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SCOPE AND CONTENTS: The thesis deals with the effect of external

signals including random noise on nonlinear oscillator. By using

a negative resistance across a L-C tuned circuit an oscillator

representing van der Pol differential equation is obtained. A

practical circuit of oscillator whose nonlinear characteristic

closely approximates to that of the ideal van der Pol oscillator

is described. The behaviour of this oscillator circuit is ex

perimentally studied while the corresponding nonlinear differential

equation is solved by means of a Digital Computer (IBM 7040).

The study is divided into three important categories (1) system

without disturbance (free-running oscillator) (2) system sub

jected to sinusoidal input (forced oscillator) (3) system

subjected to random noise input (noise-perturbed oscillator)~

In case of forced oscillations a necessary condition is

established for locking which is useful from design point of

view. For noise-perturbed oscillator the mean deviation of

oscillator frequency from stable frequency of noiseless oscillator

is found to depend on the Q of the tuned circuit and on the

magnitude of injected noise. In all the above cases the results

of numerical analysis by Digital Computer are in good agreement

with the experimental results.
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INTRODUCTION

When a periodic force is applied to a system whose

free oscillation is of the self excited type, a phenomenon

known as frequency entrainment takes place. A typical case

is the system governed by van der Pol's equation with an

additional term for periodic excitation (1). The frequency

of the self excited oscillation falls in synchronism with the

driving frequency, provided these two frequencies are not far

different. It their difference is large enough, the occurrence

of a beat oscillation may be expected. However, a similar

phenomenon of frequency entrainment still occurs when the ratio

between the natural frequency ot the self excited oscillation

and the driving frequency is in the neighbourhood of an integer

(other than unity) or a fraction.

The characteristics of the van der Pol oscillator sub

jected to a forcing signal have engaged the attention of several

workers (2), (3), (4) because of its wide applications (;).

The understanding of such a self-oscillator circuit is con

siderably complicated if the presence of random noise is taken

into account as a forcing function. In this connection a

variety of approaches have been taken, and results of undoubted

value have been obtained. However, most of the publications

(6), (7), (8) concern themselves with the response of a non

linear oscillator subjected to an injected synchronizing signal

accompanied by noise or some interfering small amplitude signal.

1
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The above approach is considerably different from that of the

present work in which the forcing function is random noise

of narrow band-width.

The response of a self-oscillator to random noise, is

becoming of particular interest owing to the recent importance

of monochromatic oscillators (9), (10), (11), (12) and the

possibility of reducing oscillator noise by oscillator interaction

(13)~ (14). In order to explore this problem further, an ex

perimental system was used. This system included an oscillator

circuit whose behaviour is very close to satisfying that of the

"van dar Pol negative resistance oscillator". Such an oscillator

is simple to design and has stable characteristics. Over a long

period of time the experimental oscillator was found to be very

stable with respect to frequency.

To study the effect of noise on the nonlinear oscillator

experimentally, an external source of random noise was used.

By using the external noise source, the oscillator circuit was

made so "noisy" that the effect of noise on the nonlinear

oscillator could be recorded easily with the usual laboratory

instruments. The choice of 240 kc/s frequency for the oscillator

was also based on noise considerations. Thus, in the present

work the low frequency noise which modulates the oscillator

output is assumed to be negligible and only the effects of

narrow band Gaussian noise (at or near the oscillator frequency)

on the self-oscillator, are considered.

The first chapter of the thesis deals with the well
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known cases of the free running oscillator and then the forced

oscillator with externally injected sinusoidal wave.

A great amount of work has been done regarding forced

oscillations in a van der Pol type of nonlinear oscillator,

yet no previous treatment seems to adequately describe the

conditions of locking range in terms of useful circuit parameters.

Van der Pol in his original article (15) and Van der Ziel (7)

give similar conditions, but they do not seem to be sufficiently

useful from a practical design point of view. A necessary con

dition for locking just to occur in forced oscillations is

derived which eventually leads to an expression for the required

amplitude of the injected voltage for boundary condition of

locking. This gives a more useful relation of locking in terms

of circuit parameters and is a simplification of a result

previously obtained (16.).

A literature survey on the noise-perturbed oscillator

is summarized in Chapter 2. The statistical effects of noise

on oscillators are briefly described. A relation is developed

for the number of zero crossings per unit time of the noise

perturbed oscillator output, a relation which must be understood

in the probability sense.

'It is to be emphasized that the above noise theory does

not bear a direct relationship to the experimental and numerical

analysis approach adopted for the problem. In fact, the theoret

ical approach to the problem of frequency deviation of noise

perturbed oscillator with respect to noiseless oscillator over

a long time interval is quite complicated and no work has been
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done previously to predict this frequency deviation by theoret

ical analysis.

Chapter 3 describes the experimental system, beginning

with the analysis and design considerations of the negative

resistance oscillator circuit. This system was used to study

the van der Pol nonlinear oscillator under various conditions

of operation.

In Chapter 4 the results obtained for the experimental

system are presented and discussed. A comparison is made with

results obtained from a numerical analysis study of the van der

Pol nonlin,ar differential equation. With the aid of a digital

computer (IBM 7040), the equation was solved for the Cases of:

free oscillations, sinusoidal forcing function, and random

noise forcing function. In both the experimental and computer

studies the average number of zero crossings per unit time

(twice the mean frequency) of the oscillator output voltage for

the noise-perturbed oscillator and the noiseless unforced

oscillator are compared and found to be in good agreement. Re

sults are obtained for the deviation of the mean frequency of

the oscillator as a function of the Q of the tuned circuit and

the magnitude of the injected noise.

In summary, the thesis contains an investigation of

oscillators whose behaviour is described by the van der Pol

non-linear differential equation under the following operating

conditions: (1) Free-running (No forcing function, (2) Sinu

soidal forcing function (Locking condition) and (3) Random

noise forcing function (Noise-perturbed oscillator).

One of the main considerations of the thesis is to find

the deviation of the mean frequency of the noise-perturbed

oscillator with respect to that of the "noiseless l1 free-running

osc illator.



CHAPTER 1 - FREE AND FORCED OSCILLATIONS

1.1 DIFFERENTIAL EQUATIONS - OSCILLATORY MOTION

Consider an equation of the form

•• •x + ax + bx = f(t) •where x = dx
~

Three types of motion are represented by this equation.

Free motion (associated with bx, which gives the restoring
•

force), damped motion (assooiated with ax, which gives the

damping force) and forced motion (associated with f(t». These

facts are easily verified by considering representative physical

systems and writing the differential equations. The left side

is called the equation of motion of free oscillations, in

which the natural frequencies of the undamped oscillation is

obtained by putting a =o. For example, a coil spring with

one end fixed and a weight attached to the other end would

oscillate freely once it was started from equilibrium, How

ever, the presence of air acts as a damping force which grad

ually diminishes the amplitude of oscillation. If the support

of the spring were to move up and down according to some law,

then the motion of the spring would be forced. If f(t) =0,

the oscillations described by the equation are said to be free.

The general equation of free oscillations is

•• 2 •
x + w x = g(x,x)

5



Figure
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It includes both nonlinear damping and restoring forces.

In many cases in which the nonlinearity occurs, deviations from

the linearity are small, and the motion has approximately linear

character. In a self-ex4ited oscillation, as t -+ OC every

solution tends to a periodic solution corresponding to a limit

cycle in phase plane.

1.2 THEORY OF NEGATIYE RESISTANCE OSCILIATOR

The principal parts of a negative resistance oscillator

are (1) a negative resistance circuit or device, and (2) a

connected load circuit. The nonlinear component is represented

by an equivalent circuit consisting of a variable resistance RN,

which can vary both in magnitude and sign, in parallel with a

current source i(t). This current source supplies the initial

excitation necessary to produce the oscillation and Can be

disconnected when oscillation commences. In an actual circuit

this current source might represent a current impulse caused by

thermal agitation or some other circuit unbalance of tronsient

character.

The integrodifferential equation for the circuit of

lC1* + [~ + i;;] e+ iJeat = 1(t) (1)

If RN is assumed to be linear for a short time during

initiation of oscillation, then during this time RN can be con-

sidered constant and thus the following analysis could be

applied.
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FIGURE 1 - ESSENTIAL COMPONENTS (F A NEGATIVE RESISTANCE OSCILLATOR

Assume that the capacitor is initially uncharged and

that there is no initial current through the coil. Writing

the Laplace transform of equation (1) and solving the result

for the transform response voltage E(s) we have,

I(s)
E{s) =-

c
(2)

So that the characteristic equation is

[ •
2

+ (R + R ). sIR R •C + :...1 = 0
L N L N wJ (3)
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The roots of this equation are the poles of the res

ponse transform, and these roots are computed from the quadratic

rorilulae to be,

:- j (4)

=~ij""
The poles of the response transfor~ will be complex

conjugates and the time response will be oscillatory only if

the quantity under the radical is positive i.e. W must be real.

This is a necessary condition that must be fulfilled if

oscillations of any type are to be produced.

There is another important condition. If the real

p~rt of the pole is positive, the amplitude of oscillation

will inorease as a function of time. If the real part is

negative, the amplitude of oscillation would decay with time.

A constant amplitude results when the real part of the pole

is zero.

With the foregoing in mind we can see that the

oscillation i8 produced only if

This inequality must be true at all times. The boundaries

describing the inequality or equation (5) are two straight lines,
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which satisfy

(6)

These regions are shown in Figure 2.

When the oscillation first starts out, it is s~all

and must build up in amplitude. The real part of the pole

Must be positive so that,

_[RL+RNJ > 0
RLRN

This condition can be achieved only if RN is negative.

That is, if RN =-IRNI , the inequality CDn be mointained if

Rt > j RNI. During the build up period the oscillator frequency

(7)

will vary because R
N

will change as a result of nonlinearity

in the negative resistance circuit.

In Figure 2 we are interested in only that portion of

the plane below the 1- = =l line, because it is here that a
R

N
R

L

self excited signal is generated, and we are pri~arily con-

cerned with the narrow seg~ent defining the sinusoidal oscillatory

response.

To obtain an oscillation of constant amplitude the real

part of the pole Must vanish. This will occur only if R
L

= 'RNI
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-Ji:

Relaxation
Oscillation

FIGURE 2

i.e. when the negative' conductance 'of the active eleraent

exactly canc~ls the positive cond~ctance of the tuned circuit.

The purely i~aginary poles are located at

1
81 2= tj FrT

, ~ LC

When this transpires, the o5cillator frequency ,be

coraes constant at'tlo =Jb5 .
This value is governed by the constants of the load

circuit if the negative resistance device or circuit is free

from inductive and capacitance components.

1.3 NEGATIVE RESISTAJCE CHARACTERISTIC

Consider a simple self-oscillatory circuit of Figure 3.

Land C are the inductance and capacitance of a parallel
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tuned circuit, the total losses of which have been co~bined

in the single parallel resistance R
L

• Details of any steady

voltage supply are omitted here.

CL

R;---T
Nonlinear e

'-- ....-_~--......---E-l-e-m...e~t 1

FIGURE 3 - CIRCUIT OF NEGATIVE RE~ISTANCE OSCILLATOR

Such a self-osc illating system has been studied in

considerable detail originally by Van der Pol (l) and by many

others. It has been shown that the waveform is essentially

sinusoidal. A steady state is established corresponding to

the appearance of a liMit cycle with the aMplitude of oscillation

dependent solely upon the circuit parameters.

In parallel with the tuned circuit is a sinusoidal

voltage generator in series with a resistance Rf • This ex-

ternal generator is the source of forcing voltage V to the

self-oscillator. Also in parallel with the tuned circuit is

R which represents the net effect of resistance in the syste••
N

This resistance is negative for small voltages, but becomes

positive for large voltages as illustrated in Figure 4.
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(8)

FIGURE 4 - PATH OF OPERATION ON NEGATIVE RESISTAl~E CHARACTERISTIC

This negative resistance characteristic is described by tho

following relation.

i =-Sa + Te3

Here i = current through the ele~ent

e == voltage across the ele~ent

and Sand T are positive constants.

These constants are deterMined by the negative resistance

characteristic of Figure 4. The slope of the characteristic

1s zero,

di
de = 0

(10)

At these points, fro~ equation (8), the current 1s

i == +2S rs
p -3V 3T

ThUS; fro£! (9) and (10) the two constants 5 and T could

be found out by knowing the geo~etry of the characteristic curve.
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e
Negative
Resistancec

1.4 NON-LINEAR DIFFERENTIAL EQUATION OF OSCILLATOR
i i

FiGURE 2 - EQUIVAL§NT CIRCUIT FOR NEGATIVE-RESISTANCE OSgILLATQR

(Refer Fig. 3 - Equivalent Circuit Obtained using Nortan's Theorem)

The differential equation for the circuit of Figure 5

is easily found from the condition

(11)

de
where, i e =C --,

dt
i = -Se + Te3 ,

=e,

Here VIRf is the amplitude of the driving current, its angular

frequency is wl ' and angle ~ 1~ a phase angle inserted in the

expression for the current as a matter of convenience.

After substitution in (11) we have

C ~ - Se + Te3 + .!fe dt + E.f( i + i + i R - if) dt + !
dt L L c R

=[~J Cos(w1t + ~)

Upon differentiating the above to remove the integral, the
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equation becomes

•• S. 3T 2. e {~Je
e

- Se + Te3 -
V

t + ~~e - -e +-ee+- +- - Cos('tl
C C LC R Rf

•

GVW~
e

+- = - - Sin(w1t + ~)
RC CRf

Under most conditions of interest for an oscillator circuit,

the resistance r is small enough so that the last term with

the parentheses can be neglected and we have

e- [~ - ~]a + ~ e 2e + ~ = -[::~J Sine w, t + ~)

Thus, the nonlinear differential equation becomes,

( 12)

[s -iJ ',

..
A(l - Be2 )'tl e + 'tl 2e

-Iw""
e - =- .-.1 Sin(w,t + ~)

0 0 C

[s -i] 3T 3T
A = B = and AB --where

1
= -,

LC
w 2

o
and R =_R...r....R....L__

(R
f

+ RL)

1.5 FREE OSCILLATIONS (FORCING CURRENT IS ZERO)

The first order steady state solution or the non

linear differential equation (12) without forcing function is

given by the perturbation method (16b) as follows,

( 13)
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2

E =~

15

(14)

This particular condition has been dealt in detail

by van der Pol for values of lSA<l. The period of sinusoidal
t

oscillation existing for A«l is To = ~~= 2IT(LC). It depends
o

upon the two reactive eleMents Land C and is independent of

resistance.

For the oscillation to occur it is necessary that A

be positive, which leads to the condition that R ~ ~ (this has

been established earlier also). For a parallel resonant

circuit if we define Q =~ = BWoC (15)
woL

Then the condition for oscillation becomes

t S R or, ~ ~ QJ~

Therefore Q ? ~ Jt

1.6 FORCED OSCILLATIONS (FORCING CL~R8NT IS NOT ZERO)

A somewhat different situation exists if the same

oscillator is driven fro~ an external source. Free running

oscillators which are capable of being synchronized to an

external ~ignal are, of course, well known and extensively

used. The synchronized oscillator is realized when the

oscillation of desired frequency is injected into the free

oscillator. The amplitude and frequency of the external

driving voltage must be such as to quench the free oscillations,

the quenching action being obtained tb~oueh a zero memory
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type nonlinearity which attenuates the weaker signal More

than the stronger. The analytical solution of such a system

gives a second order nonlinear differential equation having

a forcing term on the right side. Under certain conditions

both free and forced oscillatio~exist siMultaneously. When

paraMeter A is small compared with unity, free and forced

oscillations would be sinusoidal in nature. Analysis uses

the principal of harmonic balance (16c). An approximate

solution of the equation (12) ~ay be expected to have the

fora

Where E is the peak amplitude output of free oscillation

of frequency wand E that of the rorced oscillation at the
1

driving frequency 'Wl •

The Following four relations result in accordance with

the principle of harmonic balance. All other frequencies

e~cept the two fundamental frequenc ies wand w
l

are neglected

and also it is assuMed that w ~ WI (Appendix II)

E(w 2 _ w2 ) =0 (17)
o

B 2 2
AwwoE(l - 4(E + 2El » =0 (18)

2 2 Iw
E (w -w ) =-(--1) S1n~ (19)

1 0 1 C

~ 2 2 IwAW1'WoEl(1 - 4(El + 2E » =- (--1) C05_ (20)
C

From (17) it is evident that the frequency or
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free oscillation is same as w. It could also be shown easilyo

rro~ (18) that if there are no forced oscillations, El =0

2 4- 2The same equation could be rewritten E =- - 2E •B 1

2and E = _ \l1hich 1:3 t~lt;;l result found in (14) for free oscillation
{B

case.

It ls, thus, obvious that the output amplitude of rorced

oscillations would be given by

81 =,ff (21)

subject to the condition that free oscillation amplitude is

completely quenched i. e. E =O.

Free and forced oscillations exist simultaneously if

the output amplitude of the forced oscillation is within the

limits set by 0 ~ E12~~. Also Nhen forced oscillation exists

of amplitude large enough so that 81 ?J~, free oscillations are

completely supressed and E = O. It should be pointed out that

the imaginary value of E (with large value of El ) i3 interpreted

to mean as if there is no free oscillation. Therefore it

could be verified that under certain given conditions (locking)

(22)

would exist between free and forced oscillations.

Detailed normalized response curves for the separate

and simultaneous existance of both free and forced oscillations
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are given in Figure 7.30 pp 218 of Cunningham (16d).

1.7 DQUNDARY C.ONDITION FOR !JOCKING

From the design point of view an engineer is interested

in finding out some simplified relation between the injected

voltage V with that of the circuit parameters for boundary con

dition of locking. This necessary condition for locking or

pUlling just to occur could be determined as follows.

For small amount of variation of w1 from Wo

(i.e. w - w « w )
1 0 0

w 2 _ w 2 S! (w - w
1

) 2w
o

(23)
0 1 0

Also on the bounda.ry condition of 10cking,E1 =J 2/B

and E = o. Squaring and adding equations (19) and (20) results

in

or

or

[ (1l0
2

2 1 ] III 2 x~- w12) + A2w12wo2. 4 =( c1 )
2

2 (wo
+ w )2 2'

V2 1 B(wo - w1) A
x 1

+- x_ x_---
w 2

o
w 2

1 4 2w 2
o

This reduces to boundary conditiqn for locking just to
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occur as follows

[ 2 2J 2
c' ltD + ~ .. :/

Bx_
2C/L

where D v= 0 - "1 =fractional variation in frequency

(24)

If Q or the tuned circuit is high then Rt could bemada

much less than R
L

• In such cases R ~ R and ~ =1- and (24)
t R 2 Q2

f

could

This gives the input amplitude of forcing voltage

required for locking Just to occur as

V J8~ (D
2

+ ~)J"lB 16
(2,)

From (25) it is obvious that all other constads being

same an increase of Q (or B
t

> necessitates an increase in the

input amplitude of the forcing voltage it locking is to be

maintatned. And the above relation is, indeed, the necessary

', ..,: . ':".~~ boundary condition for locking just to occur in

the case of forced oscillations.



CHAPTER 2 - NOISE EERTURBED OSCILLATOR

2.1 STABILITY OF THE NEGATIYE RESISTANCE OSCILLATOR

No oscillator generates a pure Sine Wave. Noise pre

sent in the circuit always introduces rando~ phase changes,

so that the output power is spread over a narrow frequency

band, and not concentrated at a single frequency. Consequently

all oscillators will have orderly noise spectra. Extremely

stable oscillators will have extremely narrow noise power

spectrums which, for highly stable frequency standards, may

be only a few hundreths of a cycle wide.

The stability of a negative resistance oscillator or

the precise pole positions with steady state oscillation es

tablished but with noise still present, is examined by circuit

analysis as follows.

FIGURE 6(a) - EQUIVALENT CIRCUIT OF NEGATIVE RESISTANCE
OSCILLATOR WITH NOISE PRESENT

L

Circuit
----------- ---,

I Tuned
y
I
I
II..- -,.,J

I

\~. '-!-~,,' FIGURE 6(c) -....\" .. s.!/J.',5," I NCREAl..fENTAL
VARIATION IN\ 1.1' " POLE POSITION

:- \ WITH NOISE IN
_....,._~ ..,;~_....~ OSCILLATOR

20

FIGURE 6(b) 
POLE POSITIONS
FOR STEADY STATE
OSC ILLAT IONS+

~w
8.-......

" ,
\
\
\

\ ,
\ I, ,

" ,.II!
...... - --

.. ~,
",

I

I
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In Figure 6(a) a negative resistance (RL +AR! b R)

is introduced that is fractionally larger than R
L

, the sum of

the positive resistances in the tuned circuit, to ensure the

continuous oscillations. In this negative resistance the

noise is represented by rando~ variation !~R. The poles of

the response transfor~ for the negative resistance oscillator

could now be expressed as follows.

1.- .(!-)2t¥ !MiJ
tc2C R

L

To aaeet the Barkhausen criterion, (AR ~ bR) lBUSt becorae

zero, aaking the oscillator frequency ~o=J tee However,

the presence of the noise component t bR, which includes all

circuit perturbations, requires that a small negative resistance

component AR be present at all tilles to ensure sustained

oscillations. As the equation indicates,- perturbations t &R

in ~R create both frequency and araplitude jitter with a

corresponding jitter in 81 and 82 •

The oscillator thus settles in a position of un

balanced equilibrium, as shown by the pole positions Sl' 811

• •6 1,611 in Figure 6(c). The angle between the j~ axis and

the ~ean pole position ~~ ~ 0°, and the jitter is represented

to a greatly enlarged scale. Corresponding pole positions

representing the amplitude and frequency jitter will also

appear at 52. Like the cyclist who must continually apply

correction signals to the handle bars to Maintain the balance,
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the o3cillator ·must also continually apply correction signals

to maintain equilibrium. It can easily be shown (11) that

the above analysis is equally good for feedback type of

oscillators as the aaplifier and the feedback network can be

transformed into equivalent negative resistance oscillator. (App. I)

2.2 REVIEW OF THE LIURATilllE

or the .any pUblications related with noise (17, 18,

19) a considerable number (20, 21, 9, 10, 11, 22) concern

themselves with the more special problem of noise in oscillators.

The Case of a self oscillator with van der Pol nonlinearity

nas been solved with many interesting applications by BlaqqlUe (23).

Bytov (8) extending the initial work of Berstein (24) has

used van der Pol's technique of expressing oscillator output

as an angle and aaplitude modUlated 8ine Wave.

EdsoR:(12) in an exhaustive paper described the

noise effects on the behaviour of oscillator both during

initiation of oscillator and also during sustained oscillations.

During the starting of oscillation, noise constltut. the

initial starting voltage and therefore affects the time

required for the wave to reach pre-established amplitude.

Moise also creates undesired perturbations both in aaplitude

and the phase or the wave during sustained oscillations. The

amplitude perturbations produce a continuous spectrum which

in typical situations is quite weak and broader than the

bandwidth of the resonator. The phase perturbations disperse

the nominal frequency into a continuous distribution which is
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of the saae fora but Much stronger and narrover than for the

amplitude perturbations.

An alternate method has been proposed which separates

the output noise into linear and nonlinear parts but does not

calculate any correlation betveen them (25).

Mullen in his paper has included resistive nonlinearity

such that all the quantities which appear are measurable on

a "blaQ~ bor' oscillator, at the desired operating point, and

by obtaining the spectrum of the instantaneous output of the

oscillator. It is shown that the noise output from noise

bands around the oscillating frequency is coaposed of an

additive noise of the shape of the oscillator resonant circuit

and a very small FM broadening of the oscillator line. He

further extends (26, 27) the previous treataent (12, 20, 21)

of background noise in oscillators to include nonlinearities

in which the frequency of oscillation is a function of amplitude

of oscillation i.e. r.f. fora of pushing. The inclusion of r.f

fora of pushing complicates the analysis considerably and in

cludes correlation between AM noise and FM noise which not

only broadens the spectrums but also produces an asymmetric

spectrua.

The oscillator spectrum starting from a two port

model is determined (28). Procedure is given for the

evaluation of the output spectrum in the case of zero seMory

nonlinearity with an arbitrary narrow band filter.

In a recent work (29) on Spalti's Theory (30) of



noise produced in oscillator, the power spectrum of a self

excited oscillator consisting of linear ele~ents is determined

by calculation and experiments. It has been shown that at

the output there appears not a single spectral line with

superposed white noise, but a continuous spectru~, sy.metrical

with respect to the proper oscillating frequency. An oscillator

for producing electrical vibrations can be i~agined as a closed

loop consisting of an active four pole (amplification factor A)

whose output voltage is fed back to its input terminal by

way of correctly phased passive four pole network (voltage

tr~nsfer funtion B). If U
A

is the output and Ug is the input

voltage the overall aaplification factor is ~ ~ A •

UE (l-AB)

According to the general theory of self oscillations an

oscillator can build up when AB =1. Thus Us will be neglected,

and the oscillation, once it has been started by rando.

fluctuations is aaintained. However, according to Sp~iti's

tneory, the input voltage, which consists of noise, May not

be neglected. It is therefore assumed that in a small but

finite frequency region Af, (l-AB) is very small but not

zero. A very large voltage amplification factor is thus

achieved. In fact (l-AB) factor continually adjusts itself

to the magnitude of noise voltage and also preserves the con

dition of stability.

It is well known that the sensitivity of any receiving

system is determined Ultimately by its band width and effective
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noise temperature. By narrowing the band width and trans

~itting at correspondingly low information rates the receiver

sena1tivity can be greatly increased. However, the minimum

band width that can be achieved by this Means depends upon

the stability of the transmitter and receiver local oscillators.

All sinusoidal oscillators have a finite spectral width deter

mined by their phase stability. The spectrum is randoa in

nature and the corresponding phase jitter is defined as the

phase noise of the oscillator. The importance of highly phase

stable oscillators for deep-space coamunication needs no ea

pbasis here. Relationship between the phase nolse, the spec

trua, the short term stability and the Q for the oscillator

is established by MaIling (11).

In their recent (Nov. 1963) article Grlvet and Blaquitre

(10) give a theoretical analysis of the effects of rendo. noise

in various types of electronic clocks. Leaving aside, the

a.plitude noise problems, the study concentrates on "line

width" problems, and eaphasizes the nonlinear theory of the

theraal noise along a line proposed by Berstein (24), sim

plified and generalized by Bl.quiere~ (10). To eliminate

the shot noise etfect the tank circuit is to be connected to

the grid of the oscillator. It has also been pointed out

that the present study could be applied to aaser clocks be

cause the differential equation of these devices is also of

the sa~e type.

Golay (9) in his aore recent (Hov. 1964) article shows

that the use of the phasor concept and nor.allzation of all
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the para~eters, lead to relatively simple nonlinear equations

of the regenerative oscillator. These equations are studied

analytically and by means of an electronic computer for the

three cases of free running oscillator, noise perturbed

oscillator and continuous wave oscillator.

The problem of the effect of random noise on self

oscillator is, 1n general, quite complicated mathematically

because of the random noise involved as a forcing function

in the nonlinear differential equation. The nonlinearity

that is responsible for the self-excited oscillations also

complicates the analysis since it mixes various elements of

the input noise. Although important results have been ob

tained (31), no coaplete solution of this differential

equation exists at present. Partial solutio~ however, do

exist, (7) involving use of si~plified representation of the

noise in which miXing aaong the noise frequencies does not

occur. But in the above analysis the noise voltage is re

presented as a s1ngle Sine Wave which in fact is not an

appropriate model because, in the noise case, the continually

fluctuating amplitude and phase give effects which are neg

lected entirely in the Sine Wave picture.

A si~ilar problem, which is also of considerable

interest in the fields of auto~at1c feedback control systea,

has as yet no precise solution although results have been ob

tained to a considerable extent (32, 33). They involve

linearization technique i.e. the replacement of nonlinear
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element by a linear element with an equivalent gain deter

mined by the magnitude of the input signal and the nonlinear

characteristic.

2.3 NARROW BAND NOISE

In this treatment only white noise of thermal or

electronic origin is considered. The shot noise plays only

a negligible role as long as one deals with thermal high

frequency noise and if one chooses the right structure for

the oscillator' flO) (when the tank circuit of high Q is con

nected to the grid of the oscillator). For Q's larger than

100, the tube noise is less than l/lOOOth of the tank noise

and the tube may be considered as noiseless. Microphonics,

element drift, low frequency abnormalities such as flicker

effect are assumed to have also almost negligible effect in the

present treatment.

Oscillators are characterized by relatively selective

circuits and the fact that all the effects of interest are

concentrated in a relatively narrow band of frequencies.

Therefore, we may restrict our attention to noise within

fractionally narrow band widths. The voltage which results

when white noise is passed through any relatively narrow band

filter may be described by

vet) = xl(t) Cos wot + x2(t) Sin wot (26)

Where Wo is the midband angUlar frequency and xl(t)

and x2(t) are uncorrelated functions of time which vary slowly
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and randomly about zero in a manner described by the normal

or Gaussian probability function.

2.4 PULSE ANALYSIS OF THE NOISE EXCITATION

The van der Pol differential equation (12) with noise

excitation function En(t) could be written as

(27)

The noise e.m.f. En(t) consists of a great many small

impulses, occuring randomly in time. No loss of generality

results if pulses which occur within some finite period are

collected or grouped together (34).

The average number of pulses per second N and the

individual strength q of each pulse are related by Nyquist's

law through the relation

Nq2 = 2KTr (28)

Where r is the resistance of the tank circuit source

(30)

original phrasing it reads

of the noise, K is the ordinary Boltzmann constant, and T is

the absolute temperature.

In order to derive (28) we proceed as follows: The

mean square value of the noise e.m.f. is for this representation

of noise (Figure 7).

<E2(t» =N~:o2 dt =
where, 1: = q/Eo

On the other hand, in Nyquist's

<E2 ( t) > = 4KTr. t!a r
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~ being the noise bandwidth of the noise signal; this is no

other than that of the individual pulses

(3l)

and, from (29), (30), (31), (28) results •

.J
-<z
!!
"bl
!
o
%

'.
~......"" .... ,

FIGURE 7 - THE STANDARD ELEMEIfllRY PULSE USED IN THE SYNTHESIS
OF THE NYQUIST NOISE

The mechanism whereby random noise affects the self-

,oscillators, has been discussed in a number of sources. The

following summary is based on the results of Blaqui8re (10) and

!dson (12). A detailed account or statistical effects of noise

on the oscillator is given later.

The noise impulses injected into the tank circuit of

" self-oscillator may be divided into two groups occuring at

alternate quarter cycle of the oscillator cosine wave. De

pending upon whether it occurs during the odd or even quarter

cycle, an impulse produces a sinusoid which is in phase or in
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quadrature respectively with the original oscillation. The

inphase component produces amplitude modulation, the quadrature

component produces a step inphase. If no further disturbance

occurs, the oscillator continues to operate at the new phase.

But for large values of noise impulses, the accumulated phase

error is summed and is a random walk phenomena.

The steady voltage, which one would observe in the

absence of noise, would be

e =E Sin(wot + ~)

Using this expression one can very simply calculate

the effect of an elemenWr1 pulse; as is well ~own from the

elemenWrY theory of the ballistic galvanometer, one pulse

causes a change in de/dt but no change in 8. We then get 6~

and 6 a by expanding the right side of (32) and imposing the
2

conditions 0 e =: 0, b (de/dt) = qwo • One then gets the change

&a in amplitude and 6 ~ in phase produced by one pulse occuring

at time t j (Appendix IV)

(33)

'vi
= -q ~ Sln(Wot j )

B

Of special interest are inphase and 900 out-of-phase

pUlses occuring respectively at times t J =0 and t j =1
0

/ 4

(multiples of To/2, To being the period To = 2rr/wo) Figure 8).

For simplicity we call them (a) pulses and (~) pulses, because

or their respective effects. (Refer Table No.1).

An (a) pUlse produces a change of amplitude only, and
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(~) pulse a change in phase only. (a) and (~) pulses help

to express the effect of general pulse in a more efficient vay.

Thus a general pUlse occuring at time t
j

is equivalent in its

effect to a set of tvo (a) and (~) pulses components occuring

at time 0 and To/4 and of intensity q~ and qa given by the right

triangle of Figure 9. Going to statistical average values one
222

<qa > = <q~ > = q /2

FIGURE 8 - TWO BASIC TYPE OF PULSES (a) AND (lJ)

£

FIGURE 9 - THE USE OF THE (a) and un PULSES AS VECTOR COMPONENTS

[ 4>J

2 2 =q2/2<qa > = <q~ >

[a.]
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';" "

- -"-. ,-- Time lIame First Order Effect

t
J

= 0 (a) pulse {ba = 8qw
0

(in phase) OfJ = 0

t j = Tc,/1+ (fJ) ( ~a = 0
pulse

( 1.9)
0 v(90 out of ph- = -£q..2

aM i. e. quadratur~ a..
c 0

J

As regards the average effect on the oscillator, we may replace

the pulses of strength q occuring at random times t
j

and in

aYerage number N per second by:

(1)
:'l-

(a) pUlses occuring at time t =0 + --2, their in-
a 2

div1dual intensity 1s q as for the original pUlses, but their

average nuaber per second is N/2 only.

,(2) (fJ) pUlses, occuring at times t, =l +~, their

strength is also q but their density is 8/2 only.

2.5 STATISTICAL EFFECTS OF liOISE ON THE OSCILLATOR

2.5.1 'egligible role of Ca) pulses - Campbell's theorem makes

it easy to go from the

individual action of one pulse to their statistical effect.

As the elementary etfect changes sign with the (a) pulse, the

.ean value of the disturbance is zero and the oscillator shows

the same average amplitude in the presence of noise, or in its

absence. The mean quadratic amplitude of the fluctuation is

of no interest here, because it does not bear on the accurancy
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of frequency definition. We measure the frequency by counting

the zeros of the time function: near a zero, the amplitude is

very small and the fluctuation in amplitude negligible.

2.5.2 Importance of (~) pulses - In contrast to amplitude

perturbations, which are

counteracted by the inherent limiting action, no mechanism

exists to counteract phase perturbations. The situation

corresponds to a well regulated clock; if once set forward it

continues to read fast until it is reset. The sine-phase

noise impulses constitute a series of random clock settings,

which produce much the same effect as a random deviation of

rate.

The stochastic summation of the elementry phase angles

is a random walk problem and after many periods the quadratic

mean value < ~2> is proportional to t (Figure 10).

Statistical Effect of (~) Pulses

t

FIGURE 10 - THE RANDOM WALK PROBLEM ASSOCIATED WITH (@) PULSES



This results also from the Campbell's second theorem

(35)

(36)

2 2
Nq "'0 t

2E2J.f:.q2V02 dt =
82

o

and using Nyquists Law from (28) one gets
;'. 2

<A ~2> :: KTrvo~" ,t = Dt
8

2

Therefore

where, D is a "diffusion coefficienttl for phase. It should be

noted that the above relation 1s same as that obtained by

Edson (12) in his equation (50).

2.5.3 Correlation Tim. - Choos1ng as time t =0, that of a

zero of the signal, we look at the

·mean value of signal, ~ lo~ time t later and (Figure 11) we

disregard the amplitude fluctuations. The procedure 1s per

missible because frequency may be defined as the number of

zeros of the function 1n one second, when observing the function

near the value zero only, amplitude fluctuations are or no-im

portance.

The expression e(t) at time tis,

e(t*) :: E Sinew tlt"+ A') :: E CosAfJ Sin wtit" + E SinAfJ Cos 'vi t'"
o 0

and taking the mean value we find

<e(t""»:: B <CosAI'> Sin w tit'+ E <Sin.6SlJ> Cos w t*
. 0 0

<SinAiJ> vanishes as <A~> does. We write the first term in a
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Sin w t

o

more convenient form. Taking use of the approximation_ Ali!. ,
<cos6~> ~ e --:r" we find

_A@2
(e( tit) > = E e 2

ett)

f----\---+---\--I-+-~----1... t
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(37)

2.5.4 Spectral Width - One can represent the mean statistical

effects of phase fluctuations by re

P48Cing the steady sine wave by 8 damped oscillation. Using

(36) we have for the apparent damping factor
* -Dt'"

(e{t » =E e 2 Sin w t* (38)
o

Obviously, the perturbed oscillation, when considered

in the mean, behaves like a damped oscillation. This in turn

results in the broadening of noise band of oscillator.

The correlation time Tcis then

2 2E
2

~c = = (39)D KTrw 2
o

The total spectral width 2 6w of such a damped sinusoid is

well known and is expressed as
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and we get b w = I.'f 0
-2
B
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(40)

It is well known that the most accurate frequency

measurements are made by obser.ing tbe time elapsed during a,

given number of zero crossings of tbe oscillator output voltage.

11so any aaplitude modulation of the output voltage due to noise

will not, at least in the first order, cause any error in the

observation of these zero crossings. A relation is developed

to give the number of zero crossings per unit of time for a

nolse perturbed oscillator.
"- ..

2.6 lID-mER OF ZERO CROSSIIGS PBR UNIT TIME OF THE OSCILLATOR
OtrrPOT

If the output of oscillator ls a random function .

given by

vhere, B(t) and ,(t) are the envelope and the phase of the

process respectively (they are random functions slowly varying
> "in time compared with Cos "ot)- Since E(t) <- 0 and the pro-

bability of the equality E(t) =0 is small, the problem is of

finding the number of zero crossings or function Cos [wot + ,(tU.

In fact, if' Cos [vot + llJ(t)] crosses the zero level successively

at instan*s t l and t 2 then,

~Wo(t2 - t l ) + ,(t2) - ,(tl ) = TT
"
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Since ~(t) changes slowly compared with Cos wot, we shall replace

!6( t 2 ) - 9J( t l ) by (t2 - t
l

) ¢

[Since ~~ 6t =f/l(t2 l - f/l(tll1

and then t 2 - t l = ,Tr~o + ~ )
<:

The number of zero crossings/unit interv~ of time dt is equal

to
dt

dN = =
(~"+~).

o dt
IT

After integrating the above expression for all values of time

in the intenal t, we obta\h'.

w 1 1(f(tldtN = 0 + (1+2)- -rr 21Tt
-112

where, N is the average number of crossings/unit time, ¢(t)

is the derivative of phase ~(t), with respect to time.

Substituting from (35) in (42) we have

N = No. of Zero, crossings/unit time

= 2f +
Nq2w 2

, 0
0

~ 2
2lfE t

Where, t is the finite time interTal

q individual strength of each pulse

E amplitude of noiseless oscillations

w angular frequency of free oscillations
o

(43)

The expression (43) must be understood in the pro

bability sence. Also the narrower the noise bandwidth (slow

variation of 9J(t» the higher the probability that (43) is sat

isfied.



CHAPTER 3 - ANALYSIS AND DESIGN CONSIDERATIONS OF EXPERIMENTAL
CIRCUIT

3.1 REALIZATION OF A PRACTICAL OSCILLATOR

Extensive matheMatical treatMent and the theoretical

performance of van der Pol's nonlinear oscillating system is

available in literature (36, 37, 38). In studying such a

system, especially from an engineering point of view, it is

desirable to bave actual physical devices for demonstrating

the phenomena involved •. In order to realize the close

approximation to cubic nonlinear characteristic of equation (8)

a practical circuit of cathode coupled negative resistance oscillator

is developed. Such a circuit is given in Figure 15 and is

based on the circuits (39, 40, 41, 42) given earlier, so as

to meet our requirements.

3.2. BASIC CIRCUIT

Negative transconductance provided by two stage

amplifier gives the phase reversal necessary for circuit

oscillation. Only two points in the circuit are needed for

connection of a simple tuned circuit to provide oscillation.

of desired frequency.

Figure 12 shows the fundamental circuit. A twin triode

is connected with one triode acting as a cathode follower

driving the cathode of the second triode through cOUpling

effected by the common cathode resistor Rk•

38
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t----I ~ .. OUTPUT

Z r
INPUT •

+B

FIGURE 12 - BASIC NEGA'fIVE RESISTANCE OSCILLATOR CIRCUIt

A positive voltage applied to the grid of T
l

causes more current

to flov in the plate circuit of Tl and consequently more

current through the common cathode resistor. The increased

current through the cathode resistor raises the potential of

cathodes in the positive direction.

An increased positive potential on the cathode of T2 '

is equivalent to an increased negative potential on the grid

of T. Thus a positive voltage applied to the grid of T is
2 1

converted, by the coupling system, to an equivalent negative

potential on the grid of T. This phase reversal, together. 2

vith the phase reversal effected betveen the grid and plate

of T , forms a complete 360 degree phase rotation, so that the
2
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input is in phuse with the output. Thu~, for oscillations

to take place a tuned circuit is required in the output plate

circuit which is coupled back to the input of grid circuit

of Tube Tl •

3.3 ANALYSIS OF CATHODE COUPLED NEGATIVE-RESISTANCE CIRCUIT

Consider the circuit of Figure l3(a). The experimental

frequency of 240 kc/s is taken as medium frequency and is de

fined as that frequency at which the reactances of all cap

acitances (C k' C and C ) are neglected. Then the equivalent
g pk. c

circuit of Figure 13(b) could be drawn.

When a voltage E is applied to the input of an

amplifier whose voltage gain is A~, where e is the phase

angle of A, its output will be EA~. If the output is now

connected back to the input, a single loop circuit results.

It is apparent that the current i in this loop will be

i = E - EA/2.

L. i

where Zi is the internal impedance of amplifier in the ab

sence of feedback.

The impedance Z seen by the source E will be

Z - e = Zi- - -----
i 1 - A~

At medium frequencies Z~is a pure resistance and A may

have a phase angle of 0 or 180 degrees so that A~ = A~ = A.

Z will then be the negative resistance
Ri

R = -----
I - AI!L (44)
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where Ri is Z1at &edlum frequencies and when A > 1, which is

the case of interest here.

--
--

"

R-+ I

1: '
, ' .

, " t

" '~"l~ ;Cllk
, " git L..l~-

a.

.n.URE 13(.) - lIEGATIVE RmSTANCB
'i I • C!RCYU _

FIGURE l3(b) - EQUIVALENT CIRCUIT

The amplifier of ~igure 13 (a) may be considered as a

,:cil'tbode follower V
l

driving a grounded grid stage V
2

through

a coupling resistor RK • The two tubes are taken as identical

" eacb having an amplification factor ;A.l and a plate resistance

'r. The equivalent circuit may be drawn as follows.
p

r pIC)! + L) K
r

p

G. • tABR
R

L
k

G

FIGURE l1+(a) - .EQUIVALBIT CIRCUIT FI6t1lB l4(b) - EQUIVALINT CIRCUIT
OF CATHODE FOLLOWER CF GROUImED GRID
'1 STAGB '2

, -,
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Considering Figure l~(b), the equivalent circuit of stage v
2

'

,

,uK + E
g g

= I (r + R')
p p L

or 1::& E (,U + 1)/ (r + R I )

P g p L

where Kg is the ae voltage between grid and cathode of V2 ' I p

•1s the ac plate current, and R
t

is the load resistance. ~ R
l

1s the resistance seen looking into the cathode circuit of V
2

we have thus,
•Hi =E II =(r + R )/(~ + 1)

g p p L

Wben R
2

is the equi.alent Cathode Resistance (R
l

in parallel

with RK) of Cathode Follower Vl , the gain is (of cathode ~ollower)

1
=

~M + l)~l +~+ r p J
)1 (r + R )1 R '

P K

Similarly the gain of the grounded grid stage V
2

is

AGG = (,u + r + i¥ )
L

Thus tbe overall gain

1 (p + 1)

(1 +~)
R'

L



.~b simplifies to give
~"':"_~;"':j.~~.~ i.

A =
)lB.'

L

This value ot'gain A could now be substituted in Equ. (44)

tp;determine the magnitude of tbe negative resistance appearing
.". ~. ,

·b;4itween grid of V and ground.
1

.'. '':: ~

Bov the value of R
i

is found out witb the help of

Tbevenin's Theorem. R will be the resistance looking back
i

. into the amplifier witb all voltage sources sborted out. And

. - this is at 1n parallel with tbe effective plate resistance of V
2

•

-rhe effective plate resistance R ot V is higber tban -r because
e 2 p

:0£ the impedance inserted in the cathode circuit. Fro•
.' "

equivalent circuit at VI and ~ ot Figure

, I = I far p J'trR + r p )
g ~)l+]) ,Ie p.+l

,',

",:i~a,"'R i = B +..DE + I r
' .. e p g g p p

:'R. = ~c(l +)1) + Vp]IIp

Rr- (p :,. 1)'tberetore R. :: r.
p

+ _-.:.p _

RiC(p + 1) + r p

11+ we can write



•R
i

wlll be this resistance in parallel with ~

2 • •= r p RL + 2rpRKRL (1 +)1)
Ri

r; (r + R') + (1 +,0) (2r R + R B'}l
[p p L p K It L'J

Substituting (~5), (46) in (44) gives,

at = 8 1 = -e;.fr/ + 2(1 +)1) rpJ
l-A 'LRK

r !
'. ~ 2RL:-~R + 1 - P. ) + -!- + 2 (1 + )1) r

_.j It HI{ P

(46)

(47)

~'. ~~~

Foi 6SI7-GT Dual-Triode used in the experi.ental set up for
• r.- 30 kA

which r ~ ~-7700 ohms, )l = 20 and ",hen R
K

= 5K ohms and R~ = 10K
torl-}.,r,.' T"

•"'"' Iom-s we would have R =-92-'---0hm5. 6 0 .(.4

In view of the low noise voltages occuring in practice

in the oscillator circuit, it is difficult to measure the

effect of noise voltage on oscillator with existing techniques.

The investigation of the random noise effect on oscillator

carried out here, therefore, used a method in which the circuit

vas so noisy that the" deviation of frequency could be recorded

with the usual laboratory instruments. The noise voltage was

injected in the circuit from a random noise generator (General

Badia Company, Type l390-B). ThiS, in fact, is equivalent to

a thermal noise produced across a resistance which is heated

to a very bigh temperature. The wbole measuring process is



clear from block diagram of Figure 17. The experimental set

up for determining the numberof,zero crossings per unit time

of oscillator output, is given in Figure 18.

3- 5 EXPERlMEBTAh CIRCUIT OF OSCILLATOR

Figure 15 is a schematic diagram of the experimental

circuit of nonlinear oscillator under consideration. It con

sists of a pair ot triodes coupled so as to produce a negative

resistance bet~een terminals I and lYe For larger voltages the

ourrent voltage characteristic of triode does not change as

fast as the theoratical Negative Resistance characteristic of

Figure~. Thus a pair of diodes {6AL5> is added to the circuit

w~tb provision for biasing and loading. At higher voltages

these diodes conduct and add extra resistance to the circuit.

An L-C resonant circuit, in series ~ith a 100 ohm resistance,

is connected at the terminals where the negative resistance

appears. this small resistance is used tor current measurement

aad 1s connected to the vertical amplifier of the oscilloscope.

Tbe horizontal amplifier is connected to terminal I ~hile the

ground of the oscilloscope is connected to terminal IUe The

lOOK ohm variable resistance 1n the diode load controls the

slope ot the operating path after conduction has started~ The

10K ohm resistance in the biasing circuit controls the level

at which.the diodes conduct, and lK ohm potentiometer controls

. the symmetry of their conduction point. Proper adjustment of

the above resistances ~ould make the ideal non11near cubic

characteristic to be matched closely.
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20k

10k
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100
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.0 p.f
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2

I Horiz. Ampl. 4

II
.0001 J.lf
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., ----
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IV &- ....+- .... ....__-J'I'- ....._--4Po(
ertical A:npL

11 ............ .......
Ground of

Oscilloscope

NOTE: (a) Negative Resistance Characteristic between I & IV
(b) Diode is used for adjusting l03ding & biasing. This diode conducts

at larger voltages and add extra resistance to the circuit, thus
provi1ing for proper shaping of nonlinerr characteristic.



Coefficients 8 and T for the current, voltage char

acteristic can be determined by making use of the geometrical

properties of Figure ~ given by equation (9) and (10). The
•circuit of Figure 15 was used with R
L

=10K ohms, R
K

= 5K ohms

and Cc = 1.0 uF.

This gave the result of

S =1.115 x 10·4 0hms-l

T =2.00 x 10-6 ohm- l volt-2

Measurements were carried out at 2~0 KC/8 (C adjustable)

with L = 660 ~ Henry and C = 660 p.f with an unloaded Q of 160.

A reasonable figure of merit for the oscillator is to

be QfC/L. This means that the best compromise is to have

"high cn tuned circuit for stability (LiC is minimized) and

also a high value of Q.

The cubic nonlinear characteristic (i = -88 + ~3)

was displayed on the C.R.O. tUbe using conventional technique

described earlier. In order to realize the negative resistance

characteristic, as close as possible -to that of the ideal

van der Pol oscillator, an extra diode circuit for adjusting

proper loading and biasing was used. When the characteristic

displayed on the C.R.O. is not symmetrical, indicating the

presence of even order harmonics, it was found convenient to

adjust diode circuitry to ensure sy~metry and the desired

cubic characteristic.

It 1s well known that with the decrease of resistance R
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across the tuned circuit[:R =RLRf/(R
t

+ Rr ) , indicating total

resistance across the tuned Circuit] the Q of the circuit (Chapter

1) is lowered. Thus, during the experiment the reduction or

R~ while keeping RL = 100 K ohms, is analogous to reducing the

Q of the circuit (Appendix V). Table No.2 (Chapter 4) gives

diffe;ent values of Q (Q =R/woL) for various values of

resistance Rr •

The output of the random noise generator was read

using a VTVM which indicated the mean rectified voltage and

which was calibrated in terms of r.m.s. values of sine waves.

These readings were appropt.Btely corrected by a factor or 2/J1i

in order to obtain the true r.m.s. noise voltage.

Figure 19 illustrates the oscillograms of noise-perturbed

oscillator.

3.6 SCHMITT TRIGGER - Schmitt Trigger (43), a cathode coupled

bistable mUlti-vibrator, is used as a

voltage discriminator. Noise-perturbed oscillations after being

amplified are reshaped by the voltage discriminating action or

the Schmitt Trigger. This provides an appropriatelY small

threshold for counting the number of zero crossings per unit

time of the noise-perturbed oscillator with the help of a decade

counter (Beckman, model 7370).

The Schmitt Trigger is capable of discriminating very low

voltage levels. Hysterises or the backlash effect is min-

imized by adjusting the loop gain of the amplifier stage. A



well regulated supply voltage is used and care is taken to

avoid tUbe aging effects.

A typical circuit is shown in Figure 16. The direct

coupling from plate of V to the grid of V is the same as for
1 2

conventional Bistable multivibrator, but the plate to grid

connection from V to V is eliminated. Instead, the common
2 1

cathode resistor R provides the other necessary coupling for
K

regeneration between stages. When the input signal is below

a preset value, one tube conducts and the other is cut off.

The moment the voltage exceeds the preset value there is a

rapid transition of states.

The triggering level can be set by potentiometer R
l

,

which det~rmines the grid voltage Eg , of tube V
l

• With E
g

sufficiently low, Vl is cut off and the attenuator ratio

. a = R2/(RCl + ~ is selected by adjusting R2 so that V2 is

conducting (e.g. grid bias of about -1 volt on V2). The plate

current 1
2

of V
2

causes a voltage drop E
K

across the common

cathode resistor R
K

• The difference between the value of E
gl

set by potentiometer Rl and the cathode voltage is the grid

bias (Egl - ~) of VI. Since the transition of states occur

the moment the cut off voltage Eeo is exceeded, it is the volt-

age difference E between E and grid bias that determines
t CO
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the triggering level i.e.

E =E - (E - E )
t CO gl Ie

For example if E = -5 volts, E = 68 volts and E = 62.5
co K gl

volts then t he triggering level

E = -5 - (62.5 - 68) = 0.5 volts
t

Thus a minimum signal of 0.5 volts would be required

to make V
l

conduct from cut off. As a result the plate voltage

of Vl and the grid of V2 decrease, causing a decrease in plate

current of V
2

• The resulting drop of the cathode voltage E
K

increases the plate current of VI' and the regeneration process

continues until V is off and V is on. The output from thea 1

plate of V
2

jumps to the plate supply value because of this

transition.

+250 V

t----Il~ autput

.su-
llLl )

40

(Bc l ) 180 k

0
12 AT 7

f\F-,
V

2

0.5 volt. (Rk) 10 k

""=""
FIGURE 16 - SCHMITT TRIGGER
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CHAPTER 4 - RESULTS QF EXP~IMENTAL AND COMPUTER STUDY

4.1 INTRODUCTION

Initially a comparative study was made of the well known

results of free and forced oscillations in oscillators described

by the van der.Pol non-linear differential equation. These

results were obtained both by numerical analysis using a digital

computer and by experiments. The close agreement of these

results enables one to proceed further, with confidence, to

the case of the random noise forcing signal applied to the oscillator.

The solution of the nonlinear differential equation with a random

forcing function (representing the corresponding injected noise

voltage in the experimental set-up), gave the deviation of the

mean frequency of the noise-perturbed oscillator with respect

to that of the "noiseless" oscillator.

4.2 ~EE AND FORCED esc ILLAT IONS

Graph 1 and Graph 2 give the waveforms of the oscillator

having same value of Q, obtained by solving the nonlinear

differential equation (12) for both the cases of free-running

and forced oscillations respectively (see appendix 3, program

No.4, 5 and 6).

A study of the predictions quoted earlier in Chapter 1

(particularly relation (22) and (24» was made on the practical

oircuit of the negative resistance oscillator and good agreement
\

w~s obtained. Measurements were carried out to record the

55
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amplitude of free-running oscillator output (E) as a function

of Q. The computed results were found to be in very good agree

ment with the practical results (Graph 3). Graph 4 gives the

injected voltage amplitude (V) at the locking condition (equation

(24», for various values of Rf (or Q).

The results of the ditferent measurements made may be

summarized as follo~s.

'mR11tude of the tree-running and forced oscillator

(a) With no injected voltage i.e. V =0, the free-running

amplitude is E =2/~ where B is a function of Rf~ =3T/ [8 - j)
where, R =RtRf!<RL + Rf )]. A curve is plotted of free-running

amplitude E with Rf (or Q, see Appendix 5). As Rf increases

(for a fixed value of Rt =100 k), B decreases and approaches

the value 3T!S asymptotically. Hence the output E of the rree

running oscillator increases with inorease of Rr (or Q) as

shown in Graph 3.

(b) When E =0 and the injected voltage V is just sufficient

for locking, it was found experimentally that the output

amplitude of the forced oscillation was given by the relation

El = J2/B•.

(c) From the results of (a) and (b) it is observed that

for the experimental measurements made, the relation E =~El

was satisfied. However, this relation is true only for locking

c~ndition.
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Frequency of the free-running oscill~t9r

(a) When the Q of the tuned circuit is decreased, the mean

frequency of the oscillator increases from its value when the

LC tuned circuit has its highest Q. (See Graph No.5).

(b) The free-running oscillator over a long time interval

(several hours) was founf' to be very stable. The oscillator

frequency was periodically checked with a frequency measuring

device (Beckman Counter) and was found to be stable within t5

parts in 106 •
The free-running oscillator frequency was also determined

by solving the nonlinear differential equation with no forcing

function, and the results were found to agree with the ex-

perimental results.

Loc king Range

Curves of injected voltage V va. percentage frequency

detuning are plotted with Rf (or Q) as para~eter according to

relation (24). Graph 4 shows that the results both from com

putation and experiments are in good agreement over the limited

range of experimental measurements. This graph can be used to

determine the required amplitude of injected voltage V for a

particular amount of detuning, with Q (or R
f

) as parameter.

Furthermore, the study of the results indicates that an increase

of Q requires an increase in the amplitude of V if locking is

to be maintained.

4.3 NOISE PERTURBED OSCILLATOR

Results of Experimental Set-Up-- The average frequency of the
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noise-perturbed oscillator is determined by the experimental

measuring system described earlier (Figure 17 and Figure 18).

The experiments indicate unambiguouslY that the oscillator out

put does not consist of single frequency sinusoidal oscillations.

When the magnitude of the external noise voltage is increased,

a definite frequency deviation from the noiseless oscillator

case is observed. This mean frequency deviation was recorded

for various values of noise voltages. Considerable frequency

deviation of the oscillator frequency takes place when the

resistance Rr .and thus Q of the tuned circuit is decreased.

(Graph No.5).

Computer Study - The nonlinear differential equation having

random forcing function, representing the

van dar Pol type of negative resistance oscillator, was solved

with the help of a Digital Computer. The programmes are based

on the Runge-Kutta method of solving the nonlinear differential

equation. Different details of the programmes including the

library function used to simulate random noise having Gaussian

distribution, and the programme for finding the r.m.s. value

of the random noise voltage, are given in the Appendix III.

Fro~ equation (12) of Chapter 1

2
d e ( 2)de 2 (7:'2 - A 1 - Be dt + w e = F t)
dt

where, e is the voltage across the tuned circuit and nonlinear

element.

A and B are constants of nonlinearity

w = l/JLO
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and F(t) is the forcing function.

Relation (48) is transformed to a system of two first order

equations, in two new variables.

And so,

and

let x =e

This gives,

dxtd = wy

dy-dt

_ 1 de
and y - wtit

wx - A(l - Bx2)y - F(t) ( 50)

where, the forcing function F(t) could be,

(1) 0 i.e. No forcing function

(2) Sinusoidal Signal

(3) Random Number (having Gaussian distribution)

The computer study of normalized equations (49) and

(50) for all the above three cases were made by programming an

IBM-7040 Digital Computer to calculate step by step, the T (time),

x and y values. An analog computer used initially was promptly

discarded for a more "deterministic tt digital computer, dis-

turbed only by the round off noise of its twelfth place of

decimal. Results of computation using analog computer were

found to be unsatisfactory even for free and forced oscillation

cases. This seems to be due to the stringent requirement in

simulating the nonlinear characteristic.

After the initial transient state, when the oscillator

settles down to steady state oscillations, the number of zero

crossings in a given time should give the average frequency of
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\

the oscillator. From the results it was found, as expected,

that the frequency of the oscillator, as defined by the intervals

between zero crossings of the output voltage, remains nconstant~

(free oscillator frequency) for the case of no forcing function.

Synchronization or pUlling takes place resulting in forced

oscillations when the forcing function is a sinusoidal signal

of sufficient amplitude and of frequency wI' where wl 1s nearly

same as w but w ~ wl • These results agreed with the experimental

results.

When the forcing function is random noise, the computer

results showed that the mean frequency of the oscillator in

creased from that of the "noiseless" oscillator case. This

deviation of the mean oscillator frequency from the stable

frequency of the noiseless oscillator was determined by finding

the average number of zero crossings per unit time and comparing

this with the corresponding results for the noiseless oscillator.

The mean frequency so obtained for various values of resistance

RfCor Q) and r.m.s. noise voltages are shown in Graph 6, Graph 7,

Graph 8 and Graph 9. Graph 6 shows the results of both the

computer and experimental studies for several vnlues of the

applied external noise voltage. Graph 7 shows the deviation of

mean frequency for various values of noise voltage obtained with

the aid of the digital computer.

Graph 8 shows the deviation of the mean frequency as a

function of injected noise voltage with the Q of the circuit

(or resistance Rf ) as a parameter. The results indicate that
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for higher values of Q, the percentage change in the mean

frequency with noise from that of the noiseless oscillator

is less than that for low values of Q. In all cases the effect

of noise is to increase the mean frequency. For a given value

of noise voltage, a low Q circuit gives higher mean frequency

of the oscillator as compared to the high Q tuned-circuit.

Graph 7, 8 and 9 are obtained from the same results.

4.4 ENSURING SIMILARITY BETWEEN EXPERIMENTAL AND COMPUTER STUDY

It is to be noted that the computer study is made for

corresponding values of Rf chosen in experimental cases. For

both the experimental and computer studies RL is kept constant

at a value of 100 K ohms. The reduction of Rf decreases the

equivalent resistance R [R = RLR
r

/ (R
L

+ RrlJthereby reducing

the Q of the tuned circuit (Appendix 5). As the constants

A and B of the non-linear differential equation (48) are re

lated to the coefficients Sand T of the cubic characteristic

(Chapter 1), various values of R
f

give varying A and B. Before

analyzing the noise-perturbed oscillator case, care was taken

to verify that, for both the free and forced oscillation

cases, various values of Rf give identical results from both

the experimental and computer studies. Table No. 2 gives

different values of constants A and B for various resistances



Table No~

69a

R = Qw L 1/1 B =30s-jlRr
0 Q A = (5--) -

=RLRt/CRL + Rf }
R C

OPEN
CIRCUIT 100.0 Ie 100 0.1015 0.0592

200 Ie 66.6 Ie 66.6 0.0965 0.062

150 Ie 60.0 Ie 60.0 0.0948 0.063

125 K 55.6 K 55.6 0.0935 0.064

100 Ie 50.0 Ie 50.0 0.0915 0.066

75 Ie 42.85 Ie 42.85 0.0882 0.068

50 Ie 33.3 K 33.3 0.0815 0.074

25 Ie 20.0 K 20.0 0.0615 0.098

12.5 Ie 11.1 K 11.1 0.0215 0.279



QIiAPTJR 5 - SUMMARY

Some effects of interfering external signals, including

random noise, on nonlinear oscillations have been investigated.

A simple and practical negative resistance oscillator whose

behaviour closely approximates that of the van der Pol oscillator,

is used for experimental purposes. For all the three important

cases of (a) free-running oscillator (b) forced oscillator

and (0) noise-perturbed oscillator, the experimental results

are found to be in good agreement with the results obtained by

numerical analysis using a Digital Computer.

A locking phenomenon occurs when a sinusoidal input is

injected into the free-running oscillator. A necessary con

dit10n is established for locking which is useful from the

design point of view.

Statistical effects of noise on oscillators are dis

cussed and a relation is developed for the average number of

zero crossings per unit time in terms of the phase error for

a noise-perturbed oscillator. This expression gives the in

stantaneous frequency of the oscillator and is to be understood

in the probability sense. The expression also indicates that

the mean frequency of a noise-perturbed oscillator over a long

time interval should be more than that of the frequency of a

"noiseless" free-running oscillator.

Although no satisfactory theoretical analysis could be

obtained to predict the deviation of the mean frequency of a

70
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noise-perturbed oscillator, the experimental and numerical

analysis results given in the thesis are likely to help in

any further investigation related to this problem.

Important conclusions from the experimental and computer

studies are summarized as follows:

5.1 FREE AND FORCED OSCILLATION§

(a) The output voltage of the free-running oscillator in-

creases with increase of Q (Graph 3). The output amplitude of

the free-running oscillator (E) is related to the output

amplitUde of the forced oscillator (El ) by the expression

E = ~El. Ho~ever, this condition is true only when the

oscillator is just locked.

(b) For the free-running oscillator, when the Q of the

tuned circuit is decreased, the mean frequency (half the number

of zero crossings per unit time) increases from its value when

the LC tuned circuit has its highest Q (Graph 5 and Graph 6).

(c) Locking range - when the Q of the tuned circuit is in

creased (by increasing R
t
), the injected voltage has to be in-

creased correspondingly it the condition of locking is to be

maintained (Graph 4). Also for a given Q, if the percentage

detuning of the injected signal frequency from the free-running

oscillation frequency is increased, the injected voltage has to

be increased to maintain the locking condition. The results

(Graph 4) also help in predicting, for a given resistance R

across the tuned circuit (and hence Q of the tuned circuit),
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the required amplitude of forcing voltage when the injected

signal frequency (or percentage detuning) is known.

,.2 NOISE-PERTURBED OSCILkATOR

(a) A comparison of the experimentally obtained values and

those computed from the nonlinear differential equation, shows

unambiguously that with an increase of noise voltage the

oscillator mean frequency increases from its normal "constant"

value of the free-running oscillator. Thus, the deviation of

the mean frequency of the oscillator over a long time interval,

depends upon the magnitude of the input noise. This deviation

in mean frequency increases with an increase of noise magnitude

(Graph 5).

The results (Graph a) show that for lower values of Q,

the effect of noise is greater. For a given value of noise

voltage the percentage deviation in mean frequency of the

noise-perturbed oscillator from that of the "noiseless" free

oscillator increases with decreasing values of Q.

(c) From the above two results it is concluded that in-

cre-asing the injected noise magnitude has a similar effect on

the mean frequency of the oscillator as decre~sing the Q of the

Nf0 tqned circuit. However, no specific relation between the Q and

the noise voltage for ~ given circuit of oscillator could be

established.

(d) The above results suggest that the shift in the mean

frequency of the oscillator with noise is due to the asymmetry

of the resonance curve. Since the noise power has a peak at
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the maximum impedance frequency, the output frequency of the

oscillator is pulled towards this maximum impedance frequency.

The latter is on the higher side and thUs,this results in the

mean frequency of the noise-perturbed oscillator to be more

than that of the "noiseless" oscillator frequency.
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Thus, in the case of feedback type or
Moscillator the approach adopted

APPl1;NDICES

APPENDIX 1 - FORCED OSCILLATIQN§ IN FEED BACK OSCILLATQB

The purpose of this note is to show that a feedback-type

of oscillator can be represented by van der Pol nonlinear

differential equation.

in this work would be equally

good for all the three cases of

free-running oscillations, forced

oscillations and noise-perturbed

oscillations.

The oscillator circuit consists of an LCr circuit in

in the grid lead and a magnetic feedback from the output; Mis

the mutual inductance of the coupling. The grid and plate

circuits are inductively coupled. In addition a source PoSin wlt

of alternating voltage (forcing signal) is present in the grid

circuit, as indicated in the figure. The differential equations

for the system in terms of the current i in the grid circuit,

the current i. in the anode circuit, and the grid potential vg

are readily derived; they are

Ldi + ri + v - Mg!a= PoSin wlt
dt g dt

C dVg = 1

dt

(1)

In deriving the above equation the current in grid

73



itself is ignored.
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Assuming that the anode current i depends
a

only upon the potential v between the grid and cathode, then
g

i =
Ii.

the relation between these two quantities is as follows:
2

H vg [
1

- ::2 J (2)

where, H and N are positive constants. The quantity H is

sometimes called the steepness of the characteriS1c and N is

called the saturation potential. Both i and i a in (1) can be

replaced in terms of v through use of (2). For convenience
g

the following new quantities are introduced.

,
A = (MH - rC) I LC ,

2
and "'0 = l/LC

,
B = MH/3LC

Equation (1) can now be written as

d2e de
~ - A'
dt dt

The differential equation represented by equation (3)

is the van der Pol equation and has been the basis of discussion

throughout the thesis.



AEEllIDIX II - SOLUTION OF NOli-LINEAR DIFFERENTIAL 'EQUATION

Tbe nonlinear differential equation representing non

'11near negative resistance oscll1ator,driven by an injected

simple-harmonic current is given (Equation (12» as follows •

••e ,:'-

The meaningsot the different terms have already been

explained in Chapter 1. In general, it mig~ be expected that

a solution of the above equation would involve both a free
-:\

oscillations and a forced oscillations produced by the driving

current, If parameter A is small compared with unity, the

free oscillations have been found to be essentially sinusoidal.

It 1s not unreasonable to expect that the forced oscillations

vill also be essentially sinusoidal tor this condition.

,SUppos __ !that the approximate solution of the above equation
"

bas the torm

e = B Cos wt + El Cos wlt

,:wbere, the first term !represents the free oscillations at a

frequency wand second term represents the forced oscillations

.at the driving frequency wl • The four unknown quantities in

the solution are the two amplitudes E and E
l

, the frequency w

of the tree oscillations, and the phase angle~. Four sim

.uItaneous equations tor determining these unkno~can be set

up by substituting the assumed solution into the circuit oon-
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linear differential equation. Thus,

•
e = -wE Sin wt - wlEl Sin wIt

•• 2 2
e = -w E Cos wt - w

l
E

1 Cos wIt

76

2.e e
wE3

- - --- (Sin wt + Sin 3wt)...
2

_ wE &1

2

+ Sin(w1 - 2wl t]
wEE T - w)t]- 1

2

1 Sin(2w
1

+ w)t + Sin(2w
l

3

3w
1tl]w E [- 1 1 (Sin wIt + Sin

4

According to the principle of harmonic balance, only

terms containing fundamental frequencies (wand WI) of the free

and forced oscillations, are considered in the following cal

culations. All other terms are neglected. Also, it is assumed

that the two frequencies are different i.e. w F wI. On sub-

stituting the above relations in the nonlinear differential



equation and collecting

are obtained.
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terms, the following four relations

Par Cos wt:

For Sin wt:

2 2
E(w - w ) =0a

For Cos wIt:

For Sin w1.t:

2 2 IVIEl(vo - wl ) =- Sin ~

C

Aw1woE1 [ 1 _I (~2 .. 2E
2
)]

IVl= - _ Cos ~

C

From the above relations it is evident that conditions

could easily be obtained (Chapter 2) which satisfy the assumed

solution of differential equation (i.e. conditions which give

either free, forc~or free and forced oscillations).



APPENDIX III - IBM ZO~O COMPUTER PROGRAMMES

The program for solving nonlinear differential equation

having a forcing function is based on Runge-Kutta process.

The numerical values of T, x and yare calculated step by step.

A graph plot can be made for amplitude of oscillation (x) with

respect to time (T). The number of zero crossings per unit

time obtained from these results give the frequency of

oscillations for either free oscillations, forced oscillations

or noise perturbed oscillations depending upon the program used.

The second order nonlinear differential equation can

be reduced to a system of two first order equations and is

written in general form as follows,

dx
dt =fl(T, x, y)

dy__ = f (T, x, Y)
dt

Starting at T , x , Y , the increments in x and Y for the
00000

first increments in T are computed by means of the formulas

x ,
o

y ) DT
o

DT
+ -'

2
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\ = f (T + DT, x + ~,y +L) DT
1 0 0 o 3

DX :: (K + 2K + 2K
3

+ ~)/6
1 2

L :: f (T , x , y ) DT
1 200 0

L2 f (T .£r, K + ~)= x +.2:, y DT
2 0 2 0

2
0 2

L = f (T + DT x + K2 Y + ~) DT
3 2 0

..:...;. ,
0 -' 0

2 2 2

L ..... = f 2(To + DT, Xo + K
3

, Yo +L ) DT
3

Dy = eLl + 2L2 + 2L
3 + L..... )/6

To compute next increment, it is necessary only to

replace T x y in the above formulas by T
l

, Xl' Yl.
0' 0' 0

Small increments to the value of DT should be used

while computing the x and y values as the changes in the slopes

of the curves are quite steep. It is preferable that for

every new system, the approximate values for initial guesses

i.e. the starting points be obtained from the program first

by having the values printed out after a few iterations. This

is advisable in order to reduce the computer time and to speed

up convergence to a great extent - and arrangements have been

made in the program for this and to make it as general as

possible.
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For varying Q of the tuned circuit the nonlinear con

stants A and B are changed while the amplitude of random num

ber (noise) is controlled by the factor U.

Call FRANDN (A, N, M) causes N pseudo-random numbers

to be placed in the first N elements of the array A. A non

zero Mdefines the starting point, a zero M continues from

where the previous call lett-off, or from a given starting

point if this is the first call. If M is small compared with
1010 it may take 5 or 6 points before we get away from very

small numbers,. but otherwise the numbers are uniformly dis

tribu~ed over (0,1).

In order to get random forcing function having Gaussian

distribution, the above subroutine was used. In our case 10

numbers are summed up from -t to +1. This arrangement gives

random number (noise) having Gaussian distribution and zero

mean value. The amplitude ot random number could also be

varied by giving different values of U. (Programme No.3)

The following flow diagram illustrates the general

steps 1n the calculation procedure of the first program. All

other programs are similar and therefore self expla~natory.



hLGORIThH OF' THE PROGRl.H

DIMENSION G(50), F(5)

AA(10), BB(10), YOU(10)

AA(J) , BB(J)

J = 1, 8

YOU(l)

I =1, 9

AA(J) , BB(J) , J =1,8

YOU'I), I =1, 9
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8

A· = AA(J)

B = BB(J)
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(J - 1)

10>
~/ .

CALL

= F(J) + G(L)

J =1, It

60

W =1.0
X =0.0
y = 5.0
T =0.0

TO =0.0
XD = 0.0
XZ = 0.0
DT =0.160

(F{J) - 5.0) ~ W l' 0/10.0

L =K + 10

FR =FH + F{J} *' F(J)

r- --,
I

t

r------
I

•I
I,
I

•
I
I
t

I I

IA
I I
I I
I I
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r---- __0
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I
I
I
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J
I
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A
I
I
t

I
t
I
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I
I
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l
I

I
I
I

I
f
I
I
I
t

I
j

I
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I
I
I
I
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I-----r 0

13r--~----r
TZ =

T (T-TO)*X
- (X-XO)

1--__ >0

XO = X

TO = T

EXPRESSIONS

RUNGE KUTTA PROCZSS

(IF(ABS(X).LE.10) PRINT 40, T, X, Y)

WRITE (6, 65) FR

IFR = SQRT(FR/6000.~)

I
I
I
I
I
I
I
I
I
I,
1 .__

I
I
I

It-
I
I
I
I
I
I
I
I
I
I

~

~- --- ---
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I
I
I
I
I

I
I
I
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I
I
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I
I

I
I
I
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I

I

I,
I
I

I
I
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I
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$JOB
$IBJOB
$IBFTC

003504V K AGARWAL
NODECK

100

C PROGRAM NO.1. (RUNGE KUTTA PROCESS)
C NON LINEAR DIFFERENTIAL EQUATION WITH RANDOM FORCING FUNCTION.
C NOISE PERTURBED OSCILLATOR FREQUENCY DEVIATION W.R.TO NOISELESS-
C OSCILLATOR.FOR VARYING NOISE VOLTAGE AND VARIOUS RF(Q)VALUES.

DIMENSION G(50).F(5).AA(10).BB(10),YOU(10)
READ ( 5.80 ) ( AA ( J ) • BB (J ) •J =1 .8 J
READ(5,29)(YOU(I).I=1.9J
WRITEI6.90)(AA(J).BB(J).J=1.8J,(YOU(IJ.I=1.9)
DO 45 JJ=l.a
A=AA(JJ)
B=BB(JJ)
DO 45 11=1,9
U=YOU ( I I )
CALL FRANDN (G.42.1)

C INITIAL CONDITIONS TO START OSCILLATIONS.
W=1.0
X=O.O
Y=5.0
T=O.O
TO=O.O
XO=O.O
XZ=O.OO
DT=0.160
DO 4 1=1.1500

C CALL LIBRARY FUNCTION-TO GIVE RANDOM NUMBER (NOISE) HAVING-
C GAUSSIAN DISTRIBUTION.

CALL FRANDN (G.40.0J
DO 60 J=1.4
F(J)=O.O
DO 70 K=l,lO
L=K+IO*(J-l)

70 F(J)=F(J)+G(L)
F(JJ=(F(J)-5.0J*W*U/IO.0

60 FR=FR+F(J)*FIJ)
C RUNGE-KUTTA EXPRESSIONS.

RKl=W*Y*DT
RLl=-(W*X-A*(l.O-B*X*X)*Y-Fll»*DT
RK2=W*(Y+RLl/2.0)*DT
RL2=-IW*(X+RK1/Z.0)-A*(1.0-B*(X+RKl/2.0)**2)*IY+RL1/2.OJ-F(2»*DT
RK3=W*(Y+RL2/2.0)*DT
RL3=-CW*(X+RK2/2.0J-A*(1.0-B*(X+RK2/2.0J**2J*IY+RL212.O)-F(3»*DT
RK4=W*IY+RL3)*DT
RL4=-CW*(X+RK3)-A*(1.0-B*CX+RK3)**2)*(Y+RL3)-F(4)*DT
DX=(RKl+2.0*RK2+2.0*RK3+RK4)/6.0
DY=CRLl+2.0*RL2+2.0*RL3+RL4)/6.0
T=T+OT
X=X+OX
Y=Y+OY



85

10.07.55.04.02.00.90.55

0.0592
0.062
0.063
0.066
0.068
0.074
0.098
0.279

0.25

C
C
C
C
C

EXTRAPOLATION-TO FIND TIME OF ZERO CROSSINGS.
21 IF(XO) 25,25,13
23 IF(XO) 13,25,25
13 TZ=T-(T-TO)*(X)/(X-XO)

GO TO 24
22 TZ=T
24 PRINT 30,XZ,TZ
25 CONTINUE

IF(ABS(X).LE.1.0) PRINT40,T,X,Y
XO=X
TO=T

4 CONTI NUE
R.M.S.AMPLITUDE OF RANDOM NUMBER(NOISE).
FR=SQRT(FR/6000.0)
WRITE(6,65) FR

45 CONTINUE
29 FORMAT(9F8.5)
30 FORMAT(lH+,90X,2F20.10/)
40 FORMAT(lH ,3F30.10)
65 FORMAT(F20.10)
80 FORMAT(2F10.6)
90 FORMAT(11HOINPUT DATA,9X,8F9.4/14HNOISE VOLTAGE,9F7.4//)

VARIOUS VALUES OF RESISTANCE RF(Q) USED FOR CALCULATION
OPEN CIRCUIT,200K,150K,100K,75K,50K,25K,12.5K
VARIOUS VALUES OF R.M.S. NOISE VOLTAGES USED
0.0(0),0.023(0.25),0.055(0.55),0.082(0.90),0.18(2.0),0.365(4.0)
0.465(5.0),0.68(7.5),0.90(10.0)
STOP
END

$ENTRY
0.1015
0.0965
0.09483
0.0915
0.0882
0.0815
0.0615
0.0215

0.00
$IBSYS

C

C

C

CD TOT 0099
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$JOB 003504V K AGARWAL 100 010
$IBJOB NODECK
$IBFTC
C PROGRAM NO.2-ALTERNATE METHOD
C NON LINEAR DIFF. EQUATION. (RUNGE-KUTTA METHOD},EFFECT OF RANDOM-
C NOISE ON NON-LINEAR OSCILLATIONS,LOW Q(RF=50K},NOISE=O.18 VOLTS.

DIMENSION G(50),F(51,Z(5}
CALL FRANDN(G,48,11
W=l.O
A=0.08l5
B=0.0740
X=O.O
Y=5.0
T=O.O
TO=O.O
XO=O.O
XZ=O.OO
DT=0.160
DO 4 1=1,1500
CALL FRANDN (G,40,01
DO 60 J=1,4
F(J}=O.O
DO 70 K=1dO
L=K+10*(J-11

70 F(JI=F(JI+G(LI
60 F(JI=(F(JI-5.01*W*2.0/10.0

CALL FRANDN (Z,4,01
RK1=W*Y*DT
RL1=-(W*X-A*(1.0-B*X*Xl*Y-(1.0+F(1}l*(SIN(T+DT*(Z(1l-0.5Ill*1.0l*D

1T
RK2=W*(Y+RL1/2.0l*DT
RL2=-(W*<X+RK1/2.0}-A*(1.0-B*<X+RKl/2.0l**2l*(Y+RLl/2.Ol-(1.0+F(2l

11*(SIN(T+DT*(Z(2l-0.5l/2.0l)*1.OI*DT
RK3=W*(Y+RL2/2.0l*DT
RL3=-(W*(X+RK212.0l-A*(1.0-B*(X+RK212.0l**2l*(Y+RL2/2.Ol-(1.0+F(3l

1l*(SIN(T+DT*(Z(3l-0.51/2.0l}*1.0l*DT
RK4=W*(Y+RL3l*DT
RL4=-(W*(X+RK31-A*(1.0-B*(X+RK3l**2.)*(Y+RL3l-(1.O+F(4)l*(SIN(T+DT*

1(Z(4l-0.5l) l*1.0l*DT
DX=(RK1+2.0*RK2+2.0*RK3+RK4l/6.0
DY=(RL1+2.0*RL2+2.0*RL3+RL4l/6.0
T=T+DT
X=X+DX
Y=Y+DY
IF(Xl 21,22,23

21 IF(XOI 25,25,13
23 IF(XOl 13,25,25
13 TZ=T-(T-TOl*(Xl/(X-XOI

GO TO 24
22 TZ=T
24 PRINT 30,XZ,TZ



25 PRINT 40,T,X,Y
XO=X
TO=T

4 CONTINUE
30 FORMAT(lH+,90X,2F20.10/)
40 FORMAT(lH ,3F30.10}

STOP
END

$ENTRY
$IBSYS

CD TOT 0069
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$JOB 003504V K AGARWAL 100 010
$IBJOB NODECK
$IBFTC
C PROGRAM NO.3-USED AS A SUB-ROUTINE IN MAIN PROGRAM.
C R.M.S.VOLTAGE AMPLITUDE OF RANDOM NOISE.

DIMENSION G(50),F(5)
CALL FRANDN (G,46,1)

10 READ80,U
W=1.0
FR=O.O
DO 4 1=1.1500
CALL FRANDN (G,40,0)
DO 60 J=1,4
F(J)=O.O
DO 70 K=1,10
L=K+10*(J-1)

70 F(J)=F(J)+G(L)
F(J)=(F(J)-5.0)*W*U/IO.0

60 FR=FR+F(J)*F(J)
4 CONTINUE

FR=SQRT(FR/6000.0)
WRITE(6,65) FR
GO TO 10

65 FORMAT (F20.10)
80 FORMAT(F6.3)

$ENTRY
0.25
0.55
0.9
2.0
4.0
5.0
7.5

10.0
$IBSYS

CD TOT 0035
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$JOB 003504V K AGARWAL 100 010
$IBJOB NOOECK
$IBFTC
C PROGRAM NO.4-FORCED OSCILLATIONS.
C NON LINEAR OIFF EQUATION. (RUNGE-KUTTA METHOOI
C WITH SIN FORCING FUNCTION.

W=1.0
A=0.1015
B=0.0592
X=O.O
Y=5.0
T=O.O
TO=O.O
XO=O.O
XZ=O.OO
DT=0.160
DO 41=1,500
RK1=W*Y*OT
RL1=-(W*X-A*(1.0-B*X*Xl*Y-SIN«T+DTl*Wll*OT
RK2=W*(Y+RL1/2.0)*OT
RL2=-(W*(X+RK1/2.01-A*(1.0-B*(X+RKl/2.0)**21*(Y+RLl/2.Ol-SIN( (T+DT

1/2.01*Wll*OT
RK3=W*(Y+RL212.01*OT
RL3=-(W*(X+RK212.01-A*(1.0-B*(X+RK2/2.0l**21*(Y+RL212.Ol-SIN«T+OT

1I2.0l*Wl )*DT
RK4=W*(Y+RL31*OT
RL4=-(W*(X+RK3l-A*(1.0-B*(X+RK31**21*(Y+RL3l-SIN«T+DTI*Wll*DT
DX=(RK1+2.0*RK2+2.0*RK3+RK41/6.0
DY=(RL1+2.0*RL2+2.0*RL3+RL4)/6.0
T=T+DT
Y=Y+OY
X=X+DX
IF(XI 21,22,23

21 IF(XO) 25,25,13
23 IF(XO) 13,25,25
13 TZ=T-(T-TO>*(Xl/(X-XOl

GO TO 24
22 TZ=T
24 PRINT 30,XZ,TZ
25 PRINT 40,T,X,Y

XO=X
TO=T

4 CONTINUE
30 FORMAT(lH+,90X,2F20.10/l
40 FORMAT(lH ,3F30.10>

STOP
END

$ENTRY
$IBSYS

CD TOT 0049



90

010100

OSCILLATIONS.
EQUATION. (RUNGE-KUTTA METHOD)

FUNCTION.

003504V K AGARWAL
NODECK

$JOB
$IBJOB
$IBFTC
C PROGRAM NO.5-FREE
C NON LINEAR DIFF
C WITH NO FORCING

W=l.O
A=0.1015
B=0.0592
X=O.O
Y=5.0
T=O.O
TO=O.O
XO=O.O
XZ=O.OO
DT=0.160
DO 4 I=ltl500
RK1=W*Y*DT
RLl=-(W*X-A*(l.O-B*X*X)*Y)*DT
RK2=W*CY+RLl/2.01*DT
RL2=-(W*(X+RKl/2.01-A*(l.0-B*(X+RK1/2.0)**2)*(Y+RL1/Z.O»*DT
RK3=W*CY+RL212.0)*DT
RL3=-(W*(X+RK212.0)-A*(l.0-B*(X+RK212.0)**2)*(Y+RL212.O»*DT
RK4=W*(Y+RL3)*DT
RL4=-(W*(X+RK31-A*(l.0-B*(X+RK3)**21*(Y+RL3)I*DT
DX=(RKl+2.0*RK2+2.0*RK3+RK4)/6.0
DY=(RLl+2.0*RL2+2.0*RL3+RL4)/6.0
T=T+DT
X=X+DX
Y=Y+DY
IF(XI 21,22,23

21 IF(XO) 25,25,13
23 IF(XO) 13,25,25
13 TZ=T-(T-TO)*(XI/(X-XO)

GO TO 24
22 TZ=T
24 PRINT 30,XZ,TZ
25 PRINT 40,T,X,Y

XO=X
TO=T

4 CONTINUE
30 FORMATCIH+,90X,2F20.10/1
40 FORMAT(lH ,3F30.101

STOP
END

$ENTRY
$IBSYS

CD TOT 0047
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0.10

50000.0

0.090.08

60000.0

0.07

010

0.06

75000.0

100

0.05

100000.0

0.04

150000.0
10000.0

0.02 0.03

003504V K AGARWAL$JOB
$IBFTC
$IBJOB NODECK
: PROGRAM NO.7-FREE AND FORCED OSCILLATIONS.
e GRAPH PLOT OF FORCING VOLTAGE W.R.TO PERCENTAGE FREQUENCY DEVIAT.
e NECESSARY AND SUFFICIENT CONDITION FOR LOCKING TO OCCOUR.

DIMENSION RF(15l,D(15l
READ 20,(RF(I),I=ltlOl
READ 30,(D(Jl,J=1,12l
RL=100000.0
S=1.115E-04
T=2.000E-06
ELl=660.0E-06
Cl=660.0E-12
DO 10 1=1,10
DO 10 J=1,l2
R=RL *RF ( I ) I ( RL +R F ( I ) )
A=(S-I.0/Rl*(ELI/Cll**0.5
B=3.0*T/(S-1.0/Rl
E=2.0/B**0.5
V=(RF(Il*RF( Il*S.0*Cl/(B*ELll*(D(Jl*D(J)+A*A/16.0ll**0.5

10 PRINT40,A,8,R,RF(Il,D(Jl,V,E
20 FORMAT(7FI0.2/3FIO.2l
30 FORMAT(12F6.3l
40 FORMAT(IH ,FI5.7,5X,F6.3,5X,FS.l,5X,FS.l,5X,F8.3,5X,F15.5,5X,F8.3l

STOP
END

$ENTRY
1000000.0 200000.0

25000.0 12500.0
0.00 0.005 0.01

$IBSYS

CD TOT 0032



APpENDIX IV - NOISE EXC!TAtION EFFECT OF AN EMEMENTARY PULSE

(l)

It has been explained on Page 30 that one pulse causes

a change in ~ while e remains constant. Thus,
dt

b(e) = 0

«(de) b (de} "and 0 - =- - At
dt dt dt

(2)

(3)

For simplicity it is assumed throughout the analysis

that bE = ba.

e =E [Sin wot Cos ~ + Cos vot Sin ~J

b(e) = bE [Sin wot Cos III + Cos w
o

t Sin Ill]

+ l:. III [ E Cos w0 t Cos III - E Sin w0 t Sin Ill]

= bE [Sin(Wot + Ill)] + E'blll [cos (wot + 1Il~

From (2), b (e) = o. Replacing bE by b a we have,

6a [ Sin (wot + Ill) ] + E'OIll [cos (wot + Ill)] = 0

••••• • (1+)



95

Again from (1),

:: = Ew
O

[ Cos "'0t Cos III - Sin",0 t Sin III ]

From (3)

Eblll''''O[ Sin ("'ot + IIll]

• • • • • •( 5)

From (4) and (5) we have,

2
2 r Cos (wot + ~)qw = - w E'O~ ..:0.- _

o 0 Sin (wot + ~)

Therefore)

b~

= "'e
E

'
blll [ Cos

2
("'ot

Sin (wot + ~)

qWo
2

= Sin (w t + ~)
-- 0w E

o

Similarly from relation (4)

Sa = qw Cos (w t + ~)
o 0

Thus, the change ba in amplitude and .& ~ in phase produced by

one pulse occuring at tlme t j ' is given by,

btl =qw
o

Cos (wot
j

)

b;J =- qwo Sin (wot J)
E
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4PPENDIX V - RELATION OF RESISTANCE Rf TO Q OF TUNED CIRCUIT

Refer figure

R = RfRt/CRf

3 of Chapter 1

+ R )
L

(1)

For a parallel tuned circuit

Q = R/w L
o

From equations (1) and (2)

Rf = Q'trIoL.Rt/(RL - 'trIoL)

For the unloaded circuit, let Qo =RL/woL

(2)

(3)

(4)

In the experimental circuit,

For RL =100 K ohms, frequency of oscillation (fo) =242 kc/s

and L = 660 Jl henry

Q =100o - ~rom relation (3~

Various values of Q are calculated for corresponding

values of R
f

and are tabulated in Table No. 2 (Chapter 4)



APPElIDIX VI - IyISULTS OF COMPUTER ANQ EXPERIMENTAL STUDY

COMPUTER STUDY - DEVIATION OF THE HEAN FREQUENCY FOR NOISE-PERTURBED OSCILLATOR

NOISE
MEAN FREQUENCY DEVIATION (CIS) W.R. TO FRRO. OF NOISELESS oscrr.r.lI'N,\'R I With 0=100VOLTAGE

(r .m.~
ntsJ

R~~~) 0.00 0.055 0.082 0.18 0.365 0.465 0.68 0.91

200 83.6 84.5 85.75 87.0 89.1 90.75 94.1 96.5
(66.6)

150 122.0 125.0 128.1 132.0 137.0 140.0 143.5 148.75(60.0)

100 181.0 183.9 185.5 188.5 1193.0 195.5 201.0 206.5( 50.0)

75 237.5 239.0 240.75 2lt4.5 ~47.5 252.0 258.0 264.0(42.85)

50 307.0 31).0 314.0 318.0 324.0 326.5 331.0 337.0(33.3)

25 488.0 491.5 ~94.5 499.75 ~05.0 508.5 515.0 522.0(20.0)



EXPERIMENTAL RESULTS

(A) NO EXTERNAL NOISE

Resistance Rf Mean frequency Deviation in
(K ohms) in cycles/sec. frequency cis.

Rt =Open Circmt 2'+2Q30 0

225 24-2102 72
•

200 24-2115 85

. 175 242136 106

150 242157 127

125 242183 153

100 242221 191

75 242272 242

50 242326 296

25 242270 240

(B) R. M. S. NOISE-VOLTAGE =0.082 volts

Resistance Rf Mean frequency Deviation in
(K ohms) in cycles/sec. frequency cis

Open Circuit 242030.5 0

225 242104.0 73.5
200 242118.0 87.5
175 242139.5 109.0
150 242160.5 130.0

125 242186.5 156.0

100 242225.0 194.5

75 242276.5 246.0

50 242331.0 300.5
25 242276.0 245.5
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(C) R.M.S. NOISE VOLTAGE = 0.37 VOLTS
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Resistance R
t

Mean frequency Deviation in

(K ohms) in cycles/sec. freQuency cis

Open Circuit 242031.0 0

225 242112.0 81.0

200 242119.5 88.5

175 242146.5 115.5

150 242167.0 136.0

125 242194.5 163.5

100 242225.0 194.0

75 242276.0 245.0

50 242347.5 316.5

(D) R. M. S. NOISE VOLTAGE =0.91 VOLTS

Resistance R
f Mean frequency Deviation in

(K ohms) in cycles/sec. frequency cis

Open circuit 242031.0 0

200 21+2128.0 97.0
175 21+2154.0 123.0
150 21+2181.5 150.5

125 242204.0 173.0
100 21+2238.0 207.0
75 21+2293.0 262.0

50 21+2358.5 327.5
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