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CHAPTER

I NTRODUCT ION

In the past decade extensive research has been made into optimal

control pol icies for catalysed processes where the catalyst activity

decays.

This decay may result from poisoning or sintering. The latter,

the sequel of high temperature operation, creates a reduction in the

surface area and number of active sites within the catalyst. Poisoning

may be of an irreversible or reversible chemical form or it may be

caused by a physical coating of the catalyst's internal or external

surfaces. Frequently a decay model is assumed in which the rate of decline

in the activity is dependent only upon the temperature and activity and

not upon the ambient component concentrations. This assumption has been

justified by the research of Szepe (I).

With such a model the determination of an optimal pol icy is

complex as the activity of the catalyst at a point depends upon the

previous history of that catalyst. The policy must therefore be set

with regard both to present and future profit.

Prev·ious work has been concerned with reactors of a fixed bed

length:

Jackson (2, 3, 4) examined the optimal temperature

profile in a tubular reactor with a reversible

exothermic reaction but obtained only a numerical

solution.
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Crowe and others (5, .6, 7, 8, 9) have Investigated

reactions in single and multi-bed Isothermal reactors

employing Aontryagin's Maximum Principle~

Ogunye and Ray (10), applying first order variational

analysis,derived a weak maximum principle for the dis­

tributed parameter (non-isothermal) case. Therien (I I)

has appl led the strong maximum principle of Degtyarev

and Sirazetdinov (13) to that same situation.

The problem to be examined here has a different emphasis. Its

essence may be simply stated: if a reactor is fil led with a catalyst,

whose activity decays, then the catalyst towards the reactor exit may

Initially effect I ittle conversion whilst sustaining a significant loss

In Its activity. It may thus be advantageous to delay the addition of

this catalyst. It would seem reasonable to suggest that this further

control, upon the timing of catalys~ addition, would improve the overal I

reactor performance.

In the fol lowing pages various features of, and necessary

conditions for, an optimal pol icy wil I be theoretically derived util izing

1st order variational analysis. These features wil I then be illustrated

and comp Iete so Iutions given by numer ica I computat ion.



CHAPTER 2

STATEMENT OF THE PROBLEM

It is required to maximise the performance index, or objective

function, over a fixed total reaction time T, by choice of the temperature,

at every point in time (t) - distance (z) space, and the rate of catalyst

.add it ion, at every i nsta nt.

The system is established with the following assumptions:

I. The reactant flow rate at entry remains constant.

2. There is a maximum bed length. Consequently, if there is no

significant volume change with reaction these first two assumptions are

equivalent to stating there is a maximum pressure drop.

3. The reactor is in plug flow and may be represented by a continuum,

there being a large number of catalyst particles per unit volume. Any

rate I imitation originates in the chemical reacions rather than in diffusion

processes.

4. A quasi-steady state is assumed as the space time is much shorter

than the time scale for catalyst decay.

5. The catalyst activity ~ is defined (12) as the ratio of the rate

of reaction with the catalyst in question to the rate with fresh catalyst.

All fresh catalyst is assumed to be identical.

6. The rate of decay of the activity depends upon the temperature

and activity alone

;~ = -ken g(lP)

o < lP < I- - }
O~g~1

The rate of decay increases with increasing temperature - the rate

3.

(2.1 )

(2.2)
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constant k(T) behaves according to an Arrhenius expression.

7.· The same catalyst is assumed to be effective in all reactions

with the same activity, as defined above, pertaining to each.

8. The m elementary reactions occurring involve t species and may

be described by the material balances

aXt m
- = ,I. 1:az 't' j=1 i • I,t (2.3 )

where

v. is the stoichiometric mole number for the ith species
Jt

in.the jth reaction.

Kj - is the rate constant of the jth reaction

and
(2.4 )

9. Any volume change with composition may be imbedded within F.•
J

10. The initial concentrations are specified

(2.5)

II. The temperature has both upper and lower I imits above zero.

(2.7)

(2.6)

and

12. The rate constants K. obey Arrhenius expressions. If ER. is the
J J

activation energy for the jth reaction and E
C

that for catalyst decay

then defining

it follows that

(2.8 )



13. No catalyst, once added, may be removed from the bed.

14. There is an upper I imit upon the rate of addition of catalyst

to the bed.

The objective function wil I be the sum of the production of

each species over the period of reaction weighted according to its

desirability. This is the simplest form of performance index ignoring

pumping, temperature control and catalyst regeneration costs.

5.



CHAPTER 3

DERIVATIONS

3. I

3.1 • I

In this section a possible profile, giving the length of the

catalyst bed at time t, is first established and the defining equations

and objective function are set out. The catalyst decay rate constant,

which increases monotonically with temperature, and the rate of addition

of catalyst are introduced as controls. A 1st order variational analysis

is performed to determine necessary conditions for extremal pol icies. A

Hamiltonian is defined and it is asserted that with optimal temperature

control this Hamiltonian should be a maximum. It Is demonstrated that

only in exceptional circumstances mayan unconstrained temperature at the

end of the reactor co-exist in an optimal policy wtth an unconstrained

rate of catalyst addition.

First let us delineate the area in time (t) - distance (z) space

with which we are concerned.

ret) is the length of the catalyst bed at time t such that

i.e.

o < r (t) < L

L being the maximum bed length.

t l is the time at which the reactor is fil led.

ret ~ t I) = L

6.

(3.1 )
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A typical profile for ret) is sketched in Figure I.
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From Chapter 2 it wil I be recal led that within the reactor, m

elementary reactions occur, involving! components. For the ith component,

(3.2)rCt) < z < L

o < z < ret)

,

the reactor being in a quasi-steady state:

m

aX I _ {ljIj gI \Ij i Kj Fj
az - 0

Outside the bed, reaction ceases. It wil I be observed that the catalyst

activity is the same in al.1 reactions. (Assumption 7, Chapter 2).

The catalyst decays according to the equation

~ = {-k (T ). g ($ ) , 0 < z < r (t )
at 0 , r (t) <-z < L (3.3 )

Catalyst on entering the bed has unit activity.

Introduce the control u(t), the rate of addition of catalyst.

It is bounded
*o < u < u (3.4 )

and is defined by

u(t) arCt) (3.5 )= at



Instead of employing the temperature T as a control let us use k,

the catalyst decay rate constant, defined in (3.3), which increases in a

strictly monotonic fashion wit.h T. k is bounded both above and below

8.

We wish to maximize the objective function

(3.6)

T l r<t)
P = I 1: (a

i
I

o i=1 0

m
~ 1: v. I K. F. dz)dt

j=1 J J J
(3.7)

where
a l is the weighting factor indicating the desirabil ity of the ith

component.

The function P is the sum of the weighted production of each species

within the reaction period.

let us introduce variations ou(t) and ok(z,t) into the controls

and then perform a 1st order variational analysis to give the resulting

variation in P, OP, In terms of ou and ok.

Assumption 13 of Chapter 2 stated that there may be no removal of

catalyst from the bed. Hence, once the bed is fil led (r(t) = L), the

control u is no longer active, i.e. for

t
l
+ ot

l
< t < T

u = 0 and ou = 0

• Recognising this, it may be shown (Appendix I) that the variation in

(3.8 )

the objective function, resulting from variations in the two controls, is

T r(t) l m t l
~P = I I (1: Ali~.1: v .. K.p.F.lk-AZg)ok.dz.dt + f A30U dt

o 0 i=1 J=I J I J J J 0

(3.9)



(i+2) adjoint variables have been introduced:

9.

they are AI i' (I=I,t..) adjoint to Xi

adjoint to 1JJ

A
3

adjoint to rCt)

and they are defined by the fol lowing differential equations and boundary

conditions

3A I i _ l m
--az - - t AI q 1JJ t

q=1 j=1

3F.
Cv. K,-1.)

J q J ax·
I

(3. 10)

i m
=A2k~g- to", tv.,K,F,)

1JJ i=1 Ij=IJIJJ

i m
= (A2kg - t Ca.1JJ t V'"K,F,»I

i=1 I J'=I J I J J
r (t)

<3.1' )

<3.12)

(3.13 )

(3.14 )

A
3

(0) = 0

, A.3 (t1)= 0
.}

*where 0 < u(t
l

) < u
(3.15 )

For an optimal pol icy no variation in the controls should be such

as to increase the value of the objective function. Hence, to revert to

(3.9), for any variation from an optimal policy

tSP < 0 <3.16)
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Let J be the term multiplying ok within the double integral in (3.9)

l. m
J = t AI i tP t (\I.. K. p. F.I k) - A2g <3. 17 )

i=1 j=1 JI J J J

Now k and u are independent control variables. Where k is unconstrained.,

as the variation ok is arbitrary, to satisfy (3.16) and give extremal

control

J = 0 <3.18)

*If k = k , as any variation ok must then be negative, ( for k must be

*such that k* ~ k ~ k )

J > 0
Similarly if k = k*, J < 0

}

if J < 0 for a II k then k = k*
The ·reverse is a Iso true - *}

and if J > 0 for a II k then k = k

Let a Hami Iton ian H be defined

(3.19 )

<3.20)

for an optimal temperature this Hamiltonian

l. m
H = t (A I. tP t \I ••

i=1 I j=1 JI

It wil I now be asserted that

should be a maximum.

K. F.)
J J

(3 .21 )

It has been proven (13), that with an invariant ret), for an

optimal pol icy, H should be maximized subject to initial and boundary

conditions. It is a further condition that H should be twice differentiable.

Accordingly, when t > t l , the reactor being filled, H should be made a

maximum with respect to k.

When 0 ~ t ~ t
l
, for any predefined profile of the bed length,

constraints upon the temperature may exist only at the bed exit. Such



(3.22)

constraints cannot affect the conversion. Any specified profile may thus

be considered as an example of the general case of Degtyarev and

Sirazetdinov (13) and again the optimal temperature Is that which maximizes

the Hamiltonian. This function yields no information about the profile

ret) •

Let us now examine the nature of extremal temperature control.

Differentiating the Hamilton with respect to k

!t!. = J
ak

and

a2H £. m 2
-Z = 1: AI· 'P 1: \1.1 K. F. (P. - I) P.lk
ak i=1 • j=1 J J J J J

With J = 0, where the second derivative is positive, the Hamiltonian has

a local minimum and the extremal value of k at that point is non-optimal.

Consequently, there, only the boundary values of k that maximize H wit I

be optimal. This may be clearly seen by recollecting that for any

deviation from an optimal pol icy

6P < 0 (3.16)

Here J = 0 yields non-optimal values of k. If J F 0 and k were not

bounded then, as 6k could take any sign, 6P would not necessarily be non-

positive. Only if k were bounded would ok be restricted to either positive

or negative values, thus satisfying eq. 3.16 when the appropriate

bound is chosen according to eq. 3.20. An example where extremal k is

non-optimal Is where all

AI •• \I •• p.(p. - I) > 0
J I J J

II.
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Where the second derivative is negative the extremal pol icy gives a
(

loea I maximum. Th is po I icy may then form part of an opt ima I po I icy.

Now let us examine the conditions necessary for extremal un-

constrained u where t ~ t , • From (3.9) where u is unconstrained, as then

c5u Is arb itrary, for extrema I va Iues of u

" =03
(3.23)

If u Is unconstrained over a period of time then over that same time

interva I

or, from (3. 14 )
l m

- "2 kg)'( 1: a , 1/1 1: vj I K. F. = 0 (3.24 )
1=1 j=1 J J

ret)
It wi II be reca II ed that for t > t I' u = 0

Unconstrained u is compatible with unconstrained optimal k(r(t» only in

exceptional circumstances as wil I now be shown:

Comparing (3.24) with (3.17) where J = 0 we see unconstrained u precludes

(3.25 )= 0

an opt ima I unconstra ined va Iue of k(r (t», a'nd v ice versa, except where

l m
1: a , 1: (V

J
. I K. F. (Pj - 1»1

i=1 j=1 J J ret)

This may be satisfied by a singular pol icy, where p. = I for all j, and
J

in other exceptional circumstances where a series of equations must hold.

This result is obtained in Appendix 2.

The final temperature may be determined:

Recal I ing from (3.13) that



then if at t = T

l m
1: Ali 1/1.1: (\lJ.i K. P. F.lk) > 0

i=1 J=I J J J

from (3.20), as J, defined in (3.17), is positive

*k(z, T) = k

there being no gain in further conserving activity.

The temperature wi II lie upon its lower bound at time T if

l m
1: AI i 1/1 1: (\I •• K. p. F .Ik) < 0

i=1 j=1 J I J J J

this being effectively an attempt to stop further reaction.

(3.26 )

13.

Previously we have considered the behaviour of u when A3 =o.

Let us now investigate u when A
3

F 0:

From (3.9), if A
3

> 0

then
au < 0

if

aP < 0 <3.16), this last being the condition for an

optimal sol ut ion.

If au < 0, u must I ie upon its upper bound

*i.e. A
3

> 0 u = u

} (3.27 )
Similarly if A

3
< 0, u = 0

t he lower bou nd to u be i ng 0 (3.4)

To complete this section the significance of the values of p will

be noted:

If P < I, then increasing the temperature will increase the rate

of catalyst decay more rapidly than the rate of reaction. If the products



of the reaction, for which p < I, were desired, then whilst the

activity is high, the temperature is I ikely to be low. As the activity

decl ines then an increasing temperature is to be expected to counter the

effects of a low act iv ity. The reverse is true "'here p > I. Th i s

general statement must be qual ified by ment-ioning that the temperature

pol Icy is determ i ned a I so by the rei at ive va I ues of p of a II the react ions.

14.



In this section it is demonstrated that the analysis differs only

sl ightly from the previous section 3.1.1. It is shown that if u takes a

bounding value this should be zero. Feasible cases in which the reactor

ma y be f i na I IY pa rt ia I IY f i I Ied are ment ionoed •

Here til T.

A typical profile for ret) is sketched in Figure 2.

FIGURE 2

15.
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In Appendix 3 it is demonstrated that in this instance the analysis does

not differ from that previously performed save that all time integrals

are made between 0 and T. Here both control variables, u and k, enter

into the problem at all times. This is in contrast to the situation

where t l < T, for when ret) = L the addition rate control is removed.

If at t = T, U is to be unconstrained, from (3.24)

(i a. 1/1 ~ ".. K. F.)I = 0
i=1 I ·=1 J I J J

J r (t)

remembering that A2 (T) = 0 (3.13).



*Otherwise u will take a bounding value. As u is arbitrary, one would not

*expect u(t) = u as this would suggest the solution is seeking to have

ret) = L. Therefore, u(t) = O.

The situations, for which t l ! t seems feasible, are series reactions

where an intermediate product is desired and for other complex reaction

schemes.

16.



Here it is shown that with a little adaptation the analysis of the

two previous sections is appl icable elsewhere though a maximum principle

is not necessari Iy avai lable.

I. Where the reactor is isothermal, the temperature being invariant

in time, the control k is eliminated and the expression for OP becomes
t

loP = / A3 ou.dt (3.28)
o

An extremal policy with unconstrained u requires that ).3=0 for O<t<t
l

I .e. A
3

(0) = 0

(3.29)

and
3).3

= 0 o ~ t ~ t lat

2. Where the reactor is isothermal, but the temperature varies with

*time subject to k* ~ k ~ k , then

· 17.

T ret) l m t
OP = / ok / (~r AI' r P.v.. K.F./k-A2g)dz.dt + /I A3 ou.dt

o 0 1=1 Ij=1 J J I J J 0
(3.30)

Extremal unconstrained k is possible when, from (3.9)

ret> l. m
/ (~r AI' L P.v .. K.F.lk - ).29) dz = 0
o i=1 I j=1 J J I J J

As temperature here is a boundary control no maximum principle may be

asserted.



3.2 The Irreversible Reaction

The irreversible reaction

18.

A products

is considered in this section. With the simpl ification made by con-

sidering the conversion of A as a state variable rather than the con-

centrations, the analysis of 3.1 is followed. The adjoint variables

are investigated and it is shown that the variable, adjoint to the con-

centration, may be el iminated and that the one adjoint to the activity

is always positive. It is demonstrated that unconstrained u is incom-

patible with unconstrained k(r(t». From the introduction of a

Hamiltonian and assertion of a maximum principle, unconstrained k is

found to be opt ima I on Iy where p < I·.

A sl ight simpl ification of the previous analysis may be made if

X is considered to be the conversion of A. Only 3 state variables X, r

and ~ need then be introduced.

The mass balance becomes
aX _az - 1/1 K F (X)

= 0

o < z < ret)

ret) < z < L
}

•

(3.31 )

and the objective function is the simplest
'r ret)

P = I I 1/1 K F.dz .dt
o 0

as we wish to obtain only the products.

(3.32)
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Fol lowing (3.10) - (3.15), if the adjoint variables ~,' ~2 and ~3 are

defined so:

(3.33 )

<3.34 )

(3.35 )

<3.36 )

(3.37 )

then from <3.9)

~3 (0) = 0

),3 (t I) = 0 if 0 < u (to ) <
1

* }
u

<3.38 )

L r(t) t ,
6P = 1 1 (A,FljIKr;lk - ~2g) 6k.dz.dt + 1 ~3 ou.dt <3.39)

o 0 0
Here

(3.40)

It will now be shown that ~I may be ignored and that ~2 is always positive.

Investigating the adjoint variables it is proved in Appendix 4

that

with F as the term

a(~IF) I
az = 0 or AIF = F

r<t)
Since AI is always found in the analysis in conjunction

~IF then from (3.41) this term may be repl?ced by Flr(t)

(3.41 )



In Appendix 4 it is also shown that

o < t < '[ (3.42 )

20.

(3.43 )

Unconstrained u Is incompatible with unconstrained k(r(t» as wil I now

be demonstrated:

The condition for unconstrained u is, from (3.39),

A '= 0
3

Over the period where ~3 = 0, then

«n.3
~=O

or from (3.37)

(A2 kg - 1jI KF)\ = 0

r (t)

From (3.39) we see too that for unconstrained k, as then ok is arbitrary,

that

J = A F 1jI Kp/k - A g = 0
I 2

(3.44 )

Comparison of (3.43) and (3.44) shows that they may co-exist only in the

special case where p = I. There a singular pol icy operates. This wll I

be further discussed in (3.2.4).

Let us now Introduce a Hamiltonian H and investigate the nature

of extremal pol icies and determine the optimal control upon k, the decay

rate consta nt •

Define H = .p K FI -).2 kg (3.45)

dt)

3H = J = 0 for an extrema I pol icy3k

2 2
~= 1jI FI t<p(p - I )/k (3.46)
3k dt)



As F, W, K and k are all positive this is negative only if p < I. If

p > I, it is positive. Followi.ng 3.1.1 and asserting a maximum principle

it may thus be stated that if p > I, extremal unconstrained k is non-

optimal whereas if p < I ~n extremal unconstrained k creates a local

maximum in H. This may then form part of an optimal policy.

Hence if p < I, the optimal value of k is such that J = O.

21.

i.e. from (3.44)

k = ('29/WP b FI lp~1
r(t)

(3.47 )

*If k calculated from (3.47) exceeds k or is lower than ~ it takes the

value of the bound traversed.

If P > I, optimal k must be a bounding value of k with the property that,

*with that value of k, H is a maximum. A transition from k = k to

k =~ could occur when
(3.48 )

or

* (FI Kl' - '29 k' =W(F\ Kl. - '29 k"
r<t) r(t)

as continuity exists in 1/J, g and A2 • If the transition were made for a

single value of z alone at any given time, continuity would also exist

in FI .
r<t)

Finally, the reactor should be operated at its maximum temperature, there

being no profit in the conservation of activity at this time:

At t = t from (3.44) and (3.36)

J = Fl K 1/J p/k . > 0
r(t)

From (3.20) then
*k ::: k (3.49)



It was earlier shown in 3.1.1 that unconstrained u precludes

uoconstrained k(rCt» in optimal pol ietes. It would, thus, seem logical

to consider first those policies where k(r(t» is the primary control and

then those for which u is the primary control. It wil I be recal led that

where p < I, extremal unconstrained k can be optimal.

Where kCrCt» is the Primary Control:

From a development in Appendix 5 it may be seen that where the

entry conversion remains constant:

a) The temperature increases with time,

b) Whilst k is unconstrained for all z < r(t), the exit

conversion is constant

c) Either all the catalyst. is initially present or it

is a II added at the highest possible rate at a later

stage.

Where u is the Primary Control:

It will first be demonstrated that for t ~ t l , k(rCt) ) = ~

Where u is unconstra i ned) (3".43) hoi ds

f.e. (A2kg-lJIKF)1 =0

rCt)

Hence examination of C3.44) shows that at rCt)

J < 0 where p < I

22.

i.e. from C3.20) k (r(t» = k* (3.50)



In Appendix 6 it is proved that for z < rCt) < L where kCz,t) is

unconstrained, than any extremal policy with unconstrained uCt) Is non­

optimal. The best pol Icy in such circumstances is to operate with a full

bed •

An optimal unconstrained u Is' possible where kCz,t) =~ for

z < r Ct) < L.

When rCt) = L, the bed Is filled and the situation is that

described for kCrCt» as primary corn-rol.

23.



Where p > I, unconstrained k is non-optimal. If the primary

control takes a bounding value then the other variable takes the optimum

value subject to the conditions imposed by the first lying upon a

constra i nt •

Again it would appear natural to consider first the situation with

k(r(t» as primary control and then that with u as primary control.

Where k(r(t» is the Primary Control:

*Here u =u or u =0

If initially k(r(O» = ~, the problem becomes that of Therien (I I)

dealing with a full bed. This may easily be demonstrated as follows:

If k(r(O» = ~ from <3.37), <3.43) and <3.44)

dA3
- > 0at

As Initially A
3

= 0, (3.38) then for t > 0, A
3

> O.

* *Hence u = u initially - the bed is filled as u may be arbitrarily

large.

Where u is the Primary Control:

It wil I be shown that where u, the rate of addition of catalyst,

*is unconstrained k(r(t» = k. If the conversion decl ines whilst u is

unconstrained the temperature in the regionro ~ z < ret) I ies upon the

upper limit.

aA
3Where u is unconstrained, we know ~ = 0

Examination of (3.43) and (3.44) then shows that

*k(r<t» = k

24.



Apart from the above observat ions the optima I pol icy must be

determined for each particular case.

"-­
25.



The Hamiltonian function is shown here to be linear in the control

k. Hence there exists the possibil ity that an optimal pol Icy contains

a singular segment. Whilst it does the exit conversion remains constant

and an unconstra i ned extrema,1 temperature is compat i·bl e with an uncon-

strained extremal rate of catalyst addition.

26.

Where p = I, K = b k (3.40)

the control

I.e.

When

the Ham i I ton ian is II near in the contro I:

1/1 b FI
r<t)

pol icy is singular. If this pol'icy is to be evident then it

I.e.

must persist for a certain period in time and distance

:t (F' 1/1 b - >'2g ) = 0
ret)

Differentiating and substituting (3.35) for the term

a>'2 a1/1
at and (3.3) for the term at

~'r(t) 1/1 b = 0

or the exit conversion remains constant.

Whilst the control pol icy is singular at ret) comparing (3.43)

and (3.44) we see these equations are identical and thus, of course, may

simultaneously hold.Unconstrained k(r(t» is thus consistent with un-

constrained u in an extremal control pol icy.



3.3. The Reversible Reaction

27.

3.3.1

In this section a simple reversible reaction of the form

A
....
+ \lB

Is considered. Such a form of reaction al lows for considerable

simplification within the analysis as the concentration of A Is simply
,

related to that of B. Again the variational analysis of the general re-

action scheme Is fol lowed. It Is demonstrated that an unconstrained rate

of catalyst addition, u, is incompatible with an unconstrained temperature

at the end of the bed, k(r(t», within an optimal solution. A Hamiltonian

is introduced, a maximum principle asserted, and the nature of extremal

and optimal temperature profiles investigated.

Consider the reversible reaction:

A
....
+

This is a single reaction with two stoichiometric coefficients. A con-

siderable simpl ification of the analysis for general kinetics may thus be

made, as the concentration of A is simply related to that of B

Where

XAO is the entry concentration of A

Xso is the entry concentration of B

Hence only one concentration X, that of B, need be introduced.
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Let us reintroduce, from Chapter 2, assumption 8, the stoichiometric

mol e numbers,

of A, then

"...'J
Basing them upon the reaction and formation of a mole

"12 is the number of moles of B formed from I mole of A

(- "22) is the number of moles of B removed to form I mole of A

A further simpl ification is thus to say

" = "12 = - "22

It may be necessary to redefine the rate constants in the reaction rate

equations so tha.t they are consistent with the stoichiometric mole

numbers chosen.

For this simple reaction the material balance (3.2) may be expressed as

ax _az - tV ,,( K
I
FI (X) - K

2
F2 (X) )

Again we have only 3 state variables, X, r and tV.

If we desire B alone, the objective ·function formulated in (3.7),

slmpl ifies to:
't r<t)

p =!! " tV( KIF I - KzF2) dz.dt
o 0

a zero weighting being given to A.

<3.52)

<3.53 )

FollO\'iing <3.10) to <3.15) if adjoint variables AI' 1.2 and ~3

are defined so:

= <3.54 )

(3.55)

(3.56)
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(3.57>

*o if 0 < u (t I) < u
} (3.58 )

(3.59)(A2kg - lliv (KIFI - ~F2 »1
ret>

then from (3.9) the variation introduced into the objective function P bya

variation in the controls u and k is

't' ret) t
loP = f f Ailli v(KIFIP I - ~Ff2)/k - A2g)ok.dz.dt + f A30u.dt (3.60)

000

where

The variable AI adjoint to X , is always positive:

examining (3.55) it wit I be seen that if AI should ever be zero at a

certain time, it is always zero at that time. But (3.54) states that

and so

If we deviate from an optimal unconstrained pol icy

oP < 0 (3. t6)

and as ok, the variation in our temperature control is arbitrary, ther.

from (3.60) J = 0 for extremal k

where

(3.61 >
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-The introduction of a Hamiltonian and assertion of a maximum

principle leads, as will be shown, to the conclusion that when the

parameters PI and Pz take certain values, then extremal unconstrained k

Is non-opt ima I •

Defining a Hamiltonian

(3.62 )

its second derivative is

- -aZH
--:-7 = AI 1lJ v (K1FI PI
ak

Since we wish to maximize the Hamiltonian, the second derivative must not

to

be positive if unconstrained extremal k is to be optimal. Where the

second derivative is positive, as stated in section 3.1.1, the optimal

temperature takes the bounding value that maximizes the Hamiltonain. If

the unconstrained decay rate constant, k, may be optimal, then k, subject

*~ ~ k ~ k

is determined from (3.61) knowing J = O.

Examining (3.60) we observe that if QU is the variation from an

extremal unconstrained value of u, the rate of catalyst addition, then for

6P < 0

as QU is arb itrary

A = 0
3

Following 3.1, if u is to be unconstrained over a period of time, then

3A3 =0a:r



or from (3.59)

(1jI v(Ktl - I<:2F2 ) - ).2kg )I
r(t)

= 0

-31 •

A comparison of this with (3.61), where J = 0, shows unconstrained u to

be incompatible with unconstrained k(r(t» within an optimal solution as

both equations cannot, in general, hold simultaneously. An exception to

this In in the singular pol icy where

p = I
I

and P = I
2

The temperature prOfile at the final time may be determined. The

temperatures will, in general, be bounding values as will now be

demonstrated:

At t = T, recal ling (3.56)

~e hav~ from <3.61)

(3.63 )

If the reaction is to be effective in converting A to B then the

overall direction of the reaction should be forward. A temperature switch,

from the upper to the lower bound, that reversed the direction of the

reaction would not be desirable,

I.e. v(KIF, - I<:2F2) > 0 <3.64 )

or
aX
az > 0

Thus for PI > P2' compari ng <3.63 ) ''lith <3.64) then

J > 0
and from <3.20)

*k(z,'r) = k

If PI < P2' then perhaps k(z, ,) = k*
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As in section 3.Z a distinction is made between the cases where

k(r(t», the decay rate constant at the end of the bed, is the primary

control and where u, the rate of catalyst addition, takes that role.

Where u is unconstrained, k(r(t» may often be determined by the values

of PI and PZ' the ratios of the activation -energies of the forward and

reverse reactions respectively, to that of the catalyst decay. A summary

is made of information that may be obtained from a knowledge of PI and

Pz alone. The extreme cases, where PI < I, Pz ~ I and PI > I, Pz ~ I are

examined in greater detail, emPloying semi-qual itative arguments.

Where the reaction is exothermic (PI < PZ) a fall ing temperature

profile along the catalyst bed might be expected. The reverse would be

anticipated when it is endothermic (PI> PZ>.

Based on Appendix 7 information that may be obtained from knowledge

of PI and Pz may be summarized.

PI < I PI > I

P2~1 -PI.3'Z<1 PZ<P, PZ>P, PI~2>' pZ~'

~nconstra i ned k Opt ima I ? ? ? ? non-opt ima I

k* *k(r(t» at unconstrained u ~ k* ? ? k
aA3 unconstra ined k(r<t» ? ?~at neg. neg. pOSe -
aA3 *
~-at k(r(t» = k neg. neg. ? ? ? ?

aA3 k(r(t» ~ ?'at at = ? ? ? pOSe pOSe

k(r<t»
aA

3 > 0 ~ k* ? ? ? ?when ~
aA3 * *k(r(t» when ~ < 0 ? ? ? ? k k

The question mark indicates that information beyond p is required.



As observed in the summary this is an exothermic reaction where

unconstrained extremal k are optimal. If u is the primary controt., then

k(r(t» = ~.

The temperature takes its lower bounding value towards the end of

a temporary halt in catalyst addition.

33.

If, initially, the rate constant at the end of the bed, k(r(O», is

unconstrained and optimal the situation reduces to a case of constant bed

depth. The proof of this I ies in Appendix 7.

This is an endothermic reaction where an optimal temperature

policy requires that the temperature takes bounding values. If u is the

primary control

*k(r(t» = k

if k(reO» = ~

then initially the bed is fil led completely. Again the proof of this is

in Appendix 7.



· CHAPTER 4

NUMERICAL SOLUTIONS

4.1 The Calculation Methods

Both natural convergence techniques and numerical searches were

employed. For the former an iterative procedure was util ized and pursued

until the objective function improved between iterations by an amount

smaller than a prespecified value.

The distance-time space was divided into a grid, the variables

being ascertained only at each grid point •.

Calculations to determine ret) were made in two ways:

I) Using the derivations of Chapter 3 the value of A3, the adjoint of

r (t» is determ i ned. Where u is unco.nstra i ned) A3 shou Id be zero. Know i ng

A3 (0)to take that value, for an initial profile, A3 after the first time

interval is calculated. If it I ies within narrow limits about zero, A3 is

set to a and ret) to one distance interval greater than reO), the initial

bed length. If, however, A3 exceeds the upper I imit then the reactor is

til led completely; if it is less than the lower' imit about 0, r is left

equal to reO), its value one time interval earlier. Continuing in such

a manner
J

for each reO) a profile is determined.

2) It was assumed that any profile in ret) could be approximated

by a straight I ine cutting across a corner of the L x T rectangle which

34.



marks the area of concern in distance-time space. The approximated

profile is shown in Figure I, section 3.1. With the positions of the

intersections of this I ine with t = 0 and z = L as arguments a Davidon-

Fletcher-Powell search procedure was employed to determine the argument

values that maximized the objective function.

For the exothermic reaction (p < I -in the irreversible case,

PI < I, P2 > I in the reversible one) the decay rate constant, or

temperature, at al I points within the bed was calculated from the

appropriate prevjously derived equation. For the endothermic reaction

no satisfactory algorithm util izing natural convergence could be derived.

The results were very sensitive to the precise formulation of the

temperature switch control.

Again then it was assumed that the area in distance-time space

could be divided by a straight I ine. To catalyst upstream of this line

35.

the integra I

was assigned the lower bounding temperature, to that downstream the upper.

This temperature pattern is real istic in the reversible endothermic re-

action. In the irreversible reaction conversion is dependent only upon

r (t)

J 1/1 K.dz
o

and not upon the temperature at specific positions.

Computer I istings for these techniques follow the Appendices.



The values adopted for the calculations were:

or = 105 sees.

L = 1

E
C

15000 deg-I=
k* -5 -I "<T* 900K)=8.10 sec =

~
-6 -I

""(T* 745K)= 2.5.10 sec =

~
-5 -I

(T* 875K)or = 5.10 sec =

*K =

~ .00552 when p=1 .5 and -6 -I= ~=2.5.10 sec

.1767 when p=O.5 and -6 -I= ~.2.5.10 sec

.79 p=O.5 ~= 5.10-5 -I
= when and sec

b = 1397584 when p=I.5

= 111.8 when p=O.5

Following Szepe (I) g = ~n and here

n = 2

The reactions were first order.

The inlet conversion of the desired product was constant at zero.

*u was taken to be a very large value.

A 20 x 20 interval grid is used.

36.



4.2 The Numerical Results

37.

4.2.1 The Irreversible Reaction

This was defined by:
-a
a~ = K 1/1(1 - x)

*a • Where p = .5 a nd ~ < k < k

I ) -6 -I
~ = 2.5.10 sec

At no point within the bed was k =~. The best solution found

required the reactor to be initially completely filled. The temperature

rose rronotonical Iy to the upper I imit, the profile in time being the

same for al I z even with sloping initial temperature profiles. Whilst

k was unconstrained at all points within the bed, the conversion re-

mained constant. These results are in complete accord with theory (section

3.2.2).

Figure 3 shows the activity, decay rate constant and concentration

term F at the reactor exit as time progresses.

2) -5 -Ikt = 5.10 sec

If ~ was assigned a higher value then, whilst again the

temperature increased monotonically, it lay upon the lower bound for a

substantial initial period. Both numerical search and natural convergence

techniques showed that the most profitable solution was to reduce the

time of operation to 95000 seconds. This increased the value of the

performar~e index P to 2.59.104 from the value 2.47.104 yielded with



the same ful I bed over 100000 seconds. This is reasonable as here

insufficiently low temperatures are attainable to sufficiently conserve

the activity. As before the conversion remains constant whilst k is

unconstrained for z < ret).

Again no optimal solution with unconstrained u was found.

Features of the best solution found are shown in Figure 4.

The results with p = .5 may be briefly summarized:

-6 ~ = 5.10-5k* = 2.5.10

IP.max.
4 42.77.10 2.59.10

It should be noted here that, as observed in Appendix 5, the constant

decline in catalyst activity whilst k is unconstrained is a feature

specific to the chosen values of p and n.

*b. Where p = 1.5 and k = k or k*

The results obtained here represented only a sl ight improvement

over the temperature invariant case.

The best solution computed for unconstrained u (obeying the con­

*dition that for t ~ t
l
, k(r(t» = k )was less profitable than the best

where k(r(t» exerted primary control. In both cases the bed exit con-

version and activity exhibited decaying profiles.

A plot of ret) and the best temperature policy is to be found in

Figures 5 and 6a.

Pr imary Control k(ret» u

P max. with p = 1.5 ,4 42.458.10 2.424.10

38.



*c. Where the temperature was invariant (k = k )

The sole control here was u. The most profitable solution

required that the catalyst be added over several time increments. This

Is illustrated in Figure 6b.

4P max. = 2.37.10

In the absence of the control u, where the bed is of constant depth,

4P max. = 2.27.10

The employment of a control u consequently yields a 5% improvement in

the objective function.
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4.2.2. The Reversible Reaction

This was defined by:

""!x. =1/ICK (I - x) - K.. x)az I "2

*a. Where PI = .5, P2 = 1.5 and ~ ~ k ~ k

Both where primary control was exercised by kCrCt» and by u it

proved advantageous to add catalyst over a period of time CFigures 7 &8).

The former result contradicts the theoretical prediction that al I the bed

should be present. Perhaps the natural convergence algorithm failed.

The temperature profile was a monotonically increasing one in time,

the conversion monotonically decreasing though at one stage the rate of

decline was very small. The activity displayed a uniform decay rate,

whilst k was unconstrained throughout the bed. As observed earlier, this

is not a general feature of an exothermic reaction.

As might be expected in such a reversible reaction the temperature

profile with distance at any time was a monotonically decreasing one.

These features are plotted in Figures 9, 10 and I I.

Pr imary Contro I kCrCt» u

P max. 4 4
2.56.10 2.57.10

These values represent an improvement of 3.102 and 4.102 over the case

where the bed is initially completely fil led.
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b. *Where PI = 1.5, P2 = .5 and k = k or ~

.
In this reversible endothermic reaction, as in the irreversible

41 •

reaction previously discussed, the improvement over the case where the

temperature remained invariant was only sl ight. As In the irreversible

reaction where kCrCt» was the primary control, there being then no

restriction upon kCrCt», a larger objective function resulted than when

u was unconstra ined.

Plots of temperature and rCt> are given in Figures 12 and 13.

Primary Control kCrCt» u

4 4
Pmax. 2.085.10 2.063.10



Control here was exerted by ujthe rate of catalyst addition. The

best solution had catalyst addition over several time intervals, u being

unconstrained in this period (Figure 14)

4Pmax = 2.03.10

4This compares with a value of 1.94.10 where the reactor is

completely fil led initially.

It must be stressed that, with the exception of the irreversible

reaction where p = .5, these solutions do not necessarily represent the

optimal solutions. Resulting as they do from numerical search procedures

they are but the best solutions obtained.
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. CHAPTER 5

CONCLUSIONS AND' SUMMARY

Features of the optimal catalyst addition and temperature control

pol icies have been deduced for general and specific catalyzed reaction

schemes where the catalyst undergoes decay. The principal results are

summar ized be low:

I. Except under special circumstances an unconstrained rate of

catalyst addition precludes an unconstrained bed-exit temperature, and

v ice-versa, with in an opt ima I sol ut i·on.

2. Unconstrained extremal temperatures may be non-optimal. Where this

is so, within any optimal solution a control pol icy in \'/hich the temperature

switches between the I imits is required.

3. For an irreversible reaction, where the activation energy for the

reaction is less than that for catalyst decay, the complete bed needs to be

present or there should be no catalyst present at al I. The temperature

monotonically increases with time, here unconstrained temperatures may

form ,part of an optimal policy.

4.-1 Where the temperature switches between its bounds, within an optimal

pol icy, for the irreversible and reversible reactions it is advantageous to

delay the addition of some of the catalyst.

5. If control over the temperature is absent the optimal delay in

catalyst addition towards the reactor exit is larger than if temperature

control may be exerted. In conserving catalytic activity a low temperature

plays the same role as the postponed addition of catalyst.
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· 'CHAPTER 6

FUTURE WORK

Further aspects of this problem that could well be investigated

are:

I. Where the pressure drop over the reactor rather than the space.

time is held constant. Another possibil ity ~~uld be to have complete

control over the flow rate.

2. Where the entry temperature is specified but where thereafter

It is determined by wal I cool ing and the evolution of heat from the

reactions.

3. Where the reaction time is not fixed but allowed to vary so as to

maximize the overal I conversion, over a period of reaction and regeneration.

4. Where each reaction has its own specific catalyst, the catalyst

mix being one of the controls.

Within this study a stronger justification needs to be provided

for the assertion that for optimal temperature control, where this is not

subject to other constraints, the Hamiltonian should be maximized. The

nature of the bang-bang control could be examined and a new algorithm for

exercising this devised. The semi-qual itiative arguments that were

employed to show optimal pol icies should be investigated and strengthened.
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NOMENCLATURE

58.

A, B

b
J

~

ER•
J

F
J

g

H

J

K.
J

k

l

n

P

p.
J

r

T

t

t
l

u

Xi

z

The components involved
P.

Constant of proportional ity between K. and k J
J

Arrhenius activation energy for catalyst decay

Arrhenius activation energy for the jth reaction

Conversion (or concentration) term in the rate expression
for the jth reaction.

Activity dependent factor in the catalyst decay rate

Hamiltonian

Hamiltonian's 1st derivative

Rate constant of the jth reaction

Catalyst decay rate constant

Maximum catalyst bed length

Exponent of $ in g

Objective function

Ratio of activation energies: p. = ER./ECJ J
Catalyst bed length

Temperature

Time

Time at which the bed is first fil led

Rate of catalyst addition

The concentration or conversion of the ith component

Distance



a Weighting factor within the objective function

AI Adjoint variable to X

A2 Adjoint variable to ~

. A3 Adjoint variable to r

v Stoichiometric mole number

T Total reaction time

~ The catalyst activity

~':.~~cL~!~

i,q Components

J Reaction

o Inlet

* Minimum

59.

* Maximum



APPENDIX

Consider the system defined by (3.1) - (3.8).

Introduce small variations into the control s, this creates small

perturbations in al I the other quantities such that:

60.

m
6(tV r \I'IK.F.),

j=1 J J J

= 0 ,

o < z < ret) + 6r(t)

r (t) + 6r (t) < z < L

(A. I • I )

a< c5tP ) = -k ~ OtV - gok , o < z < r (t) + or(t)
at atV

= 0 ret) + or (t) < z < L,

Hor)
6u ; ou o , t > t

l
+ ot

l
= =

at

't l ret) + or(t) m m
6P = 1( r a l 1 tV r (\1'1 K.F. )+0 (tV r \I. i K. F. ). dz

o 1=1 0 J=I J J J J=I J J J

(A.I .2)

(A.I.3)

l ret)
- r a 1

i=1 I 0

m
tV r \I .• K.F. dz)dt

J= I J I J J

Applying the mean value theorem and ignoring second and higher order sma I I

't l
6P = 1 (E a.

o 1=1 I

terms
ret) m
1 o(tV r \I .. K.F.)dz)dt
o j=1 J I J J

t l m
+ 11 or(t>< E a.tV r \I .• K.F.) I .dt

o I-I I J'=I J I J J
ret)

{A. 1.4)
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Let us introduce the co-state variables Al i,(i = I,l), A2 and A3

and add to (A.I.4) the double integrals of (A.I.I) and (A.I.2) multi-

plied by (Ali - ail and A2 respectively, and the time integral of (A.I.3)

multipl ied by A3,

Then,

tim
+ fl(or(t) L (a.(1jI L v .. K.Fj )+A30u-A3a~$r»dt

o i=1 I J·=I JI J J I
r (t)

(A. I .5)

The order of integration within a double integral may be reversed when the

limits of integration are finite and constant and when the integrand has

at most a finite number of finite discontinuities of fixed position and

size. The satisfaction of these conditions we may here ensure.

Thus integrating by parts

T ret) d(OX.)
If f (A I . -a. )--.,,,,--- dz .dt

I I aZ
o 0

Defining

T ret) ret) dA I t
= f([(A

I
.-<1. )Ox.J - f ~ oX. dz)dt
I t I 0 aZ Io 0

AI i (r(t),t) = a.
t

and pre-spec if Yi ng

Xi 0 (t)
T ret) a(ox. ) T ret) dA'i
I f (AI i -a 0' )

I dz.dt - f f dz.dtaz = azOX i
0 0 0 0

(A. I .6)

(A. I .7) .
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Now

If we define

)'z (z, 1") = 0

and observe that there may be no change in the initial activity i.e. that

..

61/1(z,O) = 0

then
1" L a(01/1) 1" L ahzI I AZ dz.dt = -I I "fr. 61/1.dz .dtat
00 o 0

Now

1" L a(61/1) tl+ot l
r(t)+or(t) a<1/1+ 61/1 )I I AZ dz.dt 1 AZ dz.dtat =1 at

00 0 0

(A. I .8 )

1" L .a1/l
- 1 I AZ at dz.dt

1i 0

ApplyIng the mean value theorem and noting r(t l ) = L

1" r (t ) a< oljl ) 1" L a (oljl ) t I a1/l I
I I AZ at dz.dt =1 I).z at dz.dt - 1 or(Az at) .dt (A.I.9)
o 0 . 0 0 0 ret)

and so we have by-passed the difficulty caused by being unable to reverse the

order of integration when one of the II imits of integration is a variable.



Substituting (A.I.8) into the above and recognizing that for

ret) < z ~ L, o~ = 0 (3.2)

't ·ret) 3(o~) '( r(t)aA2 t l · ·a~ I
1 1 A2 at dz.dt = -I 1 ~~.dz.dt - 1 or(A2 at) dt
o 0 0 0 0 ret)

63.

(A. 1• 10)

Having no wish to fix reO) and r(t
l
), defining

then

~(~ ) t l · aA3,our dt = dt1\3 3t· - 1 or ~ •
o

(A.I.I!)

Substituting (A.I.?>, (A.I.IO) and (A. I • I I ) into (A.I.5)

't ret) .e. m .e. aF. aAll
OP = 1 1 ( I: (AI.~ I: (v .. K. I: -1- ox ) + -a- 6x·)

1=1 I j=1 J I Jq=1 aX q z I
0 0 q

.e. m 3A2 3g
+( I: (A I • I: v .. K. F .) + -::;---t - A2 k ~) o~

I = I I j = I J I J J 0 0",

.e. m
+( I: AI I ~ I: v.IK.p.F./k) - A2g)ok)dz.dt

1=1 j=1 J J J J

t.e. m 0A3
+/ 1«( I: (a. ~ I: vJ.IKJ.F

J
.) - A2kg )1 + ~)or + A3 0U)dt

o i=1 I j=1 ret)
(A. I .12)



Defining

3A
I

l. m 3F.
-.!..9.. = - L AI i ljI L (\I •• K. _J)

3z i-I J=I J I J 3Xq

3A
2 . 3 l. m

at" =Ak-l!- L (AI i L \looK.F.)
2 3ljJ

i=1 J=I J I J J

Su bst i tut i ng (A ~ I .13) - (A. I • 16) in (A. I .12)

64.

(A. I .13)

(A. I .14)

(A. I .15)

't ret)
OP =1 1

o 0

l. m
(L AI i ljJ L \I •• K.F.p./k - A

2
g)ok.dZ.dt

i=1 J=I J I J J J

t
+ 11 A

3
ou.dt

o
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"APPENDIX 2

Assume (3.25) holds

I.e. L =
!
1: a.

1=1 I

m
1: (\I .. K.F.(P.-I»I

'_1 J I J J J
J- r<t)

= 0 (A.2.1)

then if thi sis true for more than an instant

QL = 0
dt

or
!
1:

i =1

m
1:

j=1

dk ! m
a. \I •• (K. F . (p. -I )P.Ik dt ~ + 1: Ea.

I JI J J J J Ir(t) i=lj=1 I

dF.
\I .. (K. (p.-I )dtJ 1 =O(A.2.2)
JI J J

r(t)

A further requirement is that

a2H
~
ak r<t)

this term being given by (3.22).

< 0 (A.2.3 )

Simultaneous satisfaction of (A.2.t>, (A.2.2) and (A.2.3) will be

rare. For example, where the exit conversion is constant, unconstrained

k(r<t» nay co-exist with unconstrained u only when

a2
H-:-:-z = 0

ak

and where the first non-zero even-ordered derivative of H is negative.
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: .'APPENDIX 3

The derivation in Appendix I holds here until equation CA.I.9)

with a sl ight alteration in that al I time integrals should be made between

o and T.

Then, pnoceeding from CA.I .9)

't L
/ / A 9Co~) dz.dt

2 at
o 0

T rCtHorCt)=f I A ac~+o~)
2 ato 0

dz.dt

T L a~
- f f A2 at dz.dt

o 0

't rCt) aco~)
= / f ~2 at dz.dt

o 0

CA.3.1)dt'to a~ I+ f OrCA2 at)
o rCt)

applying the mean value theorem, ignoring second and higher order small

terms. Again we may proceed as previously with the above mentioned

a Iterat ion.



'APPEND IX 4

I. Examining (3.33), if at any time AI should ever be zero then AI

always takes that value at that time.

As
, AI (rCt),t) =

then

67.

2.

o < z < ret)

substituting (3.31) & (3.33)

Thus

= - A tP K~ F + A ~ tPKF
I aX I ax

= 0

3. From (3.36), as

AI K F > 0

when A2 = 0,
aA2 < 0at

but
A
2

('t ) = 0 (3.37 )

and hence
A2 > 0, '0 < t < L
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. APPENDIX 5

If initially k(r<O» > ~,

J > 0

and from <3.37), <3 .43) and <3.44)

Thus as,

t > 0

from <3.27)
u = 0

* *If however k(r(O» = ~, perhaps u cu. But u , being arbitrary

may be set to a large value and hence at t > 0, the reactor wil I be fil led.

Thus regardless of k(r(O», initially u = 0 though perhaps later

*u = u •

Now let us digress to obtain some useful results:

We know

ax = ,I. K Faz 'I'
<3.31 )

o

dX ret)
= I wK dzFCXT

x(r<t»
I
Xo

respect to time

t ntegrat ing

Differentiating with

a I I ret >a(a; . r-> = U (WK>I + I rr(w K>.dz
ret> ret) 0

assuming the inlet conversion to remain constant.

(A.5.1 • >
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From (3.44),

:; = 9KF/ (I-p) + 1PKp(p·-i ):~ FI /k
2 +1P~paF(~;t»

r(t) - r(t)

and whilst k is unconstrained and optimal
-aJ

J = 0 and at = 0

Using (A.5.2) and (A.5.3), substituting the resulting expression for

~ Into (A.5.1) we have, where k is unconstrained and optimal

(A.5.2)

(A.5.3)

ax(r(t»
at

r(t) 1PKp
= u(1P!<F)l + ~ (I-p)

r(t)

aF(r(t» dz
at (A.5.4)

bed of constant depth (u=O)

Th . f ak.e expressIon or at IS

ak _ k aF(r(t»
at - (I -p) Ff at

r<t)
Reverting to the question in hand, consider a

where k is unconstrained and optimal

2
+~

1PP
(A.5.5)

o

From (A.5.4)
ax(r(t»
at

r (t) ,I. Kp aF(r( t »= f ~ dz
(J -p) at (A.5.6)

As ~ < 0 this can only be reconciled with (A.5.1) ifaX

ax(r(t» _ 0 _ aF(r(t)}
at - - at -

Hence where u = 0 and k is unconstrained at al I points within the bed the

exit conversion is constant, and from (A.5.5) the temperature rises.
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*When at al I points k = k or k = ~

ax Cdt» <
at

o andaFCdt»
at

> 0

Thus, from examination of CA.5.3) we observe that as p < I and k is constant,

-aJ
at > 0

Where at some t, for some z, k I ies upon a bound and for other z it is un-

constrained, from CA. 5. I ) where
- a

C1jIK)u = o and Y = IT

C~.x I )
rCt)

= f Ydzat 9rCt) 0

Y • -Kkg where J F 0

y _ 1jIKp alncFcrCt») where J = 0- (I -p) at

If

aFcrCt»
at ~ 0,

ax crCt »
at < o

which is impossible as it contradicts the demand that

aF
aX <

Thus in the intermediate region

o

aFCrCt»
at

and where k is upon a constraint

> 0

aJat>
otherwise

o

J = 0

Thus we see that J wil I increase monotonically with time and hence,

once u = 0, as

u wi II always take that value.



This, in conjunction with the knowledge that initially u = 0,

rules out the partial initial filling of the reactor.

Furthermore, in general, the temperature wil I increase with

increasing time except where J = 0 in a transition zone from unconstrained

*to constrained k. Finally though k(z,.) = k •

The above analysis is general for any activity profi Ie at+ = o.

HO\'lever, if the bed has a uniform initial activity profile, then

examination of the equations in this Appendix sho\'/s that the optimal

temperature profile should be the same for al I z. Then there wil I be

no times at which a partial transition has been made along the bed from

unconstrained to constrained k.

It is convenient at this point to observe that in the special

case where p = lin, n being the exponent in the definition

g = 1jJn

it may easily be sho\'m from (A.5.5) that where k is unconstrained for

z ~ r (t), the cata Iyst act iv ity deca ys un iforml yin time.

71.
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. . 'APPENDIX 6

J • p 1/1 K FI / k - A2g (3.44 )

r(t)

Let us consider the value of J at any POint.F~(t)' K, k, 1/1, A2 and g are

here continuous functions with a finite rate of change with time. Hence

also J will have a finite time derivative.

At a time t such that z = r(t)

and as

or

• o

Here

(1/1 K F - A
2

kg)1 = 0 (3.43)

r(t)

J < 0

For an unconstrained optimal temperature

J - 0
aJ

Now as at is. finite

then whilst u is unconstrained, in an opt imal solution) the temperature at a

point must take the lower bounding value for a t:1me interval that is non-zero,

though perhaps short, after catalyst addition is made.
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· APPENDIX 7

Where u is the primary control, the value of kCrCt» may often

be determined.

If u is unconstrained, at rCt), from the subtraction of C3.62)

from <3.61)

Jk = «PI-I )1jI\I KIF I - CPZ-I )1jI\I KzF2~

rCt)

We recall C3.62), a condition for unconstrained u

,\I(I(IFI - KZFZ) - AZkg = 0

Util izing C3.Z0), as k > 0

if

*Jk > 0, kCrCt» = k
and if

Jk < 0, kCrCt» = ~
Recal I ing that ~12 > 0,

" < 0 C3.53) exami ning CA.7. I ) and CA.7 .Z)
ZZ

if

CA.7.1 )

CA.7.Z)

and

and

and

*Pz < PI then ~ ~ kCrCt» < k

Pz ~ PI then kCrCt) ) = ~

*Pz < I then kCrCt) ) = k

*
Pz = then ~ ~ kCrCt» ~ k

Pz > then kCrCt) ) = ~

*Pz ~ PI then k(r (t» = k

*Pz > PI then ~ ~ kCrCt» ~ k



The case where PI =P2 = I involves a singular pol icy and is of little

practical interest.

A temporary halt in catalyst addition may require that within

an optimal solution k(r(t» takes certain values:

During the temporary halt (u = 0 and ret) < L), from (3.27)

"3 ~ 0

As before and after the halt A3 = 0

< 0

init ia I IY and

> 0

at a later stage.

Comparison of (3.61) and (3.62) shows that when

75.

< 0

> 0

*Similarly when u = u ,

and

and *PI ~ P2' PI > I, k(r(t» = k



If k(r(t» is the primary control, information about.A3and hence u

may be obta ined:

If k(r(t» is unconstrained and optimal

J = 0

and thus, adding (3.62) to (3.59)

3A
3» = (\lIjI«PI-1 )KIF I - (pZ-1 )KzF2»I

en ret)

If initially ~ < 0 , no catalyst addition wil I be made to the original

bed. If and when A
3

becomes positive, the bed wit I be fil led, if it is

not already.
3A

3However where PI < I and P2 > I, at < 0 at a II times.

Thus we then deal with a bed of constant length - presumably with the

76.

f II Ied reactor.
3A

If 3t3 > 0, fol lowing previous arguments the bed is filled.

If k(r(t» = ~, then where PI ~ P2, from a comparison of (3.62) with (3.59),

recognizing that J < 0,

3A3a:r > 0

Thus If k(r(O» = ~, the reactor is fil led.

*A simi la r resu It may be obta i ned where k(r<t» = k
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THIS 1ST LISTING IS THE PROGRAMME FOR A BANG~BANG TEMPERATURE CONTROL
POLICY,THE BOUNDARY BETWEEN THE UPPER AND LOWER TEMPERATURE REGIONS
BEING APPROXIMATED BY A STRAIGHT LINE ACROSS TIME -DISTANCE SPACE
THE SAME APPROXIMATION IS MADE FOR R(Tl.

PROGRAM TST (INPUT,OUTpuT,TAPE5=INPuT,TAPE6=OUTPUTl

IT IS ASSUMED THAT THE PROFILE R(Tl MAY BE APPROXIMATED BY A STRAIGHT
LINE JOINING R(Ol,O AND L,T1 I DISTANCE-TIME SPACE.USING R(Ol AND T1
AS ARGUMENTS A DAVIDON-FLETCHER-POWELL SEARCH PROCEDUI~E HERE DETERMINES
THE ARGUMENTS THAT MAXIMISE THE 09JECTIVE FUNCTION.THE TEMPERATURE
PROFILE IS CALCULATED BY A SIMPLEX METHOD.

FMFP IS THE D-F-P LIBRARY SUBROUTINE
FUNCT1 IS THE SUBROUTINE TRANSFERRING THE GRADIENTS GRAD AND THE
OBJECTIVE FUNCTION P TO FMFP
ARG(ll-ARGUMENT R(Ol
ARG(Zl-ARGUMENT T1
P-OBJECTIVE FUNCTION
GRAD(Il-GRADIENT OF P WITH RESPECT TO ARG(I 1
EST-ESTIMATE OF THE MAXI~UM VALUE OF P
EPS-EXPECTED ABSOLUTE ERROR
LIMIT-MAX. NO. OF ITERATIONS WITHIN SEARCH
MN-NO. OF DIMENSIONS IN SEARCH-HERE Z
IER-ERROR PARAMETER

DIMENSION ARG(21,GRAD(ZI,H(91
EXTERNAL FUNCT1

READ INITIAL ESTIMATES OF THE ARGUMENTS AND THE OTHER PARAMETERS

READ(Sdl (ARG( I I d=1,21
READ(S,11EST,EPS
READ(S,ZlLIMIT,MN
WRTTE(6,9001 (I\RG( I I d=l,ZI

CALL THE NUMERICAL SEARCH PROCEDURE.

WRITE OUT INFORMATION REGARDING THE STATE AND RESULTS OF THE SEARCH AT
ITS CONCLUSION.

WRITE(6,9 001 (ARG(II,I=l,ZI
WRITE(6,900IP
WRITE(6,901lIER

1 FORMAT(ZFlu.41
Z FORrvlA T(Z I S I

900 FORMAT(2(5X,E13.61 I
901 FORMAT(ZISl

STOP
END

A SUBROUTINE TO CALCULATE THE GRADIENTS OF P WITH RESPECT TO THE ARGUMENTS
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C BY A FINITE DIFFERENCE METHOD. WHERE THE ABSOLUTE VALUES OF THE ARGUMENT~

C INCREASE SO ALSO DOES THE INCREMENT USED TO DETERMINE THE GREADIENTS.
C
C SUB IS THE SUBROUTINE TO CALCULATE P FOR ASSIGNED ARGUMENTS
C

DIMENSION ARGlZ),GRADlZ)
C
C CALCULATE P
C

CALL SUBIARG,Y)
EPSl=.05
Pl=Y
A=l.
AM=-l.
B=lO.
BM=-lU.

C
C EVALUATE THE GRADIENTS INDIVIDUALLY

'c
IFIARGll).LT.AM) EPSl=.5
IFIARGll).LT.BM) EPSl=5.
ARGll)=ARGll)-EPSl
CALL SUBlARG,Y)
GRADll)=IPl-Y)/EPSl
ARGll)=ARGll)+EPSl
EPSl=.05
IFIARGIZ).GT.A) EPSl=.5
IFlARGIZ).GT.B) EPSl=5.
ARGIZ)=ARGI2)+EPSl
CALL SUBlARG,Y)
GRAD(2)=IY-Pl)/EPSl
ARG(2)=ARGlZ)-EPSl
RETURN
END

SUBROUTINE SUBIARG,Y)
C
C A SUBROUTINE TO CALCULATE P FOR THE ASSIGNED ARGUMENTS .FROM THESE IT
C DERIVES THE PROFILE AND CALLS SUBRouTINES TO FIND THE TEMPERATURES AND
C CONVERSIONS WITHIN THE BED.
C
C I-GRID POINT-ALONG THE TIME AXIS.TIME
C j-GRID POINT-ALONG THE DISTANCE AXIS. DISTANCE
C ACTlI,j)-ACTIVITY
C CKII,j)-THE CATALYST DECAY RATE CONSTANT.
C RKIlI,j)-THE FORWARD REACTION RATE CONSTANT.
C RK21I,j)-THE REVERSE REACTION RATE CONSTA~T.

C XFlI)-THE EXIT CONVERSION AT TIME I.
C NRlj)-THE TIME II) Af WHICH CATALYST AT A PoSITION j ENTERS THE REACTUk.
C NRIlI)-THE POSITION OF THE DOwNSTREAM END OF THE BED AT A TIME I.
C AFIII,j)-Fl.HERE THIS IS ll.-X)
C AF2II,j)-F2.HERE THIS IS X.
C NUCII )-AN INDICATOR SHOWING IF THE CATALYST AT RlT) IS RECENTLY ADDED
C NRIAlI)-THE POSITION OF THE BOUNDARY BETWEEN THE LOW AND HIGH TE~PERATuRE
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C REGIONS AT TIME I.
C WHERE U IS UNCONSTRAINED.IF IT IS ,NUC(Il IS 1,OTHERWISE IT IS O.
C

DI MENS I ON AR G( 2 l , AC T( 21'21 I , CK ( 21'21 l , XF ( 21 I , NR ( 2 1 l , NR I ( 21 l ,
*AFl(21,211,AF2(21,211,NUC(21l,RKl(21,21l,RK2(21,211,NRIA(211,P(3l

C
C THE PARAMETER VALUES MUST HERE BE ASSIGNED.
C CK1-THE MAXIMUM VALUE OF CK
C RK11- -------- DO ------- RKI
C RK21- -------- DO ------- RK2
C CK2-THE MINIMUM VALUE OF CK
C RK12- --------- DO -------RK1
C RK2~- --------- DO -------RK2
C XO-THE ENTRY CONVERSION .
C NT-THE NUMBER OF GRID POINTS IN TIME.
C NDIST- ----------- DO --------- DISTANCE.
C NACT-THE PowER TO WHICH THE ACTIVITY IS RAISED IN ITS DECAY EQUATION.
C MN,N,M AND D-SEE SIMPLEX.
C

NT=21
NDIST=21
NACT=2
MN=l
N=2
M=3
CK1=.00008
CK2= ..0000025
RK11=1.
RK12=.00552
RK21=CJ.
RK22=O.
XO=O.
D=.1
ZINC=.05
TINC=5000.
EPS=10.
AE=O.
AD=1.

C
C THE TEMPERATURE IS PRESET.
C

DO 98 I=l,NT
DO 98 j=l,NDIST
CK(I,jl=CKl
RKll I ,j I =RK11
RK2( I ,jl=RK21

98 CONTINUE
C
C FROM THE VALUES OF THE ARGUMENTS THE PROFILE IS ESTABLISHED BY SETTING
C NRI AND NR
C

IF(ARG(ll.GE.ADl GO TO 25
IF(ARG(21.LT.AEI ARG(21=AE
A1=ARG(11/ZINC
A2=ARG(2l/ZINC
AGl=NDIST-Al-1.
NAl=Al+1.5
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C
C AN EXPANDING SIMPLEX METHOD NOW CALCuLATES THE BEST TEMPERATuRE AND VALuE
C OF P.
C

26 CALL SIMPCZINC,NT,NDIST,CK,RK1,RK2,CKl,CK2,RK11,RK12,RK21,RK22,NRI
*,NR,ACT,NACT,TINC,XO,P,NRIA,MN,N,M,D,IL,XF,AFl,AF2,NUCl I

C
C THE LARGEST P AT A VERTEX OF THE SIMPLEX IS SELECTED.
C

Y=PCl1
DO 109 LI=2,3
IFIPCLI).GT.Y) Y=PILI)

109 CONTINUE
RETURN
END

SUBROUTINE SIMPIZINC,NT,NDIST,CK,RK1,RK2,CK1,CK2,RK11,RK12,RK21,
*RK22,NRI,NR,ACT,NACT,TINC,XO,P,NRIA,MN,N,M,D,IL,XF,AF1,AF2,NUCl

C SIMPLEX METhOD OF NELDER AND MEAD
C X-VARIABLE PARAMETERS OF THE FUNCTION TO BE OPTIMIZED ,I-POSITION
C J-COORDINATE
C P-THE OBJECTIVE FUNCTION
C MN-NO. OF REDUCTIONS
C N-NO. OF DIMENSIONS
C M-NO. OF MOVEMENTS FOR WHICH A VERTEX IS ALLOWED TO BE STATIONARY
CD-SIDE LENGTH OF THE INITIAL SIMPLEX.
C *****************************************************************

DIMENS I ON CKC2 1 , 21 ) , RK1 C21 , 21 ) , RK2 C21 ,2 1 1 , NRIC 21 1 , NRC 21 I
*,ACT C21'211,NRIAI211,XFI211,AFI121,211,AF2 I Z1'211,XI3,ZI,PI31,
*JT I 3 1 , SG 1"3 I , AZ (3) , NUC I 21 1

C ************** FORMATION OF STARTING SIMPLEX **************
ALtvl=O.
FY=O.
K=N+l
Y=FLOATIN)
Yl=Y+l
DZ=D/IY*SQRTI2.) )
EZ=SQ RT I Y 1 I -1 •
PZ=DZ*IEZ+Yl
QZ=DZ*EZ
DO 50 I=1,K
DO 50 J=1,N
IFII.EQ.I1GO TO 51
NI=J+l
IF CNI.EQ.I)GO TO 52
XII,JI=QZ+FY
GO TO 50

51 XCI,Jl=FY
GO TO 50

52 XII,J)=PZ+FY
50 CONTINUE

WRITE16,7981
WRITE16,7991
WRITE C6,8 00 1 I IXI I,JI ,J=l,NI ,I=l,KI

798 FOR~ATI32H COORDINATES OF,STARTING SIMPLEX)



NA2=A2+1.5
NA=NAl-l
IF{NA.LT.ll GO TO 22
DO 100 J=l,NA
NR{J)=l

100 CONTINUE
NAP=NAI
GO TO 23

22 NAP=l
23 DO 101 J=NAP,NDIST

NR{J)=1.5+AZ*(J-NAl1/AG1
IF{NR{Jl.GT.NTl NR(Jl=NT

101 CONTINUE
IF{NA2.GT.NTl NA2=NT
DO 102 I =1 , NA2
DO 106 J=NAP,NDIST­
IF{NR(Jl.EQ.Il GO TO 103
GO TO 106

103 IF(J.EQ.NDISTl GO TO 24
L=J+l
IF(NR{Ll.EQ.NR(Jll GO TO 106

24 NRI(Il=J
GO TO 102
IF(I.EQ.l1 GO TO 27

106 CONTINUE
LM=I-l
NR I ( I 1=NR I ( LM 1
GO TO 102

27 NRI(Il=l
102 CONTINUE

DO 104 I=NAZ,NT
NRI (I l=NDIST

104 CONTINUE
C
C THE INDICATOR NUC(Il IS SET.
C

DO 105 I=Z,NT
LM=I-1
NUC ( I 1=1
IF(NRI(Il.EQ.NRI(LMll GO TO 70
GO TO 105

70 NUC(Il=O
105 CONTINUE

IF(NRI(11.NE.NDISTl GO TO 71
NUC(11=0
GO TO 26

71 NUC ( 1 ) =1
GO TO 26

25 ARG(11=AD
ARG(21=AE
DO 107 J=l,NDIST
NR(Jl=l

107 CONTINUE
DO 108 I=l,NT
NUC ( I 1=0
NRI (11 =NDIST

108 CONTINUE

8 J •



152 IF(P(IL).GE.P(IS» GO TO 120
122 DO 21 J=l,N

X( IL,J)=2.*X( IL ,J)-SG(J)
IF(X(IL,J).LT.ALM)X(IL,J)=ALM

21 CONTINUE
CALL SUBOBJ(X,IL,ZINC,NT,NDIST,CK,RK1,RK2,CK1,CK2,RK11,RK12,RK21,

*RK22,NRI,NR,ACT,NACT,TIN(,XO,Z,NRIA,XF,AF1'AF2,NUC)
P(IU=Z
IF ( P ( I L ) • GE • P ( IS» GO TO 121
GO TO 122

121 DO 24 J=l,N
X(IL,J)=(SG(J)+X(IL,J) )/2.
IF ( X( I L , J ) • LT. ALM) X( I L , J ) =A LM

24 CONTINUE
CALL SUBORJ(X,IL,ZINC,NT,NDIST,CK,RK1,RK2,CKl,CK2,RK11,RK12,RK21,

*RK22,NRI,NR,ACT,NACT,TIN(,XO,Z,NRIA,XF,AF1'AF2,NUC)
P(IU=Z
GO TO 120

153 IF(FG.LT.P(IL» GO TO 154
DO 22 J=l,N
X(IL,J)=0.5*(X(IL,J)+SG(J»

22 CONTINUE
CALL SU80RJ(X,IL,ZINC,NT,NDIST,CK,RK1,RK2,CKl,CK2,RK11,RK12,RK21,

*RK22,NRI,NR,ACT,NACT,TINC,XO,Z,NRIA,XF,AF1,AF2,NUC)
P(IU=Z
IF(P(IL).LT.FG) GO TO 120
II=IS
GO TO 131

154 DO 23 J=l,N
X(IL,J)=0.5*(AZ(J)+SG(J»
IF(X( IL,J).LT.ALM)X( IL,J)=ALM

23 CONTINUE
CALL SU80BJ(X'IL,Z~NC'NT,NDIST'CK,RKl,RK2'CKl'CK2,RK11,RK12,RK21,

* RK2 2 , ,N RI , NR, ACT , NACT , TIN ( , X0 , Z, NRI A, XF , AF1 , AF2 , NUC)
P(IU=Z

C ****SHORTENING OF SIMPLEX EDGE LENGTH IF A VERTEX STATIONARY ****
120 DO 14 l=l,K

IF( IL.NE. I )JT( I )=JT( I )+1
IF(JT(I).EQ.~) GO TO 30

14 CONTINUE
GO TO 301

30 11=1
131 DO 15 l=l,K

DO 16 J=l,N
X( I ,J ) = ( X( I , J ) +X ( I I ,J) ) /2.

16 CONTINUE
JT(I)=O

15 CONTINUE
MNN=MNN+1 _
WRITr(6,9 uC) « (X(I,J),J=l,N),P(I» ,1=l,K)

900 FORMAT(3(5X,E13.6»
WRITE(6,901)

901 FORfviAT(lHC)
C *****END AFTER ~N REDUCTIONS IN EDGE LENGTH ***~*****************

IF(MNN.EQ.MN) GO TO 40
GO TO ,02

82.
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799 FORMATl54H ARG1 ARG2
800 FORMATI215X,E13.6»

WRITEI6,SOl)
WRITEI6,802)

80 1 FORMATl49H SIMPLEX COORDINATES AND OBJECTIVE FUNCTION VALUE.)
80Z FORMATI1HO,71H ARG1 ARG2

* OBJECTIVE FN )
C ************ ESTABLISH COUNTERS *********************************C

I L1.=0
MNN=O
DO 10 1=1, K
JTCI)=O

10 CONTINUE
C ******* DETERMINE OBJECTIVE FUNCTION **************************
C ******* RESTART AFTER SIMPLEX EDGE REDUCTION ********************

30Z DO 17 I=l,K
CALL SUBOBJIX,I,ZINC,NT,NDIST,CK,RK1,RKZ,CK1,CKZ,RK11,RK1Z,r~K21,

*RK22,NRI,NR,ACT,NACT,TINC,XO,Z,NRIA,XF,AFl'AF2,NUC)
P I I ) =Z

17 CONTINUE
C ********** SELECTION OF LARGEST VALUE *************************
C *********** CONTINUING SEARCH ***********************************

301 IM=2
IL=l
IS=1
DO 11 I=2,K
I F CP I I ) • LT. P ( I L» GO TO 150
NIL=IL
IL=I
IM=NIL
GO TO 11

150 I F I P I I ) • LT. P I I 1"1» GO TO 151
IM=I

151 IF(PCI).GT.PIIS» GO TO 11
IS=I

11 CONTINUE
C ********* SELECTION OF NEW POSITIO~ ***************************
C ******** MOST RECENTLY ACQUIRED VERTEX NOT REFLECTED ************

IFI IL.EQ. ILl) IL=IM
DO 12 J=I,N
S=O.
DO 13 1=1, K
S=S+X(I,J)

13 CONTINUE
SGIJ)=IS-X( IL,J) )/Y
AZCJ)=X(IL,J)
Xl IL,J)=2.*SG(J)-XI IL,J)
IF(XIIL,J).LT.ALM)XIIL,J)=ALM

12 CONTINUE
IL1=IL
FG=PCIL)

C ******* EXPANSION OR CONTRACTION ********************************
CALL SUBOBJIX,IL,ZINC,NT,NDIST,CK,RKl,RK2,CKl,CK2,RK11,RK12,RK21,

*RK22,NRI,NR,ACT,NACT,TINC,XO,Z,NRIA,XF,AFl,AF2,NUC)
PCILl=Z
IFIPIIM).GE.PCIL» GO TO 152
GO TO 153

83.
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40 RETURN
END

SUBROUTINE SUBOBJ(ARG,II,ZINC,NT,NDIST,CK,RK1,RK2,CK1,CK2,RK11,
*RK12,RK21,RK22,NRI,NR,ACT,NACT,TINC,XO,P,NRIA,XF,AF1,AF2,NUC)

C
C THIS SUBROUTINE CACULATES THE TEMPERATURE PROFILE BY ASSUMING THAT THE
C BOUNDARY BETWEEN THE HIGH AND LOW TEMPERATURE REGIONS ~AY BE APPROXIMATED
C BY A STRAIGHT LINE IN TIME-DISTANCE SPACE.IT THEN DETERMINES THE OHJECTIVE
C FUNCTION FOR THAT PROFILE.
C

DI MENS I ON ARG ( 3 , 2 ) ,CK ( 21 , 21 ) ,R K1 ( 21 ,21 ) , RK2 ( 21 ,2 1 ) , NR I (21 ) 'N R( 21 )
* , AC T( 21 , 21 ) , NR I A( 21 ) , XF ( 21. ) , AF1 ( 21 ,21 ) ,AF 2 ( 21 , 21 ) , NLJC ( 21 )

AE=O.
C
C IF AN ARGUMENT LIES OUTSIDE THE RECTANGLE OF TIME-DISTANCE SPACE THEN
C THE TEMPERATURE IS AT ITS MAXIMUM AT ALL TIMES WITHIN THE REACTOR.
C

IF(ARG(II,1).LE.AE.OR.ARG(II,2).LE.AE) GO TO 25
c
C FRO~ THE VALUES OF THE ARGUMENTS ,THE POSITION OF THIS BOUNDARY AT ALL
C TIMES IS DETERMINED.
C

A1=ARG(II,1)/ZINC
A2=ARG(II,2)/ZINC
NA1=Al+1.5
NA2=A2+1.5
NAP=NA2
IF(NA2.GT.NT) NAP=NT
NAZ1=NAl-l
NAZ2=NA2-1
IF(NAZl.EQ.0.OR.NAZ2.EQ.O) GO TO 25
AZl=FLOAT(NAZ1)
AZ2=FLOAT(NAZ2)
DO 100 I=l,NAP
AZ3=FLOAT (NA.2- I l
NRIA( I )=AZ1*AZ3/AZ2+1.5

100 CONTINUE
DO lUI I=l,NAP
NAI=NRIA(Il
IF(NAI.GT.NRI(I) l NAI=NRI(Il
DO 101 J=l,f\AI
CK(I,J)=CK2
RKJ{ I ,J l =RK12
RK2(I,Jl=RK22

101 CONTINUE
IF(NAP.EQ.NTl GO TO 28
NAP1=NAP+1
GO TO 26

28 DO 102 I=l,NT
NI=NRI(I)
NAl1=NRIA(I)+1
IF(NAI1.GT.NIl GO TO 102
DO 103 J=NAl1,NI
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IF U IS UNCONSTRAINED THEN IF THE CATALYST IS NEWLY ADDED K(R(T» IS
GIVEN ITS PREDETERMINED VALUE.

DO 105 I=bNT
NI=NRI(I)
IF(NUC(IJ.EQ.1) GO TO 29
GO TO 105

29 CK(I,NI)=CK1
RKll I 'NI )=RK11
RK2 ( I 'N I ) =RK 21

105 CONTINUE

CK(I,j)=CK1
RK2( I ,j)=RK21
RK1(I,j)=RK11
CONTINUE
CONTINUE
GO TO 27
NAP1=1
DO 104 I=NAP1,NT
NRIA(IJ=O
CONTINUE
GO TO 28

103
102

25
26

1 Ol~

C
C
C
C

27

C
C THE OBJECTIVE FUNCTION IS CALCULATED.
C

CALL R1(NDIST,ACT,NT,NACT,TINC,CK,NR)
CALL R2(XO,ACT,RK1,RK2,XF,AF1,AF2,NT,NRI,ZINC,NDISTJ
CALL SU8P(P,XF,NT,TINCJ

C
C THE TEMPERATURE PROFILE AND VALUE'OF THE OBJECTIVE FuNCTION ARE wRITTEN.
C

WRITE(6,909JP
WRITE(6,9U5J (NRI(IJd=1,2lJ
WRITE(6,9U5J (NRIA(IJ ,1=1,21)

909 FORMAT(6(5X,E13.6J J
905 FORiv1AT (21 15 J

RETURN
END

C
C THIS SUBROUTINE IS A 4TH ORDER RUNGE-KUTTA METHOD FOR THE SOLUTION OF
C THE DIFFERENTIAL EQUATION DEFINING ThE ACTIVITY
C
C ADX-AN AUXILARY VECTOR FOR USE IN THIS SUBROUTINE
C THE CATALYST HAS UNIT ACTIVITY WHEN PLACED WITHIN THE REACTOR •

. C THEREAFTER IT DECAYS '
C

DI MENS I ON AC T( 21 ,21 ) , ,t..DX ( 4 J , NR ( 21 J , CK ( 21,21 )
NT:vl=NT-l
DO 100 j=l,NDIST
NL=NR(JJ
DO 1() 1 1=1, NL
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ACTCI,j)=l.
101 CONTINUE

IFCNL.EQ.NTl GO TO 100
DO 100 I=NL,NTM
L=I+1
A=ACT CI , j 1 ,
CALL FACTCA,DACT,N,CK,I,j)
ADXC11=DACT*TINC
A=A+ADXC11*.5
CALL FACTCA,DACT,N,CK,I,jl
ADX C2 1=DACT~kTI NC
A=A+.5*CADXC21-ADX(11)
CALL FACTCA,DACT,N,CK,I,J)
ADXC31=DACT*TINC
A=A+ADXC31-.5*ADXC21
CALL FACTCA,DACT,N,CK,I,Jl
ADX(4)=DACT*TINC
ACTCL,j)=ACTCI,j)+(ADX(1)+2.*(ADX(2)+ADXC3) 1+ADX(41 )/6.

100 CONTINUE
RETURN
END

C
C THIS SUBROUTINE GIVES THE RATE OF DECAY OF THE ACTIVITY WITH TIME.
C

DIMENSION CK(21,21)
DACT=-CK(I,j)*A**N
RETURN
END

C
C THIS SUBROUTINE IS A 4TH ORDER RUNGE-KUTTA METHOD TO SOLVE THE REACTION
CRATE EQUATIONS. INFORMATION YIELDED BY IT INCLUDES THE EXIT CONVERSIONS
C AND THE FUNCTIONS OF THE CONVERSION IN THE RATE EQUATIONS
C
C XFCI)-THE EXIT CONVERSION
C

DI rv1 ENS I ON ADXC4 1 , ACT C2 1 , 2 1 ) , RK1 C21 , 2 1 ) , r~ K2 C2 1 '2 1 1 , XF C21 1,
*AFIC21,211 ,AF2C21,21l ,NRI (21)

DO lOG I=hNT
X=XO
NL=NR I CI 1-1
ND=NDIST-l
AFl CI d l=l.-XO
AF2 (191 l=XO
DO 100 j=l,ND
CALL FX(X,ACT,r,j,AFX,RK1,RK2)
ADXCll=AFX*ZINC
X=X+.5*ADXCl)

'CALL FX(X,ACT,r,j,AFX,RK1,RK21
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ADX(2)=AFX*ZINC
X=X+.5*(ADXI2)-ADXl1) )
CALL FXIX,ACT,I,J,AFX,RK1,RK2)
ADX(3)=AFX*ZINC
X=X+ADX(3)-.5*ADXI2)
CALL FXIX,ACT,I,J,AFX,RK1,RK2)
ADX(4)=AFX*ZINC
X=X+(ADXl1)+2.*IADXI2)+ADX(3))+ADXI4) )/6.-ADXI3)
L=J+1
AF1(I,L)=1.-X

.AF2II,L)=X
100 CONTINUE

DO 101 I=l,NT
NI=NRI(I)
XFII)=AF2II,NI)

101 CONTINUE
RETURN
END

C
C THIS SUBROUTINE PROVIDES THE RATE OF REACTION.
C

DIMENSION ACTI21,21),RK1121,2l),RK212l,2l)
AFX=ACTII,J)*IRKlII,J)*11.-X)-RK2II,J)*X)
RETURN
END

C
C THIS SUBROUTINE EMPLOYS SIMPSON'S RULE TO CALCULATE THE OBJECTIVE FUNCTIO~

C FROM THE EXIT CONVERSIONS.
C

DIMENSION XFl21l
P=O.
NP=NT-2
DO 100 I=1,NP'2
p=P+TINC*IXFI I )+4.*XFI 1+1 )+XFI 1+2) )/3.

100 CONTINUE
P=-P
RETURN
END

CD TNT 0612
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e IF ADJ3(ll IS GREATER THAN 0,U=U(MAXIMUM1.
e IF ADJ3(Il EQUALS O,U IS UNCONSTRAINED.
e IF ADJ3(Il IS LESS·THAN,O U=O.
e

DIMENSION ADJ3(211,NRI(211,ACT(21,211,RKl(21,211,RK2(21,211,
*AF1 ( 2 1 ,21 1, AF2 ( 21 ,21 1, ADJ 1 ( 21 , 21 1, AD J 2 ( 21 ,21 1, CK( 21 ,21 1, NR ( 21 1,
*NUC ( 21 1

AE=O.
AEP=AE-EPSI
NTM=NT-l

e
e ADJ3(1l IS SET TOO.
e

ADJ3(11=AE
DO 100 I=2,NTM
LM=I-l
LP=I+l
NI M=NR I (U·'\)

NIP=NRI(LPl
NRP=NIM+l

e
e THE GRADIENT OF THE ADJOINT VARIABLE IS DEFINED AND FROM THIS IS
e DETERMINED THE VALUE OF THE ADJOINT VARIABLE AFTER THE NEXT TIME
e INTERVAL BY THE EULER METHOD.
C

GRAD=-ACT(LM,NIM1*(RKl(LM,NIM1*AFl(lM,NIM1-AF2(LM,NIMl*RK2(LM,NI~1

*1+ADJ2(LM,NIM1*CK(LM,NIM1*ACT(LM,NI M1**N
TG=TINC*GRAD

e
e IF ADJ3(Il LIES WITHIN LIMITS ABOUT I IT IS SET EQUAL TO O.
e IF ADJ3(LMl IS LESS THAN THE LOWER BOUND ADJ3(Il MUST BE CALCULATED,U
e REMAINING AT 0.
e IF ADJ3(LMl EQUALS O,IF THE INCREASE IN THIS TIME INCREMENT TAKES IT
C OUTSIDE THE UPPER BOUND THE BED FILLS COMPLETELY.
C IF ADJ3(Il IS LESS THAN THE LOWER BOUND ABOUT O,U=O.
e IF IT LIES WITHIN THE BOUNDS ADJ3(Il=0 AND THE LENGTH OF THE BED IS
e INCREASED BY ONE DISTANCE INTERVAL ,ASSUMING THE BED IS NOT COMPLETELY
e FILLED.
e

IF(ADJ3(LM1.LT.AEPl GO TO 25
IF(TG.GT.EPSl1 GO TO 20
IF(TG.LT.AEPl GO TO 21
ADJ3(Il=AE
NRI (I l=NRP
NP=NR I ( I 1
IF(NP.EQ.NDISTl GO TO 20
NR(NP1=I

24 NRII=NP+l
DO 101 LI=LP,NT
IF(NRI(LI1.GT.NPl GO TO 22
GO TO 101

22 NRIL=NRI(LIl
DO 102 LJ=NRII,NRIL
NR(LJ1=LI

102 CONTINUE
GO TO 23
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PO=O.
C
C DETERMINE THE OPTIMAL TEMPERATURE PROFILE AND OBJECTIVE FUNCTION BY AN
C ITERATIVE PROCESS.
C

17 CALL Rl(NDIST,ACT,NT,N,TINC,CK,NRI
CALL R2(XO,ACT,RKl,RK2,XF,AFl,AF2,NT,NRI,lINC,NDIST)
CALL FADJ(NDIST,ADJ2,NR,NT,TINC,RKI,RK2,CK,N,AFI,AF2,ACT,ADJl,

*lINC,NRI)
CALL CONTRK(NT,NUC,NRI,CKl,CK2,RKl1,RK12,RK21,RK22,CK,RKl,RK2,

*AP1,AP2,Bl,B2,N,AFl,AF2,NDIST,ACT,ADJ2,NR,CO,lINC,ADJII
CALL Rl(NDIST,ACT,NT,N,TINC,CK,NRI
CALL R2(XO,ACT,RKl,RK2,XF,AFl,AF2,NT,NRI,lINC,NDISTI
CALL SUBP(P,XF,NT,TINC)
IF(P.GE.POI GO TO 16
GO TO 15

16 PO=P+EPS
GO TO 17

C
C WHEN THE TEMPERATURE PROFILE APPEARS TO HAVE CONVERGED WRITE OUT THE
C CURRENT VALUES OF THE VARIABLES.
C

15 WRITE(6,909IP
WRITE(6,9051(NRI(I),I=I,21)
WRITE(6,9U5)(NR(J),J=I,21)
WR IT E(6 ,909) ( AF1 ( I ; 21 ) , 1=1,21,4 )
WRITE(6,909) (AF2(I,211 ,J=1,21,4)
WRITE(6,9U9)((CK(I,J),J=I,21'41,I=I,211
WR I TE (6 '909 ) ( ACT ( I , 21 I , I =1 , 21 )
WRITE(6,9u91(ADJl(I,II),I=I,21)
WR I TE (6,909) (ADJ2 ( 1,21 I, 1=1,21 )
WRIT E(6 ,9 u9 I ( RK2 ( I ,21 ) , 1=1 ,21 ,4)

C
C REPEAT CALCULATIONS TO DETERMINE A NEW PROFILE FOR R(O) UNTIL THIS
C CEASES TO INCREASE.
C

IF(P.GE.Pl) GO TO 19
GO TO 21

19· PI =P+EPS
GO TO 12

21 WRITE(6,910)
C
C REPEAT THE PROCESS FOR A NEW R(O)
C

IF(MN.LT.MM) GO TO 11
905 FORMA T(211 5 I
909 FORMAT(6(5X,EI3.61)
91n FORMAT(5H CONV)

. STOP
END

SUBROUTINE SET(NRI,NDIST,ACT,RKI,RK2,AF1,AF2,ADJI,ADJ2,CK,N,
*EPSl,TINC,NR,NT,NUC)

C
C THIS SUBROUTINE ATTEMPTS TO CALCULATE THE OPTIMAL PROFILE FOR R(T) FROM A
C KNOWLEDGE OF THE VARIABLE ADJOINT TO R-ADJ3(I).
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C THIS LISTING IS FOR EITHER REACTION WITH UNCONSTRAINED U, WHERE
C EXTREMAL K ARE OPTIMAL.IT RELIES UPON NATURAL CONVERGENCE-ITERATION UNTIL
C THERE IS NO SIGNIFICANT IMPROVEMENT IN THE OBJECTIVE FUNCTION.
C ADJl(I,Jl-THE VARIABLE ADJOINT TO THE CONVERSION.
C ADJ2(I,J)- ------------- DO --------- ACTIVITY.
C CONSTANTS IN THE EQUATIONS RELATING REACTION AND CATALYST DECAY RATE
C CONSTANTS ARE
C BI-VALUE B FOR THE FORWARD REACTION.
C B2 --------------- REVERSE -------
C API-VALUE P FOR THE FORWARD REACTION.
C AP2 --------------- REVERSE --------
C XO-THE ENTRY CONVERSION.
C N-THE POWER TO WHICH THE ACTIVITY IS RAISED IN ITS TERM IN THE DECAY EQUN.
C NRO-THE GRIDPOINT MARKING R(Ol
C MM-THE NUMBER OF VALUES OF R(Ol FOR WHICH PROFILES ARE TO BE ESTABLISHED.
C
C ALL OTHER VARIABLES ARE AS DEFfNED IN THE PREVIOUS LISTING.
C

PROGRAM TST (INPUT,OUTpUT,TAPE5=INPUT,TAPE6=OUTPUT)
DI MENS I ON NRI ( 21 1, NR( 21 ) , CK(2 1 , 21 ) , ACT ( 21 , 2 1 ) , XF ( 21 1, RK1 ( 21 '21 ) ,

*RK2(21,21),AFl(21,21),AF2(21,211,ADJ2(21,21),ADJl(21,21),NUC(21),
*CO(21,21>

C
C ASSEMBLE THE PARAMETER VALUES.
C

READ(S,I)NT,NDIST,N,MM,NRO
READ(5,2)EPS,EPSl,TINC,ZINC,XO
READ(S,2)Bl,B2,APl,AP2,CKl,CK2,RKll,RKI2,RK21,RK22

1 FORMAT(5IS)
2 FORMAT(7FI0.4)

C
C ESTABLISH COUNTERS.
C

MN=O
11 MN=MN+l

NRO=NRO-l
NMM=O

C
C FOR EACH VALUE R(O) SET AN INITIAL PROFILE.
C

CALL INIT(NR,NRI,CK,CKI,(K2,RKl,RKI1,RK12,RK2,RK21,RK22,NRO,NT,
*NDIST,CO)

C
C CALCULATE THE ACTIVITIES AND CONVERSIONS.
C

CALL Rl(NDIST,ACT'NT'N,TINC,CK,NRI
CALL R2(XO,ACT,RKl,RK2,XF,AFl,AF2,NT,NRI,ZINC,NDISTI
Pl=O.

C
C CALCULATE THE THE ADJOINT VARIABLES.
C

12 CALL FADJ(NDIST,ADJ2,NR,NT,TINC,RKl,RK2,CK,N,AFl,AF2,ACT,ADJl,
*ZINC,NRI)

C
C DETERMINE THE PROFILE.
C

CALL SET(NRI,NDIST,ACT,RKl,RK2'AFl,AF2,ADJl,ADJ2,CK,N,EPSl,TINC,
*NR,NT,NUC)



101 CONTINUE
23 GO TO 100

C
C THE BED IS FILLED AND PROFILE IS NOW DETERMINED.
C

20 DO 103 LI=I,NT
NRI (LI }=NDIST

103 CONTINUE
DO 104 LJ=NRP,NDIST
NR(LJ}=I

104 CONTI NUE
GO TO 55

C
C U=O
C

21 ADJ3(I}=TG
NRI(I}=NIM
NP=NIM
GO TO 24

C
C U EQUALS 0,ADJ3(I) IS CALCULATED AND NR(Jl IS UPDATED.
C

25 ADJ3(I}=ADJ3(LMl+TG
NR I ( I ) =NR I ( LM)
IF(NR(NRPI.NE.I} GO TO 27
NRII=NRI(II+1
DO 107 LI=I'NT
IF(NRI(UI.GT.NRI(II} GO TO 26
GO TO 107

.. 26 NRIL=NRI (LI)
DO 108 LJ=NRII,NRIL
NR(LJI=LI

108 CONTINUE
GO TO 27

107 CONTINUE
C
C CALCULATIONS ARE MADE FOR THE FINAL TIME.
C
C

27 IF(ADJ3(I}.LT.AEPI GO TO 100
ADJ3(II=AE

100 CONTINUE
K=NRI(NTM}
KP=K+1
IF(ADJ3(NTMl.LT.AEPI GO TO 40
GRAD=-ACT(NTM,KI*(RKl(NTM,Kl*AFl(NTM,KI-AF2(NTM,Kl*RK2(NTM,KI 1+

*ADJ2(NTM,Kl*CK(NTM,KI*ACT(NTM,KI**N
TG=TINC*GRAD
IF(TG.GT.EPS1l GO TO 41
IF(TG.LT.AEPl GO TO 40
NRI(NT}=KP
GO TO 43

41 NRI(NTl=NDIST
GO TO 43

40 NRI(I}=K
43 DO 11U J=KP,NDIST

92.
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NR(J)=NT
110 CONTINUE

C
C THE INDICATOR NUC(I) IS DETERMINED.WHILST U IS UNCONSTRAINED NUC( 1)=1,
C OTHERWISE IT EQUALS O.
C

55 DO 106 I=2,NT
LM=I-1
IF(NRI (I) .GT .NRI (LM) )NUC( I )=1

·IF(NRI(I).LE.NRI(LM»NUC(I)=O
106 CONTINUE

NUC(1)=l
WRITE(6,904) (ADJ3( I) d=1,6)

904 FORMAT(6(5X,E13.6»
RETURN
END

SUBROUTINE INIT(NR,NRI,CK,CK1,CK2,RK1,RK11,RK12,RK2,RK21,RK22,NRO,
*NT,NDIST,co)

C
C THIS SUBROUTINE SETS AN INITIAL PROFILE FOR R(T) AND FOR THE TEMPERATuRE.
C

DIMENSION NR(21),NRI(21),RK1(21,21),RK2(21'21),CK(21,21),CO(21,21)
DO 101 1=1,4
NRI(I)=NRO

101 CONTINUE
DO 102 I=5,NT
NRI(I)=NDIST

102 CONTINUE
DO 105 J=l,NRO
NR(J)=l

105 CONTINUE
NRP=NRO+1
DO 106 J=NRP,NDIST

. NR(J)=5
106 CONTINUE

DO 103 I=l,NT
DO 103 J=l,NDIST
CK(I,J)=CK1
CO(I,J)=CK1
RK1(I,J)=RK11
RK2(I,J)=RK21

103 CONTINUE
RETURN
END

SUBROUTINE CONTRK(NT,NUC,NRI,CK1,CK2,RKl1,RK12,RK21,RK22,CK,RKl,
*RK2,AP1,APZ,Bl,S2,N,AFl,AFZ,NDIST,ACT,ADJZ'NR,CO,ZINC,ADJl)

C
C THIS SUBROUTINE CALCULATES THE TE~PERATURE PROFILE BY SUBSTITUTION IN
C IN EQUATIONS WHICH APPLY TO THE OPTIMAL CASE.
C THIS PARTICULAR ROUTINE IS APPLICABLE TO THE IRREVERSIBLE REACTION.



· 9.3.

C
DIMENSION NUC(211,NRI(211 ,CK(21,211,RKl(21'211,RKZ(Zl,Zl),

*AFl(Zl,211,AF2(2l,Zl),ACT(Zl,21),ADJZ(Zl,Zl),NR(21),C0(21,21),
*ADJl(Zl,Z11

APA=APZ*B2
APB=APl*Bl
APC=APA*APB
BA=APl*Bl
AE=O.

C
C IF U IS UNCONSTRAINED K(R(TII IS PREDETERMINED.
C

DO 100 I=l,NT
NI=NRI (I l
IF(NUC(II.EQ.l) GO TO 10
NL=NI
GO TO 11

10 CK( I ,NI )=CKZ
RKl(I,NI)=RKlZ
RK2(I,NI)=RK2Z
IF(NI.EQ.ll GO TO 100
NL=NI-1

C
C THE TEMPERATURE IS CALCULATED.
C

11 DO 100 J=l,NL
C
C FINALLY THE TEMPERATURE IS UPON ITS UPPER BOUND.
C

IF(ADJ2(I,JI.EQ.AEI GO TO 13
CK(I,JI=(ADJl(I,J)*AF1(I,JI*BA/(ADJ2(I,J)*ACT(I,JII)**2

C
C IF THE TEMPERATURE (OR K) EXCEEDS ITS UPPER LIMIT IT IS SET EQUAL T~ THIS.
C SIMILARLY FOR THE LOWER LIMIT.
C

IF(CK(I,JI.LT.CK21 GO TO 12
IF(CK(I,JI.GT.CKl) GO TO 13

C
C OTHERWISE THE RATE CONSTANTS ARE CALCULATED.
C

RKl(I,J)=Bl*CK(I,J)**APl
RKZ(I,J)=B2*CK(I,J)**AP2
GO TO 100

12 CK(I,J)=CK2
RKl<I,JI=RK12
RK2(I,JI=RK22
GO TO 100

13 CK(I,J)=CKI
RKI (I ,J)=RKII
RK2 CI ,JI=RK2l

100 CONTINUE
DO 103 I=l,NT
DO 103 J=l,NDIST
CO(I,J)=CKCI,J)

103 CONTINUE
RETURN
END
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SUBROUTINE FADJ{NDIST,ADJ2,NR,NT,TINC,RK1,RK2,CK,N,AF1,AF2,ACT,
*ADJl,lINC,NRIl .

C
C THIS SUBROUTINE CALCULATES THE VARIABLES ADJOINT TO THE CONVERSION AND
C ACTIVITY,THE FORMER EMPLOYING A 4TH ORDER RUNGE-KUTTA METHOD,THE LATTER
C A MODIFIED EULER METHOD.BOTH INTEGRATIONS ARE IN A BACKWARDS DIRECTION.
C AX-AN AUXILIARY VECTOR.
C

DIMENSION ADJ2{21,21l,NR(21),RK1{21,21),RK2121,2l),CK{21,21),
*AFl{21,21),AF212l,21),ACT{21,21),ADJl{21,2l),NRII2l),AX(4)

DO 100 I=l,NT
NI=NRI{I)
NL=NI-l

C
C THE FINAL VALUE IS ASSIGNED.
C

ADJlII,NI)=l.
c
C THE OTHERS ARE DETERMINED.
C

DO 101 J=l,NL
L=NI-J
LP=L+1
A=ADJl{I,LP)
CALL RA1{~,RKl,RK2,ACT,I,LP,AXF)

AX(l)=AXF*lINC
A=A+.5*AX{ll
CALL RAl(A,RKl,RK2,ACT,I,LP,AXFl
AX(2l=AXF*ZINC
A=A+.5*(AX{2)-AX(1»
CALL RAl{A,RKl,RK2,ACT,I,LP,AXF)
AX(3)=AXF*ZINC
A=A+AX(3)-.5*AX(2)
CALL RA1(A,RK1,RK2,ACT,I,LP,AXF)

. AX (4) =AXF*Z I NC
ADJl{I'L)=A-AX(3)+(~X(1)+4.*(AXI2)+AX{3»+AX(4»/6.

101 CONTINUE
DO lOC J=NI,NDIST
ADJllI,J)=l.

100 CONTINUE
DO 103 J=l,NDIST

C
C THE FINAL VALUE IS ASSIGNED.
C

C
C THE OTHERS ARE CALCU~ATED.

C
NRL=NR{J)
IF{NRL.EQ.NTI GO TO 20
NRl=NRL+1
DO 102 I=NRl,NT
K=NT-I+NRL
L=K+l



NK=NR I I l)
ADJ2IK,J)=ADJZIL,Jl+TINC*IADJ1IL,Jl*IRK1IL,Jl*AF1(L,Jl-RK2IL,J)*

*AFZIL,Jl)-N*ADJZIL,JI*CKIL,JI*ACTIL,Jl**IN-1»
102 CONTINUE

20 DO 103 I=l,NRL
ADJ2(I,J)=ADJ2(NRL,J)

103 CONTINUE
RETURN
END

SUBROUTINE RA1IA,RK1,RKZ,ACT,I,LP,AXFl
C
C THIS SUBROUTINE GIVES THE GRADIENT OF ADJ1.
C AXF-THE GRADIENT.
C

DIMENSION RK1121,Zl),RKZIZ1,211,ACT(21,21)
AXF=-A*ACT(~'LP1*IRKl(I'LP1+RKZII,LP))
RETURN
END
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