≤ n2.

Proof: By induction on n we get the following cases:

Basis Case: n = 0 and n = 1 by definition of R they holds, therefore there is

nothing to prove.

Inductive Step: Suppose that R holds for n. Let us prove it for n+ 1.

R(n+ 1) = max
1<k<n

{k(n+ 1− k) +R(k)} by Def.

by the I.H. we have that R(k) ≤ k2 since k < n,

≤ max
1<k<n

{k(n+ 1− k) + k2}

= max
1<k<n

{kn+ k − k2 + k2}

= max
1<k<n

{kn+ k}

≤ n · n+ n

= n2 + n

≤ n2 + 2n+ 1

= (n+ 1)2

�

Therefore, we conclude saying that the running time complexity cost of our

Permutation-Based Algorithm is linear in the input size.
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Now, we proceed to explain in more detail the entangle cases that we mention

before. Without loss of generality, let Figure 3.8 be the instance depicted for analyze

the following both cases.

Case a: assume k >> α, i.e., let k be bigger than some particular factor α, such that

the operations of splitting black 1s and green 1s and prepare the matrix to the

next recursive call—where “prepare” means the task described in this chapter

Figure 3.2—that our algorithm does on each recursive call are expensive (with

respect to the number of atomic operations) but with the advantage that there

are few of such operations, this means that A1 and A2 are of small size in

relation to the factor α, that is, bigger α smaller (n− k).

In short, a big k imply expensive few elementary/atomic operations and small

dimension of A1 and A2.

Case b: assume that k << α, i.e., k smaller than some factor α such that the operations—

the same that Case a—that our algorithm does in each recursive step are cheap

but with the disadvantage that there are many of such operations, which means

that A1 and A2 are of big size in relation to the factor α.

So, in this case, k is small which imply cheap many atomic/elementary operations

and big dimension of A1 and A2.

3.4.2 Data Structure

The purpose of this section is to review some very basic data structures used with

Graph Algorithms. This section will be just a remark about “possible” data structure

to be used in our Permutation-Based Algorithm, possible in the sense that we express
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which is a “good” of many data structure, and good in the sense that we consider

Combinatorial Matrix Theory aspect of matrices used in our algorithm, i.e., matrices

denoting bipartite graphs, matching matrices, permutation matrices, 0-1 matrices

with König’s Property, i.e., satisfying the König Min-Max Theorem.

3.4.2.1 Issues of implementation

In this section we are going to show some usual Data Structures (DS) used to

represent graphs with its advantages and disadvantages. More information can

be found in [CLRS09, Ch. 22]. Another very good references are, for instance,

[Meh84, AHU74, AHU83, Gon84].

We start with the one of the two major used representations about graphs which

is Adjacency List, next we show a variation of the this one, which is called Adjacency

Hash, and finally, we show the other major used representation named Adjacency

Matrix.

• Adjacency List Representation:

This representation is preferred to represent sparse graphs , that is, those for

which |E| << |V |2. The adjacency list representation of G = (V,E) consist of

an array Adj of |V | many lists, one for each vertex in V . For each u ∈ V the

adjacency list, denoted Adj[u], contains all the vertices v adjacent to u that is,

vertices such that there exists an edge (u, v) ∈ E.

Now, we have two cases to be consider about the graph, those are, ifG is a directed,

the sum of the lengths of all adjacency lists is |E|, but if G is an undirected

graph, the sum is 2|E|. For both cases the adjacency list representation has the

property that require Θ(|V |+ |E|) amount of memory.
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The main disadvantage is that this kind of data structure is not a fast way to

determine if a given edge is present if the graph. In order to solve that problem

we can use the Adjacency Matrix Representation—see below–but at the cost of

using asymptotically more memory.

• Adjacency Hash Representation:

The adjacency hash representation of a graph G = (V,E) consist of an array Adj

of |V | many hash tables, i.e, which a hash table on each vertex in V . Then each

entry of Adj[u] is a hash table containing the vertices v for which (u, v) ∈ E.

So, let us look some properties about this DS. Suppose that for all edge look-up

are equally likely, the the expected time to determine whether an edge is in the

graph is O(1) since just going to the hash table, say t, i.e., t = Adj[u] and get v.

One thing to be consider it is that this DS will require more space than the

linked list version—see previous representation, making this point one of its

disadvantage.

On the other hand, another point to be consider is the type of hash function that

we choose in order to have the best performance, for instance, Division Method,

Multiplication Method, Universal Hashing, etc., and more important how this

hash functions deals with collision , for instance, using Open Addressing schema

we can manage the collision using several approach like linear or Quadratic

Probing, Double Hashing, etc, which represent the principal disadvantage of

this DS.

For example, suppose that in our hash table each vertex to the list of adjacency

vertices have the same key. If the distribution of vertices is sufficiently uniform,
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i.e., each vertex appears with equal probability into any of the |V | slots, then

the average cost of a lookup depends on the average number of vertices per each

list (that is, the Load Factor, say α), so the α = n/m where m is the size of

hash table and n number of vertices in the table.

So, the expected time to determine whether an edge is in the graph is O(n/m)

having more space than Adjacency List approach and more query time than

Adjacency Matrix. If our hash table supports dynamic resizing then we would

need extra time to move the elements between the old and new hash tables

and if not we would need O(n) space for each hash table in order to have O(1)

query time which results in O(n2) space. Also we have just checked expected

query time, and in worst case we may have query time just like Adjacency List,

i.e., O(deg(u)) so it seems better to use Adjacency Matrix in order to have

deterministic O(1) query time and O(n2) space.

• Adjacency Matrix Representation:

First of all, this DE is what we decided to use it. So, this data structure

representation is preferred to represent dense graphs—those for which |E| ≈ |V |2—

or when we need to be able to answer fast if there is an edge connecting two

given vertices.

For this representation we assume that the vertices are numbered from 1, 2, . . . , |V |

in some arbitrary order. Then the adjacency matrix representation of G consist
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of a |V | × |V | matrix A = (aij) such that

aij =


0 if (i, j) ∈ E,

1 otherwise.

The adjacency matrix of a graph requires Θ(|V |2) memory, independently of the

number of edges in G. Let u ∈ V be a vertex of G we denote by dG(u) the degree

of u—the number of incident edges—and by NG(u) the open neighbourhood

of v which is the set of vertices adjacent to v.

So, we summarized, mainly, the advantage and disadvantage of the two most impor-

tant representation by showing some typical operations over graphs which are, first, an-

swer the question about (u, v) ∈ E? where with Adjacency List takesO(min{dG(u), dG(v)})

while using Adjacency Matrix Representation we have O(1).

On the other hand, we have that using Adjacency List we haveO(dG(u)) againO(|V |)

in the process of go over NG(u). Lastly, when we go over E, we have O(|V | + |E|)

using adjacency list representation while with matrix representation we get O(|E|).

We have seen several representations of graphs, but there are subtle differences that

can be tuned to get a maximum performance considering our particular application

on our algorithm. We can use the Adjacency Matrix representation if our algorithm

works over a dense graphs, or we can use Adjacency List if our graph change frequently,

finally, some variants of adjacency list like, Adjacency Hash are faster that linked list

in some particular cases, like we saw before.

We use the Adjacency Matrix Representation for our DE, and the two main reasons

are that it is fast to answer the question if a given edge (u, v) ∈ E, and secondly, like

our algorithm works with an unweighted graph, there is an additional advantage in

86



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

storage for the adjacency matrix which come from that rather than using one word of

computer memory for each matrix entry, it uses only one bit per entry.
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Chapter 4

A Proof Complexity approach to

König’s Min-Max Theorem

4.1 Feasible proofs in Linear Algebra

The Proof Complexity (PC) of Combinatorial Matrix Theory (CMT) is related to the

Proof Complexity of linear algebra, and hence we are going to use LA-Theory in order

to formalize reasoning in CMT.

The PC of linear algebra, roughly speaking is the complexity of concepts needed

to prove the basic properties of linear algebra operations. The PC has two aspects,

the uniform concerns the power of logical theories required to prove a given assertion,

and the nonuniform aspect which concerns the power of propositional proof systems

required to yield polynomial size proofs of a tautology family representing the assertion.

Here we are concerned with the uniform case.
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4.1.1 Why do we want to find feasible proofs?

As was mentioned at the beginning of this thesis, the main goal of Bounded Reverse

Mathematics is to find the weakest theory capable for proving a given theorem—in

our case we “use” as “a source of theorems” the mathematical field of Combinatorial

Matrix Theory—and in general these can be proved in weak theories. The adjective

Bounded refers to bounds on the sizes of quantified matrices, that is, ∀X ≤ n means

all matrices X with at most n rows and columns.

Rather, the point of Proof Complexity is to see which combinatorial theorems

have feasible proofs. Then, Proof Complexity takes the P vs. NP problem from

computation and “translates” it into NP vs. co-NP in proofs.

More precisely, Proof Complexity is an area of Mathematics and Theoretical

Computer Science that studies the length of proofs in propositional logic. It is an area

of study that is fundamentally connected both to major open problem of computational

complexity theory and practical properties of automated theorem provers [BP98]. For

more details see Chapter 1 Section 1.1.

In this section we justify our Proof Complexity approach to König’s Min-Max

Theorem, with reference to Kraj́ıc̆ek in [Kra10].

A fundamental notion that appears throughout this thesis is that of feasible proof

(and feasible computation, or polynomial time computation). Feasible proofs were

introduced by Cook in [Coo75], and they formalize the idea of tractable reasoning;

a theorem can be proven feasibly, if all the computations involved in the proof are

polynomial time computations, and the induction can be unwound feasibly. So, we

understand feasible proofs as proofs that use only polynomial time concepts.

We shall discuss some situations in which it is possible to extract from a proof some
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feasible computational information about the theorem being proved. This includes

extracting feasible algorithms, deterministic or interactive, for instance, for witnessing

an existential quantifier.

Universal Theories

Let L be a language that has a function symbol corresponding to every polynomial

time algorithm, say as represented by clocked polynomial time Turing machines1. We

shall assume that polynomial time relations are represented by their characteristic

functions and hence the only relation symbol is the equality, which we regard as a

logical symbol.

Every function symbol from L has a canonical interpretation on the set of natural

numbers N which we identify with the set of all binary words {0, 1}∗; the resulting

L-structure will be called the standard model. Let T be the universal theory2 of the

standard model.

Witnessing existential formula

Assume

T ` ∃yA(x, y)

where A is an open formula, i.e., is formed by combining atomic formulas using logical

connectives. Herbrand’s theorem implies that there are terms t1(x), . . . , tk(x) such

that

T `
k∨
i

A (x, ti(x))

1A polynomial clock C(a,b) is a total TM that behaves as follows: for binary input x of length |x|
it computes |x|a + b, a, b positive integers, and stops the operation of the coupled machine Mm(x)
after |x|a + b cycles, if it has not stopped yet.

2A theory is a set of formulas, if the formulas have no existential quantifiers, the theory is called
Universal.
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As the class of polynomial time functions is closed under definitions by cases

distinguished by a polynomial time property, it follows that there is one term t(x)

such that

T ` A(x, t(x))

The polynomial time algorithm defined by t(x) witnesses in the standard model

the validity of the sentences ∀x∃yA(x, y). Consequences of this witnessing is, for

instances:

• Example 1: We give an example of a first order formula for which we believe there

is no polynomial time proof. We start by recalling some standard definitions,

see [Sol09]. A language L has a proof system if there exists a polynomial time

binary predicate3 R(x, y) : x ∈ L ⇔ ∃y R(x, y) where y is called proof, i.e.,

the encoding of a proof that x ∈ L.

In this context, soundness means that ∃y R(x, y)⇒ x ∈ L, and completeness

means that x ∈ L ⇒ ∃y R(x, y). Finally, the complexity of R is fR : N → N,

where

fR(n) = max
{x∈L,|x|=n}

min
y,R(x,y)

|y|,

and R is polynomially bounded iff fR is bounded by some polynomial, i.e., there

exists a polynomial q such that fR ≤ q(n).

Let P be a propositional proof systems, e.g., is a proof system for TAUT, where

TAUT is a language defined as follow:

TAUT= {〈φ〉 : ∃yR(〈φ〉, y)} where R(〈φ〉, y) :=“y encodes a derivation of φ”

3An k-ary predicate S(x1, . . . , xk) is polynomial time if exists a Turing Machine M which on
input 〈x1, . . . , xk〉 decides S(x1, . . . , xk) in time P (|x1|+ · · ·+ |xk|) for a fixed polynomial P .
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this derivation could be, for example, a truth table.

Any π such that P (π) = τ is called a P-proof of τ . The completeness of P can

be stated as :

∀x∃y [Fla(x)⇒ (SatNeg(x, y) ∨ P (y) = x)]

where Fla(x) is L-formula formalizing that x is the encoding of a propositional

formula, SatNeg(x, y) is L-formula formalizing that x is a propositional formula

and y is a truth assignment satisfying the negation of x. Unless P = NP, this

is unprovable in T as a witnessing algorithm could be used to decide SAT . As

long as T is a polynomial time theory—and this is only a conjecture.

The point is, if T ` p, then we can witness y in polynomial time (in |x|), and

therefore compute either an assignment that has not satisfy x, or the encoding

of a proof of x if x is a tautology. The existence of such a witnessing function

would imply P = NP which we believe not to be the case.

• Example 2: Let h be a one-way permutation, i.e, a one-way function4 that is

also a permutation (bijective). As h must be surjective the sentence

∀y∃x h(x) = y

is valid.

4f : {0.1}∗ → {0, 1}∗ is one-way if can be computed by a polynomial time algorithm, but for

every randomized polynomial time algorithm A, Pr [f (A (f(x))) = f(x)] <
1

p(n)
for every positive

polynomial p(n) and sufficiently large n, assuming that x is chosen from the uniform distribution on
{0, 1}n and the randomness of A.
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But it is not provable in T as the witnessing algorithm would compute the inverse

function to h, which is supposed to be impossible because “The existence of a

one-way function is still an Open Conjecture”. (For more details see [AB09]).

4.1.2 The Theory LA

We present a short survey of LA-Theory based on [SC04, Section 2]. LA was

introduced to study the complexity of the concepts needed to prove the basic theorems

of linear algebra.

While we consider matrices over {0, 1}, the underlying ring is Z, since we require

that ΣA compute the number of 1s in the matrix A (which for a 0-1 matrix is simply the

sum of all entries—meaning ΣA). Thus, over Z, LA translates to TC0-Frege, [SC04,

§6.5].

LA-Theory is a field-independent logical theory for expressing and proving matrix

properties. LA proves all the ring properties of matrices (i.e., commutativity of matrix

addition, associativity of matrix products, etc.). While LA is strong enough to prove

all the ring properties of matrices, its propositional proof complexity is low, that is,

over Z, all the theorems of LA translate into TC0-Frege proofs,[SC04, §6.5].

LA is a quantifier-free theory with three sorts: indices (i.e., natural numbers)

denoted i, j, k, . . . , field elements denoted a, b, c, . . . , and matrices denoted A,B,C, . . . ,

and all theorems hold for any choice of the underlying field. The semantic assumes

that objects of type field are from a fixed but arbitrary field, and objects of type

matrix have entries from that field. LA allows the basic ring properties of matrices to

be formulated and proved.

Soltys in ([Sol01]) defined the LA-Theory to be a set of sequents, using sequents,
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rather than formulas, for two reasons: (i) sequents are convenient for expressing matrix

identities, for instance the “hard matrix identities” (see Section 3.2 on [Sol01]), and

(ii) LA uses sequent calculus proof system to formalize propositional derivations. LA

is defined as a set of sequents which have derivations from the axioms A1− A33 (see

Section 2.3 on [Sol01]), a few of that axiom are expressed below.

The Language LLA

Terms and formulas are built from the following function and predicate symbols,

which together comprise the language LLA:

0index, 1index,+index, ∗index,−index, div, rem,

0field, 1field,+field, ∗field,−field,−1 , r, c, e,Σ,

≤index,=index,=field,=matrix, condindex, condfield.

The intended meanings should be clear, except −index is cutoff subtraction, that

is, (i− j = 0, if i < j), a−1 is the inverse of a field element a with 0−1 = 0, and for the

following operations on a matrix A : r(A), c(A) are the number of rows and columns

in A, e(A, i, j) is the field element Aij (where Aij = 0 if i = 0 or j = 0 or i > r(A) or

j > c(A)), Σ(A) is the sum of the elements in A. Also cond(α, t1, t2) is interpreted

if α then t1 else t2, where α is a formula all of whose atomic subformulas have the

form m ≤ n or m = n, where m,n are terms of type index, and t1, t2 are terms either

both of type index or both of type field. This restriction is because in the translations

into propositional formulas (see [Sol01, Chapter 7] for the details of these translations)

all the free index variables get values, and therefore α will become true or false.

We use n,m for terms of type index, t, u for terms of type field, and T, U for terms
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of types matrix. Terms of all three types are constructed from variables and the

symbols above in the usual way, except that in addition terms of types matrix are either

variables A,B,C, . . . or λ terms λij〈m,n, t〉. Here i, j are variables of type index bound

by the λ operator, intended to range over the row and columns of the matrix. Here also

m,n are terms of type index not containing i, j (representing the numbers of rows and

columns of the matrix) and t is a term of type field (representing the matrix element

in position (i, j)). The idea behind the constructed term λ is to avoid having to define

a whole range of matrix functions (matrix transpose, matrix addition, etc.). Instead,

since matrices can be defined in terms of their entries, we use functions of type field

to define matrix functions; the λ operator allows us to do this, for instance, suppose

A,B are 2× 2 matrices, then A+B can be defined λij〈2, 2, e(A, i, j) + e(B, i, j)〉.

Atomic formulas have the forms m ≤index n, m =index n, t =field u, T =matrix U .

Formulas are built from atomic formulas using the propositional connectives ¬,∨,∧.

Formulas may not have quantifiers.

Terms for LA

The λ terms allow us to construct the sum, product, transpose, etc., of matrices.

We use the notation := to introduce abbreviations for terms.

Integer maximum

max{i, j} := cond(i ≤ j, j, i).

Matrix sum

A+B := λij〈max{r(A), r(B)},max{c(A), c(B)}, Aij +Bij〉.
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Scalar product

aA := λij〈r(A), c(A), a ∗ Aij〉.

Matrix transpose

At := λij〈c(A), r(A), Aji〉.

Zero and Identity matrices

0kl := λij〈k, l, 0〉

and

Ik := λij〈k, k, cond(i = j, 1, 0)〉.

Matrix trace

tr(A) := Σλij〈r(A), 1, Aij〉.

Dot product

A ·B := Σλij〈max{r(A), r(B)},max{c(A), c(B)}, Aij ∗Bij〉.

Matrix product

A ∗B := Σλij〈r(A), c(B), λkl〈c(A), 1, e(A, i, k)〉 · λkl〈r(B), 1, e(B, k, j)〉〉.

Finally , the decomposition of an n × n matrix A will be used in our axioms

defining Σ(S):

A =

 a11 R

S M


where a11 is the (1, 1) entry of A, and R, S are 1× (n− 1), (n− 1)× 1 submatrices,
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respectively, and M is the principal submatrix of A. Therefore, we make the following

precise definitions:

R(A) := λij〈1, c(A)− 1, e(A, 1, i+ 1)〉

S(A) := λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉

M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉

Substitution

The propose of this section is to denote the relevance of substitution instance of a

term inside the theory LA, since LA-Theory is closed under substitution on terms of

types index, field, and matrix, (for a proof see Section 2.4 Lemma 2.4.1 on [Sol01])

that is,

If LA ` α(x) then LA ` α(t)

where both x and t are term of type index, field, or matrix. To do this, we follow the

terminology and style of (see [Sol01, Section 2]).

Assume that t is a term, and we indicate that a variable x occurs in t by t(x). If t′

is also a term, of the same type as the variable x, then t(t′/x) denotes that the free

occurrences of the variable x have been substituted throughout t by t′, hence, we say

that t(t′/x) is a substitution instance of t. If α is a formula thenα(t′/x) is defined

analogously.

However, the existence of bounded variables complicates things, so, to avoid problems,

we give a precise definition of substitution, by structural induction on t:

Basis case: t is just a variable x, so x(t′/x) =synt t
′, where t′ must be the same
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type as x.

Induction Step: here examine the nine items from terms and formulas over LLA

(see Section 2.2.1 [Sol01]). All items, except item 6 and 9, are straightforward.(for

more details see Section 2.2.4 [Sol01]).

We only present item 6, suppose that t is of the form λ〈m,n, t〉. If x is i or j, then

the substitution has no effect, as we cannot replace bound variables. Assume that x

is neither i nor j.

If t′ doesn’t contain i or j, then λij〈m,n, t〉(t′/x) is just:

λij〈m(t′/x), n(t′/x), t(t′/x)〉 (*)

If t′ contain i or j, then, if we substituted like (*), the danger arises that x might

occur in m or n, and violate the restriction that i, j do not occur free in m and n.

Moreover, if x also occur in t, then the i and j from t′ would get caught in the

scope of the λ-operator, and change the semantic of t in an unwanted way. Thus, if t′

contains i or j, then, to avoid the problems listed above, we rename i, j in λij〈m,n, t〉

to new index variables i′, j′, and carry on as in (*).

A detailed exposition of substitution and λ calculus can be found, for instance, in

[HS86].

Lemma 4.1.1 Every substitution instance of a term is a term of the same type.

Similarly, every substitution instance of a formula is a formula, and every substitution

instance of a sequent is a sequent.

Proof: See [Sol01, pg. 21] �

Proofs in LA

We use Gentzen’s sequent calculus LK (with quantifier rules omitted) for the un-

derlying logic, see [Bus98, Chapter 1]. A sequent has the form α1, . . . , αk→β1, . . . , βl
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where the symbol→ is a new symbol called the sequent arrow, and each αi and βj is

a formula. The intended meaning of the sequent is:

∀x1 . . . xn

(
k∧
i=1

αi ⊃
l∨

j=1

βj

)

where x1, . . . , xn is the list of all the free variable of all three sorts that appear in the

sequent. Note that LA is a quantifier-free theory, but all the sequents are implicitly

universally quantified.

We let α ⊃ β stands for ¬α ∧ β, and α ≡ β stand for α ⊃ β ∧ β ⊃ α.

The system LK has the axiom scheme α→α, the structural rule Exchange,

Contraction, and Weakening (left and right), Cut rule, and rules for introducing each

of the three connectives ¬,∨,∧ on the left and right.

In addition to these axioms and rules, LA has axiom schemes and a rule for

equality, an induction rule, and axiom schemes giving the properties of numbers, field,

and matrices.

A proof in LA of a sequent S is a finite sequence of sequents ending in S, such

that each sequent in the proof is either an axiom, or follows from earlier sequents by a

rule of inference. If α is a formula, then we regard a proof of the sequent→α as a

proof of α.

Axioms for LA (for a complete list see [SC04], and Appendix A.5):

The axioms of LA are really axiom schemes, because all substitutions instances of

axioms are also axioms. The axioms are divided into four groups, equality axioms,

the axioms of PA without induction, for indices, the axioms for field elements, and

finally the axioms for matrices. For instance:
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• the axioms of arithmetic for indices, for instance

→i+ 0 = i.

• the field axioms, for instance

→a+ (−a) = 0.

• equality axioms, for instance

x1 = y1, . . . , xn = yn→fx1 · · ·xn = fy1 · · · yn,

where f can be any of the non-constant function symbols of LA.

• matrix axioms, for instance

(i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j)→e(A, i, j) = 0

that is, states that e(A, i, j) is zero when i, j are outside the size of matrix A.

Rules for LA

In addition to the logical rules of Gentzen’s LK, LA has two rules: matrix equality

and induction. In specifying the rules below, Γ and ∆ are cedents, which can be

empty.

Matrix equality rule

Γ→∆, e(T, i, j) = e(U, i, j) Γ→∆, r(T ) = r(U) Γ→∆, c(T ) = c(U)

Γ→ ∆, T = U
.

Here the variables i, j may not occur free in the bottom sequent; otherwise T and U are

arbitrary matrix terms. The semantics implies that i and j are implicitly universally
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quantified in the top sequent. The rule allows us to conclude T = U , provided that

T and U have the same number of rows and columns, and corresponding entries are

equal.

Induction rule

Γ, α(i)→α(i+ 1),∆

Γ, α(0)→α(n),∆

Here the variable i of type index may not occur free in either Γ or ∆. Also α(i) is

any formula, n is any term of type index, and α(n) indicates n is substituted for free

occurrences of i in α(i). Similarly for α(0).

Definition 4.1.1 We define the proof system PK-LA to be a system of sequent

calculus proof, where all the initial sequents are either of the form α→α, for any

formula α over LLA, or are given by one of the axiom schemes of LA, and all the

other sequents (if any) follow from previous sequents in the proof by one of the PK

rules5 for propositional consequence, or by Induction rule, or by Equality rule.

Thus, a PK-LA proof of a sequent S is an ordered sequence of sequents {S1, S2, . . . , Sn},

where each Si is either of the form α→α, or is given by one of the axiom schemes

of LA, or follow from previous sequents, say Sj’s by a PK rule for propositional

consequence, or by Induction rule, or by Equality rule. The end sequent, Sn is S, that

is, the sequent that we want to prove. The length of the proof is n.

Definition 4.1.2 The theory LA is the set of sequents over LLA which have PK-LA

proofs.

Recall that the formula α is equivalent in meaning to the sequent→α. Hence, we

can omit the arrow, but formally LA is a theory of sequents, and so the arrow is there.

5That is, the weak structural rules, cut rule, and introducing connectives rule. For more about
the propositional sequent calculus proof system PK, see [Bus98, Chapter 1]

101



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

Also, our derivations are informal, recall that a sequent S is in LA if an only if it has

a PK-LA derivation. The point here is to keep in mind that the derivations can be

formalized in PK-LA.

Substitution rule

S(x1, . . . , xk)

S(t1/x1, . . . , tk/xk)

Here S is any sequent, and S(x1, . . . , xk) indicate that x1, . . . , xk are variables in S.

Finally, the expression S(t1/x1, . . . , tk/xk) indicates that the terms t1, . . . , tk replace

all free occurrences of the variables x1, . . . , xk in S, simultaneously. Here, xi has any

of the three types, and the term ti has the same type as xi.

This completes the description of LA. For a more complete treatment see [Sol01],

and Appendix A.5.

4.2 A Combinatorial Matrix Theory proof of König’s

Min-Max Theorem

We start this section giving a standard textbook proof—a ΠB
2 proof—of König’s Min-

Max Theorem (KMM). Afterwards, in Section 4.3 we give a feasible proof of KMM.

Recall that Theorem 3.1.2 Section 3.1 is which we will prove within a Combinatorial

Matrix Theory approach.

This section is added for completeness; the next section contains our main contri-

bution.

Theorem 4.2.1 (König’s Min-Max version II) Let A be a matrix of size m× n

with entries over GF (2). The minimal number of lines that cover all of the 1s in A
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equals to the maximal number of 1s in A, no two of the 1s on a line.

Proof: Let ρ′A be the minimal number of lines that cover all the 1s. Let ρA be the

maximal number of 1s with no two on the same line. Throughout the entire proof line

denote a row or a column interchangeably.

Easy to see ρ′A ≥ ρA, because if we have k 1s no two on the same line, we need

at least k lines to cover them all. So, wherever ρ′A is, it is bounded below by size of

longest set of 1s with no two on the same line.

The other direction is more interesting, so we prove that ρ′A ≤ ρA.

Definition 4.2.1 (Proper covering) A proper covering is a covering where at least

one row is missing and at least one column is missing.

We consider two cases: there is a minimal proper covering, and there isn’t.

We now argue by induction on min{m,n}, where m are the number of rows of

matrix A, and n are number of columns of A.

Basis Step: in this case we have min{m,n} = 1 and can be checked easily that

Theorem 4.2.1 holds.

Inductive Step: the inductive step has two cases:

• Case 1: Suppose that there is no a proper covering of A.

First, A must have a 1 somewhere, otherwise ρ′A = 0 < min{m,n} given as

a proper covering. Let’s rewrite Lemma 3.2.2 from Chapter 3 Section 3.2—

Preliminaries to our algorithm—according to the terms used in this proof, that

is,

Lemma 4.2.1 Let P and Q be permutation matrices. Then ρ′A = ρ′PAQ and
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ρA = ρPAQ. Also, A has a proper covering if an only if PAQ has a proper

covering.

Proof: See proof Lemma 3.2.2 Chapter 3, Section 3.2. �

So, continuing with Case 1, we pick up some 1 in A, and permute A so that

this 1 is in the upper-left corner:

Â = PAQ =


1

A′

 (4.1)

Thus, A′ is the principal sub-matrix of Â.

By Lemma 4.2.1, if A does not have a proper covering, neither does Â. We want

to show ρ′
Â
≤ ρÂ. So, by I.H.:

ρ′A′ ≤ ρA′

from which we obtain

ρ′A′ + 1 ≤ ρA′ + 1 (4.2)

Now, note that we have the following claim:

Claim 4.2.1 Given a set S of 1’s in A′ no two of which are in the same line

then ρA′ + 1 ≤ ρÂ

Proof: Let S be the following set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} where

all i′as are different and all j′as are different, and represent the elements of a set,

that will be called matching set, and Â(ia,ja) = 1 then S ∪ {(1, 1)} still has the
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property that no two 1s are on the same line, and so |S ∪ {(1, 1)}| ≤ ρÂ and

|S ∪ {(1, 1)}| = |S|+ 1 = k + 1 where we can pick S so that k = ρA′ . �

On the other hand, since Â does not have a proper covering (Case 1 and

Lemma 4.2.1), we know that ρ′A′ = min{m− 1, n− 1}, more formally:

Claim 4.2.2 If Â does not have a proper covering, then ρ′A′ = min{m−1, n−1},

where A′ is the principal submatrix of Â.

Proof: First note that for any matrix B, ρ′B ≤ min{row(B), col(B)} since all

rows or all columns always form a covering. So, we only need to show that it

cannot be the case that ρ′A′ < min{m− 1, n− 1}.

Suppose it is. Consider the lines forming the covering of A′ such that its size

is ρ′A′ < min{m− 1, n− 1}; if we add to those lines the first row of Â and the

first column of Â, then we get a covering of Â of size ρ′A′ + 2 ≤ min{m,n} not

consisting of all rows and columns of Â. Hence, Â would have a proper covering.

�

So, by Claim 4.2.2, we have that:

ρ′A′ + 1 = min{m− 1, n− 1}+ 1

= min{m,n}

= ρ′
Â

(†)
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Putting it all together we have:

ρ′A = ρ′
Â

By 4.1

= ρ′A′ + 1 By †

≤ ρA′ + 1 By 4.2

≤ ρÂ By Claim 4.2.1

= ρA By 4.1

and therefore ρ′A ≤ ρA ending Case 1.

• Case 2: Suppose there is a proper covering.

Pick a minimal proper covering, it consists of some rows (e many) and some

columns (f many) and

ρ′A = e+ f (4.3)

note that we have “ = ” by minimality and since the chosen covering is proper,

e < m and f < n.

Consider now Â = PAQ where P permutes the e rows of the covering to the

top, and Q permutes the f columns of the covering to the left, (for more details

see Appendix A.3.1.1, and Appendix A.3.1.2).

Â = PAQ =

 E A1

A2 0

 ,
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where:

Sub Matrix Dimension

E e× f

A2 (m− e)× f

A1 e× (n− f)

O (m− e)× (n− f)

Note that

min{m− e, f} < min{m,n} and min{e, n− f} < min{m,n}

by the fact that (e < m) ∧ (f < n), and so, we can apply the I.H. to A1 and A2,

therfore:

ρ′A1
≤ ρA1 and ρ′A2

≤ ρA2 (4.4)

Suppose matrix A1 can be covered with fewer than e lines, say e′ < e.

Then the first f columns, together with e′ lines, cover Â giving us a covering of

Â of size e′ + f < e+ f = ρ′
Â

and hence a contradiction.

Since e lines cover A1 and fewer lines cannot cover A1, we have ρ′A1
= e. Similarly
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we show that f lines cover A2, so, we have ρ′A2
= f . Therefore,

ρ′A = ρ′
Â

By Permutations

= e+ f By 4.3

= ρ′A1
+ ρ′A2

By 4.4

≤ ρA1 + ρA2 By ΠB
2 -I.H. (∗∗)

≤ ρÂ By (∗)

= ρA By Permutations

Where (∗) follows since if let S1 be a subset of 1s of A1, no two on the same line,

and let S2 be a subset of 1s of A2, no two on the same lines, then S = S1 ∪ S2 is

a subset of 1s of A no two on the same line—as A1 and A2 “occupy” different

lines of A. Finally, (∗∗) denotes the step of the proof in which we need to apply

ΠB
2 -Induction, called ΠB

2 -I.H., i.e., it is here where we use the fact that our

induction is over ∀A ≤ n KMM(A, n) ∈ ΠB
2 , where the predicate KMM expressed

the Theorem 4.2.1, for more details see the next section.

So, we finish the proof of Case 2.

Finally, the Theorem König’s Min-Max version II (4.2.1) follows. �

4.3 A feasible proof of König’s Min-Max Theorem

In this section we present the main result of this thesis, that is, we show that the

well-known König’s Min-Max Theorem (KMM) can be proven in the first order

theory LA with induction restricted to ΣB
1 formulas. The standard proof ([BR91]) of
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KMM requires ΠB
2 induction, and hence does not yield feasible proofs—while our new

approach does (it yields a ΣB
1 proof). In order to prove KMM in ∃LA, we need to

restrict induction to ΣB
1 formulas. The main technical contribution is presented in

Claim 4.3.4 Section 4.3.3. Basically, we introduce a polynomial time procedure, whose

proof of correctness can be shown with ∃LA, that works as follow: given a matrix

of size e × f such that e ≤ f , where the minimum cover is of size e, our procedure

computes a maximum selection of size e, row by row.

LA is a weak theory that essentially captures the ring properties of matrices;

however, equipped with ΣB
1 induction LA is capable of proving KMM, and a host

of other combinatorial theorems such as Menger’s, Hall’s and Dilworth’s theorems.

Therefore, our result formalizes Min-Max type of reasoning within a feasible framework.

4.3.1 Introduction

In this section we are concerned with the complexity of formalizing reasoning in

combinatorial matrix theory. We are interested in the strength of the bounded

arithmetic theories necessary in order to prove the fundamental results of this field

(the uniform side of Proof Complexity Theory). We show, by introducing new proof

techniques, that the theory of Bounded Arithmetic LA with induction restricted to

bounded existential matrix quantification is sufficient to formalize a large portion of

combinatorial matrix theory.

Perhaps the most famous theorem in combinatorial matrix theory is the König’s

Min-Max Theorem (KMM) which arises naturally in all areas of combinatorial algo-

rithms — for example “network flows” with “Min-Cut Max-Flow” type of reasoning.

See [Kön16a, Kön16b] for the original papers introducing KMM, and see [CD12] for
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recent work related to formalizing proof of correctness of the Hungarian algorithm,

which is an algorithm based on KMM. As far as we know, we give the first feasible

proof of KMM.

As KMM is a cornerstone result in Combinatorial Matrix Theory, it has several

counter-parts in related areas of mathematics: Menger’s Theorem (Section 4.3.5.1),

counting disjoint paths; Hall’s Theorem (Section 4.3.5.2), giving necessary and sufficient

conditions for the existence of a “system of distinct representatives” of a collection of

sets; Dilworth’s Theorem (Section 4.3.5.3), counting the number of disjoint chains in

a poset, etc.

We show that KMM can be proven feasibly (Theorem 4.3.1), and we do so with

a new proof of KMM that relies on introducing a new notion (Definition 4.3.1 and

Claim 4.3.4, which introduce a polynomial time procedure, whose proof of correctness

can be shown with ∃LA). Furthermore, we show that the theorems related to KMM,

and listed in the above paragraph, can also be proven feasibly; in fact, all these theorems

are equivalent to KMM, and the equivalence can be shown in LA (Theorem 4.3.2).

We believe that this captures the proof complexity of Min-Max reasoning.

Our results show that Min-Max reasoning can be formalized with uniform Extended

Frege. It would be very interesting to know whether the techniques recently introduced

by [HT11] could bring the complexity further down to quasi-polynomial Frege.

4.3.2 Background

Let A be a matrix of size n × m with entries in {0, 1}, what we sometimes call a

0-1 matrix. A line of A is an entire row or column of A; given an entry Aij of A

(when giving LA formulas we shall denote such an entry with A(i, j)), we say that a
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line covers that entry if this line is either row i or column j. Then KMM states the

following: the minimal number of lines in A that cover all of the 1s in A is equal to

the maximal number of 1s in A with no two of the 1s on the same line. Note that

KMM is stated for n×m matrices, but for simplicity we shall state it for n× n (i.e.,

square) matrices; of course, all results given in this Section (4.3) hold for both.

See [BR91, pg. 6] for a classical discussion and proof of KMM (and note that the

proof relies, implicitly, on a ΠB
2 type of induction, for more details about this proof

see Section 4.2, and Appendix A.1).

We give the first, as far as we know, feasible proof of KMM in the logical theory LA

defined in [Sol01]. By restricting the induction to be over ΣB
1 formulas, that is formulas

whose prenex form consists of a block of bounded existential matrix quantifiers—and

no other matrix quantifiers—we manage to prove KMM in a fragment of LA called

∃LA. While the matrices in the statements of the theorems have {0, 1} entries, we

assume that the underlying ring is Z, the set of integers, so, the theorems of LA

translate into TC0-Frege while the theorems of ∃LA translate into extended Frege,

[SC04, §6.5]. We require the integers as one of our fundamental operations will be

counting the number of 1s in a 0-1 matrix, i.e., computing ΣA, the sum of all the

entries of A.

The background for LA is given in a Section 4.1.2 and Appendix A.5—for more

details of LA-Theory see [Sol01].

The main contribution of this section is to show that KMM can be proven in

the theory ∃LA which implies that it can be proven feasibly. We mention here an

important observation of Jeřábek from [Je05, pg. 44]: ∃LA does not necessarily

translate into a polytime proof system (e.g., extended Frege) when the matrices are

111



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

over Z. However, if we restrict the quantified matrices to be over {0, 1}, which is what

we do in our proofs, it readily translates into extended Frege.

We use |A| ≤ n to abbreviate r(A) ≤ n∧c(A) ≤ n, that is, the number of rows of A

is bounded by n, and the number of columns of A is bounded by n. We let (∃A ≤ n)α

— resp. (∀A ≤ n)α — abbreviate (∃A)[|A| ≤ n∧α] — resp. (∀A)[|A| ≤ n→ α]. These

are bounded matrix quantifiers.

While LA allows for bounded index quantification and arbitrary matrix quan-

tification, its induction is restricted to be over formulas without matrix quantifiers,

i.e., over ΣB
0 = ΠB

0 formulas. On the other hand, in ∃LA we allow induction over

so called ΣB
1 formulas. These are formulas, which when presented in prenex form,

contain a single block of bounded existential matrix quantifiers. The set of formulas

ΠB
1 is defined similarly, except the block of quantifiers is universal.

In general, ΣB
i is the set of formulas which, when presented in prenex form, start

with a block of bounded existential matrix quantifiers, followed by a block of bounded

universal matrix quantifiers, with i such alternating blocks. The set ΠB
i is the same,

except it starts with a block of universal matrix quantifiers.

It follows more or less directly that our LA results can also be formalized in

the theory VTC0 (and vice versa), defined in [CN10, pg. 283]. The reason is that

the function ΣA is exactly Buss’ function Numones(A) ([Bus86] and [Bus90, pg. 6]),

i.e., the function that counts the number of 1s in A, and TC0 is the AC0 closure of

Numones, [CN10, Proposition IX.3.1]. On the other hand, our ∃LA results can also

be formalized in V1, defined in [CN10, pg. 133].

The main contribution of this section can now be stated more precisely: following

König’s original proof of KMM, which is also the standard presentation of the proof
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in the literature (see the seminal work in the field [BR91, pg. 6]) one can construct

a proof with ΠB
2 induction, which does not yield translations into extended Frege

proofs (for more details see Appendix A.1). On the other hand, we are able to give

a proof that uses only ΣB
1 induction, which do yield extended Frege proofs, and

thereby a feasible proof of KMM. Our insight is that while we are doing induction

over the size of matrices, we can pre-arrange our matrices in a way that lowers the

complexity of the induction. This is accomplished with the procedure outlined in the

Definition 4.3.1—the diagonal property for matrices—and the subsequent proof of

Claim 4.3.1.

The language of LA is well suited to express concepts in combinatorial matrix

theory. We show how to express the concepts necessary to state KMM in the language

LLA. First, we say that the matrix α is a cover of a matrix A with the predicate:

Cover(A,α) := ∀i, j ≤ r(A)(A(i, j) = 1→ α(1, i) = 1 ∨ α(2, j) = 1) (4.5)

We allow some leeway with notation: ∀i, j ≤ r(A) is of course (∀i ≤ r(A))(∀j ≤

r(A)). The matrix α keeps track of the lines that cover A; it does so with two rows:

the top row keeps track of the horizontal lines, and the bottom row keeps track of the

vertical line. The condition ensures that any 1 in A is covered by some line stipulated

in α.

The next predicate expresses that the matrix β is a selection of 1s of A so that

no two of these ones are on the same line. Thus, β can be seen as a “subset” of a

permutation matrix; that is, each β is obtained from some permutation matrix by

deleting some (possibly none) of the 1s. We say that β is a selection of A, and it is
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given with the following formula:

Select(A, β) := ∀i, j ≤ r(A)((β(i, j) = 1→ A(i, j) = 1)

∧∀k ≤ r(A)(β(i, j) = 1→ β(i, k) = 0 ∧ β(k, j) = 0))

(4.6)

We are interested in a minimum cover (as few 1s in α as possible) and a maximum

selection (as many 1s in β as possible). The following two predicates express that α is

a minimum cover and β a maximum selection.

MinCover(A,α) := (4.7)

Cover(A,α) ∧ ∀α′ ≤ c(α)(Cover(A,α′)→ Σα′ ≥ Σα)

MaxSelect(A, β) := (4.8)

Select(A, β) ∧ ∀β′ ≤ r(β)(Select(A, β′)→ Σβ′ ≤ Σβ)

Clearly MinCover and MaxSelect are ΠB
1 formulas. We can now state KMM in

the language of LLA as follows:

MinCover(A,α) ∧MaxSelect(A, β)→ Σα = Σβ (4.9)

Note that (4.9) is a ΣB
1 formula. The reason is that in prenex form, the universal

matrix quantifiers in MinCover and MaxSelect become existential as we pull them

out of the implication; they are also bounded.

Given a matrix A, its n-th principal minor consists of A with the first r(A)− n

rows deleted, and the first c(A)−n columns deleted. For instance, for a square matrix

A, when n = |A|, the n-th submatrix is just A, and when n = 1, then n-th submatrix
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is just [A|A|,|A|], i.e., the matrix consisting of just the lower-right entry. Let A[n]

denote the n-th principal minor, and note that A[n] can be expressed as follows in the

language of LA: λij〈n, n, e(A, r(A)− n+ i, c(A)− n+ j)〉.

Let KMM(A, n) be the following ΣB
1 formula: it is a conjunction of the statement

that A is an n× n matrix, which we abbreviate informally as |A| = n, and which in

LLA is stated as r(A) = n∧ c(A) = n, more precisely, the n-th submatrix of A, i.e., A

replaced by A[n], and (4.9) in prenex form:

KMM(A, n) := |A| = n ∧ prenex(4.9). (4.10)

Given a matrix A, let lA and oA denote the minimum number of lines necessary

to cover all the 1s of A, and the maximum number of 1s no two on the same line,

respectively. (Of course, König’s theorem says that for all A, lA = oA.) In terms of

the definitions just given, we have that lA = Σα where MinCover(A,α), and oA = Σβ

where MaxSelect(A, β).

Finally, the fact that P is a permutation matrix can be stated easily with a predicate

free of matrix quantification, i.e., a ΣB
0 predicate. The original LA-Theory [Sol01]

has no index quantification. When we use in our formulas the concept of permutation

matrices, we need have bounded index quantification, nevertheless, it turns out that the

translation over Z is into TC0-Frege proofs. (For this result see [SC04, §6.5].) Using

bounded index quantification in LA we state that a given matrix P is a permutation

matrix:

[r(P ) = c(P )] ∧ [(∀i ≤ r(P ))(∃!j ≤ c(P ))e(i, j, P ) = 1]

∧ [(∀j ≤ c(P ))(∃!i ≤ r(P ))e(i, j, P ) = 1]

(4.11)
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as the entries are in {0, 1}, if e(i, j, P ) 6= 1, it follows that e(i, j, P ) = 0. Let 4.11

abbreviated by Perm(P ). Where, ∃!x α(x) stands for

∃x∀y [(α(y) ⊃ x = y) ∧ (x = y ⊃ α(y))].

See for more details [Sol04]. Alternatively, it can be stated with a ΣB
0 predicate that

a matrix P is a permutation matrix as follows:

Perm(P ) := (∀i ≤ |P |∃j ≤ |P |Pij = 1) ∧ (∀i, j 6= k ≤ |P |(Pij = 0 ∨ Pik = 0)).

4.3.3 The main result

With the basic machinery in place, we prove the main theorem with a sequence of

Lemmas.

Theorem 4.3.1 ∃LA ` KMM.

What this Theorem says is that KMM can be shown in LA with ΣB
1 induction,

and thus in uniform extended Frege, which in turn means feasibly. We prove KMM

for any matrix A by induction on the principal minors of A. The rest of this section

consists of a proof of this theorem.

Some of the intermediate results can be shown with just LA induction (i.e.,

induction over formulas without matrix quantifiers, that is, over formulas in ΣB
0 = ΠB

0 ).

We use the weaker theory whenever possible.

We start by showing the following technical Lemma which states that lA and oA

are invariant under permutations of rows and columns.
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Lemma 4.3.1 Given a matrix A, and given any permutation matrix P , we have that

• LA ` lPA = lAP = lA

• LA ` oPA = oAP = oA

That is, these four equalities can be proven in LA, i.e., with induction restricted

to formulas without matrix quantifiers.

Proof: LA shows that if we reorder the rows or columns (or both) of a given

matrix A, then the new matrix, call it A′, where A′ = PA or A′ = AP , has the

same size minimum cover and the same size maximum selection. Of course, we can

reorder both rows and columns by applying the statement twice: A′ = PA and

A′′ = A′Q = PAQ.

The first thing that we need to show is that:

• LA ` Cover(A,α)→ Cover(A′, α′)

• LA ` Select(A, β)→ Select(A′, β′)

where A′ is defined as in the above paragraph, and α′ is the same as α, except the first

row of α is now reordered by the same permutation P that multiplied A on the left

(and the second row of α is reordered if P multiplied A on the right). The matrix β is

even easier to compute, as β′ = Pβ if A′ = PA, and β′ = βP if A′ = AP . It follows

from P being a permutation matrix that Σα = Σα′ and Σβ = Σβ′: we can show by

LA induction on the size of matrices6 that if X ′ is the result of rearranging X (i.e.,

X ′ = PXQ, where P,Q are permutation matrices), then ΣX = ΣX ′. We do so first

on X consisting of a single row, by induction on the length of the row. Then we take

the single row as the basis case for induction over the number of rows of a general X.

6For more about this kind of induction over size of matrices on LA-Theory see Appendix A.1.
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It is clear that given A′, the cover α′ has been adjusted appropriately; same for

the selection β′. We can prove it formally in LA by contradiction: suppose some 1

in A′ is not covered in α′; then the same 1 in A would not be covered by α. For the

selections, note that reordering rows and/or columns we maintain the property of

being a selection: we can again prove this formally in LA by contradiction: if β′ has

two 1s on the same line, then so would β.

The next thing to show is that

• LA ` MinCover(A,α)→ MinCover(A′, α′)

• LA ` MaxSelect(A, β)→ MaxSelect(A′, β′)

and the reasoning that accomplishes this is by contradiction. As permuting only

reorders the matrices (it does not add or take away 1s), if the right-hand side does

not hold, we would get that the left-hand side does not hold by applying the inverse

of the permutation matrix.

All these arguments can be easily formalized in LA, and we leave the details in

Appendix A.2. �

The next definition is a key concept in the ΣB
1 proof of KMM.
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Definition 4.3.1 We say that an n× n matrix over {0, 1} has the diagonal property

if for each diagonal entry (i, i) of A, either Aii = 1, or (∀j ≥ i)[Aij = 0 ∧ Aji = 0].

∗

∗

0

...

00
0
0 . . .1

Figure 4.1: Either Aii = 1 or (∀j ≥ i)[Aij = 0 ∧ Aji = 0].

Claim 4.3.1 Given any matrix A, ∃LA proves that there exist permutation matrices

P,Q such that PAQ has the diagonal property.

Proof: We construct P,Q inductively on n = |A|. Let the i-th layer of A consist

of the following entries of A: Aij, for j = i, . . . , n and Aji for j = i+ 1, . . . , n. Thus,

the first layer consists of the first row and column of A, and the n-th layer (also the

last layer), is just Ann. We transform A by layers, i = 1, 2, 3, . . .. At step i, let A′ be

the result of having dealt already with the first i− 1 layers. If A′ii = 1 move to the

next layer, i+ 1. Otherwise, find a 1 in layer i of A′. If there is no 1, also move on

to the next layer, i+ 1. If there is a 1, permute it from position Aij′ , j
′ ∈ {i, . . . , n}

to A′ii, or from position Aj′i, j
′ ∈ {i+ 1, . . . , n}. Note that such a permutation does

not disturb the work done in the previous layers; that is, if A′kk, k < i, was a 1, it

continues being a 1, and if it was not a 1, then there are no 1s in layer k of A′. Note

that each layer can be computed independently of the others. �

It is Claim 4.3.1 that allows us to bring down the complexity of the proof of KMM

from ΠB
2 to ΣB

1 . As we shall see, by transforming A into A′, so that A′ = PAQ
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where P,Q are permutation matrices and A′ has the diagonal property, we can prove

KMM for A′ with just ΣB
1 induction, and then by Lemma 4.3.1 we obtain an ∃LA

proof of KMM for A. All of this is made precise in the following Lemma; recall that

KMM(A, n) is defined in (4.10).

Lemma 4.3.2 ∃LA ` ∀nKMM(A, n).

We are going to prove Lemma 4.3.2 by induction on n, breaking it down into

Claims 4.3.2 and 4.3.3. Once we have that ∀nKMM(A, n) is enough to prove KMM

for A since letting n = |A| we obtain A[n] = A. Therefore obtain an ∃LA proof

of (4.9), and thereby a proof of Theorem 4.3.1.

From Lemma 4.3.1 and Claim 4.3.1 we know that it is sufficient to prove Lemma 4.3.2

for appropriate PAQ, which ensures the diagonal property spelled out in Claim 4.3.1.

Thus, in order to simplify notation, we assume that our A is the result of applying

the permutations; i.e., A has the diagonal property.

Claim 4.3.2 LA ` oA ≤ lA.

Proof: Given a covering of A consisting of lA lines, we know that every 1 we pick for

a maximal selection of 1s has to be on one of the lines of the covering. We also know

that we cannot pick more than one 1 from each line. Thus, the number of lines in the

covering provide an upper bound on the size of such selection, giving us oA ≤ lA.

We can formalize this argument in LA as follows: let A be an lA × oA matrix

whose rows represent the lines of a covering, and whose columns represent the 1s no

two on the same line. Let A(i, j) = 1 ⇐⇒ the line labeled with i covers the 1 labeled
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with j. Then,

oA = c(A) ≤ ΣA (a)

= Σi(Σλpq〈1, c(A),A(i, q)〉) (b)

≤ Σi1 = r(A) = lA, (c)

where the inequality in the line labeled by (a) can be shown by induction on the

number of columns of A which has the condition that each column contains at least

one 1(i.e., each 1 from the selection must be covered by some line); (b) follows from

the fact that we can add all the entries in a matrix by rows; and (c) can be shown by

induction on the number of rows of A which has the condition that each row contains

at most one 1 (i.e., no two 1s from the selection can be on the same line). �

We briefly discuss the implications of Claim 4.3.2 for the provability of variants

of the pigeonhole principle (PHP) in LA. We showed that if we have a set of n

items {i1, i2, . . . , in} and a second set of m items {j1, j2, . . . , jm}, and we represent

the matching by A as follows: A(p, q) = 1 ⇐⇒ ip 7→ jq, then injectivity means that

each column of A has at most one 1. Thus:

n ≤ ΣA = Σi(col i of A) ≤ Σi1 ≤ m.

This is to be expected as we already mentioned that LA over Z corresponds to VTC0,

which proves PHP.

Bondy’s Theorem states that for any n × n 0-1 matrix whose rows are distinct,

we can always delete a column so that the remaining n× (n− 1) matrix still has n

distinct rows. [SC04, §IX.3.8] investigate the connection between Bondy’s Theorem
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(BONDY) and PHP, and they show that V0 ` BONDY ↔ PHP. It would be

interesting to know if V0 ` KMM↔ PHP.

As Claim 4.3.2 shows, LA is sufficient to prove oA ≤ lA; on the other hand, we seem

to require the stronger theory ∃LA (which is LA with induction over ΣB
1 formulas)

in order to prove the other direction of the inequality.

Claim 4.3.3 ∃LA ` oA ≥ lA.

Proof: Let

A =


a R

S M

 , (4.12)

where a is the top-left entry, and M the principal sub-matrix of A, and R (resp. S) is

1× (n− 1) (resp. (n− 1)× 1). By Claim 4.3.1 we can ensure that A has the diagonal

property (see Definition 4.3.1), which simplifies the analysis of the cases. Indeed, from

the diagonal property we know that one of the following two cases is true:

Case 1. a = 1

Case 2. a,R, S consist entirely of zeros

In the second case, oA ≥ lA follows directly from the induction hypothesis, oM ≥ lM ,

as oA = oM ≥ lM = lA. Thus, it is the first case, a = 1, that is interesting. The first

case, in turn, can be broken up into two subcases: lM = n− 1 and lM < n− 1.

Subcase (1-a) lM = n− 1

By induction hypothesis, oM ≥ lM = n− 1. We also have that a = 1, and a is in

position (1, 1), and hence no matter what subset of 1s is selected from M , none of

them lie on the same line as a. Therefore, oA ≥ oM + 1. Since oM ≥ n− 1, oA ≥ n,

and since we can always cover A with n lines, we have that n ≥ lA, and so oA ≥ lA.
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Subcase (1-b) lM < n− 1

We start with the following definition.

Definition 4.3.2 Let A and M be as in (4.12), and let αM be a set of lines of M ,

i.e., αM consists of rows i1, i2, . . . , ik, and columns j1, j2, . . . , j`. The extension of αM

to A, denoted by α̂M , is simply the set of rows i1 + 1, i2 + 1, . . . , ik + 1, and the set of

columns j1 + 1, j2 + 1, . . . , j` + 1.

We say that a minimal cover αA is proper if it does not consists entirely of all the

rows or of all the columns of A; that is, αA is proper if it is minimal, i.e., |αA| = lA,

and each row of αA has at least one zero. If lM < n− 1, then we know that αA has a

proper cover, as we can always cover A with α̂M plus the first row and column of A.

Let αA be a proper minimal cover of A, and let P,Q be two permutations that

place all the rows of the cover in the initial position, and place all the columns of the

cover in the initial position—Figure 4.2 illustrates this.

0

Figure 4.2: Permuting the rows and columns of the cover to be in initial positions.

Now suppose that αA consists of e rows and f columns (in the diagram, e horizontal

lines and f vertical lines). Clearly lA = e + f . The rearranging of A produces four

quadrants; the lower-right quadrant, of size (|A| − f)× (|A| − e), consists entirely of

zeros (since no lines cross it), and since αA is proper, we know that it is not empty.
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The upper-right quadrant is of size e× (|A| − f), and it cannot be covered by fewer

than e lines. The lower-left quadrant is of size (|A| − e)× f and cannot be covered by

fewer than f lines.

Claim 4.3.4 ∃LA shows that if X is an e× h matrix, and lX = e, then oX ≥ e.

Proof: We state the claim formally as follows:

[∀α ≤ r(A)Cover(A,α)→ Σα ≥ r(A)]→ [∃β ≤ r(A)Select(A, β) ∧ Σβ ≥ r(A)]

and we prove it by induction on the number of rows of A. To this end, let An denote

the first n rows of A, so that Ar(A) = A. We now prove the ΣB
1 formula:

∃α, β ≤ n [(Cover(An, α) ∧ Σα < n) ∨ (Select(An, β) ∧ Σβ ≥ n)] ,

which is equivalent to the formula above it for n = r(A). The claim holds for n = 1, as

in that case we have a single row, which is either zero and hence has a cover of size 0,

or the row has a 1, in which case we can select it. For the induction step, suppose the

claim holds for n = k. Suppose that any cover for Ak+1 requires k+ 1 rows. Then, Ak

requires k rows (for otherwise, a cover of Ak of size < k plus row k + 1 would give a

cover of size ≤ k of Ak+1, which is a contradiction). By IH, Ak has a selection of size

at least k.

More explicitly, we construct a section S by induction on the rows of Ak. In the

first row there must be a 1, since otherwise e− 1 lines cover Ak. Pick any 1 in the first

row, that is, S = {1, `1}, where `1 is the column of that 1. Suppose we picked 1s from

the first k rows, giving us a selection from Ak, S = {(1, `1), (2, `2), . . . , (k, `k)}. Let CS

be the set of k vertical lines going through S. Consider row k + 1; we know that this
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row cannot be empty (since otherwise e− 1 lines would be a cover of Ak). If there

is a 1 in row k + 1 not covered by CS, then select that 1. Otherwise, suppose that

there are p > 0 1s in row k + 1; label their columns as c1, c2, . . . , cp. Let ρ(ci) = ri be

a mapping where ri is the row with the unique 1 in S such that `ri = ci.

† Let ρi = {(k + 1, ci), (ri, ci), (ri, x1), (y1, x1), (y1, x2), . . . , (a, b)}, so that each

position has a 1 in Ak+1, and in particular (a, b) corresponds to a 1 not covered by CS.

Then, ρi describes a re-arrangement of the selection. A ρi with (a, b) not covered by

CS must exist, since otherwise we would have again a cover of size e−1. See Figure 4.3

for an illustration.

1

1 1 1

1

1 1

Figure 4.3: ρ1 consisting of five positions.

Now we expand the last paragraph in that proof of Claim 4.3.4, denoted by †’.

The induction is on the number of rows, where Ak contains the first k rows of A

(this is not crucial, but we count the rows from the bottom). We denote the first row

of A (in the usual sense, the top row), as row k + 1. If row k + 1 is not covered by CS

(which consists of the vertical lines going through the points in S), then we pick a 1

from row k + 1 that is not covered and add it to our selection. This is the easy case;
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we now assume that CS does cover row k + 1.

We re-arrange Ak+1 by permuting its rows and columns so that it is of the following

form:

H

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

A

B

C

D

E

FG

The re-arrangement of Ak+1, giving it the above form, is obtained as follows: first,

we place the selected 1s (the green 1s) from Ak along the main diagonal of Ak. This

permutation might rearrange the columns of row k + 1, but row k + 1 continues being

in the same position — the first row from the top. We then re-arrange the green 1s so

that areas B and D contain only zeros (note that these areas might be empty).

Suppose first that area A contains a 1; say that this 1 is in row i of the matrix.

Then pick the green 1 along row i, remove it from the selection, and instead add to

the selection the corresponding black 1 (i.e., the 1 in row k+ 1 that is in column i− 1),

and the 1 from area A. The diagram below represents the situation: the black 1 in row

k + 1 with the green circle around it is the selection from row k + 1. The crossed-out

green 1 has be de-selected, and replaced by the black 1 in area A.
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J

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

H

1

I

Suppose that area A is all zeros. Suppose that areas G and F are also all zeros;

then we can cover Ak+1 with k lines as follows: horizontal lines covering C,B,D,E

and vertical lines covering the green 1s between G and F. But this contradicts the

assumption that Ak+1 requires k + 1 lines to be covered.

Thus, under the assumption that area A is all zeros, we know that there must

be 1s in area G or area F. As G and F are symmetric cases, assume that the 1 is in F.

Then we re-arrange the selection as in the following diagram.

J

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

H

1

1

Following the direction of the path, the black 1 from row k + 1 is selected; the

green 1 is deleted and replaced by the black 1 in area F; the second green 1 on the

path is deleted, and replaced by the black 1 in area E. Also note that if E were empty,

so would be F.

127



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

This ends the proof of Claim 4.3.4. �

Since the size of selections is invariant under permutations, it follows that oA ≥

e+ f = lA. This ends the proof of Claim 4.3.3. �

4.3.4 Induced Algorithm

The standard KMM theorem is stated as an implication (see (4.9)), and hence it makes

no assertions about the actual existence of a minimal covering or maximal selection of

1s, let alone how to compute them. It only says that if they do exist, they are equal.

However, the proof of Lemma 4.3.2 suggests an algorithm for computing both.

Note that computing a minimal cover can be accomplished in polytime with the

well-known Hopcroft-Karp (HK)-Algorithm (see [JEH73], and Chapter 2 Section 2.3)

as follows: First use the HK-Algorithm to compute a “maximal matching,” which in

this case is simply a maximal selection of 1s (when we view A—in the natural way—as

the adjacency matrix of a bipartite graph). In [SF12], and Chapter 3, we show how to

convert, in linear time, a maximal selection into a minimal cover.

Certainly the correctness of the algorithms mentioned in the above paragraph

can be shown in ∃LA (as it captures polytime reasoning —see [Sol01]), and so it

follows that we can prove in ∃LA the existence of a minimal cover and maximum

selection. Therefore, ∃LA can prove something stronger than (4.9). Namely, it can

not only show that if we have a minimal cover and a maximal selection, then they

have the same size, but rather, that there always exists a minimal cover and maximal

selection, and the two are of equal size. We mention this important remark in order

to emphasize that there is a difference between the following two statements:

• if minimum cover and maximum selection exists, then they are equal, which is
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how it is KMM stated in equation 4.9.

• minimum cover and maximum selection exists and are equal, which is what we

proved.

However, instead of doing the heavy lifting necessary to formalize the correctness

of HK and [SF12] in ∃LA (a correctness of [SF12] is presented in Appendix A.3), we

present a new simple polytime algorithm for computing minimal covers based on the

proof of Lemma 4.3.2. Note that a similar argument would show the existence of a

polytime algorithm for maximal selection.

The algorithm works as follows: given a 0-1 matrix A, we first put A in the

diagonal property (see Definition 4.3.1). We now work with A which is assumed to be

in diagonal property and proceed by computing recursively lM , the size of a minimal

cover of M , where M is the principal submatrix of A. Keeping in mind the form of A

given by (4.12), we have the following cases:

Case 1. If a = 0 (in which case R, S are also zero, by the fact that A has been

put in diagonal property), then lA = lM , and proceed to compute the minimal cover

αM of M ; output α̂A, the extension of αM (see Definition 4.3.2).

Case 2. If a 6= 0, we first examine R to see if the matrix M ′, consisting of the

columns of M minus those columns of M which correspond to 1s in R, has a cover of

size lM − ΣR (of course, if lM < ΣR, then the answer is “no”).

If the answer is “yes”, compute the minimal cover of M ′, αM ′ . Then let αM be the

cover of M consisting of the lines in αM ′ properly renamed to account for the deletion

of columns that transformed M into M ′, plus the columns of M corresponding to the

1s in R. Then, αA is the result of extending αM and adding the first column of A.

Note that both αM and αA can be defined with the 0-1 matrix α (the two-row α
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that encode the cover).

If the answer is “no”, repeat the same with S: let M ′ be the result of subtracting

from M the rows corresponding to the rows with 1s in S. Check whether M ′ has a

cover of size lM −ΣS. If the answer is “yes” then build a cover for A as in the R-case,

i.e., αA is the result of extending αM and adding the first row of A.

If the answer is “no”, then compute any minimal cover for M , extend it to A, and

add the first row and column of A; this results in a cover for A.

At the end, we apply the permutations P,Q that converted A to the diagonal

property, to the final C, and output that as the minimal cover of the original A. As

was mentioned above, a similar polynomial time recursive algorithm can compute a

maximal selection of 1s. The algorithm works as follows: given a 0-1 matrix A, we put

A in diagonal property and proceed by computing recursively oM , the size of maximal

selection of 1s no two on the same line of M , where M is the principal submatrix of A.

Like the previous algorithm, we keep in mind the form of A given by (4.12). We

have the following cases:

Case 1. If a = 0 then oA = oM by diagonal property, then we compute the

maximal selection—here we use the HK-Algorithm—LM of M , i.e., LM is a set of

ones no two on the same row or column; output LA which is the extension (see

Definition 4.3.2) of LM to A.

Case 2. If a 6= 0 then we first examine R to see if the matrix M ′ formed by the

columns of M minus the non-zero columns of R, has a selection of size oM − ΣR,

again, if oM < ΣR then M ′ has not such selection, therefore we output the non-zero

entries of R plus a.

On the other hand, if M ′ has a selection of size oM −ΣR we compute the maximal
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selection of M ′, denoted by LM ′ . Then let LM the selection of M formed by the 1s in

LM ′ , plus the columns of M corresponding the 1s in R. Finally, LA is the result of

extending LM and adding the fist column of A.

If M ′ has not a selection of size oM − ΣR, we proceed in the same way that

before but with the submatrix S; let M ′ be the result of subtracting from M the rows

corresponding to the 1s of S. Check whether M ′ has a selection of size oM − ΣS,

again, if oM < ΣS then M ′ has not such selection, therefore we output the non-zero

entries of S plus a.

On the other hand, if M ′ has such selection, then we build a selection of A as in

the R-case, but adding the first row of A.

Now, if M ′ has no a selection of size oM −ΣS, then compute any maximal selection

for M , extend it to A, plus the first row and the first column of A; this results in a

selection of A.

At the end, we apply the permutations P,Q to put A in diagonal property, to the

final selection L, and output that as a maximal selection of 1s no two on the same

line in A.

4.3.5 Related theorems

In this section we are going to prove that the various reformulations of KMM, arising in

graph theory and partial orders, can be proven equivalent to KMM in low complexity

(LA), and therefore they also have feasible proofs. We state this as the following

theorem:

Theorem 4.3.2 The theory LA proves the equivalence of KMM, Menger’s, Hall’s

and Dilworth’s Theorems.
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The proof of consists of Lemmas 4.3.3 and 4.3.4, showing the equivalence of

KMM and Menger’s Theorem in Subsection A; Lemmas 4.3.5 and 4.3.6, showing the

equivalence of KMM and Hall’s Theorem in Subsection B; Lemmas 4.3.7 and 4.3.9,

showing the equivalence of KMM and Dilworth’s Theorem in Subsection C. Each

subsection starts with a description of how to formalize the given Theorem, followed

by the two Lemmas giving the two directions of the equivalence.

4.3.5.1 Menger’s Theorem

Given a graph G = (V,E), an x, y-path in G is a sequence of distinct vertices

v1, v2, . . . , vn such that x = v1 and y = vn and for all 1 ≤ i < n, (vi, vi+1) ∈ E. The

vertices {v2, . . . , vn−1} are called internal vertices; we say that two x, y-paths are

internally disjoint if they do not have internal vertices in common.

We also say that S ⊆ V is an x, y-cut if there is no path from x to y in the graph

G′ = (V − S,E ′), where E ′ is the subset of those edges in E which have no end-point

in S.

Let κ(x, y) represent the size of the smallest x, y-cut, and let λ(x, y) represent the

size of the largest set of pairwise internally disjoint x, y-paths.

Menger’s theorem states that for any graph G = (V,E), if x, y ∈ V and (x, y) /∈ E,

then the minimum size of an x, y-cut equals the maximum number of pairwise internally

disjoint x, y-paths. That is, κ(x, y) = λ(x, y). For more details on Menger’s Theorem

turn to [Meng27, Go00, Pym96]. Menger’s Theorem is of course the familiar Min-Cut

Max-Flow Theorem where all edges have capacity 1.

We now show how to state Menger’s theorem in LLA. We start by defining the

ΣB
0 predicate Path(A, x, y, α), which states that α encodes the internal vertices of a
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path from x to y in A. We define Path by parts; first we state that α has at most

one 1 in each row and column:

(∀l ≤ n− 2)[Σλij〈1, n− 2, α(l, j)〉 = 1 ∧ Σλij〈n− 2, 1, α(i, l)〉 = 1] (4.13)

Then we say that if the l-th node is p and l + 1-th node is q, then there is an edge

between p and q:

(∀l, p, q ≤ n− 3)(α(l, p) = 1 ∧ α(l + 1, q) = 1)→ A(p, q) = 1 (4.14)

Note that in general different paths are of different lengths; this can be dealt with

in a number of ways: for example, by padding α with repetitions of the last row (so

that each α has exactly n− 2 rows). We assume that this is what we do, and can be

check that LLA can express this easily, like follows:

(∀l, p, q ≤ n− 3)(α(l, p) = 1 ∧ λij〈1, n− 2, α(l + 1, j)〉 = λij〈1, 1, 0〉∧

α(l + 1, q) = 0)→ λij〈n− 2− l, n− 2, α(i, j)〉 = λij〈1, 1, α(l, p)〉
(4.15)

expressing that if l-th node (the last one) is p, and the (l + 1)-th row of α is not the

last row, i.e., (n− 2)-th row and it is full of zeros, that is, in particular, w.l.g., the

position α(l + 1, q) is zero, then like the length of the path is shorter than n− 2 we

repeat to fill out n− 2 intermediate nodes, i.e., n− 2− l.

On the other hand, if i is the first intermediate node then (x, i) ∈ E, and if i is

the last intermediate node then (i, y) ∈ E:

α(1, i) = 1→ A(x, i) = 1 ∧ α(n− 2, i) = 1→ A(i, y) = 1 (4.16)
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Putting it all together, the ΣB
0 formula expressing Path is given by the conjunction

of A(x, y) = 0 together with the above properties, i.e.,

Path(A, x, y, α) := (4.13) ∧ (4.14) ∧ (4.16) ∧ A(x, y) = 0. (4.17)

Finally, we state that two paths α, α′ are internally disjoint:

Disjoint(A, x, y, α, α′) := Path(A, x, y, α) ∧ Path(A, x, y, α′)

∧ (∀i ≤ n− 2∀j ≤ n− 2)(α(i, j) · α′(i, j) = 0)

(4.18)

We must be able to talk about a collection of paths; the 0-1 matrix β will encode

a collection of paths α1, α2, . . . , αλ:

β = β[1] = α1 β[2] = α2 . . . β[λ] = αλ (4.19)

so that β is a matrix of size (n− 2)× λ(n− 2). Each β[i] can be defined thus:

β[i] := λpq〈n− 2, n− 2, β(p, (i− 1)(n− 2) + q)〉.

We are interested in pairwise disjoint collections of paths:

CollectDisj(A, x, y, β, λ) :=

∀i ≤ λ Path(A, x, y, β[i]) ∧ (∀i 6= j ≤ λ) Disjoint(A, x, y, β[i], β[j])

(4.20)
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The following formula expresses λ(x, y) for a given A; note that it is a ΠB
2 formula:

MaxDisj(A, x, y, λ) :=

(∃β ≤ (n− 2)λ) CollectDisj(A, x, y, β, λ) ∧

(∀α ≤ n− 2)(Path(A, x, y, α)→ ∃i ≤ λ α = β[i])

(4.21)

Note that the previous formal definition of our 0-1 matrix β can be, alternatively

and more simple, defined as follow:

Let β be a 0-1 matrix that encodes disjoint paths, such that, the rows of β

correspond to the paths, and the columns to the vertices of G, where β(i, j) = 1 if

path i contains vertex j. The disjointness can be stated by insisting that each column

has at most one 1.

Likewise, we need to formalize κ(x, y); we start with a 0-1 matrix γ expressing a

cut in A:

Cut(A, γ) := (∀i ≤ n− 2)(∀j ≤ n− 2)(γ(i, j) = 1→ A(i, j) = 1) (4.22)

which says that every edge of γ is an edge of A, and it defines the cut implicitly as the

set of edges in A but not in γ. Now, the following ΣB
2 formula expresses that there is

an x, y-cut of size κ in A:

CutSize(A, x, y, κ) :=∃γ ≤ (n− 2)Cut(A, γ) ∧ Σγ = κ ∧ (∀α ≤ n− 2)

¬Path(λpq〈n− 2, n− 2, A(p, q)− γ(p, q)〉, x, y, α),

(4.23)

and the minimum number of vertices in an x, y-cut can be expressed with a formula

that is a conjunction of a ΣB
2 formula with a ΠB

2 formula, yielding therefore a formula
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in ΣB
3 ∩ ΠB

3 :

MinCut(A, x, y, κ) := CutSize(A, x, y, κ) ∧ ¬CutSize(A, x, y, κ− 1) (4.24)

Putting it all together, we can state Menger’s theorem in LLA with a ΣB
3 ∩ ΠB

3

formula as follows:

Menger(A) := MaxDisj(A, x, y, λ) ∧MinCut(A, x, y, κ)→ λ = κ (4.25)

(Note that if a formula is in ΣB
3 ∩ ΠB

3 , then its negation is still in ΣB
3 ∩ ΠB

3 .)

Lemma 4.3.3 LA ∪Menger ` KMM.

Proof: Note that the implication resembles the statement of KMM, but the difference

is that in KMM the antecedent is a conjunction of two ΠB
1 formulas (and hence it is a

ΠB
1 formula), whereas in Menger’s theorem, the antecedent is a ΣB

3 ∩ ΠB
3 formula.

Suppose that we have MinCover(A,α)∧MaxSelect(A, β), the antecedent of KMM

(see 4.9). Using Menger’s theorem (see 4.25) we want to conclude that Σα = Σβ. We

do so by restating “covers and selections” of A as “cuts and paths” of a related matrix

Ax,y, see below.

Consider a bipartite graph G = (V0 ∪ V1, E), where E ⊆ V0 × V1. Let A be the

adjacency matrix for G where A(i, j) = 1 iff i ∈ V0 and j ∈ V1 and (i, j) ∈ E. We now

extend G to Gx,y by adding two new vertices, x and y, and edges {(x, v) : v ∈ V1},

denoted “red edges”, and edges {(y, v) : y ∈ V0}, denoted “green edges.” See

Figure 4.4.
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The adjacency matrix Ax,y of Gx,y is of size (|A|+ 1)× (|A|+ 1) and:

Ax,y(i, j) =


A(i, j) for 1 ≤ i, j ≤ |A|

1 one {i, j} equals |A|+ 1

0 both {i, j} equal |A|+ 1

Note that Ax,y can be stated succinctly as a term of LLA:

Ax,y := λij〈r(A)+1, c(A)+1, cond(1 ≤ i, j ≤ |A|, A(i, j), cond(i = j = |A|+1, 0, 1))〉

yx

Figure 4.4: Extension of graph G.

A maximal selection in A corresponds to a maximal matching in the related graph,

and a minimal cover in A corresponds to a minimal cover in the related graph (recall

that a cover in a graph is a subset of vertices so that every edge has at least one

end-point in this subset). Furthermore, a maximal matching in the graph related to

A corresponds to a maximal subset of internally disjoint paths in the graph related to

Ax,y; similarly, a minimal cover in the graph related to A corresponds to a minimal

cut in the graph related to Ax,y.

As the graphs related to Menger’s Theorem are not bipartite, we convert Ax,y to a
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non-bipartite graph A′ as follows:

A′ =

 0 Ax,y

ATx,y 0

 ,
Let G′ be the non-bipartite graph represented by A′. We now finish the proof of the

Lemma 4.3.3 with a sequence of claims.

Claim 4.3.5 LA proves that if there is a cut in G′ of size k, then there is a cut in

G′ if size k that only cuts the red/green edges, i.e., only those edges that are adjacent

to either x or y.

Proof: Suppose that a black edge is part of a cut. Every x, y-path crosses from V0

to V1, and taking off one black edge can only block one x, y-path; the same path is

blocked by taking off the corresponding red or green edge. �

Claim 4.3.6 LA proves the following:

• MinCover(A,α) ⇐⇒ MinCut(A′, x, y,Σα)

• MaxSelect(A, β) ⇐⇒ MaxDisj(A′, x, y,Σβ)

More generally, LA proves the following two:

1. G has a matching of size k ⇐⇒ G′ has k disjoint x, y-paths.

2. G has a vertex cover of size k ⇐⇒ G′ has an x, y-cut of size k.

Claim 4.3.6 follows directly from Claim 4.3.5. On the other hand, the direct conse-

quence of Claim 4.3.6 is that the size of a maximum matching in G equals the size of a
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maximum set of disjoint x, y-paths in G′; and the size of the minimum vertex cover in

G equals the size of the minimum x, y-cut in G′. All this is provable in LA as follows:

Proof:

LA ` MinCover(A,α) ⇐⇒ MinCut(A′, x, y,Σα)

First of all, we know that α encodes a number of lines needed to cover all the 1s of

A, particularly, this α corresponds to a minimum number of lines to cover all the 1s

in A, which in terms of A′—using the construction of Lemma 4.3.3—correspond to a

set of vertices whose removal disconnects x from y, that is, an x, y-cut γ, in particular

minimum size, say κ, because α is minimum. Hence, Σγ = κ = Σα concluding that

MinCut(A′, x, y, κ) is satisfied. On the other hand, we have

LA ` MaxSelect(A, β) ⇐⇒ MaxDisj(A′, x, y,Σβ)

We know that β encodes a selection of 1s no two on the same line on A, in

particular this β denotes a maximal selection, which in terms of A′, its correspond to

a maximal subset of internally disjoint x, y-paths in the related graph of A′, say λ,

then Σβ[λ] = Σβ = λ, where the first β encodes the internally disjoint x, y-paths and

the second one encodes the number of 1s no two on the same line in A, this yields the

desire equivalence, and finish with the proof of Claim 4.3.6. �

This ends the proof of Lemma 4.3.3 because by Menger’s Theorem, the size of the

maximum set of disjoint x, y-paths in G′ equals the size of the minimum x, y-cut in G′.

Therefore, the size of the maximum matching in G equals the size of the minimum

vertex cover in G, i.e., Σα = Σβ.

�
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Lemma 4.3.4 LA ∪KMM ` Menger.

Proof: Suppose that we have MaxDisj(A, x, y, λ) and MinCut(A, x, y, κ); these two

formulas assert the existence of β, a collection of λ many pairwise disjoint x, y-paths,

and γ, an x, y-cut of size κ. (The constructions of β and γ have been shown earlier in

this section.)

Each path in β must have at least one vertex in the cut γ and no vertex of γ can

be in more than one path in β, hence λ ≤ κ. The proof of this is identical to the proof

of Claim 4.3.2.

Thus, it remains to show, using KMM, that λ ≥ κ.

The proof of this is inspired by [Aha83]; we assume that G is directed, but a simple

construction gives us the undirected case as well. Let A = {u ∈ V : (x, u) ∈ E} and

let B = {v ∈ V : (v, y) ∈ E}. Let X = V − (A∪B), and also split every vertex v ∈ V

into two vertices v′, v′′. We now construct a new bipartite graph Γ where the two sides

are given by A′∪X ′ and B′′∪X ′′, and where the edges are given by {(u′, v′′) : (u, v) ∈

E} ∪ {(x′, x′′) : x ∈ X}. By KMM there is a matching M and a cover C in Γ of the

same size. We let P be the set of paths {x1, x2, . . . , xk} such that (x′i, x
′′
i+1) ∈M , and

we let S be a cut consisting of {v ∈ V : v′, v′′ ∈ C or v′ ∈ A′ ∩ C or v′′ ∈ B′′ ∩ C}.

LA can prove that P is a set of disjoint paths, and S is a cut, and |P| ≥ |S|. This is

enough to prove the lemma as: λ ≥ |P| ≥ |S| ≥ κ. �

4.3.5.2 Hall’s Theorem

Let S1, S2, . . . , Sn be n subsets of a given set M . Let D be a set of n elements of M ,

D = {a1, a2, . . . , an}, such that ai ∈ Si for each i = 1, 2, . . . , n. Then7 D is said to be

7Note that we do not add the condition that ai 6= aj whenever i 6= j like the classical definition
requires, the reason is because we are using set and no multisets. So, implicitly the definition that
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a system of distinct representative (SDR) for the subsets S1, S2, . . . , Sn.

If the subsets S1, S2, . . . , Sn have an SDR, then any k of the sets must contain

between them at least k elements. The converse proposition is the combinatorial

theorem of P. Hall: suppose that for any k = 1, 2, . . . , n, any Si1 ∪ Si2 ∪ · · · ∪ Sik

contains at least k elements of M ; we call this the union property. Then there exists

an SDR for these subsets. (See [Hal87, EW49, HV50] for more on Hall’s theorem.)

We formalize Hall’s theorem in LA with an adjacency matrix A such that the rows

of A represent the sets Si, and the columns of A represent the indices of the elements in

M , i.e., the columns are labeled with [n] = {1, 2, . . . , n}, and A(i, j) = 1 ⇐⇒ j ∈ Si.

Let SDR(A) be the following ΣB
1 formula which states that A has a system of distinct

representatives:

SDR(A) := (∃P ≤ n)(∀i ≤ n)(AP )ii = 1 (4.26)

We reserve the letters P,Q for permutation matrices, and (∃P ≤ n)φ abbreviates

(∃P )[Perm(P )∧|P | ≤ n∧φ] (similarly for (∀P ≤ n)φ, but with an implication instead

of a conjunction), where Perm is a ΣB
0 predicate stating that P is a permutation matrix

(a unique 1 in each row and column)—see Section 4.3.2 Formula 4.11. See [Sol04] for

more details about handling permutation matrices.

The next predicate is a ΠB
2 formula stating the union property:

UnionProp(A) := ∀P ≤ n∀k ≤ n∃Q ≤ n

[∀i ≤ k(λpq〈k, 1, (PAQ)pi〉 6= λpq〈k, 1, 0〉)]
(4.27)

we use is equivalent to the classical one.
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Therefore, we can state Hall’s theorem as a ΣB
2 formula:

Hall(A) := UnionProp(A)→ SDR(A) (4.28)

Lemma 4.3.5 LA ∪KMM ` Hall.

Proof: Let A be a 0-1 sets/elements incidence matrix of size n× n. Assume that we

have UnionProp(A); our goal is to show in LA, using KMM, that SDR(A) holds.

Since by Claim 4.3.1, every matrix can be put in a form that the matrix has the

diagonal property, using the fact that we have UnionProp(A), it follows that we can

find P,Q ≤ n such that ∀k ≤ n(PAQ)kk = 1. Thus we need n lines to cover all the 1s,

but by KMM there exists a selection of n 1s no two on the same line, hence, A is of

term rank n.

But this means that the maximal selection of 1s, no two on the same line, constitutes

a permutation matrix P (since A is n×n, and we have n 1s, no two on the same line).

Note that AP T has all ones on the diagonal, and this in turn implies SDR(A). �

Lemma 4.3.6 LA ∪ Hall ` KMM.

Proof: Suppose that we have MinCover(A,α) and MaxSelect(A, β); we want to

conclude that Σα = Σβ using Hall’s Theorem.

As usual, let lA = Σα and oA = Σβ, and by Claim 4.3.2 we already have that

LA ` oA ≤ lA (see Section 4.3.2). We now show in LA that oA ≥ lA using Hall’s

Theorem.

Suppose that the minimum number of lines that cover all the 1s of A consists

of e rows and f columns, so that lA = e + f . Both lA and oA are invariant under

permutations of the rows and the columns of A (Lemma 4.3.1), and so we reorder the
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rows and columns of A so that these e rows and f columns are the initial rows and

columns of A′,

A′ =

 A1 A2

A3 A4

 ,
where A1 is of size e × f . Now, we shall work with the term rank of A2 and A3 in

order to show that oA ≥ lA. More precisely, we will show that the maximum number

of 1s, no two on the same line, in A2 is e, while in A3 it is f .

Let us consider A2 as an incidence matrix for subsets S1, S2, . . . , Se of a universe

of size |A| − f , and At3 (which is the transpose of A3) as an incidence matrix for

subsets S ′1, S
′
2, . . . , S

′
f of a universe of size |A| − e. It is not difficult to prove that

UnionProp(A2) and UnionProp(At3) holds (and can be proven in LA; see Claim 4.3.7),

which in turn implies SDR(A2) and SDR(At3), respectively, by Hall’s Theorem. But

the system of distinct representatives of A2 (respectively At3) implies that oA2 ≥ e

(respectively oAt3 = oA3 ≥ f), and since oA ≥ oA2 +oA3 , this yields that oA ≥ e+f = lA.

�

Claim 4.3.7 LA proves the following:

• LA ` UnionProp(A2)

• LA ` UnionProp(At3)

Proof: First of all, we can formalize the Union Property for A2 and the formalization

of At3 is identical to the former. Hence, using the formula (4.27) on A2 we have,

UnionProp(A2) := ∀P ≤ n ∀k ≤ n ∃Q ≤ n [∀i ≤ k(λpq〈k, 1, (PA2Q)pi〉 6= λpq〈k, 1, 0〉)]

(4.29)

143



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

that is, the first k columns of PA2Q have a non-zero entry somewhere in the first k

rows. Therefore, this show that the corresponding k subsets have at least k elements in

their union set, i.e., any S1∪S2∪· · ·∪Se contains at least e elements of A, where we use

the same e of Lemma 4.3.6, which denotes number of rows. Suppose by contradiction,

the we can replace certain of the e rows by fewer rows and preserve the same number

of lines that cover all the 1s on A, but this cover is accomplished with fewer than

e+ f lines contradicting the minimality of lA, remember that we have MinCover(A,α)

and MaxSelect(A, β). Similarly we can prove that UnionProp(At3) but working over

f columns instead of e rows, and our claim follows. �

4.3.5.3 Dilworth’s Theorem

Let P be a finite partially ordered set or poset (we use a “script P” in order to

distinguish it from permutation matrices, denoted with P ). We say that a, b ∈ P are

comparable elements if either a < b or b < a. A subset C of P is a chain if any two

distinct elements of C are comparable. A subset S of P is an anti-chain (also called

an independent set) if no two elements of S are comparable.

We want to partition a poset into chains; a poset with an anti-chain of size k cannot

be partitioned into fewer than k chains, because any two elements of the anti-chain

must be in a different partition. Dilworth’s Theorem states that the maximum size of

an anti-chain equals the minimum number of chains needed to partition P. (For more

on Dilworth’s Theorem see [Dil50, Per63]).

In order to formalize Dilworth’s theorem in LA, we represent finite posets P =

(X = {x1, x2, . . . , xn}, <) with an incidence matrix A = AP of size |X| × |X|, which

expresses the relation < as follows: A(i, j) = 1 ⇐⇒ xi < xj. For more material
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regarding formalizing posets see [Sol11].

We let a 1× n matrix α encode a chain as follows:

Chain(A,α) := (∀i 6= j ≤ n)[α(i) = α(j) = 1→ A(i, j) = 1 ∨ A(j, i) = 1]. (4.30)

In a similar fashion to (4.30) we define an anti-chain γ; the only difference is that

the succedent of the implication expresses the opposite: A(i, j) = 0 ∧ A(j, i) = 0.

Recall that using (4.19) we were able to talk about a collection of paths; in a

similar vain, we can use LA to talk about a collection of chains of P: β is an 1× κ · n

matrix which encodes the contents of κ many chains. We can then talk about a

minimal collection of chains, or a maximal size of an anti-chain in the usual fashion.

Both concepts are formalized like follows, first of all, we must be able to talk about a

collection of disjoint chains; the 0-1 matrix β will encode a collection of disjoint chains

α1, α2, . . . , αλ:

β = β[1] = α1 β[2] = α2 . . . β[κ] = ακ (4.31)

so that β is a matrix of size 1× κ · n. Each β[i] can be defined thus:

β[i] := λpq〈1, n, β(p, (i− 1)n+ q)〉.

We are interested in pairwise disjoint collections of chains:

CollectDisjChains(A, β) :=

∀i ≤ n ∃j ≤ n (β[j](1, i) = 1) (∗)

∧ (∀i ≤ n∀j, k ≤ n) (β[j](1, i) = 1→ ((j 6= k) ∧ β[k](1, i) = 0)) (∗∗)

(4.32)
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where (∗) denotes that every element in P is in one of the κ chains, and (∗∗) express

the disjointness condition, also note that we use the notation β[k](i, j) to express the

entry (i, j) of the k-th chain.

The predicate MinChain(A, β, κ) asserts that β is a collection of κ many chains

that partition the P for a given A; note that it is a ΠB
1 formula:

MinChain(A, β, κ) := ∀β′ ≤ n2 [CollectDisjChains(A, β′)∧

(CollectDisjChains(A, β)→ div(c(β′), n) ≥ div(c(β), n)] ∧ κ = div(c(β), n)

(4.33)

Beside note that we are using n2 (where n × n = |A|) instead of n · κ to bound

our matrices by the worst case—in sense that we are looking for a minimum chain no

maximum—which is, each singleton is a chain, and we use div(c(β), n)—that is, the

quotient 2-ary function that belong to LA—to denote the number of chains in β.

We already define a 0-1 matrix γ encoding anti-chains, then we need to formalize

the predicate MaxAntiChain(A, γ, λ) which it asserts that γ is an anti-chain consisting

of λ elements:

MaxAntiChain(A, γ, λ) :=

AntiChain(A, γ) ∧ |γ| = λ ∧ ∀γ′ ≤ n2(AntiChain(A, γ′)→ Σγ′ ≤ λ)

(4.34)

Finally, we can state Dilworth’s Theorem as following ΣB
1 formula:

Dilworth(A) := (∃β ≤ |A|2)(∃γ ≤ |A|)

MinChain(A, β, κ) ∧MaxAntiChain(A, γ, λ)→ λ = κ

(4.35)

146



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

Lemma 4.3.7 LA ∪KMM ` Dilworth

Proof: Suppose that we have MinChain(A, β, κ) and MaxAntiChain(A, γ, λ); we

want to use LA reasoning and KMM in order to show that λ = κ.

As usual we define a matrix A′ whose rows are labeled by the chains in β, and

whose columns are labeled by the elements of the poset. As there cannot be more

chains than elements in the poset, it follows that the number of rows of A′ is bounded

by |A| (while the number of columns is exactly |A|). The proof of this (Lemma 4.3.8)

is similar to the proof of Claims 4.3.2, and ??. That is,

Lemma 4.3.8 LA ` λ ≤ κ

Proof: We formalize this argument in LA as follows: let A′ be a matrix described

above. Let A′(i, j) = 1 ⇐⇒ chain i contains element j. Then,

λ = c(A′) ≤ ΣA′ (∗)

= Σi(Σλpq〈1, c(A′), A′(i, q)〉) (∗∗)

≤ Σi1 = r(A′) = κ,

where the inequality in the line labeled by (∗) can be shown by induction on the

number of columns of a matrix which has the condition that each column contains at

least one 1, that is, each element appear in at least one chain, as β is a partition of P,

e.g., the trivial one which is a singleton; and the equality labeled with (∗∗) follows

from the fact that we can add all the entries in a matrix by columns. Besides A′ is

such that each row contains at most one 1 because each element can be at most in

one chain (of course there are chains that are not disjoints and that is the reason

why Σi1 ≥ Σi(Σλpq〈1, c(A′), A′(i, q)〉)), but like we are working over mutually disjoint
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chains, if we pick up one 1 then we can not choose that element (j-position of A′)

again to be part of another chain (row). �

On the other hand, rows may contain more than one 1, as in general chains may

have more than one element.

Note that a maximal selection of 1s, no two of them on the same line, corresponds

naturally to a maximal anti-chain; such a selection picks one 1 from each line, and so

its size is the number of rows of A′. By KMM, it follows that

λ = oA′ = lA′ = r(A′) = κ,

where r(A′) is the number of rows of A′. �

Lemma 4.3.9 LA ∪Dilworth ` KMM

Proof: It is in fact easier to show that that LA ∪ Dilworth ` Hall, and since by

Lemma 4.3.6 we have that LA ∪ Hall ` KMM, we will be done.

In order to prove Hall using Dilworth and LA reasoning, we assume that we

have A, a 0-1 sets/elements incidence matrix of size n × n. Assume that we have

UnionProp(A); our goal is to show in LA, using Dilworth, that SDR(A) holds.

Let S1, S2, . . . , Sn be subsets of {x1, x2, . . . , xn} where n = |A|. We define a partial

order P based on A; the universe of P is X = {S1, S2, . . . , Sn} ∪ {x1, . . . , xn}. The

relation <P is defined as follows: xi <P Sj ⇐⇒ A(i, j) = 1.

Claim 4.3.8 The maximum size of an anti-chain in P is n.

Proof: The {x1, . . . , xn} form an anti-chain of length n, and we cannot add any of

the Sj, as some xi ∈ Sj, and hence xi <P Sj. �
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By Dilworth we can partition P into n chains, where each of the chains has two

elements {xi, Sj}, giving us the set of distinct representatives, and hence SDR(A). �
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Chapter 5

Concluding Remarks

5.1 Summary of Contributions

We give the first feasible proof of a fundamental theorem in Combinatorial Matrix

Theory (CMT), called König’s Mini-Max Theorem (KMM). Our results show that

Min-Max reasoning can be formalized with uniform Extended Frege.

Also, we show, by introducing new proof techniques, that LA-Theory with ΣB
1

induction is sufficient to formalize a large portion of CMT. ΣB
1 -LA corresponds to

polynomial time reasoning, also known as ∃LA. While we consider matrices over

{0, 1}, the underlying ring is Z, since we require that ΣA compute the number of 1s

in the matrix A (which for a 0-1 matrix is simply the sum of all entries—meaning

ΣA). Thus, over Z, LA translates to TC0-Frege, while, as mentioned before, ∃LA

translates into Extended Frege, [SC04, §6.5].

In order to prove KMM in ∃LA, we need to restrict induction to ΣB
1 formulas.

The main technical contribution is presented in Claim 4.3.4 Section 4.3.3. Basically,

we introduce a polynomial time procedure, whose proof of correctness can be shown
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with ∃LA, that works as follow: given a matrix of size e× f such that e ≤ f , where

the minimum cover is of size e, our procedure computes a maximum selection of size

e, row by row.

Furthermore, we show that Menger’s Theorem, Hall’s Theorem, and Dilworth’s

Theorem—theorems related to KMM—can also be proven feasibly; in fact, all these

theorems are equivalent to KMM, and the equivalence can be shown in LA. We believe

that this captures the proof complexity of Min-Max reasoning rather completely.

We also present a new Permutation-Based algorithm for computing a Minimum

Vertex Cover from a Maximum Matching in a bipartite graph. Our algorithm uses

properties of KMM Theorem and it is interesting for providing a new permutation—and

CMT—perspective on a well-known problem.

5.2 Future Works

In this section we present the future works of this thesis in order of major importance.

5.2.1 Can LA prove KMM?

Can we show in LA-Theory KMM? Or, if LA-Theory is to weak to show KMM, can

we prove that? In other words, can we construct a model M of LA such that

M |= LA , but M 6|= KMM

.
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5.2.2 Can we prove KMM in NC2-Frege?

NC2 seems to correspond in a natural way to reasoning about matrices: Can we

prove KMM in NC2-Frege? It seems to require to give a good parallel algorithm for

translating from the minimum number of lines to cover all the 1s to the maximum

number of 1s no two on the same line expressed in KMM, so, our algorithm—Chapter 3—

that we have, as far is a polynomial time algorithm, but if we could give an NC2

algorithm for that, allow us to give an NC2-Frege proof for KMM.

That is why it will be interesting, because it will require new ideas and a break-

through, in the sense that the NC2 algorithm for translating minimum number of

lines to cover all the 1s into maximum number of 1s no two on the same line is not

obvious. Our intuition is that it should exists such NC2 algorithm, because so many

thing about matrices can be computed in NC2.

One of the most interesting aspect of NC2 seems to be that we can formalize in

the complexity class NC2 Berkowitz’s algorithm ([Ber84]) to compute characteristic

polynomial of the matrices, but the problem seems to be “prove the correctness of

Berkowitz’s algorithm in NC2” which still is open.

5.2.3 Are KMM and PHP equivalents in LA?

We know that ∃LA ` KMM (Theorem 4.3.1) and that KMM is equivalent to a host

of other combinatorial theorems—and this equivalence can be shown in the weak

theory LA (Theorem 4.3.2)— it would be interesting to know what is the relationship

between the PHP and KMM, that is, whether it is also the case that:

• LA ∪KMM ` PHP ?
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• LA ∪ PHP ` KMM ?

that is, whether LA can prove the equivalence of KMM and the pigeonhole principle.

We conjecture that the first assertion is true, and that it should not be too difficult to

show it. The second assertion is difficult to say. Note that in the proof of Claim 4.3.2 in

Chapter 4 we implicitly show a certain weaker kind of the PHP in LA: we showed that

if we have a set of n items {i1, i2, . . . , in} and a second set of m items {j1, j2, . . . , jm},

and we can match each ip with some jq, and this matching is both definable in LA and

its injectivity is provable in LA, then n ≤ m. We did this by defining an incidence

matrix A such that A(p, q) = 1 ⇐⇒ ip 7→ jq. If this mapping is injective, then each

column of A has at most one 1; thus:

n ≤ ΣA = Σi(col i of A) ≤ Σi1 ≤ m.

It follows more or less directly that our LA results can also be formalized in

the theory VTC0 (and vice versa), defined in [CN10, pg. 283]. The reason is that

the function ΣA is exactly Buss’ function Numones(A) ([Bus86] and [Bus90, pg. 6]),

i.e., the function that counts the number of 1s in A, and TC0 is the AC0 closure of

Numones, [CN10, Proposition IX.3.1]. On the other hand, our ∃LA results can also

be formalized in V1, defined in [CN10, pg. 133]. This is to be expected as we already

mentioned that LA over Z corresponds to VTC0, which proves PHP.

Bondy’s Theorem states that for any n × n 0-1 matrix whose rows are distinct,

we can always delete a column so that the remaining n× (n− 1) matrix still has n

distinct rows. [CN10, §IX.3.8] investigate the connection between Bondy’s Theorem

(BONDY) and PHP, and they show that V0 ` BONDY ↔ PHP. It would be

interesting to know if V0 ` KMM ↔ PHP. We know that LA over Z proves PHP,
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so the question is: V0 ` KMM↔ PHP? Or equivalently, does LA without Σ prove

KMM↔ PHP?

5.2.4 Can LA ∪KMM prove Hard Matrix Identities?

We would like to know whether LA ∪KMM can prove hard matrix identities, such as

AB = I → BA = I. (See more about Hard Matrix Identities [Sol01], and [SU04]). Of

course, we already know from [HT11] that (non-uniform) NC2-Frege is sufficient to

prove AB = I → BA = I, and from [SC04] we know that ∃LA can prove them also.

On the other hand, is it possible that LA together with AB = I → BA = I

can prove KMM? This would imply that AB = I → BA = I is “complete” for

combinatorial matrix algebra, in the sense that all of combinatorial matrix algebra

follows from this principle with proofs of low complexity.

5.2.5 A question about lAB and oAB over 0-1 matrices

Given two 0-1 matrices A,B, what can we say about lAB and oAB, where lAB and oAB

denote the minimum number of lines necessary to cover all the 1s of AB, and the

maximum number of 1s no two on the same line, respectively? From Lemma 4.3.1 we

know that if B is a permutation matrix, then lAB = lA and oAB = oA (and similarly,

if A is a permutation matrix); but what can be said in general? Of course, the

understanding here is that multiplication is over GF (2).

5.2.6 Can we extend our results to General Graphs?

Having in mind our approach of the Proof Complexity of Combinatorial Matrix

Theory, will be interesting to apply concepts of LA-Theory—and possibly extend
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it—in order to formalize the general non-bipartite graphs considering the seminal work

of Edmonds [Edm65], in which J. Edmonds present his well-known Blossom Shrinking

algorithm to solve Maximum Matching problem in General Graphs in polynomial

time.

5.2.7 Can we extend our result to Infinite Bigraphs?

In the same flavor of General Graphs—previous question—will be interesting give a

treatment of infinite bipartite graphs in which KMM holds, from a purely Combinato-

rial Matrix Theory and Proof Complexity mix approach. Was Ron Aharoni [Aha83]

how proved Menger’s Theorem for infinite graphs, and was Erdös how first conjec-

ture KMM for infinite graphs, later proved by Aharoni [Aha84], so, in this vein will

be interesting to investigate what logical theory can formalize those proofs? And

investigate if can we show that LA is too weak to prove infinite KMM?

5.2.8 More questions about General Graphs

Let L-MinMax be the following language:

L-MinMax= {〈G〉 : |MaxSelect(AG, α)| = |MinCover(AG, β)|}

where G is a graph and AG is its adjacency matrix, and α is a matrix that it keeps

track of the lines that cover A; it does so with two rows: the top row keeps track of

the horizontal lines, and the bottom row keeps track of the vertical line. The condition

ensures that any 1 in A is covered by some line stipulated in α, finally, β is a matrix

which is a selection of 1s of A so that no two of these ones are on the same line.

Thus, β can be seen as a “subset” of a permutation matrix. (For more details see

Section 4.3.2. So, will be interesting to know:
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1- What is the weakest complexity class that contains L-MinMax?

2- What is the largest class of graphs for which L-MinMax holds?

5.2.9 Can LA prove Decomposition Theorems?

The definitions and concepts of Decomposition Theorem that we present in this section

come from [BR91, Chapter 4 Section 4.4].

Let A be an m×n matrix, and let P denote a class of matrices. By a decomposition

theorem we mean a theorem which asserts that there is an expression for A of the form

A = P1 + P2 + · · ·+ Pk +X (∗)

where the matrices P1, P2, . . . , Pk ∈ P. We may require X to be restricted in some

way, perhaps equal to a zero matrix. The purpose of the theorem may be to maximize

k in (∗) or to minimize k in the event that X is required to be zero matrix, or the

purpose may be to maximize or minimize some other quantity that can be associated

with the decomposition (∗).

The KMM can be viewed as a decomposition theorem. Recall that an m× n 0-1

matrix P is a subpermutation matrix of rank r provided P exactly r 1s and no two 1s

of P are on the same line. Let A be an m× n 0-1 matrix. Then KMM asserts that A

can be expressed in the form

A = P +X

where P is a subpermutation matrix of rank r and X is a 0-1 matrix if and only if A

does not have a line cover consisting of fewer than r lines.

Hence, considering our Proof Complexity of Combinatorial Matrix Theory approach,
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will be interesting to apply concepts of LA-Theory in order to formalize Decomposition

Theorems. (For more about Decomposition Theorems see [BR91, Gup67]).
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Appendix

A.1 A ΠB
2 -Inductive proof of König’s Min-Max The-

orem in LA

In this appendix we show the classical proof in LA-Theory with ΠB
2 induction—

therefore not feasible—of König Min-Max Theorem (KMM), a fundamental result in

Combinatorial Matrix Theory (CMT). In order to make this appendix self-contained

we review some definitions and notation. Basically, in this appendix we are formalizing

in LLA the classical ΠB
2 inductive proof.

We are interested in the proof complexity of König Min-Max Theorem over the

ring of Z. Unless otherwise specified, we assume that all our matrices are over GF (2),

that is, the Galois Field of two elements {0, 1}. We use the following notation—for

more details about the LA notation see Section 4.1.2 and [SC04, Section 2].

We use Aij to denote entry (i, j) of the matrix A, which in LLA correspond to

the 3-ary function symbol e(A, i, j) where the first argument is a type element matrix,
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and the other two are of type element index; r(A), or sometimes row(A), and c(A), or

sometimes col(A), to denote number of rows of 0-1 matrix A and number of columns

of 0-1 matrix A respectively.

Sometimes, we shall apply function f : Mm×n(GF (2)) 7→ Z, that is, function

from 0-1 matrices of size m × n to integers. We require the integers as one of

our fundamental operations will be counting the number of 1s in a 0-1 matrix, i.e.,

compute f := ΣA, the sum of all the entries of A. In fact, we will just do Boolean

Matrices since we are interested in combinatorial properties more than arithmetical

ones.

Also cond(α, t1, t2) is interpreted if α then t1 else t2, where α is a formula all of

whose atomic subformulas have the form m ≤ n or m = n, where m,n are terms of

type index, and t1, t2 are terms either both of type index or both of type field.

We are going to use the decomposition of an m× n matrix A will be used in our

proof:

A =

 a11 R

S M


where a11 is the (1, 1) entry of A, and R, S are 1× (n− 1), (m− 1)× 1 submatrices,

respectively, and M is the principal submatrix of A. Therefore, we make the following

precise definitions:

R(A) := λij〈1, c(A)− 1, e(A, 1, i+ 1)〉

S(A) := λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉

M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉
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Also we are going to use the folowing LLA rule:

Induction rule

Γ, K(i)→ K(i+ 1),∆

Γ, K(0)→ K(n),∆

Here the variable i of type index may not occur free in either Γ or ∆. Also K(i)

is any formula, n is any term of type index, and K(n) indicates n is substituted for

free occurrences of i in K(i). Similarly for K(0). Nevertheless, we are going to do

induction over ΠB
2 formulas, i.e., K(i) ∈ ΠB

2 .

Before start with details about the KMM, we are going to explain the inductive

approach used to prove it. So, we will prove KMM—which concern to 0-1 matrices

from the Combinatorial Matrix Theory viewpoint, by induction on matrices size.

Considering that LA-theory is indeed a theory of matrix algebra we outline a

strategy for proving claims about matrices by induction on their size. We follow the

presentation and the notation of the next outline from [Sol01, Chapter 3]. First of

all, note that it is possible to define empty matrices1 (matrices with zero rows or

zero columns) but such a matrices are consider to be special. Our theorems holds for

this special case, by axioms A28 and E (see [Sol01]), so we implicitly assume that it

holds. The Basis Case in the inductive proofs is when there is one row or one column.

Therefore, instead of doing induction on i (see LA Induction Rule), we do induction

on j, where i = j + 1.

As matrix has two parameters, we deal with this as follow, suppose that we want

to prove something for all matrix A. We define a new constructed matrix M(i, A) as

1From axioms for matrices, we have that the axiom E(mpty) is necessary to take care of empty
matrices. There is nothing that prevents us from construction a matrix, for instance, λij〈0, 3, t〉, and
we want Σ of such matrix to be 0field, regardless of t.
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follows: let d(A) := min{r(A), c(A)}. Now let:

M(i, A) := λpq〈r(A)− d(A) + i, c(A)− d(A) + i, e(A, d(A)− i+ p, d(A)− i+ q)〉

i.e., M(i, A) is the i-th principal submatrix of A.

To prove that the property P holds for A, we prove that P holds for M(1, A), i.e.,

the Basis Case, and we prove that if P holds for M(i, A), it also holds for M(i+ 1, A),

i.e., Induction Step. From this we conclude, by induction rule, that P holds for

M(d(A), A), but this is exactly A. Note that in the Basis Case we might have to

prove that P holds for a (1× k)-row vector or a (k × 1)-column vector, and this in

turn can also be done by induction on k.

Basically, we use induction to prove claims for bigger and bigger submatrices. We

can define and parameterize these submatrices using constructed terms (λij〈m,n, t〉).

Also, we use |A| ≤ n to abbreviate r(A) ≤ n ∧ c(A) ≤ n, that is, the number

of rows of A is bounded by n, and the number of columns of A is bounded by n.

We let (∃A ≤ n)α — resp. (∀A ≤ n)α — abbreviate (∃A)[|A| ≤ n ∧ α] — resp.

(∀A)[|A| ≤ n→ α]. These are Bounded Matrix Quantifiers.

Note that LA allows for reasoning with arbitrary quantification; however, in LA

we only allow induction over formulas without matrix quantification. On the other

hand, in ∃LA we allow induction over so called ΣB
1 formulas. These are formulas,

which when presented in prenex form, contain a single block of bounded existential

matrix quantifiers. The set of formulas ΠB
1 is defined similarly, except the block of

quantifiers is universal.

In general, ΣB
i is the set of formulas which, when presented in prenex form, start

with a block of bounded existential matrix quantifiers, followed by a block of bounded
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universal matrix quantifiers, with i such alternating blocks. The set ΠB
i is the same,

except it starts with a block of universal matrix quantifiers. Remember that the theory

∀LA is the conservative extension of LA that also includes induction axioms for ∀LA

formulas, and ∃LA conservative extension is similar; sometimes the quantifier is going

to be omitted when the context is clear. Finally, we use “:=” to define new objects.

We start giving a first high level approach of the ΠB
2 -proof. So, let2 KMM be the

formalization of König Min-Max Theorem in ∀LA, i.e., given by the following formula:

KMM(A, n) := |A| = n ∧MinCover(A,α) ∧MaxSelect(A, β)︸ ︷︷ ︸
(8)

→
∑

α =
∑

β︸ ︷︷ ︸
(9)

(A.1)

where the first terms is the abbreviation of r(A) = n ∧ c(A) = n; there are two types

of formulas on A.1,
∏B

1 and LLA.

The
∏B

1 formulas are:

MinCover(A,α) := Cover(A,α)︸ ︷︷ ︸
(4)

∧ ∀α′ ≤ r(α)
(

Cover(A,α′) ⊃
∑

α′ ≥
∑

α
)

︸ ︷︷ ︸
(5)

MaxSelect(A, β) := Select(A, β)︸ ︷︷ ︸
(6)

∧ ∀β′ ≤ r (β)
(
select

(
A, β′

)
⊃
∑

β′ ≤
∑

β
)

︸ ︷︷ ︸
(7)

where the LLA formulas are:

Cover (A,α) := ∀i, j ≤ r(A) (Aij = 1 ⊃ α1,i = 1 ∨ α2,j = 1)︸ ︷︷ ︸
(3)

Select (A, β) := ∀i, j ≤ r(A)

(βij = 1 ⊃ Aij = 1)︸ ︷︷ ︸
(1)

∧∀k ≤ r(A) (βij = 1 ⊃ βik = 0 ∧ βkj = 0)︸ ︷︷ ︸
(2)


Where α and β denote two 0-1 matrices of sizes 2 × n and m × n respectively,

such that α denote the number of lines that cover the 1s on matrix A and β denote

2Observe that, we use KMM to abbreviate König’s Min-Max Theorem, and KMM to denote the
LA-formalization.
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the number of 1s on matrix A no two on the same line. Through this appendix we

use α(i, j), and αi,j indistinguishable, same for β, and A.

Let us start with the intended meaning of formula (A.1) and its subformulas in

order to do clarify the roll of theses terms on the ΠB
2 -proof, so:

In Select, (1) means that every β entry nonzero correspond to the same (i, j)

nonzero entry of A, and (2) means that the rest of the ith and jth elements are defined

to be zero. Together give as an assertion of the correctness of β.

In Cover, (3) denote an assertion of correctness of α, that is, if the (i, j) entry of

A has a 1 then must be exists either an horizontal line over row i of A, denoted by 1

on the first row of α, or a vertical line over the j column of A, denoted by 1 on the

second row of α.

In MinCover, (4) and (5) means the selection of the minimum number of lines

that cover all the 1s in A. On the other hand, in MaxSelect, (6) and (7) mean the

selection of the maximum number of 1s no two on the same line in matrix A.

Finally, given a matrix A of size m× n with entries over GF (2), in formula A.1,

if (8) is true, i.e., if matrix α correspond to the minimum number of lines that cover

all 1s in A, and matrix β correspond to the maximum number of 1s no two on the

same line in A, then the sum over all entries of α and β are equal, that is, (9) in

formula A.1.

The main question of this appendix is: what is the weakest fragment of LA-Theory

that prove KMM? More specific, what is the weakest induction the we can achieve?

Of course, an improve and complete answer to this question was gave in Chapter 4 of

this thesis, so, the main intention of this appendix is to show the naive ΠB
2 -Inductive

proof of KMM.
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So, we start rewriting in the LLA the classical version of KMM (Theorem 4.2.1

Chapter 4 Section 4.2), which succinctly is expressed by:

Theorem A.1.1
∏B

2 LA ` KMM

Proof: (Sketch). The idea of the ΠB
2 -proof is the follow: we show by induction on

the size of the matrices, that

∀n KMM(A, n) (A.2)

from which we can deduce

KMM(A, |A|) (A.3)

so,

|A| = |A| ∧ MinCover(A,α) ∧ MaxSelect(A, β)→∑
α =

∑
β

and3 since→|A| = |A| is an Axiom, by a Cut-Rule4 we get König Min-Max Theorem,

i.e.,

MinCover(A,α) ∧MaxSelect(A, β)→∑
α =

∑
β (A.4)

And this complete the ΠB
2 -proof of KMM. �

Now we proceed to prove in detail each part of the sketched proof mention before,

so, we proceed to prove that ∀A ≤ n KMM(A, n) by induction on n.

But first, we start showing that:

Claim A.1.1 ∀A ≤ n KMM(A, n) ∈ ΠB
2

3Recall that
∑
α and

∑
β symbols denote the sum of all entries of matrix α and matrix β

respectively, returning a term of type field, in our case Z.
4Remember that the underline logic of LA-Theory is Gentzen’s Calculus.
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Proof: Note that the equation A.4 is implicitly Matrix Universally uantified, conse-

quently we have

∀α ≤ n ∀β ≤ n MinCover(A,α) ∧MaxSelect(A, β)→∑
α =

∑
β (A.5)

But note5 that (∀Xφ ⊃ ζ) ≡ ∃X (¬φ ∨ ζ), therefore we have that the formula A.5

is logically equivalent to,

∃α ≤ n ∃β ≤ n
(
¬ (MinCover(A,α) ∧MaxSelect(A, β)) ∨

∑
α =

∑
β
)

(A.6)

That is, formula A.6 is a ΣB
1 -formula. Actually, this is the formula A.1, i.e., KMM.

So, KMM(A, n) is ΣB
1 -formula. Hence, ∀A ≤ n KMM(A, n) in prenex form6 has a block

of universal quantifiers (∀) followed by a block of existential ones (∃). Therefore, our

claim follows. �

When we work with a general matrix variable, we use α, but when we work with

particular matrix we use α0. Also, we use the λ− LLA constructors to define

[0] := λij〈1, 1, 0〉

where the first two values are type index element and the third one is type field

element, similarly we define

α0 =

 0

0

 := λij〈1, 2, 0〉

5We let δ ⊃ γ abbreviate ¬δ ∨ γ, and δ ≡ γ abbreviate δ ⊃ γ ∧ γ ⊃ δ.
6A formula A is in prenex form is A has the form Q1x1 . . . QnxnB, where Q is either ∀ or ∃, and

B is a quantifier-free formula
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Proof: So, after proving that ∀A ≤ n KMM(A, n) ∈ ΠB
2 , we proceed with the next

step which is to prove by induction on n the equation A.2, that is,

KMM(A,n)︷ ︸︸ ︷
∀A ≤ n MinCover(A,α) ∧MaxSelect(A, β)→∑

α =
∑

β

Basis Case: Let n = 1 there are two possibilities A = [0] or A = [1].

• Case 1: A = [0], so,

α0 =

 0

0



is a Cover, that is Cover

[0],

 0

0


 is true, and since

∑
α0 = 0, it is in fact

a minimum cover, so,

Claim A.1.2

LA ` MinCover

[0],

 0

0


 .

Proof: We are going to use indistinguishably [0] and 0m×n with n = 1 and

m = 1, and also we use in same way 0Z and 0. On the other hand, in the

case that we use an array of more than one row or one column, we denote that

explicitly, for instance, an array of zeros of size n columns and 1 row, is denoted

by 01×n.

The proof of Claim A.1.2 is derived by a few claims A.1.4, A.1.5, and A.1.6. But

first, we show that LA ` Cover (A,α), where α predicate was defined in A.1.
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Claim A.1.3 LA ` ∀α ≤ r (0m×n) Cover (0m×n, α) .

Proof: First, note that by construction of the Cover formula we know that for

ever (i, j)-entry of matrix A, such that, if that entry is 1, we have a 1 in one

of the two rows of matrix α, such that, it can be in the ith column or in the

jth column depending of the orientation line, horizontal or vertical, respectively.

But, in our case, the form of A is exactly the full zero m× n matrix, therefore

the claim is vacuously true, because no matter what α is, that always Aij = 1 is

going to be false in Cover formula. �

By consequence of Claim A.1.3 is that:

LA ` Cover

[0],

 0

0


 .

which Gentzen’s Style proof associated is

→¬e ([0], i, j) = 1
Weak-Right→¬e ([0], i, j) = 1, α0(1, i) = 1 ∨ α0(2, j) = 1
⊃-Right→e ([0], i, j) = 1 ⊃ α0(1, i) = 1 ∨ α0(2, j) = 1

Weak-Left(two times)
i ≤ r([0], j ≤ r([0])→e ([0], i, j) = 1 ⊃ α0(1, i) = 1 ∨ α0(2, j) = 1

∀-Left(two times)
∀i ≤ r([0]),∀j ≤ r([0])→e ([0], i, j) = 1 ⊃ α0(1, i) = 1 ∨ α0(2, j) = 1

Before to continue with the proof of Claim A.1.2 we introduce a few abbreviation

used in the following claims.

Abbreviations (for more detail see Section 4.1.2, and Appendix A.5):∑
α0 :=

∑
λij〈r(α0), c(α0), e(α0, i, j)〉,∑

α′0 :=
∑
λij〈r(α′0), c(α′0), e(α′0, i, j)〉,∑

α0 ≤
∑
α′0 := (

∑
α0 <

∑
α′0) ∨ (

∑
α0 =

∑
α′0).
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Claim A.1.4 LA `
∑

0m×n = 0Z

Proof: By induction on m, then we have,

Basis case m = 1,

∑
01×n =

∑
λij〈1, n, e (0, i, j)〉 By λ-Construction

= 0Z By Axioms A30-33 recursive def. of Σ

Inductive Step:

∑
0m×n =

∑
0m−1×n +

∑
01×n By Matrix Arithmetic

= 0Z + 0Z By I.H.

= 0Z By Z Arithmetic

�

Claim A.1.5 LA `
∑
α ≥ 0

Proof: Considering that α is of size 2 × n with entries over GF (2), we

have that every entry of α ≥ 0, i.e., ∀i ≤ r(α) j ≤ c(α) e(α, i, j) ≥ 0, so

using λ-constructor and axioms A30 − 33 that define recursively
∑

, we get∑
α =

∑
λ〈m,n, e(α, i, j)〉 ≥ 0Z �

Claim A.1.6 LA `
∑
α ≥

∑
0m×n

Proof: Follows by Claims A.1.4 and A.1.5. �
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So, in particular we choose α0 = 0m×n = [0] and α′0 = α. Therefore, Claim A.1.6

is,

LA `
∑ 0

0

 ≥∑[0] (A.7)

or equivalent,

LA `
∑

α ≤
∑

α′0 (A.8)

so,

→∑
α0 ≤

∑
α′0 Weak(2 times)

α′0 ≤ r(α0)→¬ (Cover ([0], α′0) ,
∑
α0 ≤

∑
α′0)

⊃-Right
α′0 ≤ r(α0)→¬ (Cover ([0], α′0) ⊃

∑
α0 ≤

∑
α′0)

∀-Right→∀α′0 ≤ r(α0) (Cover ([0], α′0) ⊃
∑
α0 ≤

∑
α′0)

from which we get,

LA ` ∀α′0 ≤ r (α0)
(

Cover ([0], α′0) ⊃
∑

α′0 ≥
∑

α0

)
(A.9)

�

This complete the proof for Case 1 when A = [0] and α0.—end of proof of

Claim A.1.2.

Furthermore, proceeding in similar way, β0 = [0] satisfies Select([0], [0]), and

only β0 = [0] satisfies Select, and so

Claim A.1.7

LA ` MaxSelect ([0], [0])
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Proof: Here we proceed in a similar way of the proof of Claim A.1.2.

For every β that we choose, Select([0], β) always is going to be valid because by

construction of Select itself, more precisely,

Select (A, β) :=∀i, j ≤ r(A)(βij = 1 ⊃ Aij = 1)︸ ︷︷ ︸
(1)

∧∀k ≤ r(A) (βij = 1 ⊃ βik = 0 ∧ βkj = 0)︸ ︷︷ ︸
(2)


where (1) and (2) always are true, because:

a: First of all, in term (2) of Select formula, the subformula (βik = 0 ∧ βkj = 0)

can be viewed like βij = 0 because β1×1 = [0].

b: Secondly, in term (1) of Select we have two cases for β on Select ([0], β):

b1: βij = [0], this case follow from the truth assignment of Select ([0], [0])

formula.

b2: βij = [1], in this particular case, the truth value of Select ([0], [1]) is

false, which appear to be contrary to the assert that for all β ≤ r([0])

Select ([0], β), but this particular case just can not happen because can

not exist a nonzero (i, j)−entry on β without a nonzero (i, j)−entry

on A, because β is constructed, i.e., defined, from exploring the entries

of A. Similarly, can not happen that βij = 0 ⊃ Aij = 1 which it is

identically to this case but considering Aij = [1] (see below, Case 2).

So, the only possible situation of term (1) of Select is with βij = 0 ⊃

Aij = 0, which is Case b1. Similarly, βij = 1 ⊃ Aij = 1 which is
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consider in Case 2 (see below, Case 2).

So,

LA ` ∀β ≤ r([0]) Select ([0], β) .

Hence, we have that still the same argument that Select is valid on MaxSelect([0], β),

and in particular with β = [0], therefore our claim follows. �

Finally,
∑
α0 = 0 =

∑
β0, and our Theorem A.1.1 follows–end Basis Case

A = [0].

• Case 2: A = [1], so, the possible minimum covers are (we are discarding the

case in which α0 is all ones, because it isn’t necessary to use two lines to cover

a 1 on A.), hence, we have the following claim,

Claim A.1.8

LA ` MinCover ([1], α0) ⊃

α0 =

 1

0

 ∨ α0 =

 0

1




Proof: Let A be the single value [1], i.e., ∀i, j ≤ r(A) Aij = 1. So, by

construction of α we have that α0(1, i) = 1 or α0(2, j) = 1, and by hypothesis

actually we are in the case of α0 be minimum, hence the claim follows. �

Which in both cases we have a Cover, that is, Cover([1], α0) is true, and since in

both cases
∑
α0 = 1, it is in fact a minimum cover, i.e., MinCover, therefore
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Claim A.1.9

LA ` MinCover ([1], α0)

Proof: The proof is identically to Claim A.1.2. �

Note that Claim A.1.9 is true wherever α0 is.

On the other hand, β0 = [1] such that Select([1], [1]) is valid, and only β0 = [1]

satisfies Select, and so

Claim A.1.10

LA ` MaxSelect ([1], [1])

Proof: Identically to Claim A.1.7. �

Finally,
∑
α0 = 1 =

∑
β0, and our Theorem A.1.1 follows—end Basis Case

A = [1].

This complete the proof of Theorem A.1.1 for the Basis Case.

Inductive Step: Suppose KMM(A, n) holds; we shall show that KMM(A, n+ 1) holds

as well. So, |A| = n + 1,intended meaning is (r(A) = n+ 1 ∧ c(A) = n+ 1), and

suppose we have MinCover(A,α) and MaxSelect(A, β).

We start proving the first inequality, i.e.,

∀A ≤ n+ 1 MinCover(A,α) ∧MaxSelect(A, β)→
∑

α ≥
∑

β. (A.10)

To do this we proceed by proving the Claim A.1.11 and Claim A.1.12.
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Claim A.1.11 Let X, Y be 0-1 matrices, then

LA ` (∀i ≤ max{|X|, |Y |} ∀j ≤ max{|X|, |Y |} (Xij = 1 ⊃ Yij = 1)) ⊃
∑

X ≤
∑

Y

Proof: By induction on the size of the matrices.

Basis case: |X| = |Y | = 1; here we have the following cases:

X11 = 1 ⊃ Y11 = 1, so
∑
X = 1 =

∑
Y , or

X11 = 0 ⊃ Y11 = 0 ∨ Y11 = 1, so
∑
X ≤

∑
Y .

And finally, X11 = 1 ⊃ Y11 = 0, which is not possible because, semantically

speaking, it means that exist a line that is used to cover a position of A which has a

zero, which is a contradiction because lines are used to cover 1s.

Inductive step: here we know by inductive hypothesis that

∀i, j
(

(X[1|1])ij = 1 ⊃ (Y [1|1])ij = 1
)
⊃
∑

X[1|1] ≤
∑

Y [1|1]

Where the notation means that the matrices are expressed without a row and

without a column, that is the standard notation for the Principal Minor of X and Y .

More specifically, A[−|k] denotes that only the k-th column has been deleted, similarly,

A[l|−] denotes that only the l-th row has been deleted, and A[−|−] = A.

Also, the structure of X and Y are such that:

X =

 x11 RX

SX MX

 and Y =

 y11 RY

SY MY


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Applying the I.H. we get that:

x11 ≤ y11,
∑

RX ≤
∑

RY ,
∑

SX ≤
∑

SY ,
∑

MX ≤
∑

MY

So,

∑
X = x11 +

∑
RX +

∑
SX +

∑
X[1|1]

≤ y11 +
∑

RY +
∑

SY +
∑

Y [1|1]

=
∑

Y

�

Note that Claim A.1.11 is easy to prove because the mapping between entries

of X and Y is just the identity map, for instance, we denote it here by f , so, entry

(i, j) of X is mapped to entry f(i, j) = (i, j) of Y , but in the case of α which is

a 2× c(A) 0-1 matrix and β which is a c(A)× c(A) matrix, where c(A) was arbitrary

chosen to be the min{r(A), c(A)}; the mapping is:

an entry (i, j) of β gets mapped to

f(i, j) =

 (1, i) if in the ith row goes an horizontal line

(2, j) if in the jth column goes a vertical line

of α. Here the mapping is still one-to-one because there is one 1 per row and per

column in β. This argument is formalized in the next claim.

Claim A.1.12 Let β and α be defined like equation A.1. Then we can “match”

every 1 that belong to β with a unique 1 in α. That is, ∀i, j ≤ c(β) if βij = 1, then
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(α(1, i) = 1 ∨ α(2, j) = 1). More formally in LLA language this is:

LA `|A| ≤ n,MinCover(A,α),MaxSelect(A, β)→

→∀i, j ≤ c(β) (βij = 1 ⊃ (α(1, i) = 1 ∨ α(2, j) = 1))

(A.11)

Proof: We proceed by cases,

• let n = 1 there are two possibilities for β, i.e., β0 = [0] or β0 = [1].

– Case 1: β0 = [0], here the claim is vacuously true.

– Case 2: β0 = [1], again, the analogous cases, that is, then since MinCover(A,α0)

true,

α0 =

 1

0

 or α0 =

 0

1


i.e., α0(1, 1) = 1 ∨ α0(2, 1) = 1, so, Claim A.1.12 follows.

• let n > 1, that is, β be an r(A)× c(A) 0-1 matrix we have two cases:

a: if βij = 0 nothing to do.

b: if βij = 1 we want to show that there must be a 1 in positions α (1, i)

or α (2, j). But, we have by MaxSelect(A, β) that β is such that βij = 1

then Aij = 1, and by MinCover(A,α), Aij = 1, so, we have α of the form

α(1, i) = 1 or α(2, j) = 1, therefore Claim A.1.12 follows.

�
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So, from Claim A.1.11, considering β like X, and α like Y , and Claim A.1.12 we

conclude the first size of the inequality of KMM(A, n+ 1).

Now we show the other inequality, i.e.,

∀A ≤ n+ 1 MinCover(A,α) ∧MaxSelect(A, β)→∑
α ≤

∑
β. (A.12)

We consider the two possible cases here:

• Case 1. There is a minimal proper covering– a covering without all rows and

without all columns.

• Case 2. There isn’t a minimal proper covering.

We are going to proceed in similar way of the proof of Theorem 4.2.1 of Chapter 4

Section 4.2.

• Case 1: in this case we have a covering where at least one row is missing and

at least one column is missing. So, α is such that has at least a two columns

missing, because that represent, at least, the horizontal line and the vertical

line which were missed. On the other hand, by hypothesis exists an α such

that MinCover(A,α) is valid, and like we assume that A has a proper covering

composed of e horizontal lines (rows) and f vertical lines (columns), that is, a

cover of size e+ f , so, we have that
∑
α = e+ f where

e =
∑

α[2|−] i.e., α[2|−] := first row of α

f =
∑

α[1|−] i.e., α[1|−] := second row of α
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Recall that here we are considering matrix of sizes greater or equal than 2× 2,

because cases in which e = 1 or f = 1 were considered in the Basis Case of

Theorem A.1.1, therefore, just note that, e ≥ 1 and f ≥ 1, i.e., e+ f ≥ 2.

Also, recall that α is a 0-1 matrix of size 2× |A|, but with at least two missed

columns, that is, |α| ≤ |2× (|A| − 2)|, in other words, we have that (e < n+ 1),

and (f < n+ 1).

Now, consider the matrix PAQ, where P and Q are permutation matrices7 such

that our 0-1 matrix A assume8 the form

PAQ =

 E A1

A2 0(n+1)−e×(n+1)−f

 ,

where:

Sub Matrix Dimension

E e× f

A1 e× (n+ 1− f)

A2 (n+ 1− e)× f

O (n+ 1− e)× (n+ 1− f)

That is, we permute lines of A so that the e horizontal lines and the f vertical

lines are in the initial square denoted by E. Note that the e’s are the horizontal

lines associate to A1’s row, while f ’s are vertical lines associate to A2’s columns.

Therefore, we have that size of |A1| < |A| this is because min{e, n+1−f} < n+1,

and this is clear because f ≥ 1 and e < n+ 1, similarly, |A2| < |A|, therefore, we

7See for more details about permutation matrices in Chapter 3, and Appendix A.3.
8We are using square matrices to simplify the calculus.
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apply the inductive hypothesis (I.H.) to A1 and A2. Let us make this inductive

step more explicitly, this is important because it is here in this stage of the proof,

that we need to apply ΠB
2 -Induction, i.e., it is here where we use the fact that

our induction is over ∀A ≤ n KMM(A, n) ∈ ΠB
2 . Therefore,

– The matrix A1 has e horizontal lines (rows), so, by I.H. there are at least

e’s many 1s no two on the same line on A1 denoted by
∑
βA1 , hence,∑

α[2|−] ≤ βA1 . That is,

KMM(A1,n)︷ ︸︸ ︷
∀A1 ≤ n MinCover(A1, α) ∧MaxSelect(A1, β)→∑

α ≤
∑

β

Because if we suppose that A1 can be cover with fewer than
∑
α[2|−] lines,

say e′ <
∑
α[2|−], then f + e′ < f + e =

∑
α giving us a contradiction of

the fact that MinCover(A,α).

– On the other hand, the matrix A2 has f vertical lines (columns), so, by I.H.

there are at least f ’s many 1s no two on the same lines on A2 denoted by∑
βA2 , hence,

∑
α[1|−] ≤

∑
βA2 . That is,

KMM(A2,n)︷ ︸︸ ︷
∀A2 ≤ n MinCover(A2, α) ∧MaxSelect(A2, β)→∑

α ≤
∑

β

Because if we suppose that A2 can be cover with fewer than
∑
α[1|−] lines,

say f ′ <
∑
α[1|−], then f ′ + e < f + e =

∑
α giving us a contradiction of

the fact that MinCover(A,α).

Note that this ΠB
2 proof is not feasible, and this is, fundamentally, because we
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have to reapply different permutations matrices in every inductive step.

Putting all together, and considering that exactly e many horizontal lines cover

A1, i.e.,
∑
α[2|−] = e, and f many vertical lines cover A2, i.e.,

∑
α[1|−] = f ,

so, we have

∑
α = e+ f By Def. α

=
∑

α[2|−] +
∑

α[1|−] By Def. of e and f

≤
∑

βA1 +
∑

βA2 By ΠB
2 -Ind

≤
∑

β By (*)

where the last inequality (∗) comes from the fact that, let us define S to be a

set of 1s, so, if S1 is a subset of 1s of A1 no two on the same line, and S2 is a

subset of 1s no two on the same line of A2, then S = S1 ∪ S2 is a subset of 1s of

A no two on the same line—as A1 and A2 occupy different lines of A, in other

terms, S1 ∩ S2 = 0. Hence, the inequality symbol follows since E has 1s no two

on the same lines while A1 and A2 have some lines full of zeros.

End of the second inequality A.12—Case 1.

• Case 2: it is when α “is” given by the form of Figure A.1, that is one of the

rows of α is full of zeros and the other one is full of ones, so,
∑
α = c(A). To

be more precisely, in this case, we choose arbitrarily to have all horizontal lines

or all vertical lines, because to cover all the 1s no two on the same line we know

for sure that we need c(A) or r(A) lines, and does not matter if there are a mix

of vertical and/or horizontal, we decide to use all vertical or all horizontal lines.
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2nd row

1
c(A)

2nd row

1st row

1st row 1   1   1                                                              1

0   0   0                                                              0

0   0   0                                                              0

1   1   1                                                              1

Figure A.1: Two possible α’s when there is NOT a minimal proper covering

So, there exists an α, say α0, such that MinCover(A,α0), and either row 1 is

full of ones and row 2 full of zeros, or row 2 is full of ones, and row 1 full of

zeros. If row 1 is full of ones, we have all horizontal lines in which case we choose

min{r(A), c(A)} = r(A) = m. Similar in case that row 2 is full of ones, i.e.,

min{r(A), c(A)} = c(A) = n. Again, we can consider square matrices to make

more easy the calculus, so we use indistinguishable m or n, except when it is

necessary denote the difference.

So we proceed by induction on n, the size of the matrices.

– Basis Case: Here we have two situation of α,

α0 =

 1

0

 or α0 =

 0

1


i.e., α0(1, 1) = 1 ∨ α0(2, 1) = 1. Hence9, there must be a 1 on β0, i.e.,

9Recall that when we work with a general matrix variable, we use β, but when we work with
particular matrix we use β0.

180



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

β0 = [1], because, otherwise we are selecting an horizontal or vertical

line to cover a one that does not exist, arriving to a contradiction. Also

by Claim A.1.10 we have that MaxSelect(A, β0) is true in LA, so, finally∑
β0 ≥

∑
α0, that is, equation A.12 holds.

– Inductive Step: the proof consist of Claim A.1.13 and Claim A.1.14.

Without loss of generality10 we choose one of the two possible configurations

of α, that is, first row all ones and second row all zeros or the other way

around. We choose α0 first row full of ones, and also this α0 is such that

MinCover(A,α0) is true on LA by the following claim:

Claim A.1.13 LA ` ∀A ≤ n

MinCover (A,α0) ⊃

α0 =

 1 1 . . . 1

0 0 . . . 0

 ∨ α0 =

 0 0 . . . 0

1 1 . . . 1





Proof: By induction on n and using the Claim A.1.8, the result follows.

�

So, we want to show that the n×n matrix β0 has n 1’s considering that α0

is a 2× n matrix.

We know that β0 has at least a 1 somewhere, otherwise
∑
β0 = 0 which

means that A = 0, i.e., A is a full of zeros matrix, and therefore α0

must be zero, that is,
∑
α0 = 0, which is a contradiction of the two

10We can proceed in this way, because we prove, many times before, the symmetric results of both
configuration of α, that is, both configuration yield the same result.
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possible configurations of α0. So, proceeding in similar way that proof of

Theorem 4.2.1 Chapter 4 Section 4.2.

We permute11 β0 in such a way that it is in the form

β̂0 =

 1 Rβ0

Sβ0 Mβ0

 (A.13)

and consider the following claim:

Claim A.1.14 Let β be a 0-1 matrix such that after permutation it get the

form A.13, and let α be given by one of the two configurations of Figure A.1

then if β̂0 does not have a proper covering, then its principal submatrix Mβ0

neither.

Proof: Considering one of the two configurations of α0, so we have that

there are n 1s denoting the n-lines on A which is an n× n matrix, in other

words,we are in the case where A does not have a proper covering, so, by

construction those 1s correspond to nonzero entries of β0, which again is

a n× n matrix, hence, it does not have a proper covering. Now we know

that after permutation we get that β̂0 (1, 1) = 1, then by construction of β0,

Rβ0 = 0, and Sβ0 = 0. Then by permutation on the form A.13, the principal

submatrix of β̂0, that is,Mβ0 has size (n− 1× n− 1) which correspond to

the (n− 1) 1s, otherwise contradict the fact that β̂0 does not have a proper

covering. Therefore Mβ0 has not a proper covering. �

Now, we have that α0 is not a proper covering, so, in particular α0[−|j],

where [j] = n, and where the intended meaning is represent α0 without the

11See for more details about permutation matrices in Chapter 3, and Appendix A.3.
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jth column, so, the new α0[−|j] is of size 2× n− 1, and it is not a proper

covering.

Also, we know that the β0(1, 1) entry must has associate a line horizontal

or vertical, indistinguishably, which is denoting by a particular column of

α0, that is, if the one in position β̂0(1, 1) before permuting β0 correspond

to the entry, say (p, q), then α0 is going to has a 1, either in α0(1, p) or

α0(2, q), see Figure A.2.

c(A)1

p

q

p

1

1 c(A)

r(A)

q

Figure A.2: Fist matrix (up) correspond to α0 with two possible lines according to a
particular β0 matrix entry depicted in the second place (down).

So, in particular, without loss of generality, we can choose α0[−|q] meaning

α0 without the qth column, which still it is not a proper covering.
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Therefore, considering α0[−|q] and β0[1|1], we have

∑
β̂0 =

∑
β0 By permutation

=
∑

β0[1|1] + 1 By matrix arithmetic

≥
∑

β0[1|1] + α0(2, q) By Basis Case 12

≥
∑

α0[−|q] + α0(2, q) By I.H. and Claim A.1.14

=
∑

α0 By matrix arithmetic

End of the second inequality of A.12—Case 2

This ends of ΠB
2 -Proof of ∀A ≤ n KMM(A, n) �

Conclusion, expressed informally, is that

ΠB
2 LA ` König Min-Max Theorem

Note that in the previous proof, we made use of permutations in order to rearrange

the entries of a particular matrix, in order to make easier to deal within the proof

with concepts like cover or number of 1s no two on the same line, and mainly to see

graphically how the induction works inside the proof.

We finish this appendix with a concept that should be explicitly establish, which is

that every time that we apply some permutation to our matrix, we “preserve” the cover

that we are working on it. This was described in Chapter 3 Section 3.2 Lemma 3.2.2,

where this concept of preserve was introduced the concept of order preserving.

12Without loss of generality, we can choose, α0(1, p) instead of α0(2, q), because denote one of the
two possibilities to cover a 1 on Apq.
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This idea is important with respect to the correctness of our Permutation-Based

algorithm—see Appendix A.3,and we formalize this idea inside the LA-Theory, so,

we start with the following definition:

Definition A.1.1 Let A and β be a 0-1 matrices of sizes m× n, we say that β is a

selection of A, denoted by β v A if ∀i ≤ r(β) ∀j ≤ c(β) (βij = 1 ⊃ Aij = 1)

Lemma A.1.1 Let P and Q two permutation matrices. If LA ` β v A then PβQ v

PAQ.

Proof: Firs of all, we use a direct correspondence between permutations—like

bijections—π : [m] −→ [m] and τ : [n] −→ [n], and permutation matrices, that is,

Pπ and Qτ which permutes, for instance, rows and columns of β, respectively. In

order to make easier the calculus we can consider π : [n] −→ [n], i.e., working over β

and A like square matrices. The matrix Pπ is obtained from the identity matrix by

exchanging the rows according to π, and the matrix Qτ is obtained from the identity

matrix by exchanging the rows according to τ . Then (PπβQτ )ij = (β)π−‘(i)τ−1(j). Our

permutations P,Q work in such a way that they place the 1s on the main diagonal of

β in the original order; that is, if the 1s of β where in positions:

(i1, j1), (i2, j2), . . . , (ik, jk)

with i1 < i2 < · · · < ik, and remember that k ≤ n, where13 n = |A|, because β is a

selection of A. Then our permutations π, τ are given as follows:

13 |A| = n intended meaning is (r(A) = n ∧ c(A) = n)
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i1 7→ 1

i2 7→ 2

...

ik 7→ k

j1 7→ 1

j2 7→ 2

...

jk 7→ k

By definition are order preserving, and according to rows.

So, we want to show that PπβQτ v PπAQτ . Let the entry (p, q) of PπβQτ ,

that is, (PπβQτ )pq = βπ−1(p)τ−1(q), then must exist a ∈ [n] such that ia = π−1(p)

and ja = τ−1(q). On the other hand the value of βia,ja can be 0 in such a case, we do

nothing, or can be the case that is 1, then we have the following derivation

(PπβQτ )pq = βπ−1(p)τ−1(q) By Permutation

= βia, ja By bijection

= 1 By case

v Aia,ja By hypothesis

= Aπ−1(p)τ−1(q) By bijection

= (PπAQτ )(π(π−1(p))(τ(τ−1(q)))) By Permutations

= (PπAQτ )pq By bijection.

�

Lemma A.1.2 Let P and Q two permutation matrices. If LA ` cover(A,α), where

α :=

 α11

α21

, then α′ :=

 Pα′11

α′21Q

 is a cover of PAQ, i.e., LA ` cover(A,α′).

Proof: The proof is identical to Lemma 4.3.1 Chapter 4 Section 4.3.3. �
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A.2 An LA proof of Lemma 4.3.1 Section 4.1

Given a matrix A, let lA and oA denote the minimum number of lines necessary

to cover all the 1s of A, and the maximum number of 1s no two on the same line,

respectively. (Of course, König’s Min-Max Theorem says that for all A, lA = oA.)

In terms of the definitions just given, we have that lA = Σα where MinCover(A,α),

and oA = Σβ where MaxSelect(A, β). (See definition of MinCover and MaxSelect,

Chapter 4 Section 4.3.2.)

Lemma A.2.1 (Lemma 4.3.1) Given a matrix A, and given any permutation matrix

P , we have

• LA ` lPA = lAP = lA

• LA ` oPA = oAP = oA

That is, these four equalities can be proven in LA, i.e., with induction restricted to

formulas without matrix quantifiers.

Proof: The proof follows from—see below—Claim A.2.1 and Claim A.2.2, and their

respectively corollaries.

We adopt bijections, say π and τ , to describe permutation matrices, say P , such

that π : [n]→ [n] and τ : [n]→ [n], and as permutation matrix Pπ or Pτ , according if

we use it multiplying to the left or to the right of A, respectively. That is, Pπ permute

the rows of matrix A, and Pτ permutes the columns of matrix A. The matrix Pπ (Pτ )

is obtained from the identity matrix by exchanging the rows (columns) according to π

(τ). Then (PπAPτ )ij = (A)π−1(i)τ−1(j). Also, we omit the subscript π or τ when the

context is clear.
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Therefore, Pπ and Pτ work in such a way that they place the 1s on the main

diagonal in the original order , for instance, according to the rows of A.

Notation: Let X be a matrix,

X[i : −] := i-th row of X

X[− : j] := j-th column of X

Recall that the proof of Lemma A.2.1 follows from the next sequence of claims

and corollaries.

Claim A.2.1

LA ` Cover(A,α)→Cover(PA, α′) ∧ Cover(AP, α′)

Proof: Suppose that Cover(A,α) holds; we show that LA reasoning is sufficient to

show that Cover(PA, α′) holds, where conforming to how we apply to matrix A the

permutation matrix P we define:

• If PA is the case, let α′ := α[1 : −]P , that is, α′ is the same as α except the

first row of α, defined by α[1 : −] is replaced by α[1 : −]P .

• If AP is the case, let α′ := α[2 : −]P , that is, α′ is the same as α except the

second row of α, defined by α[2 : −] is replaced by α[2 : −]P .

The idea is that if row i of A is moved to row i′ by P , then column α[1 : i] was

part of the cover α then now column i′, i.e., α[1 : i′] is part of cover α′ conforming to

P , that is, α′ := α[1 : −]P . Symmetrically with the j column of A, and the second

row of α.
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We have two possible lines that go through the non-zero entries of A, say (i, j);

which in terms of α′ entries, that means that either α(1,i) = 1 or α(2,j) = 1. When the

context is clear, we shall use indistinguishably the follow notation for the entry of a

matrix X, Xij, or X(i,j), or X(ij).

Therefore, we have the following cases:

• Case 1: the line on position (i, j) of A is horizontal. Hence, we have α(1,i) = 1,

and of course Aij = 1. Consider any entry (p, q) of PπA, i.e., (PπA)pq = (A)π−1(p)q.

If (A)π−1(p)q = 0 nothing to prove, otherwise its means that there exist an a ∈ [n]

such that ia = π−1(p). Hence,

(PπA)pq = Aπ−1(p)q (a)

= Aiaq (b)

= 1 (c)

⊃ α(1,ia) = 1 ∨ α(2,q) = 1 (d)

= α(1,π−1(p)) = 1 ∨ α(2,q) = 1 (e)

= α(1,π(π−1(p)))Pπ = 1 ∨ α(2,q)Pπ = 1) (f)

= α(1,p)Pπ = 1 ∨ α(2,q)Pπ = 1 (g)

= α′(1,p) = 1 ∨ α′(2,q) = 1. (h)

where (a) is by rows permutation, (b) is by π-bijection, (c) is because we are

in case 1, (d) by hypothesis, (e) by bijection, (f) by rows permutation, (g) by

bijection, and (h) by notation, note that in this step α(2,q)Pπ = α′(2,q) because

we are permuting over the first row of α so, α[2 : −] = α′[2 : −].
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Therefore, Cover(PA, α′), where α′ := α[1 : −]Pπ, holds. That is,

LA ` Cover(A,α)→ Cover(PA, α′).

• Case 2: the line on position (i, j) of A is vertical. This case is symmetrically

to case 1, but, instead of PπA we use APτ , and work over the columns of A.

Deriving on

(APτ )pq ⊃ α′(1,p) = 1 ∨ α′(2,q) = 1.

Therefore, Cover(AP, α′), where α′ := α[2 : −]Pτ , holds. That is,

LA ` Cover(A,α)→ Cover(AP, α′).

Finally by cases 1 and 2 our Claim A.2.1 follows. �

By a consequence of Claim A.2.1, we have the following corollary, which basically

says that having a minimum cover is closed under permutation. That is, if A has

a minimum cover, say α0, then either PπA or APτ have α′0 := α0[1 : −]Pπ or

α′0 := α0[2 : −]Pτ like their minimum covers, respectively, and where the subindex 0

on a matrix means that we work with particular matrix, i.e., α0.

Corollary A.2.1

LA ` MinCover(A,α)→ MinCover(PA, α′) ∧MinCover(AP, α′)

Proof: Suppose that MinCover(A,α) holds. The idea of the proof is the following,

we are going to show that LA reasoning is sufficient to show that MinCover(PA, α′)
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holds. Following the same approach used in Claim A.2.1, we split it into two cases,

one permuting rows of A, and working over α[1 : −], and the other permuting columns

of A, and working over α[2 : −].

Finally, in both cases we have that by Claim A.2.1, and by hypothesis we get:

LA ` MinCover(A,α)→ MinCover(PA, α′)

and

LA ` MinCover(A,α)→ MinCover(AP, α′)

where if PA is the case, α′ := [1 : −]Pπ, and if AP is the case α′ := α[2 : −]Pτ . �

We shall proceed using the same definition and notation of permutation matrices

and bijections that we used on proof of Claim A.2.1 in the following claims.

Claim A.2.2

LA ` Select(A, β)→ Select(PA, β′) ∧ Select(AP, β′)

where if PA is the case, β′ := Pπβ, otherwise β′ := βPτ .

Proof: We show that LA reasoning is sufficient to prove that a selection of the

permutation matrix of A holds, i.e., Select(PA, β′) holds, where β′ := Pπβ is the result

of rearranging the rows of β according to the permutation P . The idea is that if a

row i is moved to row i′, then if row i was part of the selection, then row i′ is part of

the selection according to PπA. And symmetrically, βPτ is the result of rearranging

th columns of β according to the permutation P .
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We split the analysis in two cases, according to if we permute rows or if we permute

columns of A.

• Case 1: we apply Pπ in order to permute the rows of A. From the definition of

predicate Select, we have to prove two statements— A.14, A.15:

(β′)pq = 1→ (PπA)pq = 1 (A.14)

Consider any (p, q) of Pπβ, i.e., (Pπβ)pq = βπ−1(p)q. If βπ−1(p)q = 0 there is

nothing to prove, otherwise exists a ∈ [n] such that, ia = π−1(p). Therefore,

(β′)pq = (Pπβ)pq (a)

= βπ−1(p)q (b)

= βiaq (c)

= 1 (d)

⊃ A(ia,q) (e)

= 1 (f)

= A(π−1(p),q) (g)

= (PπA)(π(π−1(p)),q) (h)

= (PπA)pq. (i)

where (a) is by notation, (b) is by row permutation, (c) is by π-bijection, (d) is by

case, (e) is by hypothesis, (f) by case,(g) by bijection, (h) by row permutation,

and (i) by bijection. Concluding with (A.14).
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And, on the other hand,

∀k ≤ r(PπA)
(
(β′)pq = 1→

(
β′pk = 0 ∧ β′kq = 0

))
(A.15)

β′pq = (Pπβ)pq (a)

= βπ−1(p)q (b)

= βiaq (c)

= 1 (d)

⊃ ∀k ≤ r(PπA)
(
β(ia,k) = 0 ∧ β(k,q) = 0

)
(e)

= ∀k ≤ r(PπA)
(
β(π−1(p),k) = 0 ∧ β(k,q) = 0

)
(f)

= ∀k ≤ r(PπA)
(
Pπβ(π(π−1(p)),k) = 0 ∧ Pπβ(k,q) = 0

)
(g)

= ∀k ≤ r(PπA)
(
Pπβ(p,k) = 0 ∧ Pπβ(k,q) = 0)

)
(h)

= ∀k ≤ r(PπA)
(
β′(p,k) = 0 ∧ β′(k,q) = 0)

)
. (i)

where (a) is by notation, (b) is by row permutation, (c) is by π-bijection, (d) is

by case, (e) is by hypothesis, (f) by bijection, (g) by row permutation, (h) by

bijection, and (i) is by notation. Concluding with (A.15).

Therefore, from (A.14) and (A.15), case 1 follows, that is,

LA ` Select(A, β)→ Select(PπA, β
′)

holds, where β′ := Pπβ.

• Case 2: we apply Pτ in order to permute the columns of A. Proceeding in
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symmetrically manner that case 1 (using columns), we get

LA ` Select(A, β)→ Select(APτ , β
′)

holds, where β′ := βPτ .

Finally, by cases 1 and 2 Claim A.2.2 follows. �

By a consequence of Claim A.2.2, we have the following result

Corollary A.2.2

LA ` MaxSelect(A, β)→ MaxSelect(PA, β′) ∧MaxSelect(AP, β′)

where if PA is the case, β′ := Pπβ, otherwise β′ := βPτ .

Proof: Similar to Corollary A.2.1. �

Now putting all the results together, and let A,α, β be matrices such that satisfy

MinCover(A,α) ∧MaxSelect(A, β), by Corollaries A.2.1 and A.2.2, the following two

statements are satisfiable on LA:

• lA = Σα ⊃ lPA = ΣPα ∧ lAP = ΣαP , and

• oA = Σβ ⊃ oPA = ΣPβ ∧ oAP = ΣβP ,

this conclude with the proof of Lemma A.2.1. �
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A.3 Correctness of Permutation-Based Algorithm

(Chapter 3)

We start this appendix with an outline of the proof of correctness of the algorithm

described in Chapter 3—that is, Permutation-Based algorithm, when we refer to

“our algorithm” that means our Permutation-Based algorithm. All algorithms in

this appendix are very simple and self-evident, nevertheless, we present a detailed

presentation of each algorithm because we are interested in the correctness of the

Permutation-Based algorithm in LA-Theory. First of all, we pad with zeros AG, or

just A, and MAG , or just M , that is, the adjacency matrix of a graph G, and the

matrix representation of a maximum matching, so, after this padding process, we

shall consider to be working on squared matrices. The proof is divided into fifth

interconnected parts, more precisely,

1- Computing P from MAG—Algorithm 2—using the matrix representation of the

maximum matching, we compute P , the permutation matrix that will be used

to put the matrices in the following form

PAGQ =

 E A1

A2 0

 (A.16)

.

2- Computing Q from PMAG—Algorithm 4—we use the output of the previous

algorithm to be able to put the matrix in form A.16, in order to do that, we

compute the permutation matrix Q to be multiply by left.

3- Computing ~O from PAGQ—Algorithm 6—applying permutation matrices P,Q
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to AG we obtain A.16, so, in this algorithm define which entry among the k-th

main diagonal ones of E, is black or green according to the exploration of A1,

and eventually, if the line of A1 was full of zeros, explore A2.

4- Computing µ from PAGQ and ~O—Algorithm 7—from matrix PAGQ and the

initialized orientation vector ~O this algorithm group into two blocks of black

1s and green 1s the kth ones of the main diagonal, and update the orientation

vector ~O according to the grouping.

5- Finally, the recursive call: at this point we have the lines that goes over each

green one in our orientation vector ~O, so, remain compute the orientations of the

lines covering the black 1s. We do so recursively, by repeating the procedure

from Step 2 of our algorithm—see Chapter 3 Section 3.3—with the matrix

obtained from the k × k upper-left quadrant of PAGQ, but with the following

modifications: the square enclosing the green 1s is zeroed out, and we also place

zeros wherever those lines crossed the rest of the quadrant. In Figure A.5, we

place zeros in the upper-left quadrant wherever the horizontal red lines crosses.

Note that we are assuming that all the concepts inside this proof are formalizable

in LA-Theory. Besides, we are supposing to be in Step 2 of our algorithm, such

that, algorithms in points 1, 2, and 3 of the previous outline correspond to the case

Step 2a—(A1 = 0 ∨ A2 = 0)—where there is no recursion, otherwise, we make use of

the fifth algorithms described in the outline, that is in Step 2b—(A1 6= 0∧A2 6= 0)—

which correspond to grouping ones, updating orientation vector, and making the

recursive call14. For more about algorithms see [DFS88, Dij76, Sol12, CLRS09].

14We are numerating the algorithms starting from 2 because we consider the whole algorithm (the
one described in Chapter 3) to be the algorithm number 1.
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A.3.1 Computing Permutations

In this section we are going to study more in details how permutation matrices works

in our algorithm. Recall that MAG , or just M , be the matrix representation of a

maximum matching of a bipartite graph G as computed by Hopcroft-Karp Algorithm

(HK-Algorithm) on input 〈AG〉, where AG, or just A, is the adjacency matrix of G.

The order of MA comes from the order of AG, here is m rows and n columns. From

the correctness of HK-Algorithm—Chapter 2 Section 2.3—we know that the matching

M is maximum and it is, for instance, of size k, that is |M| = k. (We use script M in

order to distinguish its set representation from its matrix representation denoted with

M).

On the other hand, our algorithm works using two 0-1 matrices over Z, but we are

going to do a simple padding process before that our algorithm use them, in order to

work with square matrices. So, the two updated matrices are:

• The matrix representation of the maximum matching M plus a padding with

zeroes of rows and columns, if it is necessary.

• The adjacency matrix representation of G plus a padding with zeroes of rows

and columns, if it is necessary.

In this process of padding matrices, arbitrarily, we let n be the maximum value

between the two set of vertices i.e., max{|V1|, |V2|}. So, after padding the matrices, let

defined the size of both matrices such that |M | = k × k where k correspond to15 the

major index of the maximum matching output of HK-Algorithm, and |AG| = n× n,

15Remember that M = {(i1, j1), (i2, j2), . . . , (ik, jk)} i.e., M is a list of all the positions of M with
a 1 in them (k = |M|).
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where n is defined below. Therefore, after padding M and A with zeroes, we are going

to be working with square matrices.

Finally, our permutations Pπ and Qτ (also we use P and Q, respectively) works in

such a way that it places the 1s from the maximum matching, in the main diagonal in

the original order, i.e., P,Q are order preserving (see Chapter 3 Lemma 3.2.1).

We use the following notation in our algorithms: the end of line is denote by “;”,

the Z ← ∅ denote initialization statement, and sometime, we use an alternative

notation Z = ∅ denoting assignment statement, also, we use Z == ∅ to denote

equality condition statement. We use | · | to denote the cardinality of a set, and 6= to

denote the not equality. We denote by using sub-indices the follow assign operation,

for instance, if P is a 0-1 matrix of size m×m, P ← 0m means assign 0 to each entry

of the matrix P , similarly, if P is a vector of m entries, the same notation—according

to the context—means that we assign 0 to each element of the vector P .

A.3.1.1 Computing P from MAG

Before continue with the simple algorithm to compute P , let us mention a roughly idea

of how it works: on16 input 〈MAG〉 the algorithm goes trough each row of MAG storing

in two different vectors i and j the nonzero positions and the zero rows, respectively.

At the end, when both vectors are filled in line 14, the function FillPermRows is

called in order to put the 1’s on P according to i and j. (See π-permutation below).

When we compute the permutation matrix P we are going to be use of the

following facts, let m be the number of rows of A, i.e., r(A), sometime we use row(A)

to clarify, and let i[1], i[2], . . . , i[k] be the rows of M that have at least one 1 in them

with i[1] < i[2] < · · · < i[k] (according to rows). Let j[k + 1], j[k + 2], . . . , j[m− k] be

16We are using MAG
instead of M just for clarity, and avoid confusion.
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the remaining rows; i.e., a row j[p] has only zeros where p ∈ [m]− {1, 2, . . . , k}.

Also, we use a primitive function named rowi(A) to compute the following operation

over the i-th row of a matrix A: if the i-th row is non-zero, return the non-zero j-th

position, otherwise return zero, which means that the i-th row is zero.

Finally we use interchangeably the follows notation for express an entry of an

matrix A, either A(i, j) or Ai,j.

Pre-condition: matrix MAG has at most one 1 per line.

Algorithm 2: Computing P

input : Max-Matching Matrix MAG

output : Permutation Matrix P

1 m← row(MAG); /* Assign the number of rows of MAG */

2 P ← 0m; /* Assign m×m zeros into each entry of P */

3 r ← 0, q ← 0;

4 i[1 . . .m]← 0, j[1 . . .m]← 0;

5 p← 1;

6 while p ≤ m do

7 if rowp(MAG) 6= 0 then

8 q ← q + 1;

9 i[q]← p;

10 else

11 r ← r + 1;

12 j[r]← p; /* store the full zero rows */

13 p← p+ 1

14 FillPermRows(P, q); /* Put ones according to i and j */
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Post-condition: Matrix P is such that when it’s multiplied by MAG from the

right side, each row of PMAG is such that either

• it consists entirely of zeros, or

• it has exactly one 1,

where all zero rows are in the bottom.

That is,

P ·MAG
=



· · · 1 · · ·

1 · · · · · ·

· · · . . . 1

...
...

...

0


(A.3.1.17)

Let us look how to place the 1’s in correct position in P .

Permutation matrix P can be easily computed from i and j, we want the following

permutation of rows:

π := (A.3.1.18)
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i[1] 7→ 1

i[2] 7→ 2

...

i[k] 7→ k

j[1] 7→ k + 1

j[2] 7→ k + 2

...

j[m− k] 7→ m

So, P has 1’s in positions:

(1, i[1]) , (2, i[2]) , . . . , (k, i[k]) , (k + 1, j[1]) , (k + 2, j[2]) , . . . , (m, j[m− k]) which are

put in place by FillPermRows, see Algorithm 3.

Algorithm 3: Placing ones in P

input : Permutation Matrix P , k the number of rows not full of zeros.

output : Filled-Updated Permutation Matrix P .

1 m← row(P );

2 p← 1;

3 while p ≤ m do

4 if p ≤ k then

5 Pp,i[p] ← 1;

6 else

7 Pp,j[p−k] ← 1;

8 p← p+ 1;
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Observe that k is the local variable of Algorithm 3 associated to the local vari-

able q from the Algorithm 2, and of course, corresponding to the same k value

of π-permutation (see A.3.1.18).

Proof: Correctness of the Algorithm 2, Computing P . The proof is di-

vided into two parts, the first correspond to the correctness—partial correctness and

termination—of the loop of the Algorithm 2. The second part refers to the correctness

of the function FillPermRows—Algorithm 3.

Therefore we start with the first part of the proof by proposing the following loop

invariant,

(m ≥ q + r) ∧ (p ≥ 1). (A.3.1.19)

where, m is the number of rows of MAG , q and r the number of nonzero rows and

zero rows of MAG respectively, and p is just an index of which row the Algorithm 2 is

working.

We show that (A.3.1.19) holds after each iteration of the loop.

Basis case: (i.e., zero iterations of the loop) we are before line 6 (Algorithm 2):

p = 1, r = 0, q = 0, and m = row(MAG), this imply that p ≥ 1 and m ≥ q+ r the last

inequality holds because our implicit assumption, i.e., row(MAG) ≥ 1, is that we are

working with matrices of dimension m× n were m ≥ 1 ∧ n ≥ 1, then (A.3.1.19) holds.

Induction step: suppose m ≥ q + r and we go once more through the loop, and let

p′, q′ and r′ be the new values of p, q, r, respectively. Since we executed the while loop

one more time it follows that p′ ≤ m and p′ > p ≥ 1, finally by pre-condition we have

that either q′ > q or r′ > r which by induction hypothesis we have that m ≥ q′ + r′,

and so still satisfy the loop invariant.

Now we use the loop invariant to show that, if Algorithm 2 terminates and the
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pre-condition holds, then the post-condition holds. So, the loop terminates when is

true that ¬(p ≤ m), i.e., is true m < p. On the other hand (A.3.1.19) holds on each

iteration of the loop, in particular in the last one. So, at this point of the execution

we have two cases,

Case 1: p > m and m > q+r, but this last inequality is not true because by pre-condition

we have a matrix with a fixed number of row such that:

� either all full of zeros then r = m ∧ q = 0 or all full of rows with exactly 1

one per row then q = m ∧ r = 0, or

� there are q rows with exactly a 1 per row plus r rows full of zeros, such

that q + r ≤ m.

Case 2: p > m and m = q + r the inequality comes from our supposition of termination

and the equality comes by pre-condition, so we get our loop post-condition.

Until here we have partial correctness, so the next step is to show that the loop

actually terminate, so, we use a non-negative monotone decreasing sequence related

to the loop, denoted by v and it is defined by:

vp := (m− p) + 1 (A.3.1.20)

By loop pre-condition we know that p > 0, and also we know that m is integer

fixed number such that m ≥ 1. The sequence v1, v2, v3, . . . is a decreasing sequence of

positive integers because p ≤ m, so by Least Number Principle17 (LNP), it is finite,

17 The Least Number Principle says that every non-empty subset of the natural numbers must
have a least element. A consequence of LNP is that every non-negative sequence of integers must
terminate, i.e., if V = {v1, v2, v3, . . . } ⊆ N where vi > vi+1 for all i, then V is a finite subset of N.

203



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

and so the loop terminates.

At this point we proved the partial correctness and termination of the loop inside

Algorithm 2.

We are going to use prime notation to define the local variables of FillPermRows.

Note that inside of FillPermRows we have that the number of rows non-zero on MAG is

denoted by k′ = q, and the remaining rows—the zero rows—is denoted by r′ = m− q′,

and p′ is just an index of which row the Algorithm 3 is working.

Also, we have that the invariant (m ≥ k′ + r′) ∧ (p′ ≥ 1) and using identically the

same argument that before—see part one of this proof—we get that the loop invariant

holds after each iteration of the loop.

Now we use the loop invariant to show that if FillPermRows terminates and its

pre-condition holds, then FillPermRows post-condition holds. So, from the loop

pre-condition we get that p′ ≥ 1 and m ≥ 1 and when the loop terminates the is true

that p′ > m, and loop invariant holds after each iteration, and in particular the last

iteration. Then we get that our loop post-condition is trivially true because of the

true of ¬(p′ ≤ m).

But, we will prove that the FillPermRows post-condition holds. So, at this point

of the execution we have that the loop invariant holds after each execution of the loop,

and from the FillPermRows pre-condition we know that 0 ≤ k′ ≤ m then we have

the following situation:

• if k′ = 0 we do not have any line with a one on MAG and therefore r′ = m

because q′ = 0 then p = 1 > k′ = 0, hence P has exactly a 1 on each p′-position

defined on line 7 of the Algorithm 3.
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• if k′ 6= 0 we have two sub-cases, either p′ ≤ k′ in which case we have exactly

k′-positions (i.e., k′-rows, line 5 of the Algorithm 3) with exactly18 a 1, or p′ > k′,

then we have (p′ − k′)-positions ((p′ − k′)-rows, line 7 of the Algorithm 3) again

with exactly a 1. In any sub cases we have exactly k′ + (p′ − k′) = q′ + r′ = m

rows with exactly a 1 per each.

Then in every case we get the FillPermRows post-condition.

To show termination we use again that the sequence given by v1, v2, v3, . . . is a

non-negative decreasing sequence of integers because p′ ≤ m and by LNP it is finite.

�

Note that, in fact, the post-condition of Algorithm 3 is place 1’s in P , transforming

the initial full of zeros P into the correct permutation matrix, correct in sense that

the equation P ·MAG is of the form A.3.1.17. So, the post-condition of FillPermRows

is in fact the post-condition of Algorithm 2.

Implicitly, we assume an order defined over the set of vertices V of a graph G, and

the set of rows of the matrix representation of G, that is, we assume that the vertices

are numbered 1, 2, . . . , |V | in some arbitrary manner, then the matrix representation

of G consists of a 0-1 matrix of size |V |× |V |. Hence, we use this order to express that

one row is less, in the list of rows (vertices), than another one. Therefore, every time

we permute two rows r1, r2 with r1 < r2, we obtain that for all row r such that r < r1,

the row r2—after be permuted— satisfy r < r2 , that is, all 1’s that are in rows

less than r1 are going to continue been less than the 1 corresponding to the row r2

permuted with row r1. We never permute the row r1 with some row less than it. Note

that the row r2 correspond to the first row which is not full of zero, in that way, all

18Note that if we are in this case, we know by HK-Algorithm that the equality it is satisfied, that
is, we know that p′ = k′.
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the zero rows of MAG remain at the same place but in the permuted matrix PMAG ,

are stored at the bottom of it. This is showing that the whole permutation process is

order preserving.

A.3.1.2 Computing Q from PMAG

Again, before continue with the Algorithm to Compute Q, let us mention how it works:

on19 input 〈P ·MAG〉 the algorithm goes trough each column of P ·MAG storing in two

different vectors i and j the nonzero columns and the zero columns, respectively. At

the end, when both vectors are filled in line 14, the function FillPermCols is called

in order to put the 1’s on Q according to i and j. (See τ -permutation below)

We will use the same notation that we used in the previous section, plus the follow

notation, let n be the number of columns of A, i.e., c(A), sometime we use col(A) to

be clear in the context, and let i[1], i[2], . . . , i[k] be the columns of P ·MAG that have

at least one 1 in them, such that, i[1] < i[2] < · · · < i[k] (according to the columns).

Let j[k + 1], j[k + 2], . . . , j[n− k] be the remaining columns; i.e., a row j[p] has only

zeros where p ∈ [n]− {1, 2, . . . , k}.

Also, we use a primitive function named rowi(A) to compute the following operation

over the i-th row of a matrix A: if the i-th row is non-zero, return the non-zero j-

th position, otherwise return zero, meaning that the i-th row is full of zero, and

analogously, we define colj(A).

Finally we use interchangeably the follows notation for express an entry of an

matrix A, either A(i, j) or Ai,j

Recall that we will pad with zeros the matrix representation of the maximum

matching in such a way that we our matrices are going to be square, hence it is not

19We are using this notation, i.e., P ·MAG
instead of P ·M just for clarity, and avoid confusion.
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necessary to make the distinction between number of rows and columns, therefore we

shall consider interchangeable m and n.

We are going to compute the permutation matrix Q by using the previous compu-

tation of P times MAG like input of the following algorithm:

Pre-condition: Each row of PMAG is such that has q rows with exactly one 1

and the all zero rows are in the bottom side.

Algorithm 4: Computing Q from PMAG

input : P -Permuted Max-Matching Matrix, i.e., PMAG

output : Permutation Matrix Q

1 m← row (PMAG); /* Assign the number of rows of PMAG */

2 Q← 0n; /* Assign n× n zeros into each entry of Q */

3 t← 0, s← 0;

4 i[1 . . . n]← 0, j[1 . . . n]← 0;

5 p← 1;

6 while p ≤ m do

7 if rowp(PMAG) 6= 0 then

8 s← s+ 1;

9 i[s]← rowp(PMAG); /* assign the nonzero column of row p

*/

10 if colp(PMAG) == 0 then

11 t← t+ 1;

12 j[t]← p; /* column p full of zeros */

13 p← p+ 1;

14 FillPermCols(Q, s); /* Place 1s according to i and j */
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Post-condition: Q is a matrix that when we multiply it by PMAG from the left

side, each row of PMAGQ is form, such that, the k × k upper left square has in its

diagonal all the 1’s corresponding to the maximum matching.

Such type of matrix multiplied to PMAG by the right yields:

PMAG
·Q =



· · · 1

1 · · · 0

· · · . . .

...
...

0


(A.3.1.21)

Let see how to place the 1’s in the correct position in Q.

Let Q be the matrix associated to the permutation:

τ := (A.3.1.22)

i[1] 7→ 1

i[2] 7→ 2

...

i[k] 7→ k

j[1] 7→ k + 1

j[2] 7→ k + 2

...

j[n− k] 7→ n
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So, Q has 1’s in positions:

(i[1], 1) , (i[2], 2) , . . . , (i[k], k) , (j[1], k + 1) , (j[2], k + 2) , . . . , (j[n− k], n) which are put

in place by the following function FillPermCols, see Algorithm 5:

Algorithm 5: Placing ones in Q

input : Permutation Matrix Q, k the number of columns not full of zeros

output : Filled-Updated Permutation Matrix Q

1 n← col(Q);

2 p← 1;

3 while p ≤ n do

4 if p ≤ k then

5 Qi[p],p ← 1;

6 else

7 Qj[p−k],p ← 1;

8 p← p+ 1;

Observe that k is the local variable of Algorithm 5 associated to the local vari-

able q from the Algorithm 4, and of course, corresponding to the same k value of τ -

permutation (see A.3.1.22).

Note that there are two situation that “appear” to be not contemplated in the

Algorithm 4, which are the case of either rowp(PMAG) == 0, or colp(PMAG) 6= 0. So,

consider the following two cases:

• Case 1: If rowp(PMAG == 0 then colp(PMAG) == 0. Suppose by contradiction,

that colp(PMAG) 6= 0, then ∃i ≤ k such that the entry (PMAG)(i, p) 6= 0 but this

means that rowi(PMAG) 6= 0, but choosing i to be p we arrive to a contradiction.
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• Case 2: If colp(PMAG) 6= 0 then rowp(PMAG) 6= 0. Again, suppose by contradic-

tion, that rowp(PMAG) == 0, then ∃j ≤ k such that the entry (PMAG)(p, j) = 0,

but this means that colj(PMAG) == 0 , but choosing j to be p we arrive to a

contradiction.

Therefore, by Case 1 we catch the case in line 10 of the Algorithm 4, and by Case 2

we catch the case in line 7 of the Algorithm 4. So, at the end we are contemplating

all cases.

Proof: Correctness of the Algorithm 4, Computing Q. The correctness

of Algorithm 4 (Computing Q) essentially is similar to the proof of correctness of

Algorithm 2 (Computing P ), divided into two parts:

The first part we use the same—but working over columns instead of rows—loop

invariant relabelling q by s and r by t in such a way that s + t ≤ m, therefore, the

proof of what the invariant holds after each iteration of the loop is the same.

Now, we use the loop invariant (m ≥ s+ t) ∧ p ≥ 1 to show that, if Algorithm 4

terminates and the pre-condition holds, then the post-condition holds. So, when the

loops terminates, is true that m < p, and the loop invariant holds on each iteration of

the loop, in particular in the last one. Therefore, at this point of the execution we

have the following cases:

Case 1: p > m and m > s+ t, but this is false because the last inequality always is false

by the following reasons:

� either all columns full of zeros then t = m and s = 0, or all columns with

exactly 1 one per column, then s = m and t = 0, or

� there are s rows exactly with a one per row, plus t = n− s columns full of
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zeros such that t+ s ≤ n = m, where the last equality comes because we

work—after padding (if necessary)—on square matrices.

Case 2: p > m and m = s+ t the first term comes from our assumption of termination

and the second term comes from the pre-condition which states that we have a

P -permuted matrix, i.e., PMAG , such that s rows are with exactly a 1 per row

and m− s rows full of zeros which is equivalent to say that we have t columns

full of zeros, see line 12 of Algorithm 4.

So, finally we get our post-condition.

Therefore, until here we proved partial correctness, so the next step is to show

that the loop actually terminate, but this is exactly with the same non-negative

decreasing sequence used in Algorithm 2, hence, we conclude with proof of correctness

of Algorithm 4.

Now, we continue with the second part of the proof which refers to FillPermCols

subroutine—Algorithm 5. This part is similar to the proof of FillPermRows (Algo-

rithm 3) with the following difference, we use the coordinates of the vectors—which

represent columns—like rows20 in order to produce the correct permutation, where

correct means permuted according to (A.3.1.22), i.e., τ -permutation.

So, we get a permutation matrix Q such that when we multiply to PMAG by right

20Recall that when we assign values to vectors i and j in Algorithm 4, we are storing the nonzero
row coordinate of column p, on the other hand, in the case that the column is zero, we store the
column coordinate itself.
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side we obtain:

PMAG
·Q =



· · · 1

1 · · · 0

· · · . . .

...
...

0


(A.3.1.23)

�

Finally, considering the structure—given by π and τ—of how were yield permuta-

tion matrices P and Q, we proceed to multiply PAGQ obtaining

PAGQ =

 E A1

A2 0

 =



1

1

. . . A1

1

A2 O


Here we denoted by red those 1s that represent that 1s which correspond to the

maximum matching obtained by HK-Algorithm (Chapter 2 Section 2.3).

Note that an important observation is that it is not necessary to know the, maybe,

complex structure of the matrix AG in the whole process of yield the matrix form A.16,

that at the end we get the expected result, that is, the 1s from the maximum matching are

in the main diagonal. But more important, from those 1s we extract, in a constructively

way, a minimum vertex cover.

This is an example of our combinatorial approach to a graph theoretical problem like

is Minimum Vertex Cover, because linear algebraic properties of one of the matrices
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associated with a graph, for instance, MAG , is used to get useful combinatorial

information about the graph G.

A.3.1.3 Computing ~O from PAGQ

We begin this section recalling that the structure of the input 〈PAGQ〉 to the Algorithm

to Compute ~O, that is,

PAGQ =

 E A1

A2 0

 (A.3.1.24)

where we let P,Q be two permutation matrices such that P is m×m and Q is n× n,

and the dimension of the sub-matrix are Ek×k, A
k×(n−k)
1 , A

(m−k)×k
2 and O(m−k)×(n−k),

where k = |MAG | denote the size of the maximum matching.

Before continue with the presentation of the Algorithm to Compute ~O we mention

some remarks, fist of all, we are going to consider in the analysis and design of the algo-

rithm to compute ~O just21 Step 2b of our main Algorithm (Chapter 3 Section 3.3), and

the reason is because the other steps are computational straightforward, and secondly,

we will use—in this section and the next one—interchangeability ~O := {o1, o2, . . . , ok}

and ~O := (o[1], o[2], . . . , o[k]) depending of the context, that is, sometimes one notation

is more clear than the other one. Also, we use a primitive function named rowi(A)

to perform the following operation over the i-th row of a matrix A: if the i-th row

is non-zero, return the non-zero j-th position, otherwise return zero, meaning that

the i-th row is full of zero, and analogously, we define colj(A).

So, the algorithm is computational very simple, it works as follow: going through

the diagonal of E, for each diagonal element, i.e., eii for i ≤ k, we ask if, in the ith

21Recall that Step 2b means that we are in case A1 6= 0 ∧A2 6= 0.
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row of E, the ith row of A1 is 6= 0? If yes, the orientation vector of the element eii

will be horizontal, otherwise, we ask if, in the ith column E, the ith column of A2

is 6= 0? If yes, the orientation vector of eii will be vertical, otherwise eii correspond to

a a black 1 an we continue with the next diagonal element.

Basically, what the Algorithm 6 does is to define which entry among the k-th main

diagonal ones, is black or green according to the exploration of A1, and eventually, if

the line of A1 was full of zeros, explore A2. So, the algorithm is like follows:

Pre-condition: the structure of PAGQ is like in A.3.1.24.

Algorithm 6: Computing Orientation vector ~O

input : Matrix PAGQ

output : Orientation Vector ~O

1 k ← row(E); /* Ek×k submatrix of PAGQ */

2 ~O[1 . . . k]← 0; /* Initialize to 0 ks position of ~O */

3 p← 1; /* p range over the first k diagonal elements. */

4 while p ≤ k do

5 if rowp(A1) 6= 0 then

6 ~O[p]← 1; /* Horizontal-Green */

7 else

8 if colp(A2) 6= 0 then

9 ~O[p]← 0; /* Vertical-Green */

10 else

11 ~O[p]← 2; /* Balck */

12 p← p+ 1;
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Post-condition: The orientation vector ~O = {o1, o2, . . . , ok} is

op =


0 if ∃ q ≤ k such that colq(A2) 6= 0

1 if ∃ r ≤ k such that rowr(A1) 6= 0

2 if ∃ i ≤ k such that rowi(A1) = coli(A2) = 0

(A.3.1.25)

that is, we obtain a vector which will express in which position of the main diagonal

are black 1’s or green 1’s. Recall that we use indistinguishably op and ~O[p] for the

vector entries.

Now, having our matrix PAGQ such that we know by the orientation vector ~O

which diagonal element of E are green 1s or black 1s, our next step is to proceed to

split it into two groups, all the green 1s on the lower right corner of E and the black

1s on the top left corner of E (see Chapter 3 Figure 4.2). To do the splitting process

we compute permutation µ, explained in the follow section.

A.3.1.4 Computing µ from PAGQ and ~O

In this section we are going to discuss essentially how the permutation µ works, and

how we obtain our main goal, that is, the orientation vector ~O denoting the Minimum

Vertex Cover related to a given bipartite graph G.

Remember that µ will be computed if we are in Step 2b of our algorithm (Chapter 3

Section 3.3), i.e., (A1 6= 0 ∧ A2 6= 0), so, the first task to be computed is to group the

diagonal elements on green 1s and black 1s. Hence, we need to explore each entry of

~O to determine if a particular diagonal entry is green or not, in an specific instance.

Recall that the values of each entry of ~O are 0 to denote green vertical line, 1 to

denote green horizontal line, and 2 to denote black 1s.
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Before continue with the algorithm to compute the process of split green 1s and

black 1s, let us make some remarks about permutation µ:

• µ is a general permutation, no necessary and more probably, a non-order pre-

serving permutation; but recall that Corollary 3.2.1:

Corollary A general permutation of the 1s in PAGQ, where we place them on the

diagonal of a contiguous block as in Lemma 3.2.1, but we also reorder them according

to some permutation µ still yields a corresponding covering where we account for µ as

follows:

C
µ(~o),π(~ı),τ(~)
RµPπAGQτRµ

= {loµ(1)(µ(π(i1)),µ(τ(j1)))
, l
oµ(2)
(µ(π(i2)),µ(τ(j2)))

, . . . , l
oµ(k)
(µ(π(ik)),µ(τ(jk)))

}.

in which the point of these rather technical corollary is to show that we can preserve

coverings under permutations; that is, we can permute PAGQ at will in our algorithm,

and recover the lines easily.

• another technical issue about µ correspond to the following fact: recall that we

use to describe permutations, as bijections, π and τ , and as permutation matrices,

Pπ and Qτ , that is, Pπ and Qτ permute the rows and columns, respectively,

of PAGQ, so, when we apply µ to PAGQ, what we really do is to multiply22

it from left by a permutation matrix Rµ of size m × m and from right by a

permutation matrix R′µ of size n×n, resulting the product RµPπAGQτR
′
µ. Also,

in order to simplify and make more readable the computations, we shall adopt

that |Rµ| = |R′µ|. Because otherwise we have to pad with zeros the matrices in

the following way, if our E submatrix is of size k × k and our PAGQ matrix is

22We use cycle decomposition of the matrices to compute the multiplication on that linear
representations. (For details see Section 3.4 and Appendix A.4)
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of size m× n we will need pad with zeros Rµ with (m− k) columns, and pad

with zeros R′µ with (n− k) rows.

The main point here is that µ is a transposition of the k first diagonal elements

of PAGQ, this means the transposition of the entire row or column, and in

order to swap the lines—rows or columns—we need to compute the permutation

matrices Rµ and R′µ, and put ones inside of both matrices according to the lines

to be swapped. This involve the same process explained in detail in Section A.3.1

Subsection Computing P from MAG (A.3.1.1), and Subsection Computing Q

from PMAG (A.3.1.2).

Therefore, the process of compute µ it is computational very simple and “similar” to

the process that we detail in Sections A.3.1 subsection Computing P fromMAG (A.3.1.1),

and subsection Computing Q from PMAG (A.3.1.2), similar not only because instead

of π and τ we compute another permutation µ, but also more simple because µ is a

transposition function, and basically what we do is to put 1s on both R’s matrices

according to the entries of the orientation vector ~O, to yield the transpositions.

In order to make the computation of µ, and in particular the computation of

the orientation vector ~O more readable and simple, instead of yield the permutation

matrices Rµ and R′µ, we are going to use a function called Swap which interchange

two rows, or two columns, of a particular matrix A, that is, Swap(coli(A), colj(A)) or

Swap(rowi(A), rowj(A)). Note that this change does not produce any considerable

change in the computational complexity associate to the algorithm that compute the

orientation vector ~O.

Then, we proceed with the Algorithm 7 to compute the process of split green 1s

and black 1s in the main diagonal of PAGQ, and compute the orientation vector ~O
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keeping track of every change on ~O provoked by what the splitting process does over

the main diagonal elements.

In short, the Algorithm 7 group green 1s and black 1s of the main diagonal of E,

and update the orientation vector ~O associate to them.

Pre-condition: the structure of PAGQ is like in A.3.1.24, and the orientation
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vector is initialized like A.3.1.25,i.e., with 0s,1s, and 2s.

Algorithm 7: Grouping ones on E, and updating ~O

input : PAGQ Matrix and orientation vector ~O

output : PAGQ Matrix with grouped green and black 1s, and updated

version of ~O

1 k ← row(E); /* Ek×k submatrix of PAGQ */

2 flag ← 1;

3 k1 ← 0; /* number of black 1s */

4 k2 ← 0; /* number of green 1s */

5 p← 1; /* p ranges over diagonal of E */

6 while p ≤ k do

7 if ~O[p] == 2 then

8 k1 ← k1 + 1;

9 else

10 k2 ← k2 + 1;

11 k̂ ← k; /* aux var. for ranges backwards over diagonal */

12 while flag ∧ (k̂ > p) do

13 if ~O[k̂] == 2 then

14 UpdateO( ~O[k̂], ~O[p]);

15 flag ← 0;

16 k̂ ← k̂ − 1; /* p and k̂ green then goes backward looking

for a black 1. */

17 p← p+ 1;

18 flag ← 1;
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Post-condition: the internal structure of ~O corresponds to the orientation asso-

ciated to the group of black 1s of the upper-left corner of E, and the group of green

1s to the lower-right corner E. That is, the post-condition is the updated version of ~O

and the matrix PAGQ has two groups—black and green—in the main diagonal of E.

Note that when we find a green one, i.e., the p variable, the flag variable is used

to indicate which will be the position to go backwards looking for a black one to

compute the transposition. When we swap lines, the flag variable is useful because,

after swapping we need to move on the next value of p for which we do not know

a priori if it is black or green, so, flag allow us to exit of the inner while loop in

order to analyze what is in the p position—green or black—in the outer while loop.

Otherwise, if we do not use the flag we need to add more conditions in the structure

of the algorithm, in order to not count again the green one that was swapped and put

in a further position in the main diagonal.

Before continue with details of function Update—Algorithm 8, we proof the

correctness—partial correctness and termination—of Algorithm 7.

Proof:Correctness of Algorithm 7, Grouping ones on E, and updating ~O.

The proof is going to be divided into three parts, the first one will be the correctness—

partial correctness and termination—of the main loop, the second one the correctness

of the inner loop, and the third one correspond to the correctness of the Update

function—Algorithm 8.

Therefore, we start with the first part of the proof by proposing the following loop

invariant for the outer while loop,

(k ≥ k1 + k2) ∧ (p ≥ 1). (A.3.1.26)
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where, k is the number of rows of submatrix E, k1 and k2 denote the number of black

1s and green 1s, respectively, and p is just an index of which row of E the Algorithm 7

is working.

We show that (A.3.1.26) holds after each iteration of the outer while loop.

Basis Case: (i.e., zero iterations of the outer loop) we are before line 6—Algorithm 7:

p = 1, k1 = 0, k2 = 0, and k = row(E), this imply that p ≥ 1 and k = row(E) ≥ 1 ≥

k1 + k2, then A.3.1.26 holds.

Inductive step: suppose k ≥ k1 + k2 and go once more through the outer loop,

and let p′, k′1, and k′2 be the new values of p, k1, k2, respectively. Since we execute the

outer while loop once more time it follows that p′ ≤ k and p′ > p ≥ 1, finally, by

pre-condition23 we have that either k′1 > k1 or k′2 > k2 which by induction hypothesis

we have that k ≥ k′1 + k′2, and so still satisfy the loop invariant.

Now, we use the outer loop invariant to show that, if Algorithm 7 terminates and

the pre-condition holds, then the post-condition holds. So, the loop terminates when

is true that ¬(p ≤ k), i.e., is true k < p. On the other hand, A.3.1.26 holds on each

iteration of the outer loop, in particular in the last one. Hence, at this point of the

execution we have two cases,

Case 1: p > k and k > k1 + k2, but this last inequality is false, because, otherwise

contradict the maximality of the maximum matching of G, because by correctness

of HK-Algorithm we know that the maximum size of |MAG| = k, but this k’s

elements correspond to the number of lines—rows and columns—of the submatrix

E of size k × k.

Case 2: p > k and k = k1 + k2, where the inequality comes form our assumption

23Recall that we are in case A1 6= 0 ∧A2 6= 0.
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of termination and the equality comes by pre-condition, so we get our post-

condition.

Until here we have partial correctness, so the next step is to show that the outer

loop actually terminate, so, we use a non-negative monotone decreasing sequence

related to the outer loop, defined:

vp := (k − p) + 1 (A.3.1.27)

By outer loop pre-condition we know that p > 0, and also we know that k is an

fixed integer number such that k ≥ 1. The sequence v1, v2, v3, . . . is a decreasing

sequence of positive integers because p ≤ k, so by LNP is finite, and so the outer loop

terminates.

At this point we proved partial correctness and termination of the outer

loop inside Algorihtm 7.

Now, we are going to proceed with the correctness—partial correctness and

termination—of the inner while loop, so, we propose the follow inner loop invariant,

p ≤ k̂ ≤ k (A.3.1.28)

where k̂ is a variable which going to be used to range between p—the actual green

one the was find it—and k = row(E); k denotes the possible—because must be a

black 1—position to swap the 1 on p.

We show that A.3.1.28 holds after each iteration of the inner while loop.
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Basis Case: (i.e., zero iterations of the inner while loop) we are before line 12—

Algorithm 7, k̂ = k by line 11, and p ≤ k because we are in a particular execution

of the outer while loop, therefore, our inner loop invariant holds. Note that we are

increasing k2 by one—line 10 such that, if k′2 denote the actual execution, it is true

that k ≥ k1 + k′2 ≥ k̂.

Inductive step: suppose p ≤ k̂ ≤ k and go once more through the inner loop, and

let p′, k̂′, k′1, k
′
2, and flag′ be the new values of p, k̂, k1, and k2, respectively. Since we

execute the inner while loop once more time if follows that flag = 1, and k̂′ > p′, note

that p is fixed during every execution of the inner while loop, so, p′ = p, and also note

that k = k̂ > k̂′ by lines 11, and 16, respectively, finally, by pre-condition and by

case—we are in the case p is a green 1—we have that k′1 = k1 and k′2 = k2, putting

all together and by induction hypothesis we have that k ≥ k′1 + k′2 ≥ k̂ ≥ p, and our

inner loop invariant is still satisfy.

Now, we use the inner loop invariant (A.3.1.28) to show that, if the inner while loop

terminates, and the inner while pre-condition holds, the inner while post-condition

holds. So, if the inner loop terminates we have either flag == 0, or k̂ ≤ p. On the

other hand, inner loop invariant, i.e., p ≤ k̂ ≤ k holds on each iteration of the inner

loop, in particular in the last one. Hence, at this point of the execution we have the

following cases:

• flag == 0 and p < k̂ ≤ k, where the first assertion holds by our assumption

of termination and the the second one by invariant of inner while loop. So, we

obtain that the inner while post-condition holds.

• flag == 0 and p = k̂ ≤ k, where both assertions hold by our assumption of

termination. Hence, our inner while loop post-condition holds.
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• (flag == 1 ∧ k̂ ≤ p) and p ≤ k̂ ≤ k, where the only case that make both

assertion true are the equalities, so, the first clause comes from pre-condition

and the assumption of termination, and the second one comes from the inner

loop invariant. Therefore, we obtain our inner post-condition.

So, putting altogether, the inner while loop post-condition

(flag == 0 ∧ p ≤ k̂ ≤ k) ∨ (flag == 1 ∧ k̂ ≤ p ≤ k)

holds.

Until here we proved partial correctness, so the next step is to show that the inner

loop actually terminate, so, we use a non-negative monotone decreasing sequence

related to the inner while loop, defined:

vp := k̂p (A.3.1.29)

By inner loop pre-condition we know that k̂ > p > 0, and also we know that k is

an fixed integer number such that k ≥ k̂. The sequence v1, v2, v3, . . . is a decreasing

sequence of positive integers because of line 16 of Algorithm 7, so by k̂ ≤ k and LNP

it is finite, and hence, the inner while loop terminates.

At this point we proved partial correctness and termination of the inner

loop inside Algorihtm 7.

Now we proceed to prove the correctness of the function UpdateO—Algorithm 8.

Basically, the correctness of UpdateO is the correctness of an If-statement.

So, by the previous state of the If-statement, that is, just after line 13 of Algo-

rithm 7—we have that ~O[k̂] == 2, that is, (k̂, k̂) is a black 1, otherwise we can not be
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calling UpdateO, and (p, p) entry correspond to a green 1, which, clearly imply the If

pre-condition of UpdateO, which is ~O[p] == 1 ∨ ~O[p] == 0.

Also, after any of the two cases, we swap p and k̂ rows of PAGQ, or p and k̂

columns of PAGQ, respectively, and obtain an updated version of PAGQ matrix,

which make the If post-condition, i.e.,

~O[p] == 1 ∧ swap(rowp(PAGQ), rowk̂(PAGQ)) ∨

~O[p] == o ∧ swap(colp(PAGQ), colk̂(PAGQ))

holds.

Beside, on line 5 of UpdateO—Algorithm 8—we swap positions inside of the

orientation vector ~O in order to obtain an updated of the vector ~O with respect to

the updated matrix PAGQ.

In line 6 we increase the number of black 1s because of the (k̂, k̂) black entry.

Finally, note that en line 7 of Algorithm 8, we decrease by 1 the number of

green 1s, i.e., k2, because when we find a black position we swap the green 1 on (p, p)

and put it in a place that is going to be checked in next rounds, otherwise, we count

again the same green 1 that we swapped.

Hence, we obtain the post-condition of Update, finishing with the correctness

of UpdateO—Algorithm 8.

This finish the correctness of the Algorithm 7. �

Observe that we separate—in another algorithm—the updating process only for

make more readable the whole process of grouping ones and updating the orientation

vector.
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Now, the UpdateO function not only updates the orientation vector ~O but also up-

date the lines—rows and columns—in the square k×k quadrant of matrix PAGQ, and

note that this process update also A1 and A2, that is why we say that updates PAGQ.

Algorithm 8: Updating PAGQ and ~O

input : ~O[k̂] and ~O[p], i.e., position to be updated

output : Updated vector ~O, and Updated matrix PAGQ

1 if ~O[p] == 1 then

2 Swap(rowp(PAGQ), rowk̂(PAGQ)); /* Horizontal-Green */

3 else

4 Swap(colp(PAGQ), colk̂(PAGQ)); /* Vertical-Green */

5 Swap( ~O[k̂], ~O[p]);

6 k1 ← k1 + 1;

7 k2 ← k2 − 1;

8 Return;

Note that lines 2 and 4 of Algorithm 8, it updates the matrix PAGQ and in line 5

of the same algorithm, we update the two entries of the orientation vector ~O. Besides,

is Algorithm 8 which make use of the distinction between horizontal and vertical line

of the green 1s. Also, observe that p and k̂ remain fixes during every execution of

UpdateO.

In the Figure A.3 we show that basically, Swap function—in the context of bijections,

this is our transposition µ—is a transposition of i 7→ i+ l and i+ l 7→ i, the same to

the coordinate j of an arbitrary entry (i, j) in PAGQ. These are the basic steps in

order to group black 1s and green 1s, that is, the transposition of each diagonal entry,

to be more specific, we swap the whole line, not only the diagonal entry. Besides,
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we compute the swapping corresponding to two entries of ~O accordingly with the

swapping of PAGQ in line 5 of Algorithm 8.

j j+l

i

i+l

k

m−k

k n−k

l

l

Figure A.3: Exchanging green 1s and black 1s in an arbitrary entry l. Swapping
(i, j) 7→ (i+ l, j + l) and the other way around.

Note that the Figure A.3 it is referencing to an arbitrary position l, so, to clarify

the swapping and updating computation of Algorithm 7 and Algorithm 8, let us put

graphically like Figure A.4:
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2

k̂

PAGQ :=

p

p

k̂

m− k̂

p p+ k̂

n− k̂k̂

p+ k̂

1/0

Figure A.4: Exchanging green 1s and black 1s. Swapping (p, p) 7→ (p + k̂, p + k̂)

and the other way around, also updating the entries of the orientation vector ~O[k̂]

and ~O[p].

Note that the arc dash line of inside of PAGQ are denoting the swapping between

the entries of the orientation vector ~O. Also, see that the green entry in the vector ~O is

a green horizontal line, i.e., ~O[p] := 1 but could be a green vertical line, i.e., ~O[p] := 0.

At this point of the analysis of our algorithm—see Chapter 3 Section 3.3—the

next step is the recursive call. Before compute the recursive call, let us make some

observations, the orientation vector ~O has in its entries the values according to the

lines that goes over each green 1s that appear in the diagonal of lower right corner

of E. Note that the orientations—horizontal or vertical—of each green one entry is

represented graphically in Figure A.5 by red lines.
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PAGQ :=

 E A1

A2 0(m−k)×(n−k)

 =

1

1

1

1

Figure A.5: Repeat Step 2 of our algorithm—Chapter 3 Section 3.3—with the upper-
left quadrant, emphasized with a thicker border, with the “green square” zeroed out,
as well as the entries under the red lines, arising from the cover of the “green square,”
zeroed out.

Here—in the recursive call—is when we make use of the updated version of the

orientation vector ~O, in order to define the red lines of Figure A.5 that pass over the

green 1s, and zeroed out the lower right quadrant of E.

Recall that remain to compute the orientations of the lines covering the black 1s.

We do so recursively, by repeating the procedure from Step 2 of our algorithm—see

Chapter 3 Section 3.3—with the matrix obtained from the k × k upper-left quadrant

of PAGQ, i.e., the upper-left quadrant of the matrix in Figure A.5, but with the

following modifications:

the square enclosing the green 1s, represented in dark green, is zeroed out,
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and we also place zeros wherever those lines crossed the rest of the quadrant.

In Figure A.5, we place zeros in the upper-left quadrant wherever the

horizontal red lines crosses.

We summarize—graphically speaking—the recursive call in Figure A.6.

Let k = k1 + k2 be the size of the diagonal E, sucht that, we want to compute

recursively over the submatrix Ek×k, maintaining updated the permutation vector ~O

according to the changes provoked inside of the Algorithm 7.

PAGQ :=

 E A1

A2 0(m−k)×(n−k)

 =

E′ A′1

A′2 0

n− kk

k

m− k

k1 k2

k1

k2

Figure A.6: Recursive Call Diagram. Where primes denote the next instance to be
computed.
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Observe, that after do the recursive call, the elements of the main diagonal—which

at the beginning of this instance are all black 1s—if enter again in the case of Step 2b,

that is, (A1 6= 0 ∧ A2 6= 0), we know that some—for sure two—of the diagonal 1s

which where black on the previous instance, are going to turn on green on the running

recursive instance.

Finally, note that in order to know if an orientation line—if some one exists—is

horizontal or vertical for a particular entry, we need only explore A1 or A2; this is

because, in the step in which our algorithm—see Chapter 3 Section 3.3—is “checking”

if an arbitrary diagonal entry is going to turn on green, say the entry eii, without loss

of generality, let A1 be the first to be checked, so, we range over the ith row of A1

such that if it is not full of zeros, choose horizontal AND turn on green, and we do

not need check A2. Else, we range over the jth column of A2 such that it is not full

of zeros, choose vertical AND turn on green, otherwise goes to the next one. That is

what we call “checking”.

So, in this process, if we know that the previous black 1 turn on green 1, either

horizontal or vertical, we do not need to range over the other orientation, that is the

vertical or the horizontal, respectively.

Therefore we don’t need more than O(k(n− k)) steps to set up the lines for the

green 1s. For more details about the complexity of our algorithm see Chapter 3 Sec-

tion 3.4.

A.3.2 Example

In this section we are going present an example in order to show how the permuta-

tions P,Q work, how the process of grouping green 1s and black 1s works, and finally,
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how to yield the orientation vector ~O which correspond to the Minimum Vertex Cover

of a given bipartite graph G.

The example is going to be divided into two parts, the first one correspond to the

permutation matrices P and Q, and the second one, is going to be related with the

grouping process—that refers to our permutation µ—and the orientation vector ~O.

In each part we will use appropriate 0-1 matrices to make use of all the character-

istics of our data structures. This is the reason why we use one set of 0-1 matrices in

the first part, and another different in the second one.

So, our first part consist of computing the adequate P and Q permutation matrices.

Therefore, consider the follow bipartite graph G = (V = V1 ∪ V2, E), where

V1 = {1, 2, 3, 4, 5, 6} , V2 = {1′, 2′, 3′, 4′, 5′, 6′}

and

E = {(1, 2′); (1, 6′); (2, 4′); (3, 3′); (4, 3′); (5, 1′)}

The adjacency matrix of G of size 6× 6 is:

AG =



0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 0 0 0 1

0 0 0 0 0 0


Let MAG the output of HK(AG), for instance,
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MAG
=



0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


We denote those 1s that belong to the maximum matching with red color. So, the

associated graph is:

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’

V1 V2

where the snaked lines correspond to the maximum matching returned by Hopcroft-

Karp algorithm on input 〈AG〉.

In order to compute P , we compute the vectors i[q] and j[r] (see Algorithm 2)

from MAG , where q and r denote the nonzero and full of zeros number of rows in MAG ,
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respectively, that is, the entries of i[q] represent the rows with a 1 , i.e., if i[a] = b then

the b-row of MAG has a red one on it, and the entries of vector j[r] denote the rows

of MAG full of zeros, so we have that rows 1, 2, 3, and 5 of MAG are nonzero, hence,

vectors i and j have the following values

i[q] j[r]

i[1] ← 1 j[1] ← 4

i[2] ← 2 j[2] ← 6

i[3] ← 3

i[4] ← 5

So, q = 4 representing the total number of nonzero rows, on the other hand, r = 2

represent the rows full of zeros, such that r + q = row(MAG). Therefore, in line 14

of the Algorithm 2 we call FillPermRows(P, 4)—see Algorithm 3—getting that P

has 1’s in position,

{(1, 1), (2, 2), (3, 3), (4, 5), (5, 4), (6, 6)}

In matrix form it is

P =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


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Then, by post-condition of Algorithm 2, and in order to obtain the form of

equation A.3.1.17—all full of zero rows at the bottom of the matrix—we multiply the

follow matrices

P ·AG =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


·



0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 0 0 0 0 1

0 0 0 0 0 0


=



0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0


Note that we are using AG instead of MAG like express equation A.3.1.17.

Besides, we have that

P ·MAG
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


·



0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


=



0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


which correspond to the input of our next step, which is compute the permutation

matrix Q, where we have q = 4 non-zeros rows.

Therefore, from Algorithm 4 we compute vectors i[s] and j[t], where s denote the

nonzero number of rows in PMAG , and t denote the full of zeros columns in PMAG , so,

235



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

we have that columns 2, 3, 4 and 6 are nonzero, and 1 and 5 are full of zeros. Hence,

vectors i and j have the following values

i[s] j[t]

i[1] ← 2; j[1] ← 1

i[2] ← 4; j[2] ← 5

i[3] ← 3;

i[4] ← 6;

Finally, in line 14 of the Algorithm 4 we call FillPermCols(Q, 4) —see Algo-

rithm 5—getting that Q has 1s in positions,

{(2, 1), (4, 2), (3, 3), (6, 4), (1, 5), (5, 6)}

In matrix form it is

Q =



0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0


Then, by post-condition of Algorithm 4, and in order to obtain the form of

equation A.3.1.23—all full of zero columns grouped to the right size—we multiply the
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follow matrices but using AG instead of MAG ,

(PAG) ·Q =



0 1 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0


·



0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0


=



1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 1 0 0 0

0 0 0 0 0 0


Now, we continue with the second part of our example, in which we will to compute

the grouping of green 1s and black 1s using PAGQ, and we update the orientation

vector ~O.

Firts of all, we compute the orientation vector on input 〈PAGQ〉, see Algorithm 6,

obtaining the following k = 4 entries, O[1] = 2 because row1(A1) == 0∧col1(A2) == 0,

i.e., a black one, O[2] = 2 for identical reasons, O[3] = 0 because col3(A2) 6= 0, i.e.,

a vertical green one, and finally, O[4] = 1 because row4(A2) 6= 0. Therefore, the

orientation vector is

~O := (O[1], O[2], O[3], O[4]) = (2, 2, 0, 1)

Note that the green 1s and the black 1s are already grouped, therefore this

orientation vector is not the appropriate to show how the Algorithm 7—grouping ones

on E and updating ~O—works, so, we are going to choose the following—and more

appropriate—orientation vector, ~O := {2, 1, 2, 0}, which PAGQ matrix could be the

following,
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PAGQ =



1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 1 0 0


where we have an horizontal line over the green 1 in the second row, and a vertical line

over the green one in the forth row. So, with this matrix and the orientation vector ~O

we proceed to group black 1s and green 1s, then exploring each p-entry of ~O we get:

• ~O[1] == 2 from line 8 of Algorithm 7 that k1 = 1, and increase p—the counter

in the outer while loop–, that is, p = 2, and pass to next entry,

• ~O[2] == 1 so, we assign k̂ = 4, i.e., the k value, in line 10 we increase k2 by 1

,i.e., k2 = 1, and enter in the inner loop, because flag == 1 ∧ k̂ > p, then we

ask if the k̂-th entry of the main diagonal is black, in our case ~O[k̂] is green, so

in line 16 we goes backward decreasing k̂ by 1, i.e., k̂ = 3, and pass to next inner

while loop backwards,

• ~O[3] == 2 a black one entry, and flag == 1 ∧ k̂ > p is true because flag

does not change between the previous inner while loop, and k̂ = 3 and p = 2,

then the line 13 is satisfied, and we call Update( ~O[k̂ = 3], ~O[p = 2]), inside of

Update—see Algorithm 8 we proceed as follows:

� we “swap” rows 2 7→ 3 and 3 7→ 2 in line 2 of Update because ~O[p] was an

horizontal green one, so, this Updates PAGQ. Besides, in line 5 we swap
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the orientation vector entries 2 7→ 3 and 3 7→ 2, i.e., updating the vector ~O,

and in line 6 we increase k1 by one, so, k1 = 2 this is because we find a

black 1 position to exchange and we are not going to explore up to the

actual p, otherwise we loss of counting that black one. Finally, in line 7

we decrease the green 1 entry by 1, i.e., k2 = 0, because otherwise we will

count twice because we swap with a future entry which will be analyzed

and counted by line 10 in the Algorithm 7.

So, the updated data structures are: ~O := (2, 2, 1, 0), and

PAGQ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 1 0 0


(A.3.2.1)

Finally, flag := 0, and pass to the next inner loop condition evaluation, provoking

exit of the inner while loop, so, increase p by 1, i.e., p = 3, set flag := 1, and

pass to the next outer while loop condition evaluation,

• ~O[3] == 1, so, increase green 1s by 1, i.e., k2 = 1, and k̂ restart to 4, and evaluate

inner while condition—line 12, that is, flag == 1 ∧ (k̂ = 4) > (p = 3), then

enter and decrease k̂ by one, i.e., k̂ = 3 because ~O[k̂] is not black, it evaluates

again the inner while loop condition, this time is false, and increase p by one,

getting p = 4, and passing to the next outer while condition evaluation,
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• ~O[4] == 0 so, increase green 1s by 1, i.e., k2 = 2, and restart k̂ = 4, and evaluate

the condition of the inner while loop, given false, because of (k̂ = 4) < (p = 4),

then increase p by one then exit of the outer while loop.

After this process, we continue with the computation of the black ones, in a

recursive way, then, the square enclosing the green 1s is zeroed out, and we also place

zeros wherever those lines crossed the rest of the quadrant—remember Figure A.5.

So, we get the following matrix

PAGQ =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


which correspond to the Step 2a, that is, A1 = 0∨A2 = 0, therefore, we choose ~O := 0k

for our k-first position of our orientation vector—in our case are the two first entries—

which give us the output of our algorithm (that is, our Permutation-Based algorithm

described in Chapter 3 Section 3.3), that is, ~O := (0, 0, 1, 0) which correspond to

vertical, vertical, horizontal, and vertical line orientations for the four matching ones

in the matrix A.3.2.1. This finish our example.

A.4 Permutations–A survey

This appendix has the purpose to show a very small review of concepts related to

permutation which, in particular, we made use in Section 3.4. The concepts and

notation related to this appendix are extracted from [Lan08, Chapter 2].
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Let S be a set, a bijection f : S → S is called a permutation of S, let Perm(S) be

the set of permutations of S.

Proposition A.4.1 Perm(S) is a group, the law of composition being composition of

mapping.

So, let Sn be the permutation group Sn of {1, . . . , n} = Jn called symmetric group.

If σ ∈ Sn, then the inverse σ−1 : Jn → Jn is the permutation such that σ−1(k) = j

where j ∈ Jn is unique such that σ(j) = k. A transposition τ is a permutation which

interchanges two position and leaves the rest fixed, i.e.,

∃i, j ((i 6= j) ∧ (τ(i) = j ∧ τ(j) = i)) ∧ ∀k((k 6= i ∧ k 6= j) ∧ (τ(k) = k))

where i, j, k ∈ Jn.

Note that if τ is a transposition then τ−1 = τ and τ 2 = I, where I represent

the identity mapping. Particularly, the inverse of a transposition is a transposition.

Now we see an important theorem which express that the transpositions generate the

permutation group.

Theorem A.4.1 Every permutation of Jn can be expressed as a product of transposi-

tions.

A permutaiton σ of {1, . . . , n} is sometimes denoted by

 1 · · · n

σ(1) · · · σ(n)


Let i1, . . . , ir be distinct integers in Jn, denoted [i1 · · · ir], meaning the permutation σ
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such that

σ(i1) = i2, σ(i2) = i3, . . . , σ(ir) = i1

such permutation is called r-cycle.

If σ = [i1 · · · ir] is a cycle, the one verifies at once that σ−1 is also a cycle, and that

in fact24 σ−1 = [ir · · · i1].

Two cycles [i1 · · · in] and [j1 · · · n] in Sn are disjoint if no element of {1, . . . , n} is

moved by both cycles. This enable us to make use of cycles like follows:

Theorem A.4.2 Every n-permutation can be written as a product of disjoint cycles.

We shall see an example to illustrate this theorem:

 1 2 3 4 5 6 7

2 4 3 5 1 7 6

 = [1245][3][67] = [1245][67]

To calculate this one start with a position, say 1, and follow the images round

until we get back to, in our choose, 1. Afterwards, we start with the next symbol not

accounted for.

Finally, the product of cycles is easily determined, like the following example

shows,

[1324][23] = [124][3] = [124]

because, by definition, if σ = [1324] and τ = [23], then by composition σ ◦τ follows our

result. Note that a 2-cycle τ = [23] is just a transposition such that 3 7→ 2 and 2 7→ 3.

24A cycle notation is a more efficient notation to describe permutation because we can misses out
the positions that are not moved by the permutation.

242



PhD Thesis - Fernández, Ariel Germán McMaster University - Computer Science

A.5 LA Theory–A survey

A complete treatment of this theory can be found in [Sol01].

The logical theory LA is strong enough to prove all the ring properties of matrices

such as A(BC) = (AB)C and A+B = B +A, but weak enough so that the theorems

of LA translate into propositional tautologies with short Frege proofs. LA has three

sorts of object: indices (i.e., natural numbers), ring elements, and matrices, where the

corresponding variables are denoted i, j, k, . . .; a, b, c, . . .; and A,B,C, . . ., respectively.

The semantic assumes that objects of type ring are from a fixed but arbitrary ring

(for the purpose of this thesis we are only interested in the ring Z), and objects of

type matrix have entries from that ring.

Terms and formulas are built from the following function and predicate symbols,

which together comprise the language LLA:

0index, 1index,+index, ∗index,−index, div, rem,

0ring, 1ring,+ring, ∗ring,−ring,
−1, r, c, e,Σ,

≤index,=index,=ring,=matrix, condindex, condring

(A.5.0.2)

The intended meaning should be clear, except in the case of −index, cut-off subtrac-

tion, defined as i− j = 0 if i < j. For a matrix A: r(A), c(A) are the number of rows

and columns in A, e(A, i, j) is the ring element Aij (where Aij = 0 if i = 0 or j = 0 or

i > r(A) or j > c(A)), Σ(A) is the sum of the elements in A. Also cond(α, t1, t2) is

interpreted if α then t1 else t2, where α is a formula all of whose atomic sub-formulas

have the form m ≤ n or m = n, where m,n are terms of type index, and t1, t2 are

terms either both of type index or both of type ring. The subscripts index, ring, and
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matrix are usually omitted, since they ought to be clear from the context.

We use n,m for terms of type index, t, u for terms of type ring, and T, U for

terms of type matrix. Terms of all three types are constructed from variables and the

symbols above in the usual way, except that terms of type matrix are either variables

A,B,C, ... or λ-terms λij〈m,n, t〉. Here i and j are variables of type index bound

by the λ operator, intended to range over the rows and columns of the matrix. Also

m,n are terms of type index not containing i, j (representing the number of rows and

columns of the matrix) and t is a term of type ring (representing the matrix element

in position (i, j)).

Atomic formulas are of the form m ≤ n,m = n, t = u and T = U , where the

three occurrences of = formally have subscripts index,ring ,matrix, respectively. General

formulas are built from atomic formulas using the propositional connectives ¬,∨,∧

and quantifiers ∀,∃.

A.5.1 Defined terms

The λ terms allow us to construct the sum, product, transpose, etc., of matrices. As

usual, := denotes a definition—in this context this amounts to an abbreviations for

terms.

Integer maximum

max{i, j} := cond(i ≤ j, j, i)

Matrix sum

A+B :=

λij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij +Bij〉
(A.5.1.1)
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Note that A+B is well defined even if A and B are incompatible in size, because of

our convention that out-of-bound entries are 0.

Scalar product

aA := λij〈r(A), c(A), a ∗ Aij〉 (A.5.1.2)

Matrix transpose

At := λij〈c(A), r(A), Aji〉 (A.5.1.3)

Zero and Identity matrices

0kl := λij〈k, l, 0〉

Ik := λij〈k, k, cond(i = j, 1, 0)〉
(A.5.1.4)

Sometimes we will just write 0 and I when the sizes are clear from the context.

Matrix trace

tr(A) := Σλij〈r(A), 1, Aii〉 (A.5.1.5)

Dot product

A ·B :=

Σλij〈max{r(A), r(B)}, max{c(A), c(B)}, Aij ∗Bij〉
(A.5.1.6)

Matrix product

A ∗B :=

λij〈r(A), c(B),

λkl〈c(A), 1, e(A, i, k)〉 · λkl〈r(B), 1, e(B, k, j)〉〉

(A.5.1.7)
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Finally, the following decomposition of an n × n matrix A will be used in our

axioms defining Σ(S):

A =

 a11 R

S M

 (A.5.1.8)

where a11 is the (1, 1) entry of A, and R, S are 1 × (n−1), (n−1) × 1 submatrices,

respectively, and M is the principal submatrix of A. Therefore, we make the following

precise definitions:

R(A) := λij〈1, c(A)− 1, e(A, 1, i+ 1)〉,

S(A) := λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉,

M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉.

(A.5.1.9)

A.5.2 Axioms and rules of LA

For each axiom listed below, every legal substitution of terms for free variables is

an axiom of LA. Note that in a λ term λij〈m,n, t〉 the variables i, j are bound.

Substitution instances must respect the usual rules which prevent free variables from

being caught by the binding operator λij. The bound variables i, j may be renamed

to any new distinct pair of variables.

A.5.2.1 Equality Axioms

These are the usual equality axioms, generalized to apply to the three-sorted theory

LA. Here = can be any of the three equality symbols, x, y, z are variables of any of

the three sorts (as long as the formulas are syntactically correct). In A4, the symbol
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f can be any of the non-constant function symbols of LA. However A5 applies only

to ≤, since this in the only predicate symbol of LA other than =.

A1 x = x

A2 x = y → y = x

A3 (x = y ∧ y = z)→ x = z

A4 x1 = y1, ..., xn = yn → fx1...xn = fy1...yn

A5 i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2

A.5.2.2 Axioms for indices

These are the axioms that govern the behavior of index elements. The index elements

are used to access the entries of matrices, and so we need to define some basic number

theoretic operations.

A6 i+ 1 6= 0

A7 i ∗ (j + 1) = (i ∗ j) + i

A8 i+ 1 = j + 1→ i = j

A9 i ≤ i+ j

A10 i+ 0 = i

A11 i ≤ j ∧ j ≤ i

A12 i+ (j + 1) = (i+ j) + 1

A13 [i ≤ j ∧ j ≤ i]→ i = j

A14 i ∗ 0 = 0

A15 [i ≤ j ∧ i+ k = j]→ j − i = k

A16 ¬(i ≤ j)→ j − i = 0

A17 [α→ cond(α, i, j) = i] ∧ [¬α→ cond(α, i, j) = j]
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A.5.2.3 Axioms for a ring

These are the axioms that govern the behavior for ring elements; addition and

multiplication, as well as additive inverses. We do not need multiplicative inverses.

A18 0 6= 1 ∧ a+ 0 = a

A19 a+ (−a) = 0

A20 1 ∗ a = a

A21 a+ b = b+ a

A22 a ∗ b = b ∗ a

A23 a+ (b+ c) = (a+ b) + c

A24 a ∗ (b ∗ c) = (a ∗ b) ∗ c

A25 a ∗ (b+ c) = a ∗ b+ a ∗ c

A26 [α→ cond(α, a, b) = a] ∧ [¬α→ cond(α, a, b) = b]

A.5.2.4 Axioms for matrices

Axiom A27 states that e(A, i, j) is zero when i, j are outside the size of A. Ax-

iom A28 defines the behavior of constructed matrices. Axioms A29-A32 define

the function Σ recursively by first defining it for row vectors, then column vectors

(At := λij〈c(A), r(A), Aji〉), and then in general using the decomposition (A.5.2.1).

Finally, axiom A33 takes care of empty matrices.

A27 (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j)→ e(A, i, j) = 0

A28 r(λij〈m,n, t〉) = m ∧ c(λij〈m,n, t〉) = n ∧ [1 ≤ i ∧ i ≤ m ∧ 1 ≤ j ∧ j ≤ n]→

→ e(λij〈m,n, t〉, i, j) = t

A29 r(A) = 1, c(A) = 1→ Σ(A) = e(A, 1, 1)
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A30 r(A) = 1 ∧ 1 < c(A)→ Σ(A) = Σ(λij〈1, c(A)− 1, Aij〉) + A1c(A)

A31 c(A) = 1→ Σ(A) = Σ(At)

A32 1 < r(A) ∧ 1 < c(A)→ Σ(A) = e(A, 1, 1) + Σ(R(A)) + Σ(S(A)) + Σ(M(A))

A33 r(A) = 0 ∨ c(A) = 0→ ΣA = 0

Where

R(A) := λij〈1, c(A)− 1, e(A, 1, i+ 1)〉,

S(A) := λij〈r(A)− 1, 1, e(A, i+ 1, 1)〉,

M(A) := λij〈r(A)− 1, c(A)− 1, e(A, i+ 1, j + 1)〉.

(A.5.2.1)

A.5.2.5 Rules for LA

In addition to all the axioms just presented, LA has two rules: matrix equality and

induction.

Matrix equality rule

From the premises: e(T, i, j) = e(U, i, j), r(T ) = r(U) and c(T ) = c(U), we

conclude T = U .

The only restriction is that the variables i, j may not occur free in T = U ; other

than that, T and U can be arbitrary matrix terms. Our semantics implies that i

and j are implicitly universally quantified in the top formula. The rule allows us to

conclude T = U , provided that T and U have the same number of rows and columns,

and corresponding entries are equal.

Induction rule α(i)→ α(i+ 1) implies α(0)→ α(n).
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Here α(i) is any formula, n is any term of type index, and α(n) indicates n is

substituted for free occurrences of i in α(i). (Similarly for α(0).) Note that in LA

we only allow induction over ΣB
0 formulas (no matrix quantifiers), whereas in ∃LA

we allow induction over ΣB
1 formulas (a single block of bounded existential matrix

quantifiers when α is put in prenex form). This completes the description of LA. We

finish this section by observing the substitution property in the lemma below. We

say that a formula S ′ of LA is a substitution instance of a formula S of LA provided

that S ′ results by substituting terms for free variables of S. Of course each term must

have the same sort as the variable it replaces, and bound variables must be renamed

as appropriate.

Lemma A.5.1 Every substitution instance of a theorem of LA is a theorem of LA.

This follows by straightforward induction on LA proofs. The base case follows

from the fact that every substitution instance of an LA axiom is an LA axiom.
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