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CHAPTER |

INTRODUCT ION

In the past decade extensive research has been madé into optimal

control policies for catalysed processes where the catalyst activity

decays.

Thié decay may result from poisoning or sintering. The latter,
the sequel of high temperature operation, creates a reduction in the
surface area and number»of active sites within the catalyst. Poisoning
may be of an irfeversible or reversible chemical form or it may be
caused by a physical coating of the catalyst's internal or external
surfaces. Frequently a decay model is assumed in which the rate of decline
in the acfivify is dependent only upon the temperature and activity and
not upon the ambient component éoncenfrafions. This assumption has been

Justified by the research of Szepe (I).

With such a model the determination of an optimal policy is
complex as the activity of the catalyst at a point depends upon the
previous history of that catalyst. The policy must therefore be set

with regard both to present and future profit.

Previous work has been concerned with reactors of a fixed bed

length:
Jackson (2, 3, 4) examined the optimal temperature
profile in a tubular reactor with a reversible
exothermic reaction but obtained only a numerical
solution. |



Crowe and others (5, 6, 7, 8, 9) have investigated
reactions in single and multi-bed isothermal reactors
employing Pontryagin's Maximum Principle.

Ogunye and Ray (10), applying first order variational
analysis,derived a weak maximum principle for the dis-
tributed parameter (non-isothermal) case. Therien (1)

has applied the strong maximum principle of Degtyarev

and Sirazetdinov (13) to that same situation.

The problem to be examined here has a different emphasis. |Itfs
essence may be simply stated: if a reactor is filled with a catalyst,
whose activity decays, then the catalyst towards the reactor exit may
initially effect little conversion whilst sustaining a significant loss
in its activity. |t may thus be advantageous to delay the addition of
this catalyst. |t would seem reasonable to suggest that this further
control, upon the timing of catalyst addition, would improve the overall

reactor performance.

In the following pages various features of, and necessary
conditions for, an optimal policy will be theoretically derived utilizing
Ist order variational analysis. These features will then be illustrated

and complete solutions given by numerical computation.



CHAPTER 2

STATEMENT OF THE PROBLEM

It is required to maximise the performance index, or objective
function, over a fixed total reaction time 1, by choice of the temperature,
at every point in time (+) - distance (z) space , and the rate of catalyst

addition, at every instant.

The system is established with the following assumptions:
l. The reactant flow rate at entry remains constant.
2. There is a maximum bed length. Consequently, if there is no
significant volume change with reaction these first two assumptions are
equivalent to stating there is a maximum pressure drop.
3. The reactor is in plug flow and may be represented by a continuum,
there being a large number of catalyst particles per unit volume. Any
rate |imitation originates in the chemical reacions rather than in diffusion
processes.
4, A quasi-steady state is assumed as the space time is much shorter
than the time scale for catalyst decay.
D The catalyst activity ¢ is defined (12) as the ratio of the rate
of reaction with the catalyst in question to the rate with fresh catalyst.

All fresh catalyst is assumed to be identical.

6. The rate of decay of the activity depends upon the temperature
and activity alone
= k(M) gw) (2.1)
0<yp<I
0<g=<l } (2.2)

The rate of decay increases with increasing temperature - the rate

3.



constant k(T) behaves according to an Arrhenius expression.

T The same catalyst is assumed to be effective in all reactions
with the same activity, as defined above, pertaining to each.

8. The m elementary reactions occurring involve £ species and may

be described by the material balances

ax‘ m :

T jgl v“ Kj Fj P J L (2.3)
where

vjI - is the stoichiometric mole number for the ith species
in the jth reaction.
Kj - is the rate constant of the jth reaction

and

Fj = FJ (xl, S are XL) (2.4)
9. Any volume change with composition may be imbedded within F..
10. The initial concentrations are specified

X (0, ¥) = xi0(+) (2.5)
il The temperature has both upper and lower |imits above zero.
12, The rate constants Kj obey Arrhenius expressions. f ER is the
activation energy for the jth reaction and EC that for catalyst decay
then defining

PJ = ERj/EC, pj >0 (2..6)

and P

K, =b, k9 (2.7

Jx -
it follows that

dK

=k p./k (2.8)



13, No catalyst, once added, may be removed from the bed.
14, There is an upper limit upon the rate of addition of catalyst
to the bed.

The objective function will be the sum of the production of
each species over the period of reaction weighted according to its
desirability. This is the simplest form of performance index ignoring

pumping, temperature control and catalyst regeneration costs.



CHAPTER 3

DERIVATIONS
3.1 Policy for a General Reaction_Scheme
3.1.1 Where the Reactor is Finally Filled

In this section a possible profile, giving the length of the
catalyst bed at time t, is first established and the defining equations
and objective function are set out. The catalyst decay rate constant,
which increases monotonically with temperature, and the rate of addition
of catalyst are introduced as controls. A Ist order variational analysis
is performed to determine necessary conditions for extremal policies. A
Hamiltonian is defined and it is asserted that with optimal temperature
control this Hamiltonian should be a maximum. It is demonstrated that
only in exceptional circumstances may an unconstrained temperature at the
end of the reactor co-exist in an oﬁfimal policy with an unconstrained

rate of catalyst addition.

First let us delineate the area in time (t) - distance (z) space

with which we are concerned.

r(t) is the length of the catalyst bed at time t such that

O<r(t) <L
L being the maximum bed length.

fl is the time at which the reactor is filled.

i.e. r(t :_Ti) g B ' 3.1)



A typical profile for r(t) is sketched in Figure |I.

FIGURE |
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From Chapter 2 it will be recalled that within the reactor, m
elementary reactions occur, involving £ components. For the ith component,

the reactor being in a quasi-steady state:

m
"’jél v.. K. F. y 0 <z=rif)

JE - J - (3.2)

axl
9z {0 PRINE 6 I 3 £L

Outside the bed, reaction ceases. It will be observed that the catalyst

activity is the same in all reactions. (Assumption 7, Chapter 2).

The catalyst decays according to the equation

3y _ k(M) .gly) s wl-€ 2 rlE)
3t - o e PR <L - 3.3
Catalyst on entering the bed has unit activity.

Introduce the control u(t), the rate of addition of catalyst.

IT is bounded * '
O<uc<u (3.4)

and is defined by
ar(t) (3.5)

u(t) = 5T




Instead of employing the temperature T as a control let us use k,

the catalyst decay rate éonsfanf, defined in (3.3), which increases in a
strictly monotonic fashion with T. k is bounded both above and below

0<k*ik_<_k* (3.6)

We wish to meximize the objective function

L r(t) m
)X (a.i RS T e

.. K. F. dz)dt (3.7)
y o ddiesd o d

i
where 3 . . o 88058 ; e .
a; is the weighting factor indicating the desirability of the ith
component .
The function P is the sum of the weighted production of each species
within the reaction period.
Let us introduce variations Su(t) and ék(z,t) into the controls

and then perform a Ist order variational analysis to give the resulting

variation in P, 6P, in terms of Su and é&k.

Assumption |3 of Chapter 2 stated that there may be no removal of
catalyst from the bed. Hence, once the bed is filled (r(t+) = L), the
control u is no longer active, i.e. for

t+et <tcr

u=0and 6u=0 (3.8)
Recognising this, it may be shown (Appendix 1) that the variation in

the objective function, resulting from variations in the two controls, is

tprit) & m f|
8P =s f (T XA 9L v.Kp.F./k=A,g)6k.dz.dt + S A 6u dt 35.9)
o i=| Iij=l Hrad 2 03



(£42) adjoint variables have been introduced:

thay-are A p» (0=1,2) adjoint to x,
12 adjoint fo ¢
13 adjoint to r(t)

and they are defined by the following differential equations and boundary

conditions
3A|i 4 m oF .
==L A ¥ w.K.Tb (3.10)
q=| q j=| Jq J Xi
Ali (r(t)) = @ (3.11)
3A2 3 L m
ﬁ— = Az k -BTP- -, E (A'i-E VJ.iK.F.) (3.'2)
i=l Jj=1
12 (z,t) =0 (3..13)
3A3 L m
5= = (Azkg -iil(aiw'ﬁl vjinFj)) (3.14)
J r(t)
13 (0) =0
* '} (3Q|5)

13 (f|)= 0 where 0 < u(#|) <u

For an optimal policy no variation in the controls should be such
as to increase the value of the objective function. Hence, to revert to
(3.9), for any variation from an optimal policy

8P <0 (3.16)



10.

Let J be the term multiplying 8§k within the double integral in (3.9)
L m

J= I Ali v I (v
i=| Jj=I

i K Py PR = g (3.17)

Now k and u are independent control variables. Where k is unconstrained,
as the variation 6k is arbitrary, to satisfy (3.16) and give extremal

control : ///
d =0 (3.18)

*
If k =k, as any variation 8k must then be negative, ( for k must be

\ *
such that ky < k < k)

J
Similarly if k = kg, i } (3.19)

[
|A
o

if J <0 for all k Then k = kg
The reverse is also true - %} (3.20)

and if J > 0 for all k then k = k
Let @ Hamiltonian H be defined
L m
H= ifl (Ali ¥ .E vji Kj Fj) - Az kg (3.21)
= J=1
It will now be asserted that for an optimal temperature this Hamiltonian

should be a maximum.

It has been proven (13), that with an invariant r(t), for an
optimal policy, H should be maximized subject to initial and boundary
conditions. It is a further condition that H should be twice differentiable.
Accordingly, when T > fl, the reactor being filled, H should be made a

maximum with respect to k.

When 0 < t < t , for any predefined profile of the bed length,

|
constraints upon the temperature may exist only at the bed exit. Such



constraints cannot affect the conversion. Any specified profile may thus
be considered as an example of the general case of Degtyarev and
Sirazetdinov (13) and again the optimal temperature is that which maximizes

the Hamiltonian. This function yields no information about the profile

r(t).
Let us now examine the nature of extremal temperature control.
Differentiating the Hamilton with respect to k
oH
3K J
and
¥y y 52
= I A I %, Ko F (B =97k (3.22)
i e B S J

With J = 0, where the second derivative is positive, the Hamiltonian has
a local minimum and the extremal value of k at that point is non-optimal.
Consequently, there, only the boundary values of k that maximize H will
be optimal. This may be clearly seen by recollecting that for any
deviation from an optimal policy

8P < 0 4£3.16)
Here J = 0 yields non-optimal values of k. If J # 0 and k were not

bounded then, as &k could take any sign, &P would not necessarily be non-
positive. Only if k were bounded would 8k be restricted to either positive
or negative values, thus satisfying eq. 3.16 when the approbriafe

bound is chosen according to eq. 3.20. An example where extremal k is

non-optimal is where all

Ais Niio D obp s fiisn 0
1 Vji PyP



|2.

Where the second derivative is negative the extremal policy gives a

local maximum. This policy may then form part of an optimal policy.

Now let us examine the conditions necessary for extremal un-

constrained u where t < ¥ From (3.9) where u is unconstrained, as then

l‘
Su is arbitrary, for extremal values of u

Ay = 0 (3.23)

If u is unconstrained over a period of time then over that same time
interval
ax3
A} = 0 and 3T =0

or, from (3.14)
£ m

i @ v I vJ.i 5] Fj - Az kg) =0 (3.24)

SRR - r ()
IT¥ will be recalled that for + >+, u =20

|
Unconstrained u is compatible with unconstrained optimal k(r(t)) only in
exceptional circumstances as will now be shown:

Comparing (3.24) with (3.17) where J = 0 we see unconstrained u precludes

an optimal unconstrained value of k(r(t+)), and vice versa, except where

2 m
D@ - vlv, ., KRB dp® el )) =0 {3.25)
i=} ‘j:l Ji Ji 229 j
r(t)
This may be satisfied by a singular policy, wherepj = | for all j, and

in other exceptional circumstances where a series of equations must hold.

This result is obtained in Appendix 2.

The final temperature may be determined:
Recalling from (3.13) that

A lz,72) =0

2



then if at + = 1

L m

E A,k (v, KB F /Kk) > 0

fmi M p S R

J
from (3.20), as J, defined in (3.17), is positive
+
k(z, 1) = k (3.26)

there being no gain in further conserving activity.
The temperature will lie upon its lower bound at time t if

L m

EoX B v R g PRy % O

gy V) wj=| o Sl

this being effectively an attempt to stop further reaction.

Previously we have considered the behaviour of u when AS = 0.

Let us now investigate u when Ay # 0:

From (3.9), if A3 >0

then
Su <O

if
6P < 0 (3.16), this last being the condition for an
optimal solution.

If 6u < 0, u must |ie upon its upper bound

i.e. e B0 53 u=u

} (3.27)

Similarly if As i ¢ u=0

the lower bound to u being 0 (3.4)

To complete this section the significance of the values of p will

be noted:

If p< |, then increasing the temperature will increase the rate

of catalyst decay more rapidly than the rate of reaction. |f the products

13



of the reaction, for which p < |, were desired, then whilst the
activity 1Is high, the temperature is likely to be low. As the activity
declines then an increasing temperature is to be expected to counter the
effects of a low activity. The reverse is true where p > |. This
general statement must be qualified by mentioning that the temperature

policy is determined also by the relative values of p of all the reactions.

14,



In this section it is demonstrated that the analysis differs only

slightly from the previous section 3.1.1. 1t is shown that if u takes a

bounding value this should be zero. Feasible cases in which the reactor

may be finally partially filled are mentioned.

Here *I _t T

A typical profile for r(t) is sketched in Figure 2.

FIGURE 2

Time

0 L
Bed Length

In Appendix 3 it is demonstrated that in this instance the analysis does
not differ from that previously performed save that all time integrals
are made between 0 and t. Here both control variables, u and k, enter
into the problem at all times. This is in contrast to the situation

where t, < t, for when r(+) = L the addition rate control is removed.

|
If at + = 1, u is to be unconstrained, from (3.24)

L m
¢z @ ¥ L v, 8B F) = 0

’ o SH R
i= J=! ()

remembering that Az(r) = 0 (3.13).

15.



%

Otherwise u will take a bounding value. As u is arbitrary, one would not
*

expect u(t) = u as this would suggest the solution is seeking to have

r(t) = L. Therefore, u(t) = 0.

The situations,for which fl t T seems feasible, are series reactions
where an intermediate product is desired and for other complex reaction

schemes.



é:L:é Extensions of the General Analysis

Here it is shown that with a little adaptation the analysis of the
two previous sections is applicable elsewhere though a maximum principle
is not necessarily available. |
l. Where the reactor is isothermal, the temperature being invariant

in time, the control k is eliminated and the expression for &P becomes

.f
6P = s! 2y su.at (3.28)
o
An extremal policy with unconstrained u requires that 13=0 for 0§j§j|
i.e. 13(0) =0
(3.29)
3A3
and = =0 s S
2. Where the reactor is isothermal, but the temperature varies with
*
time subject to kg < k < k , then
€ rity L m f'
6P = J 8k S (Wzar.Z p.v. .KF./k=-A,g)dz.dt + /S A, Su.dt (3.30)
oo ¢ iupMgepr bl of e o,
Extremal unconstrained k is possible when, from (3.9)
rit) £ m
FoWE A, T pv KNPk e A g)lde =0
o =t Mz JUVI :

As temperature here is a boundary control no maximum principle may be

asserted.

7.
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3.2 The Irreversible Reaction

- — ——— — S ——————— —— T ——— -

| The Varlational Analysis_for an_lrreversible Reaction

The irreversible reaction
A -+ products

is considered in this section. With the simplification made by con-
sidering the conversion of A as a state variable rather than the con-
centrations, the analysis of 3.1 is followed. The adjoint variables
are investigated and it is shown that the variable, adjoint to the con-
centration, may be eliminated and that the one adjoint fo the activity
is always positive. It is demonstrated Théf unconstrained u is incom-
patible with unconstrained k(r(t+)). From the introduction of a
Hamiltonian and assertion of a maximum principle, unconstrained k is

found to be optimal only where p < |.

A slight simplification of the previous analysis may be made if
X is considered to be the conversion of A. Only 3 state variables x, r
and ¢ need then be introduced.

The mass balance becomes

K=y KF ) 0<z<rt)
} £3.31)
=0 cia S 5 i 8
and the objective function is the simplest
T r(t)
P=J [ ¢ KF.dz.dt (3.32)
o o

as we wish to obtain only the products.



19,

Following (3.10) - (3.15),if the adjoint variables A', AZ and AS are
defined so: A
D
b oid oF
vy A| y K M (3.33)
A|(r(f)) = | (3.34)
oA
2= 3g _
s o e 12 k N xl KF (3:.35)
Az(z, 1) =0 (3.36)
BAS
— = (A, kg = ¢y KF) (3.37)
ot 2 r(t)
A3(0) = 0
; x } (3.38)
1L02:) &0 0S8 (1, )% ¥
5 |
then from (3.9)
T «ptt) fl
sP=s f (A'Fpr/k - Azg) §k.dz.dt + [ 13 Su.dt (3.39)
o o o
Here
K = bkf (3.40)

IT will now be shown that A, may be ignored and that A

| is always positive.

2
Investigating the adjoint variables it is proved in Appendix 4
that

3(A|F)
=0 or AF =F

= | (3.41)

r(t)
Since A| is always found in the analysis in conjunction with F as the term

A F then from (3.41) this term may be replaced by FI

| r(t)



20.

In Appendix 4 it is also shown that

>0 et ey (3.42)
Unconstrained u is incompatible with unconstrained k(r(t)) as will now

be demonstrated:

The condition for unconstrained u is, from (3.39),

Ay =0
Over the period where Ay = 0, then
.a:§.=o
at
or from (3.37)
(A, kg - ¢ KF) =0 (3.43)
r(t)

From (3.39) we see too that for unconstrained k, as then &k is arbitrary,
that

J = 1|F ¥ Kp/k - A9 = 0 (3.44)
Comparison of (3.43) and (3.44) shows that they may co-exist only in the
special case where p = |. There a singular policy operates. This will

be further discussed in (3.2.4).

Let us now introduce a Hamiltonian H and investigate the nature
of extremal policies and determine the optimal control upon k, the decay

rate constant.

Define H=¢ KF - 12 kg (3.45)
r{t)
~] L e e .
T J =0 for an extremal policy
2%y z
__§.= ¢ F Kp(p - 1)/k (3.46)
oK r(t) '




21,

As F, ¥, Kand k are all positive this is negative only if p < |. |If
p>1, it is positive. Following 3.1.1 and asserting a maximum principle
it may thus be stated that if p > |, extremal unconstrained k is non-
optimal whereas if p < | an extremal unconstrained k creates a local

maximum in H. This may then form part of an optimal policy.

Hence if p < |, the optimal value of k is such that J = 0.

i.e. from (3.44)
|
K3 (Azg/w pbF )p-T (3.47)

r(t)
*
If k calculated from (3.47) exceeds k or is lower than ky it takes the

value of the bound traversed.

If p>1, optimal k must be a bounding value of k with the property that,
¥

with that value of k, H is a maximum. A transition from k = k to

k = ky could occur when

H = H (3.48)
or

* *
G K)' = 2,9 k = W(F K)x = 2,9 ky
() r(t)

as continuity exists in ¢, g and A If the transition were made for a

2.
single value of z alone at any given time, continuity would also exist

inF .
r(t)

Finally, the reactor should be operated at its maximum temperature, there
being no profit in the conservation of activity at this time:
At t = 1t from (3.44) and (3.36)

J=F Ky p/k > 0
& 2
From (3.20) then %
k =k (3.49)



3.2.2 Optimal Policies where p <_|

It was earlier shown in 3, .l that unconstrained u precludes
unconstrained k(r(t+)) in optimal policies. It would, thus, seem logical
to consider first those policies where k(r(+)) is the primary control and
then those for which u is the primary control. It will be recalled that
where p < |, extremal unconstrained k can be optimal.

Where k(r(t)) is the Primary Control:

From a development in Appendix 5 it may be seen that where the
entry conversion remains constant:
a) The temperature increases with time,

b) Whilst k is unconstrained for all z < r(t+), the exit

conversion is constant

c) Either all the catalyst is initially present or it
is all added at the highest possible rate at a later
stage.

Where u is the Primary Control:

It will first be demonstrated that for + < t , k(r(t)) = Kk

_|’
Where u is unconstrained,(3.43) holds

i.e. (A

kg - v KF) 0
r(t)

Hence examination of (3.44) shows that at r(t)

2

J <0 wherep<|

i.e. from (3.20) k (r(t)) = Kk, (3.50)



In Appendix 6 it is proved that for z < r(t) < L where k(z,t) is
unconstrained, than any extremal policy with unconstrained u(t) is non-
optimal. The best policy in such circumstances is to operate with a full

bed.

An optimal unconstrained u is possible where k(z,t) = kg for

2 g_r(f) < L

When r(t) = L, the bed is filled and the situation is that

described for k(r(t)) as primary control.



Where p > |, unconstrained k is non-optimal. |f the primary
control takes a bounding value then the other variable takes the optimum
value subject to the conditions imposed by the first lying upon a

constraint.

Again it would appear natural to consider first the situation with
k(r(t)) as primary control and then that with u as primery control.

Where k(r(t+)) is the Primary Control:

*
Here u =u oru =20
If initially k(r(0)) = ki, the problem becomes that of Therien (I1I)

dealing with a full bed. This may easily be demonstrated as follows:

If k(r(0)) = ky from (3.37), (3.43) and (3.44)
As initially A, = 0, (3.38) then for + > 0, A, > 0.

3
Hence u

3
* *
u finitially - the bed is filled as u may be arbitrarily

large.

Where u is the Primary Control:

It will be shown that where u, the rate of addition of catalyst,
*
is unconstrained k(r(t+)) = k . |If the conversion declines whilst u is
unconstrained the temperature in the regionro <z <r(t) lies upon the

upper limit.

A
Where u is unconstrained, we know -a-rr—z'- =0

Examination of (3.43) and (3.44) then shows that

' *
k(r(t)) = Kk

24,



Apart from the above observations the optimal policy must be

determined for each particular case.
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The Hamiltonian function is shown here to be linear in the control
k. Hence there exists the possibility that an optimal policy contains
a singular segment. Whilst it does the exit conversion remains constant
and an unconstrained extremal temperature is compatible with an uncon-
strained extremal rate of catalyst addition.

Where p=1, K=bk (3.40)

i.e. the Hamiltonian is linear in the control: H = (waL - Azg)k
()

M .

1 0)

When v bF - lzg =0 (i.e.

r(t) :
the control policy is singular. |f this policy is to be evident then it

must persist for a certain period in time and distance

3 F:
i.e. 5;-(F v b~ Azg) = 0
r(t)
Differentiating and substituting (3.35) for the term
oA
2 oy
- o and (3.3) for the term ¥

%_';-rm $b =0

or the exit conversion remains constant.

Whilst the control policy is singular at r(t) comparing (3.43)
and (3.44) we see these equations are identical and'fhus, of course, may

simultaneously hold.Unconstrained k(r(t)) is thus consistent with un-

constrained u in an extremal control policy.
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27.

The Reversible Reaction

In this section a simple reversible reaction of the form
A+ vB
is considered. Such a form of reaction allows for considerable
simplification within the analysis as the concentration of A is simply
related to that of B. Abain the variational analysis of the general re-
action scheme is followed. It is demonstrated that an unconstrained rate
of catalyst addition, u,Ais incompatible with an unconstrained temperature
at the end of the bed, k(r(t)), within an optimal solution. A Hamiltonian
is introduced, a maximum principle asserted, and the nature of extremal
and optimal temperature profiles investigated.
Consider the reversible reaction:
Ko vB
This is a single reaction with two stoichiometric coefficients. A con-
siderable simplification of the analysis for general kinetics may thus be
made, as the concentration of A is simply related to that of B
Xg = VX0 = X3 * Xgo
Where

X is the entry concentration of A

AO
Xg0 is the entry concentration of B
Hence only one concentration x, that of B, need be introduced.
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Let us reintroduce, from Chapter 2, assumption 8, the stoichiometric

mole numbers, v, Basing them upon the reaction and formation of a mole

ij’
of A, then

vl2 is the number of moles of B formed from | mole of A

(- v22) is the number of moles of B removed to form | mole of A

A further simplification is thus to say
VSV L ey
It may be necessary to redefine the rate constants in the reaction rate

equations so that they are consistent with the stoichiometric mole

numbers chosen.

For this simple reaction the material balance (3.2) may be expressed as

ax _ .
e /] v(K|F|(x) K2F2(x)) (3.52)

Again we have only 3 state variables, x, r and y.
If we desire B alone, the objective function formulated in (3.7),

simplifies tfo:
T r(t)
Pay [ v ( K

Fl - K2F2) dz.dt (3.53)
o O

a zero weighting being given to A.

Following (3.10) to (3.15) if adjoint variables A|, kz and 13
are defined so:
Al(r(f)) = | (3.54)
3A| 8F| an
-a—z-—- = "Al ‘1’ \)(K| 'a—x— by Kz -a—x—) (3.55)
A(Z,2) & 0 (3.56)

2
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a, -
5?—-= 12 K 5$—- Al v(K F K2F ) (3.57)
AB(O) = 0

: i (3.58)
x3(+|) = 0 if 0 < u(fl) <u
Aax3
T = (xzkg - Pv (K F K2F )) (3.59)

r(t)

then from (3.9) the variation introduced into the objective function P bya

variation in the controls u and k is

T r(t) f
e f F X ¢ v(KIF KzFi)Z)/k = Azg)ék <dzrdt + f l36u .dt (3.60)
o o o
where
Py P2
K= K", K, = b, k
The variable AI adjoint to x , is always positive:
examining (3.55) it will be seen that if A, should ever be zero at a

|
certain time, it is always zero at that time. But (3.54) states that

A| (r(t)) =1

and so xl >0

If we deviate from an optimal unconstrained policy
P < 0 (3.16)

and as 6k, the variation in our temperature control is arbitrary, ther

from (3.60) J
where

0 for extremal k

[
|

= AI " v(KiF'pI 2 292)/k A 9 (3.61)
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The introduction of a Hamiltonian and assertion of a maximum
principle leads, as will be shown, to the conclusion that when the
parameters p‘ and Py take certain values, then extremal unconstrained k

is non-optimal.

Defining a Hamiltonian

H= Al " v(KlFl - K2F2- Azkg) (3.62)
its second derivative is

‘BZH 2

;;2'= Al ¥ v(KlFlpI (pl-l) - K2F2p2¢>2-l))/k

Since we wish to maximize the Hamiltonian, the second derivative must not
be positive if unconstrained extremal Kk is to be optimal. Where the
second derivative is positive, as stated in section 3.1.1, the optimal
temperature takes the bounding value that maximizes the Hamiltonain. If
the unconstrained decay rate constant, k, may be optimal, then k, subject

to *
ke < k < k

is determined from (3.61) knowing J = 0.

Examining (3.60) we observe that if Su is the variation from an

extremal unconstrained value of u, the rate of catalyst addition, then for

P <0
as 6u is arbitrary
x3 =0
Following 3.1, if u is to be unconstrained over a period of time, then
A
iy 0

at



or from (3.59)
€7 v(K'Fl - Kin) - lzkg) =0
r(t)
A comparison of this with (3.61), where J = 0, shows unconstrained u to
be incompatible with unconstrained k(r(+)) within an optimal solution as
both equations cannot, in general, hold simultaneously. An exception to
this in in the singular policy where

Pl = | and Pz = |

The temperature profile at the final time may be determined. The
temperatures will, in general, be bounding values as will now be
demonstrated:

At + = 1, recalling (3.56)
Az(z,t) =0
we have from (3.61)

J = Xl ¥ v(KIFI g K2F2 2)/k (3.63)

If the reaction is to be effective in converting A to B then the
overall direction of the reaction should be forward. A temperature switch,
from the upper to the lower bound, that reversed the direction of the

reaction would not be desirable,

i.e. v(KlFl - K2F2) >0 (3.64)
or
3ax
W
Thus for P, > Py comparing (3.63) with (3.64) then
J > 0
and from (3.20)
*
k(z,t) = k

If P, <Py then perhaps k(z, 1) = ky

s
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. 3.3-2 Optimal Policies

As in section 3.2 a distinction is made between the cases where
k(r(t)), the decay rate constant at the end of the bed, is the primary
control and where u, the rate of catalyst addition, takes that role.
Where u is unconstrained, k(r(t)) may often be determined by the values
of P and Pps the ratios of the activation energies of the forward and
reverse reactions respectively, to that of the catalyst decay. A summary
is made of information that may be obtained from a knowledge of P and
Py alone. The extreme cases, where P < S Py > | and Py > l, Py < | are

examined in greater detail, employing semi-qualitative arguments.

Where the reaction is exothermic (p| < pz) a falling temperature
profile along the catalyst bed might be expected. The reverse would be

anticipated when it is endothermic (pl > pz).

Based on Appendix 7 information that may be obtained from knowledge

of P and Py may be summarized.

pI <} pI >

P23J 'P|fPZ<l PP, P,>P, p|:P2>' pzfj

Unconstrained k Optimal ? ? ? ? non-optimal
¥ %
[k(r(t)) at unconstrained u Ky Ky ? ? k k
9A
3?—-a* unconstrained k(r(f))| neg. neg. ? ? pos. .
o -
3?«-a+ k(r(t)) = k neg. neg. ? 3 ? £
g
3;—-a+ k(r(t)) = kg ? ? ? ? pos. pos.
3A3

[k(r(+)) when = >0 Ky Ky ? ? ? ?
k(r(t)) when ool 0 ? ? ? ? k k

The question mark indicates that information beyond p is required.
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Where P, < s Py > 1

As observed in the summary this is an exothermic reaction where
unconstrained extremal k are optimal. If u is the primary contref, then

K(r()) = k.

The temperature takes its lower bounding value towards the end of

a temporary halt in catalyst addition.

If, initially, the rate constant at the end of the bed, k(r(0)), is
unconstrained and optimal the situation reduces to a case of constant bed

depth. The proof of this lies in Appendix 7.

< |

Where P > 28 Py £

This is an endothermic reaction where an optimal temperature
policy requires that the temperature takes bounding values. If u is the
primary control

k(r(t)) = k*
if k(r(0)) = k4
then initially the bed is filled completely. Again the proof of this is

in Appendix 7.



CHAPTER 4

- NUMERICAL SOLUTIONS

4.1 The Calculation Methods

Both natural convergence techniques and numerical searches were
employed. For the former an iterative procedure was utilized and pursued
until the objective function improved between iterations by an amount

smaller than a prespecified value.

The distance-time space was divided into a grid, the variables

being ascertained only at each grid point.

Calculations to determine r(t) were made in two ways:

1) Using the derivations of Chapter 3 the value of A,, the adjoint of

3,

r(t), is determined. Where u is unconstrained,A, should be zero. Knowing

3

13(0)fo take that value, for an initial profile, AS after the first time

interval is calculated. If it lies within narrow limits about zero, AS is
set to 0 and r(t) to one distance interval greater than r(0), the initial

bed length. |f, however, A, exceeds the upper limit then the reactor is

3
filled completely; if it is less than the lower limit about 0, r is left
equal to r(0), its value one time interval earlier. Continuing in such

a manner, for each r(0) a profile is determined.

2) It was assumed that any profile in r(t) could be approximated

by a straight line cutting across a corner of the L x t rectangle which
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marks the area of concern in distance-time space. The approximated
profile is shown in Figure |, secffon 3.1. With the positions of the
intersections of this line with t+ = 0 and z = L as arguments a Davidon-
Fletcher-Powell search procedure was employed to determine the argument

values that maximized the objective function.

For the exothermic reaction (p < | in the irreversible case,
pI < p2 > | in the reversible one) the decay rate constant, or
temperature, at all points within the bed was calculated from the
appropriate previously derived equation. For the endothermic reaction
no satisfactory algorithm utilizing natural convergence could be derived.
The results were very sensitive to the prec}se formulation of the

temperature switch control.

Again then it was assumed that the area in distance-time space
could be divided by a straight line. To catalyst upstream of this line
was assigned the lower bounding +empera+ure; to that downstream the upper.
This temperature pattern is realistic in the reversible endothermic re-
action. In the irreversible reaction conversion is dependent only upon

the integral r)

J ¢ K.dz
o
and not upon the temperature at specific positions.

Computer listings for these techniques follow the Appendices.
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The values adopted for the calculations were:

T = IO5 secs.

L =1

E, = 15000 deg™"

5 =]

k¥ = 8,10~ sec (T* = 900K)
ke = 2.5.107 sec™! T, = 745K
or ke = 5.107° sec”! (T, = 875K)
*
K =1
K¢ = .00552 when p=I1.5 and k.,§=2.5.|0-6 sec-I
= .1767 when p=0.5 and ky=2.5.1070 sec”!
‘ 5 -

= ,79 when p=0.5 and k= 5.107" sec
b = 1397584 when p=1.5

111.8 when p=0.5

Following Szepe (1) g = ¢" and here

n =2

The reactions were first order,

The inlet conversion of the desired product was constant at zero.
X

u was taken to be a very large value,

A 20 x 20 interval grid is used.



4.2 The Numerical Results

4.2.1 The_lrreversible Reaction

This was defined by:

X _ <
E-KW(' x)

*
a. Where p = .5 and k¢ < k <Kk

1) ke = 2.5.10 Osec”’

At no point within the bed was k = kg. The best solution found
required the reactor to be initially completely filled. The temperature
rose monotonically to the upper limit, the profile in time being the
same for all z even with sloping initial ftemperature profiles. Whilst
k was unconstrained at all points within the bed, the conversion re-
mained constant. These results are in complete accord with theory (section
3.8.2)

Figure 3 shows the activity, decay rate constant and concentration
term F at the reactor exit as time progresses.

2) ke = 5.10sec”!

If ky was assigned a higher value then, whilst again the
temperature increased monotonically, it lay upon the lower bound for a
substantial initial period. Both numerical search and natural convergence
techniques showed that the most profitable solution was fto reduce the
time of operation to 95000 seconds. This increased the value of the

performance index P to 2.59.!04 from the value 2.47.|O4 yielded with
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the same full bed over 100000 seconds. This is reasonable as here
insufficiently low temperatures are attainable to sufficiently conserve
the activity. As before the conversion remains constant whilst k is

unconstrained for z < r(t).
Again no optimal solution with unconstrained u was found.
Features of the best solution found are shown in Figure 4.

The results with p = .5 may be briefly summarized:

Ke = 2.5.107° ke = 5.107

P.max. 2.77.10% 2.59.10°

It should be noted here that, as observed in Appendix 5, the constant
decline in catalyst activity whilst k is unconstrained is a feature

specific to the chosen values of p and n.
%
b. Where p =1.5 and k=k or kg

The results obtained here represented only a slight improvement

over the temperature invariant case.

The best solution computed for unconstrained u (obeying the con-

*
dition that for t+ < t , k(r(+)) = k )was less profitable than the best

ll
where k(r(t)) exerted primary control. In both cases the bed exit con-

version and activity exhibited decaying profiles.

~

A plot of r(t) and the best temperature policy is fo be found in

Figures 5 and 6a.

Primary Control k(r(t)) u

P mex. with p = 1.5 | 2.458.10" 2.424.10"
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: *
c. Where the temperature was invariant (k = k )

The sole control here was u. The most profitable solution
required that the catalyst be added over several time increments. This

is illustrated in Figure 6b.

o s g.37. 16t

In the absence of the control u, where the bed is of constant depth,

P max. = 2.27.|O4

The employment of a control u consequently yields a 5% improvement in

the objective function.
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e ————————

f.g;g: The Reversible Reaction

This was defined by:
X - YK (1 =-x) - )
9z | X Kf X

*
a. Where P, = sy = 1.5 and ky < k<k

P2
Both where primary control was exercised by k(r(t)) and by u it

proved advantageous to add catalyst over a period of time (Figures 7 & 8).

The former result contradicts the theoretical prediction that all the bed

should be present. Perhaps the natural convergence algorithm failed.

The temperature profile was a monotonically increasing one in time,
the conversion monotonically decreasing though at one stage the rate of
decline was very small. The activity displayed a uniform decay rate,
whilst k was unconstrained throughout the bed. As observed earlier, this

is not a general feature of an exothermic reaction.

As might be expected in such a reversible reaction the temperature

profile with distance at any time was a monotonically decreasing one.

These features are plotted in Figures 9, 10 and I1.

Primary Control k(r(t)) u

B s 2.56.10° 2.57.10"

These values represent an improvement of 3.IO2 and 4.IO2 over the case

where the bed is initially completely filled.
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b. Where p, = 1.5, p, = .5 and k = K' or ke

In this reversible endothermic reaction, as in the irreversible
reaction previously discussed, the improvement over the case where the
temperature remained invariant was only slight. As in the irreversible
reaction where k(r(t+)) was the primary control, there being then no

restriction upon k(r(t)), a larger objective function resulted than when

u was unconstrained.

Plots of temperature and r(t+) are given in Figures 12 and 13.

Primary Control k(r(t)) u

Pmax. 2.085.[04 2.063.!04
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4.2.3 The Temperature lnvariant Reversible Reaction

Control here was exerted by u,the rate of catalyst addition. The
best solution had catalyst addition over several time intervals, u being
unconstrained in this period (Figure 14)

Prax = 2.03.10%

This compares with a value of |.94.I04 where the reactor is

completely filled initially.

It must be stressed that, with the exception of the irreversible
reaction where p = .5, these solutions do not necessarily represent the
optimal solutions. Resulting as they do from numerical search procedures

they are but the best solutions obtained.



vir(t
’8 -
Elriry)
N
F
k 10”2 sed
=
-1
Or yl0
2 -
k(r(t+)) -5
k= 810
. -6
Ky 2.9 10
1 1 1 N - 0
0 04 .8 "5
FIGURE 3 Time 10 “sec.

Plot of the optima! k‘(r(t)),‘i’(r(t)) & F(r(t)) for lst order irceversible

reaction , p<| R R .

3%



o IO

V k '05‘ SEC-‘ F(r‘({:»

k(r(t))

R"= 8107 sec™
K £10° sec™

0 . . 4 Time.,?O'sseCs
Figure 4 :  Plot of the op'-i:lnql R(r(L)), (r(t) & F(t) For Ist order

irreversible reaction p<l (R2 Kk

44




8 “+ ind ico:l:es« in this resion k= L

e,sevhcre k= k‘
Tie 10"%ec | k"< 8,107 sec!

kat25.10C5ec"
pt I'§

4 r

%: + r(t)
g ' T |

Distonce along rea.clor

Figure 51 ProFiles of k and e(t) in the imeversible reaction | k(e(t)) peimacy

control P>|

‘G



Time e '0."5'!:!.3. T

2 -

* indicates in thig region k= h* .e,sewkere }z‘h*

+ +
+ + + .
+ + + +
r(t)
3 4 +* B + * P - = - = e a0 s w = o
» 5 S T ————T i

Time 10 Secs
2

> Distance along the reactor
Fiqure ba: Protiles of kR and clt) in the irrersible reackion, ' peimary

~control p>I

m— \ L] L] L] L)

- — — = caleuloted profile

- . = e — e - o

"t Distance o.'ong the reactor

Figum 6b : Profile of r(t) , irreversible reaction, invariant temperatute,

‘oY



ke k"
8 -_ SISO
Time 107 R unconttrained,

4 P.t. -g,Paa '.g

R*: 8107S sec™'

Ry 2:5.1078ec!

r(t)
o ' ¥

Distance o.long the reactor
~Fi3ure 7: Prokile r(t), reversible exothemic reackion , k(r(t)) primary

control



Time.

I04sec,

k unconstrained

pl='5
Py = 15
* v
k =8.,10 2 sec '
Ke = 2.5.107° sec :
F = = et
2 4 6 = 8

Distance along the reactor

FIGURE 8

PROFILE OF Kk AND r(t) IN THE REVERSIBLE EXOTHERMIC REACT ION

WHERE u IS THE PRIMARY CONTROL -

“8p



pl = .5
Py = 1.5
A % % x(r(t))
. 8 k =8.10 2
-|
k.10 " secs Ky = 2.5.|0-6
: x(r(t))
V.10
4 L ]
i k(r(t+))
0 . . ; ; o

0 2 4 6 ‘ 8
Time IO4secs.

%,V and k ot the bed exit in the reversible exothermic reackion

‘6

- k(e(t) as primary control. -

Figure 9



P = 2
Y(r(t)) p2 - 1.5
8 ‘4
k
i
K.10”sec™! \
x (r{t))
4 2
Y 10"
k(r(t))
\ N \ \ 0

0 2 4 6 8

Time |04 secs
Figure IO: x..+amd k at the reackor exit in fhe revertible exothermic reackion

'u as the primary conkbrol.

*0s



* & o
k =8.10 2 sec I
4.4 F ke = 2.5.l0-6 sec-‘
k.IOSSecmI
4205 L
3.6 2 & 1 L
0 o2 .4 . 6 «8

Distance alon9 the reactor.

Figure |1 The rate constant profile o‘ona the reactor at t: 45000 secs,

reversible exothermic reackion, k(r(t)) primary contral,

“lg



*
+ indicates in this region k = ky elsewhere k = k
: =4
Time 10" sec
; * = -
8 k =2.107 sec”!
ke = 2.5.!0’-6 sec-'I
- pl = |.5
Py = K5
* <~
4 -
+ o+
+ o+ o+
-+ 4+ o+ o+ o+
S -+ + + + +
+ + + + + + + = P(t)
IR T R R R S S
o 3 2 1 " 2 ] 1
0 2 4 ' .5 .8

Distance along the reactor

Figut?e 12 ks Protiles of k and r(t), reversible endothermic reackion,
k(r(t)) primary control

*Zs



*
+ indicates in this region k = ky, elsewhere k = k
2 .
- - indicates the calculated profile
* pe -
Time 10™"secs. k =8.10" sec”!
¥ ke = 2.5.107° sec”
P, = 1.5
& k- P2 = .5
-~ 4=
L+ o+
., . W #
+ + o+ o+ o+
<+ . * L 2] L -+ - - - - - ..' —— e wm  wm wm
o ‘: b $ o 3 e l—— 1 1
0 ol .4 .6 .8

Distance along the reactor

FIGURE I3

PROFILES OF k AND r(t) IN THE REVERSIBLE ENDOTHERMIC REACTION WHERE u 1S
THE PRIMARY CONTROL

1



8

Time 10-4 Sec.

k = 8.IO-5 sec-l

The dotted line indicates the calculated profile.

FIGURE 14

Disfance

PROFILE OF r(f) |IN THE TEMPERATURE INVARIANT REVERSIBLE REACTION

‘vs



" CHAPTER 5

CONCLUSIONS AND  SUMMARY

Features of the optimal catalyst addition and temperature control
policies have been deduced for general and specific catalyzed reaction
schemes where the catalyst undergoes decay. The principal results are

summarized below:

l. Except under special circumstances an unconstrained rate of
catalyst addition precludes an unconstrained bed-exit temperature, and

vice-versa, within an optimal solution.

2. Unconstrained extremal temperatures may be non-optimal. Where this
is so, within any optimal solution a control policy in which the temperature

switches between the limits is required.

e For an irreversible reaction, where the activation energy for the
reaction is less than that for catalyst decay, the complete bed needs to be
present or there should be no catalyst present at all. The temperature
monotonical |y increases with time, here unconstrained temperatures may

form part of an optimal policy.

4, Where the temperature switches between its bounds, within an optimal
policy, for the irreversible and reversible reactions it is advantageous to

delay the addition of some of the catalyst.

3. If control over the temperature is absent the optimal delay in
catalyst addition towards the reactor exit is larger than if temperature
control may be exerted. |In conserving catalytic activity a low temperature

plays the same role as the postponed addition of catalyst.
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- CHAPTER 6

FUTURE WORK

Further aspects of this prbblem that could well be investigated
are:
i Where the pressure drop over the reactor rather than the space
time is held constant. Another possibility would be to héve complete

confrol over the flow rate.

2, Where the entry temperature is specified but where thereafter
it is determined by wall cooling and the evolution of heat from the

reactions.

3. Where the reaction time is not fixed but allowed to vary so as to

maximize the overall conversion, over a period of reaction and regeneration.

4. Where each reaction has its own specific catalyst, the catalyst

mix being one of the controls.

Within this study a stronger justification needs to be provided
for the assertion that for optimal temperature control, where this is not
subject to other constraints, the Hamiltonian should be maximized. The
nature of the bang-bang control could be examined and a new algorithm for
exercising this devised. The semi-qualitiative arguments that were

employed to show optimal policies should be investigated and strengthened.
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NOMENCLATURE

The components involved

P
Constant of proportionality be1*weenAKj and k J

Arrhenius activation energy for catalyst decay
Arrhenius activation energy for the jth reaction

Conversion (or concentration) term in the rate expression
for the jth reaction.

Activity dependent factor in the catalyst decay rate
Hamiltonian

Hamiifonian's Ist derivative

Rate constant of the jth reaction

Catalyst decay rate constant

Maximum catalyst bed length

Exponent of ¢ in g

Objective function

Ratio of activation energies: Py ERJ/EC
Catalyst bed length

Temperature
~Time

Time at which the bed is first filled
Rate of catalyst addition
The concentration or conversion of the ith component

Distance

(®))
o)



Greek_Symbols

a - Weighting factor within the objective function
A - Adjoint variable to y

Ay - Adjoint variable tfo y

Az - Adjoint variable to r

v - Stoichiometric mole number
T - Total reaction time

v - The catalyst activity
Subscripts

i,q - Components

J - Reaction

0 - Inlet

® - Minimum

Superscripts

* -  Maximum

29
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,///
APPENDIX |
A First Order Variational Analysis
Consider the system defined by (3.1) - (3.8).
Introduce small variations into the controls, this creates small
perturbations in all the other quantities such that:
3(6xi) m
-5 * a(wjzl vleij), 0<z<r(t)+ ér(t)
(A.1.1)
= 0 o LB R Splt) < 2 < L
I = «Boy gk, 0czert)+entn
(A.1.2)
= 0 s PUE) £ 8r(t) <2< L
9(ér) _ g 2
a_r e 6” » 50 s 24 0 5 + > 1-| + 61" (Ao'o})
. ROF A r(t) + ér(¥) m m
6P-=_f( L @, S Y I (v.lK.F J+8(Yp & v.iK.F.).dz
oi=l 'o jet IV eGP
r(t) m
= oo fn Sl T sl KR SEd 2 Y di
i=t o = JTJ

Applying the mean value theorem and ignoring second and higher order small

terms
- ALY r(t) m
§Pi= L 0T oo cS . ST v AP la2)dt
o i=l 'o J=i V4
fl £ m
+ £° 6eGh)( T ofbal ‘e K FL) .dt (A.l.4)
(o) i=| i j:l J' 31

r(t)
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li,(l = |,2), A2 and A3

and add to (A.l.4) the double integrals of (A.l.l) and (A.l.2) multi-

Let us introduce the co-state variables A

plied by (A'i - ai) and Az respectively, and the time integral of (A.l.3)
multiplied by AS’
Then,
r r(t) £ m : a(sx )
=f f (T (A 6(w vt dkF.) =~ £ -, ) )
o o i=l J=I VLN 2 az
A abk = 2 ay-A 3(80) y 4z.qt
29 Ay K 25 :
& £ 3(sr)
+ fMGri) T G [ f i F. 1 Mg Su-Ay Spr)dt (A.1.5)
% = I i A

The order of integration within a double integral may be reversed when the
limits of integration are finite and constant and when the integrand has
at most a finite number of finite discontinuities of fixed position and
size. The satisfaction of these conditions we may here ensure.

Thus integrating by parts

T r(t) 8(6x ) r{t) r(t) axll

I 7 (Ali-a|) dz.dt = I([(A e )6x ] -rf —sia-dx dz)dt

o o o o
Defining

Ali (rit),t) = o (A.1.6)
and pre-specifying
xio('f) :
T r(t) 3(6x ) T lt) axl|
F ) (x -al) "TF‘"" dz.dtim = f- [t i 6x dz .dt (A.1.7)

o o 0 .Q
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Now
it 8 L T T.3A
£y B 3(5*’ dz.dt = f(DA,69], -/ 3;3-5¢.d+)dz
O Q0 (o] o

If we define
Az (Zz:e)e. = 0

and observe that there may be no change in the initial activity i.e. that

sy(z,0) =0
then
I oo B
ffxz%ﬂlumf=4f o 80.dz.dt (A.1.8)
oo oo
Now
L T, +8t (t)+8r (t
P £, 388 yoour opl Y A dex A, LU0 4o a4t
e 2 ot & " 2. - ot
T L
+ 4§ fokd 21%%522_ dz.dt
Tl+6+| o
TGy
- f' s 2 gﬁ dz.dt
00
e
T Fr A :ﬁ dz.dt
f
Applying the mean value theorem and noting r(fl) =L
T.r(t) Tl f
3(&y) 3 a(sy) 5 3, (A.1.9)
f f xz 3T dz.dt .i é 12 p— dz.dt f Gr(xz af .dt
r(t)

and so we have by-passed the difficulty caused by being unable to reverse the

order of integration when one of thedimits of integration is a variable.
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Substituting (A.1.8) into the above and recognizing that for
rit) <z<L, & =0 (.2

3(6y) (t)ax b §

L <Y & T 2 | o
F T Ay 55— dzdt = =/ [ =8p.dz.dt - [ 6r(X, 5 dt (A.1.10)
oo oo o

r(t)

+ \ 8
1 3(8r) v Send
é 13 -37--.df -[A36rjo

0 -+

Having no wish to fix r(0) and r(f|), defining

13(0) =0= A3(TI)

then

 j fl 313
/ dt = -7 Gr-a‘_r—.df (AL D)
o o

Substituting (A.1.7), (A.1.10) and (A.l.ll) into (A.1.5)

trit) L m £ 3F, axli

P=f f (I 9L (v K, I lestily )& otidy,)
o o tul W jap TUdger e  I6 3987

| 3(6r)
A3 3%

A m a, 3g

m
Ali LR T

+( i
| j=t 9

n o

K.p.F./kK) = A,g)ék)dz.dt
JPJ J 29

y & £ m DY

V0T (v T v KF) =kl  + —=8r + A 8uddt (A.1.12)
PO P R M i Bt

ot 3
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Defining
axl V4 m aFj
_‘j'- - z A ‘p z (v..K. _) (A.lQIB)
9z I i s i )
=l j=I Ji J Xq
axz 3g L m
) 4 m
3 = - -
| g (iil(ai ] jzl vjinFj) Azkg) (A.1.15)
r(+)

Substituting (A.1.13) - (A.1.16) in (A.1.12)
ety L m

= -F. e - o .

éP é ( :l TR jzl vjin JpJ/k Azg)dk dz.dt

O A

1.

|
¥ F A3 Su.dt
(¢] :
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- APPENDIX 2

The Circumstances where Unconstrained k(r(t) is Compatible with Unconstrained

u_within an Optimal Solution

Assume (3.25) holds

) m
i.e. i 2T a z inK o 2 (p -1)) =0 (A.2.1)
el . )
then if this is true for more than an instant
dL _
e 0
or
F A dk £ m dFj
izl 'il @ vJ (KSF (p -I)p /k df1 +i§|‘§| o, vji(Kj(pj-|)3?—' =0(A.2.2)
J ret) r(t)
A further requirement is that
2
a2 <0 (A.2.3)
3K it

this term being given by (3.22).

Simultaneous satisfaction of (A.2.1), (A.2.2) and (A.2.3) will be
rare. For example, where the exit conversion is constant, unconstrained

k(r(t)) may co-exist with unconstrained u only when

32H=0
aK?

and where the first non-zero even-ordered derivative of H is negative.
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"'APPENDIX 3

Where T| j_ T

The derivation in Appendix | holds here until equation (A.1.9)
with a slight alteration in that all time integrals should be made between
0 and T.

Then, proceeding from (A.1.9)

Tt L  r(H)+ér(t)
3 (syY) . (Y+8y)
Fag! I ! dzdt = f- ' ¢ A dz.dt
pglaspe 3 ;) B ¢2.5 o
T L
= 8y
oo
Tl
=/ f Az%@ldz.df
Lo o :
T 30
+ [ Gr(xz e dt (A.3.1)
r(t)

applying the mean value theorem, ignoring second and higher order small
terms. Again we may proceed as previously with the above mentioned

alteration.



- . APPENDIX 4

l. Examining (3.33), if at any time Al should ever be zero then AI

always takes that value at that time.

As
Al(r(f),f) = |

then

Al > 0, 0<z<r(t)
2.

8(AlF) 3 ax‘ e ! F 3y

9z 9z | 9y 9z
substituting (3.31) & (3.33) SRR L I
=0

Thus

\MF o= F

i)
i From (3.36), as
A| K F .. 2,20
when Az = 0, &
2
- 5 A
but
Az(r) = 0 A3.37)

and hence
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APPENDIX 5

The Optimal Policy when k(r(f)) is_the Primary Control and p <_|

If initially k(r(0)) > k,

J 3_0
and from (3.37), (3.43) and (3.44)

)Y
3
e
Thus as,
AS < O3 t>0
from (3.27)
u=0

%
If however k(r(0)) = ky, perhaps u = u . But u , being arbitrary

may be set to a large value and hence at t+ > 0, the reactor will be filled.

Thus regardless of k(r(0)), initially u = 0 though perhaps later

Now let us digress to obtain some useful results:

We know

i A
s KF (3.31)
integrating
x(r(t)) 4 r(t)
A A
g e
Differentiating with respect to time

r(‘l’)a
= u(yK) + f 5¥4¢K).dz (A.5.1.)

r(t) (03 B g

assuming the inlet conversion tfo remain constant.

ax I
(-aTo‘F')
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From (3.44),

3J WKp 3F (r (1))

] 3k 2
" gKF (l-p) + WKP(P‘|)§; F /K™ + K 5T (A.5.2)
r(t) rt)
and whilst k is unconstrained and optimal
J=0 gnd 2x = 0 (A.5.3)
Using (A.5.2) and (A.5.3), substituting the resulting expression for
%g into (A.5.1) we have, where k is unconstrained and optimal
()
x(r(4)) _ PV ukp  aF(r (1))
gy u(wKF)‘ + é I dz (A.5.4)
r(t)
" 9k
The expression for — is
ot
ok K F(r(1)) |, gk
5F = =) q = + W (A.5.5)
r(t)

Reverting to the question in hand, consider a bed of constant depth (u=0)
where k is unconstrained and optimal

From (A.5.4)

(1)
ax(ret)) _ 2T ykp R (r(+))
o ! (T=pY 3F dz (A.5.6)
As §§-< 0 this can only be reconciled with (A.5.1) if

ax(r(t+)) _ T aF (r(t)1
of ot

Hence where u = 0 and k is unconstrained at all points within the bed the

exit conversion is constant, and from (A.5.5) the temperature rises.
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a
When at all points k = k or k = kg

ax(r(t)) aF (r (1))
e € 0 and e >0

Thus, from examination of (A.5.3) we observe that as p < | and k is constant,

aJ

i

Where at some t+, for some z, k lies upon a bound and for other z it is un-
constrained, from (A.5.1) where u = 0 and Y = %;- (YK)

ax | rt)

(af Fr = é Ydz

r(t)

Y »~ -Kkg where J #0

v = VKp aln(F(r(+))) -

4 Ty F where J 0
I f

aF (r(t)) ax(r(t+))

] e S AR s

which is impossible as it contradicts the demand that

oF

x <0
Thus in the intermediate region

aF (r(+))

S
and where k is upon a constraint

aJ

R
otherwise

J- 0

Thus we see that J will increase monofonically with time and hence,

once u = 0, as 3*3

o=

u will always take that value.



This, in conjunction with the knowledge that initially u = 0,

rules out the partial initial filling of the reactor.

Furthermore, in general, the temperature will increase with
increasing time except where J = 0 in a transition zone from unconstrained

*
to constrained k. Finally though k(z,1) = k .

The above analysis is general for any activity profile at+ = 0.
However, if the bed has a uniform initial activity profile, then
examination of the equations in this Appendix shows that the optimal
temperature profile should be the same for all z. Then there will be
no times at which a partial transition has been made along the bed from

unconstrained to constrained k.

It is convenient at this point to observe that in the special

case vwhere p = |/n, n being the exponent in the definition

g = "

it may easily be shown from (A.5.5) that where k is unconstrained for

z < r(t), the catalyst activity decays uniformly in time.

7'.
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" APPENDIX 6

The Optimal Policy for Unconstrained u as the Primary Control and p < 1_

J=p Yy KF /k - Azg (3.44)
r(t)

Let us consider the value of J at any point.FL(t), K, k, ¢, Az and g are
here continuous functions with a finite rate of change with time. Hence

also J will have a finite time derivative.

At a time t such that z = r(t)

k(x(t)) = k,

and as

e v, i

at
or

(y KF - Az kg) =0 (3.43)
r(t)

Here

Jatr0

For an unconstrained optimal temperature
J=20

Now as g%-is finite

then whilst u is unconstrained, in an optimal solution,the temperature at a
point must take the lower bounding value for a time interval that is non-zero,

though perhaps short, after catalyst addition is made.



APPENDIX 7

Properties of Optimal Solutions_of the Reversible Reaction

Where u is the primary control, the value of k(r(t)) may often

be determined.

If u is unconstrained, at r(t), from the subtraction of (3.62)

from (3.61)

Jk = ((p, =1 )yv KF, = (p,=1)yv K,F
| (I 2 2

ri{t)

We recall (3.62), a condition for unconstrained u

vv(KlF

Utilizing (3.20), as k > 0

if

and if

Recal | ing that ”IZ

if

A

P

< 0 (3.53) examining (A.7.1) and (A.7.2)

-2 K2F2) - Azkg = 0

*

Jk:'>.0, - K(rEF)) = Kk

Jk < 0, k(r(t)) = Kk

>.% %

I and Py < Py then
Py 2 P then
| and Py < | then
P = | then
Py > | then
| and Py <P then
then

*
ke < k(F(1)) < K
ke

*
k

k(r(t))

k(r(t))

*

ke < k(r(1)) < k
KCr(H)) = ki
*
k(r(4)) = k

*
ke < K(r(1)) < k

74.

(A.7.1)

(A.7 Cz)



The case where P, =Py = | involves a singular policy and is of little

practical interest.

A temporary halt in catalyst addition may require that within
an optimal solution k(r(t)) takes certain values:

During the temporary halt (u = 0 and r(t) < L), from (3.27)

A3 < 0
As before and after the halt A3 = 0
9}
Bty
initially and
oA
3 S O
3F -

at a later stage.

Comparison of (3.61) and (3.62) shows that when

3A3

oy el 0 and P £ Py Py < I, k(r(t)) = kg
g "
- oW 0 and P, 2Py Py > 1, k(r(+)) =k

*
Similarly when u = u ,

oA

2
et s
initially and then if

*
Py 2 Py k(r(t)) = k

15,



If k(r(t)) is the primary control, information about Asand hence u

may be obtained:
If k(r(t+)) is unconstrained and optimal
J = 0

and thus, adding (3.62) to (3.59)

8)\3
et (vw((pl-l)KlF' - (pz—l)Kze)w
an r(t)
If initially §$§—-< 0 , no catalyst addition will be made to the original

bed. If and when A, becomes positive, the bed will be filled, if it is

3
not already.

313
However where P < | and Py > L, afr < 0 at all times.

Thus we then deal with a bed of constant length - presumably with the

filled reactor.

oA
| f 3?2' > 0, following previous arguments the bed is filled.

If k(r(t+)) = kg, then where P| 2 Py from a comparison of (3.62) with (3.59)
recognizing that J < O,

axs

ot
Thus if k(r(0)) = k¢, the reactor is filled.

>0

“
A similar result may be obtained where k(r(t)) = k

76.

’
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THIS 1ST LISTING IS THE PROGRAMME FOR A BANG-BANG TEMPERATURE CONTROL
POLICYsTHE BOUNDARY BETWEEN THE UPPER AND LOWER TEMPERATURE REGIONS
BEING APPROXIMATED BY A STRAIGHT LINE ACROSS TIME -DISTANCE SPACE

THE SAME APPROXIMATION IS MADE FOR R(T)e

PROGRAM TST (INPUTsQUTPUTsTAPES=INPUTsTAPE6=0UTPUT)

IT IS ASSUMED THAT THE PROFILE R(T) MAY BE APPROXIMATED BY A STRAIGHT
LINE JOINING R(0O)sO AND LsT1 IN DISTANCE-TIME SPACE.USING R(0O) AND T1

AS ARGUMENTS A DAVIDON-FLETCHER-POWELL SEARCH PROCEDURE HERE DETERMINES
THE ARGUMENTS THAT MAXIMISE THE O8SJECTIVE FUNCTIONeTHE TEMPERATURE
PROFILE IS CALCULATED BY A SIMPLEX METHOD. ‘
FMFP IS THE D-F-P LIBRARY SUBROUTINE

FUNCT1 IS THE SUBROUTINE TRANSFERRING THE GRADIENTS GRAD AND THE
OBJECTIVE FUNCTION P TO FMFP

ARG(1)-ARGUMENT R(O)

ARG (2)-ARGUMENT T1

P-OBJECTIVE FUNCTION

GRAD(I)-GRADIENT OF P WITH RESPECT TO ARGI(I)

EST-ESTIMATE OF THE MAXIMUM VALUE OF P

EPS-EXPECTED ABSOLUTE ERROR

LIMIT-MAXe NOe OF ITERATIONS WITHIN SEARCH

MN-NOe« OF DIMENSIONS IN SEARCH-HERE 2

IER-ERROR PARAMETER

DIMENSION ARG(2)sGRAD(2)sH(9)
EXTERNAL FUNCT1

READ INITIAL ESTIMATES OF THE ARGUMENTS AND THE OTHER PARAMETERS

READ(551) (ARG(I)sI=1s2)
READ(591)ESTSEPS
READ(592)LIMITsMN
WRITE(69900) (ARG(I)sI=1s2)

CALL THE NUMERICAL SEARCH PROCEDUREe
CALL FMFP(FUNCT1sMNsARGsPsGRADSESTsEPSSsLIMITSsIERSH)

WRITE OUT INFORMATION REGARDING THE STATE AND RESULTS OF THE SEARCH AT
ITS CONCLUSION.

WRITE(69900) (ARG(I)sI=112)
WRITE(69900)P
WRITE(6590U1)IER
1 FORMAT(2F1U.4)
2 FORMATI(215)
900 FORMAT(2(5XsE1346))
901 FORMAT(2I5)
STOP
END

SUBROUTINE FUNCT1(MsARGsP1sGRAD)

A SUBROUTINE TO CALCULATE THE GRADIENTS OF P WITH RESPECT TO THE ARGUMENTS

’
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BY A FINITE DIFFERENCE METHODe. WHERE THE ABSOLUTE VALUES OF THE ARGUMENTS
INCREASE SO ALSO DOES THE INCREMENT USED TO DETERMINE THE GREADIENTS.

SUB IS THE SUBROUTINE TO CALCULATE P FOR ASSIGNED ARGUMENTS
DIMENSICON ARG(2)sGRAD(2)
CALCULATE P

CALL SUB(ARGsY)
EPS1=.05

P1=Y

A=1,

AM=-1.,

B=1Ue

BM=-10,

EVALUATE THE GRADIENTS INDIVIDUALLY

IF(ARG(1)eLTeAM) EPS1=45
IF(ARG(1)«.LT«BM) EPS1=5,
ARG(1)=ARG(1)-EPS1

CALL SUB(ARG»sY)
GRAD(1)=(P1-Y)/EPS1
ARG(1)=ARG(1)+EPS1
EPS1=405

IF(ARG(2)+GTsA) EPS1=45
IF(ARG(2)eGTeB) EPS1=5.
ARG(2)=ARG(2)+EPS1

CALL SUB(ARGsY)
GRAD(2)=(Y-P1)/EPS1
ARG(2)=ARG(2)-EPS1
RETURN

END

SUBROUTINE SUB(ARGsY)

A SUBROUTINE TO CALCULATE P FOR THE ASSIGNED ARGUMENTS +FROM THESE IT
DERIVES THE PROFILE AND CALLS SUBROUTINES TO FIND THE TEMPERATURES AND
CONVERSIONS WITHIN THE BED.

I-GRID POINT-ALONG THE TIME AXIS.TIME

J-GRID POINT-ALONG THE DISTANCE AXISe. DISTANCE

ACT(IsJ)-ACTIVITY :

CK(IsJ)-THE CATALYST DECAY RATE CONSTANT.

RK1(IsJ)-THE FORWARD REACTION RATE CONSTANT,

RK2(IsJ)-THE REVERSE REACTION RATE CONSTANT,

XF(I)-THE EXIT CONVERSION AT TIME 1.

NR(J)-THE TIME (1) AT WHICH CATALYST AT A POSITION J ENTERS THE REACTURe
NRI(I)-THE POSITION OF THE DOWNSTREAM END OF THE BED AT A TIME I.
AF1(IsJ)=FleHERE THIS IS (1le=X)

AF2(1sJ}=F2.HERE THIS IS X,

NUC(I)-AN INDICATOR SHOWING IF THE CATALYST AT R(T) IS RECENTLY ADDED
NRIA(I)-THE POSITION OF THE BOUNDARY BETWEEN THE LOW AND HIGH TEMPERATURE

|
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WHERE U IS UNCONSTRAINED.IF IT IS sNUC(I) IS 1>OTHERWISE IT IS O

DIMENSION ARG(2)9sACT(21921)sCK(21921)sXF(21)sNR(21)sNRI(21)>

THE PARAMETER VALUES MUST HERE BE ASSIGNEDe
CK1-THE MAXIMUM VALUE OF (K

RK11-  ———————- DO ————-—- RK1
RK21-  —=——————- DO —-————- RK2
CK2-THE MINIMUM VALUE OF CK
RK12- =——=——————= DO —=m——mm RK1
RK22- ————===—- DO —=—=——- RK2

XO-THE ENTRY CONVERSION _
NT-THE NUMBER OF GRID POINTS IN TIME.

NDIST— ——mmmmmmmmm DO ———m———m— DISTANCE.
NACT-THE POWER TO WHICH THE ACTIVITY IS RAISED IN

MNsNsM AND D-SEE SIMPLEX.

NT=21
NDIST=21
NACT=2

MN=1

N=2

M=3
CK1=.00008
CK2=+0000025
RK11=1e
RK12=.00552
RK21=0U,
RK22=OQ
X0=0,

D=e1
ZINC=405 3
TINC=5000,
EPS=10,
AE=0.

AD=1e

THE TEMPERATURE IS PRESET.

DO 98 I=1sNT

DO 98 J=1sNDIST
CK(IsJ)=CK1
RK1(IsJ)=RK11
RK2(IsJ)=RK21
CONTINUE

¥AF1(21921)5AF2(21921) sNUC(21)95RK1(21921)sRK2(21521)sNRIA(21)sP(3)

ITS DECAY EQUATIONe

FROM THE VALUES OF THE ARGUMENTS THE PROFILE IS ESTABLISHED BY SETTING

NRI AND NR

IF(ARG(1)«GE+AD) GO TO 25
IF(ARG(2)«LT+AE) ARG(2)=AE
A1=ARG(1)/ZINC
A2=ARG(2)/ZINC
AG1=NDIST-A1-1.

NAl1=Al+1.5
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26

109

51

52
50

798

AN EXPANDING SIMPLEX METHOD NOW CALCULATES THE BEST TEMPERATURE AND VALUE

OF Pe

CALL SIMP(ZINCOSNTsNDISTsCKIRK1sRK29sCK19CK29RK119RK129RK219RK229sNRI
% sNROIACTsNACT s TINCoXOsPsNRIAsSMNsNstMsDsILsXFesAF19sAF2sNUC)

THE LARGEST P AT A VERTEX OF THE SIMPLEX IS SELECTED.

Y=P(1)

DO 109 LI=2,3
IF(P(LI)eGTeY) Y=P(LI)
CONTINUE

RETURN

END

SUBROUTINE SIMP(ZINCsNTsNDISTsCKsRK1sRK29sCK19CK29sRK119RK129sRK21
*¥RK229sNRIsNRsACTasNACT s TINCsXOsPsNRIASMNsNsMesDsILsXFeAF1sAF2sNUC)
SIMPLEX METHOD OF NELDER AND MEAD

X-VARIABLE PARAMETERS OF THE FUNCTION TO BE OPTIMIZED sI-POSITION
J-COORDINATE

P-THE OBJECTIVE FUNCTION

MN-NOe. OF REDUCTIONS

N-NOe. OF DIMENSIONS

M-NO. OF MOVEMENTS FOR WHICH A VERTEX IS ALLOWED TO BE STATIONARY
D-SIDE LENGTH OF THE INITIAL SIMPLEX.

FE I I e S I I K I H N H K I I N HF NNk
DIMENSION CK(21921)sRK1(21921)9sRK2(21+21)sNRI(21)sNR(21)
*¥sACT(21921) sNRIA(21)sXF(21)sAF1(21921)9AF2(21921)9X(392)sP(3)y
#JT(3)9SG(3)sAZ(3)sNUC(21)

3K N HK KX NN FORMATION OF STARTING SIMPLEX RN HHHN
ALM=0¢

FY=0,

K=N+1

Y=FLOAT (N)

Yl=Y+1

DZ=D/(Y*SQRT(2.))

EZ=SQRTI(Y1)-1.

PZ=DZ*(EZ+Y)

QZ=DZ*EZ

DO 50 I=1sK

DO 50 J=1»sN

IF{]l «EQs1)GO “TO 51

NI=J+1

IF (NI«EQeI)GO TO 52

X(IsJ)=QZ+FY

GO TO 50

X(IsJ)=FY

GO TO 50

X(Is9J)=PZ+FY

CONTINUE

WRITE(K+798)

WRITE(65799)

WRITE(g9800) ((X(TsJ)sJ=1sN)sI=1sK)

FORMAT(32H COORDINATES OF.STARTING SIMPLEX)

80.
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NA2=A2+1.5

NA=NA1-1

IF(NASLT«1) GO TO 22

DO 100 JU=1sNA

NR(J)=1

CONTINUE

NAP=NA1

GO TO 23

NAP=1

DO 101 J=NAPsNDIST
NR(J)=1e5+A2%(J-NA1)/AG1
IFI(NR(J)eGTeNT) NR(J)=NT
CONTINUE

IF(NA2eGTeNT) NA2=NT

DO 102 I=1sNA2

DO 106 J=NAPsNDIST-
IFI(NR(J)eEQeI) GO TO 103
GO TO 106

IF(JsEQeNDIST) GO TO 24
L=J+1

IF(NR(L)«EQeNR(J)) GO TO 106
NRI(I)=J '

GO TO 102

IF(I.EQes1) GO TO 27
CONTINUE

LM=I-1

NRI(I)=NRI(LM)

GO TO 102

NRI(I)=1

CONTINUE

DO 104 I=NA2,sNT
NRI(I)=NDIST

CONTINUE

THE INDICATOR NUCI(I) IS SET.
DO 105 I=2sNT

LM=1-1
NUC(T)=1

IFI(NRI(I)eEQeNRI(LM)) GO TO 70

GO TO 105
NUC(T1)=0
CONTINUE
IFI(NRI(1)eNESNDIST) GO TO 71
NUC(1)=0

GO TO 26
NUC(1)=1

GO TO 26
ARG(1)=AD
ARG(2)=AE

DO 107 J=1sNDIST
NR(J)=1

CONTINUE

DO 108 I=1sNT
NUC(1)=0
NRI(I)=NDIST
CONTINUE

8l.



152 IF(P(IL)eGE«P(IS)) GO TO 120
122 DO 21 J=1sN
XCILsJ)=2e¥X(IL9J)=SG(J)
IF(X({ILsJ) e LTeALM)X(ILsJ)=ALM
21 CONTINUE
CALL SUBOBJ(XsILSZINCsNTsNDISTsCKsRK1sRK2sCK1sCK2sRK11sRK129RK21»
*¥RK22sNRIsNRsACTsNACTsTINC9sXO9ZsNRIASXFsAF1sAF2sNUC)
P(IL)=Z
IF(P(IL)eGE.P(IS)) GO TO 121
GO TO 122
121 DO 24 J=1sN
XCILa»J)=(5G(JY+X(ILeJ) ) /26
IF(X(ILsJ)eLTeALMIX(ILsJ)=ALM
24 CONTINUE ’
CALL SUBOBJ(XsILsZINCsNTsNDISTsCKsRK19RK29CK19CK29sRK119RK129RK21>
#RK229sNRIsNRIACT sNACTsTINCsX0O9sZsNRIAsXFsAF19AF2sNUC)
P(IL)=Z
GO To 120
153 IF(FGeLTLP(IL)) GO TO 154
DO 22 J=1sN _
X(ILoJ)=0e5%(X(ILsJ)+SG(J))

22 CONTINUE
CALL SURORJ(XsILSZINCINTsNDISTsCKsRK19sRK29CK19CK29RK11sRK129RK21»

#RK22sNRIsNRsACTsNACTsTINCsXOsZsNRIAIXFsAF1sAF2sNUC)
P(IL)=Z
IF(P(IL)eLTeFG) GO TO 120
IT=1S
GO TO 131
154 DO 23 J=1>sN
X(IL92J)=0s5%(AZ(J)+SG(J)) _
IF(X(ILsJ)eLTeALM)X(ILsJ)=ALM : 3
23 CONTINUE ‘
CALL SUBORJ(XsILsZINCsNTsNDISTsCKsRK19RK29CK19CK29RK11sRK129RK21»
#¥RK229sNRIsNRsACTsNACTsTINCIXOsZsNRIAsXFsAF1sAF2sNUQC)
PlIL)=Z
#%#¥%SHORTENING OF SIMPLEX EDGE LENGTH IF A VERTEX STATIONARY  %¥#*x
120 DO 14 1=1sK
IF(ILONESI)JT(TI)I=JT(I)+1
IF(JUT(I)eEQeM) GO TO 30
14 CONTINUE
GO TO 301
30 I1=1
131 DO 15 I=1sK
DO 16 J=1sN
X(ToJ)=(X(ToJ)+X(I19J))/2
16 CONTINUE
JT(1)=0
15 CONTINUE
MNN=MNN+1
WRITE(gsUC)I(((X(TeJ)sJd=1sN)eP(I))sI=1eK)
900 FORMAT(3(5XsE1346))
WRITE(6+901)
901 FORMAT(1HC)
XX EXXXEND AFTER MN REDUCTIONS IN EDGE LENGTH FoH % H R R RN HH N
IF(MNN.EQeMN) GO TO 40
GO TO 302
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FORMAT (54H ARG1 ARG2 )
FORMAT (2(5XsE13.6))

WRITE(6+801)

WRITE(6+802)

FORMAT (49H SIMPLEX COORDINATES AND OBJECTIVE FUNCTION VALUE)
FORMAT (1HOs 7 1H ARG1 ARG2
* OBJECTIVE FN )

HAAHXHHHXXXH® ESTABLISH COUNTERS ¥ %33 3%36% 3263363 3 K K4 K H X HHEH KK XX C
IL1=0

MNN=0

DO 10 I=1sK

JT(1)=0

CONTINUE

FHHHKK X DETERMINE OBJECTIVE FUNCTION H T KA F KA F R TR KN
*xx%x%%x RESTART AFTER SIMPLEX EDGE REDUGCT I ON 33 33 3% 3% 3% 36 % 3 3 3 3 % 336 3 3¢ %3¢
DO 17 I=1sK :

CALL SUBOBJ(XsTsZINCINTsNDISTsCK9IRK]1 sRK29CK19CK29RK119RK129sRK21 s
¥RK229NRIsNRsACTsNACT s TINC9XOsZsNRIASXFsAF19AF2sNUC)

P(I)=Z .

CONTINUE

¥AXAKFUXX®  SELECTION OF LARGEST VALUE 3332333 363 303 36 363636 303636 336 36 % %3¢
FRIXXHKEHIE CONTINUING SEARCH 33 33 335 35 3 5 33636 3696 5% 3 % K 3636 36363 % 36 33636 % 36 % %%
IM=2

IL=1

1S=1

DO 11 I=2sK

IF(P(I)eLT&4P(ILY) GO TO 150

NIL=IL

IL=1

IM=NIL

GO TO 11

IF(P(Il)eLTeP(IM)) GO TO 151

IM=1

IEUP{T)eGTeP(-I1§5)) - GOTO 11

1S=1

CONTINUE ’ -

HX XXX XX%X SELFCTION OF NEW POSTTTION  #33#%36%%%HXHHHX XX XAXX XX RRKHH
¥xxx¥¥x¥ MOST RECENTLY ACQUIRED VERTEX NOT REFLECTED #3%¥33%%3%3% % %4%
IF(IL.EQeIL1)IL=IM

DO 12 J=1sN

S=Oo

DO 13 1I=1,K

S=S+X L)

CONTINUE

SG(J)=(S=X(ILsJ))/Y

AZ(J)=X(TLsJ)

X{ILoJ)=2e%SG(J)=X(TILsJ)

IF(X(ILsJ)eLToALM)X(ILsJ)=ALM

CONTINUE

IL1=IL

FG=P(IL)

¥HHAXAX EXPANSTON OR CONTRACTJON 3383 %3353 333630 H 3 363 3363303036 K 2 %338 % %%
CALL SUBOBJI(XsTILsZINCINTsNDISTsCKaRK19RK235CK19CK2sRK11sRK129RK21
#RK22sNRIsNRsACTsNACTsTINCsXOsZsNRIAIXFsAF19AF29NUC)

P(IL)=Z

IF(P(IM)eGEP(IL)) GO TO 152

GO T0:+153
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RETURN
END

SUBROUTINE SUBOBJ(ARGSIIsZINCINTsNDISTsCKsRK19RK29CK19CK2sRK11
*#¥RK129RK219sRK22sNRI sNRsACT sNACT s TINCsXOsPsNRIAsXFsAF19AF2sNUC)

THIS SUBROUTINE CACULATES THE TEMPERATURE PROFILE BY ASSUMING THAT THE
BOUNDARY BETWEEN THE HIGH AND LOW TEMPERATURE REGIONS MAY BE APPROXIMATED
BY A STRAIGHT LINE IN TIME-DISTANCE SPACE.IT THEN DETERMINES THE OBJECTIVEe
FUNCTION FOR THAT PROFILE.

DIMENSION ARG(392)9CK(21921)3RK1(21921)9sRK2(21921)sNRI(21)sNR(21)
#9ACT(21921)sNRIA(21)9XF(21)9AF1(21921)9sAF2(21921)sNUCI(21)
AE=O.

IF AN ARGUMENT LIES OUTSIDE THE RECTANGLE OF TIME-DISTANCE SPACE THEN
THE TEMPERATURE IS AT TS MAXIMUM AT ALL TIMES WITHIN THE REACTOR.

IF(ARG(II91) eLEsAE«ORARG(II92)eLE«AE) GO TO 25

FROM THE VALUES OF THE ARGUMENTS sTHE POSITION OF THIS BOUNDARY AT ALL
TIMES IS DETERMINED.

A1=ARGI(IT1s1)/ZINC
A2=ARG(I1s2)/ZINC
NAl1=Al+1.5

NA2=A2+1,5

NAP=NA2

IF(NA2«GT«NT) NAP=NT
NAZ1=NA1-1

NAZ2=NA2-1

IF(NAZ]1 «eEQeOeOR«NAZ2+EQe0) GO TO 25
AZ1=FLOAT(NAZ1)
AZ2=FLOAT(NAZ2)
DO 100 1=1sNAP
AZ3=FLOAT(NA2-1)
NRIA(I1)=AZ1%AZ3/AZ22+1.5
CONTINUE

DO 1U1 I1=1sNAP
NAI=NRIA(I)

IF(NAI «GTeNRI(I)) NAI=NRI(I)
DO 101 J=1sNAI
CKLIsU)=CK2
RK1(IsJ)=RK12
RK2(IsJ)=RK22

CONTINUE

IFINAP.EQ.NT) GO TO 28
NAP1=NAP+1

GO TO 26

DO 102 I=1sNT

NI=NRI(I)
NAT1=NRIA(I)+1
IF(NAI1«GT.NI) GO TO 102
DO 103 JU=NAI1lsNI
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CK(IsJ)=CK1
RK2(IsJ)=RK21
RK1(IsJ)=RK11
CONTINUE
CONTINUE

GO TO 27
NAP1=1

DO 104 I=NAP1sNT
NRIA(I)=0
CONTINUE

GO TO 28

IF U IS UNCONSTRAINED THEN IF THE CATALYST IS NEWLY ADDED KI(R(T)) IS
GIVEN ITS PREDETERMINED VALUE.

DO 105 I=1sNT

NI=NRI(I)
IFI(NUC(I)eEQel) GO TO 29
GO TO 105

CK(IsNI)=CK1
RK1(IsNI)=RK1l1
RK2(IsNI)=RK21

CONTINUE

THE OBJECTIVE FUNCTION IS CALCULATED.

CALL RI(NDISTsACTsNTsNACTsTINCsCKsNR)
CALL R2(XOsACTsRK19RK29sXFsAF19sAF2sNTsNRISZINCsNDIST)
CALL SURP(PsXFsNTsTINC)

THE TEMPERATURE PROFILE AND VALUE OF THE OBJECTIVE FUNCTION ARE WRITTEN.

WRITE(69909)P

WRITE(699U5) (NRI(I)sI=1921)
WRITE(6590U5) (NRIA(TI)sI=1421)
FORMAT(6(5X3E1346))
FORMAT(2115)

RETURN

END

SUBRQUTINE R1(NDISTsACTsNTsNsTINCsCK9sNR)

THIS SUBROUTINE IS A 4TH ORDER RUNGE-KUTTA METHOD FOR THE SOLUTION OF
THE DIFFERENTIAL EQUATION DEFINING THE ACTIVITY

ADX-AN AUXILARY VECTOR FOR USE IN THIS SUBROUTINE
THE CATALYST HAS UNIT ACTIVITY WHEN PLACED WITHIN THE REACTOR.
THEREAFTER IT DECAYS ¢

DIMENSION ACT(21921)9ADX(4)sNR(21)sCK(21521)
NTM=NT-1

DO 100 J=1sNDIST

NL=NR (J)

DO 101 I=1sNL
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ACT(IsJ)=1s

CONTINUE

IF(NLeEQ.NT) GO TO 100

DO 100 I=NLsNTM

L=I+1

A=ACT(1IsJ) ‘

CALL FACT(AsDACTsNsCKsIsJ)
ADX(1)=DACT*TINC
A=A+ADX(1)*45

CALL FACT(AsDACTsNsCKsIsJ)
ADX(2)=DACT*TINC

A=A+e5% (ADX(2)=ADX(1))
CALL FACT(ASDACTsNsCKsIsJ)
ADX(3)=DACT*TINC
A=A+ADX(2)—e5%ADX(2)

CALL FACT(AsDACTsNsCKsIsJ)
ADX (4)=DACT*TINC
ACT(L9J)=ACT(I9J)+(ADX(1)42e*(ADX(2)+ADX(3))+ADX(4)) /6.
CONTINUE

RETURN

END

SUBROUTINE FACT(AsDACTsNsCKsIsJ)
THIS SUBROUTINE GIVES THE RATE OF DECAY OF THE ACTIVITY WITH TIME.

DIMENSION CK(21521)
DACT=—=CK(1sJ)*A*%¥N
RETURN

END

SUBROUTINE R2(XOsACTsRK1sRK2sXFsAF19AF2sNTsNRIsZINCsNDIST)

THIS SUBROUTINE IS A 4TH ORDER RUNGE-KUTTA METHOD TO SOLVE THE REACTION
RATE EQUATIONS.INFORMATION YIELDED BY IT INCLUDES THE EXIT CONVERSIONS
AND THE FUNCTIONS OF THE CONVERSION IN THE RATE EQUATIONS '

XF(I)-THE EXIT CONVERSION

DIMENSION ADX(4) sACT(21921)9RK1(21921)9RK2(21921)sXF(21)>
¥AF1(21+21)9AF2(21921)sNRI(21)
DO 1060 1=1oNT

X=X0

NL=NRI(I)-1

ND=NDIST-1

AF1(Is1)=1—-XO

AF2(11)=X0

DO 100 J=1sND

CALL FX(XsACTsIsJsAFXsRK19RK2)
ADX(1)=AFX*ZINC

X=X+45%ADX(1)

'CALL FX(XsACToIsJsAFXsRK19RK2)
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ADX(2)=AFX*¥ZINC

X=X+¢5% (ADX(2)-ADX(1)) '
CALL FX(XsACTseIsJsAFXsRK19RK2)

ADX(3)=AFX*ZINC

X=X+ADX(3)-e5%¥ADX(2)

CALL FX(XsACTsIsJsAFXsRK19RK2)

ADX(4)=AFX*ZINC

X=X+ (ADX(1)+2% (ADX(2)+ADX(3))+ADX(4))/64-ADX(3)
L=J+1

AF1(IsL)=1e—X

AF2(IsL)=X

CONTINUE

DO 101 I=1sNT
NI=NRI(I)
XF(I)=AF2(IsNI)
CONTINUE
RETURN

END

SUBROUTINE FX(XsACTsI sJsAFXsRK19RK2)
THIS SUBROUTINE PROVIDES THE RATE OF REACTION e

DIMENSION ACT(21+21)sRK1(21921)sRK2(21521)
AFX=ACT (I 9J)*(RK1(T9J)*(1e=X)-RK2(IsJ)*X)
RETURN

END

SUBROUTINE SUBP(PsXFsNTsTINC)

THIS SURROUTINE EMPLOYS SIMPSON'*S RULE TO CALCULATE THE OBJECTIVE
FROM THE EXIT CONVERSIONS.

DIMENSION XF(21)

p=00

NP=NT=-2

DO 100 I=1sNPs?2
P=P+TINC*(XF(I)+4e%¥XF(I+1)+XF(I+2))/3
CONTINUE

P=—P

RETURN

END

CD TNT 0612

8l

FUNCTION
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IF ADJ3(I) IS GREATER THAN 0sU=U(MAXIMUM) .
IF ADJ3(I) EQUALS 0sU IS UNCONSTRAINED.
IF ADJ3(I) IS LESS THAN»O U=0,

DIMENSION ADJ3(21)sNRI(21)9sACT(21521)9RK1(21921)5RK2(21921)>
#AF1(21921)5AF2(21921)3ADJ1(21921)3ADJ2(21921)95CK(21921)sNR(21)>
*NUC(21)

AE=00

AEP=AE-EPS1

NTM=NT-1

ADJ3(1) IS SET To O,

ADJ3(1)=AE

DO 100 [=2sNTM
LM=1-1

LP=I+1

NIM=NRI (LM)
NIP=NRI(LP)
NRP=NIM+1

THE GRADIENT OF THE ADJOINT VARIABLE IS DEFINED AND FROM THIS IS
DETERMINED THE VALUE OF THE ADJOINT VARIABLE AFTER THE NEXT TIME
INTERVAL BY THE EULER METHOD.

GRAD=—ACT(LMsNIM)*(RK1(LMsNIM)*AF1(LMsNIM)-AF2(LMsNIM)*¥RK2(LMsNIM)
#)+ADJ2 (LMsNIM) *CK(LMsNIM) *ACT (LMsNIM) *%N
TG=TINC*GRAD

IF ADJ3(I) LIES WITHIN LIMITS ABOUT I IT IS SET EQUAL TO O.
IF ADJ3(LM) IS LESS THAN THE LOWER BOUND ADJ3(I) MUST BE CALCULATEDsU
REMAINING AT Oe
IF ADJ3(LM) EQUALS OsIF THE INCREASE IN THIS TIME INCREMENT TAKES IT
QUTSIDE THE UPPER BOUND THE BED FILLS COMPLETELY.
IF ADJ3(I) IS LESS THAN THE LOWER BOUND ABOUT 0sU=0.
IF IT LIES WITHIN THE BOUNDS ADJ3(I1)=0 AND THE LENGTH OF THE BED IS
- INCREASED BY ONE DISTANCE INTERVAL »sASSUMING THE BED IS NOT COMPLETELY
FILLED.

IF(ADJ3(LM)«LT.AEP) GO TO 25
IF(TGeGTLEPS1) GO TO 20
IF(TG.LT.AEP) GO TO 21
ADJ3(1)=AE

NRI(I)=NRP

NP=NRI(I)

IF(NP«EQ.NDIST) GO TO 20
NR(NP) =1

NRIT=NP+1

DO 101 LI=LPsNT
IFINRI(LI)«GTeNP) GO TO 22
GO TO 101

NRIL=NRI(LI)

DO 102 LJ=NRIIsNRIL
NR(LJ)=LI

CONTINUE

GO TO 23
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PO=0.

DETERMINE THE OPTIMAL TEMPERATURE PROFILE AND OBJECTIVE FUNCTION BY AN
ITERATIVE PROCESS.

CALL R1(NDISTsACTsNTsNsTINCsCKsNR)

CALL R2(XOsACTsRK1sRK2sXFsAF19AF2sNTaNRISZINCsNDIST)

CALL FADJ(NDISTsADJ2sNRsNTsTINCsRK19RK29CKsNsAF19AF2sACT»ADJIL
#ZINCsNRI)

CALL CONTRK(NTsNUCsNRIsCK1sCK2sRK119RK12sRK219sRK22sCKsRK1sRKZ2
#AP1sAP29B13sB2sNsAF1sAF2sNDISTsACTsADJ2sNRsCOsZINC»ADIL)

CALL R1(NDISTsACTsNTsNsTINCsCKsNR)

CALL R2(XOsACTsRK19sRK2sXF9sAF1sAF2sNTsNRIsZINCsNDIST)

CALL SUBP(PsXFsNTsTINC)

IF(P«GE«PO) GO TO 16 Z

GO TO 15

PO=P+EPS

GO TO 17

WHEN THE TEMPERATURE PROFILE APPEARS TO HAVE CONVERGED WRITE QUT THE
CURRENT VALUES OF THE VARIABLES.

WRITE(6s90U9)P

WRITE(69905) (NRI(I)sI=1921)
WRITE(63905) (NR(J)sJ=1521)

WRITE(69909) (AF1(1521)91=192194)
WRITE(69909) (AF2(1s21)s1=192134)
WRITE(69909) ((CK(IsJ)sJ=192194)s1=1921)
WRITE(699U9) (ACT(1921)91=1921)
WRITE(659U9) (ADJ1(Is11)sI=1s21)
WRITE(659U9) (ADJ2(1s21)s1=1921)
WRITE(6s9U9) (RK2(I1921)91=15214)

REPEAT CALCULATIONS TO DETERMINE A NEW PROFILE FOR R(QO) UNTIL THIS
CEASES TO INCREASE.

IF(PeGE.P1) GO TO 19
GO TO 21

P1=P+EPS

GO TO 12
WRITE(6+910)

REPEAT THE PROCESS FOR A NEW R(O)

IF(MNe.LT.MM) GO TO 11
FORMAT(2115)
FORMAT(6(5X9E1346))
FORMAT (5H CONV)
. STOP

END

SUBROUTINE SET(NRISNDISTsACTsRK19RK2sAF1sAF29sADJ]1 sADJI29CKsN>
*¥EPS1sTINCsNRsNT s NUC)

THIS SUBROUTINE ATTEMPTS TO CALCULATE THE OPTIMAL PROFILE FOR R(T) FROM
KNOWLEDGE OF THE VARIABLE ADJOINT TO R-ADJ3(1I)e

A
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THIS LISTING IS FOR EITHER REACTION WITH UNCONSTRAINED Us WHERE
EXTREMAL K ARE OPTIMAL.IT RELIES UPON NATURAL CONVERGENCE-ITERATION UNTIL
THERE 1S NO SIGNIFICANT IMPROVEMENT IN THE OBJECTIVE FUNCTION.
ADJ1(IsJ)=THE VARIABLE ADJOINT TO THE CONVERSION.
ADJ2(15J) = ——=——mmmmmmmm DO ————=——=— ACTIVITY,
CONSTANTS IN THE EQUATIONS RELATING REACTION AND CATALYST DECAY RATE
CONSTANTS ARE :

B1-VALUE B FOR THE FORWARD REACTION.

B2 —=———m——m——m o REVERSE ——=--=-—-
AP1-VALUE P FOR THE FORWARD REACTION.
AP2 ————m—mm e REVERSE ———=———-

XO-THE ENTRY CONVERSION.

N-THE POWER TO WHICH THE ACTIVITY IS RAISED IN ITS TERM IN THE DECAY EQUN.
NRO-THE GRIDPOINT MARKING R(O)

MM-THE NUMBER OF VALUES OF R(0) FOR WHICH PROFILES ARE TO BE ESTABLISHEDe

ALL OTHER VARIABLES ARE AS DEFINED IN THE PREVIQOUS LISTINGe.

PROGRAM TST (INPUTsQUTPUT sTAPES=INPUTsTAPE6=0QUTPUT)

DIMENSION NRI(21)sNR(21)sCK(21921)sACT(21921)9XF(21)9sRK1(21921)>
#RK2(21921)93AF1(21921) sAF2(21921)3sADJ2(21921)9ADJI1(21921)sNUC(21)>
#C0(21921)

ASSEMBLE THE PARAMETER VALUES.

READ(5s1)NTsNDISTsNsMMsNRO

READ(S92)EPSsEPS1sTINCsZINCsXO

READ(592)B1sB2sAP1sAP2sCK19CK2sRK119RK12sRK21sRK22

FORMAT(515)

FORMAT(7F10e4)

ESTABLISH COUNTERS.

MN=0

MN=MN+1

NRO=NRO-1

NMM=0

FOR EACH VALUE R(0O) SET AN INITIAL PROFILE.

CALL INIT(NRSNRIsCKsCK1sCK2sRK1sRK11sRK129sRK29RK219RK22sNROsNT
#NDISTsCO)

CALCULATE THE ACTIVITIES AND CONVERSIONS.

CALL R1(NDISTsACTsNTsNsTINCsCKsNR)

CALL R2(XO9ACTsRK19IRK2sXF sAF19sAF2sNTsNRISZINCHINDIST)
P1=0,

CALCULATE THE THE ADJOINT VARIABLES.

CALL FADJ(NDISTsADJ2sNRoNTsTINCsRK1sRK29CKsNsAF1sAF2sACTsADJ]
*ZINCSNRI)

DETERMINE THE PROFILE.

CALL SET(NRISNDISTsACTsRK1sRK2sAF13AF25ADJ1 sADJ2sCKsNIEPS1sTINCs

#NRsNT sNUC)
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CONTINUE
GO TO 100

THE BED IS FILLED AND PROFILE IS NOW DETERMINED.

DO 103 LI=IsNT
NRI(LI)=NDIST
CONTINUE

DO 104 LJ=NRPsNDIST
NR(LJ) =1

CONTINUE

GO TO 55

u=0

ADJ3(1)=TG
NRI(I)=NIM
NP=NIM

GO TO 24

U EQUALS 0sADJ3(I) IS CALCULATED AND NRI(J)

ADJ3(1)=ADJ3(LM}I+TG
NRI(I)=NRI(LM)
IF(NR(NRP)eNEeI) GO TO 27
NRII=NRI(I)+1

DO 107 LI=IsNT
IF(NRI(LI)eGT4NRI(I)) GO TO 26
GO TO 107

NRIL=NRI(LI)

DO 108 LJ=NRIIsNRIL
NR(LJ)=LI

CONTINUE

GO TO 27

CONTINUE

CALCULATIONS ARE MADE FOR THE FINAL TIME.

IF(ADJ3(1)«LTeAEP) GO TO 100
ADJ3(1)=AE

CONTINUE

K=NRI(NTM)

KP=K+1

IF(ADJ3(NTM) «LTeAEP) GO TO 40

GRAD==-ACT(NTMsK)*¥(RK1(NTMsKI*¥AF1(NTMsK)—-AF2 (NTMsK)*RK2(NTMsK) )+
#ADJ2 (NTMoK) *CKINTMsK ) *¥ACT (NTMsK) *%N

TG=TINC*GRAD
IF(TGeGTLEPS1) GO TO 41
IF(TG«LTLAEP) GO TO 40
NRI(NT)=KP

GO TO 43

NRI(NT)=NDIST

GO TO 43

NRI(I)=K

DO 110 J=KPsNDIST

IS UPDATED.

92.
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NR(J)=NT
CONTINUE

THE INDICATOR NUC(I) IS DETERMINEDeWHILST U IS UNCONSTRAINED NUC(I)=1»
OTHERWISE IT EQUALS O,

DO 106 1=2sNT

LM=1-1
IF(NRI(I)eGT«NRI(LM)INUC(I)=1
"IF(NRI(I)eLESNRI(LM)INUC(I)=0
CONTINUE

NUC(1)=1

WRITE(69904) (ADJ3(I)sI=196)
FORMAT(6(5XsE1346))

RETURN

END

SUBROUTINE INIT(NRsNRIsCKsCK1sCK29sRK19sRK115RK12sRK2sRK219RK225sNRO>»
#NTsNDIST»CO)

THIS SUBROUTINE SETS AN INITIAL PROFILE FOR R(T) AND FOR THE TEMPERATURE.

DIMENSION NR(21)sNRI(21)sRK1(21921)3RK2(21921)sCK(21921)5C0(21521)
DO 101 I=1s4
NRI(I)=NRO
CONTINUE

DO 102 [1=5sNT
NRI(I)=NDIST
CONTINUE

DO 105 J=1sNRO
NR(J) =1

CONTINUE
NRP=NRO+1

DO 106 J=NRPsNDIST
“NR(J)=5

CONTINUE

DO 103 I=1sNT

DO 103 J=1sNDIST
CK(IsJ)=CK1
Co(IsJ)=CK1
RK1(IsJ)=RK11
RK2(IsJ)=RK21
CONTINUE

RETURN

END

SUBROUTINE CONTRK(NTsNUCsNRI»CK19CK2sRK119RK129RK219RK22sCK9RK1»
*RK2sAP13AP29B19B2sNsAF19AF2sNDISTsACTsADJ2sNRsCOsZINCsADJIL)

THIS SUBROUTINE CALCULATES THE TEMPERATURE PROFILE BY SUBSTITUTION IN
IN EQUATICNS WHICH APPLY TO THE OPTIMAL CASE.
THIS PARTICULAR ROUTINE IS APPLICABLE TO THE IRREVERSIBLE REACTION.
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DIMENSION NUC(21)sNRI(21)sCK(21s21)3sRK1(21921)sRK2(21521)>
#¥AF1(21921)9AF2(21921)sACT(21921)9ADJ2(21921)sNR(21)9CO(21921)>
*¥ADJ1(21+21)

APA=AP2%B2

APB=AP1%B1

APC=APA*APB

BA=AP1%B1

AE=Oa

IF U IS UNCONSTRAINED K(R(T)) IS PREDETERMINED.

DO 100 TI=1sNT

NI=NRI(I)
IF(NUC(I)eEQel) GO TO 10
NL=NI

GO TO 11

CK(IsNI)=CK2
RK1(IsNI)=RK12
RK2(IsNI)=RK22
IF(NI«EQs1) GO TO 100
NL=NI-1

THE TEMPERATURE IS CALCULATED.
DO 100 J=1sNL
FINALLY THE TEMPERATURE IS UPON ITS UPPER BOUND.

IF(ADJ2(IsJ) «eEQ.AE) GO TO 13
CK(I9J)=(ADJLI(T9J)*¥AF1(I1sJ)*BA/(ADJ2(IsJ)*ACT(I9J)))**2

IF THE TEMPERATURE (OR K) EXCEEDS ITS UPPER LIMIT IT IS SET EQUAL TO THIS.

SIMILARLY FOR THE LOWER LIMITe

IF(CK(IsJ)eLTeCK2) GO TO 12
IF(CK(IsJ)eGTeCK1l) GO TO 13

OTHERWISE THE RATE CONSTANTS ARE CALCULATED.

RK1(I9J)=B1*CK(IsJ)**AP1
RK2(IsJ)=B2%¥CK(IsJ)**AP2
GO TO 100

CK(Is+J)=CK2
RK1(IsJ)=RK12
RK2(IsJ)=RK22

GO TO 100

CK(IsJ)=CK1
RK1(IsJ)=RK1l1
RK2(IsJ)=RK21

CONTINUE

DO 103 [=1sNT

DO 103 J=1sNDIST
CO(IsJ)=CK(IsJ)

CONTINUE

RETURN

END
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SUBROUT INE FADJ(NDIST;ADJZ’NRQNT9TINC’RK19RK29CK9N9AF1$AF29ACI,
*#ADJ19ZINCHNRI)

THIS SUBROUTINE CALCULATES THE VARIABLES ADJOINT TO THE CONVERSION AND
ACTIVITYs THE FORMER EMPLOYING A 4TH ORDER RUNGE-KUTTA METHODsTHE LATTER
A MODIFIED EULER METHOD«BOTH INTEGRATIONS ARE IN A BACKWARDS DIRECTION.

AX-AN AUXILIARY VECTORe.

DIMENSION ADJ2(21921)sNR(21)sRK1(21921)sRK2(21921)sCK(21+21)>
#¥AF1(21921)sAF2(21921)9sACT(21921)sADJ1(21521)sNRI(21)9AX(4)

DO 100 I=1sNT

NI=NRI(I)

NL=NI-1

THE FINAL VALUE IS ASSIGNEDe
ADJ1(IsNI)=1.
THE OTHERS ARE DETERMINED.

DO 101 J=1lsNL

L=NI-J

LP=L+1

A=ADJ1(IsLP)

CALL RA1(ASRK19RK29sACTsIsLPsAXF)
AX(1)=AXF*ZINC

A=A+.5%¥AX (1)

CALL RA1(AsRK1sRK2sACTsIsLPsAXF)
AX(2)=AXF*ZINC
A=A+.5%#(AX(2)-AX(1))

CALL RA1(AsRK1sRK2sACTsIsLPsAXF)
AX(3)=AXF*ZINC
A=A+AX(3)=e5*¥AX(2)

CALL RA1(AsRK1sRK2sACTsIsLPsAXF)
AX(4)=AXF*ZINC

ADJLI (T s )=A=-AX(3)+(AX(1)+4%(AX(2)+AX(3))+AX(4)) /6
CONTINUE

DO 10C J=NIsNDIST

ADJ1(IsJ)=10

CONTINUE

DO 103 JU=1sNDIST

THE FINAL VALUE IS ASSIGNED.
ADJ2(NTsJ)=0,

THE OTHERS ARE CALCULATED.

NRL=NR (J) -
IF(NRL.EQ.NT) GO TO 20
NR1=NRL+1

DO 102 I=NR1sNT
K=NT-I1+NRL

L=K+1



NK=NRI (L) 8
ADJ2(KsJ)=ADJ2 (Lo J)+TINC*¥(ADJ1(LsJ)*¥(RKI(LsJ)*¥AF1(LsJ)—-RK2(LoJ)*
¥AF2(LsJ))=N¥ADJ2 (Lo J)*¥CK(LsJ)¥ACT(LoJ)®#*(N=-1))
102 CONTINUE
20 DO 103 I=1sNRL
ADJ2(19J)=ADJ2(NRLsJ)
103 CONTINUE
RETURN
END

SUBROUTINE RA1(AsRK1sRK2sACTsIsLPsAXF)

THIS SUBROUTINE GIVES THE GRADIENT OF ADJle
AXF-THE GRADIENT.

NOON

DIMENSION RK1(21921)9sRK2(21921)sACT(21+21)
AXF==A*ACT(I sLP)*(RK1(IsLP)+RK2(IsLP))
RETURN

END

95.



