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CHAPTER

INTRODUCTION

The methods for solving an optimization problem, as for any

engineering problem, involve the acceptance of certain assumptions about

the physical process, that are chosen to simplify the algebra. Accurate

numerical results from the method are only meaningful if the original

assumptions apply accurately to the process. The same results are most

useful only when they can be simulated accurately in practice.

The knowledge of the optimization of the products of a chemical

reaction by the use of the calculus of variations has been greatly

increased since the early works of Professor F. Horn1• The problem of

maximising a controllable chemical yield over a fixed period of time

(the objective function) requires the optimum choice of the control

variable to be made at each instant of time. The control variables may

be, for example, temperature, flowrate, the magnitude of a sinusoidal

input, or a combination of these. The state variables are the concentrations

of the species involved, and, for a reaction subject to catalyst decay,

the activity of the catalyst.

Catalyst decay may be caused by surface poisoning from contaminants

introduced over the period of operation, or by sintering and other

structural damage due to the reaction temperature. Investigations into

catalyst decay by Szepe2 have led to a useful general equation relating

catalyst activity to temperature and activity only, based on experimental

( I )
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knowledge, and which is used in the fol lowing treatment. The optimal

temperature at each instant of time must be chosen to minimize the

adverse effect of temperature on catalyst decay over the time of

operation.

The Maximum Principle of Pontryagin provides a theory which can

relate the separate time behaviour of the state variables on perturbation

of the control variables, whi Ie maximizing an integral objective function.

The analytical solutions for the resulting control pol icies are generally

insoluble, and numerical methods are used to obtain and verify optimal

control policies. Using this method, Jackson 3 has examined the optim­

ization of a first-order consecutive reaction without catalyst decay,

and recently Drouin 4 has solved the reversible reaction with catalyst

decay. Jacksons has also investigated the mathematical formulation of

time-dependent optimization problems, with particular reference to the

numerical solution of a first-order reversible exothermic reaction with

catalyst decay. Professor C.M. Crowe6t7 has examined the optimization

of irreversible reactions in single and multiple bed tubular reactors,

with catalyst decay.



CHAPTER II

STATEMENT OF THE PROBLEM

The intermediate B in the reaction

A-+B-+C

is to be maximized by conversion in a single isothermal tubular reactor

in the presence of a decaying catalyst, over a fixed period of operating

time T.

Certain assumptions are made about the relative rates of reaction

and catalyst decay to avoid a distributed-parameter problem.

A general differential mass balance on a plug flow reactor

yields the equation (see Appendix A.2)

aB aBat + az = f(t/J, T, A, B) (2. I )

where t/J is the catalyst activity, T is the temperature, B is the

concentration of species B, t is the system time, and z is the space

time (distance through the bed). The function f(t/J, T, A, B) is the rate

of reaction, and may be written as

f(t/J, T, A, B) = t/J.f (T, A, B)
c

where t/J is defined as

t/J = rate of reaction with decayed catalyst
rate of reaction with fresh catalyst

(2.2)

(2.3)

and f (T, A, B) is the chemical rate of reaction. This assumes that thec

deactivation of both chemical steps is uniform.

The term aB/at in (2.1) arises from a change in 8 fol lowing a

(3)



4

change in catalyst activity and a compensating change in temperature

along the bed. It wil r be assumed that the rate of catalyst decay is

slow compared to the reaction rate along the bed, so that

aB aB
-« ­at az

and the catalyst activity is uniform everywhere in the bed.

(2.4)

The characteristic equation of the system, (2.1), now becomes

(2.5)

Szepe2 has shown that many classes of catalyst decay can be

generalized as one power equation, in which the rate of decrease of

activity depends only on temperature T and activity ~ itself, and not

on instantaneous conversion:

(2.6)

k(T) is the rate constant of decay, and m can be taken as unity for a

good representation of the behaviour of many catalysts.

The production of B is to be maximized over the total reaction

time T by choosing the temperature to compensate for decreased catalyst

activity at every instant of time. The objective function P is, then,

in its simplest form:

max r with P = JTB (t)dt
T(t) 0 e

(2.7)

the suffix e denoting the exit value of B from the reactor, after a

residence time 8. Since the residence time affects the exit concentration

B , but not the catalyst activity, it is not considered directly as a
e

control on the decay rate in this problem (see Section 8.2) but can

assume any value for the best result. The cases of constant flowrate and
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variable flowrate wi II be treated separately, since an optimal flowrate

exists for the consecutive reaction (see Section 3.3).

If the inlet concentration of B, B., is not zero, but is
I

assumed to be constant with time, it can be subtracted from B (t) in
e

(2.7), since it is the increase in 8 due to the reaction that is

required tc be maximized.

Objective functions that are more compl icated can be devised, to

include, for example, the relative cost of the reactant A, a separation

cost factor, or other profit-oriented terms. Whatever the practical

considerations, the optimization theory can be applied to the general

objective function

max P with P = oJTQ(A, B, W, t, T)dt
T(t)

(2.8)

by substituting Q for B. The range of attainable values of B (t) wi I Ie

now depend on the complexity of the function Q(A, B, $, t).



CHAPTER III

THE KINETICS OF A CONSECUTIVE FIRST-ORDER REACTION IN AN

ISOTHERMAL TUBULAR REACTOR WITH DECAYING CATALYST

3.1 Derivation of the exit concentration of B

The problem is to maximize the temperature-control led yield of

B in the reaction

D.I.I)

over a total time " in the presence of a catalyst whose rate of decay

(from the general equation 2.6) is accelerated by increasing temperature

according to the relation

dljiCit = -k(T).1ji (3.1.2)

The rate constants k, K1 and K2 have an Arrhenius relation with

temperature:

D.I.4)

D.I.3)

<3.1.5)

decay of the catalyst, the

frequency factor A wit I have units hr- I , while the
c

factors AI and A2 have units s-I. That is to say,

k = A exp (-E IRT>c c

K, = A,exp(-E,/RT)

K2 = A2exp(-E2/RT)

To impress the relatively slow rate of

catalyst Arrhenius

chemical frequency

system time t is measured in hours, and the residence time e in seconds.

(6)
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The rate of change of B at any point z in the tubular reactor

bed is, recall ing equation (2.5):

and the rate of change of A is

dA- = -K A1/Jdz ,

<3.1.6)

(3.1.7)

<3.1.8)

The solution required from (3.1.6) and (3.1.7) is the exit concentration

of B after a residence time a. The integration is performed (see

Appendix A.3.1) with the previous assumptions of constant activity and

constant temperature over a period of time that is large compared to the

residence time 6. Hence

K1
Be = K

2
- K

I
[exP(-K,1/Ja) - exp(-K21/J6)]

As the temperature, and hence k, K1 and K2, or the activity change with

system time t, so 8 wi II change. The symbol 8 will be used in thee

subsequent sections, where

B = 8 (t)
e

3.2 Behaviour of B with temperature

<3.1.9)

Since the derivation of an optimal policy depends on the way in

which the physical (state) variables change with the control variables,

it is useful to obtain a picture of this behaviour before proceeding

with an application of the optimization theory.

The variation of B with temperature depends not only on the

temperature itself, but also on the activation energy of reaction in the

Arrhenius expression. The activation energy behaves as a temperature

coefficient. At particular values of E
I

and EZ in equations (3.1.4) and
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(3.1.5), pa rameters PI and pZ can be defined such that

PI = EIIEc <3.Z.I)

Pz = E/Ec <3.2.Z)

Hence
A kPI/A PI PI

K, = = ak (3.2.3)
I c

and P2 P2 bk
P2

KZ = AZk lAc = <3.2.4)

If PI and Pz are of order unity, this means that the temperature

coefficients of reaction and of catalyst decay are of comparable

magnitude. More information on classes of optimal pol icies is gained

when the temperature sensitivity of both reaction and catalyst decay are

similar, and when the greatest exponential curvature of rate constant

values occurs within the temperature range of interest.

Turning to the variation of B with temperature, at constant

activity, flowrate, and at given values of PI and PZ' a maximum in B is

observed at a certain temperature given by the solution of the equation

exp(-KZ~e) - exp(-KI~e)

PZKzexp(-Kz~e) - PIKlexp(-KI~e)

~e (Kz - KI )
=-----

Kz(P I - PZ)
(3.2.5)

recal ling that T and k are in one-to-one correspondence, from rquation

(3.1.3). From an examination of equation (3.1.8) and of the derivative

~B/ak (see Appendix A.3.Z), it is found that the shape of the curve of

B vs. temperature is always of the form shown in Diagram 3.1, with one

maximum and two inflexion points.
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t

B

o
o T

Diagram 3.1

or 0/8 -

Three cases of the behaviour of G with temperature can be

distinguished:

If the ratio of cher~ical rate constants at one temperature is compared

to their ratio at a higher temperature, the fol lowing result shows that

increasing the teMperatore favours the reaction in which PI > PZ'

Let
KI(Tt ) A,exp(-P1Ec/RTt )

RI =--- =----~-- '" Aexp[-(p, - PZ)E/RT.e.]
KZ(T.e.) AZexp<-PZEc/RT.e.)

Simi larly

Therefore _R1 __ (I ')exp[-E (p - p ) - - - /R] =
R
2

c I 2 T.e. 1u

where A and D are constants and Tu > Ti ,



Hence RI < R2 if and if

10

That is, the production of B from A is favoured at higher temperatures

if PI > P2. It would be expected, therefore, that an optimal policy for

the case PI > P2 would yield better results if operating in the higher

regions of allowable temperatures.

3.3 Behaviour of B on variation of activity and residence time

The expression for the exit concentration of B, (3.1.8), shows

that the effect of varying the catalyst activity $ is exactly the same

as varying the residence time 6; only the magnitude of the change wi I I

differ, if $ and e have different values [(3.3.1) and (3.3.2)J:

<3.3.1)

<3.3.2)

It is convenient to treat ~e as a lumped variable, and to term it

'the effective residence time'. Increasing the residence time (or

increasing the reactor length) is equivalent to adding catalyst of a

higher activity to the reactor, and vice versa. This reciprocal relation

is limited for values of ~ in (0,1) but for e in (e l ,6u)' where

and e < 00

u-
Examination of (3.1.8) shows that a maximumin B must occur with

respect to ~e (see Appendix A.3.3). This can also be seen by considering

the balance of concentrations at any point in the reactor (Diagram 3.2),



"

-
-

o

M 0

- - - -

Z - e

Di agram 3.2

At a particular temperature,

Tubular reactor.

in i he reactor. A'! i, [3 - 0, ~o LlW UL i s lJO~ iii ve. At [·1, say,

K1A =' K28, and dB!dz i s z(~ro. After r,1 and up to 0, A < K20!K1, 50

dB!dz is negativB as more C is being produced. In fact, the rate of

increase of C Is a maximum at M. B It would be beneficial if either

this reactor were shortened to M, or If the residence time were

decreased so that H moves to 0 and species B stops being pr'oduced in

excess just at the outlet.

The shape of the curve e vs. ~e Is simi lar to the shape of

Diagram 3.1. The maximum of B with respect to effective residence time

is given analytically by

<3.3.3)

and is a function only of temperature, or, more specifically here,

increasing with the ratio KI!K2•
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The corresponding optimum flowrate is given by (see Appendix A.3.4)

0.3.4)

The behaviour of max B(~a) with respect to relative values of PI and P2

corresponds to that described in Section 3.2. Relation (3.3.4) shows

that (~e) t decreases with increasing temperature.op

3.4 Combined behaviour of B with temperature and We

Since the optimal temperature policy spans both regions of

temperature and effective residence time throughout the time of operation,

it is useful to plot the behaviour of B with both of these variables.

Such a map is constructed in Figure 7.1.1, showing contours of B. The

maxima with respect to both variables follow each other closely in all

cases examined to form a three-dimensional sloping ridge, diagonally

spanning low residence times (high flows) and high temperatures, to

high residence times (low flows) and low temperatures. The maxima with

respect to temperature and We coincide at all points only for PI = P2'

when

max B(T,We) =
T

max BCT,we)
We

For PI ~ P2 the common maximum occurs only at one point, when KI = ~
(see Appendix A.3.5), and so, from (3.3.3),

max B = e- I = 0.368
(T,W6)

0.4.2)

This 'common maximum' will not be the highest concentration that can be

achieved. It is difficult to ascertain analytically if the maximum in 8
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by choice of ~e at a particular temperature does not occur at the point

where aB/ak = 0 coincides with dB/d$6 = O.

If there were no catalyst decay, it would be an easy method to

choose the location giving the highest concentration within the constraints

of temperature and residence time for any case.

The optimal policy with catalyst decay wi II trace a path on such

a map as Figure 7.1.1 of contours of B. It wi II be seen in the following

sections that the use of such a map helps to locate and compare different

optimal policies. On starting from a given concentration of B, the

reaction would proceed to the region of decreasing $6. The region of

highest concentration is then found in the direction of higher temperatures.

It has been shown to be true for result <3.3.3), but it is difficult to

prove analytically that the maximum of B with respect to temperature

moves to higher temperatures at lower ~e. However, this has been

observed from numerical calculations of B for many cases of P, and P2

(for example, Figures 7.1.1,7.2.1, and 7.3.1). Therefore it wil I be

taken as a hypothesis that this behaviour is generally true. It will

further be taken as a hypothesis, at present, that al I best (optimal)

temperature policies will therefore be rising ones.



CHAPTER IV

APPLICATION OF PONTRYAGIN'S MAXIr'1U~~ PRINCIPLE TO A TEf,1PERATURE

CONTROLLED CHEMICAL REACTION WITH CATALYST DECAY - GENERAL CASE

4.1 The lJlaximum Principle

The fol lowing theory wi I I be stated without the proofs which can

be found in Pontryagin's work.

Given the system of:

State variables

Control variables

x = (xI' xz,

u = (u l ' uz,

X
n

) e: X

u) e: U
r

The control pol icy is expressed as u(t) for t e: [to,t l], and is piecewise

continuous.

The systems equations are the time derivatives of the state variables:

ddtx i = f. (x, u, t )
1--

i = 1,2, .... n (4.1.1)

where the f i are continuous in ~, ~, are continuously differentiable with

respect to ~, ~, and are piecewise continuous in t.

The problem is to maximize or minimize J with respect to ~(t),

where the integral objective function J is defined as

J = Itlt f0 (~, ~, t )dt
o

The adjoint variables A. are defined by:
I

(4.1.2)

dL
dt' (4.1.3)

( 14)



Hence the Hamiltonian H which is to be maximized (minimized) by choice

of u(t) is formed thus:

15

H = H(~, ~ ~ t) =
n
L A. f.

i=o I I
(4.1.4)

An optimal pol icy u+(t) has the property that

+ + + + +
H(~ ,~ ,~ , t) ~ H(~ ,~,~ , t) (4.1.5)

for all u E U at almost every t E [to,tIJ.

4.2 Application of the general theory to a reaction subject to

catalyst decay

The objective function P was defined in Chapter 1I:

max P with P = f'B(t)dt
T(t) 0

(2.7)

P is one state variable. The second independent state variable is the

catalyst activity, $, defined in Section 3.1:

'** = -k(T).$ < 0

This may be regarded as the constraint on the system.

Fol lowing from the theory of Section 4.1:

<3.1.2)

Now

x = P
o

dA.
(ff'

dP
f o = dt = B

f I =~ = -k$

n
= -l: A~aax.a=o I

(4.2.1)

(4.2.2)

(4.1.3)
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Therefore

dA a8 af (4.2.3)W = -A -- AIWIoap

and dA I a8 af (4.2.4)dt = -A -- AIWIoa1jJ

Since a8/ap = 0 and afl/ap = 0, then ~o = 0, so A
O

is constant. The

Maximum Principle requires that A > 0 for a maximum, and that A,(T) = O.
0-

Therefore, using A = AI'

dA -A ~ + Ak
dt = oa1jJ

It can be shown from (4.2.5) that A
O

= 0 => AI

chosen to be unity. Also,

(4.2.5)

= 0 for a I It. A iso

Ah) = 0 if

if

(4.2.5a)

(4.2.5b)

The Hamiltonian was defined as

H = H(x, ~, ~, t) =

With u =T and x = (P.1jJ)'- ,

n
I A. f.

i=o I I
(4.1.4)

H = H(P, 1jJ, T, A, t) dP
= dt - Ak1jJ (4.2.6)

or, since P is defined explicitly by (4.2.1)

H($, T, A, t) = 8($, T, 8. (t» - Ak$ (4.2.7)
I

This problem wi II be restricted to cases when 8. (t) is constant and zero,
I

so (4.2.7) may be written as:

H(1jJ, T, A, t) = 8(1jJ, T) - >"k$

Transformation of T to k

(4.2.8)

For convenience, the variable T(t) will be transformed to k(t} as
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the independent variable, since the Arrhenius relation (3.1.3) is one-to-

one. The relation between T and the rate constants KI and K2 can be

manipulated easily through the fact that

~I=~
dk k

dK
2dk k

(4.2.9)

reca II i ng

(3.2.3) <3.2.4)

so Kl and K
2

retain their identity.

The Hamiltonian may finally be defined as

H(W, k, A, t) = seW, k) - Akw

Residence time e

(4.2.10)

If the residence time is free to be chosen, it is considered as a

control variable, so that

H(W, k, 8, A, t) = sew, k, 8) - Akw (4.2.11)

This relation is used in deriving an optimal temperature and flowrate

policy (Section 8.2). Except in that sectien, constant flowrate wit I be

assumed for the fol lowing theoretical developments.

4.3 Properties of optimal policies

The maximization of P in equation (2.7) is now achieved by findinO

an optimal policy k+(t) that

+ + +
H(1jJ ,A ,k ,t)

satisfies

+ += max H(1jJ ,A ,k,t)
k(t)

(4.3.1 )

(applying (4.1.5) to (4.2.10»,

In (4.3.1) w+ and A+ are the solutions of (4.2.2) and (4.2.5).

If k+(t) is the optimal policy, then one of the fol lowing three
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conditions is necessary at any time t ~ T:

(I)

(2)

Stationary pol icy S

~(k+) = 0 Cl 2H(k+) + *and < 0 for k* < k < k (4.3.2)Clk Clk2

*Upper constraint pol icy C

if (4.3.3)

(3) Lower constraint policy C*

;~ (k+) ~ 0 if k+ = k* (4.3.4)

Conditions (2) and (3) refer to upper and lower temperature constraints

imposed on the reactor for engineering reasons. Conditions (I), (2), and

(3) together with conditions (4.2.5a) and (4.2.5b), applied to the

Hamiltonian, the systems and the adjoint equations, enable the optimal

policies to be found for the reaction scheme.

Examination of the total derivative of the Hami Itonian with time

(Appendix A.4.1) shows that, for constant or zero input of B,

dH = 0
dt (4.3.5)

for both stationary and constrained policies. Therefore, on an optimal

pol icy,

with time.

H = a constant (4.3.6)

In the following sections, the conditions for optimal policies

to exist are derived for the consecutive first order reaction scheme.



CHAPTER V

APPLICATION OF THE MAXIMUM PRINCIPLE TO A FIRST-ORDER

CONSECUTIVE REACTION WITH CATALYST DECAY - GENERAL CASE

5.1 General equations

On an optimal temperature policy:

H = B - >.kljl

~= ~+ >.kdt aljl

H = a constant

aB/aljl. Band ljI are obtained from the equations

dljl = -kljl < 0
dt

(4.2.10)

(4.2.5)

(4.3.6)

(3.1.8)

<3.1 .2)

5.2 Derivation of the stationary policy (constant flowrate)

From necessary condition (4.3.2).

and on + *S. for k* < k < k

Now

Therefore on a stationary curve. S:

(19)

(5.2.1)

(5.2.2)
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Substituting in (5.2.1):

(5.2.3)

Also,
a2

H = a2
B < 0 on S (5.2.4)

ak2 ak2 -

It can be seen from these equations that a knowledge of the relation

between Band k is already useful, and reference will be made to the

observations of Section 3.4 concerning this relation. These equations,

together with (4.3.6) and (3.1.2) may be solved for the optimal temperature

policy k+<t). At the final time, A(T) = 0 since ,(t) = 0 only at ~ = m.

Therefore, f~ (5.2.2)

(5.2.5)

This is equivalent to maximizing the instantaneous conversion (conversion

= B/A. = B, using units of concentration mole/mole A, and A. = I, B. = 0
I I I

at the inlet () at the end, for a stationary policy. A simultaneous

result is obtained:

H = 8f . I in general (5.2.6)Ina

The stationary curve k+(t) can be obtained analytically either by

solving the above equations (generally impossible), or by examining and

solVing dHs/dt = 0 (also generally impossible). For example, for the

consecutive flrst~rder reaction, solving dH /dt = 0 gives the followings

expression for dk+/dt (see Appendix A.5.1):

(5.2.7)

Applying equation (5.2.7) geometrically to the maps of B-eontours,
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(Figures 7.1.1,7.2.1,7.3.1) shows that dk+/dt is always positive for

as/ak > 0, and almost invariably positive for as/ak < O. It is difficult

to ascertain the sign of dk+/dt analytically, and the only practical way

is to evaluate dk+/dt at every point in the region being considered, for

a particular reaction, by using (5.2.7). An analytical solution was found

only for the case P, =P2 (see Section 7.1.\).

5.3 Constrained optimal pol icies

Along a constraint, the policy is isothermal, and dk/dt is zero.

The Hamiltonian must be constant along this policy (see Appendix A.4.1),

and conditions (4.3.3) and (4.3.4) must be fulfi lied. The general equation

for the Hami Itonian, (4.2.10), must be used; k is constant, and A varies

according to relations (4.2.10) and (4.2.5) to keep the Hami Itonian

constant as the activity ~ decreases exponentially with time. The final

time is reached when A(T) = 0 and the Hami Itonian equals the final

concentration.

For the consecutive reaction, it is expected that only an upper

constraint policy wi I I be encountered for an initially stationary pol icy,

since a rising temperature policy in al I cases is concluded from the

observations of Section 3.4, although theoretically a fal ling temperature

pol icy can be envisaged for a very narrow temperature range in certain

cases (see Section 7.2.3).

A policy may have both stationary and constrained segments; for

example, it may begin on the stationary curve and end on a constraint,

or vice versa.
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5.4 Examination of initial temperature limits for stationary policies

An initial temperature limit is defined here as the boundary

temperature between the initial stationary and non-stationary policies.

Thus a lower and an upper limit, different from the practical constraints,

can be found for the initial temperature by examining the systems

equations in their initial forms.

(1) Limits on the initial temperature arise from a consideration

of the limits imposed on the Hamiltonian. Equation (4.2.10) shows that

the Hamiltonian equals the concentration of B at the final time, when

A(T) = O. Therefore, the initial temperature must be chosen such that the

Hamiltonian is neither negative nor greater than the greatest attainable

*concentration in the region ~e < e, and k < k • For the stationary pol icy

these limits can be shown geometrically on the graph of B vs. k (Diagram

5.1). For a stationary policy, the Hamiltonian is given by

aBH =B-k-s ak (5.2.3)

From the construction in Diagram 5.1 the stationary Hami Itonian equals

the value of B at the intersection of the tangent at B. ·t and k..t and
I nl In,

the ordinate axis. Therefore ki represents the lower I imit on initial

temperature, at which the Hamiltonian constructed in Diagram 5.1 is zero,

and ku represents the upper temperature limit when the Hamiltonian equals

the maximum attainable concentration. It may be noted here that for

PI > P2 the maximum in B with respect to k increases with decreasing ~e

(see Figure 7.2.1 and Section 7.2.1), but not for PI < P2.

If the initial temperature is chosen such that aB/ak is zero,



max 8{k $ k'*)

for '1'9 ~ 8

t
8

H = 0s

Region

I
I
I
I
I
I
I
I

I
- -4--

--r--,
I
I Hs
I
I
I

Region

II

______ ~__ ....oe:::.. ---L_~ _ ___ll..._£._..L___.L_.__...L.... ::.

o
k(T) -

Oi agram 5.1 In iti a I form of B vs. k(T)



24

then H = 8 and A = 0, so that the reactor operates for an Infinitesimals

time, since the final conditions are fulfilled at the initial time. This

temperature wil I be regarded as the boundary between two classes of

pol icies - one confined to the region where 3B/3k is positive (Region I),

the other confined to the region where aB/ok is negative (Region 1I).

(2) A stationary po! icy must also obey the condition

< o (5.2.4)

The condition a2B/uk2 = 0 corresponds to the two inflexion points in

Diagram 5.1. It is therefore hot possible to operate a stationary policy

below the lower or above the upper inflexion point, where a20/ak2
> O.

The Imler limit k.f (at which Hs = 0) is alv/ays above the lower inflexion

point by geometry. The upper limit k is, however, subject to being
u

below, or at, the upper inflexion point, for those cases where Region I I

is feasible.

5.5 Restrictions on constrained pol icies

*5.5.1 Ending on the up~er constraint: S-C

On the upper constraint,

may have any value (4.3.3)

A rising temperature policy wll I end on the upper constraint if the initial

Hami Itonian is feasible but corresponds to a final concentration which is

unattainable as a point where aB/ak = 0, so that the pol icy cannot be

stationary at the end. Further, the final concentration on a constrained

pol icy must be attainable along the constraint, if the pol icy is to be
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optimal. Now

dH _ dB
ak - ak - ).1/1 (5.2.1)

Therefore ).W ~ oBlak for the pol icy to be on the upper constraint. The

constraint may be at a temperature where aS/ak is positive or negative,

provided that the condition (4.3.3) is respected.

* *5.5.2 Totally constrained pol icy at k : C

*Condition (4.3.3) must hold along this policy. C may be feasible

at any temperature, for the fol lowing reason. Whatever the sign of aB/ok

in (5.2.1), the initial value of the adjoint A can be chosen to be positive

or negative (hence a different total operating time T, a different final

c0ncerrirdTion, and a ailtereni" Hamiltonian) to suit (4.3.3), provided

that d)'/dt is of the opposite sign (see Section 5.6). This Is possible if

aB/al/l is of favourable sign (se& equation 4.2.5).lt cannot be predicted

*if al I pol icies on C are optimal even if the Hamiltonian Is feasible,

but j t appears II ke Iy that most temperai'ures can be se Jected.

5.5.3 Lower constraint pol icies: S-C*, CI , C*-S

Sections 5.5.1 and 5.5.2 apply to lower constraint pol icies if

the inequality signs are reversed. Initially stationary pol icies fol lowed

by lower constraint pol icies are not predicted, for the reasons given In

Sections 3.4 and 5.3. Lovler constraint policies C*, C*-S are possible.
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5.6 A discussion of tho initial value of the adjoint variable A

In this section, the different trajectories of A with time are

discussed.

The time behaviour of A is given bV the adjoint equation

~ = - 2.£ + Ak
dt 01P

(4.2.5)

For initial IV stationary pol icies, A takes on the sign of aB/ak; it wi I I

be recal led that aB/ak may initial IV be of either sign for an optimal pol icy,

provided that the conditions on the Hami Itonian are respected.

Since, for the consecutive reaction, it has been shown that B has

a maximum with respect to the effective residence time ~,6 (see Section 3),

then aB/a1P may be positive or negative. It has also been shown theoretically

in Section 3 that, except tor PI = P2' the maxima of B with respect to

temperature and 1P8 coincide at only one point in three-dimensional B-T-~8

space. In general, although it has not been possible to show it theoretical IV,

it has been observed from the numerical computation of 8 at various 1P8 and

T, and also of the derivatives as/a¢6 and aB/ak, that by virtue of the

separation of the extrema aB/a~8 = 0 and aB/ak = 0, the derivative a8/a~

may be of either sign \'Ihen aB/ak is of either sign. It fa! lows from equation

(4.2.5) above that dA/dt can be initial IV positive or negative for either

sign of A, depending on the balancing of the terms in the adjoint equation

equation, giving four possible variations of A with time; these are shown

in Diagram 5.2. However, the adjoint A must, at the final time, decrease

from the positive, or inciease from the negative, to reach zero. Therefore

two of the trajectories of A have turning points when, for A positive,

d2A/dt2 is negative, and vice versa. Although it has not been proven
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theoret i ca I Iy, numer ica I I'/ork on the consecut ive react ion has sho\1n that,

if the initial Hami Itonian is feasible, these two cases (a and b in Diagram

5.2) correspond to pol icies which end on the upper constraint, when it is

impossible to end at aB/dk = O. Cases c and d correspond to unconstrained

stationary pol icies ending in a finite time at aB/ak = 0.

It wil I be shown from numerical results in Chapter VI I that the

four variations in A are related to the identifiable regions of feasible

pol icies described in Section 5.4, depending on the initial sign of aB/ak

(and hence A), and dA/dt, for PI * P2' It has not been predicted that

there is an exact correspon~ence here, and an example can be found which

shows that other trajectories of A with time can exist (see Section 7.2.3).

This imr!l~s that, ~rovld0d th~t th~ ~0strlctio"s on tho Hami ltonian and

on the initial temperature are respected, the values of the adjoint are

automatically feasible at al I times. The results emphasize the dual ity

of state and adjoint variables.

This section has shown that there are no theoretical restrictions

on the initial signs of \ and d\/dt, but that at the final time the sign

of dA/dt must be opposite to that of \ in (0,.), and to that of aB/a¢ at

T. Different optimal pol icies can be characterised by the time behaviour

of the adjoint A.



t
+

o

a

b

Diaqram 5.2 Trajectories of A

Constrained
at the end,....

t-
Initially:

a H d>'/dt +

b >.- d'A/dt -

c >.+ d>'/dt -

d >.- dA!dt +

c and d may correspond to

constrained policies in certain

cases (Section 7.3.3)

N
co



6. I

CHAPTER VI

t·1ETHODS OF OBTAIN I NS NUr·1ER 1CAL SOLUT IONS TO OPT I t;lAL POL I CI ES

Calculation methods

6. I • I stationary pol icies

At the chosen feasible temper'ature, the stationary Hami ltonian is

calculated. The system time is incremented to al low for a smal I amount of

catalyst decay (approximately .1%) according to equation (3.\ .2). The new

optimal temperature at the new activity is guessed by binary search,

keeping the Hamiltonian constant. The procedure is repeated unti I the

tinal time is reached, when rhe Haml Ironlan equals the final concentration.

6.1.2 Constrained pol icies

The general Hami Itonian equation (4.2.10) is used. If the pol icy

is initially stationary, the value of the Hami Itonian is known and equal

to the stationary value. As before, the system time is incremented to find

the new activity, and the adjoint variable is adjusted to keep the Hami Itonian

constant in (4.2.10), at constant temperature.

If the pol icy begins and ends on the constraint, the final concentration

(which is the value of the Hami Itonian) is chosen, and so the initial

value of the adjoint at that temperature and at the initial activity can

be calculated. The methods of the last paragraph are carried out unti I

the final time is reached, vlhen the concentration ot B equals the value of

the Harni Iton ian.

(29)
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6.2 Classification of the results: numerical values

Numerical values are chosen such that the pol icies can range

between upper and lower temperature constraints of 9000 K and 7000 K

respectively. Three types of consecutive reaction have been identified

by the relative chemical activation energies of the two steps (see Section

3.2). These types correspond to:

PI = P2 PI > P2 PI < P2

where PI = EI/Ec ' P2 = E2/Ec and EI , E2, Ec are the activation energies

of the first and second reaction steps, and of the catalyst decay,

respectively.

In order to compare the three types, the fol lowing criterion for

reaction conditions was used. At an effective residence time of .25 Sf

and at a temperature of 8750 K, the maximum concentration of G with respect

to effective residence time (given by equation (3.3.3» is set at .75.

This means that each reaction type wi I I end in apprcximately the same

field of concentrations on a rising temperature pol icy. The residence time

in the constant flowrate cases is set at I s, so that the activity in the

criterion above is .25; that is, at a point near the end of the pol icy.

Arrhenius frequency factors AI and A2 are obtained from a solution of

equations (3.3.3) and (3.3.4), for each pair of P" P2 values, at the

point chosen for the criterion. This is equivalent to fitting a given

reaction type to a base set of conditions.
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Data for the calculations were:

Upper constraint:

Lower constraint:

*T = 900
0

K

T* = 700
0

K

Catalyst decay temperature coefficient: E /R = 150000 Kc

Catalyst decay frequency factor: A = 2000000 hr- I
c

Res idence time (constant flowrate cases) : I s

Initial activity:

6.3 Results

1.0

In the following sections, the theory is applied to the three

particular cases of consecutive reaction, to predict types of temperature

pol icies. Numerical results are presented as graphs. In Chapter VI I the

numerical work examines the effect of initial temperature on final time

and on the types of pol icy for constrained and unconstrained cases.

In Chapter VI I I special cases are considered; these include comparisons,

the use of a performance criterion, and a discussion of the variable

flowrate case.

Figure 6.1 shows the Arrhenius relation between the catalyst decay

rate constant and the temperature.
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In order to help d fine the conditions under which an optim I

policy may exist, the havi ur of B with temperature and effective
it

residence time is examined. Figure 7.1.1 shows contours of B at various
.

T and We. It was shown in 5 ction 3.4 that the maxima with respect to

1~ernper' i'ur-e and ef'fectlve f'esldence i-irn . coi. clde' at a cO'nstant value

(3.4.1 )canst.max B =
<T,lfI )

depen ing only on the ratio of the Arrh nius frequency factors:

A2A _.-..... I'"

I A - AA-- 2 I
2

The position of the optimum eff ctive flow <and hence optimum t mperature)
,

is related to the

(l/Je) t = ,
op (AI

temp rature by:

A
II n sa.A2

• 111111 • • ••1' • s··,. from

(3.3.4)

That •IS,

In(~e)opt = const2 + const3/T (7.1.1)

for PI = P2. Also, for constant BJ $8kP = a constant, therefore the curves

In Figure 7.1.1 on a semi-log scale are hyp rbol •

The optimization theory has shown that the boun 5 of optim I

(33)



t

t

o.

o
o
CO

- o

34

o

Figure 7.1.1 Concentrations of 0 at different temperatures T and
effective residence tirr,es 1,!i8. Case I. P.l = P2 = P = 1.0. Arrhenius frequency
factors are AI = 269207670.S~A2 = 32048?32.s~'



35

policies are determined by the signs and magnitudes of the derivatives and

variables involved. For this purpose, Figure 7.1.2 shows the sign of aB/Sk,

for the same field of T and ~e as Figure 7.1.\. For the case PI = P2' the

sign of 3B/a~e is the same as that of aB/ak.

7.1.2 Appl ication of the Maximum Principle

The conditions for stationary and constrained pol icies were discussed

in Chapter V. The initial Hami ltonian for the stationary pol icy is

calculated from

H = B - k~s ak (5.2.3)

and a map of values of H defines the regions of allo't;able Hami ltonlans

gives only the sign of H (although a table of values of H was used in thes 5

numerical work) and is therefore useful for finding the lower limit H = O.s

For stationary pol icies only, the sign and value of the adjoint variable A

at the initial time is equal to that of aB/ak, and so is given by Figure

7.1.2. The discussion of Section 5.6 pointed out the use of the sign of

dA/dt in characterizing optimal pol icies, and this derivative can be

evaluated from equation (4.2.5) at the initial time using the initial value

of A. The result is shown in Figure 7.1.4 for p = I. The final sign of

dX/dt is the opposite of a8/a~e, and so is obtained from Figure 7.1.2.

The representation of al I the avai lable information for the

system enables a thorough examination of possible optimal policies to be

carried out. The selection of initial conditions Is done in this way for

al I cases. The results of the possible stationary (best optimal) temperature
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pol icies are based on the division of the initial feasible temperatures

into the two regions I and I I, defined in Section 5.4.

Analysis for p * I

Since the equations simplify greatly for PI = P2' this case can be

examined thoroughly. The Hami Itonian along a stationary pol icy, for

PI = P2 = P, is given by (Appendix A7.1)

Hs = constl[exp(-const2kP~) - exp(-const3kP~)]

const4kP~[A2exp(-const3kPVJ) - Alexp(-const2kPw)] = G(T)

<7.1.2)
Therefore, to keep H constant,

s

I~P ~ = a constant

Hence

8 = a constant

<7.1.3)

(7.1.4)

Thcro{OfG ·::1<:l .;7<:Ji-ic,",:::.;'y ;:,cl icy is -:-0 t0m.:;in on ~h(; contour 8 = a constant,

as the temperature rises according to (7.1.3).

If 8 is not at its constant maximum value, given by the equation

(3.4. I) above, the pol icy can never end as a stationary one (because the

contour 8 can never cross a point where aB/ak is zero) but always on the

upper constraint.

If B is at its maximum value (that is, at the top of the ridge in

Figure 7.1. I) the pol icy is to continue at this value unti I the upper con-

straint, and hence the final optimal time, is reached. Along the ridge

B = 8max'

<7.1.5)

At the upper constraint, dA/dt becomes negative instantaneously, and hence

A decreases as ~ decreases.
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The optimal temperature policy may be obtained analytically

from
kP1JJ = a constant

and
d1JJ- = -kIPdt

It is the hyperbola (see Appendix A.7.1)

I _ I t
k - k p

o

<7.1.3)

<3.1.2)

<7.1.6)

Alternatively, (7.1.6) can be obtained from the expression for dH Idt
5

(see Appendix A.7.2),

Analysis for p ~ I

The condition for the Hami (tonian to be constant is now

k1JJ = a constant (7. I .7)

Conditions (7.1.4) and (7.1.5) stil I hold. Also, dx/dt = 0 and X = a

positive constant (see Appendix A.7.3).

The temperature pol icy is obtained analytically as simply

I I
j(= k - t n.1.8)

o

The best optimal policy for PI = P2 is to start at the temperature

giving a maximum of B.

7.1.3 Numerical results.

The case PI = P2 =

*$-C po 1 i c i es

is taken as an example. All policies end on

the upper constraint for PI = P2'

Region I Figure 7.1.3 shows that there is no lower limit on

oinitial temperatures above the lower constraint of 700 K, at e = I (and

1JJ = I). Figure 7.1.1 shows that the upper I imit for this region is 8080 K
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(at the concentration datum 8 = .75), The derivative dA/dt at A = 0 is

always negative, and A(O) ~ 0, for this region.

Figure 7.1.6 shows the effect of initial temperature on total

time for optimal pol icies in Region t. As the initial temperature increases,

the total operating time decreases, due to increased catalyst decay r-ate.

The time on the upper constraint also decreases. All curves have an

exponential form, which becomes steeper \Iith increasing initial temperature.

Figure 7.1.7 shows the theoretical result 8 = a constani (7.1.4),

and the variation of the activity and of the adjoint A for one initial

temperature. The optimal pol icy is for the activity to decrease in

proportion to the operating time, since k~ = a constant for p = I, and

after substitution into (3.1.2), The adjoint is constant unti I the upper

constraint is reached, then falls to zero.

Region I I No feasible point is possible in this region for a

stationary pol icy, since the Ham! Itonian is always greater than the maximum

attainable concentraTion B = .75 (from the geometric construction of

equation (5.2.3».
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As discussed in Section 3.4 for P, *P2' the maxima of 8 with

respect to temperature and effective residence time coincide at one point

only, when K1 = K2• Since the ratio K,/K2 increases with temperature, the

maxima of 8 increase in magnitude wi+h decreasing We and increasing T,

towards the top right hand corner of Figure 7.2.1, for the case PI = 1.2,

P2 = .8. The signs of ~B!ak and aB/a~e arc shown for this case in Figures

7.2.2 and 7.2.3. The sign of a28/ak2 is shown for this case in Figure 7.2.4,

since this second derivative is important for locating the upper bound in

Reg ion I I.

7.2.2 App' ication of the Maximum Principle

As bofore, the allowable values of the Hami Itonian H are chosen
s

from a plot for tile particular case; Figure 7.2.5 sho\"/s the sign of the

Hami Itonian. The sign of 32H/Clk2 = 32B/3k2 is shown in Figure 7.2.4. The

initial sign of A is given by Figure 7.2.2, and of dA/dt (stationary

policies) by Figure 7.2.6 for PI = 1.2, P2 = .8. The final sign of dA/dt

is the opposite of aB/aWe, from (4.2.5), and so is obtained from Figure

7.2.3.

7.2.3 Numerical results. *Sand 5-C pol icies

AI I results were rising temperature pol icies.

Region Examination of Figure 7.2.1 shows that there can be no

*optimal pol icy 5, but always $-C • This is because al; the possible ending

concentrations of B for stationary policies, fOI- v/hich dBlak = 0, are
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Case 2

I
p =.8 in this example
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Figure 7.2.5 Sign of H
- 5

Case 2

Figure 7.2.6 Sign of dA/dt

P 1-2.L2

P, = 1.2 P2 =..8 in this example
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higher than the initial maximum in 8 at We :: I, which in turn is higher

tha n a II pass i b Ie va Iues of H in Reg i on I.s

The sign of dA/dt at A = 0 is the opposite to that of A(O) (that

is, negative) everywhere except for a very smal I region near the intersection

of the upper constraint and aC/ak :: 0, where aB/a¢6 Is negative, and so

dA/dt may be positive at t :: T (A :: 0) here. This region is rejected as

non-feasible.

Figure 7.2.7 shows the effect of initial temperature on the total

time of operation. The cur'ves h<lve a simi lar shape to those of Case

(P, :: P2). However, rrore time is spent on the upper constraint, and the

overal I operating time is greater, for a given initial temperature.

Figure 7.2.8 plots the concentration, activity, and adjoint A for

one initial temperature in this region. The profi Ie of the activity now

curves sl ightly upwards from its straight line of descent (a tendency

towards more conservation of activity). The concentration increases

sl ightly unti I the upper constraint is reached. The adjoint has a

characteristic trajector'Y, increasing exponentially near the upper constraint,

then reaching a turning point (dA/dt :: 0) and fal I ing to zero.

Upper and lower initial temperature limits are obtained in the

same way as for Case I.

Special cases arise for PI * P2, when the maxima of B in T and ~e

do not occur at the same point. It Is now possible, for example, for the

derivative aB/3W to be of either sign in Region I alone. This means that

dA/dt (which was discussed in Section 5.6 as a means of transforming the

behaviour of all state variables) can be of either sign in this region,

and wi II define differently-behaved sub-classes of pol icies, according to
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the form of the trajectory of A with time, and to the resulting

fluctuations in total operating time.

Region I I In this region, the stationary Hami Itonian H is greaters

in value than the initial concentration of B, from the geometrical

construction of equation (5.2.3). Since the final concentration

corresponding to H_ is now attainable as a maximum aB/ak = 0 (provided
~

that H < I.), then by virtue of the b8haviour of B for this case, showns

in Figure 7.2.1, it is possible to operate a whot Iy stationary policy S.

The upper I imit o~ the Hamiltonian is given by the maximum concentration

*attainable in the field ~e <. e, and for T ~ T for constrained optimal

pol icies. The corresponding temperature is the upper I imit for any

*optimal raj icy in this r0gion; ann ~0 r01 ir.y s-r, is rejected for Region

I I. This upper temperature I imit is subject to being lower than the upper

inflexion point for B vs. k, above which a2H/ak2 is positive.

Figure 7.2.9 shows the effect of initial temperature on total t~e

for this region. The operating time increases with increasing initial

temperature, from zero at the lower bound (SISoK) to less than 37 hours

at the upper bound (8250 K). From a comparison of Figures 7.2.7 and 7.2.9

it would seem that the same total operating time could be achieved with

two different initial temperatures. This possibi I ity has not been rejected,

but no such example was found for this case. The asymptotic behaviour of

the operating time in Figure 7.2.9 indicates that it may be possible to

reject this phenomenon on theoretical grounds.

Figure 7.2.10 plots the concentration, activity, and adjoint

variable A against operating time. The behaviour of Band ¢ here is simi tar

to that of the stationary portion of the curves of Band ¢ in Region I.
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The adjoint A is characteristically different, increasing sharply from

the negative to reach zero at the final time.

It fol lows that al I final concentrations for these stationary

policies ShOLlld I ie to the right and above the initial concentration in

Figure 7.2.1, on the ridge of maximum concentrations. It should be

theoretically possible, if the geometry of Figure 7.2.1 is examined closely,

for the final concentration to lie to the left of the initial concentr~tion

(see Diagram 7.2.1) so that a fall ing temperatur'e profi Ie should be

Normal caseExceptional case
(not yet fo,),uJ~n~d)L-__-----:~"~~--= ~ ; rising temperature

.. ~ profile
falling

temperatur.:
profiie

observed.

Diagram 7.2.1. Section of Figure 7.2.!

Such a case has not been found for any reasonable temperature range,

because, for this example, the concentration of B decreases too quickly

with temperature at constant flow, causing the stationary ~~miltonian

to rise sharply after the maximum aB/ak = O. Also, it appears that

equation (5.2.7) is probably always positive for this region, by

geometry.
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7.3. I study of the kinetics

For this case, lower temperatures of operation, at higher

residence times, favour the production of B (see Figure 7.3.1). Figures

7.3.2 and 7.3.3 plot the signs of aB/ak and aB/a~e, for the example

P, = .8, P2 = 1.2. It is noted that aB/aWe is always positive for 3B/ak = 0

in the region under test.

7.3.2 {,-ppl icatiorl of the r·1aximum Principle

The bounds for stationary pol icies are found as before from the

plots of the Hamlltonian (Figure 7.3.4) and aB/ak (Figure 7.3.2). The

initial sign of A is given by Figure 7.3.2, and of dA/dt (stationary pol icies)

by Figure 7.3.5 for PI = .8, P2 = 1.2. The final sign of dA/dt (at A = 0)

is given by the opposite sign of aB/a~e in Figure 7.3.3.

7.3.3 Numerical results. *Sand S-C pol icies

Region

AI I results were rising temperature pol icies.

(aB/ak > 0)

Examination of Figure 7.3.1 shows that it is possible to end at any

point where 3B/ak = 0 in the field ~8 < I (8 = in the constant flowrate

examples). Therefore it is possible to operate a stationary pol icy S

starting at any point in Region I for the unconstrained case. There is a

I imiting temperature (above k£. in Diagram 5.1) for the constrained case,

*below which the pol icy is S-C , since the final concentration is then not

attainable as a point where 3B/ak = 0; hence a stationary ending is not

possible. The final concentration can be reached only along the upper constraint.
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PI =.8 P2 = 1.2 in this example
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dA/dt is always negative at tho final time, since d8/d~6 is always positive

for the regions of optimal pol kios defined above.

The effect of initial tomperature on total time is shown in Figure

7.3.6. The profi les rise exponentially, and the curvature is greater

near the end than for the caso PI > Pz. The total operating time, and

a I so the t i r.1e spent on the upper constra int, increases vii th decreas i ng

initial temperature. For this case, as I ittlo time as possible is spent

at higher temperatures, since it is the lower temperatures that benofit

the production of 8.

The trajectories of the variables A, 1jJ and Bare shovm in rigure

7.3.7. The 51 ightly negative curvature of 1jJ indicates that activity sho~ld

be conserved more at lower temper<:Jtures (ct. Case 2, where the curvature

is 51 ightly positive). G is kept as nearly constant as possible, bu1 the

slight decrease vlith time results from moving to regions of lower

concentrations of G (see Figure 7.3.1) (cf. Case 2). The adjoint A has a

characteris1"ically differ-ent irajectory.

Region 11 (d8nk < 0)

No stationary policy is al lowed in this region, since the Hami Itoian

corresponds to a concentration which is not attainable in the region 1jJ6 < 6.

The results have illustrated the different profi les of the control

and the con1"rolled variables, for the three types of activated consecutive

first-order reaction. It has been assumed that one example from each type

of relative activation energies (p-values) would represent the behaviour of

many other pairs of p-values of the same type. This has not been proved,
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but seems highly probable on physical and mathematical grounds. It

would require many more computational experiments to justify this

assumption.

The problem of investigating different sub-classes of pol icies

on the basis of the different characteristic trajectories of the adjoint

A (discussed in Section 5.6 as a transformation of al I the physical

variables into a continuo~s differential equation) \Vas considered to be

beyond the scope of this project. Therefore, only the major differences

between the profi les of A have been emphasized, but the discussions in

Sections 5.6 and 7.2.3 could form the starting point of such an investigation.

Chapter VI I I gives comparisons between the profi les of more

examples of the normal cases described in Chapter VI I. The variable

flowrate case is discussed, and examples of this are given. A criterion

for selecting best optimal pol icies is establ ished on the basis of

practical considerations, and a final comparison of best pol icies is made.



8. I

8. I • I

CHAPTER V, I I

Comparisons a~d discussion of the optimal temperature policies

Effect of changing the activation energies of both steps

In Chapter VI I, the characteristics of the optimal temperature

pol icies for each case of relative p-values were derived. That is, for

each of the cases

Case I: PI = P2 Case 2: PI > P2 Case 3: PI < P2

one example was chosen and examined for p 0(1). A summary of the

h;1j:;or7<::...-.t rcsu:-:-:.:. ;.;. :'0 tic 1vLi:iG in tho C:.;rn:;lu::.iUlJ3. ! r Iiouid be interesting

to verify that the behaviour is consistent within each case for p-values

greater than and less than those chosen in the previous chapter. For this

purpose, the fol lowing sets of values have been studied •

Chapter VII

Chapter VI II

.E..I = pZ

PI=I. P2=1.

PI=·95 P2::·95

p,=I.05 P2=I.05

.E..,2.E..2

PI=I.2 P2=·8

p,=.8 P2=.5

p,=1.5 P2=1.2

.E..I~

PI=·8 P2=1.2

p,=.5 P2=.8

P I =I.2 P2=1.5

By a study of such diagrams as Figures 7.1.1 - 7.1.3, 7.2.1 - 7.2.6, and

7.3.1 - 7.3.5, it has been verified that the behaviour of B with respect

to temperature and effective residence time we, and also of the derivatives

aB/ak and aB/awe, is consistent for al I examples chosen within each of the

*three cases above. Therefore the profile and the type (for example, S, S-C )

(61)
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of optimal temperature pol icy should be consistent within each type, and

this has been found to be true. However, the range of acceptable values

of the stationary Hamiltonian H <cL Figure 7.1.3), and also the sign ofs

dA/dt, change quite ~rkedly. For this reason, the range of feasible initial

temperatures, and the total operating time for a given initial temperature,

change in a characteristic way.

Resul ts ?f cO:TIpari son _tests

The optimal temperature profi les are compared for each case in

Figures 8.1.1, 8.1.2, and 8.1.3. As for the cases in Chapter VII, for each

set of p-va Iues, the co Iii sian factors AI and ('2 arc chosen such that

B = .75 at ~6 = .25 5 and T = 8750 K. AI I examples are for a constant

residence time e of s, as before.

Case I. p = p = P/--2--

Figure 8.1.1 shows that for decreasing values of p:

- a given total time of operation requires a lower initial temperature;

- a given initial temperature ;equires a lower total operating time for

finishing on the optimal pol icy. That is to say, reactions of lower

activation energy require lower temperatures for completion of simi lar

temperature pol icies.

The upper limit on initial temperature decreases with p decreasing.

Simi lar results to case t ../ere found for Region I; that is, a given

total time of operation requires a lower initial temperature for p decreasing,

and vice versa for Region I I. Figure 8.1.2 shows the effect of changing

PI and P2 for initial temperatures in Region I.
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The temperature range for feasible initial temperatures was

found to occupy the region of lower temperatures for lower p-values.

Thus, no lower I imit on initial temperature in the constrained region

o 0700 K-900 K was found for Case 2a (see Figure 8.1.2 for the definition

oof a, b, c). The upper I imit ViaS found at 793 K. For Case 2b, the 1000ler

and upper I imits were 7450 K and 8250 K respestively. The lower I imit for

Case 2c (highest p-values) was as high as 7850 K; the upper I imit was at

Tu. ~ 8350 1<.

It was found for Case 2a that below a certain initial temperature

in Region I, A decreased monotonically to zero, instead of passing

through a maximum as for Cases 2b and 2c (d. Figure 7.2.8) (see end of

Chapter VI I).

Case 3. PI~2

Figure 8.1.3 shows the effect of decreasing or increasing p-values

on the optimal temperature policies for this case. Simi lar results to Cases

I and 2 are found. That is, a given total time of operation requires a

lower initial temperature, for decreasing p-values. The behaviour of the

temperature range for feasible initial temoeratures is the same as that

found for Case 2.



900_------r-1f-r.-~_+----.,..,.+_-----__,_--_,_t_1

800

KEY

PI = ·5 P2
= ·8

I ~ = ·8 P2
= 1·2

T oK c ~
=1·2 P2

= \·5

::00\00 200

Operating time, hours ----

700L..---------l--------...I--------..L------'
o

Figure 8.1.3 Effect of different p-values on optimal temperature policies
for Case 3 PI < P2"



8. I .2

67

Compariso~ between the Cases of Chapter VI I

The differences in the types of optimal pol icy for each case arise

from the characteristic behaviour of B with temperature and effective

residence ti~e. Physical justification can be found for these differences,

which could provide an a priori basis for choosing an arbitrary 'best'

pol icy without using the Maximum Principle. Each case wi I I be considered

in turn.

Case I. P ::; P---L.-1-2

For this case, temperature has no effect on the relative rates

of the chemical stops, and this is the reason why the optimal pol fey is

to ne ither increase nor decrease the in i t ia I concentrat ion, bu·t to keep

pace with the deactivation of the catalyst.

Case 2. PI.2J?.2

In Region I, since higher concentrations are avai lable at higher

temperatures, the optimal policy is that the final time should not be

reached unti I ful I benefit has been obtained fro~ operating at the higher

temperatures. This is a justification for not ending on a stationary

policy, but to stay ay/ay from the 'ridge' until the upper temperature

constraint is reached.

The physical justification for operating in Region I I, where

aB/ak is negative, is seen by examining Figure 7.2.1. It is equivalent

to starting with a reactor that is too long (aB/a~G also being negative)

and so the activity decreasing (equivalent to shortening the reactor)

benefits the production of B. in addition, more is to be gained by raising

the temperature, and so moving to regions of higher concentration. A
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stationary pol icy is al lowed, since ending on the ridge indicates that

as much advantage as possible has been obtained from decreased activity.

Case 3. p < P1--2

Since lower temperatures favour the production of 8 for this case,

the best policy is to remain for as long as possible in the region of

lower temperatures. Therefore, the profi les in Region I of Figure 7.3.6

are flat near the beginning of the policy, and rise sharply to the final

temperature. A stationary pol icy is allowed, since less is to be gained

by cant i nu ing upvtards in temperature unt i I an arb i trary upper constra j nt

is reached in the reg ion of lovler concentrat ions.

Operation in Region I I is not favoured, for the fol lowing reason.

Althouqh the policy in this region benefits from shortening the reactor'

(or decreasing the residence time), it is better for this case to start

at as Iowa temperature as possible, near the region of higher concentrations.

These are most accessible in Region I, and along the side of the ridge

(in Figure 7.3.1) where 3S/3k is positive.

The justification for expecting rising temperature profi les was

provided at the end of Chapter II I.
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8.2 Variable flowrate case

8.2.1 Aprlication of Pontryagin's r1aximum Principle

The faci I ity to vary the fJowrate, and hence the residence time a,

may be regarded as a separate control on the system, influencing the exit

concentration of B, but not the decay rate of the catalyst. The general

Hami Itonian may be written as:

HD., k, ljJ, a, B) :: 8(k, ljJ, 8) - >..kljJ

Optimising with respect to temperature requires that

3H aB J-:;; - - Alj! :: 0
ilk ak

(4.2.11)

(5.2.1)

Optimising with respecT to flowrate (residence time) requires that

aH a13
_::_-=~O

80 dO
(8.2.1 )

Therefore, optimising with respect to temperature and ftow~te rqquires

that on a stationary pol icy

H :: B _. k.dB
s ok

and

(5.2.3)

8 = max
O

B(k,ljJ6) (8.2.2)

The second derivatives a2H/ak2 :: a2B/ak2, and a2H/ae2 :: a28/ae2 must be

negative or zero on the stationary pol iq.

The stationary pol icy is executed in the fol lowing way. At a given

initial temperature, for activity 1); = I, the initial residence time 6 is

chosen such that

0.3.4)
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However, since the expression (5.2.3) is a function of k and ljJe only,

substitution of (3.3.4) causes ~I to be a function of temperature only.s

Therefore, in order to maintain a constant Hami Itonian, optimising with

respect to flow and temperature requires that the temperature be kept

constant, and that the residence time e be increased to compensate for

decreased activity, according to the relation:

where

e =opt

const.

canst.----
l/J

(Kd
._~R

K, - K2

(8.2.3)

(8.2.4)

The residence time cannot be increased beyond a certain value e (simi larlyu

thoro i c; Cl f o\\''?r cor,(""tr;:)j r-r r·
t
': ~t \,'h ich po i nt thg po! icy is const ra i ned

with respect to residence time <aI-Vas ~ 0), The temperature can be varied,

so the policy is sti I I stationary with respect to temperature, unless the

pol icy \'Ias initially on a temper'ature constraint. The pol icy is free to end

on a stat iunary or' a constra i ned po i nt, as for the constant f lovlrate cases

described in Chapter VI I.

8.2. I Results of variable flmirate pol icy

Each of the three cases of relative activation energies produce

distinctive pol icies.

Case I. PI = Pz

The flowrate for which a~/ae = 0 coincides with the temperature

for which as/ak = 0 (see Figure 7.1.1). Therefore the optirnal flowrate

pol icy fol lows the same path as the best constant flowrate pol icy -
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that is, along the top of the ridge to the upper temperature constraint

(for the best ,). The value of the objective function wi 11 be greater,

however, because of the initial period at constant temperature, when the

flowrate is decreasing.

Case 2. PI~2

The temperatures at which aB/a8 = 0 I ie everywhere in Region I,

where aB/ak is positive, for this case (except at the 'common maximum'

temperature, where K
1

= K2; this condition has not been examined). Therefore

an optimal flowrate pol i~y can occur in Region I only, and is fol lowed

*by a temperature pol icy S-C •

Examples were taken for the values PI = 1.2, P2 = .8, and the

temperature profi les are plotted in Figure 8.2. I. It must be noted that
,

this is not equivalent to st3rting on the lower temperature constraint

for the constant flowrate case, since 3H/ak { 0, but aH/ak = O.

Discussion of the results for Case 2

The time spent on the variable flowrate pol icy does not

monotonically increase or decrease with respect to initial temperature,

due to the differont rates of isothermal catalyst decay at different

initial temperatures. 1he improvemeni in yield is illustrated in the next

section.

Case 3. P /.....::....E.2

The temperatures at which 38/3e = 0 occur everywhere in Region II,

\'iherc 3B/ak is negative, and where it is not possible to operate a

stationary temperature pol icy. (A constrained temperature pol icy could be

tried in Region I I). Therefore, for a given initial temperature in Region I,
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where 3S/ak is positive, the best flowrate is chosen to give the maximum

value of the objective function, on a temperature pol icy finishing as

*either S or S-C •

The next section includes a test for comparing the performance of

the variable flowrate case with isothermal and constant flowrate

temperature pol icies.

8.3 Perfor~3nce criierion. A comparison of pol icies

8.3.1 Definition of a perf?rmance criterion

The results of Chapter VII have provided optimal values of the

objective function P, w~ere

(2.7)

For practical reasons it is necessary to be able to choose the best

optimal policy, and the simplest criterion is the time-averaged concentration

P
II = --­

T + t r
(8.3.1)

where t is the time al lowed for removal of the decayed catalyst. A
r

finite value for t r must be included, since otherwise the best n would

be at T = O. The highest value of IT indicates the best optimal po! icy,

and its corresponding initial temperature. The higher is t r , the higher

must be T for maximum n. It must be noted that although T is fixed for

so Ivi ng the opt ir.1 izat ion prob Iem, for pract ica I reasons the in i ti a I

temperature is selected to maximize IT on a wholly optimal pol icy.

That is to say, for a fixed total operating time T, and for fixed t ,
r
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there is one initial temperature that gives a maximum value of TI, and

that temperature corresponds to a completed optimal pol icy, at t = "
and A ::: O.

8.3.2 Results using the time-averaged concentration criterion TI

As an exaMple, Case 2 VJaS chosen for obtaining values of TI on

po lie i es ending at t = T (). - 0), The va i uas are presented in Tab i e 8. I

be 101'1.

Tab Ie 8. I. Values of TI for PI = I .2, P2~~

Initial atemperature, K

760
765
780
790
800
805
810
812
8/5
820
823
825

Total operating
time, T hours

229
200
135
104
80
71
63
59
55
18
31
35

Performance criterion
IT ::: r/(,+t ). t =12hrs.

r r

.305

.341

.448

.513
.561
.575
.582
.583
.582
.414
.505
.527

The maximum in n occurs at an initial temperature of about 812oK.

This corresponds to the best fixed total operating time T of approximately

60 hours, for t ::: 12 hours.
r'

8.3.3 Comparison of optimal policy types using IT

In order to illustrate the improvements in yield by using an

optimal temperature policy, the values of IT for various initial temperatures
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were evaluated for a fixed operating time of 240 hours, and a maintenance

time t r of 12 hours, and plotted for the fol lowing three types:

I. Best i sotherrna I (non-opt irna I) po I icy.

2. Constant flm/rate optiMal pol icy.

3. Variable flowrate optimal pol icy.

The results are shown in Figure 8.3. I for Case 2 (PI> P2)' They show

clearly the order of improvement to be expected frorn operating such

optimal pol icies at the initial temperatures corresponding to the peaks

of their respective types in Figure 8.3.1. The improvement is greatest

for type 3 and least fOI- -!-ype I. The maximum is mor"e clearly definad for

the more complex control led case V.

The por'formance of the variable flowra1e policy would be more

real istical Iy assessed if the exit concentration of B were multipl ied

by its flowrate F, thu£ optimizing the amount of 8 directly. This can

be done either a posteriori from these results, or by creating a new

objective function M, where

M = fL S•Fdt = fTB.const.Vdt
o 0 e

(8.3.2)

and where V is the volume of the reactor,and then applying the Maximum

Principle again. It would then not be expected that the optimal flow is

that which maximizes 8.
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p. = 1·2 P = ·8
I 2

V Variable flow case

C Constant flow case

} Isothermal policy
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1
n

C

01-- ---1- __

700 800 900

Initial temperatu re t 0 K •

Figure 8.3.1 Comparison of optimal pol icy types.



Optimal temperature policies have been found from the appl ication

of Pontryag in's r·lax imum Pr inc i pIe to the consecut i ve first-order reaction

with catalyst decay, for the three cases of relative activation energies:

E,
I

E
1

E1
I

C
<

E2
= E2

>
L

where subscripts I and 2 refer to the first and second chemical steps

respectively. The important results are summarised below.

(I) For p, = p?, al I initially stationary pol icies end on the upper

*constraint ($-C ). The best optimal rol Icy is to maximize 8 with respect

to temperature or to the effective residence time. Changing the temperature

has no effect on the relative rates of reaction for this case,

(2) For PI > P2' there exists a region of initial temperatures for

*which stationary pol icies always end on the upper constraint (S-C ), There

is also a region of higher initial temperatures where al I optimal policies

are stationary ($),

(3) For PI < P2' there is a range of initial temperatures for which

subsequent best optimal pol icics are stationary (5), and also a range

*for which initially stationary pol icies end on the upper constraint (S-C ),

(4) Fal J Ing temperature pol icies were neither predicted nor found.

(5) A means for selecting a best optimal pol icy is based on the

time-averaged value of the objective function.

(77)



(6) A variable flowrate optimal pol icy can be operated for this

reaction. The results are better than those of the constant flowrate

pol icies, which are in turn better than the best isothermal pol icy.

Al I temperature profi les have an exponential form, and their

implementation in practice would not be difficult.
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SUMMARY AND FUTURE WORK

Optimal temperature policies have been derived by means of the

calculus of variations for the first order consecutive reaction with

catalyst decay. The problem has been formulated in the most convenient

analytical waYI assuming isothermal conditions and constant catalyst

activity along a tubular reactor for a residence time that is small

compared to the total operating time. For fast-decaying catalysts l

reference must be made to the optimization of distributed-parameter

systems.

(I) Future work on this reaction scheme could involve an appraisal

of the assumptions of identical deactivation rates of both chemical

stepsl and of the form of the deactivation rate equation.

(2) The region beyond the 'common maximum' of B with respect

to temperature and flowrate has not been examined, and it is believed

that certain conditions may be reversed there.

(3) A stricter proof or deduction is required for certain

analytical results and hypotheses. For example l it must be proved that

the maximum of B with respect to temperature moves to lower ~e at higher

temperatures for al I values of PI and P2 j that all optimal policies have

rising temperature profi lesj and that the characteristic variations of

the adjoint A correspond to sub-classes of optimal policies.

(4) Future work can extend this case to combinations of first-

and higher-order reaction steps. A more complex deactivation equation can

be tried. The performance criteria should be assessed.

(79)
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A

A

a

B

b

C

C

E

H

K

k

p

t40iJlENClATURF.

concentration (mole/mole) of reactant.

-Iwith subscript I, 2 or c, Arrhenius frequency factor (s ).

a constant

concentration of intermediate B

a constant

concentration of waste product C

with subscript or superscript * : constrained policy

Arrhenius activation energy (kcal/mole)

Hami Itonian function

-IArrhenius che~ical r~tR const~nt (s )

-Irate constant of catalyst decay (hr )

the objective function

p ratio of activation energies; PI = E,/Ec' P2 = E2/Ec

S stationary policy

T t t (OK)empera ure

t system time (hr)

t r time for removal of catalyst - reactor shutdown time (hr)

z space-time in the reactor (s)

(81 )



Subscripts

c chemical in f c' catalyst in A , Ec c

e exit

inlet

.t - IO\'/er

s stationary

u - upper

0 condition at t or z = 0

pertaining to chemical step

2 pertaining to chemical step 2

* lowest attainable value

Superscripts

82

m -

*

order of catalyst decay rate

highest attainable value

transpose

+ indicates optimal trajectory

Greek Ietters

e residence time (s) in the reactor

A adjoint variable to activity ~

IT performance criterion

i total reaction time (hr)

~ catalyst activity



APPENDICES

APPENDIX I I

A.2 Derivation of the general rate equation in a tubular reactor

dt = dz

t t dt+

---
B B+dB

z z+dz

-

The ~enBrA' ~BSS ba'~nc~ 11 space ti~~ Z Jnd :yst&m tIme tis:

Rate of reaction of B = rate of accumulation of B (/'\.2.1)

The rate of reaction f(~, T, A, B) is a function of two sets of variables,

defined by: A, B changing in space time, and ~, T changing with system

time. Therefore the rate of accumulation of B is the sum of two terms;

the change in B due to a change in space time variables, and the change

in B due to a change in system time variables. Hence, from (A.2.1),

aB aB
f(~, T, A, B) = az + at (A.2.2)

Strictly, df/2 should be added to the left hand side, but this is

negl igible compared to f.

(83)
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APPENDIX III

A. 3. I Derivation of the exit concentration of 8

Equations (3.1.6) and (3.1.7) describe the rate of change of A and

B in the tubular reactor bed:

dA- :: -K A1)J
dz /

Integrating (3.1.7), with A = I at z = 0,

(3.1.6)

(3.1.7)

(A.3.1.1)

Therefore, on rearranging (3.1.6) above,

The general soluiion ot (A.3.1.2) is

B = aexp(-f(21./!z) + bexp(-K/1)Jz)

Substitution of (A.3.1.3) into (A.3. 1.2) gives

The boundary condition B = 0 at z = 0 gives

(A.3.1.2)

(A.3.1.3)

(A.3. l .4)

(A.3./.5)

Hence substitution of (A.3.1.4) and (A.3./.5) into (A.3.1.3) gives the

solution:

<3.1.8)
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A.3.2 Defining the shape of the curve of B vs. T

The fol lowing steps show that B + 0 as T + 0 and T + ~.

B is given by

This equation is indeterminate for T + O.

Now
1im [exp(-KI~)e) - exp(-K21J;8)] = 0

T->{)

<3.1.8)

and

Therefore

1im
K,

lim =
T+O K - K,- T+O P2-r ,2

Iconst.k -

-I i f P2 > P,

canst. If P2 = P,

0 if 0", < P,
L. I

lim = 0 (A.3.2.1)
T+O

It can be proved by repeated use of L'H6pital 's Rule that

aB/dk + 0 as T + 0, hence B is asymptotic to zero.

Simi farly, the limits of B (using (3.1.8» and aB/ak as T + ~

are zero.

Therefore the two asymptotes at T = 0 and T = 00 must include at

least one maximum, and hence tvlO inflexion points. Only one maximum Is seen

to be possible, on physical grounds, by making a simi lar examination of

relative rates as in Section 3.3.
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A.3.3 Defining the shaDe of the curve of B vs. ~8

8 and aB/a~8 tend to zero directly as $8 ~ 0 and as ~e ~ 00.

The proof that one maximum only occurs is deduced physically from the

behaviour of relative rates in Section 3.3. Therefore the shape of the curve

is simi far to that shown in Diagram 3. I.

A.3.4 Derivation of the 9ptimal flowrate

Now

<3.1.8)

Therefore

U\.3.4.1)

At the optimal flowrate, aB;d~le = 0, so

Therefore

(A.3.4.2)

<3.3.4)



A.3.5 Derivation of the common maximum of B

The maximum of B with respect to temperature is obtained by

solving (3.2.5) for the maximal temperature:

87

$8 (K
2

- K, )

= K2 (P, - P2)
<3.2.5)

If this point coincides with the maximum \vith respect to flowra-re, then

(3.3.4) must also be satisfied:

(lji6) top 0.3.4)

Substitution of (3.3.4) into (3.2.5) shows that only the relation

=

satisfies the resulting equation.

(A.3.5.1)



A.4.1

APPENDIX IV

Examination of the time derivative of the Hand Itonian

I n genera I,

88

H = H(~, k, A, t) = B(~, k, Bo(t» - Ak~

Therefore

dH = ~li. dt!J + ~.~ + ClH.~ + dH dB
dt a~ dt dA dt ak dt aB'~o

From (4.2.7)

ClH _
a¢ - -Ak

~ = -k~
ClA

(4.2.7)

(A.4.3.1)

(A.4.3.2)

(A.4.3.3)

It C~:i h::; :.h:)';I:1 fro:n U\.4.3.!), (/1.• 11.3.2), (1.2.5) und (3.1.2) that

~ d1jJ + ?.t!.. d>:, = 0
a~ dt ClA dt

So, for constant or zoro input of 8,

dH llH dk
dt ,.; 13k' dt

(A.4.3.4)

(A.4.3.5)

Therefore dH/dt is zero for either a stationary pol icy (ClH/ak = 0) or a

constrained policy (dk/dt = 0).



A.5. I

APPENDIX V

Analytical expression for the optimal temperature pol icy

Now

89

asH :: B - k-- =- H (k, ljJ) :: a constant
5 ak 5

Therefore

dH aH dk aH dljl
dtS :: ~. dt + aljlS' df

So from (5.2.3)

dH _ dk[as a2B aB) + dljJ(aR a (aS1)_
dtS

- dt ak" - k(j 1,'- - a-kJ 'df" 3f - kaiV dkj - 0

Hence the result (5.2.7) on substitution of (3.1.2):

(5.2.3)

(A.5.1.1)

(A.5.1.2)

(5.2.7>

The analytical expression for dk/dt in terms of k and we is too complex

to solve. However, equation (5.2.7) above can be interpreted in terms of

the geometry of plots of B with respect to temperature and effective

residence time, and can be evaluated at any point.
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APPENDIX VII

A. 7. I Proof that H
s

is a function only of kP¢ for PI = P2

Analytical derivation of the optimal temperature policy

The siationary Harni li"onian, H , is given by:s

(5.2.3)

Therefore
K

1
_

H = -------;--It exn (-K we)s K - K - t" I "
2 I

(A.7.!.I)

p" = P 9 ives
~

Setting P, =

K
1

Hs = 7':K2-_--;;I<-I,[exP(-KI~lfJ) - exp(-~¢e)J -
K,1iJ9p
~ _ KI[~eXP(-K2~e} - Klexp(-KI~O)J

(A.7. I .2)

Also

Hence the result (7.1.2)

************************

On a stationary pol icy, the Hami (tonian is constant with time.

Therefore

dH
dtS = 0

The result (5.2.7) was obtained from (A.7.1.3):

(A.7.1.3)

(5.2.7)



Setting P, = P2 gives directly

dk _ k2

dt - P (A.7.1.4)
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Hence the result (7.1.6>, using the boundary condition k = k at t = O.o

A.7.2 Analytical derivation of the optimal temperature policy for

PI = P2, from result (7.1.3)

Now kP~ = a constant

Taking the time derivatives of the variables in (7.1.3):

kP- 1 'I~ - kP+1 -- 0p • 'l'dl- .1jJ

Therefore, substituting (3.1.2),

p-I dk p+l
pk •¢CI=t - k •~ = 0

Therefore

If k = k at t = 0, the solution of (A.7.3.3) is:o

I I t
k - k = p

o

(7.1.3)

(A.7.3.1)

(A.7.3.2)

(A.7.3.3)

(A.7.3.4)
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A.7.3 Examination of dA/dt for PI ~ P2 on a stationary ~ol icy

The adjoint equation is

~ ~ - ~ + 'k (4 2 5)dt atP 1\ • •

On a stationary pol icy, for P, = P2' from (4.2.5):

Therefore

(A.7.2.1)

d>. _ dB
dt - (p - I)'~

Hence the results in Section 7.1.

(A.7.2.2)



ca~PUTER PROGRNIj LISTING

ALEXANDER P.

6400 END OF RECORD
PROGRNIj TST (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)

SYfv1E30l f:1EAN INGS FOR INPUT

THiS PROGRNl CO;:iPUTES OPTH,1AL POLICIES FOR CONSTANT fIND VARIABLE
FLOI'JPJITE CASES, ,\ND i,lSO I SOTHER\1AL POll C I ES

THETA RESIDENCE Tli·'oE, SECOims
THETAU,THETAl L:PPER, LO\JF.:R RESIDENCE TH·1E COi~STRAINTS

I VFL, I SO, ITOT fIRE EXPLA i UED BElOI'J
TEMP INITIAL T8~PERATURE

AA,BB,AC ARRHEHIUS FREOUENCY FACTORS
ECR ARRHEN IUS TE!:iPERATURE COEFF I C! ENT EC/R
PI,P2 ACTIVATiOn ENERGY RATIOS
TCU, TCl UPPER, lmlER TEi.PERATURE CONSTRAI NTS
DL:L',:=; SYJ~~Lj·~ rl~-~t. i;~I'~G;,i,·j·iC./;~ ~';t-:? L~I~;;I(i-r..

*
*
*
*

C
C
C
C
C
C

*
*
*
*

c
c

HPCC
RUN(S)
SETINDF.
REDUCE.
LGO.
l

DIMENSION TITlE(13)
H( PS I ) =AKI *(EK I-EK2) *( I • -AK2*PD/AKA) / AKA-I\K I *PSTH* (P2*AK2*EK2-P 1*

IAKI *EKI )/AKA
READ(5,42) TITLE
WRITE(6,43) TITLE
READ(S, I) AA,BB
READ(S,I) AC,ECR
READ(S, I) PI,P2 $ PD=PI-P2
READ(S,!) TCU,TCL
READ( S, I) DELTS
READ(S,I) THETA
READ(5,1) THETf\U, THETAL
READ(5,31) IVFL
READ(5,31) ISO
READ ( 5,31) ITOT
\1RITE(6,31) IVFl, ISO ITOT
IF(ISO.EQ.I)WRITE(6,38)
IF(ITOT.EQ.I)WRITE(6,48)
DO 26 N= 1,6
READ( 5, I) TEtIjP

(93)



C
C SET UP INITIAL VALUES

fv1UTEST=O $ KPRNT=O
SBDT=SBDTS=O.
KC=35
TI =TEt'1P
TIME=O. $ PSI=I. $ PSTH=THETA
DELT=DELTS

C CATALYST FREQUENCY FACTOR IN UNIT HR.-I
C REACT I Oli FREQUENCY FACTOR IN UN IT $-1

WRITE(6,40)
C
C EVALUATE INITIAL RATE CONSTANTS

AK=AC*EXP (-ECR!TEr'lp)
AKI =AA*EXP( -P I*ECR!TErlP) $ Af(2=BG*EXP( -P2*ECH/TEi·1P) $ AKA=AK2-AKI

C
C I F IVFL = I, OPERATE VARI ABLE FLO\'IRATE CASE (UP TO STATEr/lENT 32)

IF(IVFL.LT. I) GO TO 32
\~R I TE (6 , 47)
THETA=ALOG(AK2/AV-1 )!AKA
IF(THETA.GT.THETAU)GOT033
I FCTIlETA. LT. THETAUGOT035

C ISOTHERMAL DECAY FOR OPTI11AL VARIABLE FLOW CONTROL
PSI=THETA/THETAU
TIME=-ALOG(PSI)/AK
VJRI TEU')} 37) Tl ~ ';::"

SBDT=Titfi.E*(AK! / AK2) **(AK2/ (AK2-AKI »
THETA=THETAU
GO TO 32

33 WRITE (6,34)
THETA=THETAU
GO TO 32

35 vJR ITE (6 t 36 )
THETA=THET,I\L

32 CONTINUE
PSTH=PSI*THETA
EKI=EXP(-AKI*PSTH) $ EK2=EXP(-AK2*PSTH) $ EKA=EKI-EK2

C
C EVALUATE INITIAL HN~ILTONIAN

HS=H(PS I)
AMUI=(AKI*EKA/AKA-HS)/AK
IF (HS. LT. O. )GOT02
IF(N~UI.LT.O.)GOT05

C TII"lE UN IT FOR CATALYST DECAY IS HR.
C

22 CONTINUE
C ISOTHERl·1AL POL ICY IS EXECUTED IF ISO =

IF(ISO.EQ.I)GOT024
TH·1E=T Ir-1E+DELT
PSIS=PSI
PSI=PSIS*EXP(-AK*DELT) $ PSTH=PSI*THETA

C
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C GUESS NEXT TEi,iPEP-ATURE
EKI=EXP(-f\KI*PSTH) $ EK2=EXP(-f\K2*PSTH)
OELHS=HS-IHPS I)
STEP=.3

I I CONT I i~UE
C TEST 81 tV\RY SEflRCH PROCEDURE

I F( A8S <DELHS). LT.. 000 I 0 )GOTO 12
TEi-1P=TH1P+STEP
AK I=f',N(TXP (-P 1 *ECR/TEi·1P) $ AK2=8B*EXP( -P2*ECR/TEI·1P) $f\KA=AK2-AKI
EKI=EXP(-AKI*PSTH) $ EK2=EXP(-AK2*PSTH)
OELHS(=HS-H(PS1)
IF(ABS(OELHSI ).LT.ABS(DELHS»GOTOIO
TH1P=TEf1P-STEP
STEP=-STEP*.3
GO TO II

10 OELHS=DELHSI
GO TO II

12 CONTINUE
AK=AC*EXP <-ECR/TEI·1P)

C
C INTEGRATE R.OT

SBDTS=Sf:3DT
EKA=EK I-EK2
CBE=AKI*EKA/AKA
ABOT=CBE*OELT+S6DTS

C
C H/\S T[r·~p[r<./\TU~~ ~=f\Ci i[u c; ~\ ~L~ CC:~Sir-'v'\i~~T

I F<TE1~P .GE. TCU)GOTO 13
IF <T[t·1P. LE. TCl )GOTO 14

C
C HAS POll CY REACHED FINAL T 1t'1E YET

HNE~/=f lS-DE LHS
Al·1U= (CBE-HnE\'/) / (fIK*PS I )
IF(MUTEST.EQ.I )N~U=-N1U
IF<ITOT.EQ.1 )GOT039
IF(Al~U.LE •• 0)GOTOI5

GO TO 44
39 CONTINUE

IF(TIME.GE.240.)GOTOI5
IF(Al~U.LE•• O)ISO=1

44 CONTINUE
1F(t·1UTEST • EQ. I ) N~U=-At·1U

c
c
C PRINTING CONTROL

KPRNT=KPRNT+ I
IF(KPru~T.EQ. I)GOT027
IF(KPru~T.LE.KC)GOT09

KPRNT=O
27 CONTINUE

C
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C TEST SECOND DERIVATIVE
D2HDK2=AK I*PSTH* (2. *AK2*PD-AKA) *(P2*AK2*EK2-P I*AK I*EK I )/ (Af(*AK!',) **

12+AKI *AK2*PD*( (AI<2+AKI )*PD-AKA)*EI<AI(AK*AK*AKA**3)+AKI *PSTH*(P2*P2
2*AK2*(I.-AK2*PSTH)*EK2-rl*pl*AKI*(1 .-AKI*PSTH)*EKI)/(AK*AK*AKA)

IF(D2HDK2.GE.0.)GOTOI8
DCBEDK= (C8E-Hi~E\~) /AK

C
C EVALUATE FIRST DERIVATIVE

DHDK=DCDEDK-At'1U*PS I
DCBDPSI=AKI*THETA*(AK2*EK2-AKI*EKI)/AKA
Dl"~UDT=-DCBEDPS I +Af 1U*AK
~JRI TE (6,23 >TitlE, TEi lP, Hr~EW, N'1U, C[3E, PS f , D2HDK2, AK, DCOEDK, AKI, AK2, DCB
IDPSI,a~UDT,DHDK,SBDT

9 CONTINUE
IF(ABS«PSI-PSIS)1PSI ).GT •• 010)DELT=DELT/2.
IF(ABS«PSI-PSIS)/PSt).LT•• 005)DELT=DELT*2.

GO TO 22
I 3 \'IR ITE ( 6 , 20) $ GO TO 16
14 ViR I TE (6 I 21 )
16 cor~T INUE

WRITE(G,29) TIME
C
C CONSTRAINED POLICY
C

24 CONTINUE
HNE\~=HS

TIt,1E=T IlvlE+DE LT
PSIS=PSI
PSI=PSIS*EXP(-AK*DELT) $ PSTH=PSI*THETA

c
C INTEGRATE B.DT

EKI=EXP(-AKI*PSTH) $ EK2=EXP(-AK2*PSTH) $ EKA=EKI-EK2
CBE=AKI *EKA/AKA
SBDTS=SBDT
SBDT=CBE*DELT+SBDTS
IF(ABS«PSI-PSIS)/PSI ).GT .. 010)DELT=DELT/2.
IF(ABS«PSI-PSIS)/PSI).LT•• 005)DELT=DELT*2.
AMU=(CBE-HNEW)/(AK*PSI)

C
C IF ITOT = I, POLICIES ARE RUt~ TO A FIXED TOTAL Tn,lE OF 240 HR.

IF(ITOT.EQ. I )GOT045
IF(MUTEST.EQ.I )AJ'.1U=-AMU
IF(~1U.LE •• 0)GOTOI5
IF(CBE.LT •• OOI)GOTOI5
IF (t'1UTEST. EQ. I )NJ1U=-At,lU

GO TO 46
45 IF(TIME.GE.240.)GOTOI5
46 CONTINUE

c
C PRINTING CONTROL
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KPRNT=KPRNT+I
IF(KP~~T.EQ. I )GOT028
IF(KP~~T.LE.KC)GOT08

KPRNT=O
28 CONTINUE

DCBDPSI=AKI*THETA*(AK2*EK2-AKI*EKI)/AKA
a~UDT=-DC8DPSI+N~U*AK

C
CIS POll CY ST ILL ON THE CONSTAA INT

DHDK=AKI*AK2*PD*E~\/(AK*AKA**2)+AKI*PSTH*(P2*AK2*EK2-PI*AKI*EKI)/

I (AK*AKA)-AMU*PSI
DCBEDK=AKI*(EKI*(AK?*PD/AKA-PI*AKI*PSTH)+AK2*EK2*(P2*PSTH-PD/AKA»

II (AK*AK/\)
~IRI TE (6,23 HI r·1E, TEr·1P, HNEVI, At'lU, CBE,PS I, D2HDK2, AK,DCBEDK, AKI , AK2 ,DCB

tDPS I , [)'~·lUDT , DHDK, SBOT
8 CONTINUE

GO TO 24
2 WRITE(G,3)

GO TO 24
5 ~IR ITE (6,6)

t~UTEST= I
GO TO 22

15 WR ITE (6, I7)
GO TO 4

iO ~'iR i 1E(G, i 9)
4 CONTINUE

SBDT=SBDT/(TIME+12.)
WRITE(6,30) TIME,SBDT
WRITE(6,7) ECR,AC,PI,P2,AA,BB,TI
\'lRITE(6,25)

26 CONTINUE
STOP

I FORl"lAT( 5F15 •5 )
3 FORMAT(2X,*INITIAL TEr,lPERATURE IS BELOV'l LOi'IER lIt·11T*)
6 FO~'~AT<2X, * I NITI AL TEr-1PERATURE IS ABOVE UPPER 1I 1-1 IT*)
7 FOR~AT(//,5X,*EC/R=*,fI0.3,1/,5X,*CATALYST FREQUENCY FACTOR=*.
IFI5.3,//,5X,*ACTIVATIO~ ENERGY FACTORS ARE PI=*,F4.1 ,2X,*P2=*,F4.1
2//,5X,*REACTANT FREQUENCY FACTORS ARE AA =*,FI4.1,3X,*BB=*,FI4.!,
3//,* INITIAL TEr~PERATURE \'/AS *,F5.1)

17 FORr.1AT(2X,*POLICY HAS REACHED FINAL TIt,lE*)
19 FORr,lAT(2X, *SECOND DERIVATIVE IS POSITIVE. NO LONGER ON OPTIt·1AL POL

IICY*)
20 FOR,1AT<2X, *TEI,lPERATURE IS AT UPPER CONSTRA INT*)
21 FORrMT<2X, *TD-1PERATURE IS AT LOVIER CONSTRAINT*)
23 FO~~AT(IX,F6.2,F6.!,F7.5,E9.2,2F5.3,Elo.2,F6.4,E9.2,2F6.3,4E9.2)

25 FOru~AT(/,2X,*---------- NEXT RUN ----------*)
29 FORlvlAT< 2X, -l(TOTAL T!I~E ON STAT 10NARY POL ICY :: *, F7. I , * HR. *)
30 FORl'.1AT<2X,*TOTAL Tlt1E 'vIAS *,F7.1,/,2X,*AVERAGE CONCENTRATION = *,

IF6.3)
31 FORr~AT< 5 15 )



98

34 FORHAT<2X,*OPTIHAL FLO\V LESS THAN MINItJ1U!v' CONSTRAINT*)
36 FO~1AT(2)(,~'OPTIW\L FLO;'1 GREATER THAN t·1AXH~un CONSTRAINT*)
37 FOm~AT(2X,*TH·1E Ot'! VARIABLE FLO\'lRATE POLICY ::*,F6.1)
38 FO~1AT<2X,*ISOTHERi.lp,LPOllCY*)
40 FORi',1AT (2X, * T I j·1E TEi,lP HN1N N~U CBE PS I 02HOK2 AK 0

ICBEDK AKI AI<2 DCBOPS I D1.1UDT OHDK 'S8DT*,1>
4 1 FOmJ.AT< IHI)
42 FOPJvlAT Cl 3116)
43 FOm,lAT(/ ,20A6,/)
47 FOF~·lAT<2X,*VARI ABLE FLOVIRATE OPT 1/·1AL POll CY*}
48 FORt,1AT(2X,*FlXEO TOTAL Tlt,lE OF 240 HRS.*}

END ..
6400 END OF RECORD

CASE B. PI=l.2 P2=.8
8300600082.4 1039408.1
2000000. 15000.
1.2 .8
900. 700 •
• 25
I •
7. .3
o
o
o
780.
790.
812.
820.
823.
825.
t END OF FILE




