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SCOPE AND CONTENTS: The theslis deals with the effect of external
signals including random noise on nonlinear oscillator. By using

a negative resistance across a L-C tuned circuit an osclllator

representing van der Pol differential equation 1s obtained. A
practical circuit of oscillator whose nonlinear characteristic
closely approximates to that of the ideal van der Pol oscillator
is described. The behaviour of this oscillator circult is ex-
perimentally studied while the corresponding nonlinear differential
equation is solved by means of a Digital Computer (IBM 7040),
The study is divided into three important categories (1) system
without disturbance (free-running oscillator) (2) system sub-
jected to sinusoidal input (forced oscillator) (3) system
subjected to random noise input (noise-perturbed oscillator).

In case of forced oscillations a necessary condition is
established for locking which is useful from design point of
view. For noise-perturbed oscillator the mean deviation of
oscillator frequency from stable frequency of noiseless oscillator
is found to depend on the Q of the tuned circuit and on the
magnitude of injected nolse. In all the above cases the results
of numerical analysis by Digital Computer are in good agreement

with the experimental results.
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INTRODUCT ION

When a periodic force is applied to a system whose
free oscillation is of the self excited type, a phenomenon
known as frequency entrainment takes place. A typical case
is the system governed by van der Pol's equation with an
additional term for periodic exeitation (1). The frequency
of the self excited oscillation falls in synchronism with the
driving frequency, provided these two frequenclies are not far
different. If their difference is large enough, the occurrence
of a beat oscillation may be expected. However, a similar
phenomenon of frequency entrainment still occurs when the ratio
between the natural frequency of the self excited oscillation
and the driving frequency is in the neighbourhood of an integer
(other than unity) or a fraction.

The characteristics of the van der Pol oscillator sub-
Jected to a forcing signal have engaged the attention of several
workers (2), (3), (4) because of its wide applications (5).
The understanding of such a self-oscillator circuit is con-
siderably éomplicated if the presence of random noise is taken
into account as a forcing function. In this connection a
variety of approaches have been taken, and results of undoubted
value have been obtained. However, most of the publications
(6), (7), (8) concern themselves with the response of a non-
linear oscillator subjected to an injected synchronizing signal

accompanied by noise or some interfering small amplitude signal.
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The above approach 1is considerably different from that of the
present work in which the forcing function is random noise
of narrow band-width.

The response of a self-oscillator to random noise, is
becoming of particular interest owlng to the recent importance
of monochromatic oscillators (9), (10), (11), (12) and the
possibllity of reducing oscillator noise by oscillator interaction
(13), (14). 1In order to explore this problem further, an ex-
perimental system was used. This system included an oscillator
circuit whose behaviour is very close to satisfying that of the
"van der Pol negative resistance oscillator". Such an oscillator
i1s simple to design and has stable characteristics. Over a long
period of time the experimental oscillator was found to be very
stable with respect to frequency.

To study the effect of noise on the nonlinear oscillator
experimentally, an external source of random noise was used.
By using the external noise source, the oscilllator circuit was
made so "nolsy" that the effect of noise on the nonlinear
oscillator could be recorded easily with the usual laboratory
instruments. The choice of 240 kc/s frequency for the oscillator
was also based on noise considerations. Thus, in the present
work the low frequency noise which modulates the oscillator
output is assumed to be negligible and only the effects of
narrow band Gaussian noise (at or near the oscillator frequency)
on the self-oscillator, are considered.

The first chapter of the thesis deals with the well



known cases of the free running oscillator and then the forced
oscillator with externally injected sinusoidal wave.

A great amount of work has been done regarding forced
oscillations in a van der Pol type of nonlinear oscillator,
yet no previous treatment seems to adequately describe the
conditions of locking range in terms of useful circuit parameters.
Van der Pol in his original article (15) and Van der Ziel (7)
give simllar conditions, but they do not seem to be sufficiently
useful from a practical design point of view. A necessary con-
dition for locking just to occur in forced oscillations 1is
derived which eventually leads to an expression for the required
amplitude of the injected voltage for boundary condition of
locking. This gilves a more useful relation of locking in terms
of circuit parameters and is a simplification of a result
previously obtalned (16a).

A literature survey on the noise-perturbed oscillator
is summarized in Chapter 2. The statistical effects of noise
on oscillators are briefly described. A relation is developed
for the number of zero crossings per unit time of the noise-
perturbed oscillator output, a relation which must be understood
in the probabilify sense.

‘It 1is to be emphasized that the above noise theory does
not bear a direct relationship to the experimental and numerical
analysis approsach adopted for the problem. 1In fact, the theoret-
ical approach to the problem of frequency deviation of noise-
perturbed oscillator with respect to noilseless oscillator over

a long time interval 1is quite complicated and no work has been



done previously to predict this frequency deviation by theoret-
ical analysis.

Chapter 3 describes the experimental system, beginning
with the analysis and design considerations of the negative
resistance oscillator circuit. This system was used to study
the van der Pol nonlinear oscillator under various conditions
of operation.

In Chapter 4 the results obtained for the experimental
system are presented and discussed. A comparison 1is made with
results obtained from a numerical aqalysis study of the van der
Pol nonlinqar differential equation. With the aid of a digital
computer (IBM 7040), the equation was solved for the cases of:
free oscillations, sinusoidel forcing function, and random
noise forcing function. In both the experimental and computer
studies the average number of 2zero crossings per unit time
(twice the mean frequency) of the oscillator output voltage for
the noise-perturbed oscillator and the noiseless unforced
oscillator are compared and found to be in good agreement. Re-
sults are obtained for the deviation of the mean frequency of
the oscillator as a function of the Q of the tuned circuit and
the magnitude of the injected noise.

In summary, the thesis contains an investigation of
oscillators whose behaviour is described by the van der Pol
non-linear differential equation under the following operating
conditions:s (1) Free-running (No forcing function, (2) Sinu-
soidal forcing function (Locking condition) and (3) Random
noise forcing function (Noise-perturbed oscillator).

One of the main considerations of the thesis 1s to find
the deviation of the mean frequency of the noise-perturbed

osclllator with respect to that of the "noiseless" free-running

osclllator.



CHAPTER 1 - FREE AND FORCED OSCILLATIORNS

1.1 DIFFERENTIAL EQUATIORS - OSCILLATORY MOTION

Consider an equation of the form

X +ax + bx = f(t) where x =

D-'Q-
ctix

Three types of motlion are represented by this equation.
Free motion (associated with bx, which gives the restoring
force), damped motion (associated with ai, which gives the
damping force) and forced motion (associated with f(t)). These
facts are easily verified by considering representative physical
systems and writing the differential equations. The left side
is called the equation of motion of free oscillations, in
which the natural frequencies of the undamped oscillation 1is

obtained by putting a = o. For example, a coil spring with

one end fixed and a weight attached to the other end would
oscillate freely once it was started from equilibrium, How-
ever, the presence of air acts as a damping force which grad-
ually diminishes the amplitude of oscillation. If the support
of the spring were to move up and down according to some law,

then the motion of the spring would be forced. If f(t) = o,

the oscillations described by the equation are sald to be free.

The general equation of free oscillatlions is
x + w2x = g(x,x)
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It includes both nonlinear damping and restoring forces.
In many cases in which the nonlinearity occurs, deviations from
the linearity are small, and the motion has approximately linear
character. In a self-extited oscillation, as t = € every
solution tends to a periodic solution corresponding to a limit
cycle in phase plane.
1.2 THEQORY OF NEGATI SISTAN

The principal parts of a negative resistance oscillator
are (1) a negative resistance circuit or device, and (2) a
connected load circuit. The nonlinear component is represented

by an equivalent circult consisting of a variable resistance RN’

which can vary both in magnitude and sign, in parallel with a
current source i(t). This current source supplies the initial
excltation necessary to produce the oscillation and can be
disconnected when oscillation commences. In an actual circuit
this current source might represent a current impulse caused by

thermal agitation or some other circuit unbalance of trensient
character.

The integrodifferential equation for the circuit of
Figure 1 is

de 1l 1l 1l
CE?+[:E;‘+§;:Ie+Z e dt = i(t) (1)

If Ry 1s assumed to be linear for a short time during
initiation of oscillation, then during this time RN can be con-

sidered constant and thus the following analysis could be
applied.
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FIGURE 1 - ESSENTIAL COMPONENTS F A NEGATIVE RESISTANCE OSCILLATOR

Assume that the capacitor 1s initially uncharged and
that there is no initial current through the coil. Wwriting
the Laplace transform of equation (1) and solving the result

for the transform response voltage E(s) we have,

I(s) 1

5 (2)
(s + (R, + BR)s/R{RyC + 1/IC)

B(s) =

So that the characteristic equation is

1
2 -
s + (RL + RN)'S/RLRn‘C + =l 0 (3)



The roots of this equation are the poles of the res-
ponse transform, and these roots are computed from the guadratic

foraulae to be,

2 2
5, , = sk (RpRy) o 4] L _ F‘] tR +Ry )
’ RiRyg Ic {ecd U RRy
= d I JM)

The poles of the response transform will be complex
conjugates and the time response will be oscillatory only if
the gquantity under the radical is positive i.e. W must be real.
This is a necessary condition that must be fulfilled if
osclllations of any type are to be produced.

There is znother lmportant condition. If the real
part of the pole is positive, the amplitude of oscillation
will 1hcrease as a function of time. If the real part is
negative, the emplitude of oscillation would decay with time.
A constant amplitude results when the real part of the pole
1s zero.

With the foregoing in mind we can see that the
oscillation is produced only if

2
RL*RN < L
¢
2

oric__)[}_...'}_ﬂ (5
L RL R

This inequallity must be true at all times. The boundaries
describing the inequality of equation (5) are two straight lines,



which satisfy

T L
L UL ¥y R L

These reglons are shown in Figure 2.
When the oscillation first starts out, it is small
and must build up in amplitude. The real part of the pole

must be positive so that,

R.+R
-[ L N] >0
R;Ry

This condltion can be achieved only it RN is negative.

That is, if R, =-|R | , the inequality con be matntained 1if

Ry > }RN|. During the build up period the oscillator frequency

c 2 2
w, = (L),[_l_] [M] (7
LC 2C RL RN

will vary because R will change as a result of nonlinearity

N

in the negative resistance circult.

In Figure 2 we are interested in only that portion of

the plane below the %— = ﬁl line, because it is here that a
N L

self excited signal is generated, and we are primarily con-
cerned with the narrow segment defining the sinusoidal oscillatory
response.

To obtain an oscillation of constant amplitude the real

pert of the pole must vanish. This will occur only if R = | gl
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i.e. when the negative‘conductance‘df the active element
exactly cancels the positive conductance of the tuned circult.

The purely imaginary poles are located at

+ 1

S1,2% JJLT

When this transpires, the oscillator frequency be-

o -.-!l_
comes constant atwo 7ol

This value is governed by the constants of the load
circuilt if the negative resistance device or circuit 1s free

from inductive and capzcitance components.

1.3 NEGATIVE RESISTANCE CHARACTZRISTIC
Consider a Ssilmple self-oscillatory circuit of Figure 3.

L and C are the inductance and capaclitance of a parallel
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tuned circuit, the total losses of which have been combined

in the single parallel resistance R Details of any steady

L.

voltage supply are omitted here,

Re i T
R  ==C [|Nonlinear e
VCoswlt L Element .l

FIGURE 3 - CIRCUIT OF NEGATIVE RESISTANCE OSCILLATOR

Such a self-oscillating system has been studied in
considerable detall originally by Van der Pol (1) and by many
others, It has been shown that the waveform is essentially
sinusoidal, A steady state is established corresponding to
the appearance of a limit cycle with the amplitude of oscillation
dependent solely upon the circuit parsameters.,

In parallel with the tuned circuit is a sinusoidal

voltage generator in series with a resistance R This ex-

fl
ternal generator 1s the source of forcing voltege V to the
self-oscillator. Also in parallel with the tuned circuit is

RN which represents the net effect of resistance in the system.

This resistance is negative for small voltages, but becomes

positive for large voltages as illustrated in Figure 4,
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FIGURE 4 - PATH OF OPERATION ON NEGATIVE RESISTANCE CHARACTERISTIC

This negative resistance characteristic is described by the

following
i
Here i
e
and 8

r

i

a

elation.

-Se + Te3 (3)
current through the element

voltuge across the element

nd T are positive constants.

These constants are determined by the negative resistance

characteristic of Figure 4. The siope of the characteristic

is zero,

di
de

_ = +(S_.k
=0 at e, = 3(3T) (9)

these points, from equation (8), the current is

= :.§.§ ! % (10)

Thus, from (9) and (10) the two constants S and T could

be found out by knowing the geometry of the characteristic curve.
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1.% NON-I IFFERENTIA UATION OF OSCILLATOR
i
- i
1R iL 1c
*
Negative

VCos(wlt+¢) R —_ c Resistance e

R . .

£ - l

FIGURE - EQUIVALENT CIRCUIT FOR ATIVE-RESISTANCE 0SCI TOR

(Refer Fig. 3 - Equivalent Circuit Obtained using Nortan's Theorem)

The differential equation for the circuilt of Figure §
is easily found from the condition

1 +1+1 + =
. L iR 1f (11)
d R
where, 1, = C _g’ 1 =-Se + Te3, 1 = 3, R = £AL
dt R R ( )
Re + Ry

v
’ 1f 'ﬁ" COS(wlt + ¢)

Here V/Rf 1s the amplitude of the driving current, 1ts angular
frequency is wl, and angle § is a phase angle inserted in the

expression for the current as a matter of convenience.

After substitution in (11) we have

de T
C = « Se + Te + - dt + - i +31+4i, - 1 4at + -
dt f Lﬁ R - If)

={ Cos(w t + @)
f

Upon differentiating the above to remove the integral, the
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equation becomes

o S' T [ 3 e r * e v
e - —e + é—eze + — *[}—]Ee +~§ - Se + Ted - . Cos(w t + Qi]

C Cc LC LC £
.e le
to— = e —= Sin(wlt + @)
RC CRf

Under most conditions of interest for an oscillator circuit,
the resistance r 1s small enough so that the last term with
the parentheses can be neglected and we have

W (8 14, 3 _, e [vqy
e - |--—|et+t—e2e+—=-—=| Sin(w t + P)

C RC C 1c CRf

Thus, the nonlinear differential equation becomes,

.o 2 Y 2 le
e - A(L - Be“)w e + w “e = -|—=|Sin(w,t + ) (12)
o 0 C
[l l y
s -4 3T 3T
where A= ——— B = —:—-——i—-—-, and AB = e
Cw, [s 'R:l Cw,
1 R.R
w02 =—, and R=-——2LDL _
LC (Rp + Rp)

1.5 FREE OSCILLATIONS (FORCING CURRENT IS ZERO)

The first order steady state solution of the non-
linear differential equation (12) without forcing function is
given by the perturbation method (16b) as follows,

e = ECosw,t +~§.E (3 Sinw,t - Sin 3w,t) (13)

s - 1]/

where, A
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- - -t - oy W - e

when E = (14)
5

This particular condition has been dealt in detall
by van der Pol for values of 15A<1. The period of sinusoidal
oscillation existing for A<<l is T, = %2;= ZW(LC)}. It depends
upon the two reactive elements L and C and is independent of
resistance.

For the oscillation to occur it 13 necessary that A

be positive, which leads to the condition that R 2 g (this has

been established earlier also). For a parallel resonant

circuit if we define Q = B_ = B, C (15)

WOL

Then the condition for oscillation becomes
1< L < ’L
3 S R or, s S Q c

Therefore Q 2 %

(ol 9

1.6 FORCED OSCILLATIONS (FORCING CURRENT IS _WOT ZERO)

A somewhat different situstion exists if the same
oscillator is driven from an external source. Free running
oscillators wihiich are capable of being synchronized to an
external signal are, of course, well known and extensively
used. The synchronized oscillator is realized when the
oscillation of desired frequency 1s injected into the free
oscillator. The amplitude and frequency of the external
driving voltage must be such as to quench the free oscillations,

the quenching action being obtained through a zero memory
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type nonlinearity which attenuates the weaker signal more
than the stronger. The analytical solution of such a systea
gives a second order nonllnear differential equation having

a forcing term on the right side. Under certain conditions
both free and forced oscillatlors exist simulteneously. When
parameter A 1s small compared with unity, free and forced
oscillations would be sinusoidal in nature. Analysis uses
the principal of harmonic balance (l6c). An approximate
solution of the equation (12) may be expected to have the
form

e = E Coswt + EICoswlt (16)

Where E 1s the peak amplitude output of free oscillation
of frequency w and El that of the forced oscillation at the

driving frequency wl'

The Following four relations result in accordance with
the principle of harmonic balance. All other frequencies
except the two fundamental frequencies w and wiare neglected

and also it is assumed that w # v, (Appendix II)

E(w02 -wl) =0 (17)
B 2 2
Awon(l - L(E + 2E1 )) =0 (18)
2 2 Iw
El(wo -, ) = -(.a..l.) Singd (19)
fv w B (1 - %(312 + 2E°)) = - (_I_‘E';) Cos@ (20)

From (17) it is evident that the frequency of
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free oscillation is same as wo. It could also be shown easily

from (18) that if there are no forced oscillations, E; = 0

"and E = E__ which is tiic result found in (14) for free oscillation

o

2 _ 2

L
case. The same equation could be rewritten E 3" 2El .

It is, thus, obvious that the output amplitude of forced
oscillations would be given by

E, = B (21)

subject to the condition that free oscillation amplitude is
completely quenched i. e. ¥ = O,

Free and forced oscillations exlst simultaneously if
the output amplitude of the forced oscillation is within the

limits set by O < B, 2S %. Also when forced oscillation exists

2
of amplitude large enough so that B, 2 |=, free osclllations are
1 =,/B?

completely supressed and E = O, It should be pointed out that
the imaginary value of E (with large value of El) is interpreted

to mean as if there 1s no free oscillation. Therefore it
could be verified thet under certain given conditions (locking)

a relation

E=»/in31|. (22)

would exist betwecen free and forced oscillations.

Detsiled normalized response curves for the separate

and simultaneous existance of both free and forced oscillations



are glven in Figure 7.30 pp 218 of Cunningham (164).

1.7 DBOUNDARY CONDITION FOR_LOCHKING

~ From the design point of view an engineer 1s interested
in finding out some simplified relation between the injected
voltage V with that of the circuit parameters for boundary con-
dition of locking. This necessary condition for locking or
pulling just to occur could be determined as follows.

For small amount of wvariation of LY from wo
(1e8e W = w << W)
1 0 o

2 _ 2 == - 2
LA W (wo wl) 2w° (23)

Also on the boundary condition of locking’El = ,2/B

and E = 0. Squaring and adding equations (19) and (20) results

in ,
5 2.2 2 BE,> ] 2| j1w;\? 1
(wp2 = 0?7+ (awpw)” [1- 221 g,
L C 1
- 5 5
or (w°2 - wlz) + Azwlzwoz. i = (le) x E
N L c 2 .
P 2 2 2 2
W, - W W, + W A v 1 B
or (o l) x(o 1) $o |z x o x
B "02 wlz L sz ce 2w°2

This reduces to boundary condition for locking just to
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occur as follows

2 2 2
yp“ + A |= vV _xB
w | R fz 2C/L

where D = Yo " 1 = fractional variation in frequency

i Yo
2 2
D2+£..=_B.Y.....I.'/_9. (2%)
2
16 8 Rf

If Q of the tuned circult is high then Rf could bemade

much less than R.. In such cases R_.=~ R and L/C _ 1 and (24)
: f

could be reduced tcv2
D2 + f:]=[§_.'x.i;]
16 Le @2

This gives the input amplitude of forcing voltage

required for locking Just to occur as

5 o ¥
v 89 (p2 +ﬁ_)]
B 16

(25)

From (25) it is obvious that all other constars being

same an increase of Q (or Rf) necessitates an increase in the

input amplitude of the forcing voltage if locking is to be
maintained. And the above relation is, indeed, the necessary

Wl " .1-..% boundary condition for locking just to occur in

the case of forced oscillations.



CHAPTER 2 - NOISE PERTURBED OSCILLATOR

2.1 STABILITY OF THE NEGATIVE RESISTANCE OSCILLATOR

No oscillator generates a pure Sine Wave. Noise pre-
sent in the circuit always introduces random phase changes,
so that the output power 1is spread over a narrow frequency
band, and not concentrated at a single frequency. Consequently
all oscillators will have orderly nolse spectra. Extremely
stable oscillators will have extremely narrow noise power
spectrums which, for highly stable frequency standards, may
be only a few hundreths of a cycle wide.

The stability of a negative resistance oscillator or
the precise pole positions with steady state oscillation es-
tablished but with noilse still present, is examined by circuit
analysis as follows.

FIGURE 6(a) - EQUIVALENT CIRCUIT OF NEGATIVE RESISTANCE
OSCILLATOR WITH NOISE PRESENT

T === T = =" 3
: % :f/’llmed Circui
i uont
-(RL+ AR | RL L TIT
+ §R) | l !
e _
'S s | \ .

,»-'%%a FIGURE 6(b) - \fw -&A%  FIGURE 6(c) -
d N POLE POSITIONS " s, W ks,  INCREAMENTAL
’ \ FOR STEADY STATE \ "}, . VARIATION IN
‘ \ + OSCILLATIONS L /L . POLE POSITION

\ , % o \ WITH NOISE IN
\ / % \ OSCILLATOR
\\ / > o
~ »
-_*_-

62 ’ ' 20
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In Figure 6(a) a negative resistance (RL +AR Y & Rm)

is introduced that is fractionally larger than R the sum of

L’
the positive resistances in the tuned circuit, to ensure the
continuous oscillations. In this negative resistance the
noise is represented by random variation ¥ ER. The poles of
the response transform for the negative resistance oscillator

could now be expressed as follows.

(AR *5R) 1327 aR *sr|2
51,2 = ’%E"“g;‘r‘tljflr (le‘c‘:) E‘T—il'
L

To meet the Barkhausen criterion, (AR * §R) must become

zero, making the oscillator frequency We= %5‘ However,

the presence of the nolse component tSR, which includes all
circult perturbations, requires that a small negative resistance
component AR be present at all times to ensure sustained
oscillations. As the equation indicates, perturbations ¥ &R

in AR create both frequency and amplitude jitter with a
corresponding 51tter in S1 and 52.

The oscillator thus settles in a position of un-

balanced equilibrium, as shown by the pole positions Sl, Sll

Si, Sll' in Figure 6(c). The angle between the jw axis and

the mean pole position AP = Oo, and the jitter is represented
to a greatly enlarged scale. Corresponding pole positions
representing the amplitude and frequency Jjitter willralso
appear at S_. Like the cyciist who must continually apply

2
correction signals to the handle bars to maintaln the balance,
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the oscillator must also contlinually apply correctlon signals
to maintain equilibrium. It can easily be shown (11) that
the above analysis is equally good for feedback type of
oscillators as the amplifier and the feedback network can be

transformed into equivalent negative resistance oscillator. (App. I)

2.2 BREVIEW OF THE LITERATURE
Of the many publications related with noise (17, 18,

19) a considerable number (20, 21, 9, 10, 11, 22) concern
themselves with the more special probleam of noise in oscillators.
The case of a self oscillator with van der Pol nonlinearity
has been solved with many interesting applications by Blaquidre (23).
Rytov (8) extending the initial work of Berstein (24) has
used van der Pol's technlque of expressing oscillator output
as an angle and amplitude moduiated 8ine Wave.

Bdson:(12) in an exhaustive paper described the
noise effects on the behaviour of oscillator both during
initiation of oscillator and also during sustalned oscillations.
During the starting of oscillation, noise constitutes the
initial starting voltage and therefore affects the time
‘required for the wave to reach pre-established amplitude.
Noise also creates undesired perturbations both in amplitude
and the phase of the wave during sustained oscillations. The
amplitude perturbations produce a continuous spectrum which
in typical situations is quite weak and broader than the
bandwidth of the resonator. The phase perturbatlions disperse

the nominal frequency into a continuous distribution which is
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of the same form but much stronger and narrower than for the
amplitude perturbations.

An alternate method has been proposed which separates
the output noise into linear and nonlinear parts but does not
calculate any correlation between them (25).

Mulleq in his paper has included resistive nonlinearity
such that all the quantities which appear are measurable on
a "black box" oscillator, at the desired operating point, and
by obtaining the spectrum of the instantaneous output of the
osclllator. It is shown that the noise output from noilse
bands around the oscillating frequency is composed of an
additive noise of the shape of the oscillator resonant circuit
and a very small FM broadening of the oscillator line. He
further extends (26, 27) the previous treatment (12, 20, 21)
of background noise in oscillators to include nonlinearities
in which the frequency of oscillation 1s a function of amplitude
of oscillation i.e. r.f. form of pushing. The inclusion of r.f
form of pushing complicates the analysis considerably and in-
cludes correlation between AM noise and FM noise which not
only broadens the spectrums but also produces an asymmetric
spectrum.

The oscillator spectrum starting from a two pert
model is deterained (28). Procedure is given for the
evaluation of the output spectrum in the case of zero memory
nonlinearity with an arbitrary narrow band filter.

In a recent work (29) on Spalti's Theory (30) of
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noise produced in oscillator, the power spectrum of a self
excited oscillator consisting of linear elements is determined
by calculation and experiments. It has been shown that at

the output there appears not a single spectral line with
superposed white noise, but a continuous spectrum, symmetrical
with respect to the proper oscillating frequency. An oscillator
for producing electrical vibrations can be imagined as a closed
loop consisting of an active four pole (amplification factor A)
whose output voltage is fed back to its input terminal by

way of correctly phased passive four pole network (voltage

transfer funtion B). If U, is the output and U, is the input

A E
voltage the overall amplification factor is EA = A .
UE (1-AB)

According to the general theory of self oscillations an

oscillator can build up when AB = 1. Thus U, will be neglected,

E
and the oscillation, once it has been started by random
fluctuations is maintalned. However, according to Spalti's

theory, the input voltage, which consists of noise, may not
be neglected. It is therefore assumed that in a small but
finite frequency region &f, (1-AB) is very small but not
zero. A very large voltage amplification factor is thus
achieved. In fact (1-AB) factor continually adjusts itself
to the magnitude of noise voltage and also preserves the con-
dition of stability.

It is well known that the sensitivity of any receiving
system is determined ultimately by its band width and effective
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noise temperature. By narrowing the band width and trans-
mitting at correspondingly low information rates the receiver
sensitivity can be greatly increased. However, the minimum
band width that can be achieved by this means depends upon
the stabllity of the transmitter and receiver local oscillators.
All sinusoidal oscillators have a finlite spectral w;dth deter-
mined by thelr phase stablility. The spectrum is rsndom in
nature and the corresponding phase jitter is defined as the
ﬁhase noise of the oscillator. The importance of highly phase
stable osclillators for deep-space communication needs no em-
phasis here. Relationship between the phase noise, the spec-
trum, the short tera stability and the Q for the oscillator
1s established by Malling (11).

In their recent (Nov. 1963) article Grivet and Blaquiere
(10) give a theoretical analysis of the effects of random noise
in various types of electronic clocks. Leaving aside, the
amplitude noise problems, the study concentrates on "line
width" problems, and emphasizes the nonlinear theory of the
thermal nolse along a line proposed by Berstein (24), sim-
plified and generalized by Blgquiere< (10). To eliaminate
the shot noise effect the tank circuit is to be connected to
the grid of the oscillator. It has also been pointed out
that the present study could be applied to maser clocks be-
ceuse the differential equation of these devices 13 also of
the same type.

Golay (9) in his more recent (Nov. 1964) article shows
that the use of the phasor concept and normalization of all
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the parameters, lead to relatively simple nonlinear equations
of the regenerative oscillator. These equations are studied
analytically and by means of an electronic computer for the
three cases of free running oscillator, noise perturbed
oscillator and continuous wave osclllator.

The probiem of the effect of random nolse on self-
oscillator is, in general, quite complicated mathematically
because of the random noise involved as a forcing function
in the nonlinear differential equation. The nonlinearity
that is responsible for the self-excited oscillations also
complicates the analysis since it mixes various elements of
the lnput noise. Although lmportant results have been ob-
tained (31), no complete solution of this differential
equation exists at present. Partial solutiomns however, do
exist, (7) involving use of simplified representation of the
nolse in which mixing among the noise frequencies does not
occur. But in the above analysis the noise voltage 1s re-
presented as a 3lngle Sine Wave which in fact is not an
appropriate model because, in the noise case, the continually
fluctuating amplitude and phase give effects which are neg-
lected entirely in the Sine Wave picture.

A similar problem, which is also of considerable
interest in the fields of automatic feedback control system,
has as yet no precise solution although results have been ob-
tained to a considerable extent (32, 33). They involve

linearization technique i.e. the replacement of nonlinesr
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element by a linear element with an equivalent gain deter-
mined by the magnitude of the input signal and the nonlinear

characteristic.

2.3 NARROW BAND NOISE

In this treatment only white noise of thermal or
electronic origin is considered. The shot noise plays only
a negligible role as long as one deals with thermzl high
frequency noise and if one chooses the right structure for
the oscillator §10) (when the tank circuit of high Q is con-
nected to the grid of the oscillator). For Q's larger than
100, the tube nolse is less than 1/1000th of the tank noise
and the tube may be consldered as noiseless. Microphonics,
element drift, low frequency abnormalities such as flicker
effect are assumed to have also slmost negligible effect in the
present treatment.

Oscillators are characterized by relatively selective
circuits and the fact that all the effects of interest are
concentrated in a relatively narrow band of frequencies.
Therefore, we may restrict our attention to noise within
fractionally narrow band widths. The voltage which results
when white noise is passed through any relatively narrow band
filter may be described by

v(t) = xl(t) Cos w t + xz(t) Sin Wt (26)

Where v 1s the midband angular frequency and xl(t)

and x2(t) are uncorrelated functions of time which vary slowly
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and randomly sbout zero in a manner described by the normal

or Gaussian probability function.

2.% PULSE ANWALYSIS OF THE NOISE EXCITATION
The van der Pol differential equation (12) with noise

excitation function En(t) could be written as

2

d%e de
— - A(1 - Be2)wo —t woze = wg En(t) (27)
at- dat

The noise e.m.f. En(t) consists of a great many small
impulses, occuring randomly in time. No loss of generality
results 1if pulses which occur within some finite period are
collected or grouped together (34).

The average number of pulses per second N and the
individual strength q of each pulse are related by Nyquist's
law through the relaztion

Ng® = 2KTr (28)

Where r is the resistance of the.tank circuit source
of the noise, X is the ordinary Boltzmann constant, and T 1s
the absolute temperature.
In order to derive (28) we proceed as follows: The
mean square value of the nolse e.m.f. is for this representation

of noise (Figure 7).

2 2 2 Ng®
<ES(t)> = N[ E° at = NE°T = — (29)
©
where, T = q/E,
On the other hand, in Nyquist's original phrasing it reads

<E2(t)> = 4KTr. Af (30)
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Af being the noise bandwidth of the nolse signal; this is no
' other than that of the individual pulses

/2t (31)

and from (29), (30), (31), (28) results.

A
<
z
9
@
ul
] T~ ET=%
°
b4 |
c. .

FIGURE 7 - THE STANDARD ELEMENTRY PULSE USED IN THE SYNTHESIS
— OF THE NYQUIST NOISE

\ The mechanism Qhereby random noise affects the self-
.oscillators, has been discussed in a number of sources. The

" following summary is based on the results of Blaqgibre (10) sand
Bdson (12). A detailed account of statistical effects of noise
- on the oscillator is given later.

The noise impulses injected into the tank circuit of
"xgelf-oscillator may be divided into two groups occuring at
aifernate quarter cycle of the oscillator cosine wave. De-
pandingvupon whether 1t occurs during the odd or even quarter

cycle, an impulse produces a sinusoid which is in phase or in
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quadrature respectively with the original oscillation. The
inphase component produces amplitude modulation, the guadrature
component produces a step inphase. If no further disturbance
occurs, the osclllator continues to operate at the new phase.
But for large values of noise impulses, the accumulated phase
error is summed and 1s a random walk phenomena.

The steady voltage, which one would observe in the
absence of noise, would be

e = B Sin(wot + B) (32)

Using this expresslion one can very simply calculate
the effect of an elemenwry pulse; as 1s well known from the
elementwry theory of the ballistic galvanometer, one pulse
causes a change in de/dt but no change in e. We then get &8
and § a by expanding the right side of (32) and imposing the
conditions &e = 0, §(de/dt) = qwoz. One then gets the change
da in amplitude and §¢ in phase produced by one pulse occuring
at time'tj (Appendix IV)

ba = qu Cos(w,t) . (33)
W

g = -q 0 Sin(w,t ) (34)
E

Of specilal interest are inphase and 90° out-of-phase

pulses occu:ing respectively at times tJ = 0 and tJ = Io/h
(multiples of T, /2, T, being the period T, = 2T/w,) Figure 8).

For simplicity we call them (a) pulses and (@) pulses, because
of thelr respective effects. (Refer Table No. 1).

An (a) pulse produces a change of amplitude only, and
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(#) pulse a change in phase only. (a) and (@) pulses help
to express the effect of general pulse in a more efficient way.

Thus a general pulse occuring at time tJ is equivalent in its

effect to a set of two (a) and (@) pulses components occuring

at time O and To/h and of intensity qg and qa glven by the right

triangle of Figure 9. Golng to statistical average values one

has <q 2> = <q 2> = q2/2
a 2

FIGURE 8 - TWQ BASIC TYPE OF PULSES (a) AND (2Z)

E )
t
-
FIGURE Q - THE USE OF THE (a) and (@) PULSES AS VECTOR COMPONENTS
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TABLE NO. 1
Time Name First Order Effect
tj =0 | (a) pulse { §a = quo
(1n phase) §g =0
t. = l" =
J L/ (#) pulse (8a =0
(90° out of ph- | £p = -gq 0
ase 1.e. quadrature a
: Q.

- As regards the average effect on the oscillator, we may replace

‘the pulses of strength q occuring at random times tJ and in

average number N per second by:

4
(1) (a) pulses occuring at time t_ =0 + —52, their in-

dividual intensity 1s q as for the original pulses, but their
average number per second is N/2 only.

(2) (8) pulses, occuring at times ty = EE + o, their

w— 9

strength 1s also q but their density 1s N/2 only.

2.5 STATISTICAL EFFECTIS OF NOISE ON THE OSCILLATOR
2.9.1 HBegligible role of (a) pulses - Campbell's theorem makes

it easy to go from the

individual action of one pulse to their statistical effect.

As the elementary effect changes sign with the (a) pulse, the
mean value of the disturbance 1s zero and the oscillator shows
the same avef;ge amplitude in the presence of noiée, or in its
absence. The mean quadratic amplitude of the fluctuation is

of no interest here, because it does not bear on the accurancy
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of frequency definition. We measure the frequency by counting
the zeros of the time function: near a zero, the amplitude is

very small and the fluctuation in amplitude negligible.

2.9.2 Importance of (@) pulses - In contrast to amplitude

perturbations, which are

counteracted by the inherent limiting action, no mechanism
exists to counteract phase perturbations. The situation
corresponds to a well regulated clock; if once set forward it
continues to read fast until it is reset. The sine-phase
noise impulses constitute a series of random clock settings,
which produce much the same effect as a random deviation of
rate.

The stochastic summation of the elementry phase angles
is a random walk problem and after many periods the quadratiec

mean value < ¢2> is proportional to t (Figure 10).

Bt Statistical Effect of (#) Pulses

—

— t

FIGURE 10 - THE RANDOM WALK PROBLEM ASSOCIATED WITH (@) PULSES
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This results also from the Campbell's second theorem

63 = -
. E £
2 _ N °w 2 Noow 2
Therefore <4&@°> = 3 QY at =9 % ¢ (39)
Ez 2B
S -
and using Nyquists Law from (28) one gets
o 2 N .
<A¢2>=§T;.;9. & =Dt (36)

B

where, D 1s a "diffusion coefficient"
noted that the above relation is same

Edson (12) in his equation (50).

2.5.3 Correlation Time - Choosing as

zero of the

for phase. It should be

as that obtained by

time t = O, that of a
signal, we look at the

‘mean value of signal, a long time t later and (Figure 11) we

disregard the amplitude fluctuations.

The procedure is per-

missible because frequency may be defined as the number of
zeros of the function in one second, when observing the function
near the valus zero only, amplitude fluctuations are of no-im-
portance.

The expression e(t) at time t 1is,
e(t™) = B sin(w t '+ Af) = E CosAp Sin wt™ + E S1nbf Cos w_t¥*

and taking the mean value we find
<e(t™)> = B CosaP> Bin v t "+ E <SinAP> Cos v t™

<Sin AP> vanishes as <A@> does. We write the first term in a
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more convenient fgrm. Taking use of the approximation

- 687
<CosAP> = e o we find
2
-L0
<e(t*)>=Be 5 sin wot' (37)

A ely)

2.5.4 Spectral Width - One can represent the mean statistical

effects of phase fluctuations by re-
placing the steady sine wave by a damped oscillation. Using
(36) we have for the apparent damping factor

Dy 2
e(t®)> =B e Et Sin vot¥ (38)

Obviously, the perturbed oscillation, when considered
in the mean, behaves like a damped osclillation. This in turn
results in the broadening of noise band of sscillator.

The correlation time U.1is then

2

r _ 2 _ 2B
o =2 = (39)

D Kmrwo

The total spectral width 2 5w of such é damped sinusoid is

well known and is expressed as
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2
ZSW ="E— =D
, e v 2
and we get Sw = KT "'—%—" (+0)

B
It 1s well known that the most accurate frequency

measurements a£e made by observing the time elapsed during a
given number of zero crossings of the oscillator output voltage.
Also any amplitude modulation of the output voltage due to nolse
will not, at least in the first order, cause any error in the
observation of these zero crossings. A relation is developed

to give the number of zero crossings per unit of time for a

noise perturbed oscillator.

EN

2.6 NU%%%? QF ZERO CROSSINGS PER UNIT TIME OF THE OSCILLATOR
UT

If the output of oscillator 1s a random function
given by
o(f) = B(t) Cos [w t + #(t)] (1)

where, E(t) and #(t) are the envelope and the phase of the
process respectively (they are random functions slowly varying
 in time compared with Cos wa). Since B(t) 2 0 and the pro-
bability of the &sgquality E(t) = 0 is small; the problem is of
finding the number of zero crossings of function Cos [yot + ¢(ti].

In fact, 1f Cos [wot + ﬂ(t)] crosses the zero level successively
at instanés t, and t, then,

Sty = ) + 8L - B(r) = T

SR g% et
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Since #(t) changes slowly compared with Cos wot, we shall replace

B(ty) - B(t) by (¢, - t) P

[Since -39 Dt = g(ts) - #(t )-]
>t 2 1

and then ty - t; = Ty +§ )
The number of zero“Crossings/unit intervég of time 4t is equal

to -
dat =(wd+¢)d

t2 - tl m

dN = t

After integrating the above expression for all values of time
in the interval t, we obta%? .
2

w 1 —
N=_9+

(t)at (42)
w271t ¢

A

where, N is the aéeragc number of crossings/unit time, ag(t)

is the derivative of phase @(t) with respect to time.
Substituting from (35) in (42) we have

N = No. of Zero crossings/unit time
2. 2 .
= + Ng'
2f o (43)
2TTE ¢t

where, t is the finite time interval
q individual strength of each pulse
E amplitude of nolseless oscillations

wo angular frequency of free oscillations

The expression (43) must be understood in the pro-
bability sence. Also the narrower the noise bandwidth (slow
variation of @(t)) the higher the probability that (43) is sat-
isfied.



CHAPTER 3 - ANALYSIS AND DESIGN CONSIDERATIONS OF EXPERIMENTAL
CIRCUIT

3.1 REALIZATION OF A PRACTICAL OSCILLATOR

Bxtensive mathematical treatment and the theoretical
performance of van der Pol's nonlinear osclillating system is
available in literature (36, 37, 38). In studying such a
system, especially from an engineering point of view, it is
desirable to have actual physical devices for demonstrating
the phenomena involved. In order to realize the close
approximation to cubic nonlinear characteristic of equation (8)
a practical circuit of cathode coupled negative resistance oscillator
is developed. Such a circuit is given in Figure 15 and is
based on the circuits (39, 40, 41, 42) given earlier, so as

to meet our requirements.

3.2. BASIC CIRCUIT

Negative traﬁsconductance provided by two stage
amplifier gives the phase reversal necessary for circuit
oscillation. Only two points in the circult are needed for
connection of a simple tuned circuit to provide oscillations
of desired frequency.

Figure 12 shows the fundamental circuit. A twin triode
is connected with one triode acting as a cathode follower
driving the cathode of the second triode through coupling
effected by the common cathode resistor Rk'

38
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FIGURE 12 - BASIC NEGATIVE RESISTANCE OSCILLATOR CIRCUIT

A positive voltage appllied to the grid of T1 causes more current

to flow in the plate circuit of T1 and consequently more

current through the common cathode resistor. The increased
current through the cathode resistor raises the potential of
cathodes in the positive direction.

An increased positive potential on the cathode of T2'

is equivalent to an increased negative potential on the grid

of T2. Thus a positive voltage applied to the grid of Tl is

converted, by the coupling system, to an equivalent negative

‘ potential on the grid of T2. This phase reversal, together

with the phase reversal effected between the grid and plate
of T2, forms a complete 360 degree phase rotation, so that the
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input 1s in phase with the output. Thus, for oscillations
to take place a tuned circuit is required in the output plate
circuit which is coupled back to the input of grid circuit

of Tube Tl'

3.3 ANALYSIS OF CATHODE COUPLED NEGATIVE-RESISTANCE CIRCUIT

Consider the circuit of Figure 13(a). The experimenteal
frequency of 240 kc/s is taken as medium frequency and 1s de-
fined as that frequency at which the reactances of all cap-

acitances (C C . and Cc) are neglected. Then the equivalent

gk’ “pk
circuilt of Figure 13(b) could be drawn.

When a voltage E is applied to the input of an
amplifier whose voltage gain is A[é, where © is the phase
angle of A, its output will be EA[Q, If the output is now
connected back to the input, a single loop circuit results.
It is apparent that the current 1 in this loop will be

L = E- Ehle

by

where Zi 1s the internal impedance of amplifier in the ab-

sence of feedback.

The impedance Z seen by the source E will be

z=28=_2%1 _
1 1-a4a/e

At medium frequencies Z _is a pure resistance and A may
have a phase angle of O or 180 degrees so that AL§_= ALQ_= A,

Z will then be the negative resistance
R:-——E—j;___

1 - ale (l+ls)
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where Bi is Zjat medium frequencies and when A > 1, which is

thae case of interest here.

T bb
. S— %3'
i
A/ Co v
1 2
oA .
" ,
-
PO » ,
. ‘V'c of :C K Bk —_J=-;_—

PIGURE 13(a) - zmaaggs REISTANCE  FIGURE 13(b) - EQUIVALENT CIRCUIT
L‘

The amplifier of Figure 13 (a) may be considered as a

. ‘¢4thode follower V. driving a grounded grid stage V

1 through

2

- & coupling resistor RK . The two tubes are taken as identical

. each having an amplification factor ALand a plate resistance

‘r + The equivalent circuit may be drawn as follows.

P
r I
P p
G, ‘-ALES J !
, + 3R tae
Byx A G Lji——o
T +1) & E | |
-G‘\ Bt .
FIGURE 14(a) - EQUIVALBNRT CIRCUIT FISUBRE 14(b) - EQUIVALENT CIRCUIT
g? CATHODE FOLLOWER g;gg%ogNDED GRID

1 : 2
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Considering Figure 14(b), the equivalent circuit of stage V2,

uE +B =1I(r +RY)
g g P P L

or I =K (n+1)/(r +R)
P 4 o L
where Eg is the ac voltage between grid and cathode of VZ, Ip

is the ac plate current, and R! is the load resistance. If R

L 1

is the resistance seen looking into the cathode circuit of V2

we have thus,

. ,
Rl = Ez/Ip = (rp + RL)/(N + 1)

When R_ is the equivalent Cathode Resistance (R1 in parallel

2
with RK) of Cathode Follower Vi» the gain 1s (of cathode follower)

‘CF: PRZ = 1
(LB, + 1, [(g_+ 1)(1 + T LT ]
A r +R
=, R Ry
-8imilarly the gain of the grounded grid stage V2 is
A = + 1 +r
o = B %1 E?)
L
Thus the overall gain
: 1
A=A XA, = p + 1)
CF G& vl T r
¢ {} +__~2__} + _p_ ].4-_2)
) A rp""RL )JRK L
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St (ch simplifies to give

A= MR ' (45)
r |2 -0-(r ¥ L) + RL
VBK(I* )

This value of gain A could now be substituted in Equ. (4+)

to determine the magnitude of the negative resistance appearing

f,between grid of Vl and ground.

Now the value of Ri is found out with the help of

Thevenin's Theorem. Ri will be the resistance looking back

» ‘mto the amplifier with all voltage sources shorted out. And

‘ ti:;is is R;' in parallel with the effective plate resistance of Vz.

.‘r-he' effective plate resistance B of V2 is higher than ‘rp because

s ;_of the impedance inserted in the cathode circuit. Froa
aquivalent circuit of V; and VZ of Figure 14 we can write

"p | Tp
Eg:‘_[ BK+
n+d o+l

4@ R I =B +mBE +Ir
T ep 8 g€ PP

oiB=[:E(1+/u)+I;-] I
e g pP P

R + 1)

. Therefore R, =T+ Krp(p

- P R(n+1) +r
kK P




R, will be this resistance in parallel with R£

i
r 2R’ + 2r R Ri (1 + 1)
Rlz p L p KL (46)
r (r +R' ) + (1L +a)(2r B +RR"
P P pk KL
Substituting (45), (46) in (44) gives,
2
R Tp
R' 11‘ -BT. + 2(1 +}l) I‘p (['_7)
= K
] T 2 2
RL{'SED' +1—p)+.2..+2(1 + r
Sl ¢ RK P

Foé 6SN7-GT Dual-Triode used in the experimental set up for
~ B0 kN

which rp =-7700 ohas, p = 20 and when RK = 5K ohms and RL = 10K

ohms we would have R'S ~-925-ohms, 60 ko

3.+ PRINCIPLE OF MEASUREMENT

, In view of the low nolse voltages occuring in practice
in the oscillator circuit, it is difficult to measure the
effect of nolse voltage on oscillator with existing techniques.
The investigation of the random noise effect on oscillator
carried out here, therefore, used a method in which the circult
was so noisy that the deviation of frequency could be recorded
with the usual laboratory instruments. The noise voltage was
injected in the circuit from a random noise generator (General
Radio Company, Type 1390-B). This, in fact, 1s equivalent to
| 2 thermal noise produced across a resistance which 1s heated

to a very high temperature. The whole measuring process is
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~clear from block diagram of Figure 17. The experimental set-
up for determining the number of. zero crossings per unit time

of oscillator output, is given in Figure 18.

3.5 EXPERIMENTAL CIRCUIT OF OSCILLATOR

_ Figure 15 is a schematic diagram of the experimental
circuit of nonlinear oscillator under consideration. It con-
sists of a pair of triodes coupled so as to produce a negative
resistance between terminals I and IV, For larger voltages the
current voltage characteristic of triode does not change as
"fast as the theoratical Negative Resistance characteristic of
Figure 4. Thus a pair of diodes (6AL5) is added to the circuit
with provision for biasing and loading. At higher voltages
these diodes conduct and add extra resistance to the clrcuit.
An L-C resonant circuit, in series with a 100 ohm resistance,
is connected at the terminals where the negative resistance
appears. This small resistance is used for current measureament
and is connected to the vertical amplifier of the oscilloscope.
The horizontal amplifier is connected to terminal I while the
ground of the oscillescope is connected to terminal ILL The
- 100K ohm variasble resistance in the diode load controls the
slope of the operating path after conduction has started. The
10K ohm resistance in the blasing circuit controls the level
at which the diodes conduct, and 1K ohm potentiometer controls
" the symmetry of their conduction point. Proper adjustment of
the above resistances would make the ideal nonlinear cublic

characteristic to be matched closely.
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NOTE: (a)
(b)

Negative Resistance Characteristic between I & IV

Diode 1s used for adjusting loading & biasing. This diode conducts
at larger voltuages and add extra resistance to the circuit, thus
providing for proper shaping of nonlinezr characteristic.
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Coefficients S and T for the current, voltage char-
acteristic can be determined by making use of the geometrical
properties of Figure 4 given by equation (9) and (10). The

circuit of Figure 15 was used with R'L = 10K ohms, R = 5K ohms

and C,= 1.0 uF.
This gave the result of

§ = 1.115 x 10~* ohms-1

H

T = 2.00 x 10°° ohm~! vo1t~2

Measurements were carried out at 240 KC/S (C adjustable)
with L = 660 u Henry and C = 660 p.f with an unloaded Q of 160.

A reasonable figure of merilt for the oscillator 1s to

be Q {C/L. This means that the best compromise is to have
"high C" tuned circuit for stability (L/C is minimized) and
also a high value of Q.

The cubic nonlinear characteristic (1 = -Sg + Ted)
was displayed on the C.R.0. tube using conventional technique
described earlier. In order to realize the negative resistance
characteristic, as close as possible to that of the ideal
van der Pol osclllator, an extra diode circuit for adjusting
proper loading and biasing was used. When the characteristic
displayed on the C.R.0. 1s not symmetrical, indicating the
presence of even order harmonics, it was found convenlent to
edjust diode circuitry to ensure synanetry and the desired
cubic characteristic.

It 1s well known that with the decrease of resistance R
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across the tuned circuit!:# = RLRf,/(RL + R_.) , indicating total

b
rasistance across the tuned circuit] the Q of the circuit (Chapter
1) is lowered. Thus, during the experiment the reduction of

R, whille keeping RL = 100 K ohms, is analogous to reducing the

4
Q of the circuilt (Appendix V). Table No. 2 (Chapter 4) gives
different values of Q (Q = R/woL) for various values of

resistance Rf.

The output of the random noise generator was read
using a VIVM which indicated the mean rectified voltage and
which was calibrated in terms of r.m.s. values of sine waves.
These readings were appropriately corrected by a factor of 24ﬁ?
in order to obtain the true r.m.s. noise voltage.

Filgure 19 illustrates the oscillograms of noise-perturbed
oscillator.
3.6 SCHMITT TRIGGER - Schmitt Trigger (43), a cathode coupled

bistable multi-vibrator, is used as a

voltage discriminator. Noise-perturbed oscillations after being
amplified are reshaped by the voltage discriminating action of
the Schmitt Trigger. Thilis provides an appropriately small
threshold for counting the number of zero crossings per unit
time of the noise-perturbed oscillator with the help of a decade
counter (Beckman, model 7370).

The Schmitt Trigger is capable of discriminating very low
voltage levels. Hysterises or the backlash effect i1s min-

imized by adjusting the loop gain of the amplifier stage. A
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well regulated supply voltage is used and care is taken to
avoid tube aging effects.
A typlcal circuit is shown in Figure 16. The direct

coupling from plate of Vl to the grid of V2 is the same as for

conventional Blstable multivibrator, but the plate to grid

connection from V2 to Vl is eliminated. Instead, the common
cathode resistor RK provides the other necessary coupling for

regeneration between stages. When the input signal is below
a preset value, one tube conducts and the other is cut off.
The moment the voltage exceeds the preset value there is a
rapld transition of states.

The triggering level can be set by potentiometer Rl’

which determines the grid voltage Eg’ of tube V_. With Eg

1
sufficiently low, Vl is cut off and the attenuator ratio

so that V., is

.a = RZ/(RC1 + 32 is selected by adjusting R, 5

conducting (e.g. grid bias of about -1 volt on V2). The plate

current 12 of V2 causes a voltage drop EK across the common

cathode resistor RK. The difference between the value of Egl

set by potentiometer R. and the cathode voltage is the grid

1

bias (B - EK) of V.. Since the transition of states occur
gl 1l

the moment the cut off voltage E

co is exceeded, it is the volt-

age difference E between ECO and grid bias that determines
t
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the triggering level i.e.

B =E -(E -R)
t Cco gl K

For example if E_ = -5 volts, E_ = 68 volts and E _ = 62.5
CO K gl

volts then the triggering level
Et =<5 - (62.5 - 68) = 0.5 volts

Thus a minimum signal of 0.5 volts would be required
to make V1 conduct from cut off. As a result the plate voltage

of Vl and the grid of V2 decrease, causing a decrease in plate

current of V2. The resulting drop of the cathode voltage EK
increases the plate current of Vl, and the regeneration process
continues until Va 1s off and Vl is on. The output from the

plate of V2 Jumps to the plate supply value because of this

transition.

+250 V

_—

?k
RLl)
hﬁ_ﬁf
(Bc ) 180 k
12 AT 7
v
0.5 volt. (Rk)% 10 k
©-

FIGURE 16 - SCHMITT TRIGGER
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FIGURE 19 OSCILLOGRAMS OF NOISE PERTURBED OSCILLATOR

1.0 V/em ——=

80 u sec/cm —u

(1) Output From Random Noise Generator (500 Kc¢/s)

1.0 Viem ——»

10.0 u sec/cm ——

(2) Output of Schmitt-Trigger Without Noise

1.0 50

10,0 4 sec/cm —»

(3) Output of Schmitt-Trigger With Noise

D




QSCILLOSCOPE
. Y

FIGURE 20

EXPERIMENTAL SET-UP

S



CHAPTER 4 - RESULTS QF EXPERIMENTAL AND COMPUTER STUDY

4.1 INTRODUCTION

Initially a comparative study was made of the well known
results of free and forced oscillations in oscillators described
by the van der . Pol non-linear differential equation. These
results were obtained both by numerical analysis using a digital
computer and by experiments. The close agreement of these
results enables one to proceed further, with confldence, to
the case of the random nolse forcing signal applied to the oscillator.
The solution of the nonlinear differential equation with & random
forcing function (representing the corresponding injected noise
voltage in the experimental set-up), gave the deviation of the
mean frequency of the noise-perturbed oscillator with respect

to that of the "nolseless" oscillator.

4,2 FREE ARD FORCED OSCILLATIONS

Graph 1 and Graph 2 give the waveforms of the oscillator
having same value of Q, obtalned by solving the nonlinear
differential equation (12) for both the cases of free-running
and forced oscillations respectively (see appendix 3, program
No. 4, 5 and 6).

A study of the predictions quoted earlier in Chapter 1
(particularly relation (22) and (2%)) was made on the practical
¢ircult of the negative resistance oscillator and good agreement
wés obtained. Measurements were carried out to record the
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amplitude of free-running oscillator output (E) as a function

of Q. The computed results were found to be in very good agree-
ment with the practical results (Graph 3). Graph % gives the
injected voltage amplitude (V) at the locking condition (equation
(24)), for various values of Ry (or Q).

The results of the different measurements made may be

summarized as follows.

Amplitude of the free-running and forced oscillator

(a) With no injected voltage 1.e. V = O, the free-running

amplitude is E = 2// B, where B is a function of RfEB = 3T/ [S - %‘{-

where, R = R{Re/ (R + Rf)]. A curve 1s plotted of free-running
amplitude E with Bf (or Q, see Appendix 5). As Rf increases

(for a fixed value of R, =100 k), B decreases and approaches

the value 3T/S asymptotically. Hence the output E of the free-

running oscillator increases with increase of Rf (or Q) as

shown 1in Graph 3.

(b) When E = 0 and the injected voltage V i3 just sufficient
for locking, it was found experimentally that the output
amplitude of the forced oscillation was given by the relation

El = }2/80
(¢) From the results of (a) and (b) it is observed that
for the experimental measurements made, the relation E = /2 E,

was satisfied. However, this relation is true only for locking

condition.
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Frequency of the free-r osci tor

(a) When the Q of the tuned circuit is decreased, the mean
frequency of the oscillator increases from its value when the
LC tuned circuit has its highest Q. (See Graph No. 5).

(b) The free-running oscillator over a long time interval
(several hours) was found' to be very stable. The oscillator

frequency was periodically checked with a frequency measuring

device (Beckman Counter) and was found to be stable within %5

parts in 106.

The free-running oscillator frequency was also determined
by solving the nonlinear differential equation with no forcing

function, and the results were found to agree with the ex-

perimental resuits.

Locking Range
Curves of injected voltage V vs. percentage frequency

detuning are plotted with Rf (or Q) as parameter according to
relation (24). Graph 4 shows that the results both from com-

putation and experiments are in good agreement over the limited

range of experimental measurements., This graph can be used to
determine the required amplitude of injected voltage V for a

particular amount of detuning, with Q (or Rf) as parameter.

Furthermore, the study of the results indicates that an increase

of Q requires an increase in the amplitude of V if locking 1s

to be mailntained.

4,3 NOISE PERTURBED OSCILLATOR

Results of Experimental Set-Up — The average frequency of the
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noise-perturbed oscillator is determined by the experimental
measuring system described earlier (Figure 17 and Figure 18).

The experiments indicate unambiguously that the oscillator out-
put does not consist of single frequency sinusoidal oscillations.
When the magnitude of the external noise voltage 1s increased,

a definite frequency deviation from the noiseless oscillator
case 1s observed. This mean frequency deviation was recorded
for various values of noise voltages. Considerable frequency
deviation of the oscillator frequency takes place when the

resistance Rf and thus Q of the tuned circult is decreased.

(Graph No. 5).

Computer Study ~ The nonlinear differential equation having
random forcing function, representing the

van der Pol type of negative resistance oscillator, was solved

with the help of a Digital Computer. The programmes are based

on the Runge-Kutta method of solving the nonlinear differential

equation. Different details of the programmes including the

library function used to simulate random noise having Gaussian

distribution, and the programme for finding the r.m.s. value

of the random noilse voltage, are given in the Appendix III.

From equation (12) of Chapter 1

2
d e 2.de 2.
E;? - A(l - Be )EE +we= F(t) (L"B)

where, e 1s the voltage across the tuned circuit and nonlinear
element.

A and B are constants of nonlinearity

w = 5//7i;
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and F(t) is the forcing function.
Relation (48) 1is transformed to a system of two first order
equations, in two new variables.
And so,

let x = e and y =

L L
n-la.
o

This gives,

dx

T =W (49)

and ¥ = . wx - A(1 - Bx?)y - F(t) (50)

at
where, the forcing function F(t) could be,

(1) O i.e. No forcing function

(2) Sinusoidal Signal

(3) Random Number (having Gaussian distribution)

The computer study of normalized equations (49) and
(50) for all the above three cases were made by programming an
IBM-7040 Digital Computer to calculate step by step, the T (time),
x and y values. An analog computer used initially was promptly
discarded for a more "deterministic" digital computer, dis-
turbed only by the round off noise of its twelfth place of
decimal. Results of computation using analog computer were
found to be unsatisfactory even for free and forced oscillation
cases. This seems to be due to the stringent requirement in
simulating the nonlinear characteristic.

After'the initial transient state, when the oscillator
settles down to steady state oscillations, the number of zero

crossings in a given time should give the average frequency of
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the oscillator. From the results it was found, as expected,

that the frequency of the oscillator, as defined by the intervals
between zero crossings of the output voltage, remains "constant"
(free oscillator frequency) for the case of no forcing function.
Synchronization or pulling takes place resulting in forced
oscillatlons when the fércing function is a sinusoidal signal

of sufficlent amplitude and of frequency Wi where Wy is nezarly

same as w but w # w These results agreed with the experimental

1°
results.

When the forcing function is random noise, the computer
results showed that the mean frequency of the oscillator in-
creased from that of the "nolseless" oscillator case. This
deviation of the mean oscillator frequency from the stable
frequency of the noiseless oscillator was determined by finding
the average number of zero crossings per unit time and comparing
this with the corresponding results for the nolseless oscillator.

The mean frequency so obtained for varlous values of resistance

Re(or Q) and r.m.s. noise voltages are shown in Graph 6, Graph 7,

Graph 8 and Graph 9. Graph 6 shows the results of both the
computer and experimental studles for severzl velues of the
applied external noise voltage. Graph 7 shows the deviation of
mean frequency for various values of nolse voltage obtained with
the aid of the digital computer.

Graph 8 shows the deviation of the mean frequency as a
function of injected nolse voltage with the Q of the circuit

(or resistance Rf) as a parameter. The results indicete that
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for higher values of Q, the percentage change in the mean
frequency with noise from that of the noiseless oscillator

is less than that for low values of Q. In all cases the effect
of noise is to increase the mean frequency. For a given value
of noise voltage, a low Q circult gives higher mean frequency
of the oscillator as compared to the high Q tuned-circuit.

Graph 7, 8 and 9 are obtained from the same results.

4.4+ ENSURING SIMILARITY BETWEEN EXPERIMENTAL AND COMPUTER STUDY

It 1s to be noted that the computer study is made for

corresponding values of Rf chosen in experimental cases. For

both the experimental and computer studies R, is kept constant

L

at a value of 100 K ohms. The reduction of Rf decreases the

equivalent resistance B[:R = BLgf/(RL + Rf)] thereby reducing

the Q of the tuned circuit (Appendix 5). As the constants
A and B of the non-linear differential equation (48) are re-
lated to the coefficients S and T of the cubic characteristic

(Chapter 1), various values of Rf give varying A and B. Before

analyzing the noise-perturbed oscillator case, care was taken
to verify that, for both the free and forced oscillation

cases, various values of R, give identical results from both

£
the experimental and computer studies. Table No. 2 gives
different values of constants A and B for various resistances

Rf.
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Table No. 2
R, ? ; :w:/(n . Q |&= (s-%)/_aE B = 3T (s-hl-)
Le/L T r
OPEN
C IRCUIT 100.0 K 100 0.1015 0.0592
200 K 66.6 K 66.6 0.0965 0.062
150 K 60.0 K 60.0 0.0948 0.063
125 K 55.6 K 55.6 0.0935 0.06%
100 K 50.0 K 50.0 0.0915 0.066
75 K 42.85 K 42.85] 0.0882 0.068
50 K 33.3 K 33.3 0.0815 0.07%
25 K 20.0 K 20.0 0.0615 0.098
12.5 K 11.1 K 11.1 0.0215 0.279




CHAPTER 9 - SUMMARY

Some effects aof interfering external signals, including
random noise, on nonlinear oscillations have been investigated.
A simple and practical negative resistance oscillator whose
behaviour closely approximates that of the van der Pol oscillator,
is used for experimentsl purposes. For all the three important
cases of (&) free-running oscillator (b) forced oscillator
and (¢) noise-perturbed oscillator, the experimental results
are found to be in good agreement with the results obtained by
numerical analysis using a Digital Computer.

A locking phenomenon occurs when a sinusoidal input is
injected 1nto the free-running oscillator. A necessary con-
dition is established for locking which is useful from the
design point of view.

Statistical effects of noise on oscillators are dis-
cussed and a relation 1s developed for the average number of
zero crossings per unit time in terms of the phase error for
a noise-perturbed oscillator. This expression gives the in-
stantaneous frequency of the osclllator and is to be understood
in the probability sense. The expression also indicates that
the mean frequency of a nolse-perturbed oscillator over a long
time interval should be more than that of the frequency of a
"noiseless" free-running oscillator.

Although no satisfactory theoretical analysis could be
obtalned to predict the deviation of the mean frequency of a
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nolse-perturbed oscillator, the experimental and nuamerical
analysis results given in the thesis are llkely to help in
any further investigation related to this problem.

Important conclusions from the experimental and computer

studles are summarlized as follows:

5.1 EE AND F ED QSC ATIONS

(a) The output voltage of the free-running oscillator in-
creases with increase of Q (Graph 3). The output amplitude of
the free-running oscillator (E) 1s related to the output
amplitude of the forced oscillator (El) by the expression

E = ,JE-EI. However, this condition is true only when the

oscilliator is Jjust locked.

(b) For the free-running oscillator, when the Q of the
tuned circuit is decreased, the mean frequency (half the number
of zero crossings per unit time) increases from its value when
the LC tuned circult has its highest Q (Graph 5 and Graph 6).
(c) Locking range - when the Q of the tuned circuit is in-
creased (by increasing Rf), the injected voltage has to be in-

creased correspondingly if the condition of locking is to be
maintained (Graph 4). Also for a given Q, if the percentage
detuning of the injected signal frequency from the free-running
oscillation frequency is increased, the injected voltage has to
be increased to maintain the locking condition. The results
(Graph %) also help in predicting, for a given resistance R

across the tuned circuit (and hence Q of the tuned circuit),
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the required amplitude of forcing voltage when the injected

signal frequency (or percentage detuning) 1s known.

5.2 NOISE-PERTURBED 0SCILLATOR

(a) A comparison of the experimentally obtained values and
those computed from the nonlinear differential equation, shows
unambiguously that with an increase of noise voltage the

oscillator mean frequency lncreases from its normal "constant"

value of the free-running oscillator. Thus, the deviation of

the mean frequency of the oscillator over a long time interval,
depends upon the magnitude of the input noise. This devlation
in mean frequency increases with an increase of noise magnitude
(Graph 5).

The results (Graph 8) show that for lower values of Q,
the effect of noise 1s greater. For a given value of noise
voltage the percentage deviation in mean frequency of the
noise-perturbed oscillator from that of the "noiseless" free
oscillator increases with decreasing values of Q.

(c) From the above two results it 1s concluded that in-
cre-as8lng the injected noise magnitude has a similar effect on
the mean frequency of the osclillator as decrezsing the Q of the
timed circuit. However, no specific relation between the Q and
the noise voltage for a given circuit of osclllator could be
established.

(&) The above results suggest that the shift in the mean
frequency of the oscillator with noise is due to the asymmetry

of the resonance curve. Since the nolse power has a peak at
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the maximum impedance frequency, the output frequency of the
oscillator is pulled towards this maximum impedance frequency.
The latter is on the higher side and this,this results in the
mean frequency of the noise-perturbed oscillator to be more

than that of the "nolseless" oscillator frequency.



APPENDICES

v

PPEND = FORC C NS _IN ACK 0SC

The purpose of this note 1s to show that a feedback-type
of oscillator can be represented by van der Pol nonlinear
differential equation. Thus, in the case of feedback type of

M
oscillator the approach adopted 1, ’5;//
in this work would be equally 1222%77

good for all the three cases of

free-running oscillations, forced-

oscillations and noise-perturbed
J{ oSin wt

oscillations.

The oscillator circuit consists of an ICr circuit in
in the grid lead and a magnetic feedback from the output; M is
the mutual inductance of the coupling. The grid and plate

circults are inductively coupled. 1In addition a source POSin wlt

of alternating voltage (forcing signal) is present in the grid
circuit, as indicated in the figure. The differential equations
for the system in terms of the current i in the grid circuit,

the current 1  in the anode circuit, and the grid potential Vg

are readily derived; they are

di di
L= + 7L + Vv - M_3x8= P Sin w,t
at g 3t © 1 ?
(1)
at

In deriving the above equation the current in grid
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itself is ignored. Assuming that the anode current ia depends
only upon the potential vg between the grid and cathode, then

the relation between these two quantities is as follows:

2
v
i =Hv_ |1~ 8 (2)
a
g SEZ-

where, H and N are positive constants. The quantity H is
sometimes called the steepness of the characterisic and N is

called the saturation potential. Both 1 and i, in (1) can be

replaced in terms of vg through use of (2). For convenience

the following new guantities are introduced.

e =vy/N, & =(MH-1rC)/IC, B = MI/3LC

PO/N and w02 = 1/IC

e
i

Equation (1) can now be written as

dze de d 3 2 2

-5 « A'— + B'—(e”) +w_e = Fw_ Sin w,t
at at dt o o 1

The differential equation represented by equation (3)
1s the van der Pol equation and has been the basls of discussion

throughout the thesis.



APPENDIX II - SOLUTION OF NON-LINEAR DIFFERENTIAL EQUATION

The nonlinear differential equation representing non-

';’linear negative resistance oscillator,driven by an injected

" - simple-harmonic current is given (Equation (12)) as follows.

e -~ A(1 - Bez) e + wcze = _(Ivl)sin(wlt + 8
c

The meanings of the different terms have already been
>4jg#plained in Chapter 1. 1In general, it might be expected that
413 501ution of the above equation would involvg both a free
oscillations and a forced oscillations produced by the driving
cﬁrrent, If parameter A 1s small compared with unity, the
:foée osclllations have been found to be essentially sinusoidal.
V'It is not unreasonable to expect that the forced oscillations
. will also bé essentlially sinusoidal for this condition.
3(Suppos§-,fthat the apéroximate solution of the ahove equation
: has the fbrm
| e = E Cos wt + El Cos wlt
+ where, the first term *represents the free oscillations at a

- frequency w and second term represents the forced oscillations

- at the driving frequency w The four unknown quantities in

1.
the solution are the two amplitudes E and El’ the frequency w
of the free oscillations, and the phase angle §. Four sim-

ultaneous equations for determining these unknownscan be set

up by substituting the assumed solution into the circuit non-

75
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linear differential equation. Thus,

e = -wE Sin wt - w E, Sin w ¢

1 1

é.= -w2E Cos wt - w 2E Cos w_,t

11 1
2 wE3
e é = - —;— (Sin wt + Sin 3wt)
£r |
- Y 1l |Sin(2w + w_.)t + Sin(2w - w_)t
i 1 1
2
2 _
wEEl
- 2 Sin wt + Sin(w + 2wl)t + Sin(w - 2w1)t
-
wElﬁ
- 2 Sin wlt + Sin(w1 + 2w)t + Sin(w1 - 2W)t
i
wEE, 2]
- 17 sin(2w, + W)t + Sin(2w, - W)t
2 L
3p
w.B
- 171 (Sin wlt + Sin 3w1t)
y _

According to the principle of harmonic balance, only

terms containing fundamental frequencies (w and wl) of the free

and forced oscillations, are considered in the following cal-

culations. All other

that the two frequencies are different i.e. w # w

terms are neglected. Also, it is assumed

1° On sub-

stituting the above relatlons in the nonlinear differential



77

equation and collecting - terms, the following four relatlons

are obtained.

For Cos wt: B(w, - w)=0
B
For Sin wt: Awv [1 - % (B + 21?.12)] =0

Iw

For Cos wlt: El(w°2 - w12) =-_1 8in @
C

2 2 le
For Sin wpt: Avw,w E |1 -] (E1 +2E )] = - ...E...

Cos @

From the above relations it is evident that conditions

could easily be obtained (Chapter 2) which satisfy the assumed

solution of differential equation (i.e. conditions which give

either free, forced, or free and forced oscillations).



APPENDIX III - IBM 7040 COMPUTER PROGRAMMES
The program for solving nonlinear differential equation
having a forcing function is based on Runge-Kutta process.
The numerical values of T, x and y are calculated step by step.
A graph plot can be made for amplitude of oscillation (x) with
respect to time (T). The number of zero crossings per unit
time obtained from these results give the frequency of
oscillations for elither free oscillations, forced oscillations
or nolse perturbed oscillations depending upon the program used.
The second order nonlinear differential equation can
be reduced to a system of two first order equations and is

written in general form as follows,

ax

t = fl(T, X, ¥)
d
Far(r, x, v
at

Starting at To, X s Yor the increments in X and Yo for the

first increments in T are computed by means of the formulas

K, =f£,(T, x,y) DI

K, = £,(T ot ! I'l) DT
= ey X+t L, Y +=
1Yo 5 (o] 5 o 5
DT K L
K3 = fl(To Y X Y 2, ¥, ¢ _2) DT
2 2 2

78
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&

+ +L DT
fl(To DT, x_ + KB’ v, 3)

DX

H

(Kl + ZZK.2 + 2K3 + Kk)/6

L =°f (7T X DT
2( o' "o’ yo)

Ly, = £ (T +QI, X +Kl, y + fl) DT
2 o 2 o = o
2 2
I_..3 = f2(‘1‘o + 23, x + Eg, yo + Eg) DT
2 2 2

L = L

y = I(T, + DT, x_ + K3, Vo + 3) DT
Dy = (L1 + 2L2 +-2L3 + Lk)/é

To compute next increment, it is necessary only to

replace To, X9 Y in the above formulas by Tl’ X9 ¥y

Small increments to the value of DT should be used
while computing the x and y values as thé changes in the slopes
of the curves are quite steep. It 1s preferable that for
every new system, the approximate values for initlal guesses
i.e. the starting points be obtained from the program first
by having the values printed out after a few iterations. This
is advisable in order to reduce the computer time and to speed
up convergence to a great extent - and arrangements have been
made in the program for this and to make it as general as

possible.
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For varying Q of the tuned circuit the nonlinear con-
stants A and B are changed while the amplitude of random num-
ber (noise) is controlled by the factor U.

Call FRANDN (A, N, M) causes N pseudo-random numbers
to be placed in the first N elements of the array A. A non
zero M defines the starting point, a zero M continues from
where the previous call left-off, or from a given starting
point if this is the first call. If M 1s small compared with
1010 it may take 5 or 6 points before we get away from very
small numbers, but otherwise the numbers are uniformly dis-
tributed over (0,1).

In order to get random forcing function having Gaussian
distribﬁtion, the above subroutine was used. In our case 10
numbers are summed up from -4 to +§. This arrangement gives
random number (noise) having Gaussian distribution and zero
mean value. The amplitude of random number could also be
varied by giving different values of U. (Programme No. 3)

The following flow diagram illustrates the general
steps in the calculation procedure of the first program. All

other programs are similar and therefore self expla-natory.
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ALGORITEY OF THE PROGRALM

DIMENSION G(50), F(5)
AA(10), BB(10), YOU(10)

1

AA(J), BB(J)
J=1, 8

k5

U = YOU(II)

!

CALL

FRANDN
(G, 40, 0)/

N
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ZXPRESSIONS

< RUNGE KUTT4 PROCESS
{2

>0

X0
£0 - o

83

>0

25

13

CONT INUE

y

T2 = .
p . (T-TO)XX
(X-X0)

f

(IF(ABS(X).LE.¥0) PRINT 4O, T, X, Y)

~ —~ — — — — —-={ CONTINUE

Y

|FR = SQRT(FR/GOO0.0)J |

| f
!}MM
(5 !

- CONTINUE




$J0OB
$1BJOB
$IBFTC
C
C
C
C
C
C
C
70
60
C

003504V K AGARWAL 100
NODECK

PROGRAM NOs1s (RUNGE KUTTA PROCESS)

NON LINEAR DIFFERENTIAL EQUATION WITH RANDOM FORCING FUNCTION,
NOISE PERTURBED OSCILLATOR FREQUENCY DEVIATION WeReTO NOISELESS-
OSCILLATORSFOR VARYING NOISE VOLTAGE AND VARIOQUS RF(Q)VALUES.
DIMENSION G(50)sF(5)sAA(10)sBB(10)sY0OU(10)
READ(5980)(AA(J)+BB(J)sJ=1+8)

READ(5429)(YOU(I)sI=1,9)

WRITE(6990) (AA(J)sBB(J) s J=18)s(YOU(I)sI=149)

DO 45 JJd=1,8

A=AA(JY)

B=BB(JJ)

DO 45 11=1+9

U=YQUI(II)

CALL FRANDN (Gs42s1)

INITIAL CONDITIONS TO START OSCILLATIONS.

X <X E
H
s
L]
(@]

QO H u

XZ=0400

DT=0.,160

DO 4 I1=1,1500

CALL LIBRARY FUNCTION-TO GIVE RANDOM NUMBER (NOISE) HAVING-
GAUSSIAN DISTRIBUTION.

CALL FRANDN {(G9+4040)

DO 60 J=1ls4

F(J)=040

DO 70 K=1,10

L=K+10%(J-1)

FJ)=F(J)+G(L)

FOJI={F{J)=5e0)%W%U/1040

FR=FR+F{J)*F(J)

RUNGE-KUTTA EXPRESSIONS.

RK1=W*Y*¥DT

RL1I=—(W*X-A# (1 0=B¥X*X)%#Y=F (1) )*DT

RK2=W*(Y+RL1/2.0)%DT

RL2== (WX (X+RK1/24¢0) =A% (1e0-B*¥(X+RK1/2e0)%%#2 )% (Y+RL1/2e0)=F(2))%DT
RK3=W¥*(Y+RL2/2.0)%DT
RL3==(W*(X+RK2/240)-A%(1e 0=B*(X+RK2/240 )% %2 )X (Y+RL2/240)~=F(3))%DT
RK4=W¥# (Y+RL3)*DT

RLA4== (WX (X+RK3)-A*(1e0-B* (X+RK3)#%#2 )% (Y+RL3)=F (4 ) )*DT
DX={RK1+2+¢0%#RK2+2e 0*¥RK3+RK4&) /640
DY=(RL1+240%RL2+240%RL3+RL4) /640

T=T+DT

X=X+DX

Y=Y+DY



21
23
13

22
24
25

45

30
40
65
80
90

NO OO

$ENTRY
010
0409
0.09
0409
0.08
0.08
0«06
0402
0.00
$IBSYS

85

EXTRAPOLATION-TO FIND TIME OF ZERO CROSSINGS.

IF(X0) 25425413

IF(X0) 13+254+25

TZ=T-(T=TO)*(X)/{X-XO0)

GO TO 24

TZ=T

PRINT 30sXZsTZ

CONTINUE

IF(ABS{X)eLEaleO) PRINT4OsTsXsY

X0=X

T0=T

CONTINUE

ReMeSeAMPLITUDE OF RANDOM NUMBER(NOISE).
FR=SQRT{(FR/600GC.0)

WRITE(6+65) FR

CONTINUE

FORMAT(9F8.5)

FORMAT (1H+s90Xs2F2010/)

FORMAT(1H »3F30.10)

FORMAT(F20410)

FORMAT(2F10.6)

FORMAT (11HOINPUT DATA»IXs8FFe4/14HNOISE VOLTAGE s9FTe4//)
VARIOUS VALUES OF RESISTANCE RF(Q) USED FOR CALCULATION
OPEN CIRCUIT»200K»150Ks100Ks»75Ks50K»25K 125K

VARIQUS VALUES OF ReMeSe NOISE VOLTAGES USED
0e0(0)904023(0e25)906055(0655)190e6082(0490)350618(2e0)90e365(440)
00465(500) ,0068(705)90090(1000)

STOP

END

15 0.0592
65 0.062
483 0.063
i5 0.066
82 0s068
15 Q0e074
15 0.098
15 0279

Oe25 55 0«90 240 440 540 Te5 10.0

Cb 70T 0099
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$J0B 003504V K AGARWAL 100 010

$1BJOB NODECK

$1BFTC

C PROGRAM NO«2—-ALTERNATE METHOD

C NON LINEAR DIFF. EQUATION. (RUNGE-KUTTA METHOD)+EFFECT OF RANDOM-
C NOISE ON NON-LINEAR OSCILLATIONSsLOW Q(RF=50K)sNOISE=0418 VOLTS.

DIMENSION G(50)sF(5)9Z2(5)
CALL FRANDN(Gs4891)

W=1e0C
A=0,0815
B=040740
X=0as0
Y=540
T=0e0
TO0=0.,0
X0=0.,0
XZ2=0,00
DT=04160

DO 4 I=1,1500
CALL FRANDN (G940+0)
DO 60 J=1s4
F{J)=0.0
DO 70 K=1+10
L=K+10%{J-1)
70 F(J)=F(J)+G(L)
60 FIJ)=(F(J)—50)#W¥2,0/10.0
CALL FRANDN (Zs440)

RK1=W*Y*DT
RLI==(W¥X-A%(1e0-BAX*¥X)*Y—=(1e0+F (1) )% (SIN(TH+DT*(Z(1)-0e5)))%1e0)*D
1T

RK2=W*(Y+RL1/2+0)#DT
RL2==(W* (X+RK1/2e0) A% (1o 0—B*¥(X+RK1/20)%%2 )% ({Y+RL1/2e0)={10+F(2)
1)*(SIN(T+DT#(Z2(2)=0e51/260))%1.0)%DT
RK3=W¥* (Y+RL2/2.0)%#DT
RL3==(WH{X+RK2/2e0)~A%(140-B¥(X+RK2/2¢0Q)%#%2 )% (Y+RL2/240)—-(1e0+F(3)
LIXR(SINI(THDT*(Z(3)~0e5)/2¢0)1%10}%DT
RK&4=W*{Y+RL3)*DT
RLA=— (WX (X+RK3) =A% (1e0-B* (X+RK3) ¥ *¥2 )% (Y+RL3)=(1e0+F (4) ) ¥ (SIN(T+DT*
1(Z2{4)-0e5)) )%140)%DT
DX=(RK1+2+0%¥RK2+2e0*¥RK3+RK4) /6.0
DY=(RL1+20%¥RL2+2+0%RL3+RL4) /6.0
T=T+DT
X=X+DX
Y=Y+DY
IF(X) 21922923
21 IF(XO) 25925513
23 IF(X0) 13925425
13 TZ=T-(T-TO)* (X} /(X=-X0)
GO TO 24
22 TZ=T7
24 PRINT 30sXZsT2Z



25

4
30
40

$ENTRY
$IBSYS

PRINT 405sTsXsY

X0=X

T0=T

CONTINUE
FORMAT(1H+99UXs2F20410/)
FORMAT(1H +3F30.10)

STOP

END

CD TOT

0069

87



$J0B
$I1BJOB

$IBFTC
C
C

10

70

65
80
$SENTRY

$IBSYS

003504V K AGARWAL
NODECK

PROGRAM NO«3-USED AS A SUB-ROUTINE IN MAIN PROGRAM.

100

010

ReMeS«VOLTAGE AMPLITUDE OF RANDOM NOISE.

DIMENSION G(50)sF(5)
CALL FRANDN (Gs4641)
READ8BO LU

W=1le0

FR=0.0

DO 4 I=14+1500

CALL FRANDN (Gs40,40)
DO 60 J=1s4

F(J)=0.0

DO 70 K=1,10
L=K+10%(J-1)
FJY=F(J)+G(L)
FUJ)=(F(J)—5.0)%¥W*xU/1040
FR=FR+F (J)*F (J)
CONTINUE
FR=SQRT(FR/600040)
WRITE(6+65) FR

GO TO 10

FORMAT (F20.10)
FORMAT (F643)

cb 107

0035

88
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$J0OB 003504V K AGARWAL 100 010
$1BJOB NODECK
$IBFTC
C PROGRAM NOe4-FORCED OSCILLATIONS,
C NON LINEAR DIFF EQUATIONs (RUNGE-KUTTA METHOD)
C WITH SIN FORCING FUNCTION.

W=1e0

A=0,1015

B=0.0592

X=040

Y=540

T=04,0

T0=040

X0=060

XZ2=0400

DT=04160

DO 41=1+500

RK1=W*Y*DT

RLI=—(WXX=A% (16 0=BRX¥X)%#Y=SIN((T+DT)*W))*DT
RK2=W¥(Y+RL1/2.0)%¥DT
RLZ2=— (WX (X+RK1/2e0)~A¥(1e0-B*¥(X+RK1/2e0 )1 %%2 )% (Y+RL1/20)~=SIN((T+DT
1/260)%W) ) #DT
RK3=W¥ (Y+RL2/2.0)%#DT
RL3=—(W*(X+RK2/2e0)=A¥ ({14 0-B*(X+RK2/2e0)#*¥2 )% (Y+RL2/20)=SIN({(T+DT
1/2e0)Y¥W) ) %DT
RK4=W* (Y+RL3)#DT
RL4==(Wk (X+RK3)=A¥ {1+ 0-B* (X+RK3)*¥#2 )% (Y+RL3I=SIN( (T+DT)I*W) ) *DT
DX=(RK1+2¢0%¥RK2+2 ¢ 0¥RK3+RK4) /640
DY=(RL1+2eC*RL2+2 0¥RL3+RL4) /640
T=T+DT
Y=Y+DY
X=X+DX
IF(X) 219224923

21 IF(X0) 259254913

23 TF(XQ0) 13425425

13 TZ=T=(T=TO)*¥{X)/{(X=X0)
GO T0 24

22 TZ=T1

24 PRINT 30sXZs7TZ

25 PRINT 40sToeXsY
X0=X
TO=T

4 CONTINUE

30 FORMAT(1H++90X22F20.107)

40 FORMAT(1H s3F304.10)
STOP
END

PENTRY
$IBSYS

cb 10T 0049



$J0B 003504V K AGARWAL 100
$1BJOB NODECK
$IBFTC
C PROGRAM NO«5-FREE OSCILLATIONS.
C NON LINEAR DIFF EQUATIONe. (RUNGE-KUTTA METHOD)
C WITH NO FORCING FUNCTION

W=1le0

A=0,1015

B=0.0592

X=040

Y=540

T=0e40

TO=0.0

X0=0.0

XZ=0,00

DT=0.160

DO 4 1=1,1500

RK1=W*Y*DT

RLI==—(WH*X—A¥ (1, 0-B¥xX*X)*Y)%DT
RK2=W*(Y+RL1/2.0)%DT

90

RL2== (W% (X+RK1/2¢0)-A*(1e0-B*¥(X+RK1/2¢0)%%2)*(Y+RL1/240))%DT

RK3=W#(Y+RL2/2.0)%DT

RL3==(WH* (X+RK2/2e0)-A%¥(1e0-B*¥(X+RK2/260)%%¥2 ) #(Y+RL2/240))%DT

RK&4=W*{(Y+RL3)*%DT

RL4== (WH*({ X+RK3)=A# (1 0-B* (X+RK3)*#%¥2) % (Y+RL3 )} )*DT

DX=(RK1+2e0U%¥RK2+2e 0O*¥RK3+RK4&4) /640
DY=(RL1+2.0%#RL2+2s0*RL3+RL4) /640
T=T+DT
X=X+DX
Y=Y+DY
IF(X) 21+22,23

21 IF(X0O) 25925413

23 IF(X0O) 13925425

13 TZ=T-(T-TO)*(X)/(X-X0)
GO TO 24

22 TZ=T7

24 PRINT 30eXZsT2Z

25 PRINT 409TeXsY
X0=X
TO=T

4 CONTINUE

30 FORMAT(1H++90Xs2F20.10/)

40 FORMAT(1H +s3F30.10)
STOP
END

SENTRY
$IBSYS

D 10T

0047



JOB 003504V K AGARWAL 100 010

IBJOB NODECK

8P IC
PROGRAM NOeb6=FREE OSCILLATIONSS
PLOTTING OF GRAPHs(NO FORCING FUNCTION)
NON LINEAR DIFF EQUATIONe (RUNGE-KUTTA METHOD)
DIMENSION T(1009eX(100)
W=1e0
AzoolUlB
B=000592
X(1)=0e60
T(1)=0e0
Y=5.0
DT=0e20
DO 4 I=1+100
X=X(I)
T=T(1)
RK1=W*Y*DT
RL1I==(W*X=A%(1e0=B*X*¥X)*Y)*DT
RK2=WH* (Y+RL1/2e¢0)%DT
RL2==(WH* (X+RK1/2¢0)=A%(1e0-B*¥(X+RK1/2e0)%%¥2)%(Y+RL1/20))*DT
RK3=W* (Y+RL2/2e0)*DT
RL3==(WH*(X+RK2/2e0)=A%(1e0-B*(X+RK2/2e0)%%2)%(Y+RL2/20))*DT
RK4=W*(Y+RL3)*DT
RL4==(W* (X+RK3)—A*(1e0=-DB*(X+RK3)*%#2) % (Y+RL3))*DT
DX=(RK1+2 e 0%¥RK2+2 e 0%¥RK23+RK4) /660
DY=(RL1+2e0%RL2+2e0%RL3+RL4L) /640
X(I+1)=X(1)+DX
ThI+1l)=T(11®R}
Y=Y+DY
PRINT 404F (L) eXtl)lnY

4 CONTINUE
CALL PLOT1(X925609=25¢092C0609Ce09505100910)
40 FORMAT(1H +3F3010)

STOP
END

iNTRY

[BSYS

eD T 0038
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$J0B 003504V K AGARWAL 100 010
$IBFTC
$18J0B NODECK

PROGRAM NOe7-FREE AND FORCED OSCILLATIONS.

GRAPH PLOT OF FORCING VOLTAGE WeReTO PERCENTAGE FREQUENCY DEVIAT.

NECESSARY AND SUFFICIENT CONDITION FOR LOCKING TO OCCOURe

DIMENSION RF(15)sD(15)

READ 20s(RF(I)sI=14+10)

READ 30+(D(J)sJt=1412)

RL=100000.0

S=]1el115E-04

T=2+000E-06

EL1=660.0E-06

Cl1=66040E-12

DO 10 I=1,10

DO 10 U=1.12

R=RL#RF(I)/{(RL+RF(I)})

A=(S—1.0/R)*¥(EL1/C1l)*¥%04,5

B=3,0%T/(5-1.0/R}

E=2.0/B#%#045

V=(RF(I)*¥RF(I)*¥84,0%C1/(B*EL1I)*¥(DIJ)I¥D{JI+A¥A/16.0))¥¥%0,5
10 PRINT40sA9»BsRsRF(I)sD(J)sVHE
20 FORMAT(7F10e2/3F1042)
30 FORMAT(12F643)
40 FORMATI(1H sF15e795X9F6e395X9F8e195X3FB8e135X0F8e335XsF156595X9F8e3)

STOP

END
SENTRY
100000060 20000060 15000040 10000040 7500040 6000040 5000040

2500040 125000 1000040
O0e00 04005 0601 0e02 0603 0604 0605 0606 0607 008 009 0,10
$IBSYS

NSNS

CD TOT 0032
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ENDIX IV - NOISE EXC OR EFFECT OF AN MENTARY PULSE

e = E Sin(w_t + 2) (1)

It has been explained on Page 30 that one pulse causes

a change in g{- while e remains constant. Thus,

§Ce) =0 (2)
de\ _ § (dey .;
and S(E-E) = 3-;' (E-E)'At

2
-BEw, Sin(wot + @) At

qw°2 (3)

6(

n-'n-

o

S
i

For simplicity it is assumed throughout the analysis
that §E = Sa.

e B [Sin wot Cos @ + Cos wot Sin ¢]

£ (e)

S8 [sm wot Cos @ + Cos wot Sin QS]

+ &g [E Cos wot Cos @ - E Sin wot Sin ¢]

SE [Sin(w t + ¢)} + E'Sﬂ [Cos (w t + ¢)]
o )
From (2), &(e) = 0. Replacing SEby Sa ve have,

Sa [Sin (wot + ¢)] + ESp [Cos (wot + ¢)] =0
eeeeae(ld)
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Again from (1),

Bvw ['Cos wtCos@ - Sinw tSin @
o) o o

mlcz.
o
i

(=7

e -
S[a_‘.]- SE.wo [Cos (wot +8) - Efbﬁ.wo [Sin (wot + 93)]

From (3)
qw°2 = Sa.wo [Cos (wt + ¢)] - ESﬂwwo[Sin (Wt + ¢)]
| eeennl5)

From (4) and (5) we have,

Cos® (wot + 2)
Sin (w t + 2)

qw2 = - W E*Sﬁ - Ewbp [Sin (w t + ﬁ)]
o o o o

_ on.'Sﬁ

[Cosz(wot + @) + Sinz(wot + ¢)]
Sin (wot + @)

Therefore) >

g ._iqwo Sin (w_t + @)

w E
o

Similarly from relation (4)
Sa = Qv Cos (wot + 2)

Thus, the change $a in amplitude and é;ﬂ in phase produced by
one pulse occuring at time tj is given by,

§a = v Cos (wotj)

$p = Sin (wety)
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APPENDIX V - RELATION OF RESISTANCE Re TO Q OF TUNED CIRCUIT

Refer figure 3 of Chapter 1

R = BfRL/(Rf $R) (1)

For a parallel tuned circuit
Q =R/WL (2)
)
From equations (1) and (2)
R& = QwoL°R5/QRL - woL)

For the unloasded circuit, let Q, = R;/wL (3)

Thus, Rf = RL[Q/(QO = Q).]
orQ=Q°/§_I_o+1} ()
Re

In the experimental circuit,

For R; = 100 K ohms, frequency of oscillation (fo) = 242 ke/s

and L = 660 a1 henry
Q, = 100 -[%rom relation (33

Various values of Q are calculated for corresponding

values of Rf and are tabulated in Table No. 2 (Chapter 4)



APPENDIX VI - RESULTS OF COMPUTER AND EXPERIMENTAL STUDY

COMPUTER STUDY - DEVIATION OF THE MEAN FREQUENCY FOR NOISE-PERTURBED OSCILLATOR

MEAN FREQUENCY DEVIATION tC/s) W.R. TO FREQ. OF NOISELESS OSCILLATOR (with Q=100
0.055 0.082 0.18 0.365 0.46%5 0.68 0.91
200 83.6 84.5 85.75 87.0 89.1 90.75 o9k,.1 96.5
(656.6)
150 122.0 |125.0 [128.1 132.0 137.0 140.0 143.5 148.75
(60.0)
100 181.0 |[183.9 185.5 188.5 193.0 195.5 201.0 206.5
(50.0)
75 237.5 |239.0 240,75 244, 5 oLY7 .5 252.0 258.0 264.0
(42.85)
50 307.0 | 312.0 31%.0 318.0 324 .0 326.5 331.0 337.0
(33.3)
(25 ) 488.0 |L491.5 Lok, 5 499,75 505.0 508.5 515.0 522.0
20.0

L6



EXPER IME RESULT

(A)

NO EXTERNAL ROISE

Resistance Rf
(X ohms)

Mean frequency
in cycles/sec.

Deviation in
frequency c¢/s.

(B) R. M. S. NOISE-VOLTAGE = 0.082 volts

Rf = Open Circult

225

200

. 175
150
125
100
75
50
25

242030

242102
242115
2421136
242157
242183
242221
242272
242326
242270

o)

72

85
106
127
153
191
242
296
240

Resistance Rf
(K ohms)

Opén Circuit
225
- 200
175
150
125
100
75
50
25

Mean frequency
in cycles/sec.

242030.5
24k2104.0
242118.0

242139.5
242160.5
242186.5
242225,0
242276.5
242331.0
242276.0

Deviation in
frequency c/s

0
73.5
87.5

109.0
130.0
156.0
19%4.5
246.0
300.5
245,5
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(C) R.M.S. NOISE VOLTAGE = 0.37 VOLIS

99

Resistance Rf

(X ohms)

Mean frequency

in cycles/sec.

Deviation in

frequency c/s

Open Circuit

225
200

175

150

125

100

75

50

242031.0
242112.0
242119.5
2u2146.5
242167.0
24219%.5
242225.0
242276.0
242347.5

0
81.0
88.5

115.5
136.0
163.5
19%.0
2%5.0
316.5

(D) R. M. S. NOISE VOLTAGE = 0,91 VOLTS

Resistance R
(K ohms)

Mean frequency
in cycles/sec.

Deviation in
frequency ¢/s

Open circuit
200
175
150
125
100
75

50

242031.0
242128.0
242154.0
242181.5
242204.0
242238.0
242293.0

2k2358.5

0
97.0
123.0
150.5
173.0

207.0
262.0

327.5
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