
ASPECT-ORIENTED PRODUCT FAMILY MODELING

ASPECT-ORIENTED PRODUCT FAMILY MODELING

BY

QINGLEI ZHANG, B.Eng., M.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University c© Copyright by Qinglei Zhang, June 2013

Doctor of Philosophy (2013) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: Aspect-oriented Product Family Modeling

AUTHOR: Qinglei Zhang

M.Sc. (Trent University)

B.Eng. (University of Science and Technology of China)

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: xviii, 216

ii

To my family

Abstract

Practice experience of different organizations has revealed that it is advantageous

to develop a set of related products from core assets instead of developing them

one by one independently. The set of related products is referred to as a product

family, and feature-modeling is a widely used technique to capture the commonal-

ities and variabilities of a product family in terms of “features”. With the growing

complexity of software product families in several software industries, the develop-

ment, maintenance and evolution of complex and large feature models are among

the main challenges faced by feature-modeling practitioners. In particular, more

sophisticated feature modeling techniques are required to address the problems

caused by unanticipated changes and crosscutting concerns in feature models.

This thesis tackles the above challenges in feature-modeling by adopting the

aspect-oriented paradigm at the feature-modeling level. I firstly introduce a speci-

fication language, called AO-PFA, which is an extension of the Product Family Al-

gebra (PFA) language. I then proposed a formal verification technique to check the

compatibility of aspects with their base specifications in AO-PFA. In the aspect-

oriented paradigm, the process of combining aspects with base specifications is

referred to as the weaving process. I finally discussed how to perform the weaving

process in AO-PFA.

iv

By proposing a systematic approach to extend product family algebra with

the abilities of specifying, verifying, and weaving aspects, we are able to handle

the difficulties that arise from crosscutting concerns and unanticipated changes

in large-scale feature models. An original feature model is considered as a base

specification, while the changes to the feature model are specified as aspects. The

formal verification and weaving techniques ensure that the changes are correctly

and properly propagated to the original feature model.

v

Acknowledgements

I am grateful to the McMaster University for giving me the opportunity and finan-

cial support to pursue my PhD degree. I would like to thank all who have helped

me throughout the completion of my doctoral journey.

I would first and foremost like to express my sincere gratitude to my supervisor,

Dr. Ridha Khedri, for his substantial support and encouragement throughout the

process of my research. His expertise, guidance and motivation were the funda-

mental to make this thesis possible.

I would like to thank my Supervisor Committee Members: Dr. William Farmer

and Dr. Ryszard Janicki for following up on my research and giving useful com-

ments. Also, I would like to extend my thanks to Dr. Wahab Hamou-Lhadj for

accepting to be the external examiner in my committee and giving essential com-

ments that added values to my work. In addition, I would like to thank Mr. Jason

Jaskolka for his valuable discussions and suggestions.

Last but not the least, a very special thank you goes to my parents for all their

love, encouragement, and support.

vi

Contents

Abstract iv

Acknowledgements vi

List of Table xii

List of Figures xiii

List of Symbols xvii

List of Abbreviations xviii

1 Introduction 1

1.1 General Background and Motivation 1

1.1.1 Feature-Modeling . 4

1.1.2 Aspect-Orientated Paradigm 6

1.1.3 Feature-Modeling with the Aspect-Oriented Paradigm 13

1.2 Problem Statement, Objectives, and Methodology 15

1.3 Contributions . 19

1.4 Related Publications . 21

vii

1.4.1 Journals . 21

1.4.2 Referred Conferences and Workshops 21

1.4.3 Technical Reports . 22

1.5 Structure of the Thesis . 22

2 Literature Review 23

2.1 Aspect-Oriented Software Development 23

2.1.1 Aspect-Oriented Programming (AOP) 24

2.1.2 Aspect-Oriented Detailed Design (AODD) 28

2.1.3 Aspect-Oriented Architecture Design (AOAD) 30

2.1.4 Aspect-Oriented Requirement Engineering (AORE) 31

2.1.5 Verification Techniques for Aspectual Composition 33

2.1.6 Assessment of Aspect-Oriented Approaches 37

2.2 Product Family Engineering Using the Aspect-Oriented Paradigm . 38

2.3 Feature-Modeling Related to Product Family Algebra 40

2.4 Conclusion . 42

3 Background 44

3.1 Product Family Algebra . 44

3.1.1 Basic Concepts of Feature Models 45

3.1.2 Mathematical Definitions of Product Family Algebra 46

3.1.3 Tool Support . 50

3.2 Needed Notions from Graph Theory 51

3.3 Needed Notions from Universal Algebra 52

3.4 Needed Notions from Algebraic Specifications 54

viii

3.5 Needed Notions from Term Rewriting 55

3.5.1 Equational Problems . 55

3.5.2 Reduction Relations . 56

3.5.3 Term Rewriting Systems . 58

3.6 Conclusion . 61

4 Specifying Aspects with AO-PFA 62

4.1 Introduction . 62

4.1.1 Rationale for AO-PFA Design 63

4.1.2 A Running Example . 65

4.2 Aspect Specifications in AO-PFA 67

4.2.1 Join Points in AO-PFA . 68

4.2.2 Advice in AO-PFA . 69

4.2.3 Pointcuts in AO-PFA . 70

4.3 Categories of Aspects . 80

4.4 Usage of the Specification Language AO-PFA 82

4.4.1 Articulating Unanticipated Changes 83

4.4.2 Articulating Crosscutting Concerns 85

4.5 Conclusion . 87

5 Verifying Aspectual composition in AO-PFA 89

5.1 General Description . 89

5.2 Formal Verification of Aspectual Composition in AO-PFA 91

5.2.1 Validity Criteria of PFA specification 92

5.2.2 Validity Criteria for Aspectual Composition 94

ix

5.3 Usage of the verification technique 103

5.3.1 Case Study: Home Automation Family 104

5.4 Conclusion . 110

6 Weaving Aspects in AO-PFA 111

6.1 Semantics of the Weaving Process 111

6.1.1 Formalism of PFA Specifications and Aspects 112

6.1.2 Formalism of the Weaver . 115

6.2 Theoretical Properties of the Weaving Process 129

6.2.1 Concerns Regarding the Weaving Process of AO-PFA 129

6.2.2 Characteristics of the Rewriting System 131

6.3 Conclusion . 137

7 Conclusion and Future Work 139

7.1 Highlight of the Contributions . 140

7.2 Further Work . 142

7.2.1 Theory: Models and Techniques 142

7.2.2 Application . 143

7.2.3 Tool/Automation . 144

7.3 Closing Remarks . 144

A Lemmas, Theorems, and Corollaries 146

A.1 Proofs of the Results of Chapter 5 146

A.2 Proofs of the Results of Chapter 6 164

A.2.1 Termination of the Rewriting System 164

A.2.2 Confluence of the Rewriting System 167

x

A.2.3 Restriction on the selected join points 179

B Regrading the automation of the weaving process 188

B.1 Algebraic Specification of AO-PFA Using CASL 188

B.2 Term Rewriting Systems of AO-PFA Using Maude 194

Index 216

xi

List of Tables

4.1 Summary of types of pointcuts . 71

4.2 Categories of aspects . 81

5.1 Effects of aspects with different types of kind pointcuts on DA and

RA . 96

5.2 Abbreviation of basic features and families 104

6.1 Equational theory Ef . 113

6.2 Rewriting rules R(Ef) . 131

xii

List of Figures

1.1 The state of the art of feature-oriented software development 3

1.2 An editor example to illustrate base and crosscutting concerns . . . 8

1.3 Example of a logging aspect . 10

3.1 A feature model example adapted from [BSRC10] 46

3.2 Grammar of PFA language given in BNF notation 50

3.3 Example of a PFA specification . 51

4.1 General Illustration of AO-PFA . 64

4.2 A simplified example of the feature model for an elevator system . . 66

4.3 Example of a base specification . 66

4.4 The language for the specification of aspects 67

4.5 Example of using the declaration pointcut 73

4.6 Example of using the inclusion pointcut 74

4.7 Example of using the non-default scope pointcut and the non-default

expression pointcut . 75

4.8 Example of using the creation pointcut 76

4.9 Example of using the component creation pointcut 77

4.10 Example of using the component pointcut 78

4.11 Example of using the equivalent component pointcut 79

xiii

4.12 Example of using the constraint[position list] pointcut 80

4.13 Base concerns in the E-shop feature model 86

4.14 Crosscutting concerns in the E-shop feature model 87

5.1 Example of a base specification for the home automation product line105

5.2 Dependency digraph corresponding to the home automation prod-

uct line . 109

6.1 Example to illustrate the proposed weaving process for AO-PFA . . 119

xiv

List of Symbols

Adef Set of new labels induced by the aspect 148

Bdef Set of labels in the base specification which are defined

by the selected join points

99

C Set of all potential reference join points associated with

constrains

116

Cp(S) Set of constrains specified by a specification S 113

� Subterm relation 115

DJ Set of all potential definition join points 116

DS Set representing definition labels in the specification S 92

E Set of all potential reference join points associated with

labeled family equations

116

E addA Set of edges added to a label dependency digraph by

composing an aspect A

95

E delA Set of edges deleted from a label dependency digraph

by composing an aspect A

95

Ef Equational theory related to axioms of a commutative

idempotent semiring

112

xv

Eq(S) Set of equations specified by a specification S 113

Espec Equational theory related to the base specification 131

E tk Set of equations decided by the kind pointcut 120

E add(p) Set of equations decided by the scope pointcut at a

potential join point p

121

F Signature of a commutative idempotent semiring 112

GS Digraph representing label dependencies in the

specification S

93

JP Set of all potential join points 116

L(S) Set of labels specified by a specification S 113

MS Multi-set of definition labels specified in the

specification S

92

M Signature of a monoid 113

RJ Set of all potential reference join points 116

R(Ef) Set of rewriting rules derived from Ef 131

R(Espec) Set of rewriting rules derived from Espec 132

RS Set representing reference labels in the specification S 93

Thpfa Equation theory associated with the weaving process in

AO-PFA

120

V Set of variables w.r.t. the signature of F 113

Walk(u, v) List of vertices along a walk from u to v in a digraph 98

Γ Alphabet of the PFA language 113

a Product family algebra term specified by the advice 101

xvi

k Product family algebra term specified by the kind

pointcut

98

s Product family algebra term specified by the scope

pointcut

98

tk Type of the kind pointcut 120

ts Type of the scope pointcut 102

(u, v)–path Path starting with vertex u and ending with vertex v 52

xvii

List of Abbreviations

ADI Aspectual Dependencies and Interaction

AOAD Aspect-Oriented Architecture Design

AODD Aspect-Oriented Detailed Design

AOP Aspect-Oriented Programming

AORE Aspect-Oriented Requirement Engineering

AOSD Aspect-Oriented Software Development

AP Adaptive Programming

CF Composition Filter

FOSD Feature-Oriented Software Development

MDSOC Multi-Dimensional Separation of Concerns

PFE Product Family Engineering

SOP Subjective-Oriented Programming

TRS Term Rewriting System

xviii

Chapter 1

Introduction

1.1 General Background and Motivation

Practice experience of different organizations has revealed that it is advantageous

to develop a set of related products from core assets instead of developing them

one by one independently [CN02]. Such a set of related products, which usually

together address a particular market segment or mission, is referred to as a product

family. Product Family Engineering (PFE) is an emerging software development

discipline proposing structure processes and techniques to facilitate the develop-

ment of product families. Rather than developing product families from scratch,

or in an arbitrary fashion, product family engineering aims to be a systematic,

organized and effective approach for software production [Coh02]. In particular,

product family engineering can improve productivity, increase software quality, re-

duce cost and labour needs, and decrease the time to market [MNJP02]. One of

the key issues in product family engineering is to capture the commonality and

variability occurring in a product family. There are in general two main phases

1

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

for product family engineering: domain engineering and application engineering.

Domain engineering explores all variable and common requirements in the target

product market. It also establishes reusable core assets from a domain perspective.

Application engineering specifies the requirements of individual products, and then

a product is constructed by selecting and configuring the specific parts from the

core assets.

Feature-Oriented Software Development (FOSD) is one of the widely used

methodologies in product family engineering, where the commonalities and vari-

abilities are captured in terms of features. The term feature has slightly different

meanings in the literature. We adopt the definition used in [LKL02], where any

“visible prominent and distinctive characteristic relevant to certain stakeholders

(e.g., users, analysts, designers and developers)” is recognized as a feature. There

are four stages of the feature-oriented software development process: (1) domain

analysis, (2) domain design/specification, (3) domain implementation, and (4)

product configuration and generation. Domain analysis aims to identify which fea-

tures are part of the domain and how they are related. The essential structural and

behavioural properties of the involved features are specified at the domain design

stage, and a set of first-class artifacts are created for each feature at the domain

implementation stage. Following the feature selection of an individual product,

the product is generated automatically at the last stage. A key ultimate goal of

the feature-oriented software development is to achieve the automatic derivation of

products. Figure 1.1 illustrates the state of the art of the feature-oriented software

development with respect to the different development stages.

2

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 1.1: The state of the art of feature-oriented software development

3

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

1.1.1 Feature-Modeling

In this thesis, I focus on the topic of feature-modeling, by which the commonalities

and variabilities of product families are specified and managed with feature models.

In particular, a feature model describes a set of valid combination of features such

that each combination corresponds to a member in a product family. Since being

firstly introduced and used by Kang et al. in 1990 [KCH+90], feature-modeling

techniques have been well accepted and applied in both academic and industrial

projects. Feature-modeling is the central activity at the domain analysis stage of

the feature-oriented software development. Moreover, to achieve the full potential

of feature-oriented software development, feature models are used as the essen-

tial basis to guide the following processes of domain design, implementation, and

product configuration and generation.

With the increasing complexity of software product families in practice, it is

common to find feature models involving hundreds or even thousands of features.

A large feature model cannot be understood and analyzed if they are treated as a

monolithic entity with traditional feature-modeling techniques. The development,

maintenance, and evolution of complex and large feature models are among the

main challenges faced by feature-modeling practitioners. In particular, it is hard to

handle unanticipated changes in large feature models. To illustrate this point, we

use a security related situation. An authentication feature is in charge of identifying

the caller agent that remotely communicates with a sub-system in a product family.

After a while, we find that the feature interaction of the authentication feature with

other features enable an intruder to take control of the system. The remedy of the

detected defect in the product family leads to the introduction of new variability in

4

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

the family or to the amendment of the existing variability by confining it to some

products but not others. This evolution scenario due to the security issue may not

be anticipated at the time of the feature-modeling stage. Consequently, it can be

a tedious and costly work to recognize and make such unanticipated changes in

feature models. The difficulties increase if the unanticipated changes happen when

a serious defect is detected after the product family has been put on the market.

The question then becomes how to supersede the current feature model of a family

by a new one in an effective and efficient way.

More sophisticated feature-modeling techniques are required to address the

above problems in modeling large-scale feature models. One well known and ef-

fective way to manage the complexity of large systems is through the use of the

separation of concerns, which was initially coincided with David Parnas’ idea of

criteria for decomposing systems [Par72]. Recent research on the composition of

feature models for handling large scale product families is related to the idea of

adapting the principle of separation of concerns at the feature-modeling level. In

other words, a large feature model is developed by composing multiple feature

models such that each feature model corresponds to the modularization of a par-

ticular concern. However, current modularization approaches at feature-modeling

level still have limitation for handling crosscutting concerns. Crosscutting con-

cerns inherently scatter over and intertwine with other concerns. Without a proper

modularization mechanism, a crosscutting concern cannot be reused but has to be

implemented whenever it is required. Also, when a concern is implemented every-

where over the whole system and intertwined with other concerns, the maintainer

would need to manually inspect and update the models at all locations that relate

5

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

to this concern. The crosscutting concern is recognized as a major contributor that

impedes the development, maintenance, and evolution of complex systems [HL95].

In the next subsection, I discuss the crosscutting concerns and problems caused by

them.

1.1.2 Aspect-Orientated Paradigm

In response to the challenges of large feature models as mentioned in the previous

section, we adopt the aspect-oriented paradigm at the feature-modeling level to

support the modularization of feature models. In this section, we introduce the

aspect-oriented paradigm and its usage in general. Then, in the next section, we

discuss its specific application to the development of product families.

On the motivation for the aspect-oriented paradigm: crosscutting con-

cerns

Traditional high level programming languages were originally intended to support

the module abstraction kind of separation of concerns. Program designers only

can decompose the system with respect to one criterion [EFB01]. For instance,

object-oriented programming designers decompose a system as a collection of in-

teracting objects. Process-oriented programming designers decompose a system as

a set of parallel processes with shared data structures. Those concerns are called

base concerns or core concerns [HL95], because they usually capture the most es-

sential functionalities of the application. However, not all required computations

can be neatly separated and encapsulated as base concerns. Computations that

are not related to base concerns are addressed in the code whenever necessary. In

6

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

other words, the implementation of non-core concerns may be spread over multiple

modules or intertwined with other concerns, or both [HL95]. Since those scatter-

ing and tangling concerns crosscut the base concerns, they are called crosscutting

concerns.

To further explain the nature of crosscutting concerns and base concerns, we

use the example of a simple figure editor system, which is borrowed from [EAK+1a].

Figure 1.2 depicts a simple figure editor, where the system is decomposed follow-

ing an object-oriented style and each class encapsulates a graphical element. Such

a decomposition ensures that each class is closely related (cohesion) and the in-

teractions between classes are well-defined (coupling). Thus the representations

of graphic elements (e.g.,Point and Line in the example) are considered as base

concerns. Besides base concerns, there are other concerns such as Display Update.

Display Update requires every method that moves a figure element to notify the

screen manager about the movement. The method labels written in italic font in

Figure 1.2 indicate all methods that should implement such notifications for the

Display Update concern. It is obvious that the box for Display Update cuts across

the boxes for Point and Line. Hence, the Display Update concern is referred to

as the crosscutting concern. More examples of crosscutting concerns for different

applications regarding different programming languages are given in [KLM+97].

Although a crosscutting concern is related to a particular dominant decom-

position for base concerns, some issues are identified as crosscutting concerns in

7

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

2

DisplayDisplayDisplayDisplay UpdateUpdateUpdateUpdate

Class:Class:Class:Class: PointPointPointPoint
Int x;
Int y;
getx();
gety();
setx();
sety();

Class:Class:Class:Class: LineLineLineLine
Point p1;
Point p2;
getp1();
getp2();
setp1();
setp2();

Figure 1.2: An editor example to illustrate base and crosscutting concerns

a common sense. Crosscutting concerns are frequently recognised in many appli-

cations and usually used as supporting roles in those applications, such as infor-

mation security, memory management, error detection, or logging and monitor-

ing [KLM+97]. Furthermore, special crosscutting concerns are also identified in

certain application domains, such as synchronization in parallel applications, lo-

cation control in distribution computations, real time constrains in the real time

systems, failure recovery in fault-tolerance systems [HL95], and product features

for product family engineering [LKF02]. In particular, the implementation of one

feature may be scattered over several basic abstractions, or more than one feature

may be implemented within one basic abstraction. Feature-oriented programming

is primarily developed to implement products through the composition of features.

However, while many features can be developed independently, some features in-

herently have dependencies with others and still cannot be implemented elegantly

using feature-oriented programming.

Handling crosscutting concerns is an important issue for developing, testing

and verifying the software. Implementing a crosscutting concern requires the co-

operation of several software developers as the concern cannot be assigned to a

8

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

single development team. Testing a crosscutting concern needs knowledge about

the modules affected by the concern. Representation of and reasoning on a cross-

cutting concern make formal verification much harder as the dependencies of a

crosscutting concern with other modules are very often implicit.

On the basis of the aspect-oriented paradigm: terms and usages

To reduce difficulties in handling crosscutting concerns, it is helpful to explicitly

modularize those crosscutting concerns. The aspect concept was first introduced

in the language AspectJ [KLM+97] by Gregor Kiczales et al. in 1997. AspectJ

is an extension for the Java programming language to explicitly encapsulate and

implement every crosscutting concern in one module. Gregor Kiczales et al. de-

fined an aspect as a module to implement the “property that cannot be cleanly

encapsulated in a generalized procedure”. Moreover, a component is defined as a

module to implement the “system functionality that can be cleanly encapsulated

in a generalized procedure” [KLM+97]. Besides the concept of aspect, some other

important concepts are defined in AspectJ as follows:

• Join point: It defines the point at the execution of the base program where

the aspect could be introduced.

• Pointcut: It selects a set of join points where a certain aspect should be

introduced.

• Advice: It defines the behaviours which should be introduced to the selected

join points.

9

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 1.3: Example of a logging aspect

• Weave: It is the process of combining the aspects with the rest of the pro-

grams.

Figure 1.3 shows a simple example written in AspectJ. The aspect logging is com-

posed of the pointcut and the advice. The pointcut selects two join points (under-

lined instructions) in the base code. After weaving, those selected join points are

advised by the aspect as shown in the right rectangle.

With the AspectJ language, a system is composed of a set of aspects and a

set of components. In general, aspects are used to modularize crosscutting con-

cerns, while components are used to modularize base concerns. Such a decomposi-

tion paradigm for the development of systems is referred to as the aspect-oriented

paradigm. All those concepts mentioned above that are introduced by AspectJ are

commonly used for all aspect-oriented techniques. The aspect-oriented paradigm

aims to improve software qualities, such as reusability, maintainability, adaptability

and extensibility, by properly handling crosscutting concerns. In particular, the

aspect-oriented paradigm provides the explicit abstraction and the non-invasive

10

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

composition mechanism for crosscutting concerns. The advice defines the be-

haviour which implements a crosscutting concern, while the pointcut identifies

join points where the crosscutting concern should be introduced. The reusability

and maintainability of the software are improved by encapsulating crosscutting

concerns into a single module.

On the development of the aspect-oriented paradigm: early aspects and

AOSD

The aspect-oriented paradigm not only relates to the implementation of cross-

cutting concerns, but also relates to the analysis and design of the crosscutting

concerns. For example, aspects derived from the low implementation level could

be cached and buffered [EAK+1a]. Aspects derived from analysis and design levels

could be a non-functional requirement such as quality of service or a functional

requirement such as business rules. Aspects at those analysis and design levels are

sometimes referred to as early aspects. Early aspects can help the understanding

and identification of crosscutting concerns at an early stage, and enable reaching

an early trade-off between concerns. Research shows that if aspects are employed

with non-crosscutting concerns at the implementation level, it may increase the

complexity of the software, or even decrease the maintainability of the software.

Early aspects, on the other hand, are not necessarily mapped as aspects at the

implementation level. For example, the aspects identified in the requirement level,

could either be architectural components or design decisions during the following

development stages. A more comprehensive discussion on the main benefits of

dealing with early aspects is given in [batmaccRS+05, RM06].

11

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

All techniques and tools developed to support aspects in the whole life-cycle

of software development are referred to as Aspect-Oriented Software Development

(AOSD). In particular, those techniques are Aspect-Oriented Programming (AOP)

techniques [KLM+97, BA01, OT01, LOO01], Aspect-Oriented Requirement En-

gineering (AORE) techniques [AM03, RMA03, YLM04, WA04, JN04, MAR05,

MRA05], Aspect-Oriented Architecture Design (AOAD) techniques [PFT03, Kan03,

BCD+04, KGdLvS04, Tek04], and Aspect-Oriented Detailed Design (AODD) tech-

niques [Her02, SHU02, AEB03, BC04]. Due to the difference in the granularity

of concern abstractions at different stages, the contents of aspects vary slightly

at different stages. At the requirement stage, aspects refer to crosscutting prop-

erties that have broad scopes of effect on the other requirements or architectural

components. At the architecture design stage, aspects focus on concerns which

crosscut several architecture components that are factored using conventional ar-

chitecture approaches. At the detailed design stage, aspects relate to behaviours

and structures that are unavoidably scattered and tangled in the detailed design

documents [batmaccRS+05]. At the programming stages, aspects encapsulate code

that crosscuts many modules that are defined by programming languages. An ex-

tensive survey on those techniques for aspect-oriented software development is

presented in Section 2.1. The survey indicates that more mature approaches are

still under development and many challenges remain in the area of aspect-oriented

software development. Besides approaches at each development stage, preserving

aspects along different development stages is also an open issue for aspect-oriented

software development [batmaccRS+05]. Moreover, much more effort is required

to extract the common characteristic of all aspect-oriented techniques. Currently,

12

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

only several initial reference models [BMN+06, SSK+07] have been proposed for the

identification and analysis of essential elements of the aspect-oriented paradigm.

Moreover, mathematical models which are constructed to capture the mechanism of

the aspect-oriented paradigm are still quite few in the literature of aspect-oriented

software development [MK03].

1.1.3 Feature-Modeling with the Aspect-Oriented Paradigm

In this section, we discuss the benefits of adapting the aspect-oriented paradigm at

the feature-modeling level. With regard to the problems mentioned in Section 1.1.1

for large-scale feature models, we particularly show how to tackle unanticipated

changes and crosscutting concerns in feature models by using the aspect-oriented

paradigm.

Handling unanticipated changes in feature models

The aspect-oriented paradigm can be taken as a candidate approach for modu-

larizing large feature models, which can improve the maintainability, extensibility,

reusability, and adaptability of feature models [EFB01]. More specially, Filman

and Friedman [FF01] characterize the aspect-oriented paradigm as quantification

and obliviousness. Quantification means the ability to make quantified statements

over the underlying code, while obliviousness indicates that the original code need

not be prepared for being extended with new aspects. These two characteristics of

the aspect-oriented paradigm provide a way to propagate unanticipated changes

in feature models by composing aspects. The composition mechanism of aspects

13

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

enables generic changing operations on feature models: 1) a set of feature com-

binations can be introduced to a feature model at one or multiple place(s), and

2) a set of feature combinations can be removed from a feature model at one or

multiple place(s). With the aspect-oriented paradigm, the pointcut is responsible

for identifying where to make changes in the original feature models, while the ad-

vice can capture a set of features in arbitrary combinations. Moreover, since join

points can be skipped in an advice, using such aspects provides a way to remove

features at selected places from the feature models.

Handling crosscutting concerns in feature models

Besides improving the modifiability of large feature models, adapting the aspect-

oriented paradigm at the feature-modeling level also aims to achieve a systematic

aspect-oriented development for product families. We have mentioned earlier that

some features can be considered as examples of crosscutting concerns (See page 8).

Moreover, to moderate the complexity for handling crosscutting concerns at the

implementation level, it is advantageous to trace crosscutting concerns from the

early analysis and design stages. Therefore, adopting the aspect-oriented paradigm

at the feature-modeling level is one of the essential steps to properly handle cross-

cutting concerns throughout the whole life-cycle of product family engineering.

Features that can not be mapped to a singleton basic abstraction are crosscut-

ting features. The implementation of crosscutting features bears the same prob-

lems, such as maintenance and evolution, as general crosscutting concerns. In the

literature [Gri00a], there are three kinds of strategies to handle those crosscutting

14

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

features. One strategy is to trace those crosscutting features by tools from require-

ments to their design and coding. However, the tracing strategy could be hard to

control when the system becomes extremely complex and the features crosscut a

lot of other features. Another strategy is to introduce a new layer to encapsulate

crosscutting features and their dependent features. This strategy has the drawback

that crosscutting features have to be introduced at every required point within the

base program [MO04]. The third strategy is to separate those crosscutting features

and then to compose them when necessary [CRB04]. This strategy can overcome

the weakness of the other two strategies. The aspect-oriented paradigm is an

illustration of the third strategy. In particular, aspects can encapsulate crosscut-

ting features as well as all locations at where to introduce them. In [Gri00b], Griss

summarized the advantages of the composition and weaving approaches for dealing

with crosscutting concerns in product families.

1.2 Problem Statement, Objectives, and Method-

ology

This thesis focuses on developing a systematic formal approach that adapts the

aspect-oriented paradigm to feature-modeling. In particular, we propose an aspect-

oriented specification language for feature-modeling. Feature model specifications

are considered as bridges that narrow the gap between the problem domain and

the solution domain. Moreover, tool assistance is demanded for the management

and analysis of large feature models. A formal specification language for feature-

modeling is the prerequisite that enables tools to conduct complex activities on

15

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

feature models.

In this thesis, we aim to complement the current product family algebra ap-

proach with the ability to specify feature models using the aspect-oriented paradigm.

As we have discussed, developing a systematic way for composing feature models is

a primary issue to manage the complexity of large feature models. But only a few

approaches have been proposed with regard to this issue [ACLF10]. The current

product family algebra technique [HKM08] proposes one of those attempts that

integrates different concerns of feature models by view reconciliation. Each feature

model partially describes commonalities and variabilities of the considered view for

the product family, and constraints are defined to exclude all products that are gen-

erated from incompatible view integration. View reconciliation is an approach that

adapts the classic multi-view integration approach to feature-modeling techniques.

However, this approach has bottlenecks for separating and composing crosscutting

concerns as the classic multi-view integration approach [batmaccRS+05]. For in-

stance, a security flaw detected in a subfamily or even a product could require

the removal of a feature from the original products. However, constraints only

allow one to remove products from the original product families. We are unable

to change the feature model properly with the current product family algebra ap-

proach. Moreover, with only view reconciliation, it can be a quite tedious work to

integrate a crosscutting concern in a feature model since various constraints can be

required for the composition of only a simple crosscutting concern. In summary,

adapting the aspect-oriented paradigm to product family algebra helps to improve

the extensibility and modifiability of the current view reconciliation approach of

product family algebra.

16

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

The modularization and composition of aspects are two of the essential issues

that need to be handled to achieve the research goal of adapting the aspect-oriented

paradigm to product family algebra. In particular, we set the following three

objectives.

The first objective is to specify aspects and base specifications at the feature-

modeling level. Currently, PFA specifications are used to specify feature models

based on product family algebra. We extent the existing PFA specification lan-

guage with the aspect-oriented paradigm. The PFA specifications are considered

as the base specifications, and we propose a specification language for aspect spec-

ifications. The primary issue for specifying aspects is to identify those essential

terms of the aspect-oriented paradigm that are relevant in the context of product

family algebra. Generically, join points and the advice are specified in terms of

product family terms, while a pointcut aims to capture certain attributes of those

product family terms. We analyze the exact form of join points, the advice and

the pointcut to enable the generic changing on PFA specifications.

The second objective is to verify aspectual composition at the feature-modeling

level. As a new emerging paradigm to deal with product families, adopting the

aspect-oriented paradigm in an effective and safe way is still a topic under discus-

sion. Aspect-oriented approaches are reasonable only if the complexity of aspec-

tual composition can be well handled. The verification of aspectual compositions

is much more complicated since crosscutting concerns inherently have broad im-

pacts on many other concerns. Research related to Aspectual Dependencies and

Interaction (ADI) is a common interest in the literature regarding appropriate

17

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

composition of aspects. The main topics of ADI are about identifying, detect-

ing and handling aspectual dependencies and interactions. Some efforts are also

taken on the classification of those dependencies and interactions. In our context,

we analyze the aspectual dependencies and interaction problems associated to the

specification language proposed in the previous objective. We intend to identify

different composition patterns of aspects. Firstly, we categorize different aspects

according to their direct effects at the selected join points. Secondly, we analyze

the indirect effects of aspects on the base systems. To avoid unintended aspectual

dependencies and interaction, we detect all potential scenarios that can spoil a

system when the aspectual composition is performed.

The third objective is to automate the weaving of aspect and base specifications

at the feature-modeling level. The general weaving processes for aspect-oriented

languages can be decomposed into several activities: join point evaluation, pointcut

matching, advice binding, and weaving execution. We formalize the semantics of

each activity in the context of the proposed specification language. A key problem

of the weaving process in the context of product family algebra is extracting sub-

terms from product family terms in the base specification, and then replacing each

extracted subterm (selected join points) by another term (advice). This problem

is related to what is known as the word problem, which is undecidable in general.

It is necessary to provide a decidable procedure for the word problem introduced

in our context to automate the weaving process. We use the technique of term

rewriting systems to solve the word problem.

18

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

1.3 Contributions

Through the fulfillment of the above objectives, the research has produced the

following contributions:

(1) The design of AO-PFA (Section 4.2): I propose a specification language, AO-

PFA that extends the aspect-oriented paradigm to product family algebra. The

AO-PFA language provides full facilities for articulating aspects, advice, and

pointcuts in feature models. I also illustrate the scope and flexibility of the pro-

posed language through the discussion of several feature-modeling situations.

Results regarding this topic have been published in [ZKJ12a, ZKJ13, ZKJ11].

(2) The classification of aspects in AO-PFA (Section 4.3): I present a classification

system for aspects in the context of AO-PFA. In particular, we distinguish

aspects in accordance to their augmenting, narrowing, and replacing effects

upon join points. The categories of aspects provide useful information to

anticipate the changes that are made by composing an aspect with a base

specification. Moreover, I precisely define the way to recognize the category

of an aspect according to its syntax. It can help the reasoning about the

aspect by checking whether or not the intended category of an aspect consistent

with the actual category of the aspect. Related results have been published

in [ZKJ12a, ZKJ13, ZKJ11].

(3) The verification of aspectual composition in AO-PFA (Chapter 5): I present a

technique to verify aspectual composition in AO-PFA. I define a set of validity

criteria for PFA base specifications. I then present a set of definitions and

propositions enabling the verification of the validity of aspects with regard to

19

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

their base specifications. Based on the proposed verification technique, we are

able to verify the correctness of aspectual composition prior to the weaving

process for aspects and base specifications. Results related to this topic have

been published in [ZKJ12b, ZKJ11].

(4) The formalism of the weaving process in AO-PFA (Section 6.1): I specify the

behaviour of a weaver used to generate the weaved specification w.r.t. a given

aspect specification and a given PFA specification. I provide the formal rep-

resentations for PFA specifications and aspect specifications, which are given

as the input to the weaver. The mathematical structure of PFA specifications

is expressed as a parametrized algebraic specification. The semantics of the

pointcut corresponds to a quantification statement over the base specification.

Related results have been published in [ZKJ13].

(5) Proofs for the convergence of the weaving process (Section 6.2): I construct a

term rewriting system to solve the word problem that is engendered from the

weaving process of AO-PFA. We prove the convergence of the weaving process

by checking properties of the term rewriting system that I construct. A main

result of term rewriting systems is that the word problem is decidable if the

induced term writing system is convergent. I give the detailed proofs of the

termination and confluence (i.e., convergence) of the rewriting system. I also

prove the unambiguity of the weaving results by putting some restrictions on

the form of join points that are selected by the aspects in AO-PFA. Results

related to this topic have been published in [ZK13].

20

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

1.4 Related Publications

1.4.1 Journals

• [ZKJ13] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An Aspect-

Oriented Language for Feature-Modeling. Accepted May 2, 2013 for publica-

tion in Journal of Ambient Intelligence and Humanized Computing, pages 15,

2013.

1.4.2 Referred Conferences and Workshops

• [ZKJ12a] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An aspect-

oriented language for product family specification. In E. Shakshuki and M.

Younas, editors, Proceedings of the 3rd International Conference on Ambi-

ent Systems, Networks and Technologies, volume 10 of Procedia Computer

Science, ANT 2012 and MobiWIS 2012, pages 482 – 489, Niagara Falls, ON,

Canada, August 2012.

• [ZKJ12b] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. Verification of

aspectual composition in feature-modeling. In George Eleftherakis, Mike

Hinchey, and Mike Holcombe, editors, Software Engineering and Formal

Methods, 10th International Conference, SEFM 2012, volume 7504 of Lecture

Notes of Computer Science, pages 109–125. Spinger Berline / Heidelberg,

Thessaloniki, Greece, October 2012.

21

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

1.4.3 Technical Reports

• [ZKJ11] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An aspect-

oriented language based on product family algebra: Aspects specification

and verification. Technical Report CAS-11-08-RK, McMaster University,

Hamilton, Ontario, Canada, November 2011. http://www.cas.mcmaster.

ca/cas/0template1.php?601.

• [ZK13] Qinglei Zhang and Ridha Khedri. Proofs of the convergence of

the rewriting system for the weaving of aspects in the AO-PFA language

Technical Report CAS-13-01-RK, McMaster University, Hamilton, Ontario,

Canada, April 2013. http://www.cas.mcmaster.ca/cas/0template1.php?

601.

1.5 Structure of the Thesis

In this thesis, I proposed an approach that adapts the aspect-oriented paradigm

to the feature-modeling level. Chapter 2 is a literature review of related work.

Chapter 3 introduces the required mathematical and technical background of the

thesis. The proposed aspect-oriented approach AO-PFA is discussed in Chap-

ters 4, 5, and 6. In particular, Chapter 4 presents the syntax and usage of the

proposed aspect-oriented specification language AO-PFA. Chapter 5 provides a

formal technique for the verification of aspectual composition in AO-PFA. Chap-

ter 6 discusses issues that are related to the automation of the weaving process for

AO-PFA. Chapter 7 concludes our research and suggests the future work.

22

http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601

Chapter 2

Literature Review

In this chapter, we review several related works reported in the literature. Different

techniques related to aspect-oriented software development are presented in Sec-

tion 2.1. In Section 2.2, we explore known product family engineering techniques

that use the aspect-oriented paradigm. Other techniques related to product family

algebra are discussed in Section 2.3.

2.1 Aspect-Oriented Software Development

Software engineers continue seeking new paradigms to improve software quality.

Although the object-oriented paradigm has been widely and successfully used dur-

ing the past decades, researchers realize that there are limitations to decompose

systems with one criterion as the object-oriented paradigm does. Around the

middle of 90s [HL95], new design and programming techniques emerged with the

aim of decomposing systems with more than one criteria. The most influential

ones include SOP [HO93], CF [Ber94], AP [Lie96], and AspectJ [KLM+97]. We

23

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

have discussed AspectJ in Section 1.1.2 as an introduction to the aspect-oriented

paradigm. Actually, all those new programming techniques mentioned above en-

able the modular management of crosscutting concerns and are later broadly re-

ferred to as aspect-oriented techniques [BA01, OT01, LOO01]. We discuss CF,

SOP, and AP as mechanisms that support the aspect-oriented paradigm, and

briefly compare them with the AspectJ language in Section 2.1.1. Although in-

spired by the programming level, the aspect-oriented paradigm was later adapted

to the whole life-cycle of software development. We review different approaches for

aspect-oriented requirement engineering, aspect-oriented architecture design, and

aspect-oriented detailed design in Section 2.1.4, Section 2.1.3, and Section 2.1.2,

respectively. We finally present several results regarding the assessment of the

aspect-oriented paradigm in Section 2.1.6.

2.1.1 Aspect-Oriented Programming (AOP)

Subjective-Oriented Programming (SOP)

Subjective-Oriented Programming [HO93] is a programming paradigm where ob-

jects are described by composition of different subjective perspectives called sub-

jects. SOP was later developed into MDSOC (Multi-Dimensional Separation of

Concerns) [TOH+99], which focuses on the composition of different concerns. Hy-

per/J is an implementation of MDSOC for Java. In Hyper/J, each subject (or a

dimension of concerns) is encapsulated by a module called a hyperslice. A concern

is constructed from different subjects, and the composing rules for subjects are

specified in hypermodules. The MDSOC mechanism intrinsically allows the encap-

sulation and composition of any type of concerns, including crosscutting concerns.

24

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Furthermore, new concerns can be non-invasively introduced into the existing sys-

tems at any time by using MDSOC [OT01].

SOP and MDSOC also have a close relationship with aspect-oriented program-

ming. The aspects can be specified by hyperslices while the composition of as-

pects can be specified by hypermodules. A key difference between the AspectJ

and MDOSOC techniques is that MDSOC is a symmetric approach for all kinds

of concerns, while the AspecJ is an asymmetric approach for base concerns and

crosscutting concerns. In addition, unlike the forced composition of aspects in

aspect-oriented languages, the composition of concerns in MDSOC is more flex-

ible; MDSOC places the composition rules and concerns’ behaviours in different

modules.

Composition Filter (CF)

The CF [Ber94] model provides conventional object-oriented languages with a

model extension, called CF classes. A CF class is an aggregation of several internal

classes composed by filters. A filter is an instance of filter class and manages mes-

sages passing through it. We can specify conditions for accepting and rejecting the

messages. If necessary, additional actions can be taken before actually executing

methods of internal objects. The modularized filters can be used to encapsulate

crosscutting concerns. Furthermore, as the filter is an enhancement attached to

the internal objects, it can be added without changing the original objects. Cross-

cutting concerns such as inheritance, multiple views, synchronization and real time

constraints, have been expressed with CF models [BA01].

In [HMM05], a concept mapping is constructed between the Composition Filter

25

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

model and aspect-oriented languages. Roughly speaking, the concept of pointcut

corresponds to the declared elements in the filter and the concept of advice cor-

responds to the semantics of the filter. The simple declarative style makes the

specification of filters independent from the underlying languages, which gives the

CF models more flexibility for reusing a crosscutting concern. However, as the CF

model only uses passing messages to interact between aspect and base concerns, it

has less capability for composing a crosscutting concern.

Adaptive Programming (AP)

Adaptive Programming [Lie96] is a programming style that expresses the be-

haviours of a method by a traversal strategy and an adaptive visitor. Based on

a class graph, the traversal strategy describes how to reach all participants of the

method computations. With the traversal strategy, the adaptive method can cap-

ture all related participants of a crosscutting concern. The adaptive visitor defines

the actions taken at each participant. With the adaptive visitor, the implemen-

tation of the crosscutting concern can be encapsulated in one place. Therefore,

adaptive programming can be used to solve the tangling and scattering problems

of crosscutting concerns. Besides, due to the use of reflection in many adaptive

methods, the underlying language needs not be prepared for the additional actions

specified by the adaptive visitor. Certain crosscutting concerns, such as synchro-

nization and remote invocation have been implemented by adaptive methods.

Connecting with the aspect-oriented paradigm, the traversal strategy works as

the point cut, whereas the adaptive visitor works as the advice. The DJ (De-

merter/Java) library [HLM+98] is an adaptive programming Java package that

26

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

supports the aspect-oriented paradigm. As DJ library is a pure Java package, it is

easier for an original Java programmer to implement the aspect-oriented paradigm.

However, as the specifying of traversal strategy is based only on graphs, the types

of crosscutting concerns that can be implemented by adaptive programming are

limited.

Other Aspect-Oriented Programming Approaches

Besides developing new techniques for aspect-oriented programming, other types

of aspect-oriented programming approaches focus on applying the aspect-oriented

paradigm to the development of a specific domain. For example, the security con-

cern is commonly recognized as an example of a crosscutting concern. The pointcut

and advice constructors used in the aspect-oriented paradigm could implement se-

curity concerns in a more flexible and transparent way. When implementing a

secure system, we should be aware that application developers are not expected

to be security experts. Therefore, security concerns should be provided as a de-

fault. Moreover, the implementation of security concerns should allow the system

managers to specify different security policies with different applications.

Shah et al. [SH04] implement an aspect oriented security framework, which

categorizes security problems into two types. One type of security problems, such

as buffer overruns and format vulnerabilities, is purely generated from implemen-

tation code, which can be handled directly with the aspect-oriented programming

techniques, by which concrete security mechanisms and their composition with

the target applications are implemented. The other type of security problems,

such as protection of communication channels and event ordering enforcement, is

27

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

more complicated and more likely to be handled at the architecture and design

levels. We also discuss later how to handle this type of security problems with

early aspect-oriented approaches.

2.1.2 Aspect-Oriented Detailed Design (AODD)

The standard software detailed design approaches aim to design the necessary be-

haviours and structures for implementing the demanded systems. The crosscutting

behaviours and structures at the detailed design level have the closest meaning as

aspects in the implementation level. Adapting aspect-oriented programming to

the detailed design level is almost straightforward, although there are some sub-

tle differences. Those new design approaches to specify and compose crosscutting

concerns at the design level are called aspect-oriented detailed design approaches,

which support the modularization and composition of crosscutting concerns.

Although originally developed to support object-orientation design, UML is

used as a basis by most of the aspect-oriented detailed design approaches. Most

aspect-oriented detailed design approaches proposed in the literature are extensions

of the conventional UML approaches. For example, SUP (State charts and UML

Profile) [AEB03] uses UML profile to model base and aspect structure in class dia-

gram. UFA (UML for Aspects) [Her02] specifies abstract UML packages, which are

called aspect packages. An aspect package contains abstract classes and methods to

support the symmetric aspect-oriented paradigm. Moreover, those aspect-oriented

detailed design approaches are inspired by the mechanisms used in aspect-oriented

programming, such as AspectJ or HyperJ. For example, AODM (Aspect Oriented

Design Modeling) [SHU02] specifies an aspect using the stereotype “aspect”, which

28

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

implements the modularization and composition of aspects in an AspectJ-style.

Theme/UML [BC04] is another design approach that specifies an aspect with a

UML meta-model, which implements the modularization and composition of as-

pects in a HyperJ-style.

The above aspect-oriented detailed design approaches mainly focuses on the

specifying and composition of aspects at the design level. However, they are de-

veloped for different levels of design. The high level approaches (e.g., [Her02])

are abstraction design without detail. Middle level approaches (e.g., [BC04])

are implementation-independent design with more details. Low level approaches

(e.g., [SHU02]) are implementation platform specific. At each level of design,

the main design tasks contain defining components, defining aspects, and defin-

ing compositions. In general, the aspect-oriented detailed design process is pro-

posed as a refinement process to integrate design approaches of different abstrac-

tion level [batmaccRS+05], starting from architectual design consequently to high

level design, middle level design, and low level design. Compared with non-AO

design, aspect-oriented detailed design can enhance the cohesiveness and reduce

the coupling of modules for a system. Besides, aspect-oriented detailed design

approaches provide means to resolve conflicts between different concerns at the

design level. Furthermore, as a bridge between the architecture design and imple-

mentation stages, aspect-oriented detailed design approaches provide support for

both backward and forward mapping of definite stages level crosscutting concerns

to artifacts at other software development stages.

29

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

2.1.3 Aspect-Oriented Architecture Design (AOAD)

There are architectural aspects which inherently cannot be encapsulated by archi-

tectural abstractions and crosscut several components. However, the conventional

architecture techniques do not explicitly recognize those architectural aspects. This

shortage does not only lead to the ignorance of some potential aspects at the design

and programming stages, but also leads to difficulties in deriving optimal archi-

tectures with satisfying qualities. To help handle those architectural aspects, new

architect design approaches have been proposed, which are referred to as aspect-

oriented architecture design.

Conventional architectual design approaches are adjusted to support aspect-

oriented architectures. DAOP-ADL [PFT03] extends the ADL (Architectural

Description Languages) with new terms “aspect” and “aspectEvaluationRule”.

The PCS (Perspective Concern Space) [Kan03] is a new architectural technique

that supports the aspect-oriented paradigm by a conventional architectural ap-

proach, SADL (Structural Architecture Description Languages). Since SADL

supports structural decomposition at multiple levels, it allows PCS to describe

aspect-oriented architectures in a Hyper/J style. Another sort of approach are

novel architectural approaches that are directly developed to support the aspect-

oriented paradigm. For example, TranSAT [BCD+04] integrates a new concern

by defining an architecture plane (the new concern), a join point mask and a

set of transformation rules. This is an architectural level application of the join

point designation model as used by AspectJ. AOGA (Aspect-Oriented Genera-

tive Approaches) [KGdLvS04] provides support for the identification and specifi-

cation of architectural aspects. ASAAM (Aspect Software Architecture Analysis

30

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Method) [Tek04] aims to identify the architectural aspects, evaluate the architec-

ture with the crosscutting requirements, and provide information for architecture

refactoring if necessary.

According to the above survey, one focus of aspect-oriented architecture de-

sign techniques is to identify and modularize aspects at the architectural level

(e.g., [Tek04, KGdLvS04]). The architectual aspects together with the output

artefact of aspect-oriented requirement engineering are taken as the input of the

architecture design process. Aspect-oriented architectural description languages

(e.g., [PFT03, Kan03]) then can be used to describe architecture in the aspect-

oriented paradigm. Moreover, architectures can be evolved by aspect-oriented ar-

chitectural evolution methods (e.g., [BCD+04, Tek04]). Same as at the requirement

level, architectural aspects help to avoid crosscutting concerns remaining unhan-

dled till the late design and implementation stages. Meanwhile, aspectual aspects

enable the mapping of some crosscutting requirements directly to architectural

constructors. Evaluation techniques for aspect-oriented architecture design com-

plement the validation methods for crosscutting concerns between requirements

and architecture design level.

2.1.4 Aspect-Oriented Requirement Engineering (AORE)

Since crosscutting requirements are recognised at the requirement level, we found

conventional requirement engineering approaches fall short in dealing with them

due to their tangling and scattering properties. To support the management of

31

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

crosscutting requirements, it is intuitive to adapt the existing concepts and mech-

anisms from the aspect-oriented programming techniques to the requirement level,

which leads to a set of new requirement approaches that are referred to as aspect-

oriented requirement engineering.

Many of the new requirement approaches are extensions of the conventional re-

quirement techniques with explicit constructors for aspects. For example, AORE

with Acrade [RMA03] is the first aspect-oriented requirement engineering ap-

proach that extends conventional viewpoint-based requirement engineering ap-

proaches with notions for aspect modularization and composition. ARGM (As-

pects in Requirement Goal Model) [YLM04] uses goal-based requirement engineer-

ing approaches to identify and handle crosscutting requirements. Use-case based

techniques, such as AOSD/UC (Aspect-Oriented Software Development with Use

Cases) [JN04], and aspectual use case approach [AM03], modularize crosscutting

functional requirements through extended and included use cases. Scenario mod-

eling with aspects [WA04] is a scenario-based technique that models aspectual

scenarios by IPS (Interaction Pattern Specifications) [kKFGS02]. Moreover, new

requirement approaches are proposed in the light of other programming mech-

anisms that support the aspect-oriented paradigm. For examples, Cosmos and

CORE (Concern-Oriented Requirement Engineering) [MAR05, MRA05] are in-

spired by the MDSOC mechanism introduced in the previous section.

The above brief survey of aspect-oriented requirement engineering approaches

shows that the main issues in aspect-oriented requirement engineering are about

the identification of crosscutting requirements, the treatment of both functional

and non-functional requirements, the support of requirements composition (include

32

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

trade-off resolution), and the support of tracing crosscutting concerns. An initial

process of aspect-oriented requirement engineering can be described as a sequence

of concern elicitation, concern identification, concern representation, composition

and trade-off resolution, and requirement mapping [batmaccRS+05]. In particular,

we highlight three main benefits of aspect-oriented requirement engineering. First,

the requirement-level composition of crosscutting concerns helps to early identify

potential conflicts and trade-off resolution. Second, aspects modularization facil-

itates the tracing and mapping of crosscutting concerns to the later development

stages. Last, the separation of crosscutting concerns eases the verification and

validation of the whole system.

2.1.5 Verification Techniques for Aspectual Composition

An important topic related to my work is verifying the correctness of aspectual

composition in aspect-oriented software development. For any reasonable size of

systems, no existing tools and methods are capable to prove the compatibility of

aspects and base systems for all possible weaving scenarios [Kat05]. The problem

is usually confined to the verification of specific properties and/or specific weav-

ing cases. In general, two groups of properties need to be verified for aspectual

composition: inheritance properties and imposition properties [Sip03]. Inheritance

properties refer to desired properties of the base system that should be maintained

after the aspectual composition, while imposition properties refer to new properties

that should be added by composing the aspect. In this section, we discuss several

verification techniques that are commonly used in the literature for the verification

of aspectual composition.

33

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Static code analysis

Static analysis approaches such as typing and dataflow techniques are used to

analyze the changes that can be made by an aspect on the base systems. The

interferences of aspects are checked by analyzing the interaction between aspects

when they are applied at the same join points. Generally speaking, it is possi-

ble to only analyze an aspect for all possible weaving scenarios when the aspect

clearly declares parameters and variables used for waving. On the other hand, it is

necessary to analyze both the aspect and the base system for each weaving when

arbitrary bidding between the aspect and the base system is allowed (e.g., using

same name in both code segments).

A collection of static analysis work focuses on the classification of aspects based

on their effects on base systems [KG99, RSB04]. Identifying categories of aspects

enable a way to prevent the harm of aspects, since certain categories of aspects

will automatically ensure the preservation of some classes of properties of the base

systems. The first relevant work by Katz and Cil [KG99] suggests three basic cat-

egories of aspects: spectative, regulative and invasive aspects. Later on, [RSB04]

proposes a refined classification system for aspects according to an extensive static

code analysis. The work related to what properties can be preserved by different

categories of aspects is still at relatively early stages. An intuitive theorem of such

classification is that all safety and liveness properties of the base system without

next-state temporal modality are preserved by spectative aspects [SK03]. More-

over, the work of Katz in [Kat06] considers the problem regarding temporal logic

properties.

34

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Deductive proofs with assume–guarantee style

The correctness of aspecutal composition can also be verified according to deduc-

tive proofs over aspects. In particular, the assume–guarantee style is used in such

approaches. The assumption specifies the properties to hold before the execution

of the advice, while the guarantee asserts properties should hold after the execu-

tion of the advice. Existing tools, such as PVS [OSRSC01], SPIN [IC08] are used

for the automatic proving process. Ideally, it is possible to have a deductive proof

over an aspect once for all possible weaving. The assume-guarantee style may be

used to verify both inheritance properties and imposition properties for aspectual

composition. For the first group of properties, the guarantee assertion specifies

properties to be added by the aspect. A compatible base system w.r.t. the given

aspect should satisfy the associated assumptions at the join points. With regard

to the inheritance properties, the key is to specify the invariant {I}A{I} where I

indicates inheritance properties that should be maintained before and after apply-

ing the aspect A. In some cases, if the invariant does not deductively hold after

each step of the aspect, new restrictions need to be added to the invariant and new

proofs need to be done for different base systems.

The idea of using deductive proofs for aspects was first described in [Dev03]

and [Sip03]. In [Sip03], base systems are formalized as modular transition systems,

and aspects are formalized as transformations that map a modular transition sys-

tem into another modular transition system. In [Dev03], aspect-oriented programs

are formalized based on ATS (Alternating Transition Systems), and both inheri-

tance and imposition properties can be verified according compositional reasoning.

In [Kat04, Kat06], Katz discussed how to ensure specific properties to be harmless

35

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

using deductive proofs. The work of [IC08] formalizes the behaviour of aspects by

Promela, and focuses on the verification of imposition properties.

Model checking

Model checking is a technique widely used to automatically verify the correctness

of finite-state systems. Formally, it is the problem of determining if a model of

a system satisfies a property: searching if M, s |= φ hold, where M represents a

state transition system, s is a state, and φ is typically written in temporal logic.

There exist well used tools for model checking, such as SPIN and SMV, Bandera

and SLAM. With respect to aspectual composition, the property that needs to

be verified corresponds to φ, and base/weaved systems are formalized as M . The

difficulty to check aspects and base systems separately is to formalize the effects

of aspects on the original state machines of base systems.

The model checking approaches can be applied to the verification of aspects

in various ways. An early work of [KFG04] proposed a method for modular ver-

ification of aspects related to a fix set of pointcut designators. An interface from

the fix poincut designators is generated and fed to the fragment of the advice to

verify the preservation of properties by model checking. A potentially attractive

approach for verifying the correctness of aspectual composition independently of

any base systems is mentioned in [SK03]. The solution is to write an abstraction

of a base system, which is called a dummy basic program. Aspects are composed

with the dummy basic program, and model checking is used to verify if the de-

sired properties hold in the weaved system. Moreover, aspect-oriented-based model

checking is another branch of related work [SK03, UT02]. The idea is to express

36

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

the crosscutting properties by aspects, and model checking approaches are then

used to check the correctness of the weaved systems.

2.1.6 Assessment of Aspect-Oriented Approaches

As a new emerging software development methodology, no mature enough theoret-

ical assessment methods exist for the evaluation of the aspect-oriented paradigm.

To evaluate the effectiveness of the aspect-oriented approaches, assessments are

taken by comparing aspect-oriented approaches with traditional approaches. The

comparison methods include interview surveys, case-studies and experiments [PC01].

In [Bra03], the benefit of the aspect-oriented paradigm is assessed by interviewing

system developers using aspect-oriented techniques. It shows that although current

aspect-oriented approaches have limitations on the understandability, readability,

testability and correctness of software in real world projects, the major factor of

those limitations is the immaturity of those approaches. Therefore, aspect-oriented

approaches still have the potential to improve the quality of software.

Empirical case-studies have been taken to compare aspect-oriented approaches

with other methods, particularly, object-oriented approaches. Compared with the

interview survey method, the case study assessment methods can give us more con-

crete evaluation results; however, it is often limited to the analysis of only the po-

tentiality of aspect-oriented approaches in a particular domain of applications. For

instance, Jaakko et al. [KT09] presents a case study of operating systems. It shows

that when operating systems are developed using an aspect-oriented approach, the

systems can be maintained easily. However the size of the code increases and its

performance is degraded. Nevertheless, the size of the code and the performance of

37

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

the system are not as important in the domain of non-real time operating systems.

[PC01] describes a TCS (Thermic Control Simulation) system. The evaluation

results indicate an increase in reusability and adaptability using aspect-oriented

approaches when compared to standard object-oriented approaches. Similar to

case-study methods, experimental assessment methods can give us numeric eval-

uation data. Moreover, it depends less on the domain of applications. However,

the measure metric is often difficult to identify. The work presented in [KKG07]

analyses the maintainability of software by making changes at code level. The

experimental results suggest that, for a single change at code level, the aspect-

oriented approach has less impact on other modules. In other words, they can

improve maintainability, as changeability is a subclass attribute of maintainabil-

ity.

2.2 Product Family Engineering Using the Aspect-

Oriented Paradigm

The idea of using the aspect-oriented paradigm to the whole life-cycle of the prod-

uct family engineering was proposed years ago [Gri00b]. However, earlier tech-

niques that use the aspect-oriented paradigm in product family engineering mainly

focus on the implementation level, such as Aspectual Mixin Layer [ALS06, AB06]

and Caesar [MO03, MO04]. Aspectual Mixin Layers [AB06] explains how to com-

bine aspect-oriented programming and feature-oriented programming approaches

for implementing features. It allows one to use constructors from both feature-

oriented programming (i.e., mixin class) and aspect-oriented programming (i.e.,

38

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

pointcut and advice). The mixin classes are still used to implement features, while

aspects are used to capture the homogeneous and dynamic crosscutting characters

of features. Caesar [MO03] is another approach that combines the supports of

multi-abstraction modules and join point interception from feature-oriented pro-

gramming and aspect-oriented programming languages respectively. In [MO04],

Mezini et al. demonstrate that the Caesar language can be beneficial to the variabil-

ity management in the context of product families. Only recently, some techniques

are articulated to adapt the aspect-oriented paradigm at the earlier analysis and

design stages. VML4RE [ASM+09] suggests a requirement specification language

to compose elements from different requirement models. The concrete models

supported by the language are use cases, interaction diagrams, and goal models.

Xweave [GV07] is a model weaver supporting the composition of different views,

which helps weaving variable parts of architectural models with base models. In

VML4RE and Xweave, the variabilities of product families are composed with the

concrete models of product families using the aspect-oriented paradigm.

In the literature, there are quite a few attempts which try to adapt the aspect-

oriented paradigm at the feature-modeling level. While the domain engineering

is not aspect free [RM06], adapting the aspect-oriented paradigm at the feature-

modeling level fills the research gap in the literature. The above mentioned aspect-

oriented techniques for product families can be seen as complementary techniques

of the proposed work. By appropriately mapping mechanisms for aspects, we aim

to handle aspects consistently and systematically from the feature models to the

concrete models, and to the implementations of product families.

Besides the benefits and the necessity of adopting the aspect-oriented paradigm

39

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

at the feature-modeling level, we also conjecture that it is feasible to use the aspect-

oriented paradigm at the feature-modeling level. As mentioned at the end of Sec-

tion 2.1.6, the aspect-oriented paradigm can improve the modifiability of systems,

but may also hinder the performance of systems. At the feature-modeling level,

we can take the advantage of the aspect-oriented paradigm as at the programming

level. Moreover, the performance issue is not as critical at the feature-modeling

level as at the programming level. Therefore, the aspect-oriented paradigm is still

reasonable in our context despite of its weakness at the programming level.

2.3 Feature-Modeling Related to Product Fam-

ily Algebra

Product family algebra is the underling technique that we use in our research

to specify feature models. There are several notations of feature models in the

literature, such as FODA [KCH+90], FORM [KKL+01], FOPLE [KLD02], Fea-

tuRSEB [GFd98], Generative Programming [Cza98], FORE [Str04], the Riebisch

Technique [RBSP02], the van Gurp Technique [vGBS01], PLUSS [EBB05], etc..

In this thesis, we use a formal technique called product family algebra [HKM06,

HKM08, HKM11a]. Comparing with other feature-modeling techniques, product

family algebra is notable for the capability of formally and concisely specifying fea-

ture models. Product family algebra is able to capture a set of different notations

found in current feature-modeling techniques. A thorough discussion on how other

feature-modeling techniques can be easily translated into product family algebra

is given in [AK10].

40

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Moreover, a tool Jory [AK10] has been developed to implement automatic

analysis of product family algebra-based specifications. One main issue in feature-

modeling is to analyze the properties of a feature model (e.g., how many variants

a family can generate), and the relations between different feature models (e.g.,

identical, subfamily and refinement). The analysis of feature models, especially

for large-scale feature models, is an error-prone and tedious task. To support the

automatic analysis of feature models, more accurate definitions and more efficient

approaches are demanded in the feature-modeling community [BSRC10].

In the literature, three of the primary techniques used to support the auto-

matic analysis of feature models are propositional logic [Bat05, MWCC08], con-

straint programming [BTRC05], and description logic [FZ06, WLS+07]. The basic

idea for supporting the automatic analysis of feature models is firstly to trans-

late feature models into certain formal or rigorous representations, and then to

reason directly about those formal representations of feature models. With propo-

sitional logic based approaches, feature models are translated into propositional

logic representations, and SAT solvers or other techniques are used to reason on

feature models. Constraint programming based approaches can be considered as

the extension of propositional logic approaches, which allow one to specify more

flexible constraints on feature models. A feature model can be mapped into a

CSP (Constraint Satisfaction Problem), and the analysis is conducted by a CSP

solver. Description logic based approaches are also more expressive than proposi-

tional logic based approaches, and description logic reasoners such as RACER and

Pellter are used to perform automatic analysis on feature models.

41

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

In our context, the feature models are translated into product family algebra-

based specifications, and the specification is further analyzed by the tool Jory [AK10].

Comparing our product family algebra-based technique with the other techniques,

the propositional logic actually can be considered as a particular model of the

abstract structure of product family algebra. The requirement relation defined in

product family algebra also can be used to specify constraints of feature models in

a more flexible way. To implement the automatic analysis of feature models, Jory

uses the binary decision diagrams provided by the library BuDDy [LN10], where

one node in a binary decision diagram represents one feature. BuDDY can handle

up to 50, 000 nodes in every megabyte of memory (tested for 232 nodes) [AK10].

In other words, the Jory tool can provide us an effective and efficient way to auto-

matically analyze feature models with a substantial number of features. Therefore,

techniques based on product family algebra can take the advantages of represent-

ing feature models concisely and analyzing feature models automatically. More

theoretical detail on product family algebra is given in Section 3.1.

2.4 Conclusion

In this chapter, a survey of the literature on aspect-oriented techniques at different

stages of the software development was presented. The survey provides us with

some insight on how to adapt the aspect-oriented paradigm to the feature-modeling

level. Meanwhile, by exploring existing aspect-oriented techniques at different

levels of product family engineering, we conjecture that it is necessary and feasible

to adopt the aspect-oriented paradigm at the feature-modeling level. Finally, by

comparing to other techniques for the modeling and analysis of feature models, we

42

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

argue the advantages of proposing techniques based on product family algebra.

43

Chapter 3

Background

In this chapter, we review necessary background for the thesis. Section 3.1 gives the

details on product family algebra. Sections 3.2—3.5 provide mathematical knowl-

edge that is needed for the research. Section 3.6 is a summary of how background

knowledge is employed in the reminder of thesis.

3.1 Product Family Algebra

In this section, we first illustrate some basic notations of the feature models using

a simple example of a product family. After that, we present the precise definition

of product family algebra, and then define the basic notations of feature models

based on product family algebra.

44

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

3.1.1 Basic Concepts of Feature Models

Figure 3.1 gives an example of a feature model adapted from a family of mobile

phones. The feature model is represented using widely used feature diagram no-

tations, and is basically a tree-like diagram. The example is complex enough to

illustrate the basic characteristic concepts that are used by the feature-modeling

community.

The root of the tree, which is a family of mobile phones, denotes the do-

main that is modeled. All other nodes express features that can be reused in

the domain of mobile phones, and different types of edges constrain the combi-

nation of features for producing a valid mobile phone. For example, every phone

must support Calls and Screen display, which are referred to as mandatory fea-

tures. But a phone does not necessarily include GPS and Media device, which

are referred to as optional features. Moreover, three alternative features, Basic,

Colour, and High resolution can be considered as specializations of the feature

Screen display. The term ”alternative features” indicates that only one of the

three features, Basic, Colour, and High resolution, can be supported by a mo-

bile phone. On the other hand, a mobile phone with the support of Media device

can include Camera, MP3 player, or both of them. The features Camera and MP3

are referred to as or-group features.

In addition, a feature model can be equipped with what are called cross-

tree constraints. Those cross-tree constraints between features are typically in

two forms: a feature A requires a feature B, or a feature A excludes a feature

B. For instance, a mobile phone supports the Camera device must support the

45

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 3.1: A feature model example adapted from [BSRC10]

High resolution screen. The GPS and the Basic screen are incompatible fea-

tures, which means both features GPS and Basic cannot be in a same product of

mobile phone.

3.1.2 Mathematical Definitions of Product Family Algebra

We first introduce several properties on a binary operation, and give the definition

of semirings.

Definition 3.1. Given a binary operation ∗ on a set S, we say that ∗ is:

• Closed iff ∀(a, b | a, b ∈ S : a ∗ b ∈ S);

• Associative iff ∀(a, b, c | a, b, c ∈ S : (a ∗ b) ∗ c = a ∗ (b ∗ c));

• Commutative iff ∀(a, b | a, b ∈ S : a ∗ b = b ∗ a);

• Idempotent iff ∀(a | a ∈ S : a ∗ a = a).

In particular, the operator ∗ has an identity iff ∃(e | e ∈ S : ∀(a | a ∈ S :

a ∗ e = e ∗ a = a)), and it has an annihilator iff ∃(e | e ∈ S : ∀(a | a ∈ S :

a ∗ e = e ∗ a = e)).

46

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Definition 3.2. Given two binary operation ∗ and ◦ on a set S, we say that ∗ is

left-distributive (right-distributive) over ◦ iff ∀(a, b, c | a, b, c ∈ S : a ∗ (b ◦ c) =

(a ∗ b) ◦ (a ∗ c)) (iff ∀(a, b, c | a, b, c ∈ S : (a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c))).

Definition 3.3 (semiring). A semiring is an algebraic structure denoted by a quin-

tuple (S,+, ·, 0, 1), such that S is a set, + and · are binary operations over S,

and 0, 1 ∈ S. In particular, the binary operation +, called addition, is closed,

associative, and commutative, and has an identity element 0. The binary opera-

tion ·, called multiplication, is closed and associative, and has an identity element

1. Multiplication is left and right distributive over addition. Moreover, 0 is the

annihilator element for multiplication.

Definition 3.4 (commutative and idempotent semiring). A commutative and

idempotent semiring is a semiring (S,+, ·, 0, 1) such that multiplication is com-

mutative, and addition (+) is idempotent.

Definition 3.5 (product family algebra e.g., [HKM11a]). A product family algebra

is a commutative idempotent semiring (S,+, ·, 0, 1), where

(a) S corresponds to a set of product families;

(b) + is interpreted as the alternative choice between two product families;

(c) · is interpreted as a mandatory composition of two product families;

(d) 0 corresponds to an empty product family;

(e) 1 corresponds to a product family consisting of only a pseudo-product which

has no features.

47

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Regarding the above definition of product family algebra, an equation e.g., f1 ·

f2 = 0 indicates that the composition of the features f1 and f2 generates an empty

family. Such equations can be used to reflect the fact that not all feature compo-

sitions are possible or desirable in reality. Moreover, an optional feature f can be

interpreted as an alternative choice between the features f and 1. All those basic

concepts as introduced in Section 3.1.1 can be expressed mathematically. For ex-

ample, the product family of Mobile Phone can be represented by the term Call

· Screen display · (1+Media) · (1+GPS), which is referred to as a product family

term. The term (Basic +Colour+High resolution) represents alternative fea-

tures for Screen display, while the term (Camera + MP3 + Camera · MP3) rep-

resents the or-group features for Media. Both types of cross-tree constraints in

feature models can be captured by a requirement relation over the product family

algebra. To give the definition of the requirement relation, we also define two other

relations over the product family algebra, subfamily and refinement.

Definition 3.6 (subfamily e.g., [HKM11a]). For elements a and b in a product

family algebra, the subfamily relation (≤) is defined as a ≤ b
def⇐⇒ a+ b = b.

The subfamily relation indicates that, for two given product families a and b,

a is a subfamily of b if and only if all the products of a are also products of b.

Notice that a product family term can also be used to specify a configuration of

a product family. We can check whether a configuration is a valid by using the

subfamily relationship. Take the above mobile phone example and let Camera ·MP3

correspond a certain configuration. Since we have (Camera · MP3) ≤ Media, we say

Camera · MP3 is a valid configuration of the feature model corresponding to Media.

Definition 3.7 (refinement e.g., [HKM11a]). For elements a and b in a product

48

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

family algebra, the refinement relation (v) is defined as a v b
def⇐⇒ ∃(c |: a ≤

b · c).

The refinement relation indicates that, for two given product families a and

b, a is a refinement of b if and only if every product in family a has at least all the

features of some products in family b. Taking the mobile phone example again,

we have Media v (Camera + 1), which indicates that Media is a refinement of

Camera + 1.

Definition 3.8 (requirement e.g., [HKM11a]). For elements a, b, c, d and a prod-

uct p in product family algebra, the requirement relation (→) is defined in a family-

induction style as:

a
p→ b ⇐⇒df p v a =⇒ p v b

a
c+d→ b ⇐⇒df a

c→ b ∧ a d→ b

The requirement relation is used to specify constraints on product families. For

elements a, b and c, a
c→ b can be read as “a requires b within c”. For example, the

“ requires” and “excludes” constraints in Figure 3.1 can respectively be represented

as follows:

Camera -Mobile Phone
High resolution;

Basic · GPS -Mobile Phone 0.

For more details on the use of this mathematical framework to specify product

families, I refer the reader to [HKM06, HKM08, HKM11a].

49

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

〈PFASpec〉 := (〈Basic Feature〉 | %〈comment txt〉\n)+

(〈Labelled Family〉 | %〈comment txt〉\n)+

(〈Constraint〉 | %〈comment txt〉\n)∗

〈Basic Feature〉:=bf 〈base feature id〉%〈comment txt〉\n
〈Labelled Family〉:=〈family id〉=〈Family Term〉

%〈comment txt〉\n
〈Constraint〉:=constraint(〈Family Term〉, 〈Family Term〉,

〈Family Term〉)%〈comment txt〉\n
〈Family Term〉:=0 | 1 | 〈base feature id〉 | 〈family id〉

| 〈Family Term〉+ 〈Family Term〉
| 〈Family Term〉 · 〈Family Term〉

〈base feature id〉:=String of letters, numbers and “ ”
〈family id〉:=String of letters, numbers and “ ”
〈comment txt〉:=String of letters, numbers, symbols

and space.

Figure 3.2: Grammar of PFA language given in BNF notation

3.1.3 Tool Support

As we have mentioned, the tool Jory is developed based on product family algebra

to represent and analyze feature models. Jory specifies feature models as PFA

specifications, which are taken as the base specifications in the proposed aspect-

oriented language. We give the grammar of PFA language in Figure 3.2. I use

’\n’ to denote the end of the line. Briefly speaking, there are three types of

specification constructs in a PFA specification: basic feature declarations, labelled

family equations, and constraints. Each basic feature is declared with a basic

feature label preceded by the keyword bf. Each labeled family is defined as an

equation with a product family label at the left side and a product family algebra

term at the right side. A constraint is represented by a triple preceded by the

keyword constraint and corresponds to a requirement relation in product family

algebra.

50

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Specification 1: A Mobile Phone Product Family
% Declarations of basic features

1. bf Calls
2. bf Basic
3. bf Colour
4. bf High resolution

5. bf Camera
6. bf MP3
7. bf GPS

% Definitions of labeled product families
8. Screen display = Basic + Colour + High resolution % Specify alternative features
9. Media = Camera + MP3 + Camera · MP3 % Specify or-group features
10. Mobile Phone = Calls · Screen display · (1 + Media) · (1 + GPS) % Specifying mandatory and optional features

% Articulating a constraint on the family
11. constraint(Camera, Mobile Phone, High resolution) % Specify a “requires” constraint
12. constraint(Basic · GPS, Mobile Phone, 0) % Specify a “excludes” constraint

Figure 3.3: Example of a PFA specification

Figure 3.3 is a PFA specification corresponding to the example of mobile phone

product family. In this specification, Lines 1–7 declare basic features in the family,

which corresponds to external notes of the diagram in Figure 3.1. Lines 8–10 define

labeled product families, which corresponds to the internal notes in the diagram in

Figure 3.1. Specially, the labeled product family in Line 10 is corresponding to the

root of the diagram in Figure 3.1. Line 11–12 respectively specify the “requires”

and “excludes” constraints given in Figure 3.1.

3.2 Needed Notions from Graph Theory

Graphs are mathematical structures that are wildly used to model pairwise rela-

tions between objects. In our research, we apply the graph theory [Die05] to detect

invalid aspecutal composition. Meanwhile, the basic notations of graphs are men-

tioned in the diagram of feature models. We briefly introduce several required

graph concepts in this subsection.

51

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Definition 3.9 (graph). A graph is a 2-tuple G = (V,E), where V is a set of

vertices and E ⊆ V × V is a set of edges.

The degree of a vertex is the number of edges at the vertex. The vertices of

degree 1 are called external notes, while other vertices are called internal notes.

A digraph is a graph where each edge has the head and the tail vertices. In

particular, let (u, v) denote an edge in a digraph, then u is called the tail and

v is called the head of the edge. When u = v, we say that the edge (u, v) is a

loop. Moreover, u is called the predecessor of v, while v is called the successor

of u. We denote the set of all successors of a vertex x as N+(x) and the set of all

predecessors of a vertex x as N−(x).

A walk in a graph G = (V,E) is a non-empty list v0, e0, v1, ..., vk−1, ek−1, vk

where vi ∈ V for i = 0, . . . , k, and ei ∈ E ∧ ei = {vi, vi+1} for i = 0, . . . , k − 1. A

path in a graph can be represented as a walk without repeated vertices and edges.

We use (u, v)–path ∈ En to denote a path starting with vertex u and ending with

vertex v, where n denotes the length of the path. In particular, we say a (u, v)–path

is a cycle when u = v.

3.3 Needed Notions from Universal Algebra

The concept of algebra is necessary for understanding both the underlying tech-

nique of a product family algebra and the proposed techniques in this thesis. Basic

notations of universal algebra are given in this subsection.

Definition 3.10 (signature). A signature, denoted as SIG = (S ,OP), consists of a

set of sorts S and a set of constants and operations OP =
⋃
s∈S

Ks ∪
⋃

w∈S+, s∈S
OPw ,s .

52

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

All sets Ks and OPw ,s are pairwise disjoint sets such that Ks denotes the set of

constant symbols of sort s ∈ S, and OPw ,s denotes the set of operation symbols

with argument sorts w ∈ S+ and range sort s ∈ S.

Definition 3.11 (SIG-algebra). Let SIG = (S ,OP) be a signature. A SIG-algebra A

consists of a carrier set A =
⋃
s∈S
As , and a mapping associated with each operation

symbol N : s1, . . . , sn → s in OP with a function NA : As1 × · · · × Asn → As.

Definition 3.12 (terms). Give a signature SIG = (S ,OP) and a set X =
⋃
s∈S
Xs

of variables disjoint from SIG. The sets of terms w.r.t. the sort s and X, denoted

as TOP ,s(X), is inductively defined as follows:

• Base cases: Xs ∪Ks ⊆ TOP ,s(X)

• Inductive cases: For all operation symbols N ∈ OP such that N : s1, . . . , sn →

s, we have N(t1, . . . , tn) ⊆ TOP ,s(X) where t1 ∈ TOP ,s1 (X), . . . tn ∈ TOP ,sn (X).

In particular, we denote TSIG(X) =
⋃
s∈S
TOP ,s(X), and denote the set of terms

without variables (i.e., TSIG(∅)) as TSIG for short.

Definition 3.13 (term algebra). Let SIG = (S,OP) be a signature and X be a

set of variables disjoint from SIG. The SIG-term algebra generated by X consists

of the carrier set TSIG(X), and each operation symbol N : s1, . . . , sn → s ∈ OP

is interpreted as a function NTSIG(X) : TOP ,s1 (X) × · · · × TOP ,sn (X) → TOP ,s(X) :

t1, . . . tn → N(t1, . . . tn).

Definition 3.14 (axiom). Give a signature SIG, and a set of variables X dis-

joint from SIG. An axiom w.r.t. SIG can be represented as a triple (X,L,R)

where L,R ∈ TSIG(X). We call L the left-hand side (lhs) and R the right-hand

side (rhs).

53

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

3.4 Needed Notions from Algebraic Specifications

The algebraic specification [CEW93] is a formal description technique for abstract

data types, which is developed to capture the specifications and designs of soft-

ware systems. The theory of algebraic specifications is based on universal algebra

and category theory. In this section, we introduce the basic concepts such as al-

gebraic specifications, constraints, parametrized specifications. More theoretical

foundations of algebraic specifications can be found in [EM85, EM90].

Definition 3.15 (algebraic specification [EM85]). An algebraic (equational) spec-

ification SPEC = (S ,OP ,E) consists of a signature SIG = (S ,OP) and a set of

axioms E w.r.t. SIG.

Definition 3.16 (parametrised specification [EM85]). A parametrised specification

is denoted as PSPEC = (PAR,BOD), where PAR is called the formal parameter

specification and BOD is called the body specification. In particular, let (S ,OP ,E)

represent PAR and (S1 ,OP1 ,E1) represent BOD, then an algebraic specification

(S ,OP ,E)] (S1 ,OP1 ,E1) is called the target specification, where] stands for

the disjoint union of sets.

For a parametrized specification, the parameter specification is an algebraic

specification, and it is a sub-specification of the target specification.

Definition 3.17 (algebraic specifications with constraints [EM90]). An algebraic

specification SPEC = (S ,OP ,E) with a set of constraints C can be written as ei-

ther SPECC = (S ,OP ,E ∪ C) or SPECC = (S ,OP ,E ,C), where C is in general

a set of some first or higher order logical formulas that have to be satisfied by the

algebra of SPEC .

54

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

3.5 Needed Notions from Term Rewriting

Term rewriting [BN98] is a theoretical technique based on equational logic. Term

rewriting can be applied in any context where efficient methods for equational

reasoning are required. In this subsection, we briefly discuss the theory of term

rewriting and present several main results. All of the following definitions are given

in [BN98]. For lemmas, theorems, and corollaries listed here, we point out exactly

where their proofs can be found.

3.5.1 Equational Problems

Definition 3.18 (semantic consequence). Given a set E of axioms w.r.t. a sig-

nature SIG, the SIG-algebra A is a model of E iff every axiom in E holds in A.

Let V be a countable infinite variable set disjoint from SIG, and s, t ∈ TSIG(V).

We say an equation s = t is a semantic consequence of E (i.e., E |= (s = t)) iff it

holds in all models of E.

Lemma 3.1 ([BP06, p. 8]). Suppose ∆ is a set of formulas and ψ and ρ are

formulas, then (∆ ∪ {ψ}) |= ρ ⇐⇒ ∆ |= (ψ =⇒ ρ)

In particular, the relation =E
def
= {(s, t) ∈ TSIG(V) × TSIG(V) | E |= s = t}

is called the equational theory induced by E. The relation =E is proved to be

a congruence relation on TSIG(V), and TSIG(V)/=E
denotes the quotient algebra

w.r.t. =E.

Definition 3.19 (word problem). Given a set E of axioms w.r.t. a signature SIG,

and a set V of countable infinite variables disjoint from SIG, the word problem for

E is the problem of deciding s =E t for arbitrary s, t ∈ TSIG(V).

55

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

3.5.2 Reduction Relations

A reduction, usually denoted by −→, is in general a binary relation on a set. We

denote following notations for the reduction relation. Let
∗−→ denote the reflexive

and transitive closure over −→, and let
∗←→ denote the reflexive, transitive, and

symmetric closure over −→. We say x is reducible iff there is a y 6= x such that

x −→ y. We say y is a normal form of x iff x
∗−→ y and y is not reducible.

Moreover, the normal form of x is denoted as x � if x has a unique normal form,

and x and y are joinable, denoted as x ↓ y, if there is a z such that x
∗−→ z and

y
∗−→ z. In addition to the above notations, several important properties of the

reduction relation that are used in our context are given in the following definition.

Definition 3.20. A reduction relation −→ is said to be confluent iff x
∗−→ y1 ∧

x
∗−→ y2 =⇒ y1 ↓ y2. It is terminating iff every descending chain a0 −→ a1 −→

. . . is finite. It is convergent iff it is both confluent and terminating.

Given a signature SIG and a countably infinite set V of variables disjoint

from SIG , let Sub(TSIG(V)) or simply Sub denote a set of TSIG(V)-substitutions

which are a function θ : V → TSIG(V) such that θ(x) 6= x for only finitely many

xs. Moreover, given a term s ∈ TSIG(V), the set of positions of the term s, denoted

by Pos(s), is inductively defined as follows:

• Base cases: If s = x ∈ V , then Pos(s) = {ε}, where ε denotes the empty

string.

• Inductive cases: If s = f(s1, . . . , sn), then

Pos(s) = {ε} ∪
n⋃
i=1

{ip | p ∈ Pos(si)}

56

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

For example, the set of position for term ·(x,+(y, z)) is {ε} ∪ {1 + Pos(x), 2 +

Pos(+(y+ z))} = {ε, 1, 2 + {ε, 1 +Pos(y), 2 +Pos(z)}} = {ε, 1, 2, 21, 22}. On the

other hand, given p ∈ Pos(s), let s|p denote the subterm of s at position p. In

particular, we define s|ε = s, and f(s1, ..., sn)|iq = si|q. For example, if we consider

the position 22 and the term ·(x,+(y, z)), then we can obtain ·(x,+(y, z))|22 =

+(y, z)|2 = z.

Definition 3.21 (reduction relation induced by equations). Let E be a set of

axioms w.r.t. the signature SIG and V be a countable infinite set of variables

disjoint from SIG. The reduction relation induced by E, denoted by→E⊆ TΣ(V)×

TΣ(V), is defined as follows: s→E t iff ∃((l, r) ∈ E, p ∈ Pos(s), θ ∈ Sub |: (s|p =

θ(l)) ∧ (t = s[θ(r)]p)).

Definition 3.22 (syntactic consequence). Give a set E of axioms w.r.t. the sig-

nature SIG. Let V be a set of countable infinite variables disjoint from SIG,

and s, t ∈ TSIG(V). We say s = t is a syntactic consequence of E (E ` (s = t)) iff

we can derive s = t by applying the inference rules which express the closure of E

under reflexivity, symmetry, transitivity, substitutions, and SIG-operations.

According to the definition of −→E, it is easy to show that s
∗←→E t iff E `

(s = t). The following theorems are results that relate the semantic consequence

to the syntactic one.

Theorem 3.2 ([BN98, p. 55]). Let E be a set of axioms. The syntactic consequence

relation
∗←→E coincides with the semantic consequence relation =E .

Theorem 3.3 ([BN98, p. 59]). If E is finite and −→E is convergent, then =E is

decidable.

57

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

3.5.3 Term Rewriting Systems

Definition 3.23 (rewrite rules). A rewrite rule w.r.t. a signature SIG is an ax-

iom (X,L,R) w.r.t. a signature SIG such that L is not a variable and Var(L) ⊇

Var(R). In this case we may present a rewrite rule as (X,L −→ R).

A redex (reducible expression) is an instance of the lhs of a rewrite rule, while

rewriting the redex means replacing the redex with the corresponding instance of

the rhs of the rule. Formally, given terms with variable declaration (t, Y1) and

(t′, Y2) and a rewrite rule (X,L −→ R) w.r.t. a signature SIG , we say (t′, Y2) is

derived from (t, Y1) by application of (X,L −→ R), if the two following conditions

are satisfied:

1. There is y0 ∈ V and t0 ∈ TSIG(Y1 ∪ Y2 ∪ {y0}) such that there is at most one

occurrence of y0 in t0, and there is a mapping σ : X → TSIG(Y1 ∪ Y2), such

that t = h1(t0), and t′ = h2(t0) for

h1(x) =

 σ(L) if x = y0

x otherwise

h2(x) =

 σ(R) if x = y0

x otherwise

where, σ, h1, and h2 denote the extended substitutions of σ, h1, and h2,

respectively.

2. (X ∪ Y1) 6= ∅ =⇒ TSIG(Y2) 6= ∅.

We sometimes denote the derivation of terms by the substitution of terms. The

58

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

above derivation t′ can be represented as t′ = t[L/R], where L = σ(L), R = σ(R),

and L is subterm of t.

Given a set of rewrite rules R, we say that (tr, Yr) is derivable from (t1, Y1)

with rules R, denoted as (t1, Y1) −→
R

(tr, Yr), if there is a rewrite sequence (t1, Y1),

(t2, Y2), . . . , (tr, Yr) for r > 1 such that for i = 1, 2, . . . , r−1, (ti+1, Yi+1) is derived

from (ti, Yi) by application of some rule in R. The following theorem is a basic

result of term rewriting systems, which is used in this thesis.

Theorem 3.4 ([EM85, p. 127]). Let R and Q be an arbitrary sets of rewrite rules

then (t1, X1) −→
R

(t2, X2), and (t2, X2) −→
Q

(t3, X3) imply (t1, X1) −→
R∪Q

(t3, X3).

Definition 3.24 (abstract reduction system). An abstract reduction system is a

pair (A,−→), where −→ is a reduction relation on the set A.

A term rewriting system (TRS) R is a set of rewrite rules w.r.t. a signature

SIG , which corresponds to a reduction system (TSIG(V),−→R). The reduction

relation −→R is well-defined as given in Definition 3.21. We say R is terminating,

confluent, and convergent iff −→R is terminating, confluent, and convergent. In the

remainder of this subsection, we present several results related to term rewriting

systems, which are used later to prove the termination and confluence of the term

rewriting system in our context.

Definition 3.25 (lexicographic path order). Let > be a strict order over signature

Σ. The lexicographic path order >lpo induced by > is defined as follows: s >lpo t

iff

(LOP1) t ∈ Var(s) and s 6= t.

(LOP2) s = f(s1, . . . , sm), t = g(t1, . . . , tn) and

59

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(LOP2a) ∃(i | 1 ≤ i ≤ m : si ≥ t)

(LOP2b) f > g ∧ ∀(j | 1 ≤ j ≤ n : s >lpo tj)

(LOP2c) f = g ∧ ∀(j | 1 ≤ j ≤ n : s >lpo tj)

∧ ∃(i | 1 ≤ i ≤ m : s1 = t1, . . . si−1 = ti−1 ∧ si >lop ti)

Theorem 3.5 ([BN98, p. 119]). For any strict order > over signature Σ, the

induced lexicographic path order >lpo is a simplification order on TΣ(V).

Theorem 3.6 ([BN98, p. 103]). Let Σ be a finite signature. Every simplification

order > on TΣ(V) is a reduction order.

Theorem 3.7 ([BN98, p. 103]). A term rewriting system R terminates iff there

exists a reduction order > that satisfies l > r for all l→ r ∈ R.

Given a set of equations E, and two terms s and t, the process of finding a

substitution θ such that θ(s) = θ(t) is known as ”syntactic unification”. We call θ

a unifier of s and t, or a solution of the equation s
?
= t.

Definition 3.26 (Most General Unifier). Let S be a set of equation {s1
?
= t1, . . . , sn

?
=

tn). A substitution θ is a most general unifier of S iff (1) θ is a solution of S, i.e.,

∀(i | 1 ≤ i ≤ n : θ(si) = θ(ti)); (2) θ is a least element of all the solution or

unifier of S, i.e., ∀(θ′ | θ′ is a solution of S : ∃(δ |: θ′ = δθ))

Definition 3.27 ([BN98, p. 139]). Assume that two rules l1 → r1 and l2 → r2

satisfy Var(l1, r1)∩Var(l2, r2) = ∅. Let p ∈ Pos(l1) such that l1|p is not a variable

and let θ be a mgu (most general unification) such that θ(l1|p) = θ(l2). This

determines a critical pair 〈θ(r1), θ(l1[θ(r2)]p)〉. If two rules give rise to a critical

pair, we say that they overlap. When considering the overlap of a rule with a

renamed variant of itself, it is safe to ignore the case where p = ε.

60

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Lemma 3.8 ([BN98, p. 76]). Let s1, . . . , sm, and t1, . . . , tn be terms over the

signature Σ. An equation f(s1, . . . , sm)
?
= g(t1, . . . tn), where f, g ∈ Σ, f 6= g, has

no solution.

Theorem 3.9 ([BN98, p. 140]). A terminating term rewriting system is confluent

iff all its critical pairs are joinable.

3.6 Conclusion

In this chapter, we explained the technique of product family algebra for specify-

ing feature models. Moreover, we introduced several graph theoretical concepts,

elements of universal algebra, algebraic specifications, and term rewriting systems.

The above concepts and notions are needed for the discussions presented in the

remaining chapters of this thesis and for making the thesis self-contained. In

Chapter 4, an aspect-oriented specification language is proposed by analogizing

the essential elements of the aspect-oriented paradigm to the context of product

family algebra. In Chapter 5, graph concepts are used to detect invalid aspectual

composition. The concepts from universal algebra play an important role in the

formal techniques of algebraic specifications and term rewriting systems. In Chap-

ter 6, algebraic specifications and term rewriting systems are further discussed and

used in the automation of the weaving process.

61

Chapter 4

Specifying Aspects with AO-PFA

In this chapter, we discuss how to articulate aspects in feature models and par-

ticularly how to properly use the construct of the proposed language AO-PFA.

Section 4.1 describes the general design of the specification language. Section 4.2

precisely presents the syntax and usage of the proposed specification language AO-

PFA. Section 4.3 presents a classification of aspects in AO-PFA. Section 4.4 gives

examples to illustrate the usage of the proposed language. The conclusion is the

subject of Section 4.5.

4.1 Introduction

The aspect-oriented paradigm can improve the modularity and modifiability of sys-

tems by decomposing systems with additional criteria. With the aspect-oriented

paradigm, base concerns and crosscutting concerns of a system are separately en-

capsulated. The composition of base concerns is the symmetric composition, while

the composition of aspect and base concerns, which is also referred to as aspectual

62

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

composition, is the asymmetric composition. The designed product family algebra-

based specification language should facilitate both the symmetric and asymmetric

composition of feature models. At the feature-modeling level, base concerns refer

to different views of a feature model. As discussed in Chapter 1, constraints are

used in product family algebra to tackle the view reconciliation problems for the

systematic composition of feature models. The symmetric composition of feature

models can be related to the view integration of feature models. The asymmetric

composition of feature models, on the other hand, can be considered as introducing

additional information to the feature model of the base concern.

4.1.1 Rationale for AO-PFA Design

The proposed aspect-oriented language is an extension of the PFA language with

the ability to specify aspects, and thus is called AO-PFA. The choice of extending

the PFA language enables us to reuse existing tools for product family algebra.

Figure 4.1 conveys the general idea of base specifications, aspects, and their weav-

ing results. We identify two types of specifications in AO-PFA: PFA specifications

and aspect specifications. A PFA specification (See Section 3.1) takes the role as

the base specification, which specifies the integrated views of a product family.

Additional information is introduced to the base specification by weaving the as-

pect specification to the base specification. The resulting specification is still a

PFA specification, which can be automatically and efficiently analyzed using the

tool Jory.

63

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 4.1: General Illustration of AO-PFA

To facilitate the asymmetric composition of feature models, several require-

ments should be considered regarding the design of aspect specification. We iden-

tify that an aspect generally requires to capture what, where, and how an aspect

is composed with the base specification.

The advice in an aspect describes what is composed with the base specification.

It requires that the type of base specifications is not changed by weaving aspects to

the base specifications. Hence, the advice needs to be syntactically similar to the

base specifications. In particular, the proposed language for advice should enable

the introduction of product family algebra terms, which are basic elements of PFA

specifications.

The pointcut in an aspect identifies locations where the advice is introduced in

the base specification. We need to specify a quantification statement over the base

specification, which is considered as a trigger for composing aspects. Specially,

64

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

corresponding to different types of constructs in base specifications, the proposed

language for aspects should enable the matching of basic features, labeled families,

and constraints in PFA specifications.

The composition rule for an aspect at the selected join points captures how the

aspect is composed at the identified locations. Considering all possible changes

that we want to impose on the base specification, the identified locations might be

augmented, removed, or replaced. Therefore, the proposed language for aspects

should also enable us to specify composition rules that handle the above three

kinds of modification scenarios.

4.1.2 A Running Example

The following example of an elevator product family is adapted to illustrate the us-

age of the proposed language. The diagram in Figure 4.2 illustrates a feature model

of elevator product line, which includes a mandatory feature base functional-

ity and an optional feature service that provides additional service for the eleva-

tor family. The base functionality includes a mandatory feature move control

and an optional feature light display. We consider two unanticipated variabil-

ities for service: light reset and failure capture. The feature light reset

may inherently depend on the feature light display, and the feature failure ca-

pture may inherently depend on both the move control and the light display.

In addition, we also assume that the feature service can be evolved with a manda-

tory feature logging.

Specification 1 in Figure 4.3 corresponds to a base (primary) specification

for the above elevator product family. Lines 1–3 declare three basic features

65

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 4.2: A simplified example of the feature model for an elevator system

Specification 1: A PFA specification of the elevator product family
1. bf move control
2. bf light display
3. bf service
4. optional light display = light display +1
5. optional service = service +1
6. base functionality = move control · optional light display
7. elevator product line = base functionality · optional service
8. full base functionality = move control · light display
9. customized elevators = move control +full base functionality · service
10. constraint(service, elevator product line, light display)

Figure 4.3: Example of a base specification

named base functionality, light display, and service. The family equa-

tions in Line 4 and Line 5 indicate that light display and service are op-

tional features in the considered family. Line 6 and Line 7 give the definitions

of base functionality and elevator product line, respectively. Line 8 and

Line 9 correspond to two specific configurations, named full base functionality

and customized elevators, of the feature models. Precisely, the configuration

66

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

〈AspectSpec〉 := (〈Aspect〉\n)+

〈Aspect〉 := 〈aspectId〉 = 〈Advice(jp)〉\n where jp ∈ 〈POINTCUT〉
〈aspectId〉 := identifiers of aspects
〈Advice(jp)〉 := product family terms defined in PFA using a variable ’jp’
〈POINTCUT〉 := (base, 〈EXPRESSION BASED〉, 〈Constraint-related〉)

|(〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Feature-related〉)
| (〈SCOPE〉, 〈EXPRESSION BASED〉, 〈Family-related〉)

〈SCOPE〉:=〈SCOPE〉 ; 〈SCOPE〉|〈SCOPE〉 : 〈SCOPE〉|base
| within{〈PF label〉}| through{〈PF label〉}|protect{〈PF label〉}

〈EXPRESSION BASED〉:=Boolean expression upon PFA
〈Feature-related〉:=declaration{〈PFT〉}|inclusion{〈PFT〉}
〈Family-related〉:=creation{〈PFT〉}|component creation{〈PFT〉}

|component{〈PFT〉}|equivalent component{〈PFT〉}
〈Constraint-related〉:=constraint[〈list〉] {〈PFT〉}
〈list〉:=left〈list’〉|middle〈list’〉|right〈list’〉
〈list’〉:=, left〈list’〉|, middle〈list’〉|, right〈list’〉|ε
〈PFT〉:=product family terms defined in PFA.
〈PF label〉:=identifiers of product families.

Figure 4.4: The language for the specification of aspects

full base functionality is a member of base functionality, and the configu-

ration customized elevators is a subfamily of elevator product line. Line 10

is a constraint, which indicates that within the product family elevator product -

line the feature service always requires light display. The elevator example is

used as a running example in the next section, where we explain how the PFA spec-

ification can be modified with additional features light reset, failure capture,

and logging by composing aspects.

4.2 Aspect Specifications in AO-PFA

The grammar of an aspect specification in AO-PFA is given in Figure 4.4, where ε

denotes the empty string. In general, there are a sequence of aspects in an aspect

67

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

specification, while each aspect is compactly specified as follows:

Aspect 〈aspectId〉 = 〈Advice(jp)〉

where jp ∈
(
〈scope〉, 〈expression〉, 〈kind〉

)
The syntax of an aspect contains three parts: a product family label 〈aspectId〉, a

product family term 〈Advice(jp)〉, and a triple (〈scope〉, 〈expression〉, 〈kind〉). The

above syntax of an aspect allows one to specify the demanded language expres-

siveness that is identified in Section 4.1.1. The equation 〈aspectId〉 = 〈Advice(jp)〉

corresponds to the advice of an aspect in AO-PFA. The equation sometimes is

referred to as the advice equation in the reminder of this thesis. Moreover, a vari-

able jp denotes an instance of join points that are selected by an aspect. There-

fore, composition rules at the selected join points can be specified according to

the appearance of jp in 〈Advice(jp)〉. We further discuss different modification sce-

narios at the selected join points (i.e., augmenting, narrowing, and replacing) in

Section 4.2.2. The triple (〈scope〉, 〈expression〉, 〈kind〉) is the pointcut language in

AO-PFA. Pointcuts associated with basic features, labeled families, and constraints

are respectively presented in Section 4.2.3.

In the following of this section, the proposed language is further explained

along with those essential elements for aspect-oriented techniques (i.e., join points,

advice, and pointcut).

4.2.1 Join Points in AO-PFA

All product family terms defined in PFA specifications should be potential join

points in the AO-PFA. More specifically, in a PFA specification there are two roles

for the same form of a product family term; they are either being defined or being

68

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

referenced. For example, the family base functionality in Figure 4.3 is being

defined at the left-hand side in Line 6, while it is being referenced by another

family at the right-hand side in Line 7. Consequently, we identify two types of

join points, the definition join points and the reference join points. Syntactically

speaking, the product family terms specified in feature declarations and at left-

hand sides of family equations are definition join points, while product family

terms specified in constraints and at the right-hand sides of family equations are

reference joint-points.

It is necessary to distinguish the definition and reference join points at the

feature-modeling level due to the semantic difference when integrating new aspects

at these two types of join points. Introducing an advice at the identified definition

join points affects the internal description of the join points, whereas introducing

an advice at the identified reference join points does not. Actually, the latter case

may affect internal descriptions of product families that include the join points.

The definition join point can be considered as a white box whereas the reference

joint point can be considered as a black box. When it comes to the detailed

level of features, introducing advice at these two types of locations can cause very

different results. These two types of join points are further referred to in the

following discussion on the advice and the pointcut of aspects.

4.2.2 Advice in AO-PFA

In an aspect of AO-PFA, we use an equation 〈aspectId〉 = 〈Advice(jp)〉 to specify

the advice that is introduced at the selected join points. According to different

types of pointcuts that are discussed in the next subsection, the selected join points

69

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

are either associated with the definition or reference of a specified product family

algebra term. In particular, 〈aspectId〉 specifies new labels to rename the join

points if the pointcut is associated with definition join points, while 〈aspectId〉 is

always expressed as a variable jp if the pointcut is associated with reference join

points. Moreover, based on the form of 〈Advice(jp)〉, we distinguish the following

different modification scenarios at the selected join points:

Augmenting: The selected join points should still appear in the resulting

specification. In the context of product family algebra, such an augmenting effect

can be specified by a product family term constructed with a variable jp that

represents an instance of the join points.

Narrowing: The selected join points are simply removed in the resulting

specification. Such a narrowing effect corresponds to the constant element 1 of

product family algebra, which represents a pseudo-product with no features.

Replacing: In this case, the selected join point is replaced by arbitrary product

family terms that do not refer to the original join point. In other words, the advice

should be in the form of a ground product family term (i.e., a term constructed

without the variable jp).

4.2.3 Pointcuts in AO-PFA

By analogy to pointcut languages designed in other aspect-oriented techniques, the

proposed pointcut language specifies three attributes to identify a set of join points

in the PFA specification: the scope of join points, a predicate that characterizes

the join points, and the exact matching pattern of join points. Recall that we

express the pointcut language as a triple: (〈scope〉, 〈expression〉, 〈kind〉). Without

70

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Table 4.1: Summary of types of pointcuts

Scope

Default base
Explicit
Scope

through
within

Excluded Scope protect(〈scope〉)
Combined
Scope

〈scope1 :scope2〉
〈scope1;scope2〉

Expression

Default true

Explicit
Expre-
ssion

Boolean
Expressi-
on

Kind
Definition Reference

Feature-related declaration inclusion
Family-
related

creation component
component creation equivalent component

Constraint-
related

constraint[position list]

lose of clarity, we sometimes refer to the first component as the scope pointcut,

the second component as the expression pointcut, and the third component as the

kind pointcut. Table 4.1 summarizes the various types of each component of the

pointcut triple.

Two types of join point scopes are designed: within and through. A scope of

type within captures join points in specified lexical structures, while a scope of

type through captures join points in a specified hierarchical property of features in

the feature models. We use “:” and “;” to express the combination of two scopes.

Separating two scopes by “:” indicates that eligible join points are in the union of

the two specified scopes. Separating two scopes by “;” indicates that eligible join

points are in the intersection of the two specified scopes. Moreover, we use protect

to specify that eligible join points are excluded from the scope. In particular, when

no scope is specified, the scope pointcut base is considered by default indicating

that the whole base specification is the scope.

The expression pointcut works as a guard for the selected join points. Precisely,

we use Boolean expressions on the language of product family algebra to specify

this component of the pointcut triple. The expression true is taken as default.

The kind pointcut is used to identify particular product family terms in the

base specification. Unlike the scope pointcut and the expression pointcut, the kind

71

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

pointcut must be specified explicitly; there is no default value for the kind poin-

cut. As product family terms are associated with basic features, labeled families,

and constraints, different types of kind pointcuts are further discussed in the re-

minder of this subsection (i.e., feature-related pointcut, family-related pointcut,

and constraint-related pointcuts).

Feature-related pointcut

Two kinds of pointcuts, declaration and inclusion, are introduced to select join points

associated with basic features in PFA specifications. The difference between these

two kinds of pointcuts resides in whether or not the feature’s definition can be

changed. The declaration pointcut captures join points where a specific feature is

declared. Figure 4.5 shows an example of the use the declaration pointcut. We

specify an aspect in Figure 4.5(a) to express a requirement for introducing two

optional features failure capture and light reset to the original definition of

service. Taking Specification 1 (Figure 4.3) as our base specification, the pointcut

here would capture a join point at Line 3 of Specification 1. Furthermore, as the

scope pointcut is base, all references to the original service should be changed

to the new one. Specification 2 in Figure 4.5(b) shows the result of weaving this

aspect with Specification 1. We use bold font to denote join points in the base

specification and use italic font to denote new specification elements introduced by

the aspect. The bold and italic fonts denote the modifications that are implied by

changing the definition of basic features. Notice that the old feature service may

be removed from the specification after weaving if there is no further reference to

it within the whole specification.

72

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp new = (1 + failure capture) · (1 + light reset)
where jp ∈

(
base, true, declaration(service)

)
(a) An aspect for modifying the definition of a basic feature

Specification 2: A PFA specification with new features failure capture

and light reset that relate to the definition of service
1. bf move control
2. bf light display
3. bf failure capture
4. bf light reset
5. bf service
6. service new = (failure capture + 1) · (light reset + 1)
7. optional light display = light display + 1
8. optional service = service new + 1
9. base functionality = move control · optional light display
10. elevator product line = base functionality · optional service
11. full base functionality = move control · light display
12. customized elevator = move control+full base functionality · service new
13. constraint(service new, elevator product line, light display)

(b) A specification resulting from weaving the aspect in (a) with Specification 1

Figure 4.5: Example of using the declaration pointcut

The inclusion pointcut captures join points where a specific basic feature appears

in any other product families. Figure 4.6 shows an example of using the inclusion

pointcut. We specify an aspect in 4.6(a) to introduce a new feature light reset

in any product including light display. Taking Specification 1 given in Fig-

ure 4.3 as our base specification again, the result of weaving this aspect is given

by Specification 3 in Figure 4.6(b). As we can see, the new feature light reset

is introduced at the right-hand sides of both Line 4 and Line 8 in Specification 1,

where the feature light display is referenced.

As we have mentioned, the scope pointcut can be specified with a combination

of the kind pointcut to express a further specific requirement. The example in

73

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp = jp · light reset
where jp ∈

(
base, true, inclusion(light display)

)
(a) An aspect for modifying the reference of a basic feature

Specification 3: A PFA specification with a new feature light reset that
relates to the feature light display

. . .
bf light reset
. . .

4. optional light display = light display · light reset + 1
. . .

8. full base functionality = move control · light display · light reset
. . .

(b) A specification resulting from weaving the aspect in (a) with Specification 1

Figure 4.6: Example of using the inclusion pointcut

Figure 4.7 illustrates an aspect with the non-default scope pointcut and the non-

default expression pointcut. Assume that inappropriate interactions are detected

in the configuration full base functionality. The aspect in Figure 4.7(a) is for

adding a new feature failure capture in the family customized elevators to

capture all defective behaviours related to move control. Considering Specifica-

tion 1 as base specification, the kind pointcut inclusion(move control) captures

the reference of the feature move control. The eligible join points are further

bounded by the intersection of two scopes within(customized elevators) and

through(full base functionality). The within scope pointcut narrows the scope

of join points to only Line 9 of Specification 1. Since the through scope pointcut

specifies that the feature move control should be from full base functionality,

we do not compose failure capture with the first move control in Line 9 of

Specification 1. Moreover, let #(a) represent the number of members in a family

a. The expression pointcut #(jp) ≥ 1 indicates that there should be at least one

74

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp = jp · failure capture
where jp ∈

(
within(customized elevators); through(full base functionality),

#(jp) ≥ 1, inclusion(move control)
)

(a) An aspect for bounding the scope and specifying a guard for join points

Specification 4: A PFA specification with a new feature failure capture

that relates to the move control

bf failure capture
· · ·

9. customized elevators = move control + move control · failure capture
· light display · service

· · ·
(b) A specification resulting from weaving the aspect in (a) with Specification 1

Figure 4.7: Example of using the non-default scope pointcut and the non-default
expression pointcut

member in the corresponding family of the selected join points, which is satisfied

by full base functionality in this case. The result of weaving this aspect is

given in Specification 4 (Figure 4.7(b)).

Family-related pointcut

To capture join points associated with labeled families in PFA specifications, four

kinds of pointcuts, creation, component creation, component and equivalent compo-

nent, are designed. The creation and component creation pointcuts are related to

the definition join points, while the component and equivalent component pointcuts

are related to reference join points. Furthermore, the difference between the cre-

ation and component creation pointcuts resides in whether we change the definition

of a specified family directly or whether we change the definitions of its compo-

nents. The difference between the component and equivalent component pointcuts

resides in whether the reference of a specified family is direct or indirect.

75

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp new = jp · logging
where jp ∈

(
protect(customized elevators), true,

creation(service new)
)

(a) An aspect for modifying the definition of a labeled family

Specification 5: A PFA specification with new feature logging that
relates to the definition of service new

bf logging
. . .

5. service new = (failure capture + 1) · (light reset + 1)
service new new = service new · logging
. . .

8. optional service = service new new + 1
. . .

12. customized elevators = move control + full base functionality · service new
13. constraint(service new new , elevator product line, light display)

(b) A specification resulting from weaving the aspect in (a) with Specification 2

Figure 4.8: Example of using the creation pointcut

The effects of the creation pointcut is quite similar to the declaration pointcut,

excepting that the captured join points are labeled families instead of basic fea-

tures. Taking Specification 2 in Figure 4.5 as our base specification, Figure 4.8

illustrates an example of using the creation pointcut. The aspect in Figure 4.8(a)

is for introducing a new feature logging to the original definition of service new.

The resulting specification is illustrated by Specification 5 in Figure 4.8(b). Notice

that service new at Line 12 in Specification 5 is not changed to the new one since

we specify a protect scope pointcut, which exemplifies a case that we want the

legacy configuration customized elevators to keep unchanged.

The component creation pointcut also captures definition join points. How-

ever, unlike the creation pointcut, the component creation pointcut refers to the

definitions of all components in the specified families. Assume that we want

to capture any defective behavior in the full base functionality. However,

76

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp new = jp · failure capture
where jp ∈

(
base, true, component creation(full base functionality)

)
(a) An aspect for modifying the definitions of components of a labeled family

Specification 6: A PFA specification with a new feature failure capture that
relates to component definitions of full base functionality

1. bf move control
2. bf light display

bf failure capture
move control new = move control · failure capture
light display new = light display · failure capture
. . .

4. optional light display = light display new + 1
. . .

6. base functionality = move control new · optional light display
. . .

8. full base functionality = move control new · light display new
. . .

10. constraint(service, elevator product line, light display new)

(b) A specification resulting from weaving the aspect in (a) with Specification 1

Figure 4.9: Example of using the component creation pointcut

full base functionality is composite and we cannot be sure which component

might cause the defective behavior. Therefore, we add a feature failure capture

to each of its components, move control and light display. The aspect in

Figure 4.9(a) specifies the above requirement, and the resulting specification of

weaving the aspect with Specification 1 (Figure 4.3) is given in Specification 6

(Figure 4.9(b)). The captured join points are those definition join points at Line 1

and Line 2 of Specification 1. Correspondingly, all references to those components

in Line 4, 6, 8, and 10 are changed to the new ones.

The component pointcut is similar to the inclusion pointcut. But the component

pointcut refers to the appearance of the specified labeled families instead of basic

features. Figure 4.10 illustrates an example of introducing the feature logging to

77

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp = jp · logging
where jp ∈

(
base, true, component(service new)

)
(a) An aspect for modifying the reference of a labeled family

Specification 7: A PFA specification with a new feature logging that relates
to the reference of service new

bf logging
. . .

8. optional service = service new · logging + 1
. . .

12. customized elevators = move control + full base functionality
· service new · logging

. . .

(b) A specification resulting from weaving the aspect in (a) with Specification 2

Figure 4.10: Example of using the component pointcut

the original specification by using the component pointcut. Taking Specification 2

as the base specification, the feature logging is introduced at the right-hand sides

of Line 8 and Line 12, where service new is referenced.

The equivalent component pointcut refers to the equivalent (or indirect) ap-

pearance of the specified product families as components. Figure 4.11 exempli-

fies a case of using the equivalent component pointcut to introduce a new feature

failure capture to Specification 1. The aspect in Fig 4.11(a) is supposed to cap-

ture any defective behaviours that are similar as the configuration full base func-

tionality. Moreover, the definition of full base functionality cannot be

changed. As shown in Specification 8 (Figure 4.11(b)), the captured join points

are at right-hand sides of Line 6 and Line 9 of Specification 1.

78

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Aspect jp = jp · failure capture
where jp ∈

(
base, true, equivalent component(full base functionality)

)
(a) An aspect for modifying the reference of equivalent families

Specification 8: A PFA specification with a new feature failure capture that
relates to the equivalent reference of full base functionality

. . .
bf failure capture
. . .

6. base functionality = move control · light display · failure capture
+ move control

. . .
9. customized elevators = move control + full base functionality

· failure capture · service
. . .

(b) A specification resulting from weaving the aspect in (a) with Specification 1

Figure 4.11: Example of using the equivalent component pointcut

Constraint-related pointcut

A constraint[position list] pointcut is designed to capture join points associated

with constraints. Three keywords, left, middle and right, are used to specify po-

sition list, which respectively correspond to the first, second and third arguments

of a PFA constraint. Example in Figure 4.12 shows how to change a requirement

relation in a PFA specification using the constraint[position list] pointcut. Consid-

ering that the original service has been changed to service new by composing

the aspect in Figure 4.5(a). However, the constraints related to service new that

are inherited from the original constraints related to service may become too

restrictive or too loose. For example, the constraint at Line 13 in Specification 2

cannot exactly capture the relationship between light display and the newly

added feature light reset. Therefore, an aspect (Figure 4.12(a)) is supposed to

capture the reference of service new at the first component of all constraints, and

79

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

to replace it by the feature light reset. The result of weaving this aspect with

Specification 3 is shown in Figure 4.12(b).

Aspect jp = light reset
where jp ∈

(
base, true, constraint[left](service new)

)
(a) An aspect for modifying the constraints

Specification 9: A PFA specification with a new constraint
. . .

13. constraint(light reset, elevator product line, light display)

(b) A specification resulting from weaving the aspect in (a) with Specification 2

Figure 4.12: Example of using the constraint[position list] pointcut

4.3 Categories of Aspects

The previous section illustrates that a base PFA specification S is translated into

a PFA specification S ′ by composing an aspect. We can distinguish the relation-

ship between S and S ′ as augmenting, narrowing, or replacing modifications. As

mentioned in Section 4.2.1, we should also distinguish the modifications by the

definition and the reference of product families. Precisely, seven types of changes

between S and S ′ can be identified as follows:

• refine: In S ′, new specification elements are added to the definition of a

specified product family in S.

• extend: In S ′, new specification elements are added to some or all families of

S where a specified product family is referenced.

• discard: The definition of a specified product family in S is absent in S ′.

80

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Table 4.2: Categories of aspects

Type of Join Points Effects on Join Points Categories

Definition Join
Points

Augmentation refining
Narrowing discarding

Replacement replacing

Reference Join
Points

Augmentation extending
Narrowing disabling

Replacement substituting

• disable: The references of a specified product family in some or all families

of S is absent in S ′.

• replace: In S ′, the definition of a specified product family in S is replaced by

other specification elements.

• substitute: In S ′, the reference of a specified product family in some or all

families of S are replaced by other specification elements.

The above classification covers all the changes a stakeholder of product families

can make on the PFA specifications by composing aspects. We rely on the above

categories to characterize the semantics of aspects. Each aspect should be confined

to one category regarding the relationship that exists between the result PFA

specification and the base PFA specification. With such categories the stakeholder

can anticipate the changes imposed by composing aspects.

As we have discussed in the previous section, the changes on definition of prod-

uct families and reference of product families can be distinguished by the type of

the kind pointcut. Moreover, adding, removing, an replacing specification elements

can be related to different modification scenarios (i.e., augmenting, narrowing, and

81

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

replacing) at the selected join points. We say an aspect refines the base specifi-

cation if its pointcut associated with definition join points and its advice specifies

an augmenting effect. The aspect in Figure 4.8 is an example of refining aspect,

considering the new feature service new refines the original feature service. An

aspect extends the base specification if its pointcut associated with reference join

points and its advice specifies an augmenting effect. The aspect in Figure 4.6 is

an example of extending aspect, considering the feature light reset is an exten-

sion to the feature light display. Aspects associated with definition join points

(reference join points) with replacing effects are replacing (substituting) aspects.

The aspect in Figure 4.5 indicates the feature service is replaced by complete

new definitions, and the aspect in Figure 4.12 indicates the reference of feature

service new is substituted by a new feature light display. Similarly, aspects

associated with definition join points (reference join points) with narrowing effects

are referred to as discarding (disabling) aspects. In summary, given the syntax of

an aspect, we category the aspect according to Table 4.2.

4.4 Usage of the Specification Language AO-PFA

We aim to handle unanticipated changes and crosscutting concerns in feature mod-

els by using the aspect-oriented paradigm. In this section, we illustrate the usage

of the proposed language by using it to articulate unanticipated changes and cross-

cutting concerns in Sections 4.4.1 and 4.4.2, respectively.

82

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

4.4.1 Articulating Unanticipated Changes

Several examples using the proposed language are given in Section 4.2.3. A brief

discussion on those examples is given below to illustrate the flexibility of the pro-

posed language for making unanticipated changes on a PFA specification. The

different effects of aspects show that our pointcut language is capable of distin-

guishing slight differences among requirements.

Introduction of similar requirements generating different sets of prod-

ucts We can find that the aspects in Figure 4.5(a) and Figure 4.12(a) together

capture similar requirements as the aspect in Figure 4.6(a). The aspect in Fig-

ure 4.5(a) is for introducing the new feature light reset to Specification 1 by fur-

ther defining service (see Specification 2 in Figure 4.5(b)). Consequently, weaving

the aspect in Figure 4.12(a) with Specification 2 indicates that light reset re-

quires light display in all products of the elevator product family. On the other

hand, the aspect in Figure 4.6(a) is for introducing the new feature light reset

to all products where light display is available in Specification 1. In both sit-

uations, a new feature light reset is introduced in the original Specification 1

and the appearance of light reset indicates the appearance of light display

in each product. However, we should notice that the product families generated

from the above two situations are not exactly the same. The former one removes

the products that do not satisfy the requirements from the product family (see

Specification 9 in Figure 4.12(b)), while the latter one composes a new feature

to the original product families to make them all satisfy the requirements (see

Specification 3 in Figure 4.6(b)).

83

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Introduction of similar requirements at different types of locations

Aspects in Figure 4.8(a) and Figure 4.10(a) both introduce a new feature logging.

The difference of the two aspects lies in whether or not the definitions of a spec-

ified product family are changed. The aspect in Figure 4.8(a) modifies the orig-

inal definition of service new. All references to the feature service new in the

specification, including the one in the constraint, have to be changed to the new

one (see Specification 5 in Figure 4.8(b). On the other hand, the aspect in Fig-

ure 4.10(a) does not change the original definition of service new and the refer-

ence to this product family in the constraint is unchanged (see Specification 7 in

Figure 4.10(b)).

Introduction of similar requirements with different feature relationships

The product family algebra terms at the right-hand sides of the advice equa-

tion are the same for all aspects in Figures 4.7(a), 4.9(a), and 4.11(a), and the

base specification is Specification 1 in all of the three cases. In other words,

all aspects introduce a new feature failure capture to the original Specifica-

tion 1. However, as we can see the resulting specifications are quite different. The

changes to the base specification in Figure 4.9(b) and Figure 4.11(b) are related to

full base functionality. The changes of the base specification in Figure 4.7(b)

are related to move control. Furthermore, besides the slight difference in mean-

ing, the main difference between the examples of Figure 4.11 and Figure 4.9 resides

in whether or not the definitions of the full base functionality family (or its com-

ponents) have changed.

84

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

4.4.2 Articulating Crosscutting Concerns

To validate the proposed approach for handling crosscutting concerns, we use it

to specify a trial case of E-shop product families given in [BMB+10]. Regarding

the base functionalities of the E-shop product families, we identify two base con-

cerns, user interface concern and back office concern. The user interface concern

focuses on a particular interest to developers of user requirements and interac-

tions. The back office concern is a concern regarding operations of an E-shop

application. In particular, StoreFront in the specification at the left-hand side

of Figure 4.13 captures commonalities and variabilities of the back office concern.

Two constraints are used to specify the “exclude” and “require” relations among

features for the user interface concern. In the specification at the upper-right

of Figure 4.13, Business Management captures commonalities and variabilities of

the back office concern. The specification at the lower-right concern of Figure 4.13

corresponds to the integration of the two views of the E-Shop product family. In

particular, one additional constraint is specified regarding the view reconciliation

of the two views.

We consider a crosscutting concern of security for the E-shop product families.

The specification at the bottom of Figure 4.14 captures generic commonalities and

variabilities of the password policy related to the security concern. The security

concern should be reused multiple times and be composed with base concerns at

multiple places. For example, we consider add password policy to Administration

in the user interface concern, and replace the feature Registration Enforcement

in the Registration in the back office concern. Moreover, we impose that the

option never in the password should be disabled in the first case, and the option

85

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

IntegrationIntegrationIntegrationIntegration
U
ser

U
ser

U
ser

U
serinterface

interface
interface
interfaceC

oncern
C
oncern

C
oncern

C
oncern

BackBackBackBack officeofficeofficeoffice ConcernConcernConcernConcern

E-Shop = Business_Management
⋅ Store_Front

constraint(Reporting_and_Analysis,,,,
E-Shop,,,, Behaviour_Tracking)

bf Registration_Enforcement
bf Restoration_Information
bf Manual
bf Automatic
bf Credit_Card
bf Debit_Card
bf Money_Order
bf User_Behaviour_Tracking
Registration====Registration_Enforcement ⋅ Restoration_Information
Fraud_Detection = Manual ⋅ Automatic
Method= Credit_Card ⋅ (1 + Debit_Card) ⋅ (1+Money_Order)

+ Debit_Card ⋅ (1+ Credit_Card) ⋅ (1 + Money_Order)
+ Money_Order ⋅ (1 + Credit_Card) ⋅ (1 + Debit_Card)

Payment = (1 + Fraud_Detection) ⋅ Method
Store_Front = (1 + Registration) ⋅ (1 + User_Behaviour_Tracking)

⋅ Payment
constraint((((Behaviour_Tracking,,,, Store_Front ,,,, Registration))))
constraint((((Credit_Card ⋅ Manual,,,, Store_Front ,,,, 0))))

bf Reporting_and_Analysis
bf Order_Management
bf Content_Management
bf Store_Administration
Administration ==== Content_Management

⋅ Store_Administration
Business = Order_Management ⋅ Administration

⋅ (1 + Reporting_and_Analysis)

Figure 4.13: Base concerns in the E-shop feature model

Special Char should be disabled in the latter case. In other words, we specify

aspects for each variations of the security concern to compose the security concern

with each base concerns of the E-shop product family. The specification at the

upper left conner of Figure 4.14 specifies the composition of the security concern

with the user interface concern, while the specification at the upper right concern

of Figure 4.14 specifies the composition of the security concern with the back office

concern.

The above example illustrates how the proposed techniques are used to specify

feature models according to the aspect-oriented paradigm. Moreover, comparing

with the technique proposed in [BMB+10], the AO-PFA specification language is

more flexible in specifying the aspects and making changes to the original feature

models. The AO-PFA specification language is capable of specifying most of the

potential enhancement mentioned in [BMB+10].

86

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

CompositionCompositionCompositionCompositionAspectualAspectualAspectualAspectual

SecuritySecuritySecuritySecurity ConcernConcernConcernConcern

bf Lower_Case
bf Upper_Case
bf Digit
bf Special_Char
bf Never
bf In_Days
Specification ==== Special_Char ⋅ (1+Lower_Case) ⋅ (1+Upper_Case) ⋅ (1 + Digit)

+ Lower_Case ⋅ (1+ Digit) ⋅ (1+Upper_Case) ⋅ (1 + Digit)
+ Upper_Case ⋅ (1+Lower_Case) ⋅ (1+ Digit) ⋅ (1 + Special_Char)
+ Digit ⋅ (1 + Special_Char) ⋅ (1+Upper_Case) ⋅ (1+Lower_Case)

Expiration ==== Never + In_Days
Password = Specification ⋅ Expiration

BackBackBackBack officeofficeofficeoffice
ConcernConcernConcernConcern

C
om

position
C
om

position
C
om

position
C
om

position

UserUserUserUser InterfaceInterfaceInterfaceInterface
ConcernConcernConcernConcern

Aspect jp_new = jp ⋅ Password
where jp ∈ (base,,,, true,,,, creation(Administration)

Aspect jp = 1
where jp ∈ (within(Administration_new);;;;

through(Password),,,, true,,,, inclusion(Never))

Aspect jp_new = Password
where jp ∈ (within(Registration),,,, true,,,,

inclusion (Registration_Enforcement))
Aspect jp = 1
where jp ∈ (within(Registration);;;; (through(Password),

true, inclusion(Special_Char))

Figure 4.14: Crosscutting concerns in the E-shop feature model

4.5 Conclusion

In this chapter, I introduced the syntax of a specification language that adapts the

aspect-oriented paradigm to the context of product family algebra. Moreover, a

classification system based on the syntax of aspects is proposed to categorize the

expected results of weaving the aspects to their base specification. The semantics

of the proposed language is described with the help of a running example of an

elevator product family. The running example illustrates that the proposed lan-

guage enables one to modify a PFA specification in a flexible yet systematic way. I

also employed the proposed aspect-oriented technique to a small case study, which

illustrates the usage of the proposed language for handling crosscutting concerns

at the feature-modeling level. In the following chapters, the language is used as the

87

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

basis to further enhance the verification and automation of aspectual composition

at the feature-modeling level.

88

Chapter 5

Verifying Aspectual composition

in AO-PFA

In this chapter, we focus on how to ensure the correctness of aspectual composi-

tion in AO-PFA. Section 5.1 discusses problems raised by aspectual composition

and present techniques used to handle them in general. Section 5.2 presents the

proposed formal technique for verifying aspectual composition in our context. Sec-

tion 5.3 illustrates the usage of the proposed verification technique on a case study

about home automation product family. We conclude in Section 5.4.

5.1 General Description

Aspect-oriented approaches extend the conventional notations with constructs for

aspects which can be composed to base systems. Consequently, the extension of

aspects raises additional correctness issues. Besides checking the correctness of

an aspect, we also need to check the correctness of aspectual composition. As

89

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

mentioned in Chapter 1, obliviousness is a characteristic that can improve the

extensibility and flexibility of the system. However, “total obliviousness” causes

problems since the aspect may introduce unintended behaviors to the base system.

The solution is to restrict the aspects that can be weaved to a base system.

To verify the correctness of aspectual composition, it is straightforward to ver-

ify properties directly on the weaved systems. However, we prefer to verify the

correctness of aspectual composition prior to the weaving process. The main rea-

son is that the former approach can be quite inefficient, especially when weaving

a frequently changed aspect with a fixed base system. The verification time is

proportional to the size of the weaved system, and we need to repeat the verifica-

tion every time when the aspect is changed. Moreover, it is not always feasible to

compose an aspect and a base system prior to the verification of aspecutal com-

position. Since the weaving process cannot be reversed, sometimes it is unsafe

to verify the aspectual composition after the weaving process. Aspects can add

malicious actions to the base system and cause severe problems. Therefore, in this

chapter we focus on techniques that analyze aspects and base systems separately

and check the compatibility of them before the weaving process. Moreover, re-

garding to the two groups of properties mentioned in Section 2.1.5, the proposed

technique limits the focus on the verification of aspectual composition associated

with inheritance properties. In spite that it is important and necessary to verify

the promised properties of the aspects, the first principle for aspectual composition

should be that the aspect will ”Do no Harm” to the base system [Kat04].

As mentioned in Section 2.1.5, static code analysis, modeling checking, and

90

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

deductive proofs (assume–guarantee style) are commonly used for the formal veri-

fication of aspectual composition. For verifying aspectual composition in AO-PFA,

we employ the static analysis technique since this technique is preferable for aspect-

oriented languages with simpler syntax. In particular, the proposed verification

technique is inspired by a static code analysis approach described in [RSB04] that

characterizes the direct and indirect interactions of aspects with base systems.

In [RSB04], the interactions of aspects are classified as orthogonal, independent,

observation, actuation, and interference. By considering aspects and base systems

in the context of AO-PFA, the above classification helps us to extract necessary va-

lidity criteria (i.e., definition-validity, reference-validity and dependency-validity)

for PFA specifications and aspects. Although employing the static analysis tech-

nique can easily verify the preservation of properties at the syntactic level, there

are other properties that cannot be established and verified with static analysis.

Regarding to properties associated with the latter case, the correctness of aspec-

tual composition remains to be verified by using other techniques, which is out the

scope of this thesis.

5.2 Formal Verification of Aspectual Composi-

tion in AO-PFA

At the feature-modeling level, aspectual composition imposes amendments at spe-

cific points of a feature model, which has the potential of spoiling the validity of

the original feature model. In particular, the interference of an aspect with the

base specification of a feature model might alter the relationship among features

91

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

in a undesired manner. In this section, we formalize the validity criteria for PFA

specifications and analyze the impacts of aspects on PFA specifications to detect

invalid aspects w.r.t. a base specification.

5.2.1 Validity Criteria of PFA specification

We first establish our mathematical settings to identify what criteria need to be

satisfied for a valid PFA specification representing a product family feature model.

In PFA specifications, the most basic constructs are those labels that either repre-

sent features or product families. Therefore, we abstract validity criteria of PFA

specifications at the finest granularity with regard to those labels.

Construction 5.1. Given a PFA specification S, let MS be the multi-set of labels

that are present in S at basic feature declarations or at the left-hand sides of labeled

product family equations. We call MS the defining label multi-set associated with

the specification S.

Definition 5.2 (Definition-valid specification). We say that a PFA specification S

is definition-valid iff ∀(v | v ∈ MS : NumOccur(v) = 1) where MS is the

defining label multi-set of S, and NumOccur(v) denotes the number of occurrence

of v in MS.

Definition 5.2 indicates that a specification is definition-valid iff all the elements

in MS are unambiguously defined labels. Obviously, the multi-set of a definition-

valid specification actually forms a set. In this case, we denote the set by DS,

which contains all elements of MS. Correspondingly, we call DS the defining label

set associated with a specification S.

92

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Construction 5.3. Given a PFA specification S, let RS be the set of labels that are

present in S at the constraints or at the right-hand sides of labeled product family

equations. We call RS the referencing label set associated with the specification S.

Definition 5.4 (Reference-valid specification). We say a specification S is reference-

valid iff RS ⊆MS, where RS is the referencing label set of S and MS is the defining

label multi-set of S.

Definition 5.4 indicates that a specification is reference-valid iff all the elements

in RS are not references to undefined labels.

Construction 5.5. Given a PFA specification S, let DS be its corresponding defin-

ing label set and GS= (V,E) be a digraph. The set of vertices V ⊆ DS, and a

tuple (u, v) is in E iff u occurs in a product family term T such that the equa-

tion v = T is a labeled family equation in S. We call GS the label dependency

digraph associated with the specification S.

Let GS = (V,E) be a label dependency digraph associated with a PFA specifica-

tion S. For u, v ∈ V , we say that u defines v iff ∃(n | n ≥ 1 : (u, v)–path ∈ En).

Consequently, we say u and v are mutually defined labels, denoted by mutdef , iff

∃(m,n | m,n ≥ 1 : (u, v)–path ∈ Em ∧ (v, u)–path ∈ En)). In particular, if u

and v are identical and m = n = 1, we say u (or v) is self-defined.

Definition 5.6 (Dependency-valid specification). Let GS = (V,E) be the label

dependency digraph associated with the specification S. We say that the PFA spec-

ification S is dependency-valid iff ∀(u, v | u, v ∈ V : ¬mutdef (u, v)) where V

and mutdef (u, v) are defined according to GS.

93

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Definition 5.6 indicates that a valid PFA specification does not have any mu-

tually defined or self-defined labels. Straightforwardly, the digraph GS associated

with a dependency-valid PFA specification S should be cycle-free and loop-free

(The proof can be found in Appendix A.1, page 146).

5.2.2 Validity Criteria for Aspectual Composition

In AO-PFA, aspects are composed with base specifications at the granularity of

product family terms. Therefore, weaving an aspect to a base specification may

change the defining label multi-set, the referencing label set, and the label depen-

dency digraph of the original specification. Precisely, the effects of weaving an

aspect can be abstracted with the following construction.

Construction 5.7. Let S ′ be the resulting PFA specification obtained by weaving

an aspect A to a valid PFA specification S. With respect to S and S ′, the defin-

ing label sets, referencing label sets and dependency digraphs can be constructed

according to Constructions 5.1–5.5, respectively. To discuss the difference between

S ′ and S, we denote DA, RA, E addA and E delA associated with the aspect A as

follows:

• Let DA be a set of labels introduced by A which will be present at basic feature

declarations or left-hand sides of labelled family equations in S ′. The defining

label multi-set of S ′ becomes MS’ = DS t DA where t denotes the multi-set

union. We denote it by DS’ if all elements in MS’ occur only once.

• Let RA be a set of labels introduced by A which will be present at constraints or

right-hand sides of labeled family equations in S ′. The referencing label set of S ′

becomes RS’ = RS ∪RA.

94

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

• Let E addA be a set of tuples (u, v) such that u is a label that will be introduced

by A at the right-hand side of a labeled family equation in S ′ and v is the label

present at the left-hand side of the labeled family equations. Let E delA be a set

of tuples (u, v) such that the label u will be removed by A from the right-hand

side of a labeled family equations in S, and v is any label present at the left-

hand side of the labeled family equations. The dependency digraph of S ′ becomes

GS’ = (DS’, (ES ∪ E addA)− E delA).

Consequently, an aspect is invalid if it transforms a valid specification to be

either definition-invalid, reference-invalid, or dependency-invalid according to Def-

initions 5.2, 5.4, and 5.6. Instead of checking the validity of specifications after

weaving the aspects, the following subsections discussed formal techniques that

detect the above validity problems before the weaving process.

Detection of Definition-Invalid and Reference-Invalid Aspects in AO-

PFA

According to the semantics of AO-PFA given in Chapter 4, the referencing label

set of an aspect is always specified by the right-hand side of the advice equation

(i.e.,Advice(jp)), while the defining label set of an aspect is decided by both the

right-hand side and the left-hand side of the advice equation (i.e.,aspectId and Ad-

vice(jp)). In particular, aspectId defines new labels when the pointcut is associated

to definition join points (i.e.,declaration, creation and component creation), and Ad-

vice(jp) can also implicitly define new labels to the base specification. Besides,

since the constraint[position list] pointcut cannot constructively change the defini-

tion of any product family in the base specification, no new labels can be defined

95

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Table 5.1: Effects of aspects with different types of kind pointcuts on DA and RA

kind of pointcut DA contains RA contains

declaration All labels specifies in aspectId,
and all newly introduced
labels specified by Advice(jp)

All labels specified by
Advice(jp)

creation
component creation
inclusion

All newly introduced labels
specified by Advice(jp)

The label specified by
the kind pointcut and all
labels specified in
Advice(jp)

component
equivalent component
constraint[list] empty set

by aspects with constraint[position list] pointcut. Table 5.1 gives the construction

of DA and RA with regard to different types of kind pointcut.

Definitions 5.8 and 5.9 below respectively give the formal definitions for definition-

valid aspects and reference-valid aspects according to Construction 5.7. Defini-

tion 5.8 indicates that a definition-valid aspect would not lead to potentially am-

biguous definitions for labels in the original specification. Definition 5.9 indicates

that a reference-valid aspect would not introduce undefined references to labels in

the original specification.

Definition 5.8 (Definition-valid aspect). We say that an aspect A is definition-

valid w.r.t. a specification S iff DS ∩DA = ∅.

Definition 5.9 (Reference-valid aspect). We say that an aspect A is reference-

valid w.r.t. a PFA specification S iff (RS ∪RA) ⊆ (DS ∪DA).

In verifying definition-validity and reference-validity of aspects, the main cost

is to construct the defining label set and referencing label set of base specifications.

Particularly, the complexity is O(V), where V is the number of features in the base

specification.

96

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Detection of Dependency-Invalid Aspects in AO-PFA

Unlike detecting violations of definition-validity and reference-validity, detecting

the violation of dependency-validity of an aspect is not straightforward. The con-

ventional way to detect dependency-invalid aspects is to construct the dependency

digraph from the weaved specifications and detect cycles and loops in the digraph.

However, such an approach would be time-consuming, and the weaving process

would be unnecessary if the aspect is invalid w.r.t. a base specification. In order to

detect such dependency-invalid aspects prior to the weaving process, we formalize

the complex relations between the given aspect specification and the dependency

digraph of a base specification to verify if the aspectual composition should be

allowed.

Definition 5.10 (Dependency-valid aspect). Let S ′ be a PFA specification ob-

tained by weaving an aspect A with a valid specification S. We say that A is

dependency-valid w.r.t. S iff S ′ is dependency-valid.

Definition 5.10 indicates that a valid aspect would not lead to mutually defined

or self-defined labels in the specification obtained by the weaving process. With

regard to Construction 5.7, instead of examining all edges in E addA and E delA,

we only consider the edges that may introduce loops or cycles in GS’. Firstly,

we use the following construction to identify vertices that are directly affected by

weaving an aspect to a base specification. Instead of examining all edges in E addA

and E delA, we only consider the edges that may introduce loops or cycles in GS’.

The following construction identify vertices, which are directly affected by weaving

an aspect, on the label dependency digraph of a base specification,

97

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Construction 5.11. Given an aspect A and an base specification S, let GS be the

label dependency digraph associated with a valid specification S.

• We denote a vertex in GS corresponding to the product family algebra term spec-

ified by the kind pointcut of A by k.

• We denote a vertex in GS corresponding to the label specified by the scope pointcut

of A by s.

Theorem 5.1 (Kind Pointcut Condition). An aspect A is dependency-valid w.r.t.

a valid PFA specification S if the type of kind pointcut of A is “constraint[list]”.

Proof. When the kind pointcut is constraint[list], the aspect A only affects the

product families within the constraints. According to Construction 5.7, it indicates

that DA = E addA = E delA = ∅ . We accomplish the proof by proving (DA =

E addA = E delA = ∅ =⇒ A is dependency-valid w.r.t. S). The detailed proof

is provided in Appendix A.1, page 147.

Theorem 5.2 (Non-cycle Condition). Let S be a valid PFA specification and A

be an aspect that does not satisfy the kind pointcut condition (Theorem 5.1). Con-

struct the label dependency digraph GS according to Construction 5.5 and denote or

create the vertex k in GS according to Construction 5.11. Then A is dependency-

valid w.r.t. S if ∀(x | x ∈ DS ∩RA : Walk(k, x) = ∅).

Proof. In Theorem 5.2, the function Walk : V × V → ordered − list(V) is defined

over a digraph such that Walk(u, v) returns the list of all vertices along a walk

from u to v. Since a valid label dependency digraph is a typical digraph that can

have a topological ordering, a walk between two vertices is indeed a path. The

98

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

vertex list Walk(u, v) is sufficient to identify a path from u to v. Particularly, if

Walk(u, v) is empty, it indicates that there is no path from u to v. The proof of

this proposition is provided in Appendix A.1, page 148.

From the proof of Theorem 5.2, we have the following equation:

A is dependency-invalid w.r.t. S

⇐⇒ ∃
(
v | v ∈ DS ∩RA : v ∈ Bdef ∨ ∃(u | u ∈ Bdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

(5.1)

where Bdef is the set of labels at the left-hand sides of a set of labeled family

equations where join points are present at their right-hand sides.

Definition 5.12. We say that an aspect is potentially dependency-invalid if it

does not satisfy both the point kind condition (Theorem 5.1) and the non-cycle

condition (Theorem 5.2).

Definition 5.12 indicates that an aspect is possibly dependency-invalid iff its

kind of pointcut is not constraint[list] and ∃(v | v ∈ DS ∩ RA : Walk(k, v) 6= ∅)).

Using the above properties, we verify whether an aspect is potentially invalid

in accordance to the type of scope pointcut. If a potentially invalid aspect is

detected, we continue to verify whether it is actually invalid with regard to its

base specification in accordance to the scope of its pointcut.

Lemma 5.3. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. When the scope of the pointcut is “base”, A is always dependency-

invalid w.r.t. S. When the scope of the pointcut is “protect(base)”, A is always

dependency-valid w.r.t. S.

99

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Proof. We use Equation 5.1 and substitute the definition of Bdef. When the

type of the scope pointcut is base, join points are where k is present. There-

fore, Bdef = N+(k), where N+(k) denotes the set of all successors of the vertex

k. The detailed proof is provided in A.1, page 151. When the type of the scope

pointcut is protect(base), the set Bdef is empty. In the proof, we use the definition

of Walk(u, v), path concatenation, the one-point rule, range split, empty range

and ∃-false body. The detailed proof is provided in A.1, page 152.

Lemma 5.4. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. Construct the dependency digraph GS according Construction 5.5

and denote or create the vertex k in GS according Construction 5.11.

• When the type of the scope pointcut is “within”, A is dependency-invalid

w.r.t. S iff ∃(v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k).

• When the type of the scope pointcut is “protect(within)”, A is dependency-

invalid w.r.t. S iff ∃(v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k).

• When the type of the scope pointcut is “through”, A is dependency-invalid

w.r.t. S iff ∃(v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k ∧ s 6= v).

• When the type of the scope pointcut is “protect(through)”, A is dependency-

invalid w.r.t. S iff ∃(v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k ∨ s = v).

Proof. Equation 5.1 and Lemma 5.3 are used in the proof. When the type of the

scope pointcut is within, join points are bound to a labeled family equation whose

label is s. Therefore, we have Bdef = {s}. When the type of the scope pointcut is

through, join points are bound to a labeled family equation where s is present at the

100

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

right-hand side. Therefore, Bdef = N+(s). Besides, there should be a path from k

to s. On the other hand, when the type of the scope pointcut is protect(within),

labels in Bdef should not include s if there is a path from k to s. When the type of

the scope pointcut is protect(within), labels in Bdef should not include successors

of s if there is a path from k to s. Otherwise, the set Bdef is identical to the one

specified by a pointcut with scope base. The detailed proof is provided in A.1,

page 152–157.

Lemma 5.5. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. When the scope pointcut is the union of two scopes of types ts1 and

ts2, A is dependency-invalid when A is dependency-invalid w.r.t. at least one of

the scopes. When the scope pointcut of A is the intersection of two scopes of types

ts1 and ts2, A is dependency-invalid when A is both dependency-invalid w.r.t. the

two scopes.

Proof. Let the set of join points selected by the scope pointcut of type ts1 be B1
def

and the set of join points selected by the scope pointcut of type ts2 be B2
def. When

the type of the scope pointcut is (ts1: ts2), then the set Bdef = B1
def ∪ B2

def. When

the type of the scope pointcut is (ts1 ; ts2), then the set Bdef = B1
def ∩ B2

def.

Provided that Bdef 6= ∅, we substitute the definition of Bdef in Equation 5.1 and

use Lemmas 5.3 and 5.4 to accomplish the whole proof.

Theorem 5.6 (Dependency-invalid aspect). Let S be a valid PFA specification and

A be a potentially dependency-invalid aspect. Denote the vertex that invalidates the

condition of Theorem 5.2 by a. Vertices k and s are denoted or created in GS as

prescribed in Construction 5.11. Let Dep invalid(ts) be the following predicate,

101

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

where ts represents the type of the scope pointcut.

Dep invalid(ts)
def⇔



true if ts is base

s ∈Walk(k, a) ∧ s 6= k if ts is within

s ∈Walk(k, a) ∧ s 6= k ∧ s 6= a if ts is through

¬Dep invalid(ts′) if ts is protect(ts′)

Dep invalid(ts1) ∨ Dep invalid(ts2) if ts is (ts1 : ts2)

Dep invalid(ts1) ∧ Dep invalid(ts2) if ts is (ts1 ; ts2)

Provided the set of join points is nonempty, the aspect A is dependency-invalid

w.r.t. S if Dep invalid(ts).

Proof. The proof of the above proposition is based on Lemmas 5.3, 5.4, and 5.5.

The complete detailed proof is provided in A.1, page 159.

With regard to the previous constructions, definitions, and propositions, besides

constructing the dependency digraph, the most costly process is to find a walk

between two vertices in the digraph. Finding a walk between vertices in such

digraphs can be achieved by classic graph algorithms with time complexity linear

in the size of the digraph. Therefore, verifying the dependency-validity of aspects

with the proposed technique has a complexity of O(V + E), where V and E are

the number of vertices and edges in the dependency digraph of base specifications.

In other words, V is the number of features in the product families, and E is equal

to V 2 at the most.

102

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

5.3 Usage of the verification technique

The verification technique can be connected with the classification of aspects dis-

cussed in Section 4.3. Intuitively, extending, disabling, and substituting aspects

are always definition-valid according to Definition 5.8. Since DA ⊆ RA − DS, or

DA = ∅, we always have DS ∩ DA = ∅. According to Definition 5.9, refining,

discarding, and replacing aspects are always reference-valid w.r.t. a reference-valid

base specification. Since RA−DS ⊆ DA ⇐⇒ RA ⊆ DA∪DS. Assume RS ⊆ DS,

we have RS ∪ RA ⊆ DA ∪ DS. Moreover, since RA = ∅ for discard and disable

aspects, which indicates discard and disable aspects are always dependency-valid

according to Theorem 5.2.

Moreover, features are the main abstraction mechanism of feature-oriented soft-

ware development. The synthesis of a concrete product from feature composition

is a challenge work. First of all, not all features specified in a product family are

compatible. Besides domain constraints, there are invalid feature compositions

that are caused by the unintended interactions of features. The safe feature com-

position problem has been widely studied in the area of feature-oriented software

development, and is challenging to tackle [TBKC07, KBK09]. Conventionally, the

interactions of features are analyzed at the design and implementation levels for

features (See Stage 2 and Stage 3 in Figure 1.1). With the proposed aspect-oriented

technique, the feature composition can be analyzed at a more abstract level by as-

pectual composition in feature models. Consequently, in our context, the analysis

of feature dependency and interactions is translated into the aspectual dependen-

cies and interaction problems at the feature-modeling level. Instead of detecting

103

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Table 5.2: Abbreviation of basic features and families

Feature Abbreviation Feature Abbreviation

time controller tim con luminance sensor lum sen
weather sensor wea sen graphical tv gra tv
web based web bas PDA PDA
cable cable wireless wireless
Internet inter mobile phone network mob net
manual lighting man lig smart lighting sma lig
manual door and window man daw smart door and window sma daw
heating system heat sys stereo system ster sys
Light device Lig dev Door and window device Daw dev
User Interface Usr Int Communication Commun
Lighting control Lig con Door and window control Daw con
Home appliance control HApp con Home gateway Home gateway
Home Automation product line Home Auto PL

all invalid compositions at the granularity of features, some conflicts among fea-

tures are detected at an early stage as invalid aspectual composition in feature

modeling. The verification technique proposed in this chapter for safe aspectual

composition can be consider as a technique that verifies the safe composition of

features from an early stage. Consequently, we can make necessary trade-off as

early as possible at the feature-modeling stage, and provide valuable knowledge for

the following design and implementation stages for developing product families. In

this section, several cases of invalid aspectual composition are studied to illustrate

how the proposed techniques can help to identify conflicts for feature compositions

and make early trade-off at the feature-modeling level.

5.3.1 Case Study: Home Automation Family

A home automation system [PBvdL05] includes control devices, communication

networks, user interfaces, and a home gateway. Different types of devices, network

standards, and user interfaces can be selected for different products. A home

gateway offers different services for overall system management. We only use

104

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Specification : Home Automation Product Line
1. bf tim con 18.Lig dev = 1+lum sen
2. bf lum sen 19.Daw dev = tim con· (1+wea sen)
3. bf wea sen 20.Usr Int = gra tv· (1+web bas) · (1+PDA)
4. bf gra tv 21.Commun = (cable+wireless+cable· wireless)
5. bf web bas · (1+inter) · (1+mob net)
6. bf PDA 22.Lig con = man lig· (1+sma lig)
7. bf cable 23.Daw con = man daw· (1+sma daw)
8. bf wireless 24.HApp con = (1+heat sys)· (1+ster sys)
9. bf inter · (1+wat intr)
10. bf mob net 25.fir det flow = sma lig· sma daw· HApp con
11. bf man lig 26.Home gateway = Lig con· Daw con· HApp con
12. bf sma lig · fir det flow
13. bf man daw 27.Home Auto PL = Commun· Usr Int· Lig dev
14. bf sma daw · Daw dev· Home gateway
15. bf heat sys 28.constraint(sma lig, Home Auto PL, Lig dev)
16. bf ster sys 29.constraint(sma daw, Home Auto PL, Daw dev)
17. bf wat intr 30.constraint(web bas, Home Auto PL, inter)

Figure 5.1: Example of a base specification for the home automation product line

parts of the case study to show the usage of the proposed verification technique for

aspectual composition. We use the abbreviations shown in Table 5.2 to shorten

expressions, and Figure 5.1 is a PFA specification corresponding to the feature

model of a home automation product line.

Aspects causing definition-invalid specifications

We consider the following two aspects that are developed independently. The as-

pect denoted as case 5.1a intends to deploy a fingerprint reader device as an op-

tional feature in Daw dev, while the aspect denoted as case 5.1b intends to deploy

the fingerprint reader device as a mandatory feature. We denote the fingerprint

reader by fgr. The two aspects can be respectively specified in AO-PFA as follows:

case 5.1a:

Aspect jp new = jp · (1 + fgr)

where jp ∈
(

base, true, creation(Daw dev)
)

case 5.1b:

Aspect jp new = jp · fgr

where jp ∈
(

base, true, creation(Daw dev)
)

105

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Let the base specification associated with the above two aspects be the specifi-

cation home automation (Figure 5.1). Both aspects (case 5.1a and case 5.1b) will

capture the left-hand side of the labeled family Daw dev at Line 19 in Figure 5.1

and introduce a new labeled product family Daw dev new. In other words, weaving

these two aspects to the same base specification can result in a definition-invalid

PFA specification. To detect such conflict formally, we assume that, without loss

of generality, the aspect case 5.1a is weaved before the aspect case 5.1b. Using Con-

struction 5.1, the defining label multi-set of the base Specification home automation

is as follows:

Mhome automation product line={ tim con, lum sen, wea sen, gra tv, web bas, PDA,

cable, wireless, inter, mob net, man lig, sma lig, man daw, ster sys, sma daw,

heat sys, wat intr, Lig dev, Daw dev, fir det flow, Commun, Lig con, HApp con,

Usr Int, Home gateway, Daw con, Home Auto PL}.

With regard to Definition 5.2, we claim that the Specification home automation is

definition-valid. We then haveDhome automation product line = Mhome automation product line.

We construct the defining label set of the aspects according to the row correspond-

ing to creation in Table 5.1 and obtain Dcase 5.1a = Dcase 5.1b = {fgr ,Daw dev new}.

According to Definition 5.8, since the intersection of Dhome automation and Dcase 5.1a

is empty, the aspect case 5.1a is definition-valid w.r.t. its base specification. Let

home automation one be the specification after weaving the aspect case 5.1a. Ac-

cording to Construction 5.7, we haveDhome automation one = Dhome automationtDcase 5.1a.

As the intersection of Dhome automation one and Dcase 5.1b is nonempty, the aspect

case 5.1b is definition-invalid w.r.t. its base specification home automation one.

The definition-invalid aspectual composition identifies the conflicts between two

106

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

independent aspects, which both intend to modify the definition of another fea-

tures. Consequently, trade-offs between feature interactions are enabled at an

earlier stage by solving such conflicts of the two aspects at the feature-modeling

level.

Aspects causing reference-invalid specifications

We consider another aspect (denoted as case 5.2) that extends the fingerprinter

reader fgr, with a new feature password identify. The aspect is specified as

follows:

case 5.2:

Aspect jp = jp · password identify

where jp ∈
(

base, true, inclusion(fgr)
)

The inclusion pointcut refers to join points at the reference of the feature fgr.

Assume that we want to weave both aspects case 5.1a and case 5.2 to the base

specification home automation (Figure 5.1). If we weave the aspect case 5.2 first,

there is actually no modification to the base specification after the weaving pro-

cess as the feature fgr does not appear in the base specification. The feature fgr

then appears in the new specification after weaving the aspect case 5.1a. How-

ever, the aspect case 5.2 does not take effect, which may not correspond to our

expectation. Actually, weaving the first aspect leads to a reference-invalid spec-

ification. Intuitively, it is more reasonable to weave the aspect case 5.1a before

the aspect case 5.2. To formally detect the above problem with the proposed

verification technique, we construct the defining label set and referencing label

set of the aspect case 5.2 according to the row of inclusion in Table 5.1. We ob-

tain Dcase 5.2 = {password identify}, Rcase 5.2 = {fgr , password identify}. Based

107

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

on Definition 5.9, the aspect case 5.2 is reference-invalid w.r.t. the specification

home automation. On the other hand, suppose that we weave the aspect case 5.1a

before the aspect case 5.2. Thus, home automation one is the base specification

associated with the aspect case 5.2. According to Table 5.1 and Construction 5.7,

Rhome automation one = Rhome automation ∪{fgr}. Consequently, the aspect case 5.2 be-

comes reference-valid w.r.t. home automation one. The reference-invalid aspectual

composition is indeed caused by introducing features reference to undefined fea-

tures. As illustrated in the above example, the detection of such invalid aspectual

composition at the feature-modeling level helps us to derive an correct order for

composing aspects. Consequently, the order in which features are composed is

restricted by the composition order of aspects.

Aspects causing dependency-invalid specifications

Considering the composition of base specification home automation (Figure 5.1)

and the aspect specified below (denoted as case 5.3):

case 5.3:

Aspect jp = jp · fir det flow

where jp ∈
(

base, true, inclusion(sma lig)
)

The dependency digraph of the specification home automation is given in Fig-

ure 5.2. The digraph is loop- and cycle-free, which indicates that the corresponding

specification is dependency-valid. The dotted edge illustrates the new edge intro-

duced by the aspect case 5.3, which introduces a loop to the dependency digraph.

The example shows that weaving an aspect might lead to a dependency-invalid

specification. With accordance to the proposed detection technique, we can con-

firm the above results without explicitly constructing new edges that are introduced

108

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Figure 5.2: Dependency digraph corresponding to the home automation product
line

by aspects. We represent vertices that are in both the referencing label set of the

aspect and the defining label set of the base specification by black vertices in the

label dependency digraph. The vertices k and s are represented by the gray vertex

and bold circle vertex, respectively. Based on Theorem 5.2 and the first item in

Theorem 5.6, the aspect case 5.3 is dependency-invalid w.r.t. its base specification;

there is a path from the vertex of sma lig to the vertex of fir det flow. Alterna-

tively, assume that we change the scope of the above pointcut to be within(Lig con)

instead of base, the dashed edge introduced by the modified aspect will not cause

loops or cycles in the dependency digraph. Formally, the modified aspect with a

bounded scope is dependency-valid w.r.t. its base specification based on the sec-

ond item in Theorem 5.6. The above aspects illustrate an example of how to avoid

109

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

dependency-invalid aspects by imposing additional information to the aspectual

composition; the aspect should be composed to the base specification within a cer-

tain scope. The restriction on aspectual composition can be used for the analysis

of safe feature composition and further mapped to other development stages that

follow the feature-modeling.

5.4 Conclusion

In this chapter, I presented a formal technique to verify aspectual composition in

AO-PFA. A set of definitions, constructions, and propositions are proposed and

used to check the compatibility of aspects w.r.t. to their base specifications. In

the literature of requirement engineering and architectural design, most aspect-

oriented approaches are informal, and their support of validation and verification

is limited. The verification of aspectual composition in those approaches is only ac-

complished by informally “walking through” the artifacts [batmaccRS+05]. Com-

pared with conventional approaches, the specification language AO-PFA presented

in Chapter 4 provides a formal and compact way to modularize and compose as-

pects and base specifications. Moreover, the verification of aspectual composition

is prior to the weaving of aspects and base specification. We will discuss the

weaving process in the next chapter.

110

Chapter 6

Weaving Aspects in AO-PFA

In this chapter, we focus on the issue about weaving aspects in AO-PFA. Section 6.1

gives formal semantics for a proposed weaving process. Section 6.2 discusses several

theoretical properties related to the weaving process. In Section 6.3, we conclude.

6.1 Semantics of the Weaving Process

A weaver is used to automate the weaving process for an aspect-oriented language.

Base specifications and aspects are the input of the weaver. One of the key issues

in defining the formal semantics of the weaving process is establishing the formal

representations for both base specifications and aspects. A second issue is formal-

izing the exact behaviours of the weaver. In the remainder of this section, the two

key issues above are further discussed in the context of AO-PFA.

111

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

6.1.1 Formalism of PFA Specifications and Aspects

We recall that PFA specifications are based on product family algebra, which is

a commutative idempotent semiring. Moreover, the PFA language includes equa-

tions defining families and constraints on families. The semantics of PFA language

can be considered as a parametrised algebraic specification (SPECPFA, SR). The

parameter specification SPECPFA contains a sort f, and operations ⊕, �, 0 and

1 . The interpretations of f, ⊕, �, 0 and 1 respectively corresponds to the

interpretations of f , +, ·, 0, and 1 as given in Definition 3.51. The sort f denotes

the sort of product families, ⊕ and � correspond to the choice and mandatory

composition of product families, 0 denotes the empty product family, and 1

denotes the pseudo-product. The body specification SR contains a set of axioms

corresponding to the commutative idempotent semiring, which is denoted as Ef .

The set Ef is given in Table 6.1, where each axiom is represented according to Def-

inition 3.14. For instance,
(
{x, y, z}, (x⊕y)⊕z, x⊕(y⊕z)

)
represents an equation

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z). The corresponding target specification is denoted as

follows:

SR[SPECPFA] = SPECPFA] (∅, ∅,Ef) = ({f}, {⊕,�, 0 , 1 },Ef). (6.1)

Let F= ({f}, {+, ·, 1, 0}) denote the signature of general PFA specifications,

1We use f, ⊕, �, 0 , and 1 instead of f , +, ·, 1 and 0, to avoid the sharing symbols between
the target specification and the actual parameter specification

112

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Table 6.1: Equational theory Ef

1. Associativity of ⊕:
(
{x, y, z}, (x⊕ y)⊕ z, x⊕ (y ⊕ z)

)
;

2. Symmetry of ⊕:
(
{x, y}, x⊕ y, y ⊕ x

)
;

3. Identity of ⊕:
(
{x}, x⊕ 0 , x

)
;

4. Idempotent of ⊕:
(
{x}, x⊕ x, x

)
;

5. Associativity of �:
(
{x, y, z}, (x� y)� z, x� (y � z)

)
;

6. Symmetry of �:
(
{x, y}, x� y, y � x

)
;

7. Identity of �:
(
{x}, x� 1 , x

)
;

8. Distributivity:
(
{x, y, z}, x� (y ⊕ z), x� y ⊕ x� z

)
;

9. Annihilator:
(
{x}, x� 0 , 0

)
;

and L(S) denote the set of labels which are specified in a particular PFA specifi-

cation S . Then the specification S can be considered as a F-term algebra (Defini-

tion 3.13) generated by L(S). In particular, product family algebra terms associ-

ated with the specification S are denoted by TF(L(S)). Furthermore, let Γ denote

the alphabet of the PFA language and M be the signature of a monoid. The set

V= TM(Γ) represents all possible labels for features and families in PFA language

specifications, which indicates L(S) ⊆ V . Besides, let Eq(S) and Cp(S) respec-

tively denote the set of labelled family equations and the set of constraints that are

specified in S . Each labelled family equation (e.g., l = r) is represented by a triple

(X, l, r) in Eq(S) such that l, r ∈ TF(X), and X ⊆ L(S). Each constraint (e.g.,

l -m r) is represented by a triple (l, m, r) in Cp(S) such that l,m, r ∈ TF(L(S)).

A particular PFA specification S can be represented by an algebraic specification

with constraints (see Definition 3.17) as follows:

S =
(
{f}, {+, ·, 1, 0} ∪ L(S), Eq(S) ∪ Cp(S)

)
. (6.2)

113

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

According to Equations (6.1) and 6.2, the PFA specification S is formally rep-

resented by actualizing SPECPFA with S, which can be written as follows:

SR[SPECPFA 7→ S] = S] (∅, ∅,Ef) (6.3)

Therefore, the semantics of particular PFA specifications are those of S]

(∅, ∅,Ef), which are still semiring-based semantics. The models of PFA specifi-

cations can be trivial extensions to models of commutative idempotent semirings

such as the set-based or the bag-based ones discussed in [HKM06].

As discussed in Chapter 4, an aspect in AO-PFA is composed of an advice equa-

tion 〈aspectId〉 = 〈 Advice(jp)〉, and a pointcut triple (〈scope〉, 〈expression〉, 〈kind〉).

According to the mathematical setting given previously, we have 〈aspectId〉 ∈

TM({jp} ∪Γ), and 〈 Advice(jp)〉 ∈ TF(V ∪ {jp}). Besides, the pointcut triple is

used to select a set of join points, which can be considered as a quantification over

the base specification. Formally, we can interpret the pointcut of an aspect in

AO-PFA as follows:

∀(p | p ∈ JP : scope(p) ∧ expression(p) ∧ kind(p)) (6.4)

where JP is the set of all potential join points in the base specifications, and

scope(p), expression(p), and kind(p) are three predicates respectively associated

with the three components of the pointcut triple. A join point in JP is selected by

an aspect when scope(p), expression(p), and kind(p) are all evaluated to be true.

The precise definitions of JP and the three predicates are further discussed in the

next subsection when formalizing the behaviours of the weaver for AO-PFA.

114

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

6.1.2 Formalism of the Weaver

A general process of waving an aspect to a base specification involves the following

two sequential actions:

(1) Each potential join point in the given base specification should be evaluated

against the pointcut of the given aspect.

(2) The advice of an aspect should be instantiated to bind with and finally intro-

duced at each selected join point.

As identified in [BMN+06], join point model, poincut matching, advice binding, and

weaving execution are four essential elements of a weaver. We respectively discuss

those essential elements in our context to formalize the behaviour of the weaver

for AO-PFA.

Join Points Evaluation

As mentioned earlier in Section 6.1.1, a PFA specification is composed of a set

of product family terms. Roughly speaking, the join point model in AO-PFA is

defined by subterms of product family algebra terms. In particular, a subterm

relation � in our context is a reflexive and transitive relation on TF(X) such that

∀(t, t1, t2 ∈ TF(X) | t � t1 ∨ t � t2 : t � t1 + t2), and ∀(t, t1, t2 ∈ TF(X) | t �

t1 ∨ t � t2 : t � t1 · t2). However, a term may have many subterms and different

subterms of the given term may further have common subterms. We say two

subterms of a term are overlapping if they have common subterms. The subterms

identified as join points in a given product family algebra term should not be

overlapped. Therefore, the join point model in our context is restricted to subterms

115

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

that are either labels (which are minimal subterms) in the term concerned, or the

entire term itself. The join point model of AO-PFA, captured by the set JP, is

formally defined according to Equations (6.5)–(6.7). Precisely, we have JP = DJ

∪ E ∪ C. As discussed in Chapter 4, join points are distinguished as definition

join points and reference join points. The set of definition join points is denoted

by DJ, which coincides with the set of free constants L(S). The set of reference

join points, denoted by RJ, is the union of the sets E and C.

DJ = {p | ∃(t | t ∈ L(S) : p � t)} = L(S), (6.5)

E = {p | ∃
(
r | (X, l, r) ∈ Eq(S) : (p � r ∧ p ∈ L(S)) ∨ p = r

)
}, (6.6)

C = {p | ∃
(
f, s, t | (f, s, t) ∈ Cp(S) : [(p � f ∨ p � s ∨ p � t) ∧ p ∈ L(S)]

∨(p = f ∨ p = s ∨ p = t)
)
} . (6.7)

Moreover, let P(L(S)) denote the powerset of L(S). We use contextDJ : JP→

P(L(S)) and contextRJ : JP → P(L(S)) to obtain the context information for

join points. Functions contextDJ and contextRJ are only defined for join points

associated with labelled family equations. Let p be a potential join point in a

labelled family equation, e.g., (X, l, r) ∈ Eq(S), we have:

 contextDJ(p)
def
= (X − {l}) when p ∈ DJ

contextRJ(p)
def
= ({l}) when p ∈ RJ

. (6.8)

116

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Pointcut Matching

As mentioned earlier, the matching of pointcut is to evaluate the pointcut predi-

cates at each potential join point in the join point mode JP. The 〈scope〉 expres-

sion specifies the bounds of join points. A function matchscope : SCOPE EXP×

JP → IB is defined to match join points in a base specification (e.g., S), where

SCOPE EXP denotes the domain of valid scope expressions as defined in Fig-

ure 4.4. The semantics of union (:), intersection (;), and protect of scopes are

straightforward. Moreover, the scope is always matched for all join points if the

expression 〈scope〉 is specified as base. For a within scope, a potential join point is

matched if the context information of a reference join point is identical with the

specified scope. The matching of a through scope is somewhat complicated. A

function context list(L,E) is used to help the matching of a through scope. The

function returns a set of labels, and the types of the arguments L and E are a

set of labels and a set of equation. In particular, context list({v},Eq(S)) collects

the labels that are along the hierarchical flow of a label v in a specification S . An

auxiliary function H
(
L, (X, l, r)

)
w.r.t. each equation (X, l, r) is defined below to

check whether the label l should be added to the list.

H : P(L(S))× Eq(S)→ P(L(S)),

H
(
L, (X, l, r)

)
=


{l} when ∃

(
x |: x ∈ (contextDJ(l) ∩ L ∩ weaved list)

)

∅ otherwise

(6.9)

where weaved list represents a set of labels which already have at least one actual

matched join point at their right-hand side. Then context list is inductively defined

117

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

as follows:

context list : P(L(S))× P(Eq(S))→ P(L(S)),

 base case: context list(L, ∅) = L,

inductive case: context list(L,E) = context list(L ∪H
(
L, (X, l, r)

)
, E − {(X, l, r)}).

(6.10)

Finally, let v ∈ L(S), p ∈ JP, and s exp1, s exp2, s exp ∈ SCOPE EXP . The

function matchscope is defined inductively as follows:



base cases:

matchscope(base, p)
def⇐⇒ true

matchscope(within v, p)
def⇐⇒

(
contextRJ(p) = {v}

)
matchscope(through v, p)

def⇐⇒
(

p ∈ context list({v}, Eq(S))
)

inductive cases:

matchscope(s exp1; s exp2, p)
def⇐⇒

(
matchscope(s exp1, p) ∧matchscope(s exp2, p)

)
matchscope(s exp1: s exp2, p)

def⇐⇒
(

matchscope(s exp1, p) ∨matchscope(s exp2, p)
)

matchscope(protect(s exp), p)
def⇐⇒

(
¬matchscope(s exp, p)

)
(6.11)

Example 6.1. We revisit several examples that are given in Chapter 4. The

base specification in Figure 6.1 is Specification 1 introduced on page 66, and the as-

pect case 6.1 is the aspect introduced on page 75. We now illustrate how the pointcut

expression can be matched as expected according to the above proposed functions.

As an example, we evaluate matchscope() at the term full base functionality

at Line 9, which is recognised as a potential join points according to Equation (6.6).

118

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Specification : Base Specification
1. bf move control
2. bf light display
3. bf service
4. optional light display = light display +1
5. optional service = service +1
6. base functionality = move control · optional light display
7. elevator product line = base functionality · optional service
8. full base functionality = move control · light display
9. customised elevators = move control +full base functionality · service
10. constraint(service, elevator product line, light display)

case 6.1:
Aspect jp = jp · failure capture
where jp ∈

(
within(customised elevators) ; through(full base functionality),

#(jp) ≥ 1, inclusion(move control)
)

Figure 6.1: Example to illustrate the proposed weaving process for AO-PFA

matchscope
(
within(customised elevators) ; through(full base functionality),

full base functionality
)

⇐⇒ 〈 inductive cases in Expression (6.11) 〉

matchscope
(
within(customised elevators), full base functionality

)
∧ matchscope

(
through(full base functionality), full base functionality

)
⇐⇒ 〈 base cases in Expression (6.11) 〉

contextRJ(full base functionality) = {customised elevators} ∧

full base functionality ∈ context list({move control}, Eq(base specification))

⇐⇒ 〈 Equation (6.8) 〉

true ∧ full base functionality ∈ context list({move control}, Eq(base specification))

⇐⇒ 〈 Equation (6.9) & Equation (6.10) 〉

true ∧ full base functionality ∈ {move control, base functionality,

full base functionality}

119

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 set and logic axioms 〉

true

The 〈kind〉 expression specifies the extract positions of join points. In the

context of algebraic specifications, the problem is to extract subterms that are

equivalent to a specified product family algebra term w.r.t. a set of equations,

denoted by Thpfa . Intuitively, the evaluation of join point is the evaluation of

product family algebra terms in the quotient term algebra TF(L(S))/Thpfa
. Hence,

a key to match the kind pointcut is to identify the theory Thpfa associated with

a given base specification and a given aspect. Primarily, with regard to different

types of kind pointcuts, the evaluations of product family algebra terms are cor-

responding to two different sets of equations. When the type of the kind pointcut

is equivalent component, a product family algebra term should be evaluated w.r.t.

the actualised algebraic specification as given in Equation (6.3), while otherwise,

a product family algebra term is evaluated w.r.t. the parametrised algebraic spec-

ification as given in Equation (6.1). Formally, we define E tk ⊆ Thpfa such that

E tk =

 Ef ∪ Eq(S) when tk = equivalent component

Ef otherwise
(6.12)

where tk denotes the type of the kind pointcut.

Moreover, if the join point is matched according to a through scope of v, extra

equations need to be added into the theory Thpfa . Let F(l) = contextDJ(l) ∩

context list
(
{v},Eq(S)

)
record the predecessors of a label l in the hierarchical

flow of the specified scope v. Consequently, we obtain the path of the hierarchical

120

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

flow from v to a matched join point p as follows:

hierarchy path(p) = {p} ∪ {hierarchy path(x) | x ∈ F(p)} . (6.13)

Then the set of additional equations w.r.t. to a particular join point p, which is

denoted by E add(p), is defined as follows:

E add(p) = {(X, l, r) ∈ Eq(S) | ∃(l |: l ∈ hierarchy path(p))}. (6.14)

Example 6.2. We continue evaluating the join point full base functionality

(at Line 9 of the base specification) against the kind pointcut of the aspect case 6.1

according to Equation (6.13).

hierarchy path(full base functionality)

= {full base functionalityr}

∪{hierarchy path(x) | x ∈ F(full base functionality)}

= {full base functionality} ∪ hierarchy path(move control)

= {full base functionality, move control}

∪{hierarchy path(x) | x ∈ F(move control)}

= {full base functionality, move control} ∪ {hierarchy path(x) | x ∈ ∅}

= {full base functionality, move control}

Therefore, E add(full base functionality) will include equations correspond-

ing to Line 8 in base specification. Then we would see that move control is a sub-

term of full base functionality in Line 9 w.r.t. E tk∪E add(full base fun-

ctionality), which indicates that the kind pointcut expression is matched.

121

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

The 〈expression〉 pointcut works as a guard that captures customised properties

of the product family. Straightforwardly, the predicate expression() is defined as

the application of the customised Boolean expression to the join point concerned.

Furthermore, the expressiveness of the Boolean expression is decided by functions

that can be evaluated by Jory.

Example 6.3. Using Jory, we can obtain #(full base functionality) = 1.

Then with regard to the Boolean expression of the aspect case 6.1, we have

(
#(full base functionality) ≥ 1

)
⇔ true

According to the above discussion, the three predicates used in (6.4) are pre-

cisely given as follows:


k ind(p)

def⇐⇒ (E tk ∪ E add(p) |= e � p)

expression(p)
def⇐⇒ Boolean exp(p)

scope(p)
def⇐⇒ matchscope(scope exp, p)

. (6.15)

where scope exp, Boolean exp, respectively denote the first and second compo-

nents of the pointcut triple of an aspect, and e denotes a product family alge-

bra term that is decided by the third component of the pointcut triple. Ac-

cording to Equation (6.15), and Examples 6.1, 6.2 and 6.3, we illustrate that

full functionality elevator at Line 9 of base specification is selected as an

actual join point w.r.t. the aspect case 6.1.

122

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Advice Binding

The advice equation of an aspect in AO-PFA may include a variable jp, which needs

to be instantiated before being introduced to the base specification. Intuitively,

the instantiation of an advice is to replace the variable jp by the concrete term of

the join point. Formally, the instantiation of the advice is represented as a[jp/e],

where a represents the term of the advice and e represents the term of a concrete

join point. Moreover, the terms a and e are implicitly decided by different pointcut

kinds, which are further explained later.

Weaving Execution

To unify the weaving process with regard to different types of pointcuts, we consider

the execution of weaving process as two consequent sub-processes: introducing the

advice at selected definition join points, and introducing the advice at selected

reference join points.

Introducing the advice at definition join points

We firstly consider the pointcut matching for potential definition join points (p ∈

DJ). As discussed in Chapter 4 and Chapter 5, a kind pointcut expression is

composed by the type of kind pointcut tk and a term k ∈ TF(V). Then the

specified forms for matching definition join points are collected by a set, denoted

by dj , as follows:

dj =


contextDJ(k) when tk = component creation

k when tk ∈ {declaration, creation}

∅ otherwise

(6.16)

123

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

In other words, an element of dj corresponds to e in (6.15), and kind(p) can

be simplified as p ∈ dj . Moreover, we do not need to evaluate scope(p) and

expression(p) for definition join point. Consequently, the advice is introduced by

inserting a new line as below:

aspectID [jp/e] = Advice(jp)[jp/e].

Example 6.4. To illustrate the three cases in Equation (6.16), we revisit two other

examples of aspects introduced in Chapter 4 (on page 77, and 73), and denote them

as case 6.2, and case 6.3.

case 6.2:

Aspect jp new = (1+failure capture) · (1+ light reset)

where jp ∈
(

base, true, declaration(service)
)

case 6.3:

Aspect jp new = jp · failure capture

where jp ∈
(

base, true, component creation(full base functionality)
)

According to Equation (6.16), the set dj is empty for the aspect case 6.1 (since

its kind pointcut is of the type inclusion), which indicates that we do not need to

match and introduce the advice at definition join points for this case.

For case 6.2, the set dj is {service}, and we have p ∈ dj at Line 5 of the base

specification, and then we can insert a new line

jp new [jp/service] = (1 + failure capture) · (1 + light reset)[jp/service]

⇔ service new = (1 + failure capture) · (1 + light reset)
.

124

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

For case 6.3, we have

contextDJ(full base functionality) = {move control, light display}.

Similarly, the matched definition join point for the aspect of case 6.3 can be either

move control or light display. Therefore, we insert two new lines as follows:

(1) jp new [jp/move control] = jp · failure capture[jp/move control]

⇔ move control new = move control · failure capture

(2) jp new [jp/light display] = jp · failure capture[jp/light display]

⇔ light displayl new = light display · failure capture

.

Introducing the advice at reference join points

Before discussing how to introduce an aspect at reference join points, a set rj is

defined below to collect a set of pairs that are derived from dj .

rj =

 {(k ,Advice(jp)[jp/k])} when dj = ∅

{(e, aspectID [jp/e]) | e ∈ dj} otherwise
(6.17)

With regard to a particular aspect, each element in rj corresponds to a pair (e, a)

where e is the term of reference join points that are associated with the aspect,

and a is the corresponding term to be introduced at those selected reference join

points.

Example 6.5. According to Equation (6.17), we can obtain rj for case 6.1, case 6.2,

125

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

and case 6.3 as follows:

rj =



{move control, move control · failure capture} case 6.1

{(service, service new)} case 6.2

{(move control, move control new),

(light display, light display new)} case 6.3.

.

At this point, we can unify the process of weaving aspects with all different

types of kind pointcuts; weave a set of instanced aspects at reference join points.

For each instanced aspect (i.e., (e, a) ∈ rj), we match the form of reference join

points with e and substitute the matched join points by a. Unlike matching defini-

tion join points, the matching of reference join points is more complicated. Some

reference join points (i.e., those in E, see Equation (6.6)) need to be matched to

the scope pointcut, while others (i.e., those in C, see Equation (6.7)) need not.

Moreover, with regard to different types of kind pointcut, the potential sets of

reference join points are different. For kind pointcuts of inclusion, component, and

equivalent component, the potential reference join points are only those defined by

E, whereas the potential reference join points related to the constraint[position list]

are only those in C. On the other hand, all reference join points defined in RJ

are the potential reference join points when pointcut kinds are declaration, cre-

ation, and component creation. Formally, the set of matched reference join points,

denoted by selected jp, can be defined as follows:

126

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

selected jp

def
=

• {p ∈ E | kind(p) ∧ scope(p) ∧ expression(p)},

when tk ∈ {inclusion, component, equivalent component}

• {p ∈ C | kind(p) ∧ expression(p)} ,when tk = constraint[position list]

• {p ∈ E | kind(p) ∧ scope(p) ∧ expression(p)} ∪ {p ∈ C | kind(p) ∧ expression(p)},

when tk ∈ {declaration, creation, component creation}
(6.18)

To execute the matching process at reference join points, we define two auxiliary

functions. A function match kp sp() is defined to evaluate kind(p) ∧ scope(p)

for each p ∈ E, while a function match kp() is defined to evaluate k ind(p) for

p ∈ C. Moreover, k ind(p) (see Equation (6.15)) is modified slightly to denote the

extract subterms that matched the specified form. In particular, the two functions

match kp() and match kp sp() intend to extract the actual join points from a

product family algebra term and denote them by the variable jp. Precisely, given

a pair (e, a) ∈ rj and a potential join point p ∈ RJ, we define:

match kp(p, e) = p ′[e ′/jp] when E tk |= (e ′ = e) ∧ (p ′ = p),

match kp sp(p, e) = p ′[e ′/jp] when
(
E tk ∪ E add(p)

)
|= (e ′ = e)

∧(p ′ = p)
)
∧ scope(p) .

(6.19)

For some cases, how to obtain e ′ and p ′ in Equation (6.19) can be difficult, which

corresponds to a word problem (see Definition 3.19) and is further discussed in the

next section.

The Boolean expression of the pointcut is evaluated just before introducing the

127

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

advice at the join points. If the evaluation of the Boolean expression returns true,

we substitute each variable jp by the corresponding advice term (i.e., the term a

of the given pair (e, a) ∈ rj). If the evaluation returns false, we substitute the

variable jp by the original term of the join point (i.e., the term e of the pair (e, a) ∈

rj). Formally, let t(jp) be a product family term returned by match kp sp() or

match kp(). Introducing advice at reference join points can be represented by a

term substitution as follows: t(jp)[jp/a] when (expression(p)⇔ true) ,

t(jp)[jp/e] otherwise .
(6.20)

Example 6.6. According to Equation (6.18), the example of case 6.1 only has po-

tential join points in E. As given earlier in Example 6.5, there is only the element

(move control, move control · failure capture) in rj . We consider the poten-

tial reference join point full base functionality at line 9 of base specification.

According to Equation (6.19), we have

(
E tk ∪ E add(full base functionality)

)
|=
(
(move control = move control)

∧ (move control · light display = full base functionality)
)

Moreover, as discussed through Examples 6.1–6.3, we have

scope(full base functionality)⇔ true.

128

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Therefore,

match kp sp(full base functionality, move control)

= move control · light display[move control/jp]

= jp · light display

.

According to Equation (6.20), since expression(full functionality elevator)⇔

true, the reference join point that is concerned becomes

jp · light display[jp/move control · failure capture]

⇔ move control · failure capture · light display
.

6.2 Theoretical Properties of the Weaving Pro-

cess

As mentioned in the last section, the weaving process for AO-PFA is related to

the word problem. Similar to the approach used in solving the word problem in

general, I propose a rewriting system to solve the word problem associated with

the weaving process for AO-PFA. Moreover, we analyze the proposed rewriting

system concerning several theoretical properties of the weaving process.

6.2.1 Concerns Regarding the Weaving Process of AO-

PFA

Let Thpfa be the equational theory that is associated with a given base specification

an aspects. We formalize two issues that require attentions for the weaving process.

129

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Primarily, the word problem should be convergent to enable a decidable procedure

for the weaving process. We state the above concern as follows:

Concern 1. To implement the weaving process, we need a decidable procedure for

the word problem Thpfa |= (s = t) where s, t ∈ TF(V).

We match the join points by extracting equivalent subterms from product fam-

ily terms in the PFA specification. In particular, a subterm e can be extracted from

a product family term p iff p can be represented as an equivalent term β · e + γ,

where β and γ are product family algebra terms. Additionally, e cannot be further

extracted from β and γ. Then the weaving of an aspect is processed by substitut-

ing the term of join point by the term of the advice. Obviously, terms β and γ

should be unique w.r.t. the given p and e. Otherwise, substituting join points by

an advice will cause ambiguous weaving results. However, it is easy to show that,

if the term e and p are in arbitrary forms, the term β and γ cannot be always

uniquely decided w.r.t. the equational theory Ef . For example, consider a product

family p as f 2
1 + f1 · f2 + f 2

2 , and a join point term e as f1 + f2. With accordance

to the equations (5), (6), and (8) in Ef , we possibly have two different equivalent

terms of p, either f 2
1 + f2 · (f1 + f2) , or f1 · (f1 + f2) + f 2

2 . Consequently,

an aspect which removes a variation point f1 + f2, will cause ambiguous weaving

results. Although composing such an aspect would not always cause problems,

the possible weaving ambiguity impedes the reusability of the aspect. Therefore,

instead of restricting the form of p, the term of the selected join points e should

be constrained in a certain form to avoid ambiguous weaving results. We state the

above concern as follows:

Concern 2. Assume a term e is extracted from an arbitrary term p as a joint

130

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

point. Then we have p = β · e + γ w.r.t. to Thpfa , where e cannot be further

extracted from β and γ. To avoid ambiguous weaving results, the term e should be

restricted to a form such that we can have unique β and γ up to the given theory

Thpfa .

We note that β and γ can be the constant 0. For any term e, we assume that

it cannot be extracted from 0.

6.2.2 Characteristics of the Rewriting System

There are procedures to construct a convergent term rewriting system correspond-

ing to a given set of equations. The details of the procedure can be found in [BN98].

We only present below the rewriting system that is constructed in our context.

According to Equations (6.12), (6.14), and (6.15), the equational theory Thpfa

associated with the weaving process for AO-PFA is the union of two sets Ef (see

Table 6.1), and Espec (from those labeled family equations in Eq(S)). Rewrite rules

derived from Ef are denoted by R(Ef) and given in Table 6.2. The numbering at

the beginning of each line illustrates its corresponding equations in the Table 6.1.

Table 6.2: Rewriting rules R(Ef)

r3 [L-R]
(
{x},+(x, 0) −→ x

)
r4 [L-R]

(
{x},+(x, x) −→ x

)
r7 [L-R]

(
{x}, ·(x, 1) −→ x

)
r8 [L-R]

(
{x, y, z}, ·(x,+(y, z))→ +(·(x, y), ·(x, z))

)
r9 [L-R]

(
{x}, ·(x, 0) −→ 0

)

131

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

For equations in Espec we always get L-R-rules:

R(Espec)
def
= {(X,L −→ R) /(X,L,R) ∈ Espec}. (6.21)

The rewriting system for the weaving process in AO-PFA is R(Ef)∪R(Espec).

Theorem 3.3 indicates that the word problem is decidable iff the rewrite system

is convergent (i.e., both confluent and terminating). Therefore, we need to prove

that the proposed term rewriting system is confluent and terminating with respect

to Concern 1. Furthermore, to ensure the uniqueness of the weaving results, the

form of the selected join point is restricted by the normal form of the proposed

rewriting system with respect to Concern 2. In the remainder of this section, we

formally analyze the above characteristics of the proposed term rewriting system.

Convergence of the rewriting system

According to the mathematical settings given in Subsection 6.1.1, the signature of a

term rewriting system R(Ef)∪R(Espec) is over a finite signature {{f}, {+, ·, 0, 1}∪

L(S)}. To show the termination of the rewriting system, we first define a strict

order over its signature as follows:

Convention 6.7. Let f1, . . . , fn, F1, . . . , Fm be the declare and definition order

specified in a PFA specification S, where fi(1 ≤ i ≤ n) ∈ L(S) and Fi(1 ≤ i ≤

m) ∈ L(S), respectively denote the labels of basic features and families defined by

the specification S and indexed according to their order of occurrence in S. We

define a strict order over {{f}, {+, ·, 0, 1} ∪ L(S)} as follows:

Fm > · · · > F1 > fn > · · · > f1 > · > + > 1 > 0.

132

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

According to the above convention, we can always obtain a strict order over

the signature of the rewriting system R(Ef)∪R(Espec) for any syntactically correct

PFA specification. Then based on Theorem 3.7, a rewriting system is terminating

iff we can find a reduction order such that for any rewrite rule in the system the

term at left-hand side is strictly greater than the term at the right hand side.

Theorem 6.1. For any syntactically correct base specification S and aspect spec-

ification A, the rewriting system R(Ef) ∪R(Espec) is terminating.

Proof. According to Convention 6.7 and Definition 3.25, we can find a reduction

order >lpo for the rewriting system. We then proved lemmas A.11–A.14 to show

that for all rewrite rule l −→ r in R(Ef) ∪R(Espec), we have l >lpo r.The theorem

is then proved according to Theorem 3.7. All related proofs for the termination of

the proposed rewriting system are given in Appendix A.2.1.

The confluence of a general rewriting system is in general undecidable. How-

ever, the confluence of certain subsets of rewriting systems is decidable. We have

proved the termination of the proposed rewriting system. According to The-

orem 3.9, the rewriting system is confluent iff all its critical pairs (see Defini-

tion 3.27)are joinable.

Theorem 6.2. For any syntactically correct specification S and aspect specification

A, the rewriting system R(Ef) ∪R(Espec) is confluent.

Proof. Lemma A.16 is firstly proved to identify all potential critical pairs that are

derived from R(Ef) ∪ R(Espec). Let l1 −→ r1, and l2 −→ r2 denote two rewrite

rules from R(Ef) ∪ R(Espec). With regard to Definition 3.27, we need to rename

the variable to ensure that Var(l1, r1) ∩ Var(l2, r2) = ∅. In particular, variables in

133

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

the rewriting rule that corresponds to l1 → r1 keep the same, while variables in

the rewriting rule that corresponds to l2 → r2 are renamed by adding the prime

symbol. For example, x becomes x′. Then Lemmas A.17–A.25 are proved to show

that all those potential pairs are either non-critical pairs, or joinable critical pairs.

Finally, the theorem is proved according to Theorem 3.9. All proofs related to this

theorem are given in Appendix A.2.2.

The axioms 1, 2, 5, and 6 in Table 6.1 are associated with associativity and com-

mutativity of the function symbols + and · . The associativity and commutativity

appearing in our equational theory, called AC-theory, are quite common properties

for binary operations. We cannot introduce rewriting rules for the commutativity

equation as the other equations in Ef , since it will lead to a nonterminating rewrit-

ing system. Consequently, rewriting rules for AC-theory will be nonterminating.

On the other hand, equation unification can be used for term rewriting, which

considers semantic properties of function symbols. Therefore, instead of introduc-

ing rewriting rules for the AC-theory, we use AC-unification for the corresponding

term rewriting with respect to the equations 1, 2, 5, and 6 in our equational the-

ory. Algorithms of AC-Unification can be found in [BN98], and for many rewriting

tools, we can use build-in AC-Unification modulo to implement the AC Unification

directly.

Definition 6.8 (�AC). Given a set of rewrite rules R on terms in TF(V), we call

a term an AC normal term iff the term and any equivalent term of it (up to the

AC theory of + and ·) cannot be further rewritten by any rule in R. For any term

β, we denote its AC normal form as β �AC.

134

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Theorem 6.3. Let Thpfa be the equational theory obtained according to the given

base and aspect specifications. Then we have

(Thpfa |= (s = t)) ⇐⇒ (R(Ef) ∪R(Espec) ` (s �AC
AC
= t �AC)),

where
AC
= denotes the equivalent of two terms up to the AC-theory of + and ·.

Proof.

(Thpfa |= (s = t))

⇐⇒ 〈 Definition of Thpfa 〉

({e3, e4, e7, e8, e9} ∪ Espec ∪ {e1, e2, e5, e6}) |= (s = t)

⇐⇒ 〈 Lemma 3.1 〉

({e3, e4, e7, e8, e9} ∪ Espec) |= ({e1, e2, e5, e6} =⇒ (s = t))

⇐⇒ 〈 Definition 3.22 & Definition 6.8 〉

(R(Ef) ∪R(Espec)) ` (s �AC
AC
= t �AC)

Corollary 6.4. Given a syntactically correct PFA base specification and an aspect

specification, we can have a decidable procedure for the word problem associated

with the weaving process of AO-PFA.

Proof. Based on Theorems 6.1 and 6.2, we show that the term rewriting system

R(Ef) ∪ R(Espec) for a syntactically correct PFA base specification and an aspect

is convergent (i.e., terminating and confluent). According to Theorem 6.3, it is

135

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

obvious that we have a decidable procedure for the word problem with regard to

Thpfa , where Thpfa is decided by the given PFA specifications and aspects.

The restriction on the selected join points

As we have shown earlier, the weaving results can be ambiguous if the form of join

point is arbitrary. One solution to avoid ambiguous results is to extract join points

from the unique 2 normal form w.r.t. the term rewriting system R(Ef)∪R(Eq). In

other words, the form of join point should be restricted by the form of the normal

form. Let s be any non-ground term that specified in the base specification (i.e.,

s ∈ TF(L(S))). The AC normal form of β associated with the rewriting system

R(Ef)∪R(Espec) can be expressed as
∑m

i=1 si such that all si are not equivalent (up

to AC theory of ·). Furthermore, each si(1 ≤ i ≤ m) is either 1, or
∏
xij where each

xij ∈ L(S). This result is formally stated by Lemma A.27 in Appendix A.2.3. The

detailed proof is given on page 179. Basically, we use a structure inductive proof

over the term s. Therefore, with the proposed rewriting system, the AC normal

form of any non-ground term in the base specification S is a sum of products of

labels from L(S). Intuitively, a term in the form of a product is always a subterm

of s �AC if the term can be extracted form s. In other terms, the AC normal form

of the term e w.r.t. Concern 2 should be a product of labels from L(S).

Theorem 6.5. Let e and p be two given product family terms. Assume that w.r.t.

the set of equations Thpfa , p = β1 · e + γ1 = β2 · e + γ2, where e cannot be further

extracted from β1, β2, γ1 and γ2. Then if e �AC is a product of labels, we have

β1 = β2 ∧ γ1 = γ2 w.r.t. to the set of equations Thpfa .

2Uniqueness here means that two normal form are equal up to the AC-theory of · and +.

136

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Proof. The proof of this theorem is based on several lemmas given in Appendix A.2.3.

Lemma A.28 states that e cannot be extracted from any term s in the base spec-

ification iff e is not dividable by any product of s �AC . Lemma A.29 gives the

formal representation of (β · e + γ) �AC , while Lemma A.30 indicates the exact

relationships between s �AC and t �AC iff s = t w.r.t. Thpfa . All proofs related to

this theorem are given on pages 183–186.

Theorem 6.5 shows the uniqueness of β and γ w.r.t. the proposed restriction

on the term of selected join points. According to Concern 2 (given on Page 130),

it is straightforward to see that we can obtain unambiguous weaving results by

using the proposed rewriting system. Precisely, terms e, p correspond to e, p in

Equation (6.19), while terms e �AC , p �AC correspond to e′, p′ in Equation (6.19).

Corollary 6.6. Let S be a syntactically correct base specification and A an aspect.

Using the decidable procedure given in Theorem 6.4 for the weaving process, the

weaving result is unambiguous if the term of join points selected by A is a product

of labels from L(S).

6.3 Conclusion

In this chapter, I discussed several issues related to the automation of the weaving

process for AO-PFA. I formally discussed the general models of PFA specifica-

tions and their aspects. Then I articulated the general behaviour of the weaver

for AO-PFA. I also briefly discussed some theoretical properties related to the

weaving process. A word problem is induced in the weaving process and tackled

by constructing a rewriting system. The rewriting system then is proved to be

137

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

convergent, and the form of join points is restricted to avoid ambiguous weaving

results.

Moreover, the formalisms of base specifications and aspects are validated by

using the algebraic specification language CASL [BM04] as given in Appendix B.1.

The proposed rewriting system is validated with a term rewriting tool called

Maude [CDE+11] as given in Appendix B.2.

138

Chapter 7

Conclusion and Future Work

In this thesis, I present a comprehensive approach to extend product family algebra

with the abilities to specify, verify, and weave aspects. The idea of adopting the

aspect-oriented paradigm at the feature-modeling level aids in handling the difficul-

ties that arise from crosscutting concerns and unanticipated changes in large-scale

feature models. On one hand, the crosscutting concerns are rigorously specified

by aspects and the composition of crosscutting concerns is guaranteed to be sound

according to the verification and weaving techniques for aspects. On the other

hand, an original feature model can be considered as a base specification, while

any unanticipated changes to the feature model can be specified as aspects. Mean-

while, the formal verification and weaving techniques ensure that the changes are

correctly and properly propagated to the original feature model.

139

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

7.1 Highlight of the Contributions

In this section, I highlight the contributions related to the proposed aspect-oriented

approach for feature-modeling. I presented a specification language AO-PFA,

which extends the language of PFA specifications by including aspects. In AO-

PFA, an aspect consists of an advice equation and a pointcut triple. The proposed

syntax for aspects allows us to articulate aspects in a flexible yet systematic way. I

also gave a classification of aspects based on their syntax. The classification of as-

pects indicates the expected modifications caused by aspects on base specifications.

Furthermore, I proposed a formal verification technique to check the compatibility

of aspects with their base specification in AO-PFA. I extracted the validity cri-

teria of PFA specification from three facets: definition-validity, reference-validity,

and dependency-validity. By analyzing the impact of aspects on the three validity

criteria, I formalized the detection technique for invalid aspects w.r.t. their base

specifications. The proposed verification technique ensures that the validity of a

base specification is not spoiled by composing aspects. Finally, I discussed how

to perform the weaving process in AO-PFA. By describing PFA specifications as

parametrized algebraic specifications, I formalized the behaviours of the weaver

for AO-PFA. I also introduced a term rewriting system to solve the word prob-

lem associated with the weaving process. I proved the convergence of the induced

rewriting system, and showed that the selected join points should be in a certain

form to avoid ambiguous weaving results. With the provided term rewriting sys-

tem and the restriction on join points, we can obtain a deterministic procedure to

automate the weaving process in AO-PFA.

In [ACLF10], we find that inserting new requirements into a feature model or

140

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

merging several feature models are the two essential operations for evolving fea-

ture models. With the proposed aspect-oriented approach for feature-modeling,

merging feature models can be handled by using view reconciliation as presented

in [HKM08, HKM11a]. Inserting new requirements into a feature model can be

handled with the aspect-oriented paradigm. From another perspective, my study

explored the relationship between original feature models and modified feature

models by specifying aspects modularly and classifying aspects according to their

effects on a base specification. Another focus of my study is formalization. An alge-

braic foundation for the feature composition is proposed in [ALMK10], which alge-

braically captures the basic ideas of features and the feature composition. Whereas

their approach is more related to programming languages at the implementation

stage, the approach proposed in this thesis resides in the early analysis and design

stages of product family engineering. My study fills the gaps in the formalization

of the product family engineering at different stages.

Furthermore, by properly handling the crosscutting concerns and anticipated

changes in feature models, the work presented in this thesis might contribute to deal

with different issues in feature-oriented software development. At the domain anal-

ysis stage of feature-oriented software development, the proposed aspect-oriented

approach for feature-modeling can be used to represent large-scale feature models

by separately specifying base specifications and aspects. Besides, the proposed

approach also enables one to capture changes on feature models by specifying

aspects separately from the original feature models, which can benefit the evo-

lution of feature models. Moreover, the earliest research about handling feature

composition and interaction problems is conventionally investigated at the domain

141

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

design/specification stage of feature-oriented software development when reifying

each feature. With the proposed approach, the potential feature composition and

interaction problems can be discussed starting from a higher level by analyzing

the dependencies of aspects and the weaving process. The detection of invalid

aspectual composition and restriction on weaving of aspects might imply useful

information for deriving a suitable strategy to compose features at later stages.

7.2 Further Work

In the following, I list some of the possible future extensions to this work from dif-

ferent directions. The aim is to extend the proposed approach to different stages

of product family engineering. I also discuss the application of the proposed ap-

proach, and the tools to automate it.

7.2.1 Theory: Models and Techniques

A number of future research can be conducted as a result of the proposed feature-

modeling technique.

(i) The proposed specification language AO-PFA might be enriched to have a

more comprehensive expressiveness for specifying feature models. For ex-

ample, we can have a construct “include” to improve the modularity and

extensibility of specifications. The key of the language enrichment is to keep

a balance between the modeling power and the analyzability of the language.

(ii) The translation between product family algebra and other diagram-based

142

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

feature-modeling techniques has been discussed in the literature. By extend-

ing product family algebra with the aspect-oriented paradigm, it might also

be interesting to analyze how the aspect-oriented paradigm is related to other

digram-based feature-modeling techniques. This work will involve an investi-

gation into other digram-based feature-modeling techniques with the ability

of composing feature models.

(iii) A key ultimate goal of the feature modeling is the automatic code generation

of products from the specification of the base product family, the specifi-

cation of the aspects, and the specification of each of the basic features.

In [HKM11b], the features of a product family were given as requirements

scenarios formalized as pairs of relational specifications of a proposed system

and its environment. We can use the work presented in [HKM11b] as the

basis for our future work to introduce finer granularity aspects at the state

level and then generate the code of a product.

7.2.2 Application

Different applications can be investigated with the proposed technique.

(i) It is necessary to apply the proposed approach to real-world scenarios for

developing product families. In this thesis, only small case studies are used

to illustrate the flexibility of the proposed specification language. On the

other hand, the language is designed to capture product families with huge

number of features. By using the language and its verification and weaving

techniques on industrial-sized feature models, the empirical evaluation of the

proposed approach gives us a better idea on its real strengths and weaknesses.

143

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(ii) Although my study focuses on the domain analysis of product family en-

gineering, there is theoretically no obstacle to apply the proposed feature-

modeling technique to other domains. For example, security is a common is-

sue recognized as a crosscutting concern, and making unanticipated changes

related to security requirements is also unavoidable [LRCe06]. Various se-

curity mechanisms (e.g., [HLN04, RFLG04, SH04, LRCe06]) have been pro-

posed based on the aspect-oriented paradigm. The proposed aspect-oriented

specification language can be applied to those security mechanisms in terms

of feature models. With the help of the verification and weaving techniques,

we can recognize some interrelations between security concerns with other

concerns, and identify the possible conflicts among them.

7.2.3 Tool/Automation

The existing Jory tool can be extended by implementing the proposed approach.

The envisioned extension would use the kernel of Jory for the automatic analysis

of large feature models. We only need to perform a lightweight extension to the

existing notation of Jory to support the aspect specifications. In addition, as Jory

is designed to be extensible, two modules can be added regarding the verification

of aspectual composition and the weaving of aspects.

7.3 Closing Remarks

The systematic development with the aspect-oriented paradigm is an on-going area

with many opening issues. It is still unseen how well the aspect-oriented software

development can work in the context of feature-oriented software development.

144

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

How to map the aspect-oriented paradigm at feature-modeling to the implementa-

tion level is still a struggle for both the communities of product family engineering

and aspect-oriented software development. Therefore, it remains a complex task

towards the systematic development and automatic derivation of products using

the aspect-oriented paradigm. However, by starting from the feature-modeling

level, the proposed approach for aspect-oriented feature-modeling at least helps to

improve, from an early stage, the traceability of crosscutting concerns and unan-

ticipated changes.

145

Appendix A

Lemmas, Theorems, and

Corollaries

A.1 Proofs of the Results of Chapter 5

Theorem A.1. Let GS = (V,E) be a label dependency digraph of a PFA specifi-

cation S. Two labels u and v are mutually defined iff there is a cycle including u

and v in GS. In particular, a label u is self-defined iff there is a loop through u in

GS.

Proof.

1. u and v are mutually defined

⇐⇒ 〈 Definition of mutually defined 〉

∃(m,n | m,n ≥ 1 : (u, v)–path ∈ Em ∧ (v, u)–path ∈ En)

⇐⇒ 〈 Path concatenation 〉

∃(m,n | m,n ≥ 1 : (u, u)–path ∈ Em+n ∧ (v, v)–path ∈ Em+n)

146

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Dummy renaming 〉

∃(k | k ≥ 2 : (u, u)–path ∈ Ek ∧ (v, v)–path ∈ Ek)

⇐⇒ 〈 Definition of cycle in digraph 〉

There is a cycle including u and v in GS

2. u is self-defined

⇐⇒ 〈 Definition of mutually defined & u = v & m = n = 1 〉

∃(m,n|m = n = 1 : (u, u)–path ∈ Em ∧ (u, u)–path ∈ En)

⇐⇒ 〈 One-point rule & Idempotency of ∧ 〉

(u, u)–path ∈ E

⇐⇒ 〈 Definition of loop in digraph 〉

There is a loop through u in GS

Theorem A.2 (Kind Pointcut Condition). An aspect A is dependency-valid w.r.t.

a valid PFA specification S if the kind of pointcut of A is “constraint[list]”.

Proof. The kind of pointcut A is constraint[list] =⇒ (DA = E addA = E delA =

∅). We then proveDA = E addA = E delA = ∅ =⇒ A is dependency-valid w.r.t. S.

A is dependency-valid w.r.t. S

⇐⇒ 〈 Definition 5.10 〉

∀(u, v | u, v ∈ DS’ : ¬mutdef (u, v))

⇐⇒ 〈 Definition of mutdef (See page 93) 〉

∀(u, v | u, v ∈ (DS ∪DA) : ¬ ∃(m,n | m,n ≥ 1 : (u, v)–path ∈ (E addA

147

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∪ES − E delA)m ∧ (u, v)–path ∈ (E addA ∪ ES − E delA)n))

⇐⇒ 〈 Assumption: DA = E addA = E delA = ∅ 〉

∀(u, v | u, v ∈ DS : ¬ ∃(m,n | m,n ≥ 1 : (u, v)–path ∈ (ES)m

∧ (v, u)–path ∈ (ES)n))

⇐⇒ 〈 Definition of mutdef 〉

∀(u, v | u, v ∈ DS : ¬mutdef (u, v))

⇐⇒ 〈 S is dependency-valid (Definition 5.6) 〉

true

Therefore, due to the transitivity of =⇒ , when the type of kinded pointcut is

constraint[list], A is dependency-valid w.r.t. S.

Theorem A.3 (Non-cycle Condition). Let S be a valid PFA specification and A

be an aspect that does not satisfy the kind pointcut condition (Theorem 5.1). Con-

struct the label dependency digraph GS according to Construction 5.5 and denote or

create the vertex k in GS according to Construction 5.11. Then A is dependency-

valid w.r.t. S if ∀(x | x ∈ DS ∩RA : Walk(k, x) = ∅).

Proof. Let Adef be a set of new labels assigned to the left-hand sides of labelled

family equations. Let Bdef be the set of all labels at the left-hand sides of all

labelled family equations where join points are present at their right-hand sides.

The edges in E addA generate a path from each vertex u ∈ RA to each vertex

v ∈ Bdef in the amended label dependency digraph. Moreover, each edge in E delA

is always ended with a vertex v ∈ Bdef in the amended label dependency digraph.

Due to the ordering properties of the dependency digraph, edges in E delA would

148

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

not be within a path that starts from a vertex in Bdef in the original dependency

digraph. Therefore, A is dependency-invalid w.r.t. S iff

∃(u, v | u, v ∈ DS : u ∈ Bdef ∧ v ∈ RA ∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))

∨ ∃(u | u ∈ DS : u ∈ Bdef ∧ u ∈ RA) (A.1)

In Exp. A.1, the first exstential quantification before ∨ indicates there are loops in

the amended dependency digraph, while the second existential quantification after

∨ indicates there are cycles in the amended dependency digraph.

Exp. A.1

⇐⇒ 〈 Dummy Nesting & Trading rule 〉

∃(u | u ∈ DS ∧ u ∈ RA : u ∈ Bdef)

∨ ∃
(
v | v ∈ DS ∧ v ∈ RS : ∃(u | u ∈ Bdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Dummy renaming & Distributivity of ∃ & Axiom of set

intersection 〉
∃
(
v | v ∈ DS ∩RA : v ∈ Bdef ∨ ∃(u | u ∈ Bdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Bdef Property: x ∈ Bdef ⇐⇒ ∃(n | n ≥ 1 : (k, x)–path ∈

(ES)n) & Trading rule 〉
∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n)

∨ ∃(u | : ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n)

∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))
)

149

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Path concatenation & Dummy renaming & Distributivity

of ∧ over ∃ 〉
∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∨

(
∃(m | m ≥ 2 :

(k, v)–path ∈ (ES)m) ∧ ∃(u | u ∈ DS : ∃(n | n ≥ 1 :

(k, u)–path ∈ (ES)n))
))

=⇒ 〈 Weakening 〉

∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∨ ∃(m | m ≥ 2 :

(k, v)–path ∈ (ES)m)
)

⇐⇒ 〈 Dummy renaming & Range split & Idempotency of ∨ 〉

∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n)

)
⇐⇒ 〈 Definition of Walk(u, v) 〉

∃(v | v ∈ DS ∩RA : Walk(k, v) 6= ∅)

Therefore,

A is dependency-invalid w.r.t. S =⇒ ∃(x | x ∈ DS ∩RA : Walk(k, x) 6= ∅)

If we take its contrapositive form, we have

∀(x | x ∈ DS ∩RA : Walk(k, x) = ∅) =⇒ A is dependency-valid w.r.t. S

150

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

From the above proof, we can obtain an proposition as follows:

A is dependency-invalid w.r.t. S

⇐⇒ ∃
(
v | v ∈ DS ∩RA : v ∈ Bdef ∨ ∃(u | u ∈ Bdef : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

(A.2)

Lemma A.4. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. When the scope of the pointcut is “base”, A is always dependency-

invalid w.r.t. S.

Proof. When the type of the scope pointcut is base, join points are where k is

present. Therefore, Bdef = N+(k).

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef = N+(k) 〉

∃
(
v | v ∈ DS ∩RA : v ∈ N+(k) ∨ ∃(u | u ∈ N+(k) : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 x ∈ N+(k) ⇐⇒ (k, x)–path ∈ ES 〉

∃
(
v | v ∈ DS ∩RA : (k, v)–path ∈ ES ∨ ∃(u | u ∈ DS : (k, u)–path ∈ ES

∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Path concatenation & Distributivity of ∧ over ∃ 〉

∃
(
v | v ∈ DS ∩RA : (k, v)–path ∈ ES ∨

(
∃(u | u ∈ DS : (k, u)–path ∈ ES)

∧ ∃(m | m ≥ 2 : (k, v)–path ∈ (ES)m)
))

151

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Theorem 5.2 does not hold =⇒ ∃(u | u ∈ DS : (k, u)–path ∈

ES) & Identity of ∧ 〉
∃
(
v | v ∈ DS ∩RA : (k, v)–path ∈ ES ∨ ∃(m | m ≥ 2 : (k, v)–path ∈ (ES)m)

)
⇐⇒ 〈 One-point rule & Range split 〉

∃
(
v | v ∈ DS ∩RA : ∃(m | m ≥ 1 : (k, v)–path ∈ (ES)m)

)
⇐⇒ 〈 Definition of Walk(u, v) & Precondition: Theorem 5.2 does

not hold 〉
true

Lemma A.5. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. When the scope of the pointcut is “protect(base)”, A is always

dependency-valid w.r.t. S.

Proof. When the type of scope pointcut is protect(base), the set Bdef is empty.

A is dependency-invalid

⇐⇒ 〈 A.2 & Bdef = ∅ 〉

∃
(
v | v ∈ DS ∩RA : false ∨ ∃(u | false : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))

)
⇐⇒ 〈 Empty range & ∃-False Body: ∃(x | R : false) ⇐⇒ false 〉

false

Lemma A.6. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. Construct the dependency digraph GS according Construction 5.5

152

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

and denote or create the vertices k and s in GS according Construction 5.11. When

the scope of the pointcut is “within”, A is dependency-invalid w.r.t. S iff ∃(v |

v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k).

Proof. When the type of the scope pointcut is within, join points are bound to a

labelled product equations whose label is s. Therefore, we have Bdef = s. Besides,

there should be a path form k to s.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef = s & There is a path from k to s 〉

∃
(
v | v ∈ DS ∩RA : v = s ∨ ∃(u | u = s : ∃(m | m ≥ 1 : (u, v)–path

∈ (ES)m))
)
∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n)

⇐⇒ 〈 Distributivity of ∧ over ∃ & One-point rule 〉

∃
(
v | v ∈ DS ∩RA : (v = s ∨ ∃(m | m ≥ 1 : (s, v)–path ∈ (ES)m))

∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n)
)

⇐⇒ 〈 Definition of Walk(u, v) & S is dependency-valid ⇐⇒

Walk(x, x) = ∅ 〉
∃
(
v | v ∈ DS ∩RA : (s = v ∨ (Walk(s, v) 6= ∅ ∧ s 6= v)) ∧ (Walk(k, s) 6= ∅

)
∧k 6= s)

⇐⇒ 〈 Absorbing: p ∨ (q ∧ ¬p) ⇐⇒ (p ∨ q) 〉

∃
(
v | v ∈ DS ∩RA : (s = v ∨Walk(s, v) 6= ∅) ∧Walk(k, v) 6= ∅ ∧ k 6= s

)
⇐⇒ 〈 Path concatenation 〉

∃
(
v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ k 6= s

)

153

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Lemma A.7. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. Construct the dependency digraph GS according Construction 5.5

and denote or create the vertex k in GS according Construction 5.11. When the

scope of the pointcut is “protect(within)”, A is dependency-invalid w.r.t. S iff ∃(v |

v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k).

Proof. When the type of the scope pointcut is protect(within), if there is a path

from k to s, labels in Bdef should exclude s. Otherwise, the set Bdef is identical

with the one specified by pointcut of type base.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef properties & Lemma A.4 〉(
∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)∧ ∃

(
v | v ∈ DS ∩RA : (∃(n | n ≥ 1 :

(k, v)–path ∈ (ES)n) ∧ v 6= s)

∨ ∃(u | ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n) ∧ u 6= s : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
))

∨(¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k) ∧ true)

⇐⇒ 〈 Identity of ∧ & Absorbing: (p ∧ q) ∨ ¬p ⇐⇒ q ∨ ¬p 〉

∃
(
v | v ∈ DS ∩RA : (∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∧ v 6= s) ∨ ∃(u |

∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n) ∧ u 6= s : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

∨¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

154

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Trading rule & Definition of Walk(u, v) & Path concate-

nation 〉
∃
(
v | v ∈ DS ∩RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ ∃(u | u 6= s :

u ∈Walk(k, v) ∧ u 6= k ∧ u 6= v)
)
∨Walk(k, s) = ∅

⇐⇒ 〈 Trading rule & Generalized De Morgan 〉

∃
(
v | v ∈ DS ∩RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ ¬ ∀(u | u = s :

u ∈Walk(k, v) ∧ u 6= k ∧ u 6= v)
)
∨Walk(k, s) = ∅

⇐⇒ 〈 One-point rule & De Morgan 〉

∃
(
v | v ∈ DS ∩RA : (Walk(k, v) 6= ∅ ∧ v 6= s) ∨ (s /∈Walk(k, v) ∨ s = k∨

s = v)
)
∨ Walk(k, s) = ∅

⇐⇒ 〈 Distributivity of ∨ over ∧ & Excluded Middle & Absorb-

ing: p ∧ (p ∨ q) ⇐⇒ p 〉
∃
(
v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k)

)
∨Walk(k, s) = ∅

⇐⇒ 〈 Walk(k, s) = ∅ =⇒ ∃(v | v ∈ DS∩RA : s /∈Walk(k, v)) &

Distributivity of ∨ over ∃ & (p =⇒ q) =⇒ ((p ∨ q) ≡ q) 〉
∃
(
v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k)

)

Lemma A.8. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. Construct the dependency digraph GS according Construction 5.5

and denote or create the vertices k and s in GS according Construction 5.11. When

the scope of the pointcut is “through”, A is dependency-invalid w.r.t. S iff ∃(v |

v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k ∧ s 6= v).

155

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Proof. When the type of the scope pointcut is through, join points are bound to

a labelled family equation where s is present at their right-hand sides. Therefore,

Bdef = N+(s). Besides, there should be a path from k to s.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef = N+(s) & There is a path from k to s 〉

∃
(
v | v ∈ DS ∩RA : v ∈ N+(s) ∨

(
∃(u | u ∈ N+(s) : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)
∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n)

⇐⇒ 〈 v ∈ N+(s) ⇐⇒ (s, v)–path ∈ ES & Distributivity of ∧ over

∃ 〉
∃
(
v | v ∈ DS ∩RA : ((s, v)–path ∈ ES ∨ ∃(u |: (s, u)–path ∈ ES ∧ ∃(m |

m ≥ 1 : (u, v)–path ∈ (ES)m))) ∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n)
)

⇐⇒ 〈 Path concatenation & Dummy renaming & (p =⇒

q) =⇒ (p ∧ q ≡ p) 〉
∃(v | v ∈ DS ∩RA : ((s, v)–path ∈ ES ∨ ∃(m | m ≥ 2 : (s, v)–path ∈ (ES)m))

∧ ∃(n | n ≥ 1 : (k, s)–path ∈ (ES)n))

⇐⇒ 〈 One-point rule & Range split 〉

∃(v | v ∈ DS ∩RA : ∃(m | m ≥ 1 : (s, v)–path ∈ (ES)m) ∧ ∃(n | n ≥ 1 :

(k, s)–path ∈ (ES)n))

⇐⇒ 〈 Path concatenation & Definition of Walk(u, v) & S is

dependency-valid ⇐⇒ Walk(x, x) = ∅ 〉
∃
(
v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= v ∧ k 6= s

)

156

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Lemma A.9. Let S be a valid PFA specification and A be a potentially dependency-

invalid aspect. Construct the label dependency digraph GS according Construc-

tion 5.5 and denote or create the vertices k and s in GS according Construc-

tion 5.11. When the scope of the pointcut is “protect(through)”, A is dependency-

invalid w.r.t. S iff ∃(v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k ∨ s = v).

Proof. When the type of the scope pointcut is protect(through), if there is a path

from k to s, labels in Bdef should not include successors of s. Otherwise, the set

Bdef is identical with the one specified by a pointcut with scope base.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef properties & Lemma A.4 〉(
∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

∧ ∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∧ v /∈ N+(s)

∨ ∃(u | ∃(n | n ≥ 1 : (k, u)–path ∈ (ES)n) ∧ u /∈ N+(s) : ∃(m |

m ≥ 1 : (u, v)–path ∈ (ES)m))
)

∨(true ∧ ¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k))

⇐⇒ 〈 Distributivity of ∧ over ∃ & Distributivity of ∧ over ∨ &

x ∈ N+(s) ⇐⇒ (s, x)–path ∈ ES 〉
∃
(
v | v ∈ DS ∩RA : ∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k) ∧ (s, v)–path /∈ ES) ∨ ∃(u | ∃(n | n ≥ 1 :

(k, u)–path ∈ (ES)n) ∧ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

∧(s, u)–path /∈ ES : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))
)

157

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∨¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

⇐⇒ 〈 Trading rule & Generalized De Morgan 〉

∃
(
v | v ∈ DS ∩RA : (∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k) ∧ (s, v)–path /∈ ES) ∨ ¬ ∀(u | (s, u)–path ∈ ES :

∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k) ∧ ∃(n | n ≥ 1 : (k, u)–path

∈ (ES)n) ∧ ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))
)

∨¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

⇐⇒ 〈 Trading rule & Path concatenation 〉

∃
(
v | v ∈ DS ∩RA : (∃(n | n ≥ 1 : (k, v)–path ∈ (ES)n) ∧ ∃(k | k ≥ 1 :

(k, s)–path ∈ (ES)k) ∧ (s, v)–path /∈ ES) ∨ ¬(∃(n | n ≥ 1 : (k, s)–path

∈ (ES)n) ∧ ∃(m | m ≥ 2 : (s, v)–path ∈ (ES)m))
)

∨¬ ∃(k | k ≥ 1 : (k, s)–path ∈ (ES)k)

⇐⇒ 〈 Definition of Walk(u, v) 〉

∃
(
v | v ∈ DS ∩RA : (Walk(k, v) 6= ∅ ∧ k 6= s ∧ v /∈ N+(s)) ∨ ¬(s ∈Walk(k, v)

∧k 6= s ∧ s 6= v ∧ v /∈ N+(s)
)
∨Walk(k, s) = ∅

⇐⇒ 〈 De Morgan 〉

∃
(
v | v ∈ DS ∩RA : (Walk(k, v) 6= ∅ ∧ k 6= s ∧ v /∈ N+(s)) ∨ s /∈Walk(k, v)

∨s = k ∨ s = v ∨ v ∈ N+(s)
)
∨Walk(k, s) = ∅

⇐⇒ 〈 Distributivity of ∨ over ∧ & Excluded Middle & Absorb-

ing 〉
∃
(
v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k ∨ s = v

)
∨Walk(k, s) = ∅)

158

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Walk(k, s) = ∅ =⇒ ∃
(
v | v ∈ DS ∩RA : s /∈Walk(k, v)

)
〉

∃
(
v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k ∨ s = v

)

Theorem A.10 (Dependency-invalid aspect). Let S be a valid PFA specification

and A be a potentially dependency-invalid aspect. Let a be a vertex that invalidates

the condition of Theorem 5.2. Vertices k and s are denoted or created in GS

according to A as prescribed in Construction 5.11. Provided the set of join points

is nonempty, the aspect A is dependency-invalid w.r.t. S if Dep invalid(ts), where

ts represents the scope of the pointcut and

Dep invalid(ts)
def⇔



true if ts is base

s ∈Walk(k, a) ∧ s 6= k if ts is within

s ∈Walk(k, a) ∧ s 6= k ∧ s 6= a if ts is through

¬Dep invalid(ts′) if ts is protect(ts′)

Dep invalid(ts1) ∨ Dep invalid(ts2) if ts is (ts1:ts2)

Dep invalid(ts1) ∧ Dep invalid(ts2) if ts is (ts1 ; ts2)

Proof.

(1) ts = base

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.4 & a is a vertex associated to A that invalidates

Theorem 5.2 〉
true

159

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(2) ts = within

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.6 〉

∃(v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k).

⇐= 〈 Witness: a is a vertex associated to A that invalidates Theorem 5.2

〉
s ∈Walk(k, a) ∧ s 6= k

(3) ts = through

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.8 〉

∃(v | v ∈ DS ∩RA : s ∈Walk(k, v) ∧ s 6= k ∧ s 6= v)

⇐= 〈 Witness: a is a vertex associated to A that invalidates Theorem 5.2

〉
s ∈Walk(k, a) ∧ s 6= k ∧ s 6= a

(4) ts=protect(ts′)

• ts’=base

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.5 〉

false

⇐⇒ 〈 Proof item (1) 〉

¬Dep invalid(base)

160

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

• ts’=within

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.7 〉

∃(v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k)

⇐= 〈 Witness: a is a vertex associated to A that invalidates The-

orem 5.2 〉
s /∈Walk(k, a) ∨ s = k

⇐⇒ 〈 Proof item (2) 〉

¬Dep invalid(within)

• ts’=through

A is dependency-invalid w.r.t. S

⇐⇒ 〈 Lemma A.9 〉

∃(v | v ∈ DS ∩RA : s /∈Walk(k, v) ∨ s = k ∨ s = v)

⇐= 〈 Witness: a is a vertex associated to A that invalidates The-

orem 5.2 〉
s /∈Walk(k, a) ∨ s = k ∨ s = a

⇐⇒ 〈 Proof item (3) 〉

¬Dep invalid(through)

(5) ts = (ts1:ts2)

Let the set of join points selected by ts1 be B1
def and the set of join points

selected by ts2 be B2
def, then the set Bdef = B1

def ∪ B2
def.

161

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef = B1
def ∪ B2

def 〉

∃
(
v | v ∈ DS ∩RA : v ∈ B1

def ∪ B2
def ∨ ∃(u | u ∈ B1

def ∪ B2
def : ∃(m |

m ≥ 1 : (u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Range split for idempotent operator ∃ 〉

∃
(
v | v ∈ DS ∩RA : v ∈ B1

def ∪ B2
def ∨ ∃(u | u ∈ B1

def : ∃(m | m ≥ 1 :

(u, v)–path) ∈ (ES)m) ∨ ∃(u | u ∈ B2
def : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Union set axiom & Associativity and Symmetry of ∨ &

Distributivity of ∃ 〉
∃
(
v | v ∈ DS ∩RA : v ∈ B1

def ∨ ∃(u | u ∈ B1
def : ∃(m | m ≥ 1 :

(u, v)–path ∈ (ES)m))
)
∨ ∃

(
v | v ∈ DS ∩RA : v ∈ B2

def ∨ ∃(u |

u ∈ B2
def : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))

)
⇐= 〈 A.2 & Proof items (1), (2), (3) and (4) 〉

Dep invalid(ts1) ∨Dep invalid(ts2)

(6) ts = (ts1;ts2)

Let the set of join points selected by ts1 be B1
def and the set of join points

selected by ts2 be B2
def, then the set Bdef = B1

def∩B2
def, provided that Bdef 6= ∅.

A is dependency-invalid w.r.t. S

⇐⇒ 〈 A.2 & Bdef = B1
def ∩ B2

def 〉

162

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∃
(
v | v ∈ DS ∩RA : v ∈ B1

def ∩ B2
def ∨ ∃(u | u ∈ B1

def ∩ B2
def : ∃(m |

m ≥ 1 : (u, v)–path ∈ (ES)m))
)

⇐⇒ 〈 Set intersection axiom & Distributivity of ∨ over ∧ 〉

∃
(
v | v ∈ DS ∩RA :

(
v ∈ B1

def ∨ ∃(u | u ∈ B1
def ∩ B2

def : ∃(m |

m ≥ 1 : (u, v)–path ∈ (ES)m))
)
∧
(
v ∈ B2

def ∨ ∃(u | u ∈ B1
def ∩ B2

def :

∃(m | m ≥ 1 : (u, v)–path ∈ (ES)m))
))

⇐= 〈 Witness: a is a vertex associated to A that invalidates Theo-

rem 5.2 〉(
a ∈ B1

def ∨ ∃(u | u ∈ u ∈ B1
def ∩ B2

def : ∃(m | m ≥ 1 : (u, a)–path

∈ (ES)m))
)
∧
(
a ∈ B2

def ∨ ∃(u | u ∈ B1
def ∩ B2

def : ∃(m | m ≥ 1 :

(u, a)–path ∈ (ES)m))
)

⇐= 〈 B1
def ∩ B2

def 6= ∅ & Witness 〉(
a ∈ B1

def ∨ ∃(m | m ≥ 1 : (u, a)–path ∈ (ES)m)
)
∧
(
a ∈ B2

def ∨ ∃(m |

m ≥ 1 : (u, a)–path ∈ (ES)m)
)

⇐⇒ 〈 A.2 & Proof item (1), (2), (3), and (4) 〉

Dep invalid(ts1) ∧Dep invalid(ts2)

163

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

A.2 Proofs of the Results of Chapter 6

A.2.1 Termination of the Rewriting System

Lemma A.11. We have (l >lop r) for the rules
(
{x},+(x, 0) −→ x

)
,
(
{x},+(x, x) −→

x
)
, and

(
{x}, ·(x, 1) −→ x

)
.

Proof.

l >lop r

⇐⇒ 〈 Definition of >lpo: LOP1. Particularly, x ∈ Var(+(x, 0)) ∧ x 6=

+(x, 0), x ∈ Var(+(x, x)) ∧ x 6= +(x, x), and x ∈ Var(·(x, 1)) ∧

x 6= ·(x, 1) 〉
true

Lemma A.12. We have (l >lop r) for the rewriting rule
(
{x, y, z}, ·(x,+(y, z))→

+(·(x, y), ·(x, z))
)
.

Proof. For the sake of clarity, we divide our proof into 3 parts as follows:

1. We first prove ·(x,+(y, z)) >lop x, y, z, and +(y, z) >lop y, z.

(
+ (y, z) >lop y, z

)
∧
(
· (x,+(y, z)) >lop x, y, z

)
⇐⇒ 〈 Definition of >lpo: LOP1. In particular, we have y, z ∈ Var

(
+

(y, z) ∧ y, z 6= +(y, z), and x, y, z ∈ Val
(
·(x,+(y, z))

)
∧ x, y, z 6=

·(x,+(y, z)) 〉
true

164

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

2. We prove ·(x,+(y, z)) >lop ·(x, y) and ·(x,+(y, z)) >lop ·(x, z).

Proof (1):
(
· (x,+(y, z)) >lop x

)
∧
(
· (x,+(y, z)) >lop y

)
∧
(

+ (y, z) >lop y
)

⇐⇒ 〈 Definition of >lpo: LOP2c. In particular, let f = g = ·, s =

·(x,+(y, z)), s1 = x, s2 = +(y, z), t = ·(x, y), t1 = x, t2 = y, and

n = m = 2. 〉
·(x,+(y, z)) >lop ·(x, y)

Since the proof for ·(x,+(y, z)) >lop ·(x, z) is quite similar with the above

proof, we omit the detail here.

3. Finally, we prove ·(x,+(y, z)) >lop +(·(x, y), ·(x, z)).

Proof (2):
(
· (x,+(y, z)) >lop ·(x, y)

)
∧
(
· (x,+(y, z)) >lop ·(x, z)

)
⇐⇒ 〈 Definition of >lpo: LOP2b In particular, f = · > g = +, s =

·(x,+(y, z)), t1 = ·(x, y), t2 = ·(x, z)), and n = 2. 〉
·(x,+(y, z)) >lop +(·(x, y), ·(x, z)).

Lemma A.13. We have (l >lop r) for the rewriting rule
(
{x}, ·(x, 0) −→ 0

)
.

Proof.

(+ > 0) ∧ (0 ≥ 0)

⇐⇒ 〈 Definition of >lpo: LOP2a. In particularly, f = +, g = 0, s =

+(x, 0), s1 = x, s2 = 0, t = 0, and m = 2. 〉
+(x, 0) >lop 0

165

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Lemma A.14. We have (l >lop r) for any rule in R(Espec).

Proof.

true

=⇒ 〈 The syntactical requirements of PFA specification 〉

∀((X,L,R) ∈ Eq(S) |: ∃(0 ≤ i ≤ m |: L = Fi ∧ Val(R) = X − {Fi}

∧ Val(R) ⊆ {f1, . . . fn, F1, . . . , Fi−1}))

⇐⇒ 〈 Definition of R(Espec): Expression (6.21) 〉

∀((X, l −→ r) ∈ R(Espec) |: ∃(0 ≤ i ≤ m |: l = Fi ∧ Val(r) = X − {Fi}

∧Val(r) ⊆ {f1, . . . fn, F1, . . . , Fi−1}))

⇐⇒ 〈 Use the Definition of >lpo: LOP2b recursively. In particular,

s = Fi > ·,+, and (Fi > f1) ∧ · · · ∧ (Fi > fn) ∧ (Fi > F1) ∧ · · · ∧

(Fi > Fi−1) ∧ (Fi > 1) ∧ (Fi > 0) 〉
∀((X,L −→ R) ∈ R(Espec) |: l >lop r)

Theorem A.15. For any syntactically correct base specification S and aspect spec-

ification A, the rewriting system R(Ef) ∪R(Espec) is terminating.

Proof.

The rewriting system R(Ef) ∪R(Espec) is given by Table 6.2 and Expression (6.21)

⇐⇒ 〈 Lemmas A.11– A.14 〉

166

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∀((X, l −→ r) | (X, l −→ r) ∈ R(Ef) ∪R(Espec) : l >lop r)

⇐⇒ 〈 Theorem 3.5 and Theorem 3.6, which indicate >lop is a reduction

order & Theorem 3.7 〉
The rewriting system R(Ef) ∪R(Espec) is terminating.

A.2.2 Confluence of the Rewriting System

Lemma A.16. Let U = {(a, b) | a, b ∈ R(Ef) ∪ R(Espec)}. The union of the

following subset of U is U .

S1 : Any two distinct rewriting rules from R(Espec)

S2 : Any one rewriting rule from R(Espec), and any one rule in R(Ef)

S3 : Any one rewriting rule of r3 and r4, and any rule of r7 and r9.

S4 : The rule r3 and the rule r4.

S5 : The rule r7 and the rule r9.

S6 : The rule r8 and any one rule of r7 and r9.

S7 : The rule r8 and the rule r3.

S8 : The rule r8 and the rule r4.

S9 : Any one rule of R(Ef) ∪R(Espec) with itself.

Proof.S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 ∪ S9

167

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Definition of S6, S7, S8, and Ef & idempotent, commutativity

and associativity of ∪ 〉
(S1 ∪ S9) ∪ S2 ∪ (S3 ∪ S4 ∪ S5 ∪ S9)

∪{(a, b) | (a ∈ {r8} ∧ b ∈ Ef − {r8}) ∨ (a ∈ Ef − {r8} ∧ b ∈ {r8})}

⇐⇒ 〈 Definition of S3, S4, S5, S9, and Ef 〉

(S1 ∪ S9) ∪ S2 ∪ {(a, b) | a ∈ Ef − {r8} ∧ b ∈ Ef − {r8}}

∪{(a, b) | (a ∈ {r8} ∧ b ∈ Ef − {r8}) ∨ (a ∈ Ef − {r8} ∧ b ∈ {r8})}

∪{(a, b) | (a ∈ {r8} ∧ b ∈ {r8}}

⇐⇒ 〈 Definition of set union & Definition of Ef 〉

(S1 ∪ S9) ∪ S2 ∪ {(a, b) | a, b ∈ Ef }

⇐⇒ 〈 Definitions of S1, S2 and S9 〉

{(a, b) | a, b ∈ Eq} ∪ {(a, b) | (a ∈ Eq ∧ b ∈ Ef) ∨ (a ∈ Ef ∧ b ∈ Eq)}

∪{(a, b) | a, b ∈ Ef }

⇐⇒ 〈 Definition of set union 〉

{(a, b) | a, b ∈ Eq ∪ Ef }

Lemma A.17. Any two distinct rewriting rules in R(Espec) cannot give raise of a

critical pair.

Proof. For the case of redundant specification, (i.e., two rewrite rules generated by

equations of Espec are the same), the possibility of giving raise of critical pair is the

same as the case for the set of S9. We will discuss this case later. In the following

168

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

proof, we assume that all rewrite rules in R(Espec) are different. According to the

definition of R(Espec), we have:

∀(l1 → r1, l2 → r2 ∈ R(Espec) | l1 6= l2 : l1, l2 ∈ L(S))

⇐⇒ 〈 Lemma 3.8. In particular, there is no mgu for two distinct con-

stants 〉
∀(l1 → r1, l2 → r2 ∈ R(Espec) | l1 6= l2 : ¬ ∃(θ, p |: θ(l1|p) = θl2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1 → r1, l2 → r2 ∈ R(Espec) | l1 6= l2 : l1 → r1 and l2 → r2

cannot give raise of a critical pair)

Lemma A.18. Any one rewriting rule in R(Espec) with any one rule in R(Ef)

cannot give raise of a critical pair.

Proof. To show that any one rewriting rule in R(Espec) with any one rule in R(Ef)

cannot give raise a critical pair, we divide proof into two parts.

(1) In the first part, we assume l1 → r1 ∈ R(Espec) and l2 → r2 ∈ R(Ef). Accord-

ing to the definition of R(Espec) and R(Ef), we have:

∀(l1, l2 | l1 → r1 ∈ R(Espec), l2 → r2 ∈ R(Ef)

: l1 ∈ L(S) ∧ l2 is a non-variable and non-constant term)

⇐⇒ 〈 Lemma 3.8. In particular, there is no mgu for a constant with a

non-variable and non-constant term 〉
∀(l1, l2 | l1 → r1 ∈ R(Espec) ∧ l2 → r2 ∈ R(Ef) : ¬ ∃(θ, p |: θ(l1|p) = θl2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

169

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∀(l1, l2 | l1 → r1 ∈ R(Espec) ∧ l2 → r2 ∈ R(Ef) : l1 → r1 and l2 → r2

cannot give raise of critical pair)

(2) In the second part, we assume l1 → r1 ∈ R(Ef) and l2 → r2 ∈ R(Espec).

According to the definition of R(Espec) and R(Ef), we have

∀(l1, l2 | l1 → r1 ∈ R(Ef) ∧ l2 → r2 ∈ R(Espec) : l2 ∈ L(S) ∧ the non-

variable subterm of l1 is either a constant 0 or 1, or l1 itself)

⇐⇒ 〈 Lemma 3.8. In particular, there is no mgu for either two distinct

constants, or a constant with a non-variable and non-constant term.

〉
∀(l1, l2 | l1 → r1 ∈ R(Ef) ∧ l2 → r2 ∈ R(Espec) : ¬ ∃(θ, p | θ(l1|p)

is not a variable : θ(l1|p) = θl2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1, l2 | l1 → r1 ∈ R(Ef) ∧ l2 → r2 ∈ R(Espec) : l1 → r1 and l2 → r2

cannot give raise of critical pair)

Lemma A.19. Any rewriting rule among r3 and r4, and any rewriting rule among

r7 and r9 cannot give raise of a critical pair.

Proof. To show that any one rewriting rule of r3 and r4, and any one rewriting

rule r7 and r9 cannot give raise of a critical pair, we divide the proof into two

parts.

(1) In the first part, we assume that l1 → r1 is either r3 or r4, while l2 → r2 is

either r7 or r9. According to the definitions of r3, r4, r7, and r9, we have

∀(l1, l2 | l1 → r1 ∈ {r3, r4, } ∧ l2 → r2 ∈ {r7, r9} : the non-variable

170

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

subterm of l1 is either a constant 0 or 1, or l1 itself, which is in

the form of +(t1, t2) ∧ l2 is a term in the form of ·(t′1, t′2))

⇐⇒ 〈 Lemma 3.8. In particular, there is no mgu for a constant with a

non-variable and non-constant term, and there is no mgu for two

terms in the form of +(t1, t2) and ·(t′1, t′2) 〉
∀(l1, l2 | l1 → r1 ∈ {r3, r4, } ∧ l2 → r2 ∈ {r7, r9} : ¬ ∃(θ, p | θ(l1|p)

is not a variable : θ(l1|p) = θl2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1, l2 | l1 → r1 ∈ {r3, r4, } ∧ l2 → r2 ∈ {r7, r9} : l1 → r1 and l2 → r2

cannot give raise of a critical pair)

(2) In the second part, we assume that l1 → r1 is either r7 or r9, while l2 → r2 is

either r3 or r4. According to the definitions of r3, r4, r7, and r9, we have

∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r3, r4, } : the non-variable

subterm of l1 is either a constant 0 or 1, or l1 itself, which is

in the form of ·(t1, t2) ∧ l2 is a term in the form of +(t′1, t
′
2))

⇐⇒ 〈 Lemma 3.8. In particular, there is no mgu for a constant with a

non-variable and non-constant term, and there is no mgu for two

terms in the form of +(t1, t2) and ·(t′1, t′2) 〉
∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r3, r4, } : ¬ ∃(θ, p | θ(l1|p)

is not a variable : θ(l1|p) = θ(l2)))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r3, r4, } : l1 → r1 and l2 → r2

cannot give raise of a critical pair)

171

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Lemma A.20. The critical pairs determined by the rewriting rule r3 and r4 are

joinable.

Proof. The rules r3 and r4 can give raise of two critical pairs. We respectively

show that both critical pairs are joinable.

(1) Assume that r3 is l1 → r1 and r4 is l2 → r2. According to definitions of r3

and r4, we have:

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r4} =⇒ the non-variable subterm of l1 is

either 0, or +(x, 0) ∧ l2 = +(x′, x′)

〈 Definition of mgu. In particular, θ = {x 7→ x′, x′ 7→ 0} 〉

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r4} =⇒ ∃(θ, p |: θ(l1|p) = θ(l2) = 0 + 0)

⇐⇒ 〈 Definition 3.27 of critical pair & θ = {y 7→ x′, z 7→ 0} 〉

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r4} =⇒ l1 → r1 and l2 → r2 give raise of a

critical pair〈x′, x′〉

⇐⇒ 〈 x ↓ x 〉

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r4} =⇒ l1 → r1 and l2 → r2 give raise of a

joinable critical pair.

(2) Assume that r4 is l1 → r1 and r3 is l2 → r2. According to definitions of r3

and r4, we have:

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r3} =⇒ the non-variable subterm of l1

is +(x, x) ∧ l2 = +(x′, 0)

〈 Definition of mgu. In particular, θ = {x′ 7→ x, x 7→ 0} 〉

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r3} =⇒ ∃(θ, p |: θ(l1)|p = θ(l2) = +(0, 0))

172

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Definition of critical pair 3.27 & θ = {x 7→ x, x 7→ 0} 〉

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r3} =⇒ l1 → r1 and l2 → r2 give raise of a

critical pair〈0, 0〉

⇐⇒ 〈 0 ↓ 0 〉

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r3} =⇒ l1 → r1 and l2 → r2 give raise of a

joinable critical pair.

Lemma A.21. The rewriting rule r7 and r9 cannot give raise of a critical pair.

Proof. We also consider the proof in two cases.

(1) Assume that r7 is l1 → r1 and r9 is l2 → r2. According to definitions of r7

and r9, we have:

l1 → r1 ∈ {r7} ∧ l2 → r2 ∈ {r9} =⇒ the non-variable subterm of l1 is

either 1, or · (x, 1) ∧ l2 = ·(x′, 0)

〈 Lemma 3.8. In particular, there is no unifier for two distinct con-

stants, and there is no unifier for a constant with a non-variable

and non-constant term. 〉
l1 → r1 ∈ {r7} ∧ l2 → r2 ∈ {r9} =⇒ ¬ ∃(θ, p |: θ(l1)|p = θ(l2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r4} =⇒ l1 → r1 and l2 → r2 cannot give

raise of a critical pair

(2) Assume that r9 is l1 → r1 and r7 is l2 → r2. According to definitions of r7

and r9, we have:

173

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

l1 → r1 ∈ {r9} ∧ l2 → r2 ∈ {r7} =⇒ the non-variable subterm of is either

l1 0, or · (x, 0) ∧ l2 = ·(x′, 1)

〈 Lemma 3.8. In particular, there is no unifier for two distinct con-

stants, and there is no unifier for a constant and a non-variable and

non-constant term 〉
l1 → r1 ∈ {r9} ∧ l2 → r2 ∈ {r7} =⇒ ¬ ∃(θ, p |: θ(l1)|p = θ(l2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

l1 → r1 ∈ {r7} ∧ l2 → r2 ∈ {r9} =⇒ l1 → r1 and l2 → r2 cannot give

raise of a critical pair

Lemma A.22. The rewriting rule r8 cannot give raise of critical pairs with r7

and r9.

Proof. We also consider the proof in two cases.

(1) Assume that either r7 or r9 is l1 → r1, and r8 is l2 → r2. According to

definitions of r7, r8, and r9, we have:

∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r8} : the non-variable strict

subterm of l1 is a constant ∧ l2 is a non-variable term)

⇐⇒ 〈 Lemma 3.8. In particular, there is no unification for a constant and

a non-variable term. 〉
∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r8} : ¬ ∃(θ, p |: θ(l1|p) = θl2))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1, l2 | l1 → r1 ∈ {r7, r9} ∧ l2 → r2 ∈ {r8} : l1 → r1 and l2 → r2 cannot

give raise of a critical pair)

174

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(2) Assume that r8 is l1 → r1, and either r7 or r9 is l2 → r2. According to

definitions of r7, r8, and r9, we have:

∀(l1, l2 | l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r7, r9} : the non-variable strict

subterm of l1 is a term in the form of + (t1, t2) ∧ l2 is a term

in the form of · (t′1, t′2))

⇐⇒ 〈 Lemma 3.8. In particular, there is no unification for two term

+(t1, t2) and ·(t′1, t′2) 〉
∀(l1, l2 | l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r7, r9} : ∃(θ, p |: θ(l1|p) = θ(l2)))

⇐⇒ 〈 Definition 3.27 of critical pair 〉

∀(l1, l2 | l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r7, r9} : l1 → r1 and l2 → r2 cannot

give raise of a critical pair)

Lemma A.23. The rewriting rule r8 and r3 only give raise of one joinable critical

pair.

Proof. We give the proof by two cases.

(1) Assume that r3 is l1 → r1, and r8 is l2 → r2. According to definitions of r8

and r3, we have:

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r8} =⇒ there is no non-variable strict

subterm for l1

⇐⇒ 〈 Definition of critical pair 3.27 〉

l1 → r1 ∈ {r3} ∧ l2 → r2 ∈ {r8} =⇒ l1 → r1 and l2 → r2 cannot

give raise of a critical pair

175

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(2) Assume that r8 is l1 → r1, and r3 is l2 → r2. According to definitions of r8

and r3, we have:

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r3} =⇒ the non-variable strict subterm of

l1 is + (y, z) ∧ l2 = +(x′, 0)

〈 Definition of mgu. In particular, θ = {y 7→ x′, z 7→ 0} 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r4} =⇒ ∃(θ, p |: θ(l1)|p = θ(l2) = x′ + 0)

⇐⇒ 〈 Definition of critical pair 3.27 & θ = {y 7→ x′, z 7→ 0} 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r3} =⇒ l1 → r1 and l2 → r2 give raise of a

critical pair〈+(·(x, x′), ·(x, 0)), ·(x, x′)〉

⇐⇒ 〈 +(·(x, x′), ·(x, 0)) −→
r9

+(·(x, x′), 0) −→
r3
·(x, x′) 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r3} =⇒ l1 → r1 and l2 → r2 give raise of

joinable critical pair in the rewriting

system R(Ef) ∪R(Espec).

Lemma A.24. The rewriting rule r8 and r4 only give raise of one joinable critical

pair.

Proof. We give the proof by two cases.

(1) Assume that r4 is l1 → r1, and r8 is l2 → r2. According to definitions of r8

and r4, we have:

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r8} =⇒ there is no non-variable strict

subterm for l1

⇐⇒ 〈 Definition 3.27 of critical pair 〉

176

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

l1 → r1 ∈ {r4} ∧ l2 → r2 ∈ {r8} =⇒ l1 → r1 and l2 → r2 cannot

give raise of a critical pair.

(2) Assume that r8 is l1 → r1, and r4 is l2 → r2. According to definitions of r8

and r4, we have:

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r4} =⇒ the non-variable strict subterm of

l1 is + (y, z) ∧ l2 = +(x′, x′)

〈 Definition of mgu. In particular, θ = {y 7→ x′, z 7→ x′} 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r4} =⇒ ∃(θ, p |: θ(l1)|p = θ(l2) = x′ + x′)

⇐⇒ 〈 Definition 3.27 of critical pair & θ = {y 7→ x′, z 7→ x′} 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r4} =⇒ l1 → r1 and l2 → r2 give raise of a

critical pair 〈+(·(x, x′), ·(x, x′)), ·(x, x′)〉

⇐⇒ 〈 +(·(x, x′), ·(x, x′)) −→
r4
·(x, x′) 〉

l1 → r1 ∈ {r8} ∧ l2 → r2 ∈ {r4} =⇒ l1 → r1 and l2 → r2 give raise of a

joinable critical pair in the rewriting

system R(Ef) ∪R(Espec).

Lemma A.25. Any rewriting rules in R(Ef)∪R(Eq) cannot give raise of a critical

pair with itself.

Proof. To show that any rewriting rules in R(Ef) ∪ R(Eq) cannot give raise of a

critical pair with itself, we divide the proof into three cases.

(1) Consider rules in R(Espec) and the rule r4. According to their definitions, we

have:

∀(l | l→ r ∈ R(Espec) ∪ {r4} : there is no non-variable proper substerm

for l)

177

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Definition of critical pair 3.27. It is safe to ignore p = ε when

considering the overlap of one rule itself. 〉
∀(l | l→ r ∈ R(Espec) ∪ {r4} : l→ rcannot give raise of a critical pair

with itself)

(2) Consider the rules r3, r7 and r9. According to their definitions, we have:

∀(l | l→ r ∈ {r3, r7, r9)} : the proper non-variable subterm of l

is a constant)

⇐⇒ 〈 Lemma 3.8. In particular, there is no unifier for a constant and a

non-variable and non-constant term 〉
∀(l | l→ r ∈ {r3, r7, r9)} : ¬ ∃(θ, p | p 6= ε : θ(l)|p = θ(l)))

⇐⇒ 〈 Definition of critical pair 3.27. It is safe to ignore p = ε when

considering the overlap of one rule itself. 〉
∀(l | l→ r ∈ {r3, r7, r9)} : l→ r cannot give raise of a critical pair

with itself)

(3) Consider the rule r8. According to its definition, we have:

l→ r ∈ {r8)} =⇒ the proper non-variable subterm of l is in a form of + (t1, t2)

⇐⇒ 〈 Lemma 3.8. In particular, there is no unification for two term

+(t1, t2) and ·(t′1, t′2) 〉
l→ r ∈ {r8)} =⇒ ¬ ∃(θ, p | p 6= ε : θ(l)|p = θ(l))

⇐⇒ 〈 Definition of critical pair 3.27. It is safe to ignore p = ε when

considering the overlap of one rule itself. 〉
l→ r ∈ {r8)} =⇒ l→ r cannot give raise of a critical pair with itself

178

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Theorem A.26. For any syntactically correct specification S and aspect specifi-

cation A, the rewriting systems R(Ef) ∪R(Espec) is confluent.

Proof. According to the definitions of the rewriting system R(Ef) ∪ R(Espec), we

have:

The rewriting system R(Ef) ∪R(Espec) is confluent

⇐⇒ 〈 Theorem 6.1 & Theorem 3.9 〉

All critical pairs of R(Ef) ∪R(Espec) are joinable

⇐⇒ 〈 Lemmas A.16–A.25 〉

true

A.2.3 Restriction on the selected join points

Lemma A.27. Given a PFA specification S, let s be a non-ground term in Tf (L(S)).

We have: (
R(Ef) ∪R(Espec)

)
` (s �AC=

m∑
i=1

si),

where all si are not equivalent (up to AC theory of ·), and each si(1 ≤ i ≤ m) is

either 1 or
∏
xij that xij ∈ L(S).

Proof. Let s
∗−→

R(Espec)
s′, where s′ cannot be further rewritten by any rule from

R(Espec). In other words, no label from L(S) in s′ matches the left-hand side of

any rule in R(Espec). Consequently, any term derived from s′ by applying rules in

R(Ef) also cannot be further rewritten by any rule from R(Espec), since applying

179

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

any rule in R(Ef) will not create new labels. Hence, we can obtain the AC normal

form of s by only applying the AC theory and rules of R(Ef) on s′. In particular,

we give the proof based on the inductive definition of s′, which is a term in the set

Tf (L(S))− Tf (∅).

The strict subterm relationship ≺ gives a well-founded order over the set of

terms Tf (L(S)) − Tf (∅). Let us define the structural inductive property formally

as follows:

P (s′) ⇐⇒
(
R(Ef)

)
` (s′ �AC=

m∑
i=1

si),

where all si are not equivalent (up to AC theory of ·), and each si is either 1 or∏
xij that xij ∈ L(S).

1. Base cases: The minimal elements in Tf (L(S)) − Tf (∅) are all labels in

L(S). We need to prove ∀(x | x ∈ L(S) : P (x) ⇐⇒
(
R(Ef)

)
` (x �AC=∑m

i=1 si)).

The proof is trivial. Any label x from L(S) can be considered as a case of∑m
i=1 si, where m = 1 and s1 = x. Furthermore, no axioms of AC theory

and rules of R(Ef) can be applied to x, since a label from L(S) cannot be an

instance of any term at the left-hand sides of the rewriting rules of R(Ef).

2. Inductive cases: All constructs over terms are + and ·. We have t1, t2 ≺

t1 + t2, and t1, t2 ≺ t1 · t2. Let assume that:

P (t1) ⇐⇒
(
R(Ef)

)
` t1 �AC=

∑m1

i=1 pi, where all pi are not equivalent

(up to AC theory of ·), and each pi(1 ≤ i ≤ m) is either 1 or
∏
xij that

xij ∈ L(S).

P (t2) ⇐⇒
(
R(Ef)

)
` t2 �AC=

∑m2

i=1 qi, where all qi are not equivalent (up

180

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

to AC theory of ·), and each qi(1 ≤ i ≤ m) is either 1 or
∏
xij that xij ∈ L(S).

(a) We need to prove P (t1) ∧ P (t2) =⇒ P (t1 + t2). The idea is to obtain

the AC normal form of t1 + t2 according to the AC normal form of t1

and t2.

t1 + t2

∗−→AC
R(Ef)

〈 Assumption: the AC normal form of t1 and t2 〉∑m1

i=1 pi +
∑m2

i=1 qi

AC
= 〈 The commutativity of + implies that the sum of a sequence of

terms is equivalent (up to the AC theory of +) with the sum

of a permutation of those terms. Therefore, let {p′1, . . . , p′m1
}

be a permutation of {p1, . . . , pm1}, and {q′1, . . . , q′m2
} be a

permutation of {q1, . . . , qm2} such that ∀(i | 1 ≤ i ≤

k : p′m1−k+i
.
= q′i). Assume that k is the number of equiva-

lent (up to the AC theory of ·) elements of {p1, . . . , pm1} and

{q1, . . . , qm2}. 〉∑m1−k
i=1 p′i + (

∑m1

i=m1−k+1 p
′
i +
∑k

i=1 q
′
i) +

∑m2

i=k+1 q
′
i

AC
= 〈 The commutativity of · also implies that the product of a

sequence of labels from L(S) is equivalent (up to the AC

theory of ·) with the product of a permutation of those labels.

Therefore, let q′′i (1 ≤ i ≤ k) be a permutation of labels of q′i

such that p′m1−k+i = q′′i . 〉∑m1−k
i=1 p′i + (

∑m1

i=m1−k+1 p
′
i +
∑k

i=1 q
′′
i) +

∑m2

i=k+1 q
′
i

∗−→
R(Ef)

〈 Apply k times the rewrite rule r4 for p′m1−k+i = q′′i . 〉

181

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∑m1−k
i=1 p′i +

∑m1

i=m1−k+1 p
′
i +
∑m2

i=k+1 q
′′
i

= 〈 The definition of
∑
〉∑m1

i=1 p
′
i +
∑m2

i=k+1 q
′′
i

〈 No rules of R(Ef) can be further applied to
∑m1

i=1 p
′
i +∑m2

i=k+1 q
′′
i or to its equivalent terms (up to the AC theory

of + an ·). 〉

According to the above steps, we obtain the AC normal form of t1 + t2

as
∑m1

i=1 p
′
i +

∑m2

i=k+1 q
′′
i . Moreover, the assumption of P (t1) and P (t2)

indicates that each p′i and q′′i is either 1 or
∏
xij such that xij ∈ L(S),

and all p′i and q′′i are not equivalent up to the AC theory of ·. In other

words, we prove P (t1 + t2), and particularly, m = m1 + m2 − k, and

ti = p′i for 1 ≤ i ≤ m1 and ti = q′′i for m1 + 1 ≤ i ≤ m1 +m2 − k.

(b) We also prove P (t1)∧P (t2) =⇒ P (t1 ·t2) in the same way as the case(a).

t1 · t2
∗−→AC
R(Ef)

〈 Assumption: the AC normal form of t1 and t2. 〉∑m1

i=1 pi ·
∑m2

i=1 qi

∗−→
R(Ef)

〈 Apply the rewrite rule r8 m1m2 times. 〉∑m1,m2

i,j=1 (pi · qj)
∗−→

R(Ef)
〈 Let sm2(i−1)+j is pi · qj or a term derived from pi · qj if r7 is

applicable 〉∑m1m2

k sk

182

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∗−→AC
R(Ef)

〈 Same as the proof in case (a), we consider a permutation

of s1, . . . , sm1m2 in order to apply the rewrite rules r4. In

particular, let s′1, . . . , s
′
k be all non-equivalent (up to the AC

theory of ·) terms from s1, . . . , sm1m2 . 〉∑k
i s
′
i

According to the above steps, we obtain the AC normal form of t1 + t2

as
∑k

i=1 s
′
i, where all s′i are not equivalent up to the AC theory of +

and ·, and each s′i is either 1 or
∏
xij such that xij ∈ L(S). In other

word, we prove P (t1 · t2), and particularly, ti = s′i and m = k such that

1 ≤ k ≤ m1m2.

In summary, we prove the P (s′) for all s′ ∈ Tf (L(S))− Tf (∅) based on the above

proofs of base cases and inductive cases for s′.

Lemma A.28. Let s, e be two product family algebra terms such that
(
R(Ef) ∪

R(Espec)
)
`
(
s �AC=

∑m
i=1 si, e �AC=

∏n
i=1 yi

)
. The term e cannot be extracted

from s iff ∀(i | 1 ≤ i ≤ m : e �AC - si), where x - y ⇐⇒ ¬(x | y)
def⇔ ¬ ∃(z |:

y = x · z).

Proof. We prove by contradiction.

¬ ∀(i | 1 ≤ i ≤ m : e �AC - si)

⇐⇒ 〈 Generalized De Morgan 〉

∃(i | 1 ≤ i ≤ m : e �AC |si)

183

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Lemma A.27 & e �AC=
∏n

i=1 yi is a product of labels &

Instance of ∃. In particular, assume sk = e �AC ·t where 1 ≤ k ≤

m 〉
R(Ef) ∪R(Espec) ` s �AC=

∑k−1
i=1 si + e �AC ·t+

∑m
i=k+1 si

⇐⇒ 〈 Associativity and Community of + 〉

R(Ef) ∪R(Espec) ` s �AC
AC
= e �AC ·t+

∑k−1
i=1 si +

∑m
i=k+1 si

⇐⇒ 〈 Theorem 6.3 〉

Thpfa |= (s = e · t+ (
∑k−1

i=1 si +
∑m

i=k+1 si))

=⇒ 〈 Assumption: e cannot be extracted from s 〉

false

Lemma A.29. Let e be a term such that e �AC is a product of labels from Eq(S).

Assume β and γ be two terms such that e cannot be extracted from either of them.

Assume
(
R(Ef)∪R(Espec)

)
`
(
β �AC=

∑m
i=1 pi

)
,
(
γ �AC=

∑l
i=1 si

)
, then we have

(
R(Ef) ∪R(Espec)

)
`
(
(β · e+ γ) �AC=

m∑
i=1

(pi · e �AC) +
l∑

i=1

si
)
.

Proof.β · e+ γ

∗−→AC
R(Ef)

〈 Assumption of β �AC and γ �AC . 〉

(
∑m

i=1 pi) · e+
∑l

i=1 si

∗−→AC
R(Ef)∪R(Espec)

〈 Definition 6.8 〉

(
∑m

i=1 pi) · e �AC +
∑l

i=1 si

184

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

∗−→
R(Ef)

〈 Apply the rewrite rule r8 in Ef m times 〉∑m
i=1(pi · e �AC) +

∑l
i=1 si

Since e �AC , and all pi are in the form of products of labels, and all pi are

distinct, we have all pi · e �AC are distinct. Moreover, lemma A.28 implies any

pi · e �AC and any qi cannot be equivalent. Therefore, no further rules can be

applied to any terms that are equivalent to
∑m

i=1(pi · e �AC) +
∑l

i=1 si.

Lemma A.30. Given two product family terms s and t, let
(
R(Ef) ∪R(Espec)

)
`(

s �AC=
∑m

i=1 si
)
, and

(
R(Ef) ∪ R(Espec)

)
`
(
t �AC=

∑n
i=1 ti

)
. We have Thpfa |=

s = t iff ∃(f | f ∈ P({1, . . . ,m}) × P({1, . . . , n}) ∧ f is a bijection : f(i) =

j ⇐⇒ si
.
= tj), where

.
= means two terms are equivalent up to the commutativity

and associativity of ·.

Proof.

Thpfa |= (s = t)

⇐⇒ 〈 Theorem 6.3 〉

(R(Ef) ∪R(Espec)) ` (s �AC
AC
= t �AC)

⇐⇒ 〈 The AC normal form of s and t. 〉

(R(Ef) ∪R(Espec)) `
∑m

i=1 si
AC
=
∑n

i=1 ti

⇐⇒ 〈 Regarding to associativity and community of + 〉

∃(f | f ∈ P({1, . . . ,m})× P({1, . . . , n}) ∧ f is a bijection

: f(i) = j ⇐⇒ si
AC
= tj)

185

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

⇐⇒ 〈 Lemma A.27. In particular, all si and all ti are products of labels

& The AC theory of + cannot apply to a term that is a product

of labels 〉
∃(f | f ∈ P({1, . . . ,m})× P({1, . . . , n}) ∧ f is a bijection

: f(i) = j ⇐⇒ si
.
= tj)

Theorem A.31. Let e and p be two given product family terms. Assume that

w.r.t. the set of equations Thpfa , p = β1 · e + γ1 = β2 · e + γ2, where e cannot be

further extracted from β1, β2, γ1 and γ2. Then if e �AC is a product of labels, we

have β1 = β2 ∧ γ1 = γ2 w.r.t. to the set of equations Thpfa .

Proof.Thpfa |= β1 · e+ γ1 = β2 · e+ γ2

⇐⇒ 〈 Theorem 6.3 〉

(R(Ef) ∪R(Eq)) ` (β1 · e+ γ1) �AC
AC
= (β2 · e+ γ2) �AC

⇐⇒ 〈 Lemma A.29. In particular, let β1 �AC=
∑m

i=1 pi, β2 �AC=∑n
i=1 qi, γ1 �AC=

∑l
i=1 si, and γ2 �AC=

∑r
i=1 ti. 〉

(R(Ef) ∪R(Eq)) `
∑m

i=1(pi · e �AC) +
∑l

i=1 si
AC
=
∑n

i=1(qi · e �AC) +
∑r

i=1 ti

⇐⇒ 〈 Lemma A.28 & Lemma A.30 〉

∃(f | f ∈ P({1, . . . ,m})× P({1, . . . , n}) ∧ f is a bijection : f(i) = j

⇐⇒ pi · e �AC
.
= qj · e �AC)

∧ ∃(f ′ | f ′ ∈ P({1, . . . , l})× P({1, . . . , r}) ∧ f is a bijection : f(i) = j

⇐⇒ si
.
= tj)

⇐⇒ 〈 Axiom of
∑

& Definition of
AC
= 〉

186

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

(
∑m

i=1 pi
AC
=
∑n

i=1 qi) ∧ (
∑s

i=1 si
AC
=
∑t

i=1 ti)

⇐⇒ 〈 Definitions of β1 �AC , β2 �AC , γ1 �AC , and γ2 �AC 〉

(R(Ef) ∪R(Espec)) ` (β1 �AC
AC
= β2 �AC) ∧ (γ1 �AC

AC
= γ2 �AC)

⇐⇒ 〈 Theorem 6.3 〉

Thpfa |= β1 = β2 ∧ γ1 = γ2

187

Appendix B

Regrading the automation of the

weaving process

B.1 Algebraic Specification of AO-PFA Using CASL

library FormalPFA

-++++++++++++++++++++++++++++++++=

sort Family

ops One : Family ;

Zero : Family ;

Choice : Family × Family → Family, assoc,

comm, idem, unit Zero;

Mandatory : Family × Family → Family, assoc,

comm, unit One

end

188

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

spec CISemiring[ProductFamily] =

∀ x, y, z : Family

• One Mandatory Zero = Zero

• x Choice (y Mandatory z)

= (x Mandatory y) Choice (x Mandatory z)

end

spec LABEL =

sort Alphabet

free type Label ::= [] | :: (Alphabet ; Label)

sort Label

ops ’a’, ’b’, ’c’, ’d’, ’e’, ’f ’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’

: Alphabet

ops ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’ : Alphabet

ops ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’

: Alphabet

ops ’O’, ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, ’X’, ’Y’, ’Z’

: Alphabet

ops ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’ : Alphabet

op ’ ’ : Alphabet

op ++ : Label × Label → Label

pred null : Label

∀ x, y : Alphabet ; K, L : Label

189

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

• [] ++ K = K

• (x :: L) ++ K = x :: (L ++ K)

• null(L) ⇔ L = []

end

spec MONOID =

sort Elem

ops e : Elem;

∗ : Elem × Elem → Elem, assoc, unit e

end

view LabelAsMonoid :

MONOID to LABEL =

Elem 7→ Label, e 7→ [], ∗ 7→ ++

end

spec PFA =

LABEL

then sort Label < PFATerm

op 0 : PFATerm

op 1 : PFATerm

op + : PFATerm × PFATerm → PFATerm

op ∗ : PFATerm × PFATerm → PFATerm

pred subfamily : PFATerm × PFATerm

190

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

pred refine : PFATerm × PFATerm

pred constrain : PFATerm × PFATerm × PFATerm

end

spec S1 =

PFA

then op f1 : Label

op f2 : Label

op f3 : Label

op a : Label

• a = (f1 ∗ f1) + (f2 + f3)

• constrain(f1, a, f3)

end

spec Base1 =

CISemiring

[S1 fit

Family 7→ PFATerm, op Zero 7→ 0, op One 7→ 1,

op Choice 7→ + , op Mandatory 7→ ∗]

end

library FormalAspect

from FormalPFA get PFA

191

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

spec ASPECT =

PFA

then sort Alphabet < Alphabetplus

op jp : Alphabetplus

free type Labelplus ::= [] | :: (Alphabetplus ; Labelplus)

free type scope expr type ::= WITHIN | CFLOW

generated type

scope expr conj

::= { }(scope expr type; Label)

| ’;’ (scope expr conj ; scope expr conj)

type scope expr

::= [](scope expr conj)

| ’:’ (scope expr ; scope expr)

free type boolean expr ::= T | F

free type LIST ::= L | M | R | LM | MR | LR | LMR

free type

kind type

::= Declaration

| Inclusion

| Creation

| Component creation

| Component

| Equivalent component

| Constraint(LIST)

192

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

type kind expr ::= { }(kind type; Label)

sorts Labelplus, PFATerm < AspectTerm

op jp : AspectTerm

op + : AspectTerm × AspectTerm → AspectTerm

op ∗ : AspectTerm × AspectTerm → AspectTerm

pred pointcut : scope expr × boolean expr × kind expr

pred se : scope expr

pred be : boolean expr

pred ke : kind expr

end

spec A1 =

ASPECT

then op x jp : Labelplus

op f4 : Label

op a : Label

op b : Label

• jp = jp ∗ f4

if pointcut([WITHIN { a }], T, (Constraint(LR)) { a })

end

193

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

B.2 Term Rewriting Systems of AO-PFA Using

Maude

%#default#.maude includes signature of the commutative idempotent semiring,

rewriting rules corresponding to R(Ef), and the AC theory of + and ·. It won’t

change w.r.t. to different specifications of base and aspect. %

fmod CISR is

sort Family .

ops 0 1 : -> Family .

op _+_ : Family Family -> Family [prec 33 assoc comm] .

op _*_ : Family Family -> Family [prec 31 assoc comm] .

endfm

fmod CISREQ is

including CISR .

vars x y z : Family .

eq x + 0 = x .

eq x + x = x .

eq x * 1 = x .

eq x * (y + z) = x * y + x * z .

eq x * 0 = 0 .

endfm

194

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

% signature.maude is defined according to a given base specification, and a given

aspect specification e.g.,,%

load #default#.maude

fmod BASE is

including CISR .

op f1 : -> Family .

op f2 : -> Family .

op f3 : -> Family .

endfm

fmod ASPECT is

including CISR .

op f4 : -> Family .

endfm

% trwsystem. maude includes equations corresponding to R(Espec), and the rewrit-

ing rules defined by the aspects, e.g., %

load signature.maude

fmod ADDEDEQ is

including BASE .

eq f3 = f1 + f2 .

195

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

endfm

mod SUBSTITUTION is

including BASE .

including ASPECT .

var jp : Family .

crl [test] : jp => f4 if jp = f1 * f2 .

endm

% #weaving#.maude includes the whole rewriting systems for the weaving process.

%

load trwsystem.maude

mod WEAVING is

including CISREQ .

including ADDEDEQ .

including SUBSTITUTION .

endm

196

Bibliography

[AB06] Sven Apel and Don Batory. When to Use Features and Aspects?

A Case Study. In Proceedings of the 5th international conference

on generative programming and component engineering, 2006.

[ACLF10] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert

France. Composing feature models. In Mark van den Brand,

Dragan Gaševic, and Jeff Gray, editors, Software Language En-

gineering, volume 5969 of Lecture Notes in Computer Science,

pages 62–81. Springer Berlin / Heidelberg, 2010.

[AEB03] Omar Aldawud, Tzilla Elrad, and Atef Bader. UML Profile for

Aspect Oriented Software Development. In Workshop on Aspect-

Oriented Modeling with UML in AOSD 2003, 2003.

[AK10] Fadil Alturki and Ridha Khedri. A tool for formal feature mod-

eling based on bdds and product families algebra. In 13th Work-

shop on Requirement Engineering, 2010.

197

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[ALMK10] Sven Apel, Christian Lengauer, Bernhard Möller, and Chris-

tian Kästner. An algebraic foundation for automatic feature-

based program synthesis. Science of Computer Programming,

75(2010):1022–1047, 2010.

[ALS06] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual mixin

layers: Aspects and features in concert. In Proceedings of the

International Conference on Software Engineering, 2006.

[AM03] João Araújo and Ana Moreira. An Aspectual Use Case Driven

Approach. In VIII Jornadas de Ingenierá de Software Bases de

Datos, Alicante, Spain, November 2003.

[ASM+09] Mauricio Alférez, João Santos, Ana Moreira, Alessandro Gar-

cia, Uirá Kulesza, João Araújo, and Vasco Amaral. Multi-view

composition language for software product line requirements. In

Proceedings of the 2nd International Conference on Software Lan-

guage Engineering, 2009.

[BA01] Lodewijk Bergmans and Mehmet Aksit. Composing Crosscut-

ting Concerns using Composition Filters. Communications of

the ACM, 44(10):51–57, 2001.

[Bat05] Don Batory. Feature models, grammars, and propositional for-

mulas. In Proceedings of the 9th international conference on Soft-

ware Product Lines (SPLC’05). Springer-Verlag Berlin, Heidel-

berg, 2005.

198

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[batmaccRS+05] Ruzanna Chitchyanaspect based approach to modeling ac-

cess control concerns, Awais Rashid, Pete Sawyer, Alessan-

dro Garcia, Mónica Pinto Alarcon, Bedir Tekinerdogan

Jethro Bakker, Siobhán Clarke, and Andrew Jackson. Survey

of Analysis and Design Approach. Survey, AOSD-Europe, 2005.

[BC04] Elisa Baniassad and Siobhán Clarke. Theme: An Approach for

Aspect-Oriented Analysis and Design. In Proceedings of 26th

International Conference on Software Engineering (ICSE 2004),

pages 158 – 167, May 2004.

[BCD+04] Olivier. Barais, Eric Cariou, Laurence Duchien, Nicolas

Pessemier, and Lionel Seinturier. TranSAT: A Framework for

the Specification of Software Architecture Evolution. In The

First International Workshop on Coordination and Adaptation

Techniques for Software Entities (WCAT04), Jun 2004.

[Ber94] Lodewijk Bergmans. The composition filters object model. Tech-

nical report, Dept. of Computer Science, University of Twentey,

1994.

[BM04] Michel Bidoit and Peter D. Mosses. CASL user manual: Intro-

duction to using the common algebraic specification language. In

Lecture Notes in Computer Science. Springer-Verlag, 2004.

[BMB+10] Marko Bos̃ković, Gunter Mussbacher, Ebrahim Bagheri, Daniel

Amyot, Dragan Gaš ević, and Marek Hatala. Aspect-oriented

199

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

feature models. In Position Paper. Proceedings of the 2010 in-

ternational conference on Models in software engineering, 2010.

[BMN+06] Johan Brichau, Mira Mezini, Jacques Noyé, Wilke Havinga,

Lodewijk Bergmans, Vaidas Gasiunas, Christoph Bockisch, Jo-

han Fabry, and Theo D’Hondt. An Initial Metamodel for Aspect-

Oriented Programming Languages. Research, AOSD-Europe,

February 2006.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, 1998.

[BP06] Matthias Baaz and Norbert Preining. First-order gödel logics.

Analysis of Pure and Applied Logic, 2006.

[Bra03] Jeremy T. Bradley. An Examination of Aspected Oriented Pro-

gramming in Industry. Technical report, Colorado State Univer-

sity Honors Program, 2003.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortes. Au-

tomated analysis of feature models 20 years later: A literature

review. Information Systems, pages 615–636, 2010.

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Au-

tomated reasoning on feature models. In Advance Information

Systems Engineering, 17th International Conference, 2005.

[CDE+11] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,

Narciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. Maude

200

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Manual (Version 2.6). SRI International Computer Science Lab-

oratory, 2011.

[CEW93] Ingo Claβen, Hartmut Ehrig, and Dietmar Wolz. Algebraic Spec-

ification Techniques and Tools For Software Development: The

ACT Approach. World Scientific Publishing Co. Pte. Ltd., 1993.

[CN02] Paul Clements and Linda Northrop. Software Product Line:

Practices and Patterns. Addison-Wesley, 2002.

[Coh02] Sholom Cohen. Product line state of the practice report. Tech-

nical Report CMU/SEI-2002-TN-017, The Software Engineering

Institute, September 2002.

[CRB04] Adrian Colyer, Awais Rashid, and Gordon Blair. On the separa-

tion of concerns in product families. Technical report, Computing

Department, Lancaster University, 2004.

[Cza98] Krzysztof Czarnecki. Generative Programming, Principles and

Techniques of Software Engineering Based on Automated Con-

figuration and Fragment-Based Component Models. PhD thesis,

Technical University of Ilmenau, October 1998.

[Dev03] Devereux. Compositional reasoning about aspects using

alternating-time logic. A Foundations of Aspect Languages (

FOAL) Workshop, 2003.

[Die05] Reinhard Dieste. Graph Theory. Springer-Verlag Berlin Heidel-

berg, 2005.

201

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[EAK+1a] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr,

and Harold Ossher. Discussing Aspect of AOP. Communications

of the ACM, pages 33–38, 2001a.

[EBB05] Magnus Eriksson, Jürgen Börstler, and Kjell Borg. The PLUSS

approach-domain modeling with features, use cases and use real-

ization. In Proceedings of 9th International Conference on Soft-

ware Product Lines, 2005.

[EFB01] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-Oriented

Programming. Communications of THE ACM, pages 29–31,

2001.

[EM85] H. EHRIG and B. MAHR. Fundamentals of Algebraic Specifica-

tion 1: Equations and Initial Semantics. Springer-Verlag Berlin

Heidelberg, 1985.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic

Specification 2: Module Specification and Constraints. Springer-

Verlag, 1990.

[FF01] Rober E. Filman and Daniel P. Friedman. Aspect-Oriented Pro-

gramming is Quantification and Obliviousness. Technical report,

Research Institute for Advanced Computer Science, May 2001.

Workshop on Advanced Separation of Concerns (OOPSLA 2000).

202

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[FZ06] Shaofeng Fan and Naixiao Zhang. Feature model based on de-

scription logics. In Proceedings of the 10th international confer-

ence on Knowledge-Based Intelligent Information and Engineer-

ing Systems - Volume Part II (KES’06), 2006.

[GFd98] Martin L. Griss, John Favaro, and Massimo d’Alessandro. Inte-

grating features modeling with the RSEB. In Proceedings of the

5th International Conference on Software Reuse, 1998.

[Gri00a] Martin L. Griss. Implementing Product-Line Features By Com-

posing Component Aspects. In Proceedings of First International

Software Product Line Conference, Denver, CO,, 2000.

[Gri00b] Martin L. Griss. Implementing Product-Line Features with Com-

ponent Reuse. In Proceedings of the 6th International Conference

on Software Reuse: Advances in Software Reusability, pages 137

– 152. Springer-Verlag, Jun 2000.

[GV07] Iris Groher and Markus Voelter. Xweave: Models and aspects in

concert. In Proceedings of the 10th Workshop on Aspect-Oriented

Modeling, 2007.

[Her02] Stephan Herrmann. Composable Designs with UFA. In Workshop

on Aspect-Oriented Modeling with UML in AOSD 2002, 2002.

[HKM06] Peter Höfner, Ridha Khedri, and Bernhard Möller. Feature alge-

bra. In J. Misra, T. Nipknow, and E. Sekerinski, editors, Formal

203

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Methods, Lecture Notes in Computer Science, volume 4085, pages

300–315. Springer-Verlag, 2006.

[HKM08] Peter Höfner, Ridha Khedri, and Bernhard Möller. Algebraic

view reconciliation. In Proceedings of 6th IEEE International

Conference on Software Engineering and Formal Methods, 2008.

[HKM11a] Peter Höfner, Ridha Khedri, and Bernhard Möller. An algebra of

product families. Software and Systems Modeling, 10(2):161–182,

2011.

[HKM11b] Peter Höfner, Ridha Khedri, and Bernhard Möller. Supplement-

ing product families with behaviour. International Journal of

Informatics, pages 245 – 266, 2011.

[HL95] Walter Hürsch and Cristina Lopes. Separation of Concerns. Tech-

nical report, College of Computer Science, Northeastern Univer-

sity, February 1995.

[HLM+98] Geoff Hulten, Karl Lieberherr, Josh Marshall, Doug Orleans, and

Binoy Samuel. Demeter/Java: User Manual. Northeastern Uni-

versity, Boston, MA, 1998.

[HLN04] Charles Haley, Robin Laney, and Bashar Nuseibeh. Deriving se-

curity requirements from crosscutting threat description. In Pro-

ceedings of the 3rd International Conferece on Aspect Oriented

Software Development (AOSD 04). ACM Press, 2004.

204

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[HMM05] Abdel Hakim Hannousse, Djamel Meslati, and Hayette Merouani.

Aspect Oriented Programming and Composition Filters: A Con-

ceptual Comparative Study. In Iberian Workshop on Aspect Ori-

ented Software Development (DSOA’05), 2005.

[HO93] William Harrison and Harold Ossher. Subject-Oriented Program-

ming - Critique of Pure Objects. In Proceedings of 1993 Confer-

ence on Object-Oriented Programming Systems, Languages, and

Applications, September 1993.

[IC08] Mustafa Ispir and Aysu Betin Can. An assume guarantee veri-

fication methodology for aspect oriented programming. Proceed-

ings of the 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering, pages 391–394, 2008.

[JN04] Ivar Jacobson and PanWei Ng. Aspect-Oriented Software Devel-

opment with Use Cases. Addison-Wesley Professional, 2004.

[Kan03] Mohamed Mancona Kandé. A concern-oriented approach to soft-

ware architecture. PhD thesis, Swiss Federal Institute of Tech-

niques, 2003.

[Kat04] Shmuel Katz. Diagnosis of harmful aspects using regression ver-

ification. In FOAL Workshop, associated with AOSD, 2004.

[Kat05] Shmuel Katz. A survey of verification and static analsyis for

aspect. Technical report, AOSD-Europe, 2005.

205

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[Kat06] Shmuel Katz. Aspect categories and classes of temporal proper-

ties. In Transactions on Aspect-Oriented Software Development

I, pages 106–134. Springer-Verlag, 2006.

[KBK09] Martin Kuhlemann, Don Batory, and Christian Kästner. Safe

composition of non-monotonic features. In Proceedings of the

eighth international conference on Generative programming and

component engineering, pages 177–186, 2009.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Fea-

ture oriented domain analysis (FODA) feasibility study. Techni-

cal Report CMU/SEI-90-TR-21, Software Engineering Institute,

Carnegie Mellon University, Nov 1990.

[KFG04] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg.

Verifying aspect advice modularly. In Proceedings of the 12th

ACM SIGSOFT twelfth international symposium on Foundations

of software engineering, pages 137 – 146, 2004.

[KG99] Shmuel Katz and Joseph (Yossi) Gil. Aspects and superimpo-

sitions (position paper). In Proceedings of the Aspect-Oriented

Programming Workshop at ECOOP 1999, 1999.

[KGdLvS04] Uirá Kulesza, Alessandro Fabricio Garcia, Carlos José Pereira

de Lucena, and Arndt von Staa. Integrating Generative and

Aspect-Oriented Technologies. In 19th ACM SIGSoft Brazillian

Symposium on Software Engineering, 2004.

206

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[kKFGS02] Dae kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song.

Using role-based modeling language (rbml) as precise character-

izations of model families. In In Proceedings of the 8th IEEE

International Conference on Engineering of Complex Computer

Systems (ICECCS), 2002.

[KKG07] Avadhesh Kumar, Rajesh Kumar, and P.S. Grover. An Evalua-

tion of Maintainability of Aspect-Oriented Systems: A Practical

Approach. International Journal of Computer Science and Secu-

rity, 1(2):1–9, 2007.

[KKL+01] Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob

Shin, and Moonhang Huh. FORM: A feature-oriented reuse

method with domain-specific reference architectures. Annals of

Software Engineering, 5:143–168, 2001.

[KLD02] Kyo Chul Kang, Jaejoon Lee, and Patrick Donohoe. Feature-

oriented product line engineering. IEEE Software, 19(4):58–65,

2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris

Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John

Irwin. Aspect-Oriented Programming. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming (ECOOP),

1997.

[KT09] Jaakko Kuusela and Harri Tuominen. Aspect-Oriented Approach

207

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

to Operating System Development Empirical Study. Journal of

Communication and Computer, 6(8):233–238, 2009.

[Lie96] Karl Lieberherr. Adaptive Object-Oriented Software: The Deme-

ter Method with Propagation Patterns. PWS Publishing Com-

pany, Boston, 1996. ISBN 0-534-94602-X.

[LKF02] Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying

crosscutting features as open systems. ACM SIGSOFT Software

Engineering Notes, 27(6), 2002.

[LKL02] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee. Concepts and

guidelines of feature modeling for product line software engineer-

ing. In Proceedings of the 7th International Conference on Soft-

ware Reuse: Methods, Techniques and Tools, 2002.

[LN10] Jørn Lind-Nielsen. Buddy BDD Library. http://sourceforge.

net/projects/buddy/, 2010. (Last accessed on March 28, 2013).

[LOO01] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-

Oriented Programming with Adaptive Methods. Communica-

tions of THE ACM, 44(10):39–41, 2001.

[LRCe06] Neil Loughran, Awais Rashid, Ruzanna Chitchyan, and etal. A

domain analysis of key concerns-known and new candidates. Re-

search, AOSD-Europe, 2006.

[MAR05] Ana Moreira, João Araújo, and Awais Rashid. A Concern-

Oriented Requirements Engineering Model. In João Falcão

208

http://sourceforge.net/projects/buddy/
http://sourceforge.net/projects/buddy/

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

e Cunha Oscar Pastor, editor, Proceedings of the 17th Confer-

ence on Advanced Information Systems Engineering (CAiSE’05),

Porto, Portuga, 2005.

[MK03] Hidehiko Masuhara and Gregor Kiczales. Modeling Crosscut-

ting in Aspect-Oriented Mechanisms. In Proceedings of the Eu-

ropean Conference on Object-Oriented Programming (ECOOP

2003), Finland, 2003.

[MNJP02] John D. McGregor, Linda M. Northrop, Salah Jarrad, and Klaus

Pohl. Guest editors’ introduction: Initiating software product

lines. IEEE Software, 19(4):24–27, 2002.

[MO03] Mira Mezini and Klaus Ostermann. Conquering aspects with

Casesar. In Proceedings of conference on aspect-oriented software

development, 2003.

[MO04] Mira Mezini and Klaus Ostermann. Variability management with

feature-oriented programming and aspects. In Proceedings of the

12th ACM International Symposium on Foundations of Software

Engineering, 2004.

[MRA05] Ana Moreira, Awais Rashid, and João Araújo. Multi-dimensional

separation of concerns in requirements engineering. In Proceed-

ings of the 13th IEEE International Requirements Engineering

Conference (RE2005), pages 285–296, 2005.

[MWCC08] Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and

209

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Donald Cowan. Efficient compilation techniques for large scale

feature models. In 7th international conference on Generative

programming and component engineering - GPCE ’08, 2008.

[OSRSC01] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-

Calvert. PVS Language Reference. Computer Science Labora-

tory, 2001.

[OT01] Harold Ossher and Peri Tarr. Using Multidimensional Separation

of Concerns To (Re) Shape Evolving Software. Communication

of the ACM, 44(10):43–50, 2001.

[Par72] D. L. Parnas. On the Criteria To Be Used in Decomposing Sys-

tems into Modules. Communications of the ACM, 15:1053–1058,

1972.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Soft-

ware product line engineering: foundations, principles, and tech-

niques, chapter 3, pages 39–52. Springer-Verlag, Berlin, Heidel-

berg, 2005.

[PC01] Andrés Dı́az Pace and Marcelo Campo. An Empirical Study

About Separation of Concerns Approaches. In Proceedings of

the 2nd Argentine Symposium on Software Engineering (ASSE

2001), 30 th Argentine Conference on Computer Science and Op-

erational Research, Buenos Aires, 2001.

[PFT03] Mónica Pinto, Lidia Fuentes, and Jose Maŕıa Troya. DAOP-ADL:

210

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

An Architecture Description Languages for Dynamic Component

and Aspect-Based Development. In Proceedings of the 2nd inter-

national conference on Generative programming and component

engineering, pages 118 – 137. Springer-Verlag, 2003.

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka

Philippow. Extending feature diagrams with UML multiplicites.

In Proceedings of 6th Conference on Integrated and Design Pro-

cess Technology, 2002.

[RFLG04] Indrakshi Ray, Robert France, Na Li, and Geri Georg. An aspect-

based approach to modeling access control concerns. Information

and software technology, 46(9):575–587, 2004.

[RM06] Awais Rashid and Ana Moreira. Domain models are not aspect

free. In In MODELS, pages 155–169. Springer, 2006.

[RMA03] Awais Rashid, Ana Moreira, and João Araújo. Modularisation

and Composition of Aspectual Requirements. In Proceedings of

the 2nd International Conference on Aspect Oriented Software

Development, pages 11–20, Boston, USA, 2003.

[RSB04] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A

classification system and analysis for aspect-oriented programs.

In Proceedings of the 12th ACM SIGSOFT twelfth international

symposium on Foundations of software engineering, pages 147 –

158, 2004.

211

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

[SH04] Viren Shah and Frank Hill. An aspect-oriented security frame-

work: lessons learned. In Workshop of AOSD Technology for

Application-level Security (AOSDSEC), 2004.

[SHU02] Dominik Stein, Stefan Hanenherg, and Rainer Unland. A UML-

based Aspect-Oriented Design Notation for AspectJ. In Pro-

ceedings of the 1st international conference on Aspect-Oriented

Software Development, pages 106 – 112. ACM New York, 2002.

[Sip03] Henny B. Sipma. A formal model for cross-cutting modular tran-

sition systems. Foundations of Aspect Languages (FOAL) Work-

shop associated with AOSD, 2003.

[SK03] MARCELO SIHMAN and SHMUEL KATZ. sumperimposi-

tion and aspect-oriented programming. The Computer Journal,

46:529–541, 2003.

[SSK+07] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzeg-

ger, M. Wimmer, and G. Kappel. A survey on Aspect-Oriented

Modeling Approaches. Technical report, Vienna University of

Technology, 2007.

[Str04] Detlef Streiferdt. Family-Oriented Requirements Engineering.

PhD thesis, Technical University Ilmenau, IImenau, Germany,

2004.

[TBKC07] Sahil Thaker, Don Batory, David Kitchin, and William Cook.

212

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Safe composition of product lines. In Proceedings of the 6th inter-

national conference on Generative programming and component

engineering, pages 95–104, 2007.

[Tek04] Bedir Tekinerdoğan. ASAAM: Aspectual Software Architecture

Analysis Method. In Proceedings of 4th Working IEEE/IFIP

Conference on Software Architecture, pages 5–14, 2004.

[TOH+99] Peri Tarr, Harold Ossher, William Harrison, Stanley M. Sutton,

and Jr. N Degrees of Separation: Multi-Dimensional Separation

of Concerns. In 21th IEEE International Conference on Require-

ments Engineering Conference, Los Angeles, California, USA,

1999.

[UT02] Naoyasu Ubayashi and Tetsuo Tamai. Aspect-oriented program-

ming with model checking. In Proceedings of the 1st international

conference on Aspect-oriented software development, pages 148–

154, 2002.

[vGBS01] J. van Gurp, J. Bosch, and M. Svahnberg. On the notation of

variability in software product lines. In Proceedings of the Work-

ing IEEE/IFIP Conference on Software Architecture, page 45,

2001.

[WA04] Jon Whitter and João Araújo. Scenario Modeling with Aspects.

In IEEE Proceedings of Software Special Issue, 2004.

[WLS+07] Hai H. Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff

213

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

Pan. Verifying feature models using owl. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 5:117–129,

2007.

[YLM04] Yijun Yu, Julio Leite, and John Mylopoulos. From Goals to As-

pects: Discovering Aspects from Requirements Goal Models. In

Proceedings of12th IEEE International Conference on Require-

ments Engineering, Kyoto, Japan, 2004.

[ZK13] Qinglei Zhang and Ridha Khedri. Proofs of the convergence

of the rewriting system for the weaving of aspects in the AO-

PFA language. Technical Report CAS-13-01-RK, McMaster Uni-

versity, Hamilton, Ontario, Canada, March 2013. Available:

http://www.cas.mcmaster.ca/cas/0template1.php?601.

[ZKJ11] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An

aspect-oriented language based on product family algebra: As-

pects specification and verification. Technical Report CAS-

11-08-RK, McMaster University, Hamilton, Ontario, Canada,

Nov 2011. Available: http://www.cas.mcmaster.ca/cas/

0template1.php?601.

[ZKJ12a] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An aspect-

oriented language for product family specification. In E. Shak-

shuki and M. Younas, editors, Proceedings of the 3rd Interna-

tional Conference on Ambient Systems, Networks and Technolo-

gies, volume 10 of Procedia Computer Science, ANT 2012 and

214

http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

MobiWIS 2012, pages 482 – 489, Niagara Falls, ON, Canada,

August 2012.

[ZKJ12b] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. Verification of

aspectual composition in feature-modeling. In George Elefther-

akis, Mike Hinchey, and Mike Holcombe, editors, Software En-

gineering and Formal Methods, 10th International Conference,

SEFM 2012, volume 7504 of Lecture Notes of Computer Sci-

ence, pages 109–125. Spinger Berline / Heidelberg, Thessaloniki,

Greece, October 2012.

[ZKJ13] Qinglei Zhang, Ridha Khedri, and Jason Jaskolka. An aspect-

oriented language for feature-modeling. Accepted May 2, 2013

to Journal of Ambient Intelligence and Humanized Computing,

2013.

215

Index

Aspect-oriented paradigm, 6

Advice, 9

AOP, 12, 24

AP, 26

CF, 25

MDSOC, 24

SOP, 24

AOSD, 12

AOAD, 12, 30

AODD, 12, 28

AORE, 12, 31

Aspects, 9

Aspectual composition, 17

ADI, 17

Imposition properties, 33

Inheritance properties, 33

Base concerns, 6

Component, 9

Core concerns, 6

Crosscutting concerns, 5, 7

Early aspects, 11

Join points, 9

Pointcuts, 9

Weave, 10

Algebra, 53

Axioms, 53

Term algebra, 53

Algebraic specifications, 54

Constraints, 54

Parametrised specification, 54

AO-PFA

basic features, 50

constraints, 50

expression pointcut, 71

kind pointcut, 71

labeled families, 50

scope pointcut, 71

Graph, 51

Cycle, 52

216

Ph.D. Thesis - Qinglei Zhang McMaster - Computing and Software

External notes, 52

Internal notes, 52

Loop, 52

predecessors, 52

Successors, 52

PFE, 1

Feature models, 4

Feature, 2

Feature models

Alternative features, 45

Excludes statement, 45

Mandatory features, 45

Optional features, 45

Or-group features, 45

Requires statement, 45

Feature-modeling, 4

FOSD, 2

Product family, 1

Product family algebra, 40

Product family algebra terms, 48

Jory, 41

Refinement, 48

Requirement, 48

Subfamily, 48

View reconciliation, 16

Signature, 52

Term rewriting, 55

rewrite rules, 58

TRS, 59

word problems, 55

Terms, 53

Substitution, 56

Word problems, 18

217

	Abstract
	Acknowledgements
	List of Table
	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	General Background and Motivation
	Feature-Modeling
	Aspect-Orientated Paradigm
	Feature-Modeling with the Aspect-Oriented Paradigm

	Problem Statement, Objectives, and Methodology
	Contributions
	Related Publications
	Journals
	Referred Conferences and Workshops
	Technical Reports

	Structure of the Thesis

	Literature Review
	Aspect-Oriented Software Development
	Aspect-Oriented Programming (AOP)
	Aspect-Oriented Detailed Design (AODD)
	Aspect-Oriented Architecture Design (AOAD)
	Aspect-Oriented Requirement Engineering (AORE)
	Verification Techniques for Aspectual Composition
	Assessment of Aspect-Oriented Approaches

	Product Family Engineering Using the Aspect-Oriented Paradigm
	Feature-Modeling Related to Product Family Algebra
	Conclusion

	Background
	Product Family Algebra
	Basic Concepts of Feature Models
	Mathematical Definitions of Product Family Algebra
	Tool Support

	Needed Notions from Graph Theory
	Needed Notions from Universal Algebra
	Needed Notions from Algebraic Specifications
	Needed Notions from Term Rewriting
	Equational Problems
	Reduction Relations
	Term Rewriting Systems

	Conclusion

	Specifying Aspects with AO-PFA
	Introduction
	Rationale for AO-PFA Design
	A Running Example

	Aspect Specifications in AO-PFA
	Join Points in AO-PFA
	Advice in AO-PFA
	Pointcuts in AO-PFA

	Categories of Aspects
	Usage of the Specification Language AO-PFA
	Articulating Unanticipated Changes
	Articulating Crosscutting Concerns

	Conclusion

	Verifying Aspectual composition in AO-PFA
	General Description
	Formal Verification of Aspectual Composition in AO-PFA
	Validity Criteria of PFA specification
	Validity Criteria for Aspectual Composition

	Usage of the verification technique
	Case Study: Home Automation Family

	Conclusion

	Weaving Aspects in AO-PFA
	Semantics of the Weaving Process
	Formalism of PFA Specifications and Aspects
	Formalism of the Weaver

	Theoretical Properties of the Weaving Process
	Concerns Regarding the Weaving Process of AO-PFA
	Characteristics of the Rewriting System

	Conclusion

	Conclusion and Future Work
	Highlight of the Contributions
	Further Work
	Theory: Models and Techniques
	Application
	Tool/Automation

	Closing Remarks

	Lemmas, Theorems, and Corollaries
	Proofs of the Results of Chapter 5
	Proofs of the Results of Chapter 6
	Termination of the Rewriting System
	Confluence of the Rewriting System
	Restriction on the selected join points

	Regrading the automation of the weaving process
	Algebraic Specification of AO-PFA Using CASL
	Term Rewriting Systems of AO-PFA Using Maude

	Index

