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1. INTRODUCTION

Sheet metal forming is a large and economically
important activity, and also a finely developed art.
Every day millions of components are pressed from sheet
metal under conditions which successfully but only very
narrowly, avoid the ever present dangers of either tear-
ing or buckling of the sheet.

The principal purpose in testing sheet metal
ié to be able to select the cheapest grade of sheet which
will just form into the desired shape and in a highly
developed technique such as pressing or deep drawing,
very small differences in material properties can make
the difference between success or scrap metal.

The usual criterion for failure in sheet metal
working is whether the part forms without tearing and
without developing a visible local strain concentration.

There are a large number of mechanical tests
for sheet material but in most of them, the parameter
measured depends on a large number of basic material prop-
erties and test variables. The quantitative information
from such a test indicates often the interaction of many
different properties rather than absolute measure of any
one property.

A number of the fundamental properties of sheet

metal such as the initial yield stress, the strain hardening



characteristic and the degree of anisotropy can be
derived from the simple tension test. There are how-
ever certain disadvantages to this test; the test
specimen must be carefully prepared to avoid the effects
of strailn hardening of the edges of the test piece and
an accurate measurement technique must be used to quantify
anisotropy. The main disadvantage however is that, for
many materials, the maximum strain is limited by the on-
set of necking. It is, of course, important that the
range of strain in a mechanical test should extend over
the range of effective strain in the forming process
being investigated.

The maximum effective strain in some stretching
processes may reach about 0.8 and in deep-drawing it may
be as high as 1.0% equivalent to 272% elongation. These
are, of course, much greater than the maximum uniform
strains in the tension test.

Some of the above difficulties are not present
in the hydrostatic bulge test and this test is an extreme-
ly useful one for sheet metal. In the bulge test, a
circular specimen is clamped rigidly at the periphery
and subjected to uniform hydrostatic pressure on one
side of the specimen. The deformation of a thin circular
diaphragm has been studied extensively during the last

twenty years. Such a stressed diaphragm is stretch-

¥Strains given as logarithmic or natural strains &€ = lnl

where 1 = current and lo initial gauge length. 1o



formed into a symmetrical spherical dome and in the
central or polar region of this dome, a state of
approximately uniform biaxial stress and strain is
created where large values of strain may be expected
to occur before rupture. From measurement of radius
of curvature, surface extension and bulging pressure,
a stress - strain curve can be derived.

The maximum uniform strain is greater than
in the simple tension test and in general the range of
the bulge test covers the range in any real sheet metal

forming operation.

(W8]



2. LITERATURE SURVEY

2.1 General

In forming sheet metal, the physical boundary
of the material is constantly changing and critical
conditions can occur at any point in the process. There-
fore, better understanding of the formability of sheet
metal is essential for the production of high quality
stampings.

It is understood that techniques such as the
use of incipient slip line fields in solid mechanics and
steady state fields and velocity discontinuity methods
in extrusion, rolling and metal-cutting are not generally
applicable in sheet metal forming processes.

Most of the metal sheets used for forming
processes are anisotropic. The parameters defining the
state of anisotropy in sheet metal can be determined from
the strain ratios of tensile specimens aligned parallel
perpendicular and at some intermediate orientation, usually
45°, to the direction of rolling. This parameter

is defined as,

Rg = 1n (w/wo)
In(t/to) £2,1:1)

Equality of the strain ratios at any angle 6, does not
guarantee isotropy. Complete isotropy requires all strain
ratios to be equal to unity. If Ry = Rg = Rgg s 1, then

only normal anisotropy is present.



n

Planar anisotropy 1§ defined in terms of

strain ratios recorded from the different directions as

w &
aR = 2(Ro - 2Ru5 + R_.) (2.1.2)

90
while the average normal anisotropy is defined zs

= _ 1
R = IT(RO + 2Ru5 + R..) (2.1.3)

90
The straln hardening characteristic of a material is

generallyindicated by the exponent n in the expression
= =N
6 = 6, + D) (2.1.4)

or for fully annealed materials,
— =N 20‘.

where 6% is some measure of the basic strength of the

material independent of its initial state; 60 provides

an indication of the initial state of the material, and

n is a measure of the rate of hardening with strain.

The value of Gg i1s independent of the amount of strain

that a material can withstand, but does determine the

stress necessary to attain any given value of strain.
Bramley and Mellor (2) tested four different

steel sheets with anisotropic properties and compared

the strain hardening characteristic obtained from the

tensile test specimen in the different rolling direction

of the sheet. On the basis of the equivalence of plastic

work during deformation, the relationships between the

strain hardening characteristics when measured trans-



versely and parallel to the direction of rolling in the

plane of the sheet are given by

_ 1+ 1/R
o o[ L%
1+ l/R90 ]
_ 1+ 1/R
890 = [ __ 90
1 + l/Ro

a1

1%

Go

3

Eo

(

2.1.6)

Extending this principle of the equivalence of plastic

work to a sheet of material subjected to balanced biaxial

tension along the anisotropic axes in the plane of the

sheet,

to the sheet can be predicted theoretically as shown by

Venter (8) from either of the relations

and,

or

1
1+R 2
1 + R /Ry
1 + R 7
{ 20 Ggo ,
1 + 390/R0|

€

€

Z

Venter in (8) says that the predicted

|

1 + RO/R90

1 RO

1 * R90/RO

i+ Ro

1
2

€o

o

values show poor

correlation with the experimental strain hardening

characteristics perpendicular to the sheet, and conse-

quently raise the question whether the work hardening

the strain hardening characteristics perpendicular

(2.1.7)

associated with an anisotropic material is soclely dependent



upon the plastic work per unit volume (3).

An improved correlation still based on the
equivalence of plastic work, can be obtained if an aver-
age R value is used as given by equation (2.1.3) or
calculated from the area under the experimental curves
relating R to the degree of orientation from the direct-

ion of rolling. The relationships are then given by

- _J1 + Rls _ 2 1%
Gz - [ 5 ] Gave 8z B [1 . ﬁ} €ave (2.1.8)

A different way of calculating the average R
value was suggested by Professor Duncan in (4) based on
stress measurements at different points on the expanding
yield locus:

2
G, n + 1 3

%(G, + 26,5 + Gy (2.1.9)

R =2

where Gz, GUS and 650 are the uniaxial stresses obtained
from tensile specimen orientated at OO, MSO, and 90O to

the direction of rolling, and(?z is the stress perpend-
icular to the plane of the sheet obtained from a circular
bulge test and all stfesses correspond to the same defined
level of strain. Equation (2.1.9) cannot be obtained by

a rigorous analysis as a number of assumptions are employed,
and in a material which does not exhibit planar isotropy,

equality of uniaxial strain does not correspond with equality

of total plastic deformation.



2.2 Plastic Instability

In industrial applications each forming
process can be considered as a unique combination of
drawing and stretch-forming operations, and as such
it becomes increasingly difficult to analyse since
the relative influence of both mechanisms is basic-
ally unknown.

Numerous authors (5 - 8) have successfully
investigated the individual mechanisms associated with
the stretch forming and deep drawing of sheet metal by
constructing, testing and analysing experimental models
which are predominantly draw or stretch type processes
but there are no generally accepted theories which
completely describe the way in which sheet metal ruptures
under biaxial tension. Those theories which associate
failure with the attainment of a maximum in traction
forces in the sheet or in overall applied loading are
not entirely satisfactory.

Goodwin (9) has measured the strains normal and
parallel to the point of fracture, for sheet which has
failed under biaxial tension, and produced a so called
"forming limit diagram". A typical diagram is shown in
Fig. 1 for different ratios of biaxial stress and estab-
lishes an envelope around the strains which can be

reached without fracture. Somewhat earlier Keeler and
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{Backofen had plotted a similar diagram, but rather than
measure the strains around the point of fracture he
chose to measure them at a sufficient distance away to
avoid localized strain gradients. A comparison of the
Keeler and Goodwin curves (Fig. 1) suggests that failure
is preceded by a localized strain concentration similar
to that occuring in a local neck in simple tension.
Fig. 1 shows that there is a significant difference
between the maximum strains of the fracture site - the
Goodwin curve - and the limit strains - the Keeler curve -
and this suggests that there is some very localized
deformation process which precedes actual fracture in
biaxial stretching processes. It is unlikely that the
maximum useful strain in a process - the limit strain -
can be predicted theoretically either from consideration
of fracture alone or simply from a stability of diffuse
necking analysis.

A hypothesis which appears to describe the
localized deformation process leading to fracture in
biaxial tension has been developed by Marciniak (10).
The theory predicts the effect of changes in the measur-
able material properties on the limit strains and provides
an extremely useful concept of failure in sheet metal.
The theory is extensive and includes all of the major

material parameters known to affect formability. The.
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Element of a sheet deforming in biaxial tension
containing @ grooved region B.

After Sowerby and Duncan (11)
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hypothesis depends on the assumption that the sheet is
initially inhomogeneous, and that as the sheet is stretched
a suitable disposed inhomogeneity will develop into a
groove which is assumed to run perpendicular to the dir-
ection of the greatest principal stress Gl {(rig. 2} It
was assumed by Marciniak that the incremental strain in
this direction, ciEl, develops at a different rate inside
and outside the groove; but the incremental strain along
the groove, dﬁz, is assﬁmed equal in both regions. As

the deformation proceeds the current strain ratio in the

groove, ie. {EE%JB will be greater than that in the general
2
vicinity ie. '( jﬁ‘}A and thus the groove will deepen. The
2
ratio (fﬁ?- A is assumed constant throughout the process
2

and can be computed from the appropriate flow rule if the
stress path (—%%JA is specified. A necessary condition to
be satisfied throughout the process is that of equilibrium
thus,

((5l t)a = (G:L tg)p (2.2.1)

where t, and tp are the material thickness outside and
inside the groove respectiveiy.

The deformation process, as pointed out by Sowerby
and Duncan (11l), can be described most conveniently by
plotting the loading paths in regions A and B with respect
to the appropriate yield locus for the plane stress case

Fig. 3. (The shape of the yield surface depends upon the
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Figure 3.

Principal stresses in each region showing the loadin g paths.
from initial yield, A, B, to failure A, ., B,.
After Sowerby and Duncan (11).
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choice of the yield criterion and whether the material

is considered anisotropic. Fig. 3 has been drawn using
the von Mises criterion). As shown in Fig. 3 the loading
path outside the groove is assumed linear, while that
inside the groove is determined by satisfying the equilib-
rium equation 2.2.1 and the appropriate yield criterion.
Straining inside and outside the groove is occuring sim-
Ultaneously, but the material within the groove 1is strain-
ing at a faster rate. Failure is assumed to occur either
when the strains reach some limit of ductility for
the material within the groove, i.e. the phenomenon of

decohesion takes place, or the strain ratic within the

d £,
dt,

for this latter case the plane strain condition is reached

groove )B’ approaches infinity. In other words
within the groove, which 1s shown as the position B; in
Fig. 3.

Three different cases are identified by Sowerby
and Duncan (11) to cover the deformation process leading
to fracture when the plane strain state is eventually
reached within the grcove. The one cited above 1s when
straining occurs simultaneously inside and outside the
groove.

Alternatively, material in the groove is
assumed to yield before that in the immediate vicinity.

However, because d62 i1s specified as being the same in
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Figure 4.

Pr)'r;C/pol stress space showing the lcading paths for Case 2.
After Sowerby and Duncan (11).



' both regions, plastic straining can only occur in the
groove under conditions of plane strain. This situation
does not exist up to fracture but because equation (2.2.1)
has to be satisfied, along with the yield criterion, it
is necessary in certain cases that material outside of
the groove also reaches yield. The stress state inside
and outside of the groove at this instance is given by
points A  and B, respectively in Fig. 4. As plastic
deformation continues (23) says that the stress state
in the groove moves away from the plane strain case and
then finally back again when fracture finally occurs.

The schematic loading path is shown by BO B1 82 in Fig.l,
while the loading path for material outside the groove
is along OAO continued.

The third case discussed by Sowerby and Duncan
(11 & 28) is when straining takes place solely in the
groove, under conditions of plane strain, up to fracture.

The 1limit strain is the instability strain which is com-

puted in thils instance by conventional instability techniques.

2.3 Effect of the strain - hardening index n

The forming limit diagram calculated for an
isotropic material R = 1, for different values of n is
shown in Fig. 5. Stress strain curve given by Sowerby

and Duncan in (11) was obtained from equation
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Theoretical ferming limit diagrams for three isotropic materials
(R=1, €= 00014 (15 /1 0=0.98) showing the influence of the strain -
hardening index, n. '

After Sowerby and Duncan (11),
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Figure 6.

Principal stresses space for a non-strain-hardening material.
After Sowerby and Duncan (11).
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G = G,(0.0014 + E)" (2.3.1)

initial inhomogeneity of tB/tA = 0.98 was taken and
value of the initial work hardening: 80 = 0.0014 was
used the same as used by Marciniak. Computation was
performed for four stress ratios in the range
62/'Gl.= .07 to 62/ Gl = 1 following case 1 described
in the previous paragraph,one ratio 62/(31 = 0.592
following case 2 and one point of the plain strain axis.
It can be noticed that for all cases, the 1limit
strains increaseswith increasing n. The 1limit strain for
a given n increases as the process moves from plane strain
towards equal biaxial tension. Proportionally,the increase
in 1limit strain is greatest for materials having a2 low
strain-hardening index. Practically,this fact is demon-
strated by half-hard aluminium, which cannot be stretched
to any great extent in uniaxial or plane strain tension
but it can be stretched to high values of strain in a
circular bulge test. The forming limit diagram for half-
hard aluminium is, in fact, similar in shape to the curve
for n = 0.1 in Fig. 5. Sowerby and Duncan in (11) suggest
that even for n = 0 appreciable straining could be ob-
tained in biaxial tension before failure. This may be
appreciated from the yield locus in Fig. 6. If n = 0, the
locus does not expand and the stress 13 the uniform region

remains constant and equal to GiA as shown.
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(€,=0.0014, n=02, (t,/t,)=0.98) showing the influence of normal
plastic anisotropy.

After Sowerby and Duncan (11).
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Initially at yield

Gia _[%B
(GiB)o —<tA o 232

and as the groove deforms then there is some transverse
strain increment Ciﬁg as shown in the diagram; the point
B will move around the locus to the plane strain point Bf
before the transverse strain increment ¢i82 becomes zero.
Consequently £.2=ifd£2 will have some finite value and
as the strain ratio ElA/€2 is at all times constant,
there must be some finite straining in the uniform region
prior to failure.

The diagram shown in Fig.5 considered materials
having the same anisotropy value R = 1, but the situation

is different when R varies.

2.4 Effect of the anisotropy value R

The forming limit diagrams calculated for mat-
erials having constant n and 8‘3 but different R are
discussed by Sowerby and Duncan in (11 & 28) as shown in
Fig. 7. For stretching processes approximating to equal
biaxial tension an increase in the R value decreases the
limit strain. Fig.7 suggests that stretch-forming
requires material having high n and low R. The reason
for this can be deduced from the yield locus. If R
increases, the elliptical yield locus is "stretched out"”

along the equal biaxial tension axis ﬂ?l/e'z) " 1 as



22

Figure 8.

Yield locus and loading path for isotropic sheet.
After Sowerby and Duncan (11).
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/__Initial yield locus
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Figure 9.

Yield locus and loading path for high R-value sheet.
After Sowerby and Duncan (11).
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| shown in figure 9. The plane strain line 0S in this
diagram is closer to the equal biaxial tension 1line 0Q
than is the case for the isotropic material, R = 1, as
shown in Fig. 8 (11). As deformation proceeds, the locus
in both cases will expand due to straln-hardening but,
as indicated in the diagram, the high R value material
is likely to reach failure at an earlier stage.
One would expect that for R <1 as theory pre-
dicts that the locus changes from ellipse to a circle
as R decreases. However, it was pointed out by Sowerby
and Duncan (11) that shortening of the major semi axis
for R <1 has never been demonstrated by direct experiment.
Forming limits for a material having low n
value determined by Sowerbyv and Duncan is shown in Fig.1l0.
This diagram applies to all processes in which the ratio
of the two strains in the plane of the sheet is reason-
ably constant. In order to get large strain in the
test, the path OA or OB has to be used. In the biaxial
test we use path OB. In case of pure shear path OA
has to be used - that is performed e.g. in deep drawing
a cup. Straining in any process such as along OM is
locally stable until the stability envelope is reached
at Q. If straining is attempted bevond this, tearing
will be expected. Fig. 10 1s a diagrammatic represent-

ation only, obtained from theoretical curves for



|

|

| typical values of the parameters. Such curves can be
constructed theoretically for any given values of an-
isotropy, strain hardening and imperfection ratio for

a particular sheet.

26
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3. BULGE TEST

3.1 History of the bulge test

In this chapter the author's intention is to
give a brief review of some of the work which has led
to the present understanding of the process and to the
development of metal sheet testing.

It had been observed that in the bulging pro-
cess, a pressure maximum generally preceded failure (26).
This phenomenon, generally called "tensile instability",
was investigated for a number of processes by Sachs and
Lubahn in 1946. They showed in (12) that the maximum
strain at the point of instability depended, among other
things, on the geometry of the process and they proposed
the development of a general criterion of tensile in-
stability based on the analysis of the stress state and
the use of the stress-strain curve for the material in
pure tension.

The advantages of the bulging processes as a
method for investigating properties of materials at high
strain was pointed out by Brown and Sachs in 1948 (13).
They proposed that the stress-strain curve cbtained in
bulging should be equivalent to that obtained in uni-
axial tension if the largest true stress for either case
is plotted as a function of the greatest natural strain.

It so happens that in this case, the result is the same



28

!as that which would be arrived at using the concept
of representative stress and strain.

To investigate material behaviour in unequal
biaxial stress states, Chow, Dover and Sachs in 1949,
bulged specimens in dies having elliptical apertures.
They showed that for a given die, strain ratios were
closely constant during the processes and that strain
states varying between almost uniaxial tension and
equal biaxial tension could be obtained by suitable
choice of die geometry.

A generél analysis of the strain and displace-
ments in the bulging process was given in (14) by Hill
in 1950. By employing the assumption that particles on
the surface move on trajectories which are circular arcs
and crthogonal to the surface of the bulge, he obtained
a special solution for the strain and curvature in terms
of the ratio of bulge height to die radius. Applying
this solution to a material whose stress-strain relation-

ship could be fitted by a function & = AE"

, where G and
€ denote representative stress and strain as defined below,
he obtained the result that the instability thickness
strain g¥* was given by the expression

€% = U(2n + 1)11 £Bedal}

This analysis agreed with the observed fact that even for

materials exhibiting very little strain-hardening, €% ‘was
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generally at least equal to about 2.4 (26).

A carefully executed and extensive investigation
of the bulge process was performed by Mellor in 1956 as
described in (15). This work was instituted by the late
Professor Swift in the expectation that the bulge test
would simulate the strain development and distribution
over the head of hemispherical punch in the simple hemi-
spherical deep-drawing operation. Mellor investigated
the strain distribution and geometry of the bulge for a
wide variety of materials. He showed that a good co-
relation could be obtained for most materials between
the stress-strain curve obtained from the bulge test and
that obtained by combined rolling =2nd simple tension test.

Previous work on the investigation of the effect
of anisotropy on the bulge process has already been re-
viewed by Mellor and Bramley in (16) who, in the same work,
present the results of tensile and bulge tests for a part-
icular anisotropic steel. The parameters characterizing
anisotropy as proposed by Hill (17) were determined from
the tensile tests, and using an average value of R (defined
differently to that given in equation 2,1.9) they were able to
predict quite closely the stress-strain curve obtained in
the bulge test. Preliminary information about the effect
of the strain-rate on the stress-strain curve obtained

from the bulge test was also given in this work.
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A general method of analysing axisymmetric
sheet metal forming using the incremental strain theory
has been developed by Woo in 1964 (18). This method
involves the use of an experimentally determined stress-
strain curve and successive approximations of stresses
and strains in the material. Solutions have been ob-
tained for the bulge process by use of a digital com-
puter and good agreement obtained between experimental
and theoretical results for pressure, strain, and
curvature in the process.

To determine the representative stress-strain
curve from the bulge test,"ellor (15) scribed a number
of concentric circles on the specimen and measured the
diameters of the circles with a travelling microscone
after each increment in hydrostatic pressure. The polar
strain was then determined by plotting the circumferential
strain against initial radius of the circle and extra-
polating to zero radius. Similarly, the polar radius of
curvature was obtained by extrapolation of spherometer
readings. This method gives accurate results but is too
time-consuming for frequent use.

The fast method of determining the stress-strain
curve from the bulge test was suggested by Duncan and
Johnson (19). They designed an extensometer and sphero-

meter and on the basis of the readings obtained, the stress-
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strain curve could be determined. An autographic unit
was also designed (24) and (25) at Manchester University

but this has not attracted much attention.

3.2 The desirable features of the bulge test.

There are a very large number of possible
loading or stress systems which could be used to deform
sheet metal for the purpose of testing it to obtain its
fundamental stress-strain curve. The desirable features
pointed out by Johnson and Duncan in (27) which any such
test method should possess are:

i) Test specimens should be easily prepared
and their performance not influenced by
small differences in the workshop tech-
niques used in their preparation.

ii) The test should be capable of being per-
formed using simple mechanical apparatus.
The construction of the testing apparatus
should be able to be completely specified
so that nominally identical testing mach-
ines give identical results.

iii) The greatest value of the representative
strain obtainable should be as far as pos-
sible, at least equal to that occurring
in the industrial processes in which the

material will be used.
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iv) The results of the test should be ex-
pressed in the form of a curve rather
than by a single parameter.

v) The curve obtained should be a fundamental
material property, and independent of the
specimen size and the imposed stress sys-
tems.

vi) The computation of any results reauired

should be minimal.

vii) Where the material is liable to exhibit
anisotropy, the strain system in the test
should be similar to that in the industrial
process.

Unfortunately, no one test 1s likely to satisfy
all seven requirements.

In the tensile test a specimen can be prepared
easily, although care must be exercised in machining the
uniform width and the radii at the shoulders to be gripped.
That is a rather time-consuming operation. The hardened
zone caused by the blanking operation must be removed. It
is easy to compute the true stress - strain curve from this
test and the testing apparatus is simple. Its principal
defect 1s that for materialé exhibiting a low degree of
work hardening (e.g. hard aluminum) the maximum strain in the

tenslle test 1s much less than that occuring in many
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' industrial processes.

The bulge test fulfills not all but most of
the requirements for the test method mentioned earlier.
The test specimen is a simple circular blank, and be-
cause measurements are only taken over a central portion,
the results cannot be influenced by the methods used to
cut out the blanks. The test equipment is mechanically
simple as indicated in the next chapter, and the results
are repeatable from one test apparatus to another because
the load is applied directly by hydrostatic pressure and

friction effects are non-existent.

3.3 Information to be derived from the bulge test

The true stress-strain curve for the material
can be obtained from measurements of curvature and ex-
tension at the pole and bulging pressure.

The maximum strain at fracture was considered
to be an important metal forming parameter by Sachs (20)
and this can be readily determined from a2 measurement
of final thickness.

While the variation of polar height of the
bulge with bulging pressure can be measured during the
test it 1s not clear how this information should be
interpreted. It has been shown (21) that there is some
correlation between maximum bulge height and strain-

hardening index but the determination of the stress-
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strain relation from bulge height and pressure measure-
ments using Hill's special theory does not always give
accurate results (Ref.26).

3.4 Determination of the true stress-strain curve from
the bulge test

The profile of a bulged specimen has been
shown by experiment to be spherical in the polar region
so that the membrane stress at the pole is

= Foim (3.4.1)

Where:

p - hydrostatic pressure

e - radius of curvature

t - current thickness

By symmetry, the stress is uniform in all directions and
as the stress normal to the surface is negligiblé, the
principal stresses are:

G, = 62 =6 63 =0 (3.4.2)

The circumferential strain around a circle concentric

with the pcle 1s
D

€= log_ o+ (3.4.3)
Where: :
DO - initial diameter
Dl - current diameter
€ - natural or Logarithmic strain
When Do becomes vanishingly small, equation (3.4.3) gives
the strain at the pole which, by symmetry, is uniform in

all directions.



The principal strains at the pole are:
€, =€, =& and &5 =&, (3.4.1)
From the condition of incompressability

€t = =2¢ (3.’4.5)

The current thickness at the pole, t, can be obtained
from the measured strain and the original thickness to
since

£ = -2 = log E—— (3.4.6)

The representative stress G and representative strain

€ may be defined as:

G -

{56, - 6,0° + (6, -6)° + (65 - 6)°]}* (3.4.7)

{2[(81 - 82)2 ¥ (82 “63)2 " (53 _ 81)2]}1/2
3

Using stress and strain defined in this manner, it has

€t =

(3.4.8)

been shown that a single stress-strain curve will be

valid for all processes, providing that in the process

the strain-ratios remain constant and the directions of

35

the principal axes of successive strain increments do not

alter. Using equations (3.4.7) and(3.4.8) it may be
shown that in the tension test 6 and § are equal to
the uniaxial true stress and natural strain and in the
bulge test

G =6 and

™|
u

2¢& (3.4.9)
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The stress-strain curve can be obtained by using a
biaxial test extensometer. It is assumed that in the
region over which measurements are taken (equal to a
circle at the initial radius of about 0.6 in.) the
strain and curvature are uniform and equal to the values
at the pole. Two mutually perpendicular views are shown
in Fig.12 and 13 and the operation is evident from these
figures, although detail description is given in chanter
I to which the reader is referred.

Tables can be prepared as shown 1n appendix B
which will enable the parameters € and ¢ and the thick-
ness ratio to/t to be determined directly from the dial
gauge readings. The stress G can be calculated from

equation (3.4.1):
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! 4, THE BULGING EQUIPMENT

The bulging equipment designed by the author
was manufactured mainly under his supervision in the
McMaster University machine shop.

The individual parts of this equipment are

described in detail below.

4.1 The Bulging Die

Circular specimens were bulged in the die shown
in Fig. 11. The specimen placed in the die was clamped in-
itially between the die ring, 2, screwed into the body of
the die and the clamping ring. Since that initial clamping
is not sufficient to grip the specimen, the hydrostatic
pressure supplied by a hand pump is imposed on the under
face of the clamping ring giving required clamping pressure.
Special care is taken to make sure that there is no air
trapped in the hydraulic system. When sufficient clamping
is achieved the clamping valve is shut off and the hydro-
static pressure starting from zero is imposed on one side
of the specimen causing bulging. As the bulging pressure
begins to rise, the clamping valve can be opened so that
equal pressures exist under the blank and under the clamp-
ing ring. The die described above has a 6" hole. Detail

description of the bulging operation is given in appendix A.
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4,2 The Biaxial test unit: Extensometer, Spherometer

The bilaxial test unit consists of the extenso-
meter and the spherometer. Both instruments are combined
in one unit working in two mutually perpendicular planes
(Fig.14).

The extensometer is an instrument for measuring
extension and the spherometer for measuring of the curva-
ture at the centre of a circular diaphragm which is de-
formed in the hydrostatic bulge test.

The unit rests on the surface of the specimen
and is guided by two columns fixed in the locating ring, 2,
shown in Fig.13.

While hydrostatic pressure is applied to one
side of the specimen deforming it to a symmetrical dome
the unit slides freely on the vertical columns and inst-
rument probes follow the path of the bulging specimen.

A gauge block 5, Fig.l1l3 ensures that the probes
of the extensometer are initially a constant distance
apart. The movement of the probes is registered on the
two outside gauges ané extension is derived from their
sum. The pivot block, 7, ensures that both probes are in
contact with the specimen, even if there is some slight
eccentricity in the dome. Two springs provided at the
ends of the measure plate, 16, Fig.1l2 ensure that the

extensometer is not resting all its weight on the probe tips.
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The operation of the spherometer can be seen
from Fig.1l2. The two pins of the spherometer can slide
in the bushings, and the relative movement 1is registered
on the central dial gauge, so that the radius of curva-
ture can be calculated from this reading. The arrange-
ment of pins and the measure plate were designed to
ensure that both pins are in contact with the specimen
even if there is some slight eccentricity in the dome.
The true stress - strain curve for the diaphragm material
can be computed from the extensometer and the spherometer
rgadings.

Value of the true stress and the strain were
calculated on a computer CDC6400 and magnitudes plotted

on a graph as shown in appendix D.

4.3 Hydrostatic test bench

The bulging die is mounted on a general purpose
hydrostatic test stand as shown schematicly in Fig.15.

The circuit is bullt with commercially available hydraulic
components. All fittings used in a system were manufactured
by Swagelok. Tubing hsed is 3/8" DIA.

Required pressure 1s delivered by a hand operated
pump "Enerpac'" model P51 and three Webster pressure gauges
are used to permit pressure readings in the range 5 + 5000
1b/in2.

The hydraulic system as shown schematically in
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lFig.lS has introduced two additional valves N2 2 and N2 3
which allow to use the same hydraulic system for the
elliptical dies (not described in this thesis, since it

is not in the scope of this experiment).
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5. EXPERIMENTS

Two kinds of experiments are performed:
tensile test and hydrostatic bulging of a circular
diaphragm.

Comparison of both of them is done by plotting
representative stress-strain curves.

The experiment was carried out with two materials -
mild steel and aluminium.

The biaxial bulging test unit was calibrated
before being used in the hydrostatic bulging experiment.

A description of the calibration is given in appendix C.

5.1 Specimens preparation

(a) Tensile test

Specimens as shown in Fig.16 were taken in

three various directions O°, MSO, 90°

degrees with respect
to the rolling of the sheet. Special care was taken
during the machining operation so that all specimens had
uniform width all the length.

(b) Bulge test

The shape of the specimens as shown in Fig.17
does not require any particular preparation as long as
the specimen is approximately of 8.5" DIA. Rolling
direction is marked throughout the centre of the specimen
so that the extensometer could be placed in three various
directions OO, U5°, 900, with respect to the rolling

direction.
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5.2 Testing procedure

(a) Tensile test

The gauge length 2" 1s marked on the specimen
(marked by an arrow on Fig.25) and the original width
and thickness 1s measured. Next the specimen is clamped
on the jaws of the test machine "Tinius Olsen". The
load is read at 2.C5", 2.10", 2,200, 2.30%, 2.40", 2.60%,
2.80" -~ distances of the gauge marks.

When the specimen reaches 20% elongation (2.40")
the test 1s stopped and the specimen unloaded. The width
of the specimen at the gauge marks and at the centre
beﬁween the two gauge marks is taken, and exact gauge
marks distance is measured.

Next the specimen is reloaded and the load
readings are taken until the specimen failure cccurs.
Computation is done with an assumtion that tested specimen
has uniform cross-section area A and is subjected to a
tensile force P, therefore, applied stress is:

Gy = & (5.2.1)
where

A =t ¥y (5.2.2)
t - current specimen thickness
w - current specimen width

ifr 1o is the original gauge length, and 1 is the current



50

gauge length, the volume of the specimen between the

gauge marks 1is:

. W t = 1 w t (5-203)

where: Wy o original width

t0 - original thickness

Combining (5.2.2) and (5.2.3) and substituting into (5.2.1)

6, = —F d (5.2.4)

For large deformations, logarithmic strain is
a better indication of strain than the engineering strain,

in this case the strain given by:

& = 1n % (5.2.5)
o

To take into account the various stress and strain system

representative stress and representative strain are introduced:

= 1 2 2 2

g = 72_— {(01-02) + (0,-05)" + (03-01) }!5 | (5.2.6)
- ¥Z 2 2 2.

€ = '—3- {(el-ez) + (62-63) + (83-61) }4 (5.2.7)
where: o5 9 03 - principal stresses

€15 €5 53 - principal strains
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Since for uniaxial tension

62 = 63 =0 and

£, = k€, = %6,

Representative stress and representative strain can be

expressed by:

6 =6, (5.2.8)

€=¢, (5.2.9)

The value 6 and £ were plotted on a graph as shown on

Fig.21.

(b) Hydrostatic Bulging

The thickness of the specimen 1s measured before
it is loaded into the die. Every time before bulging,
speclal care is taken to ensure that there is no air in
the hydraulic system. After sufficient clamping is

achieved, the biaxial test unit (with previous gauges set

to zero) is placed into the locating ring onto the die.

o} e}

Three different instrument location 07, M5°, 90~ with
respect to the rolling direction of the metal sheet are
investigated. Detall operation instruction for bulging
experiment are given in appendix A where reader is referred.

Pressure is applied by means of the hand pump
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and before taking a reading pressure is held constant
for a few seconds and read; it may be allowed to fall
off while the dial gauges are read.

Readings of the pressure, two extensometer
gauges and the spherometer gauge are taken approximately
every .005" indicated on each of the extensometer gauges.

Using the assumption that the addition of a
hydrostatic stress system does not influence yielding
as it was shown by Johnson and Duncan in (19) the stress
system in the polar region in the hydrostatic bulge test
is equivalent to a uniaxial compressive stress normal to
the surface of the material. Thus the uniaxial stress -
strain curve is obtained by plotting the membrane stress
against the thickness strain Et as equation (3.4.9).

Bulging is performed until failure of the spec-
imen occurs.

Typical hydrostatic bulge result for a mild
steel is presented in appendix D.

In order to check the accuracy of the represent-
ative stress - strain curve obtained by means of the bulge
test unit, an additional test was performed.

A number of circles from 3/4" to 4" DIA in steps
0.5" were scribed on a bulge specimen as shown in Fig.18.

Readings of the diameter extensions were taken

and the difference in height between the pole and the
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'scribed circles were measured for various pressures.

The data so obtained was used to calculate hoop

strain and radius of curvature calculations, and finally
plotted versus the initial diameter scribed on a bulge
specimen Fig.19 and Fig.20.

To check how large the error 1s in represent-
ative stress - strain curve due to the finite distance
over which extension and curvature is measured, the
polar values of €5 and ¢ (Fig.1l9 and Fig.20) were found
by extrapolation to zero radius and & and € was calculated

for these values (Fig.21).



6. RESULTS

A typical bulge test curve for mild steel sheet
(.030 thickness) and a comparison with tensile test is
presented in Fig.21.

Three tensile curves shown below in the diagram
correspohd to test on specimens in three varying directions
with respect to the rolling direction of the sheet.

There is a significant difference between the
tensile and the bulge test result; this can probably be
-explained to some extent by the anisotropic behaviour
of the material.

The average value of normal anisotropy in the
sheet tested was R = 1.416.

On a base of the tensile results, a theoretical
bulge curve was calculated using the formula suggested by

Bramley and Mellor in (2):

> |

G = [l v ﬁ]% Gpave € = [ 2 }6 £ pave (6.1)

2 l +FK

As can be noticed there is certain discrepancy between the
theoretical and experimental bulge test results in Fig.22.
Previous work (Bramley and Mellor) showed a similar, but
smaller discrepancy. In this calculation an average R

value was used, while in Ref.2, the calculation was based

on a tensile test for that orientation in which R was egual

to the average value.

e
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Figure 21 shows clearly that the tensile curve
is obtained to a maximum strain of 0.35 while the bulge
test gives the curve up to a strain of 0.65 to 0.68.

The advantage of the bulge test over the tensile
test is immediately clear on examination of the test curves.

It has to be emphasized that the bulge test also
gives a point on a forming limit diagram.

Maximum error in the representative stress -
strain curve due to the finite distance over which extension
and curvature is measured for low strain is 5% and for
strain over 0.25, the error is vanishing.

A photograph of the bulged mild steel specimen
is shown in Fig. 23. It can be observed that specimens
burst along the rolling direction.

To demonstrate the performance of the equipment
on another material, an aluminium alloy sheet .040"
thick was tested.

The bulge test and the tensile test results are
shown in Fig. 24.

The stress - strain curves are for a specimen
aligned in the transverse direction.

The tensile curve is obtained only up to a
strain of 0.25 while the bulge curve is up to 0.58.

The difference between the tensile and the

bulge test in representative stress magnitudes could be
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explained by normal anisotropy in the sheet.

The average value of R for specimens aligned
at 90° with respect to the rolling direction was
R = ,965.,

Figure 25 shows a bulged aluminium specimen
placed beside a tensile specimen. A photograph shows
very clearly the rolling direction of the sheet and the
line of failure along it.

Aluminium has not been fully investigated in
all directions with respect to the rolling direction
because of limited supply of the material. Therefore
further investigation is advised before any general

conclusion can be suggested.
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7. DISCUSSION

The bulge test has advantages over the tensile
test since no special techniques are required to prepare
the teét—piece. The method used to cut the specimen has
no influence on the test as the specimen is clamped at the
periphery, while in the tensiie test special care must be
taken to ensure that the edges of the strip are not work
hardened.

The bulge test requires simple eauipment since
the specimen can be formed using a simple die and a hand
pump. The stress - strain curve can be obtained up to
higher values of strain than in the tensile test as in-
dicated above. The range of the test covers the range
in any real sheet metal forming operation. Even in mat-

rials exhibiting very low strain, e.g. as aluminium,

The International Deep Drawing Rescearch Group(29)
has investigated tpe use of the bulge test as a valuable
test in a number of countries like Great Britain, Germany,
France, Belgium, and Sweden and it was emphasized that the
bulge test is a very useful test for research on deep
drawing and is very valuable in the determination of form-
ing l1imit and true stress - strain curve.

At the present moment there is no unification
in the bulging die diameter and the standardization of the

die is suggested as desirable.



The question of the correlation of the die
diameter and the strain was put, and further investi-
gation in this direction 1s suggested.

At the present moment about 35 units of the
extensometer and spherometer designed by Johnson and
Duncan (19) are used in Europe and North America.

The primary object of this project was to
design and manufacture an improved biaxial test unit.
It was hoped that in the course of this project, in-
formation and experience would be gained which would
materially asslist in the development of biaxial test
equipment for general research in plasticity and in
testing in industrial metal-forming processes.

The bulge test unit designed by the author
has certain advantages over the existing unit mainlv
in the construction of the spherometer and ease of
manufacture,

The combined unit of the extensometer and the
spherometer 1s placed in a cylinder with a bottom
plate which prevents oil from splashing when the svecimen
bursts, and makes the testing procedure much cleaner than
it used to be.

Total cost of the biaxial test equipment to-
gether with the hydraulic system and biaxial test unit
Including modifications during manufacture, as shown in

Fig.26, was $3,400.
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If the present design were to be exploited by
producing a biaxial test unit commercially in a lot of
say 10, the cost should not exceed $2,100.

For a commercially built unit, use of a motor
driven pump instead of a hand one should be reconsidered.

It is generally realized that a better under-
standing of the behaviour of materials in press-shop work
must be based on the use of fundamental material properties
such as the stress - strain characteristic.

At the present, the stress - strain curve is nct
used to any great extent for the selection of sheet material
for press shop operation.

It is understood that in most sheet-metal working
processes {(except for deep drawing), average strains involved
are not generally as great as the maximum strains in the
bulge test; however, the properties of the material are
generally only of interest when a sheet fails or is liable
to fail in a particular press-shop operation. It is reason-
ably certain then that knowledge of material properties in

these strain ranges will be of great value.
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APPENDIX A

Operation Instructions for Bulging Experiment

Measure specimen thickness.

Shut off valve No. 3 - keep it closed during all

operations.

Remove the nut ffom the top of the die.

Bleed the hydraulic system:

(a) Shut off clamping valve.

(b) Open bulging valve.

(c¢) Close hand pump valve and start pumping.

(d) When air bubbles stop showing up place the
specimen into the die, {(do not allow any air
to remain between the specimen and clamping ring.)

Turn down the nut (use pins).

Shut off bulging valve and valve No. 2.

Open valve No. 1, and clamping valve.

NOTE: Do not exceed pressure gauge range while
increasing pressure in the system.

Start pumping until sufficient clamping pressure is
reached (700 psi).

Shut off clamping valve.

Release pressure in the hydraulic system by opening
the pump valve.

Shut off valve No. 1.

Open valve No. 2 and bulging valve.

Set up instrument gauges on zero.
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Place instrument into the locating ring on the die.
Close pump valve and start pumping, take reading
approximately every .005" indicated on the extenso-
meter gauges.

After specimen is bulged release pressure by open-
ing pump valve, open valve No. 1 and No. 2, clamp-
ing valve, and the end open the valve of the lowest
range pressure gauge.

Lift up the instrument and place it back into the

carrying box.



APPENDIX B

In the first two columns, the value indicated
on the spherometer dial gauge is given and the corres-
ponding radius of curvature.

The sum of the two extensometer gauges is
presented in the table as "extensometer reading" and
the corresponding strain and thickness ratio can be
found.

The thickness variation with the increment of
strain for initial thickness .030" is calculated and

shown as an example.
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SPHEROMETER RADIUS OF EXTENSOMETER TO/T- ——

READING CURVATURE READING STRAIN THICKNESS RATIO
.001 561.800 .001 .001 .030 1.001
.002 280.901 .002 .007 .030 1.007
.003 187.268 .003 312 .030 1.012
.004 140.452 .004 .018 .029 1.018
.005 112.363 .005 .023 .029 1.024
.006 93.636 .006 .029 .029 1.029
+007 80.261 .007 .034 .029 1.035
.008 70.229 .008 .040 .029 1.040
.009 62.427 .009 .045 .029 1.046
.010 56.185 .010 .050 .029 1.052
.011 51.078 .011 .056 .028 1.057
.012 46.823 .012 .061 .028 1.063
.013 43.222 .013 .067 .028 1.069
.014 40.136 .014 .072 .028 1.075
.015 37.461 .015 077 .028 1.080

hl



SPHEROMETER  RADIUS OF
READING CURVATURE
.016 35.120
.017 33.056
.018 31.220
.019 29.578
.020 28.100
.021 26.163
.022 25.547
.023 24,438
.024 23.420
.025 22.485
.026 21.621
.027 20.821
.028 20.078
.029 19.387
.030 18.742

EXTENSOMETER TO/T
READ;NG STRAIN THICKNESS RATIO
.016 .083 .028 1.086
«OLT .088 Q27 1.092
.018 .093 .027 1.098
.019 .099 .027 1.104
.020 104 027 1.109
021 .109 .027 1.115
.022 L114 .027 1.121
.023 .119 .027 1.127
.024 +125 .026 1.133
. 025 +130 .026 1.139
.026 +13%5 .026 1.145
«027 <140 .026 L1551
.028 .145 .026 1.157
.029 .151 .026 1.162
.030 .156 .026 1.168

Gl



SPHEROMETER  RADIUS OF
READING CURVATURE
.031 18.138
.032 17.572
.033 17.041
.034 16.541
.035 16.069
.036 15.624
.037 15.202
.038 14.803
.039 14.425
.0bo 14.065
.0l1 13.723
.042 13.:397
.043 13.087
.oly 12.790
.045 12.507

EXTENSOMETER TO/T
READING . STRAIN  THICKNESS RATIO
.031 161 .026 1.174
.032 .166 .025 1.180
.033 J171 .025 1.187
.034 176 .025 1.193
.035 .181 .025 1.199
.036 .186 .025 1.205
.037 .191 .025 1.211
.038 .196 .025 1.217
.039 .201 .025 1.223
.040 .206 .024 1.229
041 .211 .024 1.235
.0k42 .216 .024 1.241
.043 .221 024 1.248
.0b4 .226 .024 1.254
.045 27, .024 1.260

9.



SPHEROMETER  RADIUS OF
READING CURVATURE
.0L6 12.236
.0h47 11.977
.048 11.728
.0k9 11.490
.050 11.261
.051 11.041
.052 10.830
.053 10.626
.054 10.431
.055 10.242
.056 10.060
.057 9.885
.058 9.715
.059 9.552
.060 9.393

EXTENSOMETER TO/T
READING _STRAIN THICKNESS RATIO
.0L46 .236 .024 1.266
.047 241 .024 1.272
.048 246 023 1.279
.0l49 s 25l .023 1.285
.050 .256 ;023 1.291
.051 .261 023 1.298
.052 +265 .023 1.304
.053 .270 .023 1.310
.054 sy .023 1.317
055 .280 .023 1.323
.056 . 285 .023 1.329
057 .290 .022 1.336
.058 .294 .022 1.342
.059 .299 .022 1.349
.060 . 304 022 1355

A



SPHEROMETER RADIUS OF
READING CURVATURE
.061 9.240
.062 9.092
.063 8.949
. 064 8.810
. 065 8.676
.066 8.545
.067 8.1419
.068 8.296
.069 8.177
.070 8.061
071 7.948
.072 7.839
.073 7.732
.074 7.629
.075 7.528

EXTENSOMETER T0/0
READING STRAIN THICKNESS RATIO
'.061 .309 .022 1.361
.062 .313 .022 1.368
.062 .318 .022 1.374
064 .323 .022 1.381
.065 .327 .022 1.387
. 066 .332 .022 1.394
.067 .337 .021 1.401
.068 .342 .021 1.407
.069 .346 .021 1.414
.070 .351 .021 1.420
.071 .356 .021 1.427
.072 .360 .021 1.434
.073 .365 .021 1.440
.07 .369 .021 1.447
.075 .374 .021 1.454

8.



SPHEROMETER RADIUS OF
READING CURVATURE
.076 7.430
077 7.335
.078 T.242
.079 7-151
.080 7.062
.081 6.976
.082 6.892
.083 6.810
.084 6.730
.085 6.652
.086 6.576
.087 £.501
.088 6.428
.089 6.357
.090 6.287

EXTENSOMETER TO/T
READING STRAIN THICKNESS RATIO
.076 . 379 » 021 1.460
077 .383 .020 1.467
.078 .388 .020 1.474
.079 .392 .020 1.480
.080 « 397 .020 1.487
.081 401 .020 1.494
.082 406 .020 1.501
.083 U410 .020 1.507
.084 415 .020 1.514
.085 419 .020 1.521
.086 U224 .020 1.528
087 .428 .020 1.535
.088 433 .019 1.542
.089 U337 .019 1.549
.090 L2 .019 1,595

6.



SPHEROMETER  RADIUS OF
READING CURVATURE
.091 6.219
.092 6.153
.093 6.087
.09k 6.024
.095 5.961
.096 5.900
.097 5.840
.098 5.782
.099 5.724
.100 5.668
.101 5.613
.102 5559
.103 5.506
.104 5.454
.105 5.403

EXTENSOMETER TO/T
READING . STRAIN THICKNESS RATIO
.091 LuL6 .019 1.562
.092 L4511 .019 1.569
.093 .455 .019 1.576
.094 U459 .019 1.583
.095 464 .019 1.590
.096 L1468 .019 1.597
.097 .U?g .019 1.604
.098 AT77 .019 1.611
.099 481 .019 1.618
.100 486 .018 1.625
.101 .490 .018 1.632
.102 494 .018 1.639
.103 .499 .018 1.647
.104 .503 .018 1.654
.105 507 .018 1.661

08



SPHEROMETER  RADIUS OF
READING CURVATURE
.106 5.353
.107 5.304
.108 5.256
.109 5.209
.110 5.162
<111 5.117
.112 5.072
<213 5.028
.114 4.985
.115 4.943
.116 4.901
.117 4.860
.118 4,820
.119 4,781
.120 4,742

EXTENSOMETER TO/0
READING STRAIN THICKNESS RATIO
.106 s DAL .018 1.668
10T «516 .018 1.675
.108 «520 .018 1.682
.109 .524 .018 1.689

+ 410 .529 .018 1.697
«111 .533 .018 1.704
o112 3T .018 s g 30
.113 .541 .017 1.718
.114 546 .017 1.726
«115 +550 .017 1.733
.116 .554 +017 1.740
«117 .558 - 01T 1.748
.118 «562 .017 1:755
.119 567 <017 1,762
.120 5Tl 0.7 1.770

18



SPHEROMETER  RADIUS OF
READING CURVATURE
121 4.703
.122 4,666
«123 4.629
124 4.593
s1as 4,557
.126 §.522
.127 4.487
.128 4,453
.129 b, 420
.130 4,387
«131 4.354
.132 4.322
.133 4.291
.134 4.260
.135 4,229

EXTENSOMETER TO/T
READING STRAIN  THICKNESS  RATIO
.121 575 017 17T
2182 579 .017 1.784
123 .583 .017 1.792
.124 587 .017 1.799
.125 .591 .017 1.807
.126 .596 .017 1.814
.127 .600 .016 1.822
.128 .604 .016 1.829
.129 .608 .016 1.837
.130 .612 .016 1.844
.131 .616 .016 1.852
.132 .620 .016 1.859
.133 624 .016 1.867
.134 .628 .016 1.874
.135 .632 .016 1.882

4



SPHEROMETER RADIUS OF EXTENSOMETER TO/T—

READING CURVATURE READING STRAIN THICKNESS RATIO
.136 4.199 .136 .636 .016 1.889
«137 4.169 e i i .640 .016 1.897
.138 4h.140 .138 644 .016 1.905
.139 4,111 .139 .648 .016 1.912
.140 4.083 .140 .652 .016 1.920
.141 4,055 141 .656 .016 1.928
L142 4,027 .142 .660 .016 1.935
143 4,000 <143 .664 +015 1.943
<144 3.973 L144 .668 .015 1.951
145 3.947 145 672 .015 1.959
.146 3.921 146 676 .015 1.966
147 3.895 147 .680 .015 1.974
.148 3.870 .148 .684 .015 1.982
.149 3. 845 <149 .688 .015 1.990
.150 3.820 .150 .692 .015 1.998

€8



SPHEROMETER  RADIUS OF
READING CURVATURE
«151 3.796
«152 3.772
.153 3.748
.154 3.725
.155 3.702
156 3.679
«157 3.657
«158 3.635
.159 3.613
.160 3.591
.161 3.570
+162 3.549
.163 3.528
.164 3.508
.165 3.487
.166 3.467

EXTENSOMETER TO/T
READING STRAIN THICKNESS RATIO
251 .696 .015 2.005
.152 .700 .015 2.013

s 153 .704 . 015 2.021
.154 .708 .015 2.029

« 155 o f dd +015 2.037
.156 + 715 . 015 2.045
<157 .719 .015 2.053
.158 .723 «015 2.061
.159 727 .015 2.069
.160 o131 .014 2.077
.161 .735 .014 2.085
.162 .738 .014 2.093
«1563 .Th2 .014 2.101
.164 .T46 .014 2.109

. 165 s 150 .014 2.117
.166 .754 .014 2.125

h8



SPHEROMETER ~ RADIUS OF
READING CURVATURE
167 3.448
.168 3.428
.169 3.409
.170 3.390
«1Td 3.371
% i 3.352
+173 3.334
174 3.416
.175 3.298
.176 3.280
177 3:263
.178 3.245
179 3.228
.180 3.211
.181 3.194
.182 3.178

EXTENSOMETER TO/T
READING . STRAIN THICKNESS RATIO
.167 - T57 .014 2.133
.168 .761 .014 2.111
.169 . 765 .014 2.149
.170 .769 ‘.Olu 2157
«171 773 .014 2.165

s T2 .T76 .014 2.174
173 .780 .014 2.182
174 . 784 .014 2.190

o e .788 .014 2.198
176 191 .014 2.206
177 . 795 .014 2.215
178 .799 .013 2.223
.179 .803 .013 2.231
.180 .806 .013 2.239
.181. .810 .013 2.248
.182 .814 .013 2.256

a8
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3 APPENDIX C

Biaxial Test Unit Calibration

The extensometer and the spherometer gauges
are set up to zero by placing the unit on a surface plate.

The extensometer is removed from the unit and
reset to zero. In order to get the correct setting,
plasticine is used so that the probes are kept apart at
the constant distance. Distance that 1is marked on a soft
aluminum plate, and measured with a microscope.

The above described setting was repeated a
number of times with increment .005" indicated on each
dial gauge.

The least square method was used for fitting
a curve into the obtained data points, and finally

characteristic curve for the extensometer was established:

Y = (X - .36023110)/.30184298

The spherometer has not reaquired calibration as
such but rather checking the value given by the dial gauge

reading with the value given by a micrometer.
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APPENDIX D

Stress - Strain Curve Calculation

The program for stress - strain calculation and
curve plottings is shown.

The readings of the extensometer (a1 + a2),
bulging pressure and spherometer are shown and calculated

values of strain, stress and radius of curvature are pre-

sented.



VALUE Al1+AZ2 /IN/

« 004 017 o027
e 105 e120 e 139

PRESSURE /PSI/

450.000
840,000

210.000

840,000 8406000

SPHEROMETER READINGS /IN/

047 . 085 e 104
174 . 182 .191
AlL+A2 E
4 .022
17 . 092
el . 145
39 . .206
54 279
70 .355
79 .397
91 450
105 .512
120 .575

139 053

570000

« 039

670000

s 12%

e 054

40000

T0/7

1.022
1.097
l.156
1.228
1.322
l.426

l1.487

1.569

1,668

1e 777
1921

e 137

070

800.000

s 191

« 029
027
e 026
« 024
«023
021
« 020
«019
018
o017

016

079

810.000

o157

091

830000

166

11977

6.652
5.454
44703
40169
3.7/96
3.657
3.467
3.316
3.178

3.037

STGMA

42854 ,512
54709.194
59870.194
64510.251
67992.234
72195,403

713394 ,574

- 75259.024

717425,319

790664871
81657.079
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XMIN= 2.208557E-02 XMAX= 6.526467E-01, YMIN= 4,285451E+04 YMAX= - 8.165708E+04, 11 POINTS PLOTTED. 89

x....x.OQ.XOOQOXQQOQXO.O.~x....x0000x00..x.OQ.x.O..x..Q.‘x‘...x....x.O..x‘..Qxﬁ...xﬂﬁ..x....x....x....x

B.240E+04=Y ' * Y= B.240E+04
i L3
: % :
7T.840E+04=Y Y= 7.840E+04
* L3
: : :
7.440E+04=Y s gl it i
© ** €
: . I
7.04OE*04=; Y= 7T¢040E+04
: ; :
6.640F+04=Y Y= 6.640E+04
: » .
6.240E+04=Y Y= 6.240E+04
: : .
5.840F+04=Y Y= 5.840E+04
5440F+04=Y 3¢ Y= Se440E+04
S5.040F+04=Y Y= S5.040E+04
4.640F+04=Y Y= 4.640E+04
e :
4.240F+04=Y Y= 4.240E+04

x.....x....x...QX..‘.X.QQOXOQ..x.t.ﬂx....x....x..QQX.Q..x...Qx.OCQX.OQQXCQQQXQC..XO‘..X;‘..x...ﬂx...‘x

0.000 . 066 o138 198 « 264 e 330 e 396 462 « 528 594 660 TIMES1.0E+00
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HVEA. ' , ~ ALRFRTIN P
RUNI(S)
SFTINDF.
REDUCF,.
LGO.
' a4L0N FND NF RFCORD
PROGRAM TST (IMPUT 4QUTPUT S TAPFS5=INPUTsTAPF6=0UTPUT)
DIMENSTION Z(24)sP(24)sC(24) 4A(24)4R(24)
N=24
INER R
READ(5455) (Z(T)sI=1,N)
READ(5455) (P(1)sI=14N)
READ(5455) (C(T)eI=14N)
55 FORMAT (BF1043)
WRITF(6450N)
5N FORMAT (1H1 48X 4 2VAL IS AV A2 /IN/%,./)
WRITE(6+56) (Z(T)eT=1,NN)
WRTITF(ALG])
51 FORMAT (/s5X s ¥PRFSSIIPE PSI%*4/)
WRITE(6956) (P(I)s1=1,4NN)
WRITFE(6457)
52 FORMAT (/45X 4 ¥CDHERAMETED DFEANTNGS /TN/*,4/)
WRITF(/956) (C(T)sT=14NN)
54 FORMAT (RF1N,2)
WRITFE(h,20)
20 FORMAT (// 918X s A1+A2% 315X o ¥F ¥ 914X s #TO/TH 316X o ¥T % 413X 9 %#RX¥ 412X 4 *5]1GN
18%4//7) ‘
AD==.36023110
Al=N,3N184D0OR

nnngn/A1

DO 19 T=14NN
W=7 (1)

M= (W=ANY /A]
D1=0)



21

10

«N0G

« 108

210,
840,

047

« Y74

PP=P1/D0
F=2.%ALOG(DP)
RU=U=-D0N
TOT=(1+RU/DQ) %3#2
THIC=0.030
T=THIC/TOT

R=(18060%14060+C(I1)%C(T))/(2e%C (1))

SIGMA=(P(T1%R)/(24%T)
F=wx1000,

WRITE(6521)FsFsTOT sTsRsSIGMA

FORWAT(1?XgF10;093X,F16.1,1X9F16.3ng;Flé.?,lX,Fl&.?,lX’F16a?,/)

A1) =7
R(I)=STGMA

CALLL PLOTPT(XsYs4)
CONT INUE
CALL QUTPLT
STOP
FAD _
FND OF RFCORD ‘
N7 027 ,030

120 +199
450 570 670
840, 840,
«085 e 104 «121
L1002 101

FMD OF FTLF

.0511

740

«137

VIO

800

151

91

oN79

810s

«157

820,

a2 16¢€





