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ABSTRACT

The purpose of this report is to study the validity of the
Rutherford Scattering Law. Both the angular and energy dependence of the
.scattering cross-section are checked, also comparison between the absolute
cross-section determined experimentally and the theoretical cross-section
is made.

Here we study the scattering of helium and oxygen ions with energies
varying from 0.5 to 2.0 MeV from thin bismuth targets made by implanting

16 ions/cmz.

40 keV bismuth jons in Tow Z(silicon) substrate to doses of 10
The implantation process was made on the Isotope Separator and the scatter-
ing experiments were made on the Van-de-Graff accelerator of the SSS branch
of the AECL. The scattering angles considered here range from 90° to 160°
and a special geometrical arrangement was used to enable us to measure the
scattering angle accurately. Also the report contains a brief description

of the different sources of errors during target preparation (implantaticns)

and the scattering experiments.
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CHAPTER 1
INTRODUCTION

The elastic scattering of ions and atoms is widely used now as
an analytical probe in the field of Solid State Science. In such applica-
tions using nuclear backscattering, it is generally assumed that the
Rutherford cross-section is valid. However, not much work was done to
verify the accuracy of these cross-sections experimentally. Only few
papers were published for the study of the scattering of low Z ions, and
one of these is Rutherford's own work.(])

There are two different extremes in the study of the validity of
Rutherford law. The first is the scattering at large separation distance
between the bombarding ion and the scattering atom where the screening
effect of orbital electrons is large (separation distance of the order of
the electronic orbit diameter, i.e. ~10'8 cm). The second is the scatter-
ing at very small separation distance(of the order of the nucleus diameter,

1

i.e. 2107 2cm) where the bombarding ion penetrates the nuclear barrier and

we have anomalous scattering. The separation distance is proportional to

.1
the value of (E—g%ﬁ%—zﬁ and so this is the parameter that controls the sep-

aration distance.

Recently H.H. Anderson et a1(2) studied the differential cross-
section for elastic scattering of 300-2000 keV H+ and 300-500 keV He+ and
L1'+ through 3°-15° by gold target. They used thin (34-220 mg/cmz) vacuum-
deposited polycrystalline gold foils. From the energies and scattering

?



angles they considered, it is clear that they studied scattering at

large separation distances. On the other hand, J.F. Ziegler and J.E.E.
Bag]in(z) studied the elastic backscattering of He' from a variety of

thin films containing Si, Al, 0, and N for He' energies ranging from

2.5 MeV. In this range, the helium ions are able to penetrate the nuclear
barrier and will be affected by the nuclear forces beside the usual Coulomb
field.

In this report, we study the elastic scattering of 500-2000 keV
He™ and 1000 keV d+through 90°-160° by bismuth targets. So we will cover
the range of separation distances between the above two extremes.

In the previous work by Anderson, and by Ziegler, they used self-
supporting thin targets; the thickness of these targets is hard to be
measured accurately. So, instead of that technique, we produced a thin
Bi target by uniformly implanting Bi ions in a low Z (silicon) substrate;
the Bi ions penetrate the substrate to a certain depth which is known.
Since in the backscattered spectra of both He® and 0" ions from these targets
we have a clear energy separation between the Bi peak and the edge of
Si spectrum. Therefore by fixing the window of a single channel analyser,
we can observe the counts due to scattering from Bi alone. Knowing the
scattering angle and the energy of the incident ions, we can examine the
validity of both the angular and energy dependence of the Rutherford law.
Also, from the geometrical arrangement of the target and detector, we can
get the absolute value of the scattering cross-section at each energy and
scattering angle and compare this with the theoretically calculated cross-

sections.



In Chapter 2, the basic theoretical treatment of the Rutherford
scattering is discussed, and also the method followed in determining the
scattering cross-section from the experimental data and in checking the
validity of the angular and energy dependence of the observed counts. In
Chapter 3, we explain the method for preparing our Bi targets and the
sources of error that might occur during the implantation process, also
the corrections required in our calculations due to the finite penetra-
tion of Bi ions through the Si targets. This latter point involves calcula-
ting (a) the projected range of the Bi ions and (b) the energy lost by
helium and oxygen ions in traversing the Si layer to the depth of the Bi
atoms during the subsequent scattering experiments. In Chaper 4, the main
scattering experiment is discussed in detail with the description of the
experimental arrangement and the reason for choosing this arrangement. The
ion current measurements are discussed, and the explanation of the technigue
used in making our measurements. Also in this Chapter, we discuss the
different sources of error and the experimental work done to check their
effect on our results. Finally, in Chapter 5, we make a tabulation of the
complete analysed experimental data and the discussions and comments on these
results concerning angular and energy dependence, absolute magnitude of
scattering cross-section compared with theoretical value and the repro-

ducibility of the output we obtained.



CHAPTER 2
RUTHERFORD SCATTERING

In this Chapter, we include the basic theoretical treatment of
the Rutherford scattering. From the interaction yield, it is possible to
find the value of the experimentally determined scattering cross-section.
A brief description for the corrections required due to the energy loss
by ions in penetrating the silicon layer until it reaches the bismuth
atoms locations. Also included is the procedure required to check the

angular and energy dependence of the scattering cross-section.
2.1 Rutherford Law

In this section only the main equations that will be used are
presented without complete mathematical derivations. The complete theore-
tical treatment can be found in most nuclear physics textbooks.(4)

The relation between the scattering angle s in the lab. system an

the scattering angle © in the C.M. system is given by

i
sin(o - ¢) = ﬁg—-sine (2-1)

where M] and M2 are the masses of projectile and target atom respectively.
The collision diameter b, which equals the closest distance of

approach in a head-on collision,is expressed as



2|2,2,| &
b=—12 (2.2)

M0 Vv
where Z] and 22 are the atomic numbers of projectile and target respectively
and |Z122| is the absolute value of Z;Z,, e is the electronic charge, V
is the projectile initial velocity in the lab. coordinates, and Mo is the
reduced mass of the system of particles and is defined by

M.M
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M = c—— (2-3)
o M] % M2
Substituting the value of My and putting y = M]/M2 in Equation (2-2),
therefore
2 2
i IZ]Zzle M] + Mz)_ |Z122|e

b E M2 = E (] +Y)

(2-4)

where E is the initial projectile energy = %—M] V2.

The impact parameter x in terms of the collision diameter and the
C.M. scattering angle is given by

_b 9 -
X =3 cot 5 (2-5)

The differential cross-section for scattering of M] into the solid
angle dw = 2m sine de¢ 1in the lab. coordinates will be called do = go(e)dw,
The fraction of the incident particles which are scattered by a very thin
foil containing N target praticles M, per square centimeter is N Eo(e) dw.
These are the same particles which, in the C.M. coordinates, are scattered
in the solid angle d@ = 27 sine do

If the differential cross-section, do, 1is called ao(e) do in the

C.M. coordinates, then



do _ : _ .
7= = Eo(e) sineds = &0(0) sine de (2-6)
The differential cross-section EO(O) de for an impact parameter

between x and x + dx is simply the area of a ring of radius x, and

width dx, which is 2mxdx. Then from Equation (2-5), we have

do = g (0) do = 2mxdx = Zn(%-cot %J %-csc2 %— %9
2 2
sin”(e/2) sin" (0/2)

Substituting the value of the collision diameter b from Equation

(2-4), we get

2
do (EJEZE_Q? T J—
de 4E sin4(e/2)

.1, 2

1.2926 x 10‘27(—%—39 (1+y) cmz/sr. (2-8)

sin4(e/2)

in Equation (2-8), the energy E is in Mey.

This cross-section can be transposed to the lab. coordinates when
¥y 1.6, M]/Mz, and hence the relationship between 6 and o, is known from
Equation (2-1). In the general case, we have for the differential cross-

section in the lab. coordinates,

in® do
do = £(0) du = £ (e) SEL8 o (2-9)

From Equations (2-1), (2-8), and (2-9) we can obtain the following



expression for the differential cross-section in the lab. coordinates,

2 3/2
_ (1 + " + 2y coso)
do = () T+ y coso duo
Zule 2 2 3/2
_ =27 7172 1 (1 +y° + 2y cos0)
= 1.2926 x 107¢7 (—=%) (1 + vy) [ ] de (2-10)
E sin4(@/2) 1 + y coso

Actually in our work we will evaluate the value of the scattering
cross-section per unit solid angle in the C.M. system theoretically and

experimentally and examine the agreement between theory and experiment.
2.2 Interaction Yield

If the number of bombarding ions incident on the target is Io with
incident energy Eo’ the yield of backscattered ions at a certain angle 6
(in the 1ab. coordinates) is determined by the scattering cross-section
corresponding to this angle and the ion energy at the scattering site Es‘
ES is slightly smaller than Eo’ as we will see in the next section. Also,
this yield will be proportional to Io’ and to N'(the number of Bi ions per
square centimeter, measured perpendicular to the incident beam direction. If
¢ is the angle between the incident beam and the normal to the target, .then
N' = N/cos¢ , therefore we have

-7 N %
I=1, cos¢ clab.(Es’e) (2-11)

where 91ab (Es,e) is the microscopic scattering cross-section at energy Es

and scattering angle ¢ in the lab. coordinates.



From Equation (2-9) we can put Equation (2-11) in terms of the

C.M. cross-section, therefore

2 3/2
=7 N (1 + y° + 2y coso)
L= IO COoS¢ gO(ES’ O) [ 1 + Y CO_S@. ]w (2-]2)

where w is the solid angle subtended by the detector at the target. Equa-
tion (2-12) gives the experimentally determined scattering cross-section
per C.M. steradian go(Es, 0) which, if the Rutherford Law is exactly

valid, will be the same as that calculated theoretically from Equation (2-8).
2.3 Energy Loss Correction

In this section, we discuss, qualitatively, the reason for this
energy loss correction. The complete evaluation of the magnitude of this
loss will be given in Chapter 3.

In this work we are studying the scatteriﬁg from thin Bi targets made
by implanting Bi ions into Si substrates, as will be explained in Chapter 3.
Therefore, our scattering process does not occur on the surface of the sub-
strate, but at a depth corresponding to the Bi penetration profile; we must
therefore determine the mean projected range of these ions in the Si sub-
strate. On bombarding these targets with high energy ions, such as He+ and
0+, they lose certain amount of energy in Si layer before reaching the Bi
location and being scattered.

Knowing the projected range R_ of the implanted Bi in the Si sub-

P
strate, the initial energy E0 of the bombarding ion, and its stopping power



S in the Si, the ion energy just before scattering from Bi will be given

by
E.=E_-S.R (2-13)

In calculating the scattering cross—secfion theoretically from
Equation (2-8), we have to substitute the exact value of the energy at the
scattering site which is ES and not Eo' |

In practice, we select approximately the required energy Eo from
the Van-de-Graff panel, calculate the exact energy at the scattering loca-
tion ES from Equation (2-13), and then calculate the theoretical cross-

section corresponding to ES rather than Eo.
2.4 Angular and Energy Dependence

Substituting the theoretical value of gO(ES, ©) in Equation (2-12)

from Equation (2-8), we get the following form of the yield equation

2 .
7.7 2 3/2
[1.2926 x 10°27(222) (1 + ) 1 [ty +2yc0s0) ™79 © 5 3

.
1 Io cos¢ ES sin4(®/2) 1 + ycoso©

Therefore, for a certain target-projectile combination we have

] (2-14)

E 2’ “cosy _. 4 2
A sin ' (0/2) (1 + vy coso)

where C is a constant given by

27 I

C=1.2926 x 10~ 5

N(Z]ZZ)2(1 + vl
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The Equation (2-14) assumes the validity of Rutherford's Law.
Therefore, we can make use of this relation to check both the angular
and energy dependence of the Rutherford Law.

For angular dependence we will have a fixed value of energy Es’
therefore the yield equation becomes

I=c'[ 1 1 (1 + 1? + 2y cose)3/2]
cos¢ sin4(e/2) (1 + ycose)

(2-15)

where C' is a constant. So changing the scattering angles and recording
the observed counts for each position, from Equation (2-15), we can check
to what extent the angular dependence is correct, since dividing the
counts observed over the quantity in square brackets should give a constant
value for the different scattering angles at fixed energy and the same
target-projectile combination.

For energy dependence the same is done except the angular term is
constant and we vary the energy Es' Therefore the rate equation takes

the form
I=Cc" EZ (2-16)

So multiplying the observed number of counts by the square of the
corresponding energy at the scattering location ES, this will be a constant
(C'') if the energy dependence is exact.

The scattering experiment was done using different targets and
therefore the number of implanted Bi ions per square centimeter, N, will
be different. This was done to check the reproducibility of our results.

Therefore in checking angular and energy dependence for these runs with

™
By
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different targets, we have to include the value of N as a variable in
our rate equation.
A11 these calculations are put in the final tabular form in

Chapter 5.
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CHAPTER 3

HEAVY ION IMPLANTATION

In this Chapter, the preparation of thin Bi targets is explained.
In Chapter 2, we discussed the need to evaluate the finite penetration
of the implanted ions through the Si substrate and the energy lost by
the bombarding ions in the scattering experiments until it reachs the
Bi layer. Here we make the complete calculations for the Bi ions range and
the energy lost by the He' and 0+, which are the only ions used in our
scattering experiments, in the Si layer. At the end of the Chapter, various

sources of error in the implantation process will also be discussed.

3.1 Target Preparation

It is hard to make a self-supporting uniform thin target, and it is
difficult to measure its thickness accurately. To avoid these difficulties
we used a different technique in preparing our targets. This was done by
implantation of our heavy ion (Bi) in a low z(silicon) substrate, and there-
fore by uniform implantation we obtain a thin Bi target for our scattering
experiments.

The Bi ions were produced by evaporating Bi metal and then accelerat-
ing these ions to the implantation potential of 40 kV, the beam is deflected
by the analyzing magnet in the isotope separator and is focused as a vertical

line at the target position. To achieve uniform implanation, the beam is

?
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swept evenly in the horizontal direction over the area of the target
defined by the beam defining aperture. The current integrator connected
to the target holder records the absolute number of microcoulombs of beam
hitting the target.

For our scattering experiments we made two different targets with

different implanted doses, as follows

Target Number Implanted Dose Implanted Dose Target Chamber
(nuc/cml) (Ions/cm2) Pressure (Torr)

1 316 1.9687 x 10'° 1 x 1070

2 1625.5 1.0127 x 10'° 2 x 107°°

3.2 Projected Range of Implanted Ions

The implanted Bi ions penetrate the Si substrate and do not stay
right on the surface as we mentioned in section 2.3. Calculation of the
projected range of these implanted ions is necessary for the energy loss
evaluation in the next section.

In our calculations we will make use of the.tab1es made by K.B. Winter-

bon.(s) For Bi-209 penetration through Si-28, we have from table (I), p.12

e = 0.000664 per keV
o = 0.0249 per ug/cm
k = 0.1158

where ¢, p, and k are dimensionless energy, range, and electronic stopping

>
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parameters respectively.

For our implantations, the Bi ions energy was 40 keV, therefore

e = 0.000664 x 40 = 0.02656

and by interpolations in table (II), p.28, we have

for € = 0.02656 and k = 0.1158, p = 0.1328

Since p = 0.0249 Rtota]

where R is the total range, therefore

total

o

- .1328
total 0.0249

R = 5.337 ug/cn?

The relation between the projected range R, and the total range R

p total
is given by(s)
R M2 -1
o = (g
total 1

here M; = mass of bombarding ion (Bi) = 209,

M

, = mass of bombarded substrate (Si) = 28

Therefore

P
|

" 0.96 Rtota]

0.96 x 5.337 = 5.110 ug/cm®

Since Si density - 2.42 gm/cmz, therefore
-6
_ 5.11 x 10 ° _ o
Rp = 2.42 — 200 A

o
i.e. The projected range of 40 keV Bi ions in Si is about 200 A.

D
¥
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3.3 Energy Loss Calculations

The calculations will be done of the energy loss of He™ and 0+ in
going through the calculated projected range of Bi, i.e. 5.11 ug/cmz. The
He+ energies that will be considered are 2.0, 1.0, and 0.5 MeV, but for
the case of O+, we consider only the 1.0 MeV case since these are the
energies that will be used in our scattering experiments.

From Equation (2-13), the energy lost by the bombarding ion is the
product of the stopping power and the projected range. For the evaluation

(5)

of the stopping power, we will use the tables by Winterbon for the case
of 1.0 MeV 0" since this is in the region where these tables are good. On
the other hand, these tables are not good for He+ and we have already direct

(7)

experimental data by J.F. Ziegler and W.K. Chu which we can use.
(a) Energy loss by helium ions: for He' penetrating Si targets we

have the following values for the stopping power for different energies,

ENERGY , (MeV) s, (ev/10'° atom/cn?)
2.00 49.26
1.00 66.30
0.50 70.62

To change the dimensions of the stopping power from (eV/]O]5 atom/cmz)

to (MeV/ug/cmz) we multiply by the conversion factor 21.5 x 10'6.(8)
It should be noted that the energy lost by the ions depends on the
angle ¢ between the direction of the incident beam and the normal to the

target, and therefore will be different for different scattering angles in
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the same energynregion. For the sake of completeness we calculate the
energy lost for each scattering angle at all energies considered. The
values of the angle ¢ for different scattering angles will be shown in

the next Chapter. Therefore, the actual amount of energy lost is (SRp/cos¢)
since the actual distance the ions penetrate before reaching the Bi layer

is Rp/cos¢ . In the following table the energy lost to the nearest keV

ENERGY, (MeV) SCATT. ANGLE,(DEGREES)  ¢,(DEGREES)  ENERGY LOST,(keV)
2.00 160 -20.35 6
140 - 0.35 5
110 29.65 6
90 49.65 8
1.00 160 -20.35 8
140 - 0.35 7
110 29.65 8
90 49.65 11
0.50 160 -20.35 S
140 - 0.35 8
110 29.65 10
90 49.65 13

(b) Energy loss by oxygen ions: neglecting the nuclear energy loss with

(5)

compared to the electronic loss, the electronic stopping is given by

Q

S=—'§=ke

(4]
©

To convert this dimensionless energy loss to the usual dimensioned

?
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quantities, we have

d3E o de 2
R : W (keV/ug/cm™)

For 1.0 MeV 0+ incident on Si substrate, we have

% - o.1885 (59.022)'/2
= 1.4178
and therefore,
9E _ 0.1400 (1.4178)
3R 0.0590
= 3.3620 keV/pg/cm2

Again we calculate the actual energy loss for different scattering

angles for 1.0 MeV 0" (to the nearest keV)

ENERGY , (MeV) SCATT.ANGLE, DEGREES) ¢, (DEGREES) ENERGY LOST,(keV)

1.00 160 -20.35 18
140 - 0.35 | ¥
110 29.65 20
90 49.65 27

Subtracting these energy losses from the initial ions energy (Eo),
gives us the actual energy at the scattering site (Es) on which we make

our calculations for the theoretical cross-section as discussed before.
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3.4 Sources of Error

Now we discuss briefly the different sources of error that may occur
during the implantation work and will certainly affect the scattering
experiments.

(a) Uniformity of implantation: one of the main disadvantages of
the self-supporting thin targets is the difficulty of obtaining a uniform
target in this way. Sweeping the beam across the target accomplishes the
uniformity of implantation.

Before starting the scattering experiments, a uniformity check test
was done on the first Bi target. Considering a certain point in the im-
planted area as a centre of coordinates, we recorded the counts for the
backscattered He™ from different points taken at different Tocations in
the (x,y) plane, the dimensions were in millimeters in both directions. The
beam energy was 1.00 MeV, and the scattering angle was 160° for all the
points. The target was mounted on a goniometer which allows movements in
the horizontal and vertical directions. The counts from the center point
(0,0) were repeated 8 times to get an average value for the counts for a
fixed count rate on Hollis probe (100,000 Hollis counts were considered).
The function and work of the Hollis probe will be described in the next
Chapter. The average counts per 100,000 Hollis counts were 3708. The follow-
ing table shows the counts at the different points and the % deviation from

the average counts.
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SCATT.POINT COUNTS/100,000 HOLLIS COUNTS % DEVIATION
(0,0) 3708 0.0
(1.5,0) 3662 -1.24
(3.0,0) | 3708 0.0
(-1.5,0) 3880 4.64
(-3.0,0) 3690 -0.49
(0,1.0) 3768 1.62
(1.5,1.0) 3722 0.38
(-1.5,1.0) 3837 3.48
(0,-1.0) 3778 1.89
(1.5,-1.0) 3707 -0.03
(-1.5,-1.0) 3670 -1.02

From this table it is clear that most points are within ¥(counts)
statistics which is about 1.6%, only 2 values lie outside twice the sta-
tistical accuracy which is acceptable. Therefore, we conclude that the
uniformity of our targets is good.

(b) Neutral-atom component: 1in the 40 keV energy range, the Bi ions
have a large cross-section for capturing an electron (from a residual gas
atom) and become neutral atoms. These neutral atoms, if formed after the
ion beam was deflected by the isotope separator analyzing magnet will hit
the target without being counted by the beam integrator.

J. Pring]e(g) did some experiments to check this neutral-atom com-
ponent of the beam. He applied a positive retarding potential of 35 kv on

the target while implanting 40 keV (Sb, Hf, Te) ions. In addition to the
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5-keV range profile of the implanted ions, he noticed a tail due to the
40-keV neutral-atoms component. Extrapolating this tail, the neutral-
atom component was found to vary from 0.5 to 1.0%.

However, during Pringle's work the pressure in the target chamber
was about 6 x 10'6 torr, while in our implantations it was 1 x 10'6 and
2 X 10'6 torr. Therefore, since the neutralization probability/cm is
directly proportional to the pressure, we can assume the neutral-component
of the beam to be <0.5% in our implantations.

(c) Current measurement: to measure the ion beam current, a Faraday-
cup is mounted around the targef. Precautions must be made to prevent the
secondary electrons, which are generated by stopping the ion beam, from
escaping through the entrance aperture of the Faraday-cup. Therefore, a
negative bias of 120 V is applied on a grid plate outside the Faraday-cup
to suppress the secondary electrons. Actually part of these secondary elect-
rons escape from the Faraday-cup and this causes inaccuracy in the current
measurement. On the isotope separator, the current measurements are accurate

to about 1%.

(d) Sputtering: one more source of error in the implanted dose measure-
ment is caused by sputtering especially when we implant high doses of the
heavy ions (in the 10]6 range). At the beginning of implantation, we have
only sputtering of Si atoms, but as the implantation process continues, some
of the Bi implanted ions will also be sputtered.

Now we make a rough estimatg of the sputtering loss. The thickness of

Si target removed due to sputtering is given by(lo)

t=34 ypxo.o61 A
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where t is the thickness sputtered away, S sputtering coefficient of Si

by Bi (&5 atoms/ion), A is the atomic weight of Si(=28), p is the Si

density and D the implanted dose 1in BA-2—-m1'n('l EA?min = 4 x 1014 ions/cmz)
cm cm
substituting in the above equation gives (for 10'6 ions/cm2 dose)

o

t=20A

Assuming that the range distribution has a Gaussian shape, we have the

range straggling (ref.6, chap. 2), AR given by,

R s
AR=§E—5— =80 A

Therefore from these estimates we can conciude that about 0.1% of
the implanted ions have been sputtered away.

Actually, the range profile is skewed inside the material which will
cause sputtered gquantity less. Alsowe might have enhanced diffusion. There-

fore as a rough estimate, we can assume a sputtering loss ~0.5%
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CHAPTER 4

EXPERIMENTAL SCATTERING MEASUREMENTS

The main scattering experiments are discussed in this Chapter.
First the experimental arrangement is described. The experiments made
for the energy calibration with the complete analysed results are also
described. Also the ion current measurements by calibrating the Hollis
probe against the Faraday-cup; this part will include the mechanism of
the work of Hollis probe. The limitations on the count rates of the
detectors and how to achieve these counts are given. Also, a description
of the scattering from the Bi implanted layer and the method followed for
the calculations of the required parameters. Finally, as we did in Chapter
3, we discuss the different sources of error and the experiments done to

check them.

4.1 Experimental Arrangement

Figure 4.1 shows the experimental arrangement. The dashed lines
indicate the incident and backscattered beams. The Hollis probe is labelled
A, B is the Faraday-cup, C is the target and its holder, D is the target
detector aperture, E is the arm connecting the detector aperture to the
goniometer, F is the target detector, and S are the beam collimating slits.

Since the main purpose of this work is to check the angular and

energy dependence of Rutherford law, as well as the absolute magnitude of

?
.
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the scaltering cross-section, therefore the first task was to develop
suitable calibration techniques for accurate measurement of the scattering
angles and energies, so as to study the backscattering at different angles

and different energies.
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Figure 4.1 Experimental Arrangement

In the target chamber, the most accurate way to measure the scattering
angles is to mount the detector on an arm rigidly vixed to the goniometer,
so that the scattering angle is varied by rotating the top goniometer flange
and we can determine this angle accurately.

The Tength of the arm on which we mounted the detector, i.e. the
distance between the detector aperture and the target is 7.982 cm, and the
aperture diameter is 2.25 mm. Therefore, the solid angle subtended by

the detector at the target is
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w = %— (32££2) = 0.000624 Sr.

Before starting the scattering experiments, we made an accurate
measurement of the angle between the detector arm and the beam direction.
This was done by rotating the detector arm, and consequently the target
(the detector was removed during this experiment) anti-clockwise from its
initial position as shown in Fig. 4.1 (the beam is perpendicular to the
target) until the beam passed through the center of the detector aperture
and recorded the reading of the top flange. We obtained the following

readings (we considered the readings on the right part of the flange to be

negative):
READING CURRENT CONDITION REASON
-34.4° - Goes to zero Beam is intersected by the detector
arm
-39.2° - Starts to rise from Beam starts to go through the
zero aperture
-39.9° - Reaches max. value Beam is fully in the aperture
-40.8° - Starts to fall down Beam starts to leave the aperture
from max.
-41.5° - Goes to zero again Beam is intersected by the other

side of the detector arm

From these readings we find that at 39.55° the beam is at half-
maximum in the rising part, and at 41.15° it is at half-maximum in the fall-
ing part, i.e. the aperture corresponds to 1.6° angular deviation. Therefore,
the exact angle between the detector arm and the beam direction is (39.55
+ L:0) = 40.35°

Before proceeding further we list the different scattering angles 6

considered and the corresponding value of the angle ¢ between the incident

?
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beam and the perpendicular to the surface. Figure 4.2 shows the different

angles in our arrangement in a general position

Figure 4.2 Different Angles Involved in the Scattering Experiments

The angles ¢ and y between the incident beam and target surface,
and the reflected beam and the target surface should always be greater than

30° so as to minimize multiple scattering. The scattering angle 6 is

(180° -a)

) ¢ .8
160° -20.35° 110.35°
140° - 0.35° 90.35°
110° 29.65° 60.35°

90° 49.65° 40.35°

The value of the angle y is fixed (49.65°) and the minimum value of
the angle ¢ is seen to be ~40°, corresponding to the 90? scattering angle.
The reason for choosing 160° as the largest scattering angle is that the
Faraday-cup prevents further movements of the detector arm if we try to go

to Targe scattering angles.
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4.2 Enrergy Calibration Experiments

Since one of the main purposes of this work is to check the energy
dependence of Rutherford Law, and the scattering cross-section is inversely
proportional to the square of the energy. Therefore, to obtain good results
we have to know the energy accurately.

The machine energy is read from the Differential Voltmeter on the
main consol. Two different techniques have been used for checking the
settings of the Differential voltmeter and to determine the exact energy
corresponding to each setting.

The first technique involves the A127(p,a) nuclear reaction, where
we make use of several sharp resonances of this reaction at accurately
known energies. Therefore, the energy corresponding to a certain resonance
will be the exact value of the energy for the Differential Voltmeter setting.
In determining the resonance condition, we take the counts half-way in
the rising part of the y counts at that resonance. This calibration was

done twice and the following table summarizes the results of these two runs.

RUN NO.  D.V. SETTING, (MeV) RESONANCE ENERGY, (MeV)  (r—=-—)
calib.

1 2.009 1.095 1.0120
1.406 1.3867 1.0139

0.999 0.992 1.0065

2 1.407 1.3867 1.0146
1.001 0.992. 1.0091

From this table it is clear that the agreement between the two runs
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is better than 0.3%.
In the second technique we use the 5.486 MeV alpha particles from

- Am241

radioactive source for calibrating the Tinear Pulse Generator.
Then, by comparing the backscattering spectrum of protons from gold targets,
(two different targets were used, the firstwas a thin gold film deposited
on a carbon substrate, and the second was a thick gold foil), with suitably
chosen Pulse-Generator spectra, we can find the exact values of the energy
corresponding to each Differential Voltmeter setting. Now we describe how
the calculations procedure goes and then summarize the results from differ-
ent runs in a tabular form.

First the Pulse Generator was set at 5.486 MeV, and the pulse peak

241

was exactly in the same channel as Am alpha particles. To find the exact

value of the energy corresponding to this Pulse Generator setting we have

241 alphas in the detector

to subtract the amount of energy lost by the Am
dead gold layer which has a thickness of 700 Z, i.e. 0135 ug/cmz. This
amount of energy lost was calculated by knowing the stopping power of gold
targets for 5.486 MeV alpha partic]es(s), and this energy loss is 30 keV.
Therefore, the exact energy for the Pulse Generator setting at 5.486 MeV

is 5.456 MeV, (This correction is applied only to the first run, in the
subsequent runs, we set the Pulse Generator at 5.456 MeV and by adjusting
the normalizing potential we can make this pulse in the same channel as the

5.486 alphas, in this case no corrections will be made to the Pulse Generator

settings). Since the Pulse Generator is linear, a correction factor of

5.456
5.486 °

corresponding to that setting.

j.e. ~0.995 must be multiplied by each setting to get the exact energy
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Now the backscattered spectrum of protons from gold at different
Differential Voltmeter settings, i.e. different protons energies, was
collected (scattering angles were 160? for the thin gold targets and 140°
for the thick target). Also pulses of different energies from the Pulse
Generator were collected. From the Pulse Generator settings and the collected
backscattered spectra we can find the energy corresponding to the gold peak
(thin target), and the mid-point of the gold edge (thick target) by deter-
mining the channel in which this peak (or edge) lies and calculating the
energy corresponding to this channel from the Pulse Generator. Each cal-
culated energy is now multiplied by the correction factor mentioned before
to account for the Pulse Generator calibration (for the first run only in
this work). Then to these corrected energies we add the amount of energy
lost by protons in traversing the thin (135 ug/cmz) dead gold Tlayer on the
detector surface(8), and thus obtain the proton energy just after scatter-
ing from gold. Since the proton loses 0.0195 of its initial energy in
scattering at 160° from gold, (and 0.0178 of its initial energy at 140°),
we can determine, therefore, the initial proton energy before scattering,
which should be the exact energy corresponding to the specific Differential
Voltmeter setting.

The following table summarizes the results for the different runs

after performing all the required calculations

RUN NO. GOLD TARGET USED  D.V.,(MeV) E .. »(MeV) (—-24!4—0
calib. E :
calib.
1 Thin 2.04 1.9889 1.0257

1.406 1.3865 1.0141
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RUN NO.  GOLD TARGET USED  D.V.,(MeV) E_ i, »(MeV) (=2-L2) (cont'd)
calib.
1.00 0.9835 1.0168
0.51 0.5058 1.0083
2 Thick 2.04 ~1.9805 1.0301
1.406 1.3806 1.0184
1.00 0.9765 1.0241
0.51 0.5028 1.0143
3 Thick 2.04 1.9732 1.0338
4 Thick 2.04 1.9772 1.0318
1.00 0.9806 1.0198
0.51 0.5056 1.0087

From this table, it is clear that the energy calibration using thick
targets are reproducible to better than 0.4%. But these values are about
1% less than that for the thin target.

Comparing these values of calculated energies to those given by the
A127(p,a) calibration, we notice that the thin target energies are about
1% higher and the thick target energies are about 2% higher.

27(p,a) nuclear reaction should

Actually the calibration using the Al
be the best since the energies for the different resonance are accurately
known, and the method itself is straightforward and needs no calculations.
But in our calculations for the energy dependence and the total Rutherford
scattering cross-section, we will use the values of energies calibrated

by the thin film target as intermediate values between the other two cases.
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4.3 Ion Current Measurements

The ion current is measured by the use of a Faraday-cup which
determines the amount of charge corresponding to the incident ion beam.
_Since it is not possible to use the Faraday-cup and the target simultan-
eously (the Faraday-cup completely intersects the beam and prevents it
from hitting the target), therefore, the Faraday-cup is made removable as
shown in Fig. 4.1 and a coupling between the Faraday-cup and the target is
used. This coupling is called the Hollis probe which is a thin gold Tayer
of thickness about 700 Z deposited on a aluminium foil, the side of the
foil facing the beam is cut at 45° inclination and the scattering from
this probe is taken at a scattering angle 90°, as shown in Fig. 4.3 in
which A is the Hollis probe, G the detector, H the detector aperture, and

S are the beam collimating slits.
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The Hollis probe oscillates continuously across the beam during both

the Faraday-cup calibration and the scattering experiments. Therefore by

continuously intersecting the beam at a constant speed, by using an external

?
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motor, the counts for the 90f scatterings are detected by the detector G
in the bottom of the target chamber.

An aperture (H) of 1-3 mm diameter is put over the Hollis probe
detector to limit the total count rate with the probe in the static posi-
tion (i.e. the Hollis probe completely intersecting the beam) to less than
3000 counts/sec in order to avoid undue noise and dead-time Tlosses. A
similar counting restriction (i.e. <3000/sec) applies to the main detector,
and this is partly accomplished by the apertures on the detectors and partly
by adjusting the magnitude of the ion current.

For ion current measurements, the Hollis probe is calibrated against
the Faraday-cup to find the number of Hollis probe counts for a certain
amount of charge collected by the Faraday-cup, then we find the number of
the counts from backscattaring of the target corresponding to a certain
number of Hollis probe counts. From these two measurements, we can deter-
mine the number of incident ions on the target, and hence the number of
backscattered ions per microcoulomb of charge collected by the Faraday-

cup, i.e. 6.23 x 10]2

ions incident on the target, these calculations will
be done in the next Chapter.

The counts from the Hollis probe were determined by the settings of the
window of the sing]e»éhanne] analyser. Two different ways of these settings were
made, the first we considered only the counts due to the gold peak of the
spectrum, but to get better statistical accuracy, the window settings(lower

disc.) was made wider to allow for a part of the aluminium spectrum to be

counted.
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The charge collected by the Faraday-cup is determined by the Beam
Current Integrator. The 10-turn Trip Level control was always set to
the value 100 (full-scale setting), then the number of times (clicks)
the integration circuit must recycle to provide the necessary integration
period, this was taken between 1 and 3 clicks. Now for determining the

amount of charge (Q) collected for a full-scale (100) Trip Level setting

Q = 100 x Electrometer Scale x No. of Clicks

where Q is in Coulombs. A negative potential of 300 V is applied to the

Faraday-cup for secondary electrons suppression.
4.4 Backscattered Spectrum

Since the Bi ions are implanted in low Z substrate (Si), therefore
the backscattered spectrum is composed of two distinct regions, a continuous
low energy part with a sharp edge due to scattering from Si and a peak at
much higher energy due to scattering from Bi.

In this work we are studying the backscattering from Bi,and therefore
a window width is set to accept only the counts from the Bi scattering (the
peak in the spectrum). In setting the window levels, it is important that
the Tower edge of the window does not include the part of the spectrum from
Si (since Si edge is not vertical and there is a tail extended to higher
energies) in the low energy side of the peak especially when the incident ion
energy is 0.5 MeV. Also we must be sure that the window always includes

the Bi peak for all the scattering angles since the Si edge moves towards

McMASTER UNIVERSITY. LIBRARY
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the higher energy side in a larger rate than the Bi peak for smaller
scattering angles (90?), so the separation between the Bi peak and the Si
edge becomes smaller and the Bi window might include some of the Si
counts if not set properly to account for this factor.

In the scattering experiments, we record the counts from Bi scatter-
ing corresponding to a certain amount of counts on Hollis probe. The
number of counts on Hollis prgbe is chosen so that the counts from both
the Hollis probe and the Bi target are large enough to give better statis-

tical accuracy.
4.5 Calculations Procedure

In this section we discuss how to use the data taken from the experi-
mental work and apply it to check the validity of the Rutherford law as was
shown in Chapter 2.

The number of backscattered ions (I) in Equations (2-12), (2-15) and

(2-16) will be those corresponding to a number of incident ions equivalent

12

to 1 uc on the Faraday-cup, i.e. I_ in Equation (2-12) is 6.23 x 10~ jons.

0
In our experiments, we have the number of backscattered ions (I]) for

a certain number of counts on the Hollis probe (12). From the Hollis probe

calibration, we get I3 counts corresponding to an amount of charge q uc on

the Faraday-cup. Therefore the number of backscattered ions (I) per 1 uc

is given by

1 I

I
=1 -3
1=y

> (counts/yc)
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The detailed calculations and results will only be given in its
final form in the tables of Chapter 5. We will follow exactly the proce-

dure explained in details in Chapter 2.

4.6 Sources of Error

As we did in the previous Chapter, we now discuss the different
sources of error during the scattering experiments.

(a) Energy of the Machine: as we mentioned in section 4.2, it is
very important to know the energy of the incident beam accurately. But
from the energy calibration of the machine and due to our choice of the
thin gold film calibration, we would expect an error of about +1% in the
energy used in the calculations.

(b) Hollis Probe: as mentioned in section 4,3, the Hollis probe is
used as a coupling between the Faraday-cup and the target for ion current
measurements. Therefore, the counts given by the Hollis probe should be
accurate. In the first calibrations we used the counts from gold scattering
only (gold peak), but this requires long counting time to obtain good sta-
tistical accuracy. We changed this scheme and made the window wider to
include part of the aluminium spectrum which gives good statistical accuracy
in short time. But as the beam continues hitting the Hollis probe, a carbon
spot is formed on the gold film and this causes a change in the counts
obtained. Therefore we often moved the Hollis probe to allow the beam to
hit a new spot. Another factor is that the gold film, which is about 700 R,
might not be uniformly deposited on the aluminium substrate and this will

cause deviations in the counts of the beam deviates a short distance from

>
¢



35

its actual path or when we move the foil to a new spot.

Another problem we noticed is that the zero setting of the Electro-
meter microammeter needed to be adjusted at frequent periods during the
run. This, if not adjusted, will cause an error in the amount of charge
collected. We expect that this might require readjustment during the
same count, which is impossible, and therefore may contribute some error
in the calibration.

The observed Hollis probe counts were reproducible to about +2% for
the 2 MeV ions. But for the 0.5 MeV case, it sometimes becomes more than
3%. To reduce these fluctuations, we made the Hollis probe calibration
before and after each scattering point and took the average of these differ-
ent calibrations as the correct counts for the Hollis probe.

We tried to replace this technique for ion current measurements by
building a copper screen cage around the target, and therefore we can
replace it instead of the whole system of the Hollis probe and the Farady-
cup. This screen is used to suppress the secondary electrons which resulted
from the stopping of the ions by the target (a negative potential of 300 V
was applied on the screen). But when this arrangement was checked against
the usual Faraday-cup system using He+ at energy 2 MeV, the region in which
the Hollis probe works properly, we found that the Hollis probe counts were
always less for the new proposed arrangement (target-Screen) by about 5%.
This difference is caused by the fact that, inspite of the negative potent-
ial on the screen, some of the secondary electrons escape through the open-
ings of the screen.

Therefore due to these problems in the Hollis probe, we expect an
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experimental error of about #2%.

(c) Charge Exchange: after the accelerated ions leave the magnetic
field they are composed of singly charged ions. But there is a certain
probability that some of these ions lose (or capture) an electron and become
double charged (or neutral). In the MeV energy range, the cross-section
of the ion to lose an electron is much higher than that to capture an
electron. The probability that an ion will Tose its single charge state

is given by

Pr(+ +) = ( t.) XN X2

“loss ~ “cap c

where P and ¢ are the cross-section to lose and to capture an

capt.
electron respectively, NCc is the number of gas molecules per c.c., and g
is the path length after the magnet. Since NCC is proportional to the
pressure of the system, therefore the operating pressure greatly affects

this phenomena.

17 16

The values of oy, . range from 107" to 107 cm2/ion, and the highest

value observed for oxygen is ~3 x 10710,

Generally o] oss is higher for
heavier particles.

We did an experiment for testing the pressure effect on Faraday-cup/
Hollis probe calibration using He+ and 0. The following table summarizes
the experiment done. The pressure is recorded in the target chamber.

From this experiment, it is clear that, unless the recorded vacuum in
the target chamber is better than 2 x 10-6 torr, we can expect a significant

error due to the charge exchange phenomena. Under our operating conditions

(s 2 x 10'6) this error is estimated to be <1%.
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Ions Pressure, (Torr) Hollis Counts/uc
He 5.8 x 1072 1588
5.1 x 107 1687
4.8 x,107° 1729
4.0 x 107° 1879
3.0 x 107 1837
2.8 x 1070 1887
2.4 x 107° 1902
2.1 x 1070 1833
1.8 x 1078 1891
1.7 x 1070 1927
1.6 x 1070 1909
1.5 x 107° 1886
o 2.2 x 107> 219560
| 1.2 x 107° 240433

(d) Target-Detector Geometry: 1in the evaluation of the absolute
scattering cross-section, we need to know the exact value of the solid angle
subtended by the detector at the target. This means the exact measure of
the detector aperture diameter (this was measured using a drill of known
diameter) and length of the detector arm (using a pencil-shape pointer
and measuring its length by a vernier caliber). In this work, we expect

an error of about *0.5% in each of these measurements.
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CHAPTER 5
RESULTS AND DISCUSSIONS

The complete analysed final results of the scattering experi-
ments are put in the form of tables. The analysis of the experimental
data follows exactly the theoretical framework in Chapter 2, and making
use of the calculations made in Chapter 3 for the energy lost by the
ions in penetrating the Si substrate. These tables are followed with

a discussion of the results we obtained and the final conclusion.
5.1 Results

The results are put in 3 tables, Table I for angular dependence,
Table II for the energy dependence, and Table III for the absolute scatter-
ing cross-section (experimentally and theoretically). Tables marked by
the Tetter "A" are for He' scattering from Bi, and those marked by the
letter "B" are for 0 scattering from Bi too. In Tables I and II, the
last column is the normalized counts (for angular dependence and energy
dependence respectively) per Bi imp]antgd ion. This column is done as
a check for the reproducibility of the results using different targets.

For these calculations, we used these values for the required
parameters:

(a) He'/Bi scattering:

M, =4 ’ 209

1

Z-l=2 ’ Z

. <
n

83



39

(b) O+/Bi scattering:

M, =16 > M 209

1

Z 83

1 8 - s 4

It should be noted that the scattering angles Tisted in the tables
are the laboratory scattering angles. It should be transformed to the

C.M. angles using Equation (2-1) before being used in the calculations.



Table I(A)

Angular Dependence, He+/Bi Scattering

40

Run &| D.V., | Scatt. | Backscattered Counts Counts/ | Norm. for| Norm.
Tar- MeV | Angle, | per H.P. Counts uc Ang. Dep | for Bi
get Degrees Density
No. (x10']5)
1,1 2.04 160 6616/10,000 on H.P. 78.93 72.35 36.75
140 7490/10,000 on H.P. 89.36 72.40 36.77
110 14869/10,000 on H.P. 177 .4 72.20 36.67
90 42706/10,000 on H.P. [509.5]* [85.62]* [43.49]* :
1.04 160 5367/10,000 on H.P. 295.1 270.5 137.4 |
140 5846/10,000 on H.P. 321.4 260.4 132.3 ‘
110 11577/10,000 on H.P. 636.5 259.1 131.6
90 28598/10,000 on H.P. 1572 264 .2 134.2
2,2 2.04 160 8282/100,000 on H.P. | [380.5]* | [348.0]* | [34.4]*
140 9598/100,000 on H.P. 443 .1 360.0 35.5
110 14997/80,000 on H.P. 886.6 360.8 35.6
90 18304/40,000 on H.P. 2180 366.4 36.2
0.51 160 5956/40,000 on H.P. 6859 6288 620.9
140 6590/40,000 on H.P. 7483 6062 598.6
110 °~ | 6715/20,000 on H.P. | 15186 6181 610.3
90 16321/20,000 on H.P. | 37529 6307 622.8
3,2 2.04 160 16727/80,000 on H.P. 393.8 361.0 35.65
140 19169/80,000 on H.P. 450.8 366.0 36.07
110 19004/40,000 on H.P. 896.2 364.7 36.02
90 23523/20,000 on H.P. 2224, 373.7 36.90
4,2 0.51 160 14879/80,000 on H.P. |[6351]* [5822]* [574.9]*
140 17055/80,000 on H.P. 7493 6071 599.5
110 17287/40,000 on H.P. |14959 6088 601.2
90 83518/40,000 on H.P. |37821 6356 627.7

*Anomalous counts



Table I(B)

Angular Dependence, 0+/Bi Scattering

41

Run & | D.V., | Scatt. |Backscattered Counts |Counts/ | Norm. Norm. for
Tar- MeV | Angle, per H.P. Counts uc for Bi Density
get Degrees Ang. -15,
No. Dep. (x10°°7)
1,2 1.00 160 11330/100,000 on H.P.| 2700 2775 274.0
140 12779/100,000 on H.P. | 3042 2775 274.0
110 20096/80,000 on H.P. 6047 2757 2id:3
90 24926/40,000 on H.P. | 15192 2859 282.4




Table II(A)

Energy Dependence, He+/Bi Scattering

42

Run & Scatt. |D.V., EO ES Counts/ Norm. for| Norm.
Tar- | Angle, | MeV MeV MeV uc Energy for Bi
get Degrees Dept. Density
No. (x10'15)
1,1 160 | 2.04 1.9889 1.9832 98.93 310.4 157.7
3,2 2.04 1.9889 1.9832 393.8 1549 152.9
1,1 1.04 1.0222 1.0144 295.1 303.7 154.2
2,2 0.51 0.5058 0.4969 6859 1693 167.2
1351 140 |2.04 1.9889 1.9835 89.36 351.6 178.6
iy 2.04 1.9889 1.9835 443.1 1743 172.2
358 2.04 1.9889 1.9835 450.8 1774 175.2
1ul 1.04 1.0222 1.0149 321.4 3311 168.2
2,2 0.51 0.5058 0.4974 7483 1851 182.8
4,2 0.51 0.5058 0.4974 7493 1854 183.1
1,1 110 | 2.04 1.9889 1.9827 177.4 697.3 354.2
252 2.04 1.9889 1.9827 886 .6 3485 344.2
3,2 2.04 1.9889 1.9827 896.2 3523 347.9
1,1 1.04 1.0222 1.0138 636.5 654.2 332.3
2,2 0.51 0.5058 0.4962 15186 3738 369.1
4,2 0.51 0.5058 0.4962 14959 3682 363.6
2,2 90 |2.04 1.9889 1.9806 2180 8552 844.5
3,2 2.04 1.9889 1.9806 2224 8723 861.4
1.1 1.04 1.0222 1.0110 1572 1607 816.3
2,2 0.51 0.5058 0.4928 37529 9115 900.1
4,2 0.51 0.5058 0.4928 37821 9186 907.1




Table III(A)

Abso]ute Cross-Section per Steradian, He+/Bi Scattering

Run & | D.V., Eo Scatt. ES Exp. cross- Theor. cross- % Deviation
Tar- Mev MeV Angle, section section [ Exp.-Theor.) x 100]
ﬁit Degrees MeV (x10'24)cm2/sr. (x10'24)cm2/sr. Theor.
Ty 2.04 1.9889 160 1.9832 10.03 9.787 2.43
140 1.9835 12.02 11.83 2.52
110 1.9827 20.41 19.98 2,10
1.04 1.0222 160 1.0144 37.49 37.40 0.222
140 1.0149 43.26 44 .80 -3.43
110 1.0138 73.25 76.41 -4.14
90 1.0110 133.02 136.8 -2.78
2t 2.04 1.9889 140 1.9835 11.73 11.83 0.026
110 1.9827 19.83 19.98 -0.73
90 1.9806 35.86 35.65 0.575
0.51 0.5058 160 0.4969 169.4 155.9 8.65
140 0.4974 195.8 186.5 4.97
110 0.4962 339.7 316.1 6.47
90 0.4928 617.2 575.8 7.20
< 2.04 1.9889 160 1.9832 9.70 9.787 -0.879
140 1.9835 11.80 11.83 0.571
110 1.9827 20.05 19.98 0.345
90 1.9806 36.41 35.65 2. 12
4,2 0.51 0.5058 140 0.4974 196.0 186.5 512
110 0.4962 334.6 316.1 4.88
90 0.4928 622.0 575.8 8.04

e



Table III(B)

Absolute Cross-Section per Steradian, 0781 Scattering

Run & |D.V., Eo Scatt. ES Exp. cross- Theor.cross- % Deviation
Tar- |MeV Angle, section section [LEKp.-Theor.) x 100]
get MeV Degrees MeV =24, 2 -24, 2 Theor.
No. (x10 = )em™/sr.] (x10 “")em™/sr.
1,2 (1.00 0.9835 160 0.9652 742.7 693.9 7.02
140 0.9664 873.1 813.9 1:2]
110 0.9638 1411 1331 6.03
90 0.9570 2506 2311 8.42

14
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5.2 Discussions

Here we discuss each item we have checked its validity alone, but
first we discuss the reproducibility of the experimental results we
obtained.

(a) Reproducibility: the extent to which our results are repro-
ducible can be shown in Table I. The only two energies for which we
repeated the runs are the 2 MeV and 0.5 MeV, with different targets for
the first and the same target for the second. Also we repeated some
counts in the last 3 runs for He' and for the 0" run. From the counts
we obtained (the 5th column of Table I, and the repeated runs), we can
see that the counts are reproducible to +2%, except for the anomalous
counts observed (counts in square brackets in all the tables). These
counts will be put in Table I only and excluded for the other tables.

(b) Angular dependence: As we see from the last two columns in
Table I(A), the angular dependence deviates from that predicted by Ruther-
ford law by about twice the reproducibility limit (2% ). The same per-
centage of deviation from the theoretical predictions are also observed
for the case of 0' (Table I(B)).

(c) Energy dependence: From the last two columns in Table II(A),
the energy dependence for the 2 Mgv,and 1 MeV deviates by twice the
reproducibility 1imit and about 2.5 times the reproducibility for the
0.5 MeV case.

(d) Absolute cross-section: In the last column of Tables III(A)

& (B), we evaluate the percentage deviation between the experimentally

2
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determined cross-section and the theoretically calculated cross-section.
As shown in this column, the average deviation is about 2%. But for the
0.5 MeV He+ and 1 MeV 0+ cases, the experimental cross-section is much
higher than the theoretical, both these cases are the largest impact
parameters collisions where we expect deviation from Rutherford Taw.
However, this trend is opposite to what would be expected due to the
effect of screening of atomic electrons. The reason for this opposite
condition might be due to multiple scattering with Bi atoms, but the
effect of multiple scattering should not be so high.

It should be noted that these validity estimates are only based
on the experimental data we obtained and no adjustment is done to account

for the different sources of error discussed in the previous chapters.
5.3 Conclusion

We examined the validity of Rutherford Law by studying the
scattering of He™ and 0 from Bi, both the angular and energy dependence
were checked and the results obtained do not vary much from the repro-
ducibility of the different runs. The magnitude of the absolute cross-
section was compared with the theoretical value. The experimental values
lie within the reproducibility limits (+#2%). This made us conclude that
the different sources of error have opposite effects on the overall counts.
The 0.5 MeV He™ and 1.0 MeV 0+ cases, the largest impact parameters studied,

showed higher values of the absolute cross-section than the theoretical

value (about 5% higher) which is contradicting with what would be expected

?
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from the screening effect of orbital electrons. More work is required
to find the reason for this contradiction.

The targets used were made by implanted 40 kV Bi ions in Si
substrate and therefore we obtained a uniform thin film of Bi for the

scattering experiments.
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ABSTRACT

As an introduction to a larger study.of ion bombardment phenomena
on metal surfaces, we apply the Monte-carlo technique to calculate the
range distribution and back-scattering of keV ions from metal surfaces.
Lindhard theory is used to calculate both the ion-metal atom scattering
and the electron stopping power. The program can be used over a wide range
of reduced energies (.1 <e < 30) limited only by the validity of the
Lindhard theory. A sample calculation of hydrogen scattering from alum-

inum is presented.
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CHAPTER 1

Introduction and Review

1.1 Introduction

In this report, a Monte-Carlo program is described and sample
problem demonstrated for the calculation of projected range distributions
and back-scattering of light Kev ions incident on amorphous solids. This
particular report is the beginning of a larger study of ion bombardment
phenomena on metal surfaces.

The Monte-Carlo method has been chosen to calculate range distribu-
. tions and back-scattering since,

(1) the Thomas-Fermi cross section can be conveniently used for the
reduced energy range 0.1 < ¢ < 30,

(2) electron stopping can be treated for v < Vi, using the Linhard
model,

(3) the "surface correction" for the range distribution is auto-
matically incorporated into the calculation, and

(4) both the angular and the energy distributions of the scattered
particles can be determined.

The main disadvantage of this‘method is that a large number of part-
icles must be followed to obtain sufficient accuracy.

After a brief review of the current work on back-scattering on Chapter
2, we discuss the particle interactions and the energy loss mechanisms. In
Chapter 3, the detailed calculations of the ions back-scattering will be

established using the Thomas-Fermi potential. In Chapter 4, we will put the



computer results of the calculations and the conclusion. The computer pro-

grams that were used will be Tisted in the appendix.

1.2 Review:

Most of the work done on ion bombardment of solids was devoted to the
range calculations, the spatial distribution of deposited energy, and the
sputtering calculations. Among the Monte Carlo calculations for the ranges
of energetic atoms in solids 0.S. Oen et al. (1963) used the Monte Carlo

technique to find the ranges using Bohr potential:

_» Eg  exp (-r/aB)
Vi) = £ —

~B
where

_ 2
EB = ZZ]Z2 e /aB

and the screening length is given by

1/2
- 2/3 2/3

ag = k aH/(Z] +Z, )
where ay = the first Bohr potential (0.529°A). In the above Z] and 22 are the
atomic numbers of the primary and struck atoms, respectively. The factor k
which was introduced as an adjustable parameter; this was taken as unity. Also

0.S. Oen et al. presented in (1964), Monte Carlo calculations using the Thomas-

Fermi potential:

Vip(r) = (Z]ZZeZ/r) o1p (r/ag)



where ¢TF(x) is the Thomas-Fermi screening function, the screening length
ap was represented by

2/3
= 1/2 1/2
ag = 0.8853 aH/(Z] ¥ 22 )

They employed the Sommerfield approximation to the Thomas-Fermi screening
function:

' %y e
¢TF(X) = {1+ (X/OL-I) ]

where o, = 122/3

s Qp = 0.8034, and ag = 3.734 are the values of constants
determined by March. In this paper they compared their calculations for

-both the Bohr and Thomas-Fermi potentials and found that the experimental
results lie between the calculated results of the two potentials, but they
found that the thomas-Fermi potential gives a somewhat better over-all descrip-
tion of the true interatomic potential.

G.M. McCracken and N.J. Freeman (1969) derived an expression for the
back-scattering of Kev hydrogen ions in solids by assuming that the incident
ions are scattered in a single wide-angle collision and that the energy loss
in the solid is due only to interaction with electrons. They assumed also
that Rutherford scattering applies to the collision of interest and used the
differential scattering cross-section

3 ® 4 8
e amee (

Lot ) cosec’ (=) du

o(E,0) dw = 16 5

where E is the ion energy and o the scattering angle. They rendered the

deviations from experimental results due to the fact that the incident ion may



undergo multiple scatterings rather than a single scattering event.

A. Van Wijngaarden et al. (1971), studied the energy spectra of
Kev back-scattered protons. The model used to derive the theoretical energy
distribution of projectiles back-scattered from an uniform film was: each
back-scattered projectile is scattered at an angle 8 in a single hard
nuclear collision. During its travel from the film surface to the scattering
site and back, the projectile gradually loses energy in many electronic
collisions and in small-angle nuclear collisions, but its direction of motion
is not significantly affected. Also, there was a difference between theory
and experiment on the low-energy side, and they referred this difference,
especially for thick films to multiple scattering in nuclear collisions and
from non-uniformities in film thickness.

The moments method using an Edgeworth expansion was discussed by
J. Bottiger et al. (1971), where they used the penetration profile F(x)
as a function of depth x in an infinite target to calculate the reflection
coefficient R which was defined as the fraction of the beam that has a nega-

tive penetration depth, i.e.

They also included connections to the calculated values due to electronic
stopping and surface effects. They obtained satisfactory agreement between
measurements and calculations.

A Monte-Carlo technique was used by K. Guttner et al. (1972) for calcula-
tions of the back-scattering of high-energy heavy ions from metal surfaces. Their

fundamental method consisted of following single particle histories in metal



films of known thickness. The atoms in the film were assumed to be in no
regular order, an assumption being satisfactorily fulfilled by polycrystalline
foils. Each ion traverses several layers without any reflection but with
continuous energy losses by excitation and ionization of the atomic electrons.
At the end of each of these paths the particle suffers a deflection interact-
ing with only an film atom at the moment. The length of the paths and the
scattering angles were selected by random numbers applying mere classical

formulaes. The potential used was:
exp (-r/a)

where the screening parameter a was given by Bohr as

1/2
212/3 + 222/3) , a, = 0.529 °A

a = ay/( H

on the assumed potential they fitted a screened Coulomb potential,

where EC and aC are constants.

Satisfactory agreement with known experiments was obtained.
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CHAPTER 2

Interactions Between Atoms

2.1 Introduction:

We are considering in this work two types of interactions between
the incident particle and the target atom. The first one is the elastic
scattering collisions with atomic nuclei and all the particle deflections
from its original path are considered to be due to this interaction process.
The second is the inelastic interaction, or inelastic energy loss due to
excitation of atomic electrons, this is a continuous interaction process and
predominates at high particle energies. Due to these two interaction pro-
cesses the projectile will eventually lose its energy and suffer deflections
from its path. We will consider the elastic collisions in more detail and
for the electronic energy loss will make use of the work of Linhard and Scharff

(1961).

2.2 Elastic Collisions:

We assume that collisions between the incident particle and the lattice
atoms can be treated classically by isolated two body events, then our problem
will be the complete determination of the trajectory of the projectile when
acted upon by the interatomic force between the projectile and target atom
with which it is in collision. The trajectory of the projectile may be
depicted as in figure 2.1. In the absence of any force of interaction F(r)
between the partners (primary and struck or target atom) the primary would pass
within a minimum distance p, known as the impact parameter, from the struck

atom and continue undeflected.
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Initial location of target M2

atom

Fig. 2.1: The scattering of a projectile by a target atom

However, because of the force F(r), where r is the distance between the
partners), the primary is deflected through an angle y measured in the lab-
oratory system, and the struck atom moves away at some angle x to the original
direction of the primary. Energy is patently transferred froﬁ the primary to
the struck atom and the amount of energy transferred or remaining with each

collision partner can be calculated.

2.2.1 Energy Transferred and Projectile Deflection Angles:

In this section we are going to put the equations governing the inter-
action process, the details of the derivation can be found in "Ion bombardment
of solids, Carter & Colligon". Figure 2.2 shows the different velocities in

both Taboratory and centre of mass systems.

Fig. 2.2: Velocity vector diagram in the centre of mass system



obtain
2 2 [1 + A2 + 2A cose6]
Va = ¥ 5 (2.1 a)
(1 +A)
2 [2 v0 sin e/Z'J2
Vb = T + A (2.] b)

where A = MZ/Ml
It is evident that the relation between the scattering angle y is

the 1ab. system and 6 in the C.M. system is

V, sin o .
= 1 - _Asing
tan ¢ = Vc + V] cos6 1 + A cos 6 (2.2 a)
and x = %—- g— for the struck atom in the lab. system ) (2.2 b)

The energy lost by the primary in the collision, T, is equal to that
gained by the struck atom, and from equation (2.1 b) we can get,

2 2

2 M2 Yo sin~ 6/2
T = > (2.3 a)
(1 +A)

or in terms of the primary energy Eo’

T=(1-a) E, sin® 0/2 (2.3 b)
where

_ A-1.2
| a = [A T ‘]]

In a head-on collision between partners (x = 180°) i.e. the struck atom

moves parallel to the original direction of motion, & = - 180° and the motion



of the primary is reversed. The maximum energy transfer in such a collision

is thus

4 M]MZ

(M] + M2

T,= (1 -a) E = E (2.4 a)

2
) 0
and therefore

T=T_ sin® e/2 (2.4 b)
The minimum energy transfer, for a collision at grazing incident is zero.
But for our later calculations we will consider a cut-off energy as the min-
imum energy transfer to overcome the singularities that appear in the integrals
for the cross-sections as will be seen in Chapter 3.

The energy E2 retained by the primary in a collision of deflection

angle & in thus
E, = 1 - (1 -a) sin® 0/2] (2.5 a)

The deflection angle in the lab. system can be found from the vector

resolution in figure 2.2, which leads to the relation

E2 1/2
cos y = 1/2 {(1 + A) (£

E._1/2
+(1-A) () (2.6 a)
0 2

or in terms of the C.M. system scattering angle,

cos ¢ = A cos 6 + 1

/2 (2.6 b)

[A2 + 2A cos 6 + 1]



= 10 =

Now, how can we calculate the scattering angle in the C.M. system
for a given interaction potential between the incoming particle and the struck
atom. The interaction force between collision partners F(r) can be thought of
as composed of two terms: one attractive, which is of importance only at
large interatomic distances and represents the cohesive‘forces which bind the
crystal, the other which is repulsive dominates over the close interaction
distances with which we are concerned. The repulsive force increases rapidly
with decreasing internuclear distance. If the interatomic potential is
represented by V(r), therefore F(r) =-%F {V(r)} increases rapidly at Tow
separations between the forces centres. G. Carter and J.S. Colligon present

the expression for the scattering angle & in C.M. System which is

u

0
6 =m - 2p [ du (2.7)
0 [1T - Méﬂl - p2u2]
R

where p is the impact parameter, u = %3 and ER is the primary energy measured
with respect to the centre of mass, i.e.
u A

BB, BT R K (2.8)

for a real primary energy Eo’ and Uy is the value of u for which the denominator
of equation (2.7) vanishes.

In this work we are considering the interaction potential V(r) is that
of a Thomas-Fermi potential, which is given by Oen and Robinson (1964). We plug

this potential in equation (2.7) and solve the transcendental equation,



for u, and then perform the integration numerically. But for computation
convenience and saving computing time we use another approach to calculate

the scattering angle in the C.M. system depending on the use of random numbers
for determining the fraction of maximum energy transferred and from the rela-
tion between the scattering angle 6 and the energy transferred, equation

(2.4 b), we can determine the scattering angle. This will be shown in Chapter

3.

2.2.2 Thomas-Fermi Cross Section:

The differential cross section for energy transfer for a Thomas-Fermi

interaction potential, Winterbon et al. (1970), is given by,

do = ral 2(*1;/2 £(£1/2) (2.9 a)

where

t=e T,

Ty = vEs

E = initial energy,

T = recoil energy, 0 < T < Tm’
Y =4 WM/M, M),

M] = mass of incident particle,

(2.9 b)

M2 = mass of struck atom,
M2E Z]ZZe -1

- G )




< 1P «

N
n

1 atomic number of incident particle,

N
1]

9 atomic number of struck atom,

Qo
n

screening radius,

e
f(t]/ ) is a function that depends on the assumed form of the

screening function

We shall follow Linhard et al. (1968) and use the screening radius

a = 0.8853 a_ 7-1/3 (2.10 a)
where
213 _ Z]2/3 i 222/3
Y s " (2.10 b)
ao = h"/me” = 0.529 A

The function f(t]/z) has been calculated for the collison of neutral
Thomas-Fermi atoms. The following analytic approximation will be used,

-3/2

172y = 1,300 £1/6 11 + (2.618 2/3)2/3; (2.11)

f(t

we have from (2.9 b),

t = €2 T/Tm = szx

where x = T/Tm,and hence we get

dt = €2dx

Substituting back in equation (2.9 a), we have

2

2
do:-"-a ..__e__dl(._
2 63 X3/2

f(X,e)
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where ; 1/6
f(x,e) = 1.309 (e”x) 377
[1 + (2.618 <¥/3 x2/3)2/3,
Therefore,
do = ]'209 ﬂaz dx 372 (2.12)
e2/3 x4/3[] + (2.618 54/3 x2/3)2/3]

Now, to get the total cross section, we integrate over all possible values of
X, i.e., all possible values of energy transferred.
Since T varies from 0 to Tm’ therefore x must vary from 0 to 1.

Hence,

2 dx (2.13)

o = 0.6545 ma 377
E2/3 x4/3 4/3 X2/3)2/3]

1+ (2.618 ¢

As we see the integral in the R.H.S. does not depend on the specific
collision partners, and we will perform it first for different values of the

reduced energy €, and call this integral Y(c)
1

Y(e) = dx (2.14)

377
e2/3 31301 4 (2.618 M3 x2/3y2/3;

We notice that at the Tower limit of the integral we will have a
singularity. To overcome this singularity we determine a cut-off energy by
assuming that the potential tends to zero at RC which is the atomic radius,
instead of infinity, a reasonable value of x that gives resonable results is

taken as Xmin = 0.001, i.e.



= . =

Y(e) = dx (2.15)

372
213 4301 + (2.618 &3 x213)2/3,
0.001

Now, since the energy E and the reduced energy ¢ are related as
shown in (2.9 b), therefore we can find the values of E which correspond
to the calculated values of Y(e), in other words, we can obtain YI(E). But
these values of Y.(E) will differ from Y(e) in the sense that it depends on

the collision partners.

2.3 Electronic Energy Loss:

At Tow energies ionic collisions with atoms are largely elastic. But
at higher ion energies the electronic excitation becomes increasingly import-
ant. The rate of loss of energy to electrons has been calculated by Linhard
and Sharff (1961) using a statistical model, and a simple analytical form has
been obtained for the range of velocities v < Vs (where Vo is the velocity of
an electron in the first Bohr orbit). In the case of hydrogen ions moving in
solids, the electron loss process is dominant above energies of 1 Kev (while
¥ o=y, at 25 Kev). However, this does not preclude the possibility of a small
number of scattering collisions, and where such collisions give rise to large
angular deflections then reflection or back-scattering of incident ions can
occur.

The rate of electronic energy loss that will be used in the forth-
coming calculations is that given by McCracken and Freeman (1969) based on the
theory of Linhard and Scharff.

dE _

dE 1/2
dx-'KE

(2.16)
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where K is a constant given by,

1/6 L1,

2/3 2/3
(Z] + Z2 )

172
8 nNezao L) (2.17)
E

3/2

where N is the density of ions in the solid, a, the Bohr radius and El is
the energy at which the ion velocity equals the velocity of an electron in
the first Bohr orbit, this equals 25 Kev for hydrogen.

From equation (2.16) we obtain the energy of the ion for any distance

x travelled within the solid,

E(x) = (/E, - 5K x)2 (2.18)

where E0 is the initial ion energy.

We see from equations (2.16) and (2.18) that the electronic energy loss is
a continuous process throughout the path of the particle, whereas the nuclear
collisions are not continuous and happen according to certain interaction cross

sections, so in the next chapter we will establish a model for the two energy loss

processes.
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CHAPTER 3

Projected Range and Back-scattering

3.1 Introduction

This is the major chapter in which we will develop a model for
calculating the back-scattering of hydrogen ions. Here we consider both
energy loss mechanisms, namely, electronic energy T1oss and nuclear collisions
energy loss. The main idea is to develop a scheme that takes into account
the continuous energy decrease of jons due to e]éctron interactions, and
consequently the continuously changing nuclear collision cross section. We make
use of the random number technique as will be shown. The nuclear collision

cross section is that for a Thomas-Fermi potential.

3.2 Calculation of Nuclear Collision Positions:

The usual way to find the nuclear collision Tocation is the use of the
mean free path concept. The mean free path, which is the average distance
between interactions, is the reciprocal of the macroscopic scattering cross
section which is energy dependent, and so will be continuously varying in our
case due to electronic energy loss. The alternative scheme which will be
used in our calculations is developed as follows:

From the continuous energy loss due to electronic collisions, we have

E(x) = (VE, - ;_-K X) (3.1)

K is the constant defined in Chapter 2.



w T =

The ion will move in the solid until its energy reaches a minimum value,
this value will be taken 25 ev which corresponds to the threshold energy
for atomic displacement, at this energy we consider the ion to be absorbed.
If we assume that the distance at which the ion is absorbed is Xiaa which

corresponds to ion energy E = 25 ev. The probability of at least one

min
nuclear scattering occurs is PN and is given by,

xmax

Py=1-exp{- N o(E) dx } (3.2)

where N is the atomic density of the target material, and o(E) is the scattering
cross section as a function of energy (and consequently a function of distance).
This probability varies from 0 to 1, and so if we choose a random number q,
therefore, if q 2 PN’ no nuclear scattering will occur and if q < PN’ we will
have at least one nuclear scattering. Hence, the probability that we have a

nuclear scattering at distance x (< xmax) is given by,

X
qg=1-exp {- [ N o(E) dx'} (3.3)
0
Since,
*max , . : *max ;
N o(E) dx = N o(E) dx + N o(E) dx
0 0 X
therefore equation (3.3)becomes,
Xmax *max
q=1-exp{ - N o(E) dx' + N o(E) dx'}

0 X
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. Xmax Xmax '
g=1-exp { - N o(E) dx }exn { N o(E) dx } (3.4)
0

Therefore, substituting from equation (3.2) into equation (3.4), we have

X

max
]
qg=1-( - PN) exp { N o(E) dx } (3.5)
X
From which we get,
Xmax
N o(E) dx = In [+=%] (3.6)
N
X

But we have for the continuous energy loss due to electronic collisions,

dE _ 1/2
T =- KE

Therefore, changing variables in equation (3.6) we obtain

E(xmax) . i
_ N 0(? ) dE - 1n [] - g ]
K(E )1/2 1 - PN
E(x
i.e.
E(x) " ; ' ;
o dE -
e T AR o

min
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If we put the integral in L.H.S. of equation (3.7) by the expression R(E)

Therefore,

Now, we can rewrite equations (3.2) as

E .
0 ' 1
Py =1 - exp 1 - %7%/3—5} = 1 - expl - R(E,)} (3.9)

Em1‘n

and going back to equation (3.5) we get

g=1-(1 - PN) exp {R(E)}
=1-exp {- R(Eo)} exp {R(E)}
=1 - exp {R(E) - R(E,)}
Therefore
R(E) - R(E) = Tn [1 - q] (3.10)

To summarize the equations that will be used in the calculation we find

that we will deal with the following four equations,

&
2

2

E(x) = (/E; - =K %) (3.1)
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E
i N o(E ) dE
R(E) = ; (3.8)
() TR
Em1'n
PN =1 -exp {- R(EO)} (3.9)
and
R(E) - R(Eo) =1n [1 - q] (3.10)

Now, we can set up the steps to be fellowed for determining the nuclear

scattering positions:

1. We tabulate values of R(E) for different energies .from equation (3.8)

2. We determine PN from R(Eo), equation (3.9)

Choose a random number q and check q < PN

3
4. From equation (3.10) we find R(E), and consequently E(x) from the

first step.

5. Using equation (3.1) we can determine the position of nuclear

scattering x after knowing E(x) from the fourth step.

3.2.1 Tabulation of R(E):

For the tabulation of R(E) for different values of energies we have to

evaluate the integral,

This can be done in two steps, the first is to evaluate the cross section o(E )
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for different values of energies, this was done in (2.2.3), and then plug

these values of o(E ) in the above integral to evaluate R(E).

Hence, the integral for R(E) takes the form,

E
2 ' '
(E )
Em1'n
g [ _ 1 [ 1/2
if we put F(E ) = Y(E )/(E )''°, therefore
E
2 ! !
R(E) = 05 me N F(E ) dE ‘ (3.11)
Em1'n

Now, we can calculate the values of R(E) for different values of energies.
So, we can go through all the steps required to determine the nuclear collision

lTocation.

3.3 Scattering Angle in the C.M. System:

To calculate the scattering angle in C.M. system g, we have to evaluate
the integral in equation (2.7)

u
0

du

6 =m - 2p
(1 - WUl _ 8
R

and as we saw, this requiresthe solution of a transcendental equation to evaluate

the value of the upper limit of the integral Uy Since, for the Thomas-Fermi
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potential we will not be able to evaluate the integral analytically, there-
fore we will suggest another alternative scheme for the calculation of o.
We have the differential scattering cross section for energy transfer

in equation (2.12). Since the energy transferred T varies from T (the cut-

min
off energy) to Tm (the maximum energy transferred) and consequently x varies

from x to 1. Therefore we find that the ratio

min
(T

do
Tmin
(T
M do

Tm1’n

will vary from zero to 1. Choosing a random number q which is uniformly dis-

tributed from zero to 1, we find

(T
dg (3.12)

Tm1'n

[

Tm

J do

Tmin

The denominator of this equation is actually the total scattering cross

section. Equation (3.12) can be rewritten in the form,

X
. dx

q Y(e) =

213 312 11 4 (2.1618 M3 «213)2/33/2

0.00

(3.13)

The integral on the R.H.S. of equation (3.13) is evaluated for differ-
ent values of x. So, according to any random number q we can find the value of

X which satisfied equation (3.13). We assumed that,
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x = T/T

and therefore by using equation (2.4 b), we find that

sin? (8/2) = x (3.14)
from this equation we can find the scattering angle in the C.M. system 6.

3.3.1 Nuclear Scattering Collisions in the Lab. System:

\
D

4

o

"
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a ha { /‘\"
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. ] — ‘lb] ‘
Fig. 3.1: Ion transport inside the solid

In figure 3.1 we represent two collision processes. The particle
begins at point 1 (at the surface) with energy EO. By calculating the location
~of first collision as explained before, we can determine the energy of the
particle before and after collision at point 2. The angular deflection vy,
from the original direction is determined from equation (2.6 b). Then we
repeat the same steps to determine the second scattering event at point 3. At
this point we have, in addition to the deflection angle Yoy an azimuthal angle ¢

'

which varies from 0 to 2nr. Therefore by choosing a random number q we find

that the angle ¢ is determined by,

¢ =q 2 (3.15)
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To find the projected range of the particle we evaluate the projection
of each traversed distance on the original direction. So the projected range

before the second collision is given by, d, where

d = d] + d2 cos Y , (3.16)

and before the third collision d 1is given by,

d = d] + d2 cos gy * d3 cos a (3.17 a)
where the angle o is found from the equation,

COS a = COS Y; COS yp + sin yy sin Yy COS ¢ (3.17 b)

For computational work we put ¥y T o before the third collision and

proceed in the same previous way.

3.4 Description of the Complete Computation Work:

This section may be a summary of the whole work described before, and
in addition to this we describe the calculated parameters and method of cal-
culations.

First for the given initial energy E0 we determine the first nuclear
collision location, and evaluate the energies before and after the collision.
In the same way we proceed to the second and third collision, ... etc. At
each point we calculate the projected range from equation (3.17 a). Also, at
each location we check whether the projected range is negative or positive, in
the former case, the particle is back-scattered and in this case, we determine

the back-scattered energy and back-scattering angle that the outgoing particle
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makes with the original direction. To find the back-scattered energy we first
determine the distance from the last scattering to the surface, DS, if we

assume that we are considering the scattering number J, therefore
DS = d(J-1)/cos 2 ' (3.18)

and the back-scattered energy will be given by equation (3.1), where x = DS.
If, on the other hand, the projected range is positive we check the particle
energy with a certain minimum value, taken in our work as 1 Kev, this is done
Jjust for saving computer time. In the exact case, we must consider all inter-
actions until particle energy reaches minimum value, namely, 25 ev.

After finishing the history of the first particle we repeat the same
procedure with the remaining particles, with the same initial conditions, and
therefore will be able to find the average number of back-scattered particles
and their energy and angular distribution.

Also, the same work will be repeated for different initial energies to

discuss the effect of initial particle energy on the ions back-scattering.
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Chapter 4

Sample Calculation '

4.1 Results:

In this chapter the computation results are listed and plots for the
outputs are also given. In these calculations, we are considering two differ-
ent cases for the initial energy of the incident particles, namely, 5 Kev and
10 Kev hydrogen ions and the target material is aluminum.

For the calculation of reflected particles we consider collisions until
the projected range reaches 500 Angstroms for the 5 Kev particles and 1000
Angstroms for the 10 Kev case. Also, we are considering the whole range of
particles for the calculation of the projected range for the 10 Kev jons to
be compared with the work of Schiott (1966) as a check for our work. In both
cases, we are considering interactions only for energies greater than 1 Kev.
These approximations are made only to save computer time, since each run takes
a considerable amount of computer time.

The computer programmes that were used in this work for calculating

Y, R, reflection, and projected range will be listed in the appendix.
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Initial Energy: 5 Kev

‘ Number of Particles: 1000

Particle Number Back-scattered Energy, Kev Back-scattering Angle,
Degrees

4 1.69 33.8
20 0.56 66.9
83 1.14 53.6
110 1.65 38.9
146 0.17 51.5
191 1.42 ' 48.9
284 1.15 21.8
314 1.94 47.9
323 0.06 81.1
333 1.71 50.8
389 1.29 45.0
442 1.34 32.4
464 1.17 _ 79.3
476 2.20 58.9
559 1.28 11.4
567 1.61 44.8
575 1.43 44.7
607 2.44 37.4
680 2.81 51.2
705 1.99 46 .6
766 1.84 39.0
863 1.26 6.6
996 3.19 80.8

23

Number of back-scattered particles

Reflection coefficient =2.3%
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Initial Energy: 10 Kev
Number of Particles: 1000

Particle Number Back-scattered Energy, Back-scattering

Kev Angle, Degrees
4 1.30 26.2
152 2.18 57.6
335 2.39 36.6
458 1.15 50.2
684 1.12 5.2
689 3.27 70.3
703 2.67 64.8
794 1.28 47.1
803 1.19 69.2
925 1.49 46.4

Number of back-scattered particles = 10

Reflection coefficient 1.0%
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Number of back-scattered particles

Number of back-scattered particles
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E =5 keV
i«

Number of particles traced = 1000

Y

Back-scattered Energy, (keV) [greater than 1 keV]

E0 = 5 keV

Number of particles traced = 1000

IS

Y

20 40 60 80 100

Back-scattering angle, (degrees) for particles with energies > 1 keV
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Number of back-scattered particles
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E0 = 10 keV
Number of particles traced = 1000
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Back-scattered energy, (keV)

E0 = 10 keV

Number of particles traced = 1000
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4.2 Conclusion

A computer code utilizing three random numbers for collision
distance and scattering angles (@,+) has been.developed for Tight ion
penetration and scattering on random targets. The average projected
range and straggling are in good agreement with the results of Schiott
(1966). However, we have very approximate statistics here since only
200 particles are considered.

The computation time utilized on the CDC-64OO machine is large.
We have approximately 10 collisions computed per sec. We could increase
the collision computation rate if we fitted the tables of "R" to a poly-

nomial exapnsion.
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BACK-SCATTERING ANGLE IN DEGREES

WOM MDD e Z O

TERING ANGLE IN C.M. SYSTEM

GO To 180
0)

N2, 1
séat
ORTIONAL TO INTERAGCTION RATE

1.)

T ooeoen-O<i=>K
FOOOOITOIXYIH O »

(((l\~

NULWWdDomO DZn
e b b e o e L e 30 O
o L L L S PE ||
XYY EDUOI T it
DZIIZTOHOOOXE >

- ial

-] O«
i © 0o ¢ 0 o
POOOOCODw
Do-NNI
el 1l em oo
O N M
M SSDS=MIN
b ] Y e —
KX OOO XXX

|

i

aman

w -

i -

3 -~

! >

-

L J

K

M -

e e > =

> bt >

OO0 -

NN |

/)) x
P o~ Lol

Pt - T

MM X D~
M- W
DC D o~
| I B oV PN -
P~ N
b B oI I U }

MW - T
e S et L A
PL X X O X N >
PN L~ )
00— X S~
MOUM
KX XO~ DI~
DOOOXXO>

|

GO TO 140

<Y (1))

1)
"~
=i

W
()I(
e ZOoX N>
Y b O\ 1]

XLoXUysboyYII))

DM I -

FA
{ -
S
b
o -
5 .
-~ &
-
o ]
- x>
-
o - |
w >
oy
M Ze
~ INX Dw
-~ 0O W
- N+ —
N e~ -~
> v N
e I 0O

Ww =~ X
dD) Tempi
e ZZOXMHW>

Ne=Z I Jd-=

o
N
-4

o
= (=]
i (=]
N~
(@] -
- -
o
o ~
w -
N
(=]
i
wn
-
-~
0~
-
Wy ~w

D b e D b e e
PO = v o 5K o DX O b o 5K DO b P O e D 3K [ 3K
N~Z Hi -
UL OC~ DI~ L OO~ DI~ 2L OO Ok D=
RHOOXXO>XHOOXXO>XHOOHOXK L

N~Z ~ZHn

cOoO O
MmMI oo

- NN

t

!

XD =X(I=1N 7 (Y(I)=Y(I=1)) *(RI=-Y(I=-1)}

) e

LIS

N
(=]

~




=55 =

o
w
[+ 2
[+'4 !
w 1N
(7' ° i
- b i {
<t b~ H {
[+ 4 . : )
g e i
g = \
(L] =9 : - i
o e (%] !
w 1) { L] !
= s -t
L - L12] -~
-t O o
= 7] - O
= - (@] wn
= & - e X
Lo -k w <
> N o *» W
<< o o - wad ¢
x % | e N O i
w N t % p= |
[ - - » =
o - o (= §
[y . N~
ZnN (' - -~ o
omn | < P~ N~
- Llaud e % U v e -
-0 i\ W % om<I = °
O ~ ey Z0 o< o * i
< NS et 1> +— |4
O - [« } oL e X
wo wi+ eO —wJxY O M <
~ o TV oW -gl) O Z -
7] ~ L =z ~ 1 <Z ol %
- Z— 0 < ~ eoly) = M e~
o <<lUM N °~ Z —_ &
- e TN\ o N } I~ L W’R b
> T et e ° 6 MH I~ Jd HODX% [+ 4
< o ¥ N0 —HWHO O < e QON(I a o
TWHXD o2l o el 3_:3: i e ST -0 i ol
—ZAWNND aOlLu)~ O o~ (D << % -~ nD
N el ey ¥ ZZV Yib X+ o O e b4
TTAOA.:. ~AO o owOMMOWRILZHO| JN [} vl o
(FTTTMOITQQIT WA ZW=lIu il D e
Nl UM () s mn [15ad =N~ Z

U TOTHLWLAOLLAORN OAHHZLOKNY I X IOO
L= O =IO WO WWIWZHOD <A YA DVO

) ~ Mm o - MM™M : o
L TS PTG .1 u =
~ . ” i x

) © W

w

- |

(&)

=

L= ¢

(8]

P4

-

oz

W

[,

[,

<

(&

-~

I A |

L 4

-~ O

*» <

Hn o

N *»

w >

4 X

O wn

- o
b O =
Z e M
<< N O~
a 9« -
w »

o | -

~ w *

- S ¥Xon

o - W >
. o [ ]
wn | - X =
[V << W O
- O Z
" " w wm
i X —
S w ¥ o 49
M o O w g
(34 I < & O
oul po L o« B TV K & )

[ = =z
-l w - W
Lol w o « O

o.Jd - (5]
S O o n &
L el ) W
N =00 Y o
L ian ] YeXmd X
>4 NZ a~aaaNDOIS D
o4 WA NMZ ¢« Z
S o % ¥ w»
pmam T T & e ad o -

PP L DN XD L) X e 3K

e LN\ WO NN O INN LN

e Z b bbb e e b e @

o L bt T T <L <L T T T <L O <L
ST x>0 2 3 2> b x> 2034 T > 24 .
HHZY Y Y OYXY sXOo0
YOoOOOOOODOOC* CH—Z
Fzowlwuwl FFFFFSE
O=ENMINONODN

=) Lo

o

i

m

—




B -

- —

1

t

- i

-~

T i

* {

® H

N i

> i

x |

— A i

>~ - H

- s {

> T8 ;

- < i

o - i

> > v

= + :

> > }

- ~ !

ot = i

> b= | i

- w !

P * }

- L4 !

w 5 !

-~ B |

7] -~ i
a >
= -
- <
1] - e |
(] D
WS 2 -

Z o~ g 3 §

s | e |

X Jdellr-id+D

>X—~0
SHin20nnwz
NI X >>ZO XKW

-t

e /34))¥¥{(2:/30)

OO U~
Znnn
D20-HUM
W OXXX




10.

- 857 -

References

. Bottiger, J.A. Davies, P. Sigmund and K.B. Winterborn, "On the

Reflection Coefficient of Kev Heavy-Ion Beams From Solid Targets",

Radiation Effects, Vol. 11, (1971)

. Carter and J.S. Colligon, "Ion Bombardment of Solids", American

Elsevier Publishing Company, Inc. (1968)

‘ Gﬁttner, H. Ewald and H. Schmidt, "Monte-Carlo Calculations of the

Back-scattering of High-energy Heavy Ions from Metal Surfaces",

Radiation Effects, Vol. 13 (1972)

. Linhard and M. Scharff, "Energy Dissipation by Ions in the Kev Region",

Phys. Rev., Vol. 124, No.1, (1961)

. Linhard, V. Nielsen and M. Scharff, "Approximation Method in Classical

Scattering by Screened Coulomb Fields (notes on Atomic Collisions 1),
Mat. Fys. Medd. Dan. Vid. Selsk., Vol. 36, No.10 (1968)

. McCracken and N.J. Freeman, "Back-scattering of Kev Hydrogen Ions
in Solids", J. Phys. B (Atom. Molec. Phys.), Ser. 2, Vol. 2 (1969)

. Oen, D.K. Holmes and Mark T. Robinson, "Ranges of Energetic
Atoms in Solids", J. Appl. Phys., Vol. 34, No.2 (1963)

. Oen and Mark T. Robjnson, "Monte-Carlo Range Calculations for a
Thomas-Fermi Potential", J. Appl. Phys., Vol. 35, No.8 (1964)

. Schiott, Kgl. Dansk.V1denskab—Selskab Mat.-Fys., Medd. 35, No.9
(1966)

. Wijngaarden, B. Miremadi and W.E. Baylis, "Energy Spectra of Kev
Back-scattered Protons as a Probe for Surface-Region Studies",

Can. J. Phys., Vol. 49 (1971)



- 58 -

¥ K.B. Winterborn, P. Sigmund and J.B. Sanders, "Spatial Distribu-
tion of Energy Deposited by Atomic Particles in Elastic
Collisions", Det. Kong, Dans. Vid. Sels. Mat-Fys. Medd. 87,
14 (1970)



