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CHAPTER |

INTRODUCT I ON

The methods for solving an optimization problem, as for any
engineering problem, involve the acceptance of certain assumptions about
the physical process, that are chosen to simplify the algebra. Accurate
numerical results from the method are only meaningful if the original
assumptions apply accurately to the process. The same results are most
useful only when they can be simulated accurately in practice.

The knowledge of the optimization of the products of a chemical
reaction by the use of the calculus of variations has been greatly
increased since the early works of Professor F. Hornl. The problem of
maximising a controllable chemical yield over a fixed period of time
(the objective function) requires the optimum choice of the control
variable to be made at each instant of time. The control variables may
be, for example, temperature, flowrate, the magnitude of a sinusoidal
input, or a combination of these. The state variables are the concentrations
of the species involved, and, for a reaction subject to catalyst decay,
the activity of the catalyst.

Catalyst decay may be caused by surface poisoning from contaminants
intfroduced over the period of operation, or by sintering and other
structural damage due to the reaction temperature. Investigations info
catalyst decay by Szepe? have led to a useful general equation relating

catalyst activity to temperature and activity only, based on experimental

N



knowledge, and which is used in the following treatment. The optimal
temperature at each instant of time must be chosen to minimize the
adverse effect of temperature on catalyst decay over the time of
operation.

The Maximum Principle of Pontryagin provides a theory which can
retate the separate time behaviour of the state variables on perturbation
of the control variables, while maximizing an integral objective function.
The analytical solutions for the resulting control policies are generally
insoluble, and numerical methods are used to obtain and verify optimal
control policies. Using this method, Jackson3 has examined the optim-
ization of a first-order consecutive reaction without catalyst decay,
and recently Drouin" has solved the reversible reaction with catalyst
decay. Jackson® has also investigated the mathematical formulation of
time~-dependent optimization problems, with particular reference to the
numerical solution of a first-order reversible exothermic reaction with
catalyst decay. Professor C.M, Crowe®'” has examined the optimization
of irreversible reactions in singie and multiple bed tubular reactors,

with catalyst decay.



CHAPTER |1

STATEMENT OF THE PROBLEM

The intermediate B in the reaction
A->B~>C

is to be maximized by conversion in a single iscthermal tubular reactor
in the presence of a decaying catalyst, over a fixed period of operating
time t.

Certain assumptions are made about the relative rates of reaction
and catalyst decay to avoid a distributed-parameter problem.

A general differential mass balance on a plug flow reactor
yields the equation (see Appendix A.2)

38 , 9B _
e t, T, A B 2.1

where ¢ is the catalyst activity, T is the temperature, B is the
concentration of species B, t is the system time, and z is the space
time (distance through the bed). The function f(y, T, A, B) is the rate
of reaction, and may be writfen as

f(y, T, A, B) = w.fc(T, A, B) (2.2)

where §y is defined as

rate of reaction with decayed catalyst (2.%)

v = rate of reaction with fresh catalyst

and fc(T, A, B) is the chemical rate of reaction. This assumes that the

deactivation of both chemical steps is uniform.

The term 3B/3t in (2.1) arises from a change in B following a

(3)



change in catalyst activity and a compensating change in femperature

along the bed. It will be assumed that the rate of catalyst decay is
slow compared to the reaction rate along the bed, so that

3B 3B
3F < 37

(2.4)
and the catalyst activity is uniform everywhere in the bed.
The characteristic equation of the system, (2.1), now becomes

L=yt (T, A, B) (2.5)

Szepe? has shown that many classes of catalyst decay can be
generalized as one power equation, in which the rate of decrease of
activity depends only on temperature T and activity ¢ itself, and not

on instantaneous conversion:
dy _ _ m
IF k(T).y (2.6)

k(T) is the rate constant of decay, and m can be taken as unity for a
good representation of the behaviour of many catalysts.

The production of B is to be maximized over the total reaction
time T by choosing the temperature to compensate for decreased catalyst
activity at every instant of time. The objective function P is, then,
in its simplest form:

T
max P with P = J B (tidt 2.7
T(t+) ol @
the suffix e denoting the exit value of B from the reactor, affer a
residence time 8. Since the residence time affects the exit concentration
Be, but not the catalyst activity, it is not considered directly as a
control on the decay rate in this problem (see Section 8.2) but can

assume any value for the best result. The cases of constant flowrate and



variable flowrate will be ftreated separately, since an optimal fliowrate
exists for the consecutive reaction (see Section 3.3).

}f the inlet concentration of B, Bi’ is not zero, but is
assumed to be constant with time, it can be subtracted from Be(T) in
(2.7), since it is the increase in B due to the reaction that is
required tc be maximized.

Objective functions that are more complicated can be devised, to
include, for example, the relative cost of the reactant A, a separafion
cost factor, or other profit-oriented terms. Whatever the practical
considerations, the optimization theory can be applied to the general
objective function

T
max P with P = J Q(A, B, ¥, 1, T)dt (2.8)
T(H) 0
by substituting Q for B. The range of attainable values of Be(f) will

now depend on the complexity of the function Q(A, B, ¢, 1).



CHAPTER 111

THE KINETICS OF A CONSECUTIVE FIRST-ORDER REACTION IN AN

| SOTHERMAL TUBULAR REACTOR WITH DECAYING CATALYST

3.1 Derivation of the exit concentration of B

The problem is to maximize the temperature-controlled yield of
B in the reaction

Kl K
A > B
I

N

(3.1.0)

- ¥
(@]

over a total time 1, in the presence of a catalyst whose rate of decay
(from the general equation 2.6) is accelerated by increasing temperature

according to the relation

dy _ _

I k(T).y (3.1.2)
The rate constants Kk, Kl and K2 have an Arrhenius relation with
temperature:

k = Acexp(—EC/RT) (3.1.3)

KI = A‘exp(—E’/RT) (3.1.4)

K, = A2exp(-E2/RT) (3.1.5)

To impress the relatively slow rate of decay of the catalyst, the
catalyst Arrhenius frequency factor Ac will have units hr-l, while the
chemical frequency factors AI and A2 have units s—l. That is to say,

system time t is measured in hours, and the residence time 6 in seconds.

(6)



The rate of change of B at any point z in the tubular reactor
bed is, recalling equation (2.5):

dB _ _ _
a7 = vef (R, B, T = wl:Kl/\ KZB] (3.1.6)

and the rate of change of A is

dA = -
& = KM (3.1.7)

The solution required from (3.1.6) and (3.1.,7) is the exit concentration
of B after a residence time 6. The integration is performed (see
Appendix A.3.1) with the previous assumptions of constant activity and
constant temperature over a period of time that is large compared to the

residence time 8. Hence
K
B = ———l-——Cexp(—K Po) - exp(-K,v8)] (3.1.8)
e K2 - K| | 2

As the temperature, and hence Kk, Kl and K2, or the activity change with
system time T, so Be will change. The symbol B will be used in the
subsequent sections, where

B =B_ () (3.1.9)
e

3.2 Behaviour of B with temperature

Since the derivation of an optimal policy depends on the way in
which the physical (state) variables change with the control variables,
it is useful to obtain a picture of this behaviour before proceeding
with an application of the optimization theory.

The variation of B with temperature depends not oniy on the
temperature itself, but aiso on the activation energy of reaction in the
Arrhenius expression. The activation energy behaves as a temperature

coefficient. At particular values of El and E2 in equations (3.1.4) and



(3.1.5), parameters P and p, can be defined such that

P, = El/Ec (3.2.1)
Py = EZ/EC (3.2.2)
Hence Py Py Py
K, = Ak /A = ak (3.2.3)
| ] c
and p P )
_ 2 2 _ 2
Kz = Azk /AC = bk (3.2.4)

1f Py and p, are of order unity, this means that the temperature
coefficients of reaction and of catalyst decay are of comparable
magnitude. More information on classes of optimal policies is gained
when the temperature sensitivity of both reaction and catalyst decay are
similar, and when the greatest exponential curvature of rate constant
values occurs within the temperature range of interest.

Turning to the variation of B with temperature, at constant
activity, flowrate, and at given values of Py and Py, @ maximum in B is
observed at a certain temperature given by the solution of the equation

exp(—sze) - exp(—KIwe) . we(K2 - K|)

= —— (3.2.5)
szzexp(—sze) - lelexp(—K'we) K2(p‘ - pz)

recalling that T and k are in one-fo-one correspondence, from rquation
(3.1.3). From an examination of equation (3.1.8) and of the derivative
3B/3k (see Appendix A.3.2), it is found that the shape of the curve of
B vs. temperature is always of the form shown in Diagram 3.1, with one

maximum and two inflexion points.



o) T or V@ —

Diagram 3.1

Three cases of the behaviour of B with temperature can be
distinguished:
Py > Py Py = Py Py <Py
If the ratio of chemical rate constants at one femperature is compared
to their ratio at a higher temperature, the following result shows that
increasing the temperature favours the reaction in which Py > Py

K, (T,) A exp(-p‘EC/RTz)

]
et R =L =] = hexpl~(p, = p,)E_/RT,]
Ky (Tp) AZeXP(_pZEc/RTﬂ)
Similarly R, = Aexp[-\p! - pz)EC/RTu]
Rl | |
Therefore —= exp[-Ec(p' - pz){T-- T—}/R] = exp[D(p2 - pl)]
R, £ u

where A and D are constants and Tu > TZ'



Hence R, < R, if Py < Py and R, > R, if Py > P-

| 2 | 2
That is, the production of B from A is favoured at higher temperatures

if Py > Ppe I+ would be expected, therefore, that an optimal policy for

the case Py > P would yield better results if operating in the higher

2

regions of allowable temperatures.

3.3 Behaviour of B on variation of activity and residence time

The expression for the exit concentration of B, (3.1.8), shows
that the effect of varying the catalyst activity ¢ is exactly the same
as varying the residence time 6; only the magnitude of the change will

differ, if y and 8 have different values [(3.3.1) and (3.3.2)]:

oK
Bl K exp(=K,98) = K, exp(~K, y8)] (3.3.1)
Wk 2 2 | |

|
38 K,
—_ = —TK exp(-sze) - K,exp(-K,y6)] (3.3.2)
5% P | |

K2 = K
It is convenient fo treat Y6 as a lumped variable, and to term it
'the effective residence time'. Increasing the residence time (or
increasing the reactor length) is equivalent to adding catalyst of a
higher activity to the reactor, and vice versa. This reciprocal relation
is limited for values of ¢ in (0,!) but for 8 in (ez,eu), where
8, >0 and eu <
Examination of (3.1.8) shows fthat a maximumin B must occur with

respect to ¥6 (see Appendix A.3.3). This can also be seen by considering

the balance of concentrations at any point in the reactor (Diagram 3.2).



R

Diagram 3.2 Tubular reactor.

At a particular temperature,

aB . VKA = K

Iz B8)

2
in ihe reactor. At i, B = U, so uB/uz is positive. AT M, say,
KlA = KzB, and dB/dz is zero. After M and up to 0, A < KZB/KI’ S0
dB/dz is negative as more C is being produced. In fact, the rate of
increase of C is a maximum at M.® It would be beneficial if either
this reactor were shortened to M, or if the residence time were
decreased so that M moves to O and species B stops being produced in
excess just at the outlet.

The shape of the curve B vs, {8 is similar to the shape of
Diagram 3.1. The maximum of B with respect to effective residence time

is given analytically by

K

K 2
K, = K
max B(T,y8) = L—J 2 i (3.3.3)

ve .

and is a function only of temperature, or, more specifically here,

increasing with the ratio KI/KZ‘



The corresponding optimum flowrate is given by (see Appendix A.3.4)

In —l

K2
Ky = K

The behaviour of max B(y9) with respect to relative values of P and Py

(y6) (3.3.4)

opt

corresponds to that described in Section 3.2. Relation (3.3.4) shows

that (we)op* decreases with increasing temperature.

3.4 Combined behaviour of B with temperature and y8

Since the optimal temperature policy spans both regions of
temperature and effective residence time throughout the time of operation,
it is useful to plot the behaviour of B with both of these variables.

Such a map is constructed in Figure 7.1.1, showing contours of B. The
maxima with respect to both variables follow each other closely in all
cases examined to form a three-dimensional sloping ridge, diagonally
spanning low residence times (high flows) and high temperatures, to

high residence times (low flows) and low temperatures. The maxima with

respect to temperature and ¢6 coincide at all points only for P} = Py
when > 2
Nle=w _ M ==
max B(T,90) = max BT, y0) = |12 ™ % = L. L% =1 = const.
T v 2 2
(3.4.1)
For Py # Py the common maximum occurs only at one point, when K‘ = K2
(see Appendix A.3.5), and so, from (3.3.3),
mx B = e | =0.368 (3.4.2)
(T, yo)
This 'common maximum' will not be the highest concentration that can be

achieved, It is difficult to ascertain analytically if the maximum in B



by choice of ¢ at a particular temperature does not occur at the point
where 3B/ok = 0 coincides with 3B/3ye = 0.

If there were no catalyst decay, it would be an easy method to
choose the location giving the highest concentration within the constraints
of temperature and residence time for any case.

The optimal policy with catalyst decay will trace a path on such
a map as Figure 7.1.1 of contours of B, it will be seen in the following
sections that the use of such a map helps fto locate and compare different
optimal policies. On starting from a given concentration of B, the
reaction would proceed to the region of decreasing y6. The region of
highest concentration is then found in the direction of higher temperatures.
1t has been shown to be true for result (3.3.3), but if is difficult to
prove analytically that the maximum of B with respect to temperature
moves to higher temperatures at lower ¢6. However, this has been
observed from numerical calculations of B for many cases of Py and Py
(for example, Figures 7.1.1, 7.2.1, and 7.3.1). Therefore it will be
taken as a hypothesis that this behaviour is generally true. I+ will
further be taken as a hypothesis, at present, that all best (optimal)

temperature policies will therefore be rising ones.



CHAPTER IV

APPLICATION OF PONTRYAGIN'S MAXIMUM PRINCIPLE TO A TEMPERATURE

CONTROLLED CHEMICAL REACTION WITH CATALYST DECAY - GENERAL CASE

4.1  The Maximum Principle

The following theory will be stated without the proofs which can
be found in Pontryagin's work .
Given the system of:

State variables X = (x', Xoy seee xn) g X

Controi variables u = (u‘, Upy oo ur) e U

The control policy is expressed as u(t) for t ¢ [fo’*lj’ and is piecewise

continuous.

The systems equations are the time derivatives of the state variables:

-g%:-i=fi(§, u, 1) i=1,2, «...n (4.1,

where the fi are continuous in x, u, are continuously differentiable with
respect to x, u, and are piecewise continuous in *.

The problem is fo maximize or minimize J with respect to u(t),

where the integral objective function J is defined as

.’.
J = [ 't (x, u, )dt (4.1.2)
0_ —"
.1-.
o
The adjoint variables Ai are defined by:

n
dr, _ v, of
= -l Ao (4.1.3)

=0 i

(14)



Hence the Hamiltonian H which is to be maximized (minimized) by choice

of H}f) is formed thus:

n
H=Hx, u, &, ) = J A f. (4.1.4)

An optimal policy gf(f) has the property that

AT # 0 and HixLu 1) > HIX T, (4.1.5)

for all u ¢ U at almost every + ¢ [*O,T|].

4.2 Application of the general theory to a reaction subject to

catalyst decay

The objective function P was defined in Chapter |I:

<
max P with P = f B(+)dt (2.7
T(H) 0

P is one state variable. The second independent state variable is the
catalyst activity, ¢, defined in Section 3.1:

dy _
L= -k(My <0 (3.1.2)

This may be regarded as the constraint on the system.

Following from the theory of Section 4.1:

= - 4P
x, =P t=S -8 (4.2.1)
- =9 .
x, = b t,= =k (4.2.2)
Now
n
Fi= -l 2 (4.1.3)



Therefore

dA__ 3B _ af

-a-;FO = Ao-a-'ﬁ )\"a—p"l (4.2.3)
and d\, _ _, 3B _, 3f

3?4 = Xoﬁﬁ' xiawl (4.2.4)

Since 3B/3P = 0 and af /3P = 0, then io = 0, so A_ is constant. The

Maximum Principle requires that Ao > 0 for a maximum, and that A'(r) = 0.

Therefore, using A k',

da aB
IF A05$-+ Ak (4.2.5)

{t can be shown from (4.2.5) that Ao =0 => X%, =0 for all +. Ao is

chosen to be unity. Also,

A(r) =0 if pit) >0 (4.2.5a)
At) >0 if p(t) = 0 (4,2.5b)
The Hamiltonian was defined as
n
H=Hlx, u, A, ) = | A (4.1.4)
i=o
With u = T and x = (R¥)'
H=HP, v, T, A, 1) = %$°‘ Ak (4.2.6)
or, since P is defined explicitly by (4.2.1)
H(y, T, A, ) = B, T, Bi(f)) - Aky 4.2.7)
This problem will be restricted to cases when Bi(f) is constant and zero,
so (4.2.7) may be written as:
Hep, T, A, +) = B(y, T) - Aky (4.2.8)

Transformation of T to k

For convenience, the variable T(f) will be transformed to k(t) as



the independent variable, since the Arrhenius relation (3.1.3) is one-to-

one, The relation between T and the rate constants K, and K, can be

| 2
manipulated easily through the fact that
dK, . Pk dK,, _ P2k (4.2.9)
dak T ak= T T e
k k
recalling
Py P2
K, = ak K, = bk (3.2.3) (3.2.4)
I
SO K‘ and K2 retain their identity.
The Hamiltonian may finally be defined as
H(y, k, A, 1) = B, k) = Aky (4.2.10)

Residence time ©

If the residence time is free to be chosen, it is considered as a
control variable, so that
H(y, k, 6, A, 1) = B(y, k, 8) - Xky (4.2.11)
This relation is used in deriving an optimal femperature and flowrate
policy (Section 8.2), Except in that sectien, constant flowrate will be

assumed for the following theoretical developments.

4.3 Properties of optimal policies

The maximization of P in equation (2.7) is now achieved by finding
an optimal policy k+(+) that satisfies
+
't A,k 1) = max vt LK (4.3.1)
k()
(applying (4.1.5) to (4.2,10)).
In (4.3.1) ¢* and A" are the solutions of (4.2.2) and (4.2.5).

Hf k+(f) is the optimal policy, then one of the following three



conditions is necessary at any time t < t:
(1) Stationary policy §

2 ¥
=0 and ZHah <o for Ky <K <k (43.2)

ok -
*
(2) Upper constraint policy C

*
=y > 0 it K =k (4.3.3)

(3) Lower constraint policy Cyg

My <o it K=k (4.3.4)

Conditions (2) and (3) refer to upper and lower temperature constraints
imposed on the reactor for engineering reasons. Conditions (1), (2), and
(3) together with conditions (4.2.5a) and (4.2.5b), applied to the
Hamiltonian, the systems and the adjoint equations, enable the optimal
policies to be found for the reaction scheme.

Examination of the total derivative of the Hamiltonian with time
(Appendix A.4.1) shows that, for constant or zero input of B,

S=0 (4.3.5)
for both stationary and constrained policies. Therefore, on an optimal
policy,

H = a constant (4.3.6)
with time.

In the following sections, the conditions for optimal policies

to exist are derived for the consecutive first order reaction scheme.



CHAPTER V

APPLICATION OF THE MAXIMUM PRINCIPLE TO A FIRST-ORDER

CONSECUTIVE REACTION WITH CATALYST DECAY - GENERAL CASE

5.1 General equations

On an optimal temperature policy:

H=B - Aky (4.2.10)
dx _ 9B

F - 5 + Ak (4.2.5)

H = a constant (4.3.6)

9B/3y, B and ¢y are obtained from the equations

K
B = —Lexp (=K #8) - exp(~K$8)] (3.1.8)
2 = K|
dv _
P ky < O (3.1.2)

5.2 Derivation of the stationary policy (constant flowrate)

From necessary condition (4.3.2),

2 *
Mty =0 and EHay <o on s, for ke < k' < k
9k 3K2
Now
M- (5.2.1)

Therefore on a stationary curve, S:

AV = %%- (5.2.2)

(19)
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(5.2.3)

(5.2.4)

edge of the relation

together with (4.3.6) and (3.1.2) may be solved for the optimal temperature

policy k+(1)* At the final time, X(1) = 0 since y{(1) = 0 only at 1 = =,

(5.2.5)

tantaneous conversion (conversion

This is equivalent to maximizing the ins
= 8/A§ = B, using units of concentration mole/mole A, and A3 =1, 83 = 0
at the inlet i) at the end, for a stationary policy. A simultaneous
result is obtained:

H = Bf?nai in general (5.2.6}

consecutive first-order reaction, solving dH_/dt = 0 gives the following
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(Figures 7.1.1, 7.2.1, 7.3.1) shows that dk+/d+ is always positive for

aB/ak > 0, and almost invariably positive for 3B/3k < 0. It is difficult
to ascertain the sign of dk+/dT analytically, and the only practical way
is to evaluate dk+/d+ at every point in the region being considered, for
a particular reaction, by using (5.2.7). An analytical solution was found

only for the case PP =P (see Section 7.1.1).,

2

5.3 Constrained optimal policies

Along a constraint, the policy is isothermal, and dk/dt is zero.
The Hamiltonian must be constant along this policy (see Appendix A.4.1),
and conditions (4.3.3) and (4.3.4) must be fulfilled. The general equation
for the Hamiltonian, (4.2.10), must be used; k is constant, and A varies
according to relations (4,2,10) and (4.2.5) to keep the Hamiltonian
constant as the activity y decreases exponentially with time. The final
time is reached when A(1) = 0 and the Hamiltonian equals the final
concentration.

For the consecutive reaction, it is expected that only an upper
constraint policy will be encountered for an initially stationary policy,
since a rising temperature policy in all cases is concluded from the
observations of Section 3.4, although theoretically a falling temperature
policy can be envisaged for a very narrow temperature range in certain
cases (see Section 7.2.3).

A policy may have both stationary and constrained segments; for
example, it may begin on the stationary curve and end on a constraint,

or vice versa.



22

5.4 Examination of initial temperature limits for stationary policies

An initial temperature limit is defined here as the boundary
temperature between the initial stationary and non-stationary policies.
Thus a lower and an upper limit, different from the practical constraints,
can be found for the initial temperature by examining the systems
equations in their initial forms.

(1) Limits on the initial temperature arise from a consideration
of the |imits imposed on the Hamiltonian. Equation (4.2.10) shows that
the Hamiltonian equals the concentration of B at the final time, when
Altr) = 0. Therefore, the initial temperature must be chosen such that the
Hamiltonian is neither negative nor greater than the greatest attainable
concentration in the region ¢6 < 8, and k g_k*. For the stationary policy
these |imits can be shown geometrically on the graph of B vs. k (Diagram
5.1). For a stationary policy, the Hamiltonian is given by

=g - kB
Hs =B kak (5.2.,3)
From the construction in Diagram 5.1 the stationary Hamiltonian equals

the value of B at the intersection of the tangent at Binif and k. d

init 2"
the ordinate axis. Therefore k£ represents the lower limit on initial
temperature, at which the Hamiltonian constructed in Diagram 5.1 is zero,
and ku represents the upper temperature |imit when the Hamiltonian equals
the maximum attainable concentration. |+ may be noted here that for

Py > Py the maximum in B with respect to k increases with decreasing ¥9

(see Figure 7.2.1 and Section 7.2.1), but not for Py < p2.

I the initial temperature is chosen such that 3B/%k is zero,
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then Hs = B and X = 0, so that the reactor cperates for an infinitesimal
time, since the final conditions are fulfilled at the injitial time. This
temperature will be regarded as the boundary between two classes of
policies - one confined to the region where 3B/3k is positive (Region 1),
the other confined fo the region where 3B/3k is negative (Region I1).

(2) A stationary policy must also obey the condition

2 2
%M, _ 9B .
---B—k-Z = —5?2 i 0] (5.2.4)

The condition BZB/akz = { corresponds to the two inflexion points in
Diagram 5.1. It is therefore not possible to operate a staticnary pclicy

2 > 0,

below the lower or above the upper infiexion point, where 328/8k
The lower limit kZ {at which HS = 0) is always above the lower inflexion
point by geometry. The upper limit ku is, however, subject to being

below, or at, the upper inflexion point, for those cases where Region ||

is feasible.

5.5 Restrictions on constrained policies

*
5.5.1 Ending on the upper constraint: S-C

On the upper constraint,

2
M, 0 a4 may have any value (4.3.3)
ak — 2
ak
A rising temperature policy will end on the upper constraint if the initial

Hamiltonian is feasible but corresponds to a final concentration which is
unattainable as a point where 38/3k = 0, so that the policy cannot be
stationary at the end. Further, the final concentration on a constrained

policy must be attainable along the constraint, if the policy is to be
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optimal. Now

oH _ 3B
VR A

(5.2.1)
Therefore Ay < 3B/3k for the policy to be on the upper constraint. The
constraint may be at a temperature where 3B/3k is positive or negative,
provided that the condition (4.3.3) is respected.

x ¥
5.5.2 Totally constrained policy at k : C

Condition (4.3,3) must hold along this policy. C* may be feasible
at any femperature, for the following reason. Whatever the sign of 3B/sk
in (5.2.1), the initial value of the adjoint X can be chosen to be positive
or negative (hence a different total operating time 1, a different final
concenirarion, and & uittrerent tamilfonian) to suit (4.3.3), provided
that di/dt is of the opposite sign (see Section 5.6). This is possible if
3B/3y is of favourable sign (see equation 4.2.5).1t cannot be predicted
if all policies on C* are optimal even if the Hamiltonian is feasible,

but it appears likely that most temperatures can be selected.

5.5.3 Lower constraint policies: S-Cy, C,, C,=-S

Sections 5.5.1 and 5.5.2 apply fo lower constraint policies if
the inequality signs are reversed. Initially stationary policies followed
by lower constraint policies are not predicted, for the reasons given in

Sections 3.4 and 5.3. Lower constraint policies C,, C,-S are possible.

x?
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5.6 A discussion of the initial value of the adjoint variable A

In this section, the different trajectories of X with time are
discussed.

The time behaviour of X is given by the adjoint equation

Q.

A

+ Ak (4.2.5)

[o%
wla
€|

For initially stationary policies, x takes on the sign of 3B/ak; it will
be recalled that 5B/3k may initially be of either sign for an optimal policy,
provided that the conditions on the Hamiltonian are respected.

Since, for the consecutive reaction, it has been shown that B has
a maximum with respect to the effective residence time y6 (see Section 3),
then 9B/3y may be positive or negative. It has also been shown theoretically
in Section % that, except tor Py = Pos the maxima of B with respect to
temperature and ¢6 coincide at only one point in three-dimensional B-T-y6
space. In general, although it has not been possible to show it theoretically,
it has been observed from the numerical computation of B at various ye and
T, and also of the derivatives 3B/3y8 and 3B/3k, that by virtue of the
separation of the extrema 3B/5y8 = O and 3B/ak = 0, the derivative 3B/5y
may be of either sign when 3B/3k is of either sign. It follows from equation
(4.2.5) above that di/dt can be initially positive or negative for either
sign of A, depending on the balancing of the terms in the adjoint equation
equation, giving four possible variations of A with time; these are shown
in Diagram 5.2. However, the adjoint X must, at the final time, decrease
from the positive, or increase from the negative, to reach zero. Therefore
two of the trajectories of A have turning points when, for A positive,

dZA/d+2 is negative, and vice versa. Although it has not been proven
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theoretically, numerical work on the consecutive reaction has shown that,
if the initial Hamiltonian is feasible, these two cases (a and b in Diagram
5.2) correspond to policies whfch end on the upper constraint, when it is
impossible to end at 3B/9k = 0, Cases ¢ and d correspond to unconstrained
stationary policies ending in a finite time at 3B/3k = 0.

tt will be shown from numerical results in Chapter VII that the
four wvariations in A are related to the identifiable regions of feasible
policies described in Section 5.4, depending on the initial sign of 3B/3k
(and hence )\), and dix/dt, for P § Py It has not been predicted that
there is an exact correspondence here, and an example can be found which
shows that other trajectories of A with time can exist (see Section 7.2.3).
This imnlies that, nrovided that the -eostrictions on the Hamiltonian and
on the initial temperature are respected, the values of the adjoint are
automatically feasible at all times. The results emphasize the duality
of state and adjoint variables.

This section has shown that there are no theoretical restrictions
on the initial signs of X and dA/dt, but that at the final time the sign
of di/dt must be opposite to that of A in (0,7), and to that of 938/3y at
1, Different optimal policies can be characterised by the time behaviour

of the adjoint A,
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CHAPTER VI

METHODS OF OBTAINING NUMERICAL SOLUTIONS TO OPTIMAL POLICIES

6.1 Calculation mathods

6.1.1 Stationary policies

AT the chosen feasible temperature, the stationary Hamiltonian is
calculated. The system time is incremented to allow for a small amount of
catalyst decay (approximately .1%) according to equation (3.1.2). The new
optimal temperature at the new activity is guessed by binary search,
keeping the Hamiltonian constant. The procedure is repeated until the

tinal time is reached, when the Hamiltonian equais the final concentration.

6.1.2 Constrained policies

The general Hamiltonian equéfion (4,2.10) is used. |f the policy
is initially stationary, the value of the Hamiltonian is known and equal
to the stationary value. As before, the system time is incremented to find
the new activity, and the adjoint variable is adjusted to keep the Hamiltonian
constant in (4.2.10), at constant temperature.
If the policy begins and ends on the constraint, the final concentration
(which is the value of the Hamiltonian) is chosen, and so the initial
value of the adjoint at that temperature and at the initial activity can
be calculated., The methods of the last paragraph are carried out until
the final time is reached, when the concentration ot B equals the value of
the Hamiltonian.

(29)
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6.2 Classification of the results: numerical values

Numerica! values are chosen such that the policies can range
between upper and lower temperature constraints of 900°K and 700°K
respectively. Three types of consecutive reaction have been identified
by the relative chemical activation energies of the two steps (see Section
3.2). These types correspond to:

Py = P2 Pp 2Pz PSP
where p = E'/EC, P, = EZ/Ec and £, E,, E_are the activation energies
of the first and second reaction steps, gnd of the catalyst decay,
respectively.

In order to compare the three types, the following criterion for
reaction conditions was used. At an effective residence time of .25 s,
and at a temperature of 8750K, the maximum concentration of B with respect
to effective residence time (given by equation (3.3.3)) is set at .75.
This means that each reaction type will end in appreximately the same
field of concentrations on a rising ftemperature policy. The residence time
in the constant flowrate cases is set at | s, so that the activity in the
criterion above is .25; that is, at a point near the end of the policy.

Arrhenius frequency factors A, and Az are obtained from a solution of

I
equations (3.3.3) and (3.3.4), for each pair of Pys Py values, at the
point chosen for the criterion. This is equivalent to fitting a given

reaction type to a base set of conditions.
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Data for the calculations were:

*

Upper constraint: T 900°k

Lower constraint: Ty 7OOOK

Catalyst decay temperature coefficient: EC/R = 15000°K
Catalyst decay frequency factor: Ac = 2000000 hr--I

Residence time (constant flowrate cases): | s

Initial activity: 1.0

6.3 Results

In the following sections, the theory is applied to the three
particular cases of consecutive reaction, fo predict types of temperature
policies. Numerical results are presented as‘graphs. in Chapter VIl the
numerical work examines the effect of initial temperature on final time
and on the types of policy for constrained and unconsfrained cases.

In Chapter Vill special cases are considered; these include comparisons,
the use of a performance criterion, and a discussion of the variable
flowrate case.

Figure 6.1 shows the Arrhenius refation between the catalyst decay

rate constant and the temperature.
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e conditions under which an optimal

exist, the behaviour of B with temperature and effective

B at various

i me is exami . Fi C 7 N ‘ * i Shows COh’fOU rs of

T and 6. It was shown in Section 3.4 that the maxima with respect to

emperatuire and effective residence Time coincide at a constant value

depending only on the ratio of the Arrhenius frequency factors:

= const. (3.4.1)

The position of the optimum effective flow (and hence optimum temperature)

is related to the temperature by:

L = const ,exp(pEc/ RT) . from

(we)o - !
(3.3.4)

(A! Az)exp( pEC/RT)

That is,

'n(we)opf = consfz + cons+3/T (7.1.1)

| = Poe Also, for constant B, y6k" = a constant, therefore the curves

in Figure 7.1.! on a semi-lcg scale are hyperbolae.

(33)
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policies are determined by The signs and magnitudes of the derivatives and
variables involved. For this purpose, Figure 7.1.2 shows the sign of 3B/%k,
for the same field of T and ¥6 as Figure 7.1.1. For the case P, = Py the

sign of 3B/3y8 is the same as that of 3B/3k.

7.1.2 Application of the Maximum Principle

The conditions for stationary and constrained policies were discussed
in Chapter V. The initial Hamiltonian for the stationary policy is
calculated from
B

HS =B - ksE- (5.2.3)

and a map of values of Hs defines the regions of allowable Hamiltonian
values, 10 oCcordance wWith ihe coraivions in Section 3.4, Figure 7.1.3
gives only the sign of Hs (although a table of values of Hs was used in the
numerical work) and is therefore useful for finding the lower limit HS = 0,
For staticnary policies only, the sign and value of the adjoint variable X
at the initial time is equal to that of 3B/3dk, and so is given by Figure
7.1.2. The discussion of Section 5.6 pointed out the use of the sign of
di/dt in characterizing optimal policies, and this derivative can be
evaluated from equation (4.2.5) at the initial time using the initial value
of A. The result is shown in Figure 7.1.4 for p = 1. The final sign of
dA/dt is the opposite of 3B/3y6, and so is obtained from Fiqure 7.1.2,

The representation of all the available information for the
system enables a thorough examination of possible optimal policies to be
carried out. The selection of initial conditions is done in this way for

all cases. The results of the possible stationary (best optimal) temperature
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policies are based on the division of the initial feasible temperatures
into the two regions | and I!, defined in Section 5.4.

Analysis for p *+ |

Since the equations simplify greatly for Py = Po» this case can be
examined thoroughly. The Hamiltonian along a stationary policy, for
Py =Py =P, is given by (Appendix A7.1)

Hs = consfl[exp(-cons+2kpw) - exp(-const kPy)] -

3

cons+4kp¢[A2exp(—cons+3kpw) - A exp(—consfzkpw)] = B(x)

(7.1.2)
Therefore, to keep HS constant,
kpw = a constant (7.1.3)
Hence
B = a constant (7.1.4)
There{ore he stoticaory policy is fo romain on 1he contour B8 = a constant,

as the temperature rises according fo (7.1.3).

It B is not at its constant maximum value, given by the equation
(3.4.1) above, the policy can never end as a staticnary one (because the
contour B can never cross a point where 3B/3k is zero) but always on the
upper constraint,

If B is at its maximum value (that is, at the top of the ridge in
Figure 7.1.1) the policy is to continue at this value until the upper con-

straint, and hence the fina! optimal time, is reached. Along the ridge

3B
ok

= A = (7.1.5)

o.! [«%
—+| >
it
O

38
oY
At the upper constraint, di/dt becomes negative instantaneousiy, and hence

A decreases as ¢ decreases.



The optimal temperature policy may be obtained analytically

from

kPy = a constant (7.1.3)
and

dy _ _

pra Ky (3.1.2)

I+ is the hyperbola (see Appendix A.7.1)

=4 .
k
o}

(7.1.6)

P
O+

Alternatively, (7.1.6) can be obtained from the expression for dHS/dT
(see Appendix A.7.2).

Analysis for p = |

The condition for the Hamiltonian to be constant is now
k¢ = a constant (7.1.7)
Conditions (7.1.4) and (7.1.5) still hold. Also, di/dt = 0 and X\ = a
positive constant (see Appendix A.7.3).

The temperature policy is obtained analytically as simply

38

R
e + (7.1.8)
o
The best optimal policy for Py = Py is to start at the temperature
giving a maximum of B.
*
7.1.3 Numerical results, S-C policies
The case Pl =Py = | Is taken as an example. All policies end on

the upper constraint for Py = Pye
Region | Figure 7.1.3 shows that there is no lower limit on
initial temperatures above the lower constraint of 700°K, at 6 = | (and

¢ = 1). Figure 7.1, shows that the upper limit for this region is 208°K



39

(at the concentration datum B = .75). The derivative d\/dt at A = 0 is
always negative, and A(0) > 0, for this rcgion.
Figure 7.1.6 shows the effect of initial femperature on fotal
time for optimal policies in Region 1. As the initial ftemperature increases,
the total operating time decreases, due to increased catalyst decay rate.
The time on the upper constraint also decreases. All curves have an
exponential form, which becomes steeper with increasing initial temperature.
Figure 7.1.7 shows the theoretical result B = a constant (7.1.4),
and the variation of the activity and of the adjoint X for one initial
temperature. The optimal policy is for the activity to decrease in
proportion to the operating time, since k¢ = a constant for p = |, and
after substitution into (3.1.2). The adjoint is constant until the upper
constraint is reached, then falls to zero.
Region It Mo feasible point is possible in this region for a
stationary policy, since the Hamiltonian is always greater than the maximum
attainable concentratvion B = .75 (from the geometric construction of

equation (5.2.3)),
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7.2 Case 2. p, > p,

“

7.2.1 A study of the kinetics

As discussed in Section 3.4 for P ¥ Pos the maxima of B with
respect to temperature and effective residence time coincide at one point
only, when Kl = KZ‘ Since the ratio KI/K2 increases with temperature, the
maxima of B increase in magnitude with decreasing ¢6 and increasing T,
towards the top right hand corner of Figure 7.2.1, for the case P, = 1.2,

P, = .8. The signs of aB/ak and 3B/3y8 are shown for this case in Figures
7.2.2 and 7.2.3. The sign of 328/3k2 is shown for this case in Figure 7.2.4,

since this second derivative is important for locating the upper bound in

Region |1,

7.2.2 Application of the Maximum Principle

As before, the allowable values of the Hamiltonian HS are chosen
from a plot for the particular case; Figure 7.2.5 shows the sign of the
Hami ltonian. The sign of BZH/ak2 = aZB/ak2 is shown in Figure 7.2.4, The
initial sign of A is given by Figure 7.2.2, and of d)/dt (stationary

policies) by Figure 7.2.6 for p, = 1.2, Py = .8. The final sign of dA/dt

|
is the opposite of 5B/3y6, from (4.2.5), and so is obtained from Figure

7.2.3.

*
7.2.3 Numerical results. S and S-C policies

All results were rising temperature policies.
Region | Examination of Figure 7.2.1 shows that there can be no

*
optimal pelicy S, but always S~C . This is because aii the possible ending

concentrations of B for stationary policies, for which 3B/3k = 0, are
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higher than the initial maximum in B at ¢8 = |, which in turn is higher
than all possible values of Hs in Region 1I.
The sign of dA/dt at * = 0 is the opposite to that of A(0) (that

is, negative) everywhere except for a very small region near the intersection

of the upper constraint and 3B/3k = 0, where 3B/3y6 is negative, and so

il

dA/dt may be positive at + = 1 (A = 0) here. This region is rejected as
non-feasible.

Figure 7.2.7 shows the effect of initial temperature on the totai
time of operation. The curves have a similar shape fo those of Case |
(p' = pz). However, more time is spent on the upper constraint, and the
overali operating time is greater, for a given initial temperature.

Figure 7.2.8 plots the concentration, activity, and adjoint X for
one initial femperature in this region. The pfofile of the activity now
curves slightly upwards from its straight line of descent (a tendency
fowards more conservation of activify). The concentration increases
stightiy until the upper constraint is reached. The adjoint has a
characteristic trajectory, increasing exponentially near the upper constraint,
then reaching a turning point (dA/dt = 0) and falling to zero.

Upper and lower initial temperature limits are obtained in the
same way as for Case .

Special cases arise for Py ¥ Pos when the maxima of B in T and ¢
do not occur at the same point. It is now possible, for example, for the
derivative 3aB/3y 1o be of either sign in Region | alone. This means that
dr/dt (which was discussed in Section 5.6 as a means of transforming the
behaviour of all state variables) can be of either sign in this region,

and will define differently-behaved sub~-classes of policies, according to
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the form of the trajectory of XA with time, and to the resulting
fluctuations in total operating time.

Region || In this region, the stationary Hamiltonian Hs is greater
in value than the initia! concentration of B, from the geometrical
construction of equation (5.2.3). Since the final concentration
corresponding 1o HS is now attainable as a maximum 3B/3k = O (provided
that Hs < }.), then by virtue of the bshaviour of B for this case, shown
in Figure 7.2.1, it is possible to operate a wholly stationary policy S.
The upper limit on the Hamiltonian is given by the maximum concentration
attainable in the fieid v& < 6, and for T = T* for constrained optimal
policies. The corresponding temperature is the upper limit for any
optimal policy in this region, ard <o poliay Q-C* is rejected for Region
It. This upper temperature limit is subject to being lower than the upper
inflexion point for B vs. k, above which 32H/8k2 is positive.

Figure 7.2.9 shows the effect of initial temperature on total time
for this region. The operating time increases with increasing initial
temperature, from zero at the lower bound (818°K) to less than 37 hours
at the upper bound (825°K). From a comparison of Figures 7.2.7 and 7.2.9
it would seem that the same total operating time could be achieved with
two different initial femperatures. This possibility has not been rejected,
but no such example was found for this case. The asymptotic behaviour of
the operating time in Figure 7.2.9 indicates that it may be possible to
reject this phenomenon on theoretical grounds.

Figure 7.2.10 plots the concentration, activity, and adjoint
variable X against operating time. The behaviour of B and ¢ here is similar

to that of the stationary portion of the curves of B and ¢ in Region |I.
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The adjoint X is characteristically different, increasing sharply from
the negative to reach zero at the final time.

It follows that all final concentrations for these stationary
policies should lie to the right and above the initial concentration in
Figure 7.2.1, on the ridge of maximum concentrations. It should be
theoretically possible, if The geometry of Figure 7.2.1 is examined closely,
for the final concentration to lie to the left of the initial concentration

(see Diagram 7.2.1) so that a falling temperaturec profile should be

observed. Exceptional case Normal case
(not yet found)

-
-~ ~ rising temperature
-7 prafile

falling
temperatuy
profile

B v

Diagram 7.2.1. Section of Figure 7.2.!

Such a case has not been found for any reasonable temperature range,
because, for this example, the concentration of B decreases too quickly
with temperature at constant flow, causing the stationary Hamiltonian
to rise sharply after the maximum 3B/3k = 0. Also, it appears that
equation (5.2.7) is probably always positive for this region, by

geometry.
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7.3 Case 3. P|_<P5

7.5 Study of the kinetics

For this case, lower temperatures of operation, at higher
residence times, favour the production of B (see Figure 7.3.1). Figures
7.3.2 and 7.3.3 plot the signs of 3B/9k and 3B/3y6, for the example
p, = .8, Py = 1.2, It is noted that 3B/3ye is always positive for 3B/3k = 0

in the region under test.

7.3.2  hpplication of the Meximum Princinle

The bounds for sTaTioﬁary policies are found as before from the
plots of the Hamiltonian (Figure 7.3.4) and 3B/3k (Figure 7.3.2). The
initial sign of A is given by Figure 7.3.2, and of dA/dt (stationary policies)
by Figure 7.3.5 for P, = .8, Py = 1.2. The final sign of dA/dt (at X = 0)

is given by the opposite sign of 3B/3y6 in Figure 7.3.3.

¥
7.3.3 HNumerical results. S and S-C policies

All results were rising temperature policies.
Region | (3B/3k > 0)

Examination of Figure 7.3.1 shows that it is possible to end at any
point wvhere 9B/ok = 0 in the field y6 < 1 (8 = 1 in the constant flowrate
examples). Therefore it is possible to operate a stationary policy S
starting at any point in Region | for the unconstrained case. There is a
limiting temperature (above kﬂ in Diagram 5.1) for the constrained case,
below which the policy is S-C*, since the final concentration is then not
attainable as a point where 38/3k = 0; hence a stationary ending is not

possible. The final concentration can be reached only along the upper constraint.
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dr/dt is always negative at the final time, since 3B/3y6 is always positive
for the regions of optimal policies defined above.

The effect of initial temperature on total time is shown in Figure
7.3.6. The profiles rise exponentlially, and the curvature is greater

near the end than for the case Py > The total operating time, and

Poe
also the time spent on the upper constraint, increases with decreasing
initial temperature, For this case, as tifttle time as possible is spent
at higher temperatures, since it is the lower temperatfures that bencfit
the preduction of B,

The frajectories of the variables X, ¥ and B are shown in Figure
7.3.7. The slightly negative curvature of ¢y indicates that activity should
be conserved more at lower temperatures (cf. Case 2, where the curvature
is slightly positive). B is kept as nearly constant as possible, bul the
slight decrease with time results from moving to regions of lower
concentrations of B (see Figure 7.3.1) (cf. Case 2). The adjoint A has a
characteristically different trajectory.
Region 11 (3B/ak < 0)

No stationary policy is allowed in this region, since the Hamiifoian

corresponds to a concentration which is not attainable in the region y8 < 6.

The results have illustrated the different profiles of the control
and the controlled variables, for the three types of activated consecutive
first-order reaction. It has been assumed that one example from each type
of relative activation energies (p-values) would represent the behaviour of

many other pairs of p-values of the same type. This has not been proved,
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but seems highly probable on physical and mathematical grounds. It
would require many more computational experiments to justify this

assumption.

The probiem of investigating different sub-classes of policies
on the basis of the different characteristic trajectories of the adjoint
A (discussed in Section 5.6 as a transformation of all the physical
variables intfo a continuous differential equation) was considered to be
beyond the scope of this project. Therefore, only the major differences
between the profiles of A have been emphasized, but the discussions in

Sections 5.6 and 7.2.3 could form the starting point of such an investigation.

Chapter VII1 gives comparisons between the profiles of more
examples of the normal cases described in Chapter ViI. The variable
flowrate case is discussed, and examples of this are given., A criterion
for selecting best optimal policies is established on the basis of

practical considerations, and a final comparison of best policies is made.



CHAPTER VI

COMPAR{SONS AND SPECIAL CASES

8.1 Comparisons and discussion of the optimal temperature policies

8.1.1 Effect of changing the activation energies of both steps

In Chapter VIt, the characteristics of the optimal temperature
policies for each case of relative p~values were derived. That is, for
each of the cases

Case I: P, = Py Case Z: Py > Py Case 3: Pp <Py
one example was chosen and examined for p O(1). A summary of the
importenT rosuits 13 o be Tound in the Conclusions. [t would be interesting
to verify that the behaviour is consistent within each case for p-values

greater than and less than those chosen in the previous chapter. For this

purpose, the following sets of values have been studied.

py_Z Py Py > P, p,_< Py
Chapter VI pl=!. p2=l. p|=;,2 p2=.8 p|=.8 p2=l.2
p|=.95 p2=.95 p|=.8 p2=.5 pl=.5 p2=.8

Chapter VI1i|
pl=l.05 p2=l.05 p‘=l.5 p2=l.2 p'=l.2 p2=l.5

By a study of such diagrams as Figures 7.1.i - 7.1.3, 7.2.1 - 7.2.6, and
7.3.1 -~ 7.3.5, it has been verified that the behaviour of B with respect

to temperature and effective residence time ¥6, and also of the derivatives
3B/3k and 3B/3¥8, is consistent for all examples chosen within each of the
three cases above. Therefore the profile and the type (for example, S, S—C*)

el)
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of optimal temperature policy should be consistent within each type, and
this has been found to be true. However, the range of acceptable values

of the stationary Hamiitonian Hs (cf. Figure 7.1.3), and also the sign of
dr/dt, change quite markedly. For this reason, the range of feasible initial
temperatures, and the fotal operating ftime for a given initial temperature,
change in a characteristic way.

Results of comparison tests

The optimal temperature profiles are compared for each case in
Figures 8.1.1, 8.1.2, and 8.1.3. As for the cases in Chapter VII, for each

set of p-values, the collision factors A, and AZ are chosen such that

|
B= .75 at y6 = .25 s and T = 8750K. All examples are for a constant
residence time 6 of | s, as before.

Case |. P|_= Py =D

Figure 8.1.! shows that for decreasing values of p:
- a given total time of operation requires a lower initial temperature;
- a given initial temperature requires a lower fotal operating time for
finishing on the optimal policy. That is to say, reactions of lower
activation energy require lower temperatures for completion of similar
temperature policies.
The upper limit on initial temperature decreases with p decreasing.

Case 2. p, > D,

i L

Similar results to case | were found for Region |; that is, a given
total time of operation requires a lower initial temperature for p decreasing,
and vice versa for Region Il. Figure 8.1.2 shows the effect of changing

P and Po for initial temperatures in Region I.



900

KEY
800 —
a p=-95
b p=1I0
c p =1-05
T °K
700 ' l |
0] 100 200 300

Operating time, hours ——

Figure 8.1.1. Effect of different p-vaiues on optimal femperature policies
for Case | Py =Py F D.

<9



900

0

800 KEY
p|= -8 paz -5
p=l2 p,= -8
p, = -5 p, = -2

T °K

700 I | l
0 100 200 300

Operating time, hours —=

Figure 8.1.2 Effect of different p-values on optimai temperature policies
for Case 2 Py > Py




65

The temperature range for feasible initial temperatures was
found to occupy the region of lower temperatures for lower p-values.
Thus, no lower limit on initial temperature in the constrained region
700°K-900°K was found for Case 2a (sce Figure 8.1.2 for the definition
of a, b, c). The upper limit was found at 793°K. For Case 2b, the lower
and upper limits were 745°K and 825°K respectively, The lower limit for
Case 2¢ (highest p-values) was as high as 7850K; the upper {imit was at
T, = 835°K.

It was found for Case 2a that below a certain initial ftemperature
in Region I, X\ decreased monofénicaily to zero, instead of passing
through a maximum as for Cases 2b and 2c¢ (cf. Figure 7.2.8) (see end of
Chapter VI1),

Case 3. p, < p,

Figure 8.1.3 shows the effect of decreasing or increasing p-values
on the optimal temperature policies for this case. Similar resuits to Cases
| and 2 are found. That is, a given total time of operation requires a
lower initial temperature, for decreasing p-values. The behaviour of the
temperature range for feasible initial temperatures is the same as that

found for Case 2.
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8.1.2 Comparison between the Cases of Chapter VII

The differences in the types of optimal policy for each case arise
from the characteristic behaviour of B with temperature and effective
residence time. Physical justification can be found for these differences,

which could provide an a priori basis for choosing an arbitrary 'best!

policy without using the Maximum Principle. Each case will be considered
in furn,
Case |. P,_= Py

For this case, temperature has no effect on the relative rates
of the chemical steps, and this is the reason why the optimal policy is
to neither increase nor decrease the initial concentration, but to keep
pace with the deactivation of the catalyst.

Case 2. p, > p,

1 s

In Region |, since higher concentrations are available at higher
temperatures, the optimal policy is that the final time should not be
reached until full berefit has been obtained from operating at the higher
temperatures. This {s a justification for not ending on a stationary
policy, but to stay away from the 'ridge' until the upper temperature
constraint is reached.

The physical justification for operating in Region |1, where
3B/3k is negative, is seen by examining Figure 7.2.1. It is equivalent
to starting with a reactor that is too long (3B/3y6 also being negative)
and so the activity decreasing (equivalent to shortening the reactor)
benefits fthe production of B. in addition, more is to be gained by raising

the temperature, and so moving to regions of higher concentration. A



68

stationary policy is allowed, since ending on the ridge indicates that
as much advantage as possible has been obtained from decreased activity.

Case 3. p, < Py

Since lower temperatures favour the production of B for this case,
the best policy is fc remain for as long as possible in the region of
lower temperatures. Therefore, the profiles in Region | of Figure 7.3.6
are flat near the beginning of the policy, and rise sharply to the final
Temperature. A stationary policy is allowed, since less is to be gained
by continuing upwards in temperature until an arbitrary upper constraint
is reached in the region of lower concentrations,

Operation in Region Il is not favoured, for the following reason.
Although the policy in this region benefits from shortening the reactor
(or decreasing the residence time), it is better for this case to start
at as low a temperature as possible, near the region of higher concentrations.
These are most accessible in Region |, and along the side of the ridge
(in Figure 7.3.1) where 3B/3k is positive.

The justification for expecting rising temperature profiles was

provided at the end of Chapter II1.
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8.2 Variable flowrate case

8.2.1 Application of Pontryagin's Maximum Principle

The facility to vary the flowrate, and hence the residence time 6,
may be regarded as a separate control on the system, influencing the exit
concentration of B, but not the decay rate of the catalyst. The general
Hami {fonian may be written as:

Hix, k, ¢, 8, B) = Bk, ¢, 8) = Aky (4.2.11)
Optimising with respect to temperature requires that

3B _

oH
ek ak

Ay = 0 (5.2.1)

Optimising with respect to flowrate (residence time) requires that

o 2n

Ex) )

=0 (8.2.1)

Therefore, optimising with respect to temperature and flowrate requires

that on a stationary policy

= n . 3B o
HS = B kak (5.2.3)
and
B = maxe B(k,¥8) (8.2.2)

The second derivatives aZH/ak2 = aZB/akZ, and 82H/362 = 328/362 must be

negative or zero on the stationary policy.
The stationary policy is executed in the following way. At a given
initial temperature, for activiiy ¢ = |, the initial residence time 8 is

chosen such that

(yo) = (3.3.4)



70

However, since the expression (5.2.3) is a function of k and 6 only,
substitution of (3.3.4) causes HS tfo be a function of temperature only.
Therefore, in order to maintain a constant Hamiltonian, optimising with
respect to flow and temperature requires that the temperature be kept
constant, and fthat the residence time 6 be increased to compensate for

decreased activity, according to the relation:

_ const. .
eop+ == (8.2.3)
where Kl
In v
hz
const., = — (8.2.4)
K' - KZ

The residence time cannot be increased beyond a certain value eu (similarly
thore is a lower cornctrairt QL)‘ ~t which point the policy is constrained
with respect to residence time (3H/38 > 0). The temperature can be varied,
so the policy is stil! staticnary with respect to temperature, unless the
policy was initially on a temperature constraint. The policy is free to end
on a stationary or a constrained point, as for the constant flowrate cases

described in Chapter VII.

8.2.! Results of variable flowrate policy

EFach of the three cases of reiative activation energies produce
distinctive policies.

Case I. p, = p,

The flowrate for which 3B/38 = 0 coincides with the temperature
for which 3B/3k = O (see Figure 7.1.1). Therefore the optimal flowrate

policy follows the same path as the best constant flowrate policy -
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that is, along the top of the ridge to the upper temperature constraint
(for the best 1). The value of the objective function will be greater,
however, because of the initial period at constant temperature, when the

flowrate is decreasing.

Case 2. py_> P

The temperatures at which 3B/36 = 0 lie everywhere in Region |,
where 9B/3k is positive, for this case (except at the 'common maximum'
temperature, where K! = K2; this condition has not been examined). Therefore
an optimal flowrate policy can occur in Region | only, and is followed
by a temperature policy S-C*.

Examples werc taken for the values Py = 1.2, Py = .8, and the
temperature profiles are plotted in Figure 8.2.1. It must be noted that
this is not equivalent to starting on the lower Te%perafure constraint

for the constant flowrate case, since 3H/9k ¢ 0, but 8H/3k = 0,

Discussion of the results for Case 2

The time spent on the variable flowrate policy does not
monotonically increase or decrease with respect to initial temperature,
due to the different rates of isothermal catalyst decay at different
initial femperatures. The improvement in yield is illustrated in the next
section.

Case 3. p, < p,

The temperatures at which 3B/38 = 0 occur everywhere in Region |1{,
where 3B/3k is negative, and where it is not possible to operate a
stationary temperature policy. (A constrained temperature policy could be

tried in Region |1). Therefore, for a given initial temperature in Region I,
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where 0B/dk is positive, the best flowrate is chosen o give the maximum
value of the objective function, on a temperature policy finishing as

k3
either S or S-C .

The next section includes a fest for comparing the performance of
the variable flowrate case with isothermal and constant flowrate

temperature policies.

8.3 Performance criierion, A comparison of policies

8.3.1 Definition of a performance criferion

The results of Chapter VII have provided optimal values of the

objective function P, where

i
p = Oj B(k,8)dt (2.7)

For practical reasons it is necessary fo be able to choose the best
optimal policy, and the simplest criterion is the time-averaged concentration
_P

+
T Tr

I= (8.3.1)

where Tr is the time allowed for removal of the decayed catalyst. A
finite value for Tr must be included, since otherwise the best T would
be at v = 0. The highest value of I indicates the best optimal policy,
and its corresponding initial temperature. The higher is e the higher
must be 1 for maximum II. !t must be noted that although t is fixed for
solving the optimization problem, for practical reasons the initial
temperature is selected to maximize I on a wholly optimal policy,

That is to say, for a fixed total operating time 1, and for fixed Tr,
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there is one initial temperature that gives a maximum value of I, and
that temperature corresponds to a completed optimal policy, at t = 1,

and A = 0.

8.3.2 Results using the time-averaged concentration criterion I

As an example, Case 2 was chosen for obtaining values of Il on

policies ending at t = v (A = 0). The vaiucs are presented in Tabie 8.

below,
Table 8.1. Values of @ for P, = 1.2, Py = .8
Initial Total operating Performance criterion
temperature, K time, 1 hours = P/(1+Tr). Tr=12hrs.
760 229 .305
765 200 341
780 135 .448
790 104 D513
800 80 .56l
805 71 .575
810 63 .582
812 59 .583
815 55 .582
820 18 Al4
823 31 .505
825 35 .527

The maximum in If occurs at an initial temperature of about 812°K.
This corresponds to the best fixed total operating time 1 of approximately

60 hours, for fr = {2 hours.

8.3.3 Comparison of optimal policy types using Ii

In order to illustrate the improvements in yield by using an

optimai temperature policy, the valuss of I for various initial ftemperatures
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were evaluated for a fixed operating time of 240 hours, and a maintenance

time +r of 12 hours, and plotted for the following three types:

I. Best isothermal (non-optimal) policy.
2. Constant flowrate optimal policy.

3. Variable flowrate optimal policy.

The results are shown in Figure 8.3.1 for Case 2 (pl > pz). They show
clearly the order of improvement tc be expected {rom operating such
optimal policies at the initial temperatures corresponding to the peaks
of their respective types in Figure 8.3.1, The improvement is greatest
for type 3 and least for type |. The maximum is more clearly definad for
the more complex controlied case V.

The performance of the variable flowraie policy would be more
realistically assessed if the exit concentration of B were multiplied
by its flowrate F, thus optimizing the amount of B directly. This can
be done either a posteriori from these results, or by creating a new
objective function M, where

T T
M= 0[ B.Fdt = OJ B.con:T.VdT (8.3.2)
and where V is the volume of the reactor,and then applying the Maximum
Principle again. It would then not be expected that the optimal flow is

that which maximizes B.
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CONCLUSIONS

Optimal temperature policies have been found from the application
of Pontryagin's tlaximum Principle to fthe consecutive first-order reaction
with catalyst decay, for the three cases of relative activation energies:

E, Ey &

o < | — = | _— > |
E2 E2 E2
where subscripts | and 2 refer to the first and second chemical steps

respectively., The important results are summarised below.

(1) For Py = Po all initially stationary policies end on the upper
constraint (S~C*). The best optimal policy is to méximize B with respect
to temperature or to the effective residence time. Changing the temperature
has no effect on the relative rates of reaction for this case.

(2) For Py > Py, there exists a region of initial temperatures for
which stationary policies always end on the upper constraint (S-C*). There
is also a region of higher initial temperatures where all optimal policies
are stationary (S).

(3) For Py < Pops there is a range of initial temperatures for which
subsequent best optimal policies are stationary (5), and also a range
for which initially stationary policies end on the upper constraint (S—C*).

(4) Falling temperature policies were neither predicted nor found.

(5) A means for selecting a best optimal policy is based on the

time-averaged value of the objective function.

(77)



(6) A variable flowrate optimal policy can be operated for this
reaction. The results are better than those of the constant flowrate

policies, which are in turn better than the best isothermal policy.

All temperature profiles have an exponential form, and their

implementation in practice would not be difficult.
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SUMMARY AND FUTURE WORK

Optimal temperature policies have been derived by means of the
calculus of variations for the first order consecutive reaction with
catalyst decay. The problem has been formulated in the most convenient
analytical way, assuming isothermal conditions and constant catalyst
activity along a tubular reactor for a residence time that is small
compared to the total operating time. For fast-decaying catalysts,
reference must be made to the optimization of distributed-parameter
systems,

(1) Future work on this reaction scheme could involve an appraisal
of the assumptions of identical deactivation rates of both chemical
steps, and of the form of the deactivation rate equation.

(2) The region beyond the 'common maximum' of B with respect
to temperature and flowrate has not been examined, and it is believed
that certain conditions may be reversed there.

(3) A stricter proof or deduction is required for certain
analytical results and hypotheses. For example, it must be proved that
the maximum of B with respect to temperature moves to lower Y8 at higher
temperatures for all values of Py and Pys that all optimal policies have
rising temperature profiles; and that the characteristic variations of
the adjoint A correspond to sub-classes of optimal policies.

(4) Future work can extend this case to combinations of first-
and higher-order reaction steps. A more complex deactivation equation can

be tried., The performance criteria should be assessed.
(79
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NOMENCLATURE

coacentration (mole/mole) of reactant.
with subscript |, 2 or ¢, Arrhenius frequency factor (s—').
a constant

concentration of intermediate B

a constant

concentration of waste product C

with subscript or superscript ¥ : constrained policy
Arrhenius activation energy (kcal/mole)

Hamiltonian function

. . -1
Arrhenius chemnical rate constant (s )

by

rate constant of catalyst decay (hr~
the objective function

ratio of activation erergies; p, = EI/Ec’ p, = E2/EC
stationary pelicy

temperature °x>

system time (hr)

time for removal of catalyst - reactor shutdown time (hr)

space-time in the reactor (s)
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Subscripts

chemical in fc; cafalysf in AC, EC
exit

inlet

lower

stationary

upper

condition at t or z = 0
pertaining to chemical step |
pertaining to chemical step 2

lowest attainable value

Superscripts

m —

*
1

+
!

order of catalyst decay rate
highest attainable value
transpose

indicates optimal trajectory

Greek letters

residence time (s) in the reactor
adjoint variable to activity ¢
performance criterion

total reaction time (hr)

catalyst activity



APPENDICES

APPENDIX I

A.2 Derivation of the general rate equation in a tubular reactor

t t+dt
T B |B+dB dt = dz
V4 z+dz

The general mass halanc~ in space time z and syetem time 1 is:

Rate of reaction of B = rate of accumulation of B (A.2.1)
The rate of reaction f(y, T, A, B) is a function of two sets of variables,
defined by: A, B changing in space time, and ¢, T changing with system
time. Therefore the rate of accumulation of B is the sum of two terms;
the change in B due to a change in space time variables, and the change
in B due to a change in system time variables. Hence, from (A.2.1),

_ 3B, 9B
fly, T, A, B) = &= + =2 (A.2.2)

Strictly, df/2 should be added to the left hand side, but this is

negligible compared to f.

(83)



84

APPENDIX 111

A.3.1 Derivation of the exit concentration of B

" Equations (3.1.6) and (3.1.7) describe the rate of change of A and
B in the tubular reactor bed:

dB

= c WEKIA - KZBJ (3.1.6)

dA _ _

e K'Aw (3.1.7)
Integrating (3.1.7), with A =1 at z = 0,

A= exp(-K'wz) (A.3.1.1)

Therefore, on rearranging (S.f.G) above,

dB .
'&'{+ Q,KZB = Klexp(—}\‘(;;z).w (A.3.1.2)

The generatl solution of (A.3.1.2) is
B = aexp(—szz) + bexp(—K'wz) (A.3.1.3)
Substitution of (A.3.1.3) into (A.3.1.2) gives
K,
b = e (A.3.1.4)

The boundary condition B = 0 at z = 0 gives

2 = o (A.3.1.5)

2= K
Hence substitution of (A.3.1.4) and (A.3.1.5) into (A.3.1.3) gives the

solution:

K
B = o Texp(-K,y8) - exp (=K, $0) ] (3.1.8)
oK |
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A.3.2 Defining the shape of the curve of B vs. T

The foilowing steps show that B+ 0 as T+ 0 and T + =,
B is given by

K
B = - Toxp(-K,y0) - exp(~Kp9)] (3.1.8)
S |

This equation is indefterminate for T - O.

Now
im [exp(—KIwe) - exp(—K7¢9)] =0
T-+0 -
and Kl |
lim e = | M =
>0 %2 = K T=0 PPy
const.k -
-1 if Py > Py
const. if Py = P,
0 if P, < D,
Therefore
lim =20 (A.3.2.1)
T-0

It can be proved by repeated use of L'Hépital's Rule that

aB/ak -~ 0 as T - 0, hence B is asymptctic to zero.

KiK;{p, = p,y)

%%-= [exp(—K,we) - exp(-K2w8)3~172 ! 2

k(K, = K,)2

2 !
Klwﬁ
+ G poKyexp (=K, 98) = lelexp(-K'we)]
Similarly, the limits of B (using (3.1.8)) and 3B/3k as T » «
are zero.

Therefore the two asymptotes at T = 0 and T = « must include at
least one maximum, and hence two inflexion poinis. Only cne maximum is seen
to be possible, on physical grounds, by making a similar examination of

relative rates as in Secticn 3.3.
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A.3.3 Defining the shape of the curve of B vs. 8

B and 3B/3y6 tend to zero directly as ¢8 -+ 0 and as Y6 + o,
The proof that one maximum only occurs is deduced physically from the
behaviour of relative rates in Section 3.3. Therefore the shape of the curve

is similar to that shown in Diagram 3.1.

A.3.4 Derivation of the optimal flowrate

Now
K
B = e Lexp (K, 18) = exp(-K,y0)] (3.1.8)
2
Therefore
B Kf
370 - ?E;TTWZﬁ‘KzeXp(-sze) - Klexp(—Klwe)] (A.3.4.1)

At the optimal flowrate, 3B/6y9 = 0, so

Kzexp(-sze) = Klexp(-Kle) (A.3.4.2)

Therefore (3.3.4)
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A.3.5 Derivation of the common maximum of B

The maximum of B with respect to temperature is obtained by
solving (3.2.5) for the maximal temperature:

exp(—sze) - exp(—KIwe) \pe(K2 - Kl)

= (3.2.5)
'we) Kz(pl - p2)

szzexp(—sze) - pIK exp(-K

i
If this point coincides with the maximum with respect to flowrate, then

(3.3.4) must also be catisfied:

‘¢9’0p+ = (3.3.4)
Substitution of (3.3.4) into (3.2.5) shows that only the relation
K, = K (A.3.5.1)

satisfies the resulting equation.



APPENDIX 1V

A.4.1 Examination of the time derivative of the Hanmiltonian

In general,

H = Hp, k, A, 1) = B(¥, k, B (1)) - Ak

Therefore
gH _ M 0u | 9H dr oK dk , OH B
d oy df  ax df 9k dt aaod+
From (4.2.7)
oH _
sa = ~Ak
aH _
- kv

(4.2.7)

(A.4.3.1)

(A.4.3.2)

(A.4.3.3)

It ca2n bz showun from (AL4.3.10, (ALA3.2), (4.2.5) and (3.1.2) that

oHdy , 9H )
oy dt gA dt

So, for constant or zero input of B,

dH _ 3H dk

dt ~ 3k'dt

Therefore dH/dt is zero for either a stationary policy (3H/3k = 0) or a

constrained policy (dk/dt = 0).

(A.4.3.4)

(A.4.3.5)
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APPENDIX V
A5, 1 Analytical expression for the optimal temperature policy
Now
H =B - kﬁﬁ = H (K,¥) = a constant (5.2.3)
s 3k s ) e

Therefore

dH_ _ oH_ dk 3H  dy

-a—_FS-——-a—‘zS—d'jF"'—a—-qud_f (A.E.'-l)

So from (5,2.3)

dH dk (3B 328 9B dufan 3 [5B
= ] em— - \-_* - S—— + ] — . ] m— = - . .
at° df{ak k3R ak} df{aw kaw(sk]} 0 (A.5.1.2)

Hence the result (5.2.7) on substitution of (3.1.2):

dk _ | a{aa] BBI 228

’d—‘t:‘— lk-vak W/W (5.2.7)

The analytical expression for dk/dt in terms of k and ¢6 is too complex

to solve. However, equation (5.2.7) above can be interpreted in terms of

the geometry of plots of B with respect to temperature and effective

residence time, and can be evaluated at any point.
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APPENDIX VI

A.7.1  Proof that H is a function only of Py for P|_= Py

Analytical derivation of the optimal temperature policy

The stationary Ramiltonian, HS, is given by:

_ L 3B
HS = B KSF (5.2.3)
Therefore
K‘__J‘ | Kz(Pl - pz)
HS --R_f: R Lexp(—Klwe) - exp(—szG)][l - ——?~—:—??——J
2 ! : 2 I
K, U6

| ¢
R;—:—RTCpZKZexp(—K2¢6) - p’KIexp(—k‘¢e)] (A.7.1.1)

Setting Py Pr =P Ggives

HS = R;Eé~RT[exp(—K[¢6) - exp(—sze)] - ;éfgSRT[Kzexp(-sze) - Ktexp(—K!wG)]
(A7.1.2)
Also K, = ok, K, = B -
PR ;Ek for py = py.
c

Hence the result (7.1.2)

HRENNRRRXHKIRRERAUXXRX AKX

On a stationary policy, the Hamiltonian is constant with time.

Therefore

(A.7.1.3)

ala

ﬂiI
i}
O

The result (5.2.7) was obtained from (A,.7.1.3):

dk _ (.2 {eB) _ 38} 323
rr w{kaw[akl §E}/3k2 (5.2.7



Setting P, = Py gives directly

a.

2
af;-:f;- (A.7.1.4)

Hence the result (7.1.6), using the boundary condition k = ko at + = 0.

A.7.2 Analytical derivation of the optimal temperature policy for

p, = p,, from resulit (7.1.3)

Now kpw = a constant (7.1.3)
Taking the time derivatives of the variables in (7.1.3):

pkP quT L (A.7.3.1)

Therefore, substituting (3.1.2),

AL S P (A.7.3.2)
3T
Therefore
2
g-ié - g (A.7.3.3)

If k = ko at t = 0, the solution of (A.7.3.3) is:

T (A.7.3.4)

|-+

1
k
o]
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A.7.3 Examination of d\/dt for p, = p, on a stationary policy

The adjoint equation is

di aB
IF EE-+ AK

On a stationary policy, for Py = Pos from (4.2.5):

9?'= REELE——[R exp (~K,48) - Kzexp(-sze)] .
K, vép
Y FIRT“:"R~7EK exp (=~ Kzue) - K
Therefore
D= - n._g.l%

Hence the results in Section 7.1.

exp (=K ys)]

(4.2.5)

(A.7.2.1)

(A.7.2.2)



COMPUTER PROGRAM LISTING

HPCC ALEXANDER P,
RUN(S)
SETINDF,
REDUCE.
LGO.
! 6400 END OF RECORD
PROGRAM TST (INPUT,QUTPUT, TAPES=INPUT, TAPE6=0UTPUT)
C
C  THIS PROGRAM COMPUTES OPTIMAL POLICIES FOR CONSTANT AND VARIABLE
C FLOWRATE CASES, AND ALSC ISOTHERMAL POLICIES
C
C  SYMBOL MEANINGS FOR INPUT
c
*  AA,BB,AC  ARRHENIUS FREQUENCY FACTORS
¥  ECR  ARRHENIUS TEMPERATURE COEFFICIENT EC/R
¥ PI1,P2  ACTIVATION ENERGY RATIOS
¥ TCU,TCL  UPPER, LOWER TEMPERATURE CONSTRAINTS
BoODCLTS  SWOTOS TimE 8y (CONATION STIF LLnGTii
*  THETA  RESIDENCE TIME, SECONDS
*  THETAU,THETAL  UPPER, LOWER RESIDENCE TIME CONSTRAINTS
* IVFL, 150, ITOT  ARE EXPLAINED BELOW
¥ TEMP INITIAL TEMPERATURE
C
C

DIMENSION TITLE(13)
H(PS1)=AK] * (EKI=EK2)*( |, ~AK2¥PD/AKA) /AKA-AK | ¥PSTH* (P2*¥AK2¥EK2-P | *

AKIXEK] ) /AKA

READ(5,42) TITLE
WRITE(6,43) TITLE
READ(5, 1) AA,BB

READ(5,1) AC,ECR

READ(5, 1) PI,P2 $ PD=PI-P2
READ(5,!) TCU,TCL
READ(5,1) DELTS

READ(5, 1) THETA

READ(5, 1) THETAU, THETAL
READ(5,31) IVFL

READ(5,31) 150

READ(5,31) I1TOT
WRITE(6,31) IVFL,1SO 1TOT
IF(1S0.EQ. 1 )WRITE(6, 38)
IF(ITOT.EQ. 1 )WRITE(6,48)
DO 26 N=1,6

READ(5, 1) TEMP

(93)
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SET UP INITIAL VALUES
MUTEST=0 $ KPRNT=0
SBDT=SBDTS=0.
KC=35
TI=TEMP
TIME=0. $ PSi=1. $ PSTH=THETA
DELT=DELTS
CATALYST FREQUENCY FACTOR IN UNIT HR.-~1
REACTION FREQUENCY FACTOR IN UNIT S-i
WRITE(6,40)

EVALUATE INITIAL RATE CONSTANTS
AK=AC¥*EXP (~-ECR/TEMP)
AKI=AAXEXP(-P I ¥ECR/TENP) $ AK2=BB*EXP(-P2¥ECR/TEMP) $ AKA=AK2-AKI

IF IVFL = |, OPERATE VARIABLE FLOWRATE CASE (UP TO STATEMENT 32)
IFCIVFL.LT. 1) GO TO 32
WRITE(6,47)
THETA=ALOG (AK2/AK1 )/ AKA
| F(THETA.GT. THETAUIGOTO33
FF(THETA. LT.THETALYGOTO35
ISOTHERMAL DECAY FOR OPTIHMAL VARIABLE FLOW CONTROL

PSI=THETA/THETAU
TIME=-ALOG(PS1)/AK
WRITE(6,37) TU'®
SBOT=TiME* (AKI/AK2) ¥* (AK2/ (AK2~AK1))
THETA=THETAU
GO TO 32

33 WRITE(6,34)
THETA=THETAU
GO TO 32

35 WRITE(6,36)
THETA=THETAL

32 CONTINUE
PSTH=PS I *THETA
EKI=EXP(-AKI*PSTH) $ EK2=EXP(-AKZ¥*PSTH) § EKA=EKI-EK2

EVALUATE INITIAL HAMILTONIAN
HS=H(PSI)
AMUL = (AKI *EKA/ AKA-HS) /AK
IF(HS.LT.0.)GOT02
iF(AMUI L. LT.0.)GOTO5

TIME UNIT FOR CATALYST DECAY IS HR.

22 CONTINUE
ISOTHERMAL POLICY 1S EXECUTED {iF 1SO = |
IFCISO.EQ. 1)GOT024
TIME=TIME+DELT
PS15=PS1
PSI=PSIS*EXP (~AK*DELT) $ PSTH=PSI*THETA



C GUESS NEXT TEMPERATURE
EKI=EXP(-AKI ¥PSTH) $ EK2=EXP(-AK2¥PSTH)
DELHS=HS-H(PS 1)
STEP=.3
11 CONTINUE
C  TEST BINARY SEARCH PROCEDURE
IF(ABS (DELHS).LT..00G10)GOTOI2
TEMP=TEMP+STEP
AKI=AAXEXP (~P| *ECR/TEMP) § AK2=BBX¥EXP(-P2¥ECR/TEMP) $AKA=AK2-AKI
EKI=EXP(~-AKI*PSTH) § EK2=EXP(-AK2¥PSTH)
DELHSI=HS-H(PST)
IF(ABS(DELHST) .LT.ABS(DELHS))GOTOIO
TEMP=TEIP-STEP
STEP=-STEP¥*,3
GO 7O 1l
10 DELHS=DELHS!
GO TO I
12 CONTINUE
AK=AC*EXP (-ECR/TEMP)

[oNP]

INTEGRATE B.DT
SBDTS=SBOT
EKA=EKI-EK2
CBE=AK! ¥£KA/AKA
ABDT=CBE*DELT+SBDTS

C  HAS TEMPERATURD RCACHTIS £V7T0IR COLSTRAINT
| F(TEMP.GE., TCUIGOTOI3
FF(TEMP,LE.TCL)GOTO14

C HAS POLICY REACHED FINAL TINME YET

HNEW=HS-DELHS
AMU= (CBE=HNEY)/ (AK*PST)
IF(MUTEST.EQ. 1 ) AMU=~AMU
IFCITOT.EQ. 1)COTO39
|F(AMU. LE..0)GOTOI5
GO TO 44

39 CONTINUE
1F(TIME.GE.240.)GOTOI5
IF(AMU.LE..0)ISO=]|

44 CONTINUE
|F(MUTEST. EQ. I ) AMU=-AMU

OO0

PRINTING CONTROL
KPRNT=KPRNT+I
I F(KPRNT.EQ. 1)G0T027
I F(KPRNT.LE.KC)GOTO9
KPRNT=0
27 CONTINUE
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C  TEST SECOND DERIVATIVE
DZHDK2=AK| ¥PSTH¥ (2, ¥AK2*PD-AKA ) ¥ (P2X¥AK2¥EK2-P | ¥AK I ¥EK )/ (AKX¥AKA) ¥*
| 24AK | ¥AKZ¥PDX* ( (AK24+AKT ) ¥PD-AKA) ¥EKA/ (AKX AK¥AKAK¥3)+ AK | XPSTH¥ (P2¥P2
2¥AK2¥ (|, ~AK2*PSTH) *EK2-P | ¥P | ¥AK] ¥ (1, ~AKI *PSTH) *EK1 )/ (AK*AK*AKA)
|F (D2HDK2,GE.0.)G0TO 18
DCBEDK= ( CBE-HNEW ) /AK
C
C  EVALUATE FIRST DERIVATIVE
DHDK=DCBEDK~AHU*PS |
DCBDPS | =AKI ¥*THETA* (AK2¥EK2-AK| ¥EK1 ) /AKA
DMUDT=~DCBEDPS | +A1 U%AK
IRITE(6, 23)TINE, TEHP, HNEW, AMU, CBE, PS 1, D2HDK2, AK, DCBEDK, AK |, AK2, OCB
IDPS T, DHUDT , DHDK, SBDT
9 CONTINUE
IF(ABS((PS1-PSIS)/PS1).GT..010)DELT=DELT/2.
IF(ABS ((PS1-PS1S)/PS1).LT..005)DELT=DELT*2.
G0 TO 22
13 WRITE(6,20) $ GO TO 16
14 WRITE(6,21)
16 CONTINUE
WRITE(6,29) TIME

CONSTRAINED POLICY

OO0

24 CONTINUE
HNEW=HS
TIME=TIME+DELT
PS1S=PS|
PS1=PSIS*¥EXP(~AK¥DELT) $ PSTH=PSI*THETA

C  INTEGRATE B.DT
EKI=EXP(-AKI*PSTH) $ EK2=EXP(-AK2*PSTH) $ EKA=EKI-EK2
CBE=AKI ¥EKA/AKA
SBDTS=SBDT
SBDT=CBE*DELT+SBDTS
IF(ABS((PS1-PS1S)/PS1).GT..010)DELT=DELT/2.
IF(ABS{(PSI~PS1S)/PS1).LT. . 005)DELT=DELT*2,
AMU=(CBE-HNEW)/ (AK*PS1)

C IF ITOT = |, POLICIES ARE RUN TO A FIXED TOTAL TIME OF 240 HR.

FFOITOT.EQ. 1)GOTO45
I F(MUTEST.EQ. I )AMU=~AMU
IF(AMU. LE..0)GOTO IS
IF(CBE.LT..001)GOTOI5
FF(MUTEST.EQ. 1) AMU=~-AMU
GO TO 46

45 |F(TIME.GE.240.)GOTO15

46 CONTINUE

C PRINTING CONTROL
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KPRNT=KPRNT+|
FF(KPRNT,EQ. 1)GOTO28
IF(KPRNT.LE.KC)GOTO8
KPRNT=0

28 CONTINUE
DCBDPS I =AKI ¥*THETA* (AK2¥EK2-AK | *EKI ) /AKA
DMUDT=~DCBDPS | +AMU*AK

IS POLICY STILL ON THE CONSTRAINT
DHDK=AK| ¥AK2¥PD*EKA/ (AKX¥AKAX¥2 ) +AK | ¥PSTHX (P2¥AK2¥EK2-P | *AK I ¥EK] )/
| (AK*AKA ) ~AMU*PS |
DCBEDK=AKI ¥ (EK| % (AK2¥PD/AKA=P | ¥AK| ¥PSTH) +AK2¥EK2* (P2*PSTH-PD/AKA) )
[/ (AK*AKA)
WRITE(6,23)TIME, TEMP, HNEW, AMU, CBE, PS1, D2HDK2, AK, DCBEDK, AK !, AK2 , DCB
IDPS |, DMUDT, DHDK, SBOT
8 CONTINUE
GO TO 24
2 WRITE(G,3)
GO TO 24
5 WRITE(6,6)
MUTEST=1
GO TO 22
15 WRITE(E,17)
GO TO 4
18 WRITE(G, i9)
4 CONTINUE
SBDT=SBOT/ (TIME+12.)
WRITE(6,30) TIME,SBOT
WRITE(6,7) ECR,AC,Pi,P2,AA,BB,TI
WRITE(6,25)
26 CONTINUE
STOP

| FORMAT(5F15.5)

3 FORMAT{(2X,* INITIAL TEMPERATURE IS BELOW LOWER LIMIT*)

6 FORMAT(2X,*INITIAL TEMPERATURE 1S ABOVE UPPER LIMIT¥)

7 FORMAT(//,5X,*EC/R=*,F10.3,//,5X, *CATALYST FREQUEMCY FACTOR=*,
IF15.3,//,5%,*ACTIVATICN ENERGY FACTORS ARE Pl=¥ F4.l,2X,*P2=* F4,|
2//,5%, *REACTANT FREQUENCY FACTORS ARE AA =*,Fl4,1,3X,*BB=*,Fi4.1,
3//,* INITIAL TEMPERATURE WAS *,F5.1)

17 FORMAT(2X, ¥POLICY HAS REACHED FINAL TIME¥)

19 FORMAT(2X, ¥XSECOND DERIVATIVE 1S POSITIVE. NO LONGER ON OPTIMAL POL
11ICY*)

20 FORMAT(2X, *TEMPERATURE 1S AT UPPER CONSTRAINT*)

21 FORMAT(2X,*TEMPERATURE 1S AT LOWER CONSTRAINT*)

23 FORMAT(IX,F6.2,F6.1,F7.5,E9.2,2F5.3,E10.2,F6.4,E9.2,2F6.3,4E9.2)

25 FORMAT(/, 2X, ¥ommcmemmmnn NEXT RUN ===w——mme- *)

29 FORMAT(2X,*TOTAL T!ME ON STATIONARY POLICY = *,F7.1,* HR.*)

30 FORMAT(2X,*TOTAL TIME WAS *,F7.1,/,2X,*AVERAGE CONCENTRATION = *,
1F6.3)

31 FORMAT(515)



830
200
1.2
200
.25

OO O~

780
790
812
820
823
825
1

34 FORMAT(2X,*OPTIMAL FLOW LESS THAN MINIMUM CONSTRAINT¥)

36 FORMAT(2X,*CPTIMAL FLOW GREATER THAN MAXIMUM CONSTRAINT®)

37 FORMAT(2X,*TIME OM VARIABLE FLOWRATE POLICY =*,F6.1)

38 FORMAT(2X, ® I SOTHERJAL POLICY¥*)

40 FORMAT(2X,* TIME TEMP  HAMN  AMU CBE PS1 DZHDKZ2 AK
ICBEDK  AKI AKZ DCBOPSI  DMUDT DHDK SBDT*,/)

41 FORMAT(IHI)

42 FORMAT (1 3A6)

43 FORMAT(/,20A6,/)

47 FORMAT(2X,*VARIABLE FLOWRATE OPTIMAL POLICY*)

48 FORMAT(2X, ¥*FIXED TOTAL TIME OF 240 HRS.¥)

END
6400 END OF RECORD
CASE B. Pl=1.2 pP2=.8
0600082.4 1039408, |
0000. 15000.
.8
. 700.
.3

.
.
»
.
.

END OF FILE
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