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PREFACE

This thesis began as an attempt to clarify
sorie of the notions discussed by J. Isbéil in a paper
delivered at the Kanpur Topological Conference, 1968,
The first section of the second chapter does this.

_ Chapter one contains basic definitions and
faects from category theory. Some of these facts are
known, but are not easily found in the literature.

In Chapter two, after the expansion of some
of Isbell's remarks, there is a discussion of the
category of zero-dimensional, compact, Hausdorff,
Boolean lattices X.BL . A detailed proof is given
to show that there is a dual equivalence between the
category of sets and X,BL . This latter fact is
stated in [2] with a brief indication of proof. It
rust be pointed out that the proof given in this pa-
per also demonstrates that every object in Xeu is

a power of the two element object in K, 8L .
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CHAPTER 1

Preliminaries

This chapter is divided into two sections. The
first section states some definitions and theorems fron
category theory that will help the reader understand
this thesis. The second section provides motivation for

the main body of this paper.
Section 1

In this section the notion of an adjunction is
introduced and some interesting exa:uples are explored.
fterwards, the Adjoint Functor Theorem is stated, the
concept of representability is defined, and the two are

then related.

First some general'ass mptions relating to the
entire thesis rust be stated. Ins will always denote
the category of sets. Categorical duality will always
be denoted by starring; for exarple, if 9( is a category,
then its dual category will be written K*. Let A

and B be categories. If a functor Pt A— 8 is



contrévariant, then F determines the two covariant
functors *F:A *—>B and F*: A—»B*. Therefore
all functors are assumed to be covariaﬁt except where
stated otherwise.

In mathenmatics in general the notion of a func-
tion having an inverse is fundamentally important be-
cause it tells when various structures are essentially
the same. In terms of category theory the notion of a

functor having an adjoint plays a similar role.

Definition: An adjunction is an ordered triple (T,G,@):B—4

where F: B—» A and G: 4—8 are functors and ¢ is a
natural equivalence

¢ =(@pa i(Foya), = (b,0a)g (1.1)
The functor F is called a left adjoint for G, and G is
called a right adjoint for F. The notation Fe———j G will
be used to indicate that there exists an. adjunction
(FyGy 9 ): B—>4 2nd it is to be read as "F is the

left adjoint of G".

In the context of this thesis this defirition is
sometimes unwieldly. The following definition and the two
subsequent propositions provide a more relevant context
for the notion of an adjunction. The proofs of the pro-
positions are common in literature (see MacLane [10] p.116-

121, or Mitchell [11] p.117-119).



Definition: Let G: 4d——=B be a functor and let b be

an object of B. A universal morphism from b to G is an

ordered pair (a,u) where a is an object of A and uib—>»Ga
is a morphism in B such that for any ordered pair (a’,f)
where a’is an object of 4 and fib—Ga’' is a morphism
of B there exists a unique morphisn f'sa—sa’ in A with
¢f'eu = f. This can be pictured in terms of the follow-

ing diagrams:

a b——u——-*G&
Q
EILS &
¥
a’ Ge!

The dual of this notion is a universal umorphism from G to b.

Proposition 1.1 An adjunction (F,G,(p):?B-—-»A deteruines

(1) A natural transformation 7 $1z— GF, called the unit
of the adjunction, which has the property that for any
object b of B the ordered pair (Fb, 7,3 b—=GFb) is uni-
versal from b to G, while for each f:Fb—sa

gf = Gfomy b — Ga (1.2)
(ii) A natural transforration g: FG—>1, , called the
counit of the adjunction, which has the property that
each morphism ¢€; is uwniversal to a from T, while for
each g: b—>Ga

q’"g = anFg:Fb——’a (1.3)



(iii) Both of the following composites are identities
(of G, resp. F).
s o Fa
6 2Lhore 50,  FaleworEi.y (1.4) //

Proposition 1.2 An adjunction is determined by functors

F: B—=>4 and G: 4 —8B and natural transformations
) ¢ 18————>GF and £‘,:FG-—~>1Q such that both composites
(1.4) are identity transformations. Here ¢ is defined

by (1.2) and ¢ vy (1.3). //

Renarks

(i) Because of this proposition, adjunctions are soume-
times written as (F,G,7,€): B—4 -

(ii) Intuitively, Proposition 1.2 describes an adjunc-
tion by two identities on the unit and counit of an

ad junction. This can be visualized by the following

cormmutative diagrams.

G —>GF( F————>FCF
e F

The relationships expressed by the conLutativity
of these diagrams are sometimes called the triangle iden-

tities of an adjunction.



The notion of adjunction has been defined for
covariant functors. Now suppose S: 4—B and T:B—A
are contravariant functors. S and T are called adjoint
on the right if and only if there exists a natural equi-
valence ‘F=%,‘b :(a,Tb)A o (b,Sa)8 . To reduce this to
the usual notion of an adjunction replace S and T by the
covariant functors *S: 4 * —=¥ and T*: B —> 4 *.
Then § becomes (j= (opb,a :(T*b,a),, ¥ (b,*Sa) B *

(iceey @21 =¢b,a ), and hence there is an adjunction

(T*,%5,F )s B——4 *. The unit of tris adjunction is
9 $1;g—>*ST* and the counit is E:T¥*S—1,x . In

terms of § , the unit and counit are g :13—————+ST and
2:14—>TS respectively.

Utilizing the notion of an adjunction, the follow-
ing definitions and proposition extend and clarify the

notion of an isomorphism in- terms of category theory.

Definitions

-

(1) A functor S: 4—— P is called an equivalence of 4

with P if and only if there exists a functor T: P —4
such that 1, = TS5 and ST = 14 .

(ii) A dual equivalence is an equivalence of 4 with 3 *.

(1ii) An adjoint equivalence of 4 with B is an adjunction

(TySy% € )t B—=>4 in which both the unit N 11y —>ST
and the counit ¢&:T8 —1, are natural equivalences.
(iv) A dual adjoint eouivalence is an adjoint equivalence

of A with @*.




Remark Let (T,5,%,€): B—s4 be an adjoint

equivalence. Then since 7 and € are natural equivalences,
"l-‘ and €' are also natural equivalences, and hence the tri-
angle identities €TeTq =1 and S€c7 S = 1 can be written
as T o™ o 7' =1 and 9'SeS ¢! = 1 respectively. These
identities then state that (8,T7,%",¢'):4——¥ is an ad-
junction with i":14»—-»TS as unit and ’l(":ST——MB as
counit. Therefore in an adjoint equivalence (T,S,~1I,£):B—-+A
the functor T: B——4 1is the left adjoint of S: 4 —%
with the unit y and at the sare time T is the right adjoint

of S with unit ¢°'.

The following proposition clarifies the inter-
connection between tle various kinds of equivalences.
For the proof see MacLane [10], P.135-137.

Prorosition 1.3 The following properties of a functor

S: 4 —>B are ecuivalent.
(1) s is an equivalence of categcries.,
(ii) s is part of an ad,join‘t. equivalence
(T,S,"I,i):ﬁ-———s—#i( .

(iii) s is full, faithfull, and representative. //

Rermark A functor S:A——»B is called full if and Aonly
if for any morphism gé¢ (Sa,Sb) there exists a morphism
g’ € (a,b) such that Sg’ = g. S is called faithfull if

it preserves distinctness of morphisms. S is called re-



presentative if for every object b in B there exists

an object a in/l such that Sa is isomorphic to b.

In general in the literature there are nany
examples of adjunctions (T,S,(p):iﬁ——a—A . In order
to make the foregoing material rore rieaningful sone ex-—

amples will now be given of ad junctions of the forn

(Tsss([; )33*—-—>A .

Example 1.1 Let X be a category. Suppose there are

functors O : Kx X —— K1 (X,Y)~~->XOY znd
( )( ):’)4' ~ XK*¥— s K1 (X, Y) XY, Suppose further
there are equivalences ¢

L,Y,
is natural in X, Y, and Z, and \(X Y:X Y = YOX which
b

,H(X0Y,0) = (%,2Y) which

is natural in X and Y. Fix A and put Pay=Pa,n” Oy y2 0o P,y A
where the composite is defizied as the series of natural
equivalences

(X,A ¥) & (X037Y,4) = (YOX,A) 2 (Y,4%)

Hence. the composite is an equivalence q’“:(X,AY) & (v,a%).

For a fixed object A in X define a contravariant
fundtor B K——>¥tX+w A% . fThis defines functors
P*: YK *:X Ao AT 2nd *¥P: K * —5¥ X~ AX,  Then
by the previous assumption on %,

(B0, Dop= (W, 7)0= (1,89 = (0,40, = (x,%71),,.
Hence (*F,F*,t’(’x)\,):'){*——»‘){ is an adjunction and *F —p*;

i.es F is adjoint on the right to itself.



The general setting is illustrated by the following
special cases.

(1) Iet K = Ens. Here O= x, the usual cartesian
product for sets, and AB - {all functions B——»A.} .
Let U, Y,and Z be sets. Any function fiUx Y —>2 of
two variables naturally determines a function ¢f:Y-—>ZU
of one variable (in Y) whose values are functions of a
second variable (in U). lore precisely, % (y)(u) = f(u,y)
for all u ¢ U and for all y€ Y. It will now be shown
that the assign:.ent f~v»¢% defines an equivalence

¢ :(UxY,2) = (¥,2U) natural in X, Y, and 2.

To show that the assignnent frwop is one-to-
one, suppose f ~~~¢ and g~~>¢ . Then for all VYEY
and for all uéeU, f(u,y) =¢ (y)(u) = g(u,y). This in-
plies that the functions f and g are equal. To show
that the assignment f-vv9¢% is onto let ¥ é(Y}ZII).
Hence ¥ :Y—279and each yeY deternines ¥(y) :U—2Z.
Then each uéU deternines ¥(y)(u) € 2. Therefore a
function £3UxY—>2 is defined by flu,y) =¥ (y)(u)
and f ~~~> Yy,

If Y and U are sets, then there is a natural
isomorphisn from YxU to UxY which takes (y,u) to (u,y).
So for a fixed set A, the general setting says that

(U,AY)

2

(Y,4U),
In sumiary, what this discussion shows is that
for a fixed A the functor A ) is zdjoint on the right to

itself.



(ii) Let K be a category of modules over a commuta-
tive ring R with unit. ILet D =& , the usual tensor
product, and let AB = Hom(B,A) as an R-module.

Let 1M, N, and P be R-modules. Any R-bilinear
function f:lMx N—P determines functions T, = f(m,-)
from ¥ to P. Since f is linear in n for a fixed me M,
Tm= £(m,-) N —P is linear, and so T, éPY . Thus the
assignnent m~~v~>'f:" is a function T: M -—»PN . By assunp-
tion f is also linear in m for a fixed ne N and hence

T :M—>PY¥ is linear and so T ¢Hon(1,2V).

The following argument will show that f~>T is an
isomorphism by constructing an inverse for it. Given any
T mM— PV define £ by £(myn) =T (n). Then the li-
nearity of firplies that f(m,n) is linear in m, and
the linearity of each 'fm:N-—»P implies that f(m,n) is
linear in n. Therefore f is bilinear and I ~~~f is
the desired inverse. .

Hence the R-module S of R-bilinear rnappings
Mxal—> P is in natural one-to-cne correspondence with
Hom (11,H'). If M and N are R-modules then recall that
the tensor product of M and N is defined to be the
ordered pair (T,g), where T is an R-module (usually
denoted by T = MEN) and g:lix)N——=T is a bilinear
nap which has the following universality property:

Given an; R-module P and any R-bilinear mapping f:lxl—-P



there exists’ a unique R-linear map f':T——>P such
that £ = f'eg. Now this property implies that every
bilinear function f:M XN——=P in S has the form
f(m,n) = f(me n) for a unique f':T—->P. XNow the R-
bilinear mappings from MXN to P are naturally equiva-
lent firstly to Hon(M,E') and secondly to Hom(M®N,P).
Hence-Hon(M&N,P) 2 Hom(M,B').

Now for any R-modules ! and I there is always
a natural isoriorphism ¢ from M&N to 1T&!I defined by
Pm@n~~~>n@®n. Hence a category of modules over
a coumutative ring R with unit is an example of the
general setting. In this category the functor P()is
self adjcint.

Specializing the exauple cf modules, let X be
a category of finite dimensional vector spaces over a
field K. TFor any object X¢X put P(X) = KX = X*, the
usual vector space dual; i.e., the set of linear func-
tions from X to K. Then T is a contravariant functor
from X to K. By the first part of this exanple F is
ad joint on the right to itself. Since X is finite di-
mensional, the equality X = X*¥* defines natural equiva-
lence X—=TFTFX, and FFX—X (the unit ana counit of the
ad junction). Hence this is an example of a category

which is dually adjointly equivalent with itself.

Before we proceed to our next exanple, a lemra



and its corollary have to be proven.

Lemia 1.4 Zvery diagram in the full subcategory of
Ens consisting of the empty set and the singletons
commutes.

Proof:

Let

a——»b

IR

C———d

be a diagram in this subcategory of Ens.
If a = @, then there is exactly one map a—-»d.
If a # @, then b, ¢, and d are also not empty.

Hence a—>b—+d = a—+rc—>4a. //

Corollary 1.5 Let X be any category and letﬂF,G:?{——+Ens
be functors such that
(1) Fk and Gk are either the empty set or a
singleton for all objects ke X .
(2) Fk # @ if and only if Gk # d.
Then F £ G.
Proof:
Define @k:Fk———>Gk as follows:
Gy= @ if they are both empty.
¢y is the only map otherwise.
For any utk—=>k' the lemma above implies that‘

the following diagram is always cormmutatuive.

Fk—" ok
Ful _ 1Gu
ER i Gr K

oy

it
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e

Hence F = G. //

(iii) Tet X be a pseudocomplenmented lattice. Fix

an object k ¢ X . Let a be an object in K. By de-
finition an object be¢X is the pseudocomplement of

a relative to k if and only if b ={sup x e X :xnask} .
This b is denoted as b = k2 For any object y e X ’
y4b=k%=ank&ynastk., In this exanple let [J=A,
the usual meet in a lattice and let k= = the pseudo-
complement of x relative to k. Notice that (yax,k) # &
if and only if (y,k*) #£ ¢.. Hence by Corollary 1.5 the
two functors k* x X*xX —s»Ins defined by

(ysx,k) > (y A x,k) and (y,x,k) ~~ (y,k* ) are natu-
rally equivalent. In any lattice £ there is a functor
F: ——>J :xAy~>yaAax. Hence by the general theory

there exists an equivalence ¢ = ¢ :(y,kx)uvw»(x,ky),

X
which is natural in x and y; i.e.i’the functor k! !
given by taking pseudocomplements with respect to k

is adjoint to itself on the right.

Specializing the previous example of a pseudo-
complenented lattice let X be a Boolean lattice. In
this case let k = 0, the least element of the lattice.
Then for any object xeX , 0¥ = x' the complenment of x.
The functor O( %.RF—*k'is then sinply the order inverting
map of taking complenments. Since (a')!' = a in a Boolean

lattice, 0' 'is actually a dusl equivalence. This is the

familiar self-duality of Boolean lattices.
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Example 1.2 (Stone Duality) Let Ba be the category of

Boolean spaces and their continuous maps. Let B2 be

the category of Boolean lattices and their homomorphisms.
Let B: 8o —s 8L be the functor which maps any Boolean
space X to its Boolean lattice of open-closed sets BX.
For any f:X——Y in B4, let Bf:BY—BX be the map

A mrnr 1 (A) where A is any open-closed subset of Y.

Let n: BL* —— R, be the functor which maps any Boolean
lattice L to its Stone space L. For any h:X——Y in
BL,0h:flY——QOX is the map Us~sh~1(U) where U is
any ultrafilter in Y. Then B—.Q and B and fxprovide
an equivalence of R, with Bi*.

Proof':

BX is a Boolean lattice since finite unions,
finite intersections, and complements of open-closed
sets are again such sets. Bf is a Boolean lattice homo-
morphism since f~1(AAB) = £-1 (A £=1(B), =1ar) = £=1(a),
£ (ave) = 7 (a) v £77(8), and B(£5) = (Bf) ().

Consider the functor n:u*_;»&, defined
above. Here QAL is the ultrafilter space of L. Its
topology is generated by the basis{Uéane_Q%:_ﬂa for ael:
since firstly,_n_an 'Qb =(L 5 pp» and secondly,
a,b¢U = a',b'eU=a'Ab'e U = _(zau.n.b =Ll ov b

Ll is a Boolean space; i.e., it is zero-
dimensional, corpact, and Hausdorff.. To see the zero-

dinensionality notice that a=0¢ =(L aunn,é., and that
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Bg ALy “Lhppey =5 (= g implies that (0 g)" = {lgre
To prove the Hausdorff property let U and V be the ultra-
filters and suppose U # V. Then there exists an a¢ U
where a¢V. Hence a€eU and a'e V, which implies that

U ¢ _()_a and V ¢ ﬂa" To prove the coumpactness property

5 _ _ 0. 0
consider X ¢ L where ()= aké)X {l; and suppose () 2 g p ~a
for all finite F¢ X. YNow - vy =_Q,VF. The assump-

F finite

tion that Nyp ¢ implies that there exists a Uell
such that VF ¢ U. This implies that (VF)' ¢ U which in
turn implies that O # a] A....A a'p €U for F ={aq,...,2y} < X,
Eernice X' generates a proper filter which is contained in
some ultrafilter U, But there exists an a ¢X such that acU,
which is a contradiction since a' is also in-U. Therefore
L L is compact.
With respect to the action of) on maps, notice that
f“(U) is an ultrafilter since if a é f‘1-(U) then f(a) ¢ U, so
f(a)'e U and hence a' e £~1(U). The map f is continuous
vecause (0)~1(n,) ={U: (o) (0) e }=fviaes~1 ()} ={U:t (a)e U]
'—'«O-f(a)' Notice also that Q(fg) = (Nf)(Qg).
Now define7) :1&-——»9.13 and :TWB.Q. as
follows.
Nyt X—>NBXa v~ {V2a €V EBX )
EL:L-———>B$LI.:C ey ), = {U:c eUé.ﬂ.g .
The following argurient will show that nas de-

fined above is a natural isomorphism. For U € BX,

'Y)X-1(_{LU) = {a:U € W’IX(a)_II = {a.:aéU; = U.. So7 is
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continuous. Next, let f:X——Y € ®) . To prove the

naturality of it must be shown that the following

diagram connutes.

'qx ’QY

e . QBY
LBX TR

Note that for any open-closed set V, Bf(V) = =1(v).
Then for f:X——Y, Bf:BY—-——>-BX:Vavm-‘:f"1 (V). Hence
for any wltrafilter U, Bf: ABX—s0BYU s {T:s™ 1 (V)eU |
Then 7x(a) is mapped to {'\I:aef"'(v));:{;\l:f(a) 3 V}: rle(a).
Therefore ABf» '7]X = ‘f[Yof, and the diagram comuutess.

To finish the argument it remains to show that
Nx is one-to-one and onto for each X. This implies
it is an isoriorphism because the spaces are compact.
Let a # b where a,bé X Then there exist open-closed
sets U,V in BX such that a ¢U, beV, agV, b¢U. Hence
*r)x(a) £ X(b) and therefore - is one-to-one. Now for
any U € Q1 BX there exists an a evr?UV by compactness.
So U ¢ W]X(a) and therefore U =1 X(a) since U is an ultra-
filter. Hehce ‘VX is onto. This concludes the proof
that 1} is a natural isomorphisn.

The following argument will show that g€ as pre-

viously defined is a natural isomorrhisu. That £is a
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Boolean lattice homomorphism comes from the facts
that N, Ny =000, U0 =0, 0, =0,
and O = _O_L. It will now be shown that ﬁL is one-
to-one and onto for each L. This will then imply
that €7 1is an isomorphism for each L. First, £1(c)
is open-closed since _g_(': =0, Let ¢ # d, where
¢c,del, then cad<cvd. To show that E‘L is one-to-
one, it is sufficient to produce an ultrafilter con-
taining one but not the other. Now cad< cvd inmplies
(evd) A(cnd)' £0. So there exists a U e ol with
(cvd)Aa(end)'e U. Then cvde U; also, (c)\d)'e U
and hence cad éU. Thus UeE L, q2ndU¢ N nge
Since Do =g implies Lpra = S oua this shows
‘Q'c # _Q_d. SL is onto, since suprose EC€NL is an
open-closed set. Then ¥ = aLe)LIL&- compact implies
Z=n-a, U ...U_Qak= "q'a,v...Vak; i.e., the 0, are
exactly the open-closed sets.

Let f:X——>1L-¢Bl . To prove the naturality

of it must be shown that the following diagranm conrutes.

Now Qf: QL ——=(1K:U Avs £=1(U) and hence
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BLf:B2 K—>BORL: € ~o> {Usf~(U)e £} . S0 Q,

is mapped ’co@:f"1 (W) e _Qajx={U:f(a) éU}: ‘O"f(a)'

Therefore BAfe €K = €Lef, and the diagram commutes.

This concludes the proof that € is a natural isomorphism.
What has been shown is that 'nzlaé————»llB

and €:1, — B are natural equivalences. Eence

BL* _
by Proposition 1.2 there is adjoint equivalence between
Bae and PL*. //

Example 1.3 (Galois Correspondences) Let/A and$ be quasi-

ordered catesoriec. ILet S:f—=s3 and T:B—>4 be
order~inverting functors. Tren S and T will be adjoint
on the right if and only if for all objects a e« and for
all objects be B ,

b £Sa inB iff a ¢ Tb in 4 (1.5)
Proof:

Assume S and T are adjoint on the right. This
implies that there is a natural equivalence (b,Sa).:B = (a,Tb)'f( .
Because 4 and § are q{zasi—ordered categories any hon set
has at most one elernent. Therefore b ¢ Sa in 8 iff a £ Tb
in ,4 .

Conversely assume b € Sa in B iff a ¢ Tb in A
and notice that this is equivalent to the assumption
b £Sa in® iff Tb ¢ a in 4*. If (b,Sa).B = ¢ then also
(Thya)a* = . If (b,Sa)m # ¢ then also (Tb’aXA* # J.

Therefore by corollary 1.5 there is a natural equivalence
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(—,S-).03 = (T-,—l4* and hence T and S are adjoint on

the right.

The unit and counit of this adjunction are de-
fined by the inequalities N 31y —> ST:b ¢ STb and
S:TS-———le*:TSa ¢ a. These conditions come from
(1.5) by letting a = Tb and b = Sa respectively.
8imilarly, the triangle identities of the ad junction
are defined by the inequalities Sa < STSa < Sa and
T <€ TSTb £ Tb.

. Because the relations on 4 and B are only quasi-
orders, it is not possible to renlace the ordering
syumbols of the triangle identities by equality signs.
If the orderings on A and B are partial orders, then
the triangle identities become S = STS and T = TST
respectively. If the orderin s are only quasi-orders
then all that can be said is that tlie unit of the ad-
Junction is the inequality b ¢ STb, tle counit is the
inequality 7Sa £ a and the inequalities Sa < STSa < Sa
and Tb < TSTb € Tb afé the triangle identities connect-
ing the unit and counit.

An adjunction (T,S, P): B——>4 * where sT5 = §
and TST £ T is calied a Galois correspondence between 4
and B . Note that for ény Galois correspondence, (74 caﬁ

always be defined by the relation b ¢ Sa in B iff Tb < a

in 4. 74
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The ‘previous definitions and exanples naturally
lead to the question of when a functor has an adjoint.
The following discussion gives necessary and sufficient

conditions for a functor to have a left adjoint.

Definition ILet 4 and B be categories and let T:B———-»A

be a functor. A set of objects {Si}iel in 8 is called
a solution set with respect to T for an object a in 4
if and only if for any object b in § and for any mor-
phism a— s T(b) in 4 , there exist morphisms a—s- T(s;)
in 4 and d3s;—Db in B for some i € I such that the

following diagran connutes.

a >T(s.)
T)

T(b)

For tiie proofs of the following theorem and its

corollary see Mitchell i1] p. 124-126.

Theoren 1.6 (Adjoint Punctor Theoremn)

| Let T: B—>.4 be a functor where J is complete
and locally' small. Then T has a left adjoint if and
only if it is a limit preserving functor which admits

a solution set for every object in 4 . //
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Corollary 1.7 (Special Adjoint Functor Theorem)

If B is a complete and locally small category
with a cogenerator, then T: R —s>4 has' a left adjoint
if and only if it is limit preserving. //
Remark The importance of Corollary 1.7 is that it points
out circumstances under which the solution set require-

ment can be relaxed.

Another inportant categorical notion is that of
represgntability. The definition will be followed by
the Yoneda lenna which presents some basic information
about representability. A proposition will then be
stated which explains the connection between represent-
able functors and those functors from an arbitrary
category into Zns which have adjoints.

Definition Let & be a category. A functor S:4——Ins

is called representable if and only if it is naturally

equivalent to a hom functor H® = (a,-/4 for scme object
acd.

For the proofs of the following three lemmas
see lMacLane @.@p.82—83. :
Lemria 1.8 (Yoneda)

Let S:/£-;——>Ens be a functor and let r be an

object of 4 . Then there is a bijection

Y: ( (r’—)/-% ’S)Yat = S(I‘) (1'6)

which sends each natural transformnation i s(ry-)——>S

to & 1., the image of the identity 1.:r—-r. //
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Corollary l.é

Let r and s be objects of,4 . ZEach natural
transformation (r’-Z&—_—_*(S’-lk has the form (f,-)
for a unique fir —»s. _ //
Now consider the functor 53/4*———>£m3 as an
object in the functor category Ens’*, and consider
(8,r) as an object in the category Ens*x4&. Define
an evaluation functor
E:EnsAk/%-—a>Ens:(S,r)A**ﬁSr
:(F:S—8",fir—>r') v (P(£) :Sf —>S' F)
Define a functor N as follows
I:EnsAx;&-———>Ems:(S,r)«~»((r,—lﬁ 5) 14t
$(FiS—>S',fir—1r') ~w((f,—24 ’F)Nat
Lemma 1.10

The bijection (1.6) is a natural equivalence
y:N——E between functors N,E:Ens®x 4 —sIns. TFor a
morphism f ¢ 4 , the correspondence (fes—r)na ((fy=):(ry=)—>(s,=)
is a faithful functor

Y: A%—»Ine?

(1.7)
called the Yoneda function. Its dual is the faithful
functor

| Y':/4-——ﬂ>EnS/4* (1.8)

which sends f:s r to the natural transformation

(‘sf)=A*—*EnS:("as%y—_* ("11"?4- //

There now remains one special case of an ad joint
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functor that has to be discussed. This section of the
introduction will therefore conclude with the following
proposition.

Proposition 1.11 Let T: d —sEns be a functor. If T

has a left adjoint, then T is representable.
Proof:
Let S be the left adjoint of T. Then there is

a natural equivalence (S"'Z4 g (- Let 1 be a

’T")Ens'
one element set in IEns. Then the equivalence becomnes
(s1,-) ¥ (1,7-). Also lims = (1y=). Composing with T,
this becomes T & (1,=)eT = (1,7-).

« Then the equivalence (Sl,-) £ (1,T-) £ T implies

that T is representable by Sl. ' It



Section 2

By way of introduction, let .4 be an equational
class of finitary algebras and their homnoumorphisms. ILet
6 be the full subcategory of 4 generated by the free
algebras with finite basis. This section will show how
to extend a product preserving functor A:6% — Ens to a
limit preserving functor A: 4 * — Ens. After the intro-
duction of functor categories, the Yoneda Lerma and
Proposition 1l.11 then inmply that there is an equivalence
between AQ and the functcr category of linit preserving
functors from 4% to Ens. For any categories B and £,
the Special Adjoint Functor Theorem (Corollary 1.7) will
be applied to the category of lirit preserving functors
from $H* to B , which is denoted B(‘g*) « This will
lead tc a proposition'about a categorical equivalence be-

"
2" and a category K of certain pairs of fune-

BGF@

tween
tors. It is the functor category and the lgtter
equivalence that will be studied@ in Chapter 2 of this

thesis.

Propositicn 1.12 Let A ve an equational class of finitary:

algebras and let & be the full subcategory of all finitely

23
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generated free A- algebras. Let S:0@——>Ens be a
contravariant functor which takes coproducts to products.
Then S can be extended to a limit preserving functor T
from ,4* to Ens.

Proof:

Let F4 :Ens——> 4 Dbe the free ,4- algebra
functor. Let © be the full subcategory of A whose
objects are all the Fqk, ke N. Now SFyk = (5P, 1)X,
For convenience put X = SF4 1. Let (f’()dé be the

I

operations and let (n*)«e be the type of algebras in A .

I

s0 Sh,:X*———» X, and there is an algebra A = (x,(snﬁ()‘,lé I).
Clain: AcA.
Let p be an elenent of tlie absolutely free alge-

bra F.with n basis elements Zq3e+e9Z,+ In any algebra B of

n
A write p(bq,...,by) (b; € B) for the inmage of p with

respect to the map F———B defined by Zy "W‘“’bk’ and
write py for this function. To prove that A €A it must

be shown that Py = Qy for all p and q where pFAn = q&n.
Take any p e F and define 'p':FA l——=F 4n by

5(}(1) = p(Xyyeee9x,). If it can be proven that Sp = Py

then pFAn = qFAn will inply p = q which in turn implies
Py = qA which establishes the claim. _

It will now be shown that Sp = The copro-

pA'
duct in A is defined by iL’FA 1——-——>FAn wher.e, ik(x1) = Xy
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k=1,...yn are the injections. Now the facts that
S(FA n) = X* and that S takes coproducts to products

imply that Sip= pry. Also, pr = (Zk)A end i, = Ek‘

Therefore 5z = (zk)A and hence Sp = Py holds for Zye

Next, if Sp = 1

P = fd(p1,...,pn*) where f; is an operation in F. Then

holds for Prsees ,pn“ consider _

B(x1) = £, (B1aeeerPy) (Xyseeerxy)

fo\(p1 (X1""’Kn)”"’pnd(x‘l""’xn))
. = fq (51 (XT)""’Sn,i(X”)'
_ Now Ek:FA l——F,n, S0 Sﬁk:SFAn~——>SFAl’and hence

h,., - 5. .o ls-n“
Bplo—i8 omn

>FA n

Xq g (Xg g 0oy Xy ) o2 £y (Dg (%) 50 ,End(xﬂ)
we have Sp = Sh, (8PN ...A8p, ) = Sua(rqyNe.enpy 4).
(The last equality comes from the fact that SEA =P, for
p1,...,pn¢.) FOT aq9y..92) Xn,

Sg(a-]’o'.,e.l,l) = shd(p1(a1,o;o,an),ooo,pni(atl’-o,an))

I

£i(pqseeesny J(agseeesay) = plagyeeeray),
since Shyis the oth operation of A . This implies Sp = D,
and therefore A é ,4 .

Define T: A*—»Ens by putting TB = (B,A)
for the algebra A defined alove,
Claims: T and S agree on 9.

Any object in © can be written as FAk for some
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: . |
keN. then TRk = (151)¥ = (z,1,0)% = x¥ - (sB,1)F = 53 x
implies that T acts the same on objects as S. To show
that T and S are the same on rorphisms take a. morphism
h:]skl———»— F and consider the following conrmutative

diagran (where u is any morphism in (FAD,A)).

(FA'“)A)g >{§1,A) U AMrirn e 4 R
|

(FAJ,A)
"m ‘ uﬁ{x)
X > X

[RNRHEN WSS $ R u 04, v o, UGG

Now, if h =p with peFm then Sh = Sp = Py 5 and,

Py (ulxy) .0, u(x )) = u(p(xl,...,x )) = u(k (x1)).

Hence T acts the same on the nmorrrnisms of 6 &s S does.
Therefore tle contraveriant functor S: 8 ——Ins

which takes coproducts to rroducts has been extended to

a functor T:/* —s Zns which preserves limits. //

In order to allow the discussion to proceed in
a snooth way, some definitions have to be formulgted.

Definitions

(1) Let N and ' be categories. A functor
Jt h'—> & is called codense if and only if each

object in X is a colinit of objects JD' where D' is
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an object in ¥'. If &' is a subcategory of S and
JsPH'——> P 1is the embedding functor, then F' is
called a codense subcategory of & .

(ii) A functor category is a category whose

objects are functors between two given categories

and whose morphisms are the natural transformations
between the functors. It is usually assumed that the
natural transformations between any two given functors
form a set and not a proper class. If D and B are
cetegories, then the functor category whose objects

are the functors between & and B is denoted “&2 .

Remark Since linit preserving functors play an im-
portant role in much of the following, let Bw) denote
the functor category whose 6bjects are the limit pre-
serving functors from & to B , and whose morphisms

are the natural transforrnations between these functors.
In this case it is possible to replace the restriction
that the natural transformations between any two func-
tors form a set by the weaker restriction that the
category ® has a codense subcategory KBH', where the
objects of &' form a set and not a proper class. The
point involved is that the functors involved are linit
preserving and hence their values on the objects of o

are determined by their values on the objects of B£°'.
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Proposition 1.13 Let & be any category. Every functor

o (A .
in 5  has a left adjoint.
Proof:

. : Y]
Since every functor in §

is linit preserving,
it is enough to show that A * satisfies the hypothesis
of the Special Adjoint Functor Theorem (Corollary 1.7).
A has a generator, namely the free 4 - algebra
with one basis element. Hence 4 * has a cogenerator.
Claim: A % is complete.
| This will be divided into two parts.. It will ke
sho& that 4 has coequalizers, then it will be shown
that A4 has coproducts.
Let Q= (4,(f,),q)r L= (By(fu) e and let
u,vi ——>0 ¢ A . Tae coequalizer of u and v will
now be constructed. Put
E ={(u(p),v(b))poe L}, Let © be the
smallest congruence on (1 for whiclk A is contained in
the kernel of the natural map 7<O:OL-————a-0€@ . It

will now be shown that X is the coequalizer of u and

-
V. Assume that there exists an f: Ol — X €4 for
which fu = fv. DYNow fu = fv=y A <ker(f) => 6¢< ker(f). -
Hence by the second isomorphism theorem for algebras,
there exists a unique w: /6 —> X such that Wc;xb = f.

Now for coproducts. Let{A, :den be a set

of algebras in A . It is required to prove that they
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have a coproduct. Let {X,L: 4¢ Ay be a set of disjoint
sets. Let X =}4X¢ . Let FX be the free algebra with
basis X, . Suppose there are morphisms p, sFX; —>A,
which are onto, and with kernel &, .

Define Jj, :FX——FX by natural injection
where FX*is taken as a subalgebra of FX. Let © be the
congruence generated by the 6, . Take A = FX/0 and let
ViFX—> A = F%/6 be the natural homomorphism.

Now the kernel of each vjy contains &, . Hence

there exist i, 34— A such that the following dia-

gram conrutes.

It will now b’e denonstrated that A is the
coproduct of {:A«: o e..f\.)x . Supprose there are morphisms
{f,3A4—»B: de A} . The sets X, are disjoint and
there are morphisns {f*opﬂ:FX,;-—-'»B: aen Y. Now,
since FX is free, these extend to h:FX{—>B defined
by th,(: f“.p"‘\Xd° Now ker(h)2 6, for all & ; hence,
there exists a nmorphism fi:A——B such that h = fv.

Then fy = fi, and hence f is unique. Hence A,* is complete.

It recains to discuss the hypothesis of co-local
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smallness for A » = 3N [7] Isbell proves that A is
colocally small. I

Remark Propositions 1.11 and 1l.13 together say that
S . :
in particular each functor in Ens (4%) is representa-

*
ble; hence, there is an equivalence of 4 with Ens(“‘“ .

In the previous proposition it was §hown that
any limit preserving functor A: A *——> P has a left
ad joint. Conversely, by corollary 1.7, if a functor
: A:'A ¥ > P has a left adjoint then A is limit pre-
serx;ing. Define a category X as follows. The objects
of X are ordered pairs (T,S) of functors, where St 4 *—-T0
is limit preserving, and where T 33——»-/4* is a left
adjoint of S. The morphisms of X are ordered pairs of
natural transformnations (T,¢) whefe 'C:.T—vT' and

g:S—— S' are natural transformations which are de-
fined for objects (7,8),(T7',8') € X . Composition is
the usual composition of natural transformations.
Remark If T——S and also T'——S, then there exists

a natural equivalence otT & T' (Mitchell [11'_\ p.124).

Proposition 1.14 There is an equivalence of ,Bwjand 7( .

Proof:
Define zp:‘}(-—»b(#):('l‘,s) ~r» S where T —S
‘ 1((t,7)2(T,8)—>(T',5')) ~~>( 715 — ')

where € and ¢ are natural transformations.
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Now & is clearly. well defined. It will now
be proven that § is an equivalence of ¥ with 08('4*)
by showing that ¢ is full faithful, and representative.

Let €£:5——>3"' ¢ ;';)(4") . By Proposition 1.13,
S and S' have left adjoints, say T and T' respectively.
From Mitchell 11] p.122 it is known that there exists
a unique natural transformation T:T——T'. Then
(ty0):(T7,8)——>(T',S') is natural in X and G(Ty7) =7
Therefore ¢ is full.

Now suppose (T,7),(?',¢')e X where we can
assume £ ZF ' without loss of generality. Then
¢ (vyr) = Zo' =¢(t',0'). As an aside, notice that
if T2’ this forces ¢ %¢' since (in the above notation)
T——-AS, T'——S',and T2 T' inmplies 0= 7' by ldtchell
L0] p.122. Eence ¢ is faithfull.

By Proposition 1.13 each object S € ,%(A*) has

e left adjoint say T.. Therefore (T,35)é X and g(1,s) = s.

Therefore § is representative. Fid

Corollary 1.15 If & is replaced by Ens in the proposition
then there is an equivalence 4 & s 2 R =
Proof:

The first equivalence is clear from the remark
preceeding the definition of the category 'K « The se-

cond equivalence is clear from the proposition. P
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Intuitively, the corollary points out that
the equivalence between 4 and X assigns to each ob-
ject aed a pair of functors (T,S) where T—§
and where a 64 is a representing object for the limit
preserving functor S:A ¥ —>FEns. Conversely, each
such pair (7,S) has connected to it a representing
object aGA « When & is not the category of sets,
it makes no sense to talk about representing objects.
The closest analogy is to discuss those pairs of adjoint
functors which are nmembers of the category X . 1In order

to proceed, some definitions rust first be nade.

Definitions

*
(1) The functor category ,&@‘) is called the category
of A~ algebras in & .

(ii) Next, given categories B and & , proposition 1.14
and the foregoing definition motivate the idea of defining

a - object in® as a functor F: &y ¥ — B which pre-

serves linmits.

It is important to notice that each limit preserv-
ing functor F: § *—»8 will have an adjoint because
suitable assuriptions will be made on P g Therefore,
whenever it is convenient, the category ‘8(‘8*) may be
replaced by the equivalent category 9( Chapter two will

discuss some of the properties of a functor category Bw ).



CHAFTER 2

(&)

Some FProperties of Categories of the Form 13

This chapter is divided into two sections. The
first section will continue the discussion of the functor
category Eﬁfﬁ) which began in Chapter one. All the
categories involved will be assumed complete, locelly
small, and to have cogenerators. The generztor property
involved will later be stated explicifly. Th.e second
section will specialize the discussion to the functcr

M

(
category B,,_BL)where Bl and B. are the categories of

Boolean lattices and Roclean spaces respectively.
Section 1

The purrose of this section is to generalize
a situation for topological groups. An object in the
category of topological groups may be thought of as an
underlying set TG together with two structures naking
TG a topological space and a group iﬁ a coupatible way.
Functors F. and Fy cen be defined from the category of
topological grougm;ﬁﬂto tie cateaory of topological

spaces j, or to the category of groups‘é, by mapping any

33



topological group to its underlying space or to its under-
lying group respectively. Zach of these functors may be
followed by the underlying set functor U, which maps any
space or group to its underlying set. The point about all
this is that the process is cormrutative; i.e., the follow-

ing diagram is comrutative.

Ty B ;4
Fy

6—-—” B~

It is this comrutative situation that will be
generalized. TLet Band Dbve categories with distinguished

objects B and D respectively. Define hor- functors as

follows:
HB: B——>Ins:B' ~s (B,B')g = HE (B')
HP: j —— Ens:D' s (D,D'), = ED (DY)
o (%)

In the ne}it few paragraphs functors VB : B —B
and VB :‘{B('B )—-—’-,,8 are defined so that the following

diagram comrutes in some sense.

&
\
&

Vg He (2.1)

b 4
%

'
¢

34
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Proposition 2.1 For any object A in pH¥*, evaluation at

. (&%
AlsafunctorEA:B —_— .

Proof:

For any object X in B(M put E , (X) = X(4).

For any morphism & $X—Y in ]B(Sr put
E (&) = o(a):X(A)——7Y(4).
This makes sense becaused is a natural transformation
from X to Y. By the definition of a natural transforma-
tion, EA preserves identities. By the definition of
composition of natural transformations, Zp preserves
composition.

Hence E , is a functor. £/

Define Vg as the evaluation at the distingsuished

B B ix s x(D),

object D of Lji.e. Vg
To define V"Ej :Bm*)—y,ﬁ proceed as follows.

Forn the cornposite HPX: §%* —»Ins. The functor HB X

is a conposite of limit preserving furctors and there-

fore (by corollary 1.7) it has a left adjoint. Hence by

Proposition 1.11 it is representable. For each XGBLEM

choose a representing object v&_(x) in & for the composite

functor HBX.

Proposition 2.2 Vy as defined above is (the object

- g
function of) a functor B“ﬁ)-—pf} .
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Proof:
To define V;,:x on morphisms proceed as follows.

Let o :X——Y be a morphism in B(‘E*). Form the compo-
sites HBX and HBY and choose as representing objects
V&,(x) and Vg(Y) respectively. Sincedis a .natural
transformation, -HBa( is a natural transf_ormation from
1Y to EBY. By corollary 1.0 HP« has the form (f,-)
for a unique morphism f:Vg (X)——»VOD(Y). ’.?u‘t V&(d) = f.
By the unigueness of f, Va(c() is well defined.

" The fact that Y&satisfies the axions for a func-

tor comes from the facts that HBox and 4 are natural trans-

fornations. // -

Eoch X €8 hLas a left adjoint, say X¥. Then,
by adjointness, HBX is represented by X#B. Hence,
HDV,(X) = (DyVg(X))y = (Vg (X),D)ox
2 (x#B,D),. ¥ (B,X(D))g
= (B,Vy(X))g= HPVH(X).
The naturzl equivalence of (VE:(X)’D)&* and (X#B’D)J:—)* cones
from the uniqueness of lthe representing object. The

natural equivalence of (X#B,D and (B’X(D))B comes from

et
the fact that X' —X. Therefore EDV(X) and EBV,(X).
are naturally equivalent for each X ¢ ‘@(&ﬂ . HOssen-
tially what this argunent says is that the functor
(&%) ) ~
B: 87 ——ns:X «~~>(B,X(D))8 z (D’V&X)ﬁ

has been defined so that the composites IIBVB and H.-DV’Ij are
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naturally equivalent functors. Intuitively, for each

W
limit preserving functor X € ®®’, HBX is an object in &
on the set S = HPX(D) and X(D) is an object in B on the

same set S.

- Consider diagram (2.1). There are two topics
that must be discussed with respect to this diagran.
These are existence and uniqueness. For existence it
will be shown that if W: R * —Ens is a representable
functor and if V is an object of B such that HB(V) = w(D)
then W can be lifted to a limit preserving functor
X: % —> 8 with #PX = W and X(D) = V. Por uniqueness
it is necessary to show that if VB(X) = Vg (X') and
Va(X) = VQ(X!) then X ¥ X'.

Uniqueness will be considered first. In order
to proceed, some definitions have to be made.

Definitions

(i) An object D in a category & is cailed a (Preyd)
generator for X if and only if the functor

B: § — Ens:D! ~~>(D,D'), is faithful; i.e., for
any distinet morphisms f,g:E——>F in & there exists a
morphism e:D——E such that fe # ge. ‘
(ii) Let F and E be objectsin a category & . T is called
a proper subobject of E if and only if there exists a

monomorphism F—>% which is not an isonorphism.

b |
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(iii) An object D in a category & is called a Grothendieck

enerator for & if and only if for any object E in J and
for any proper subobject F of E, there .exists a morphism
e:D—E which does not factor through F.
Remark In Isbell[5]it is proved that in a locally small
and co-complete category & , an object D is a Grothendieck
generator for & if and only if no proper subclass of the
class of objects of & includes D and is closed under the
formation of colimits. Thus every object of X can be
constructed from D by transfinitely iterated formation
of colimits.

Now the theorer: about uniqueness can be stated
and proven.,

Theorer. 2.3 If Be B is a generat.or and Def is a

Grothendieck generator, then Vg (X) and Vg (X) determine
X € 28('&*) up to natural equivalence; i.e., if HBX 2 HEX!
and X(D) £ X'(D) then there exists a natural equivalence
kX = XY,
Proof:

Let X,X' € ZB(‘B*) and assune X(D) = X'(D). Then
Ap = 1:X(D)——>X'(D) is a natural equivalence between
X and X' on the full subcategory of {* consisting of the
one object D. ‘

Next suppose d:XiR——-——-b-X'IR is defined
and is a natural equivalence between X and X' for a full
subcategory R of &, where D¢ Y . Since D is a Grothen-

dieck generator, every object in & can be written as
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an iterated coliuit of D. Hence, to prove t'he theoremn,
it is sufficient to extend 4 over one more object Q
which is a colimit of a diagram E in R .

Let Q = lim E where E:iJ—=R with hi:E(i)-———rQ
the colimit maps. By the assumptions on X, the functor
X takes this to XQ =_dim XE with Xhi:XE(i)——-'XQ the
limit maps. By assunption d is a naturavl equivalence;
hence, XQ =, 1im X'E with the 1linit maps fjeXh; where
81 = dE(i)‘ Since X' takes colinits to limits, it is
also true that X'Q = lin X'E with linit naps Xh;. By
the uniqueness of limits this induces a unique isomorphismn,
?:XQ"———»X'Q where $;Xh; = X'hy .

By assunption 1By 2 uBxe, Then, since uB pre-—
serves lirits HB(e) must be of the fornm HBXQ—’-HBK'Q.
Extend ® to a«' by putting dq = . Now the transformation
o' :Xh(r ——"X'IR' formed from & and olQ is natural because
HBo' is natural and HB is faithful. (Note:EP is faithful

because B is a generator by assumption.) Vi

Now for existence. In addition to the previous
assunptions, assune furi':her that in 8 tke following con-
dition holds. For any object B' in 8 and for any bijection
£1HB(B')—» S in Ens there exists an object B'' in B
and an isomorphism :iB——=B'' in 8B such that HB(qi) = {s

This is called the transportability assumption.

Theorern 2.4 Let Wi R* ——Ens be a representable functor
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and let V be an object of B such that HB(V) = W(D).
Assume further that the following conditions hold.
(a) D is a generator.
(b) Every morphism from D to a copower of D
is a coordinate injection.
(c) For every object Y of B and for every sub-
set S of HB(Y) the subfunctor h§ of hy whose
values hS(Q) consist of all f:Q—Y such
that HB(f) factors through S, is represent-
able.
Then, W can be lifted to a limit preserving
functor X: £* —»8 with HPX = W and X(D) = V.
Proof:

Let I.D be the I-th copower of D. Define
X(I.D) = V.I. By the transportability assumptiion
there is an I-th power object on the underlying set
W(I.D). By assunption (b) this arfects the lifting
from Ens to B for the full subcategory of copowers of
D.

Since D is a generator any other object D' in
is an epimorphic image of the copower H(D'),D = D' .
Hence W(D') is z subset S of W(|D' ). Iow X(D') can
be constructed in X(|D' ) by (e¢). This takes care of
all the morphisms from D to D'; i.e., tle coordinates
of |D|]—D' are napped to coordinates of X(D')—-X(ID').

l"orphisms from a copower I.D to D' are described by their
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coordinates D—=D' and are mapped accordingly.
For any D'——D'', X is defined on tle compo-
site D|——>D'—=D'' which naps to X(ﬁ")-——-»V.ID'I .
Since HP takes this to a map factoring through W(D'),
it factors uniquely through HP(D').
Claim: X is a functor.
| X has been properly defined for objects and
morphisms. It remains to show that if
BA:D''—>D'''——=D' is a norphisn in g,
then X( g« ) = X(«)X(p ) in B.
For X( g« ), X is defined on the composite
D'|—sD''—>D' which maps to X(D')—V.|D"'].
For X(ﬁ) and X(4 ), X is defined on the respec-
tive composites D'''—=D' and D''—>D''' which
nap to X(D')—=V.|D''" and X(D''')—V.ID"'| .
Now V.|D''|——>X(D''') is an identity. EHence,
X(a)X(g) = X(D')——=V.[D"'| = X( gat ).
Cleim: X is linit preserving.
Yow HBY = W by construction.. Then HSX = W takes
colimits of ® to limits in Ens. Since EP is a
hon functor, X preserves the linits in p¥*.

Hence W has been lifted to a limit preserving functor

X: i*—>8 . . | A

Theoren 2.3 makes use of the facts that D is a
Grothendieck generator and that B is a generator. The

following example shows that it is not possible to weaken



this hypothesis so that B and D are both generators.

Exauple 2.1 Let B and & be complete lattices with

more than one atom. Let D and B be the least elements
of & and B respectively. Then X(D) (the greatest
element) and uBY are essentially the same for all X
but not all X are isomorphic.

Proof:

Every object of Jy and B is a generator since
any hom functor gD’ (for D'e® ) or HB' (for B' €8 )
is trivially feitkful. Trivially, because any hon
set in X or B has at most one element. There is no
Grothendieck generator in a complete lattice. To see
this let C be an atom of the lattice and notice that
the zero of the lattice is a proper subobject of C.

An object E (different fromAthe zero) cannot be a
Grothendieck generator for the lattice because there
does not exist a map £—>C. The zero of the lattice
cannot be a Grothendieck generator because any nap
from the zero can be factofed through the suﬁobjects
of any object.

Let X,X! é‘B(at)and let D be the least elenent
of &. Then X(D) = X'(D) since a complete lattice has
a unique greatest elerent. Now HBX(D') has exactly

one element for any object D' €& because any. hom

set in a lattice contains at most one element and

42
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By(pr Byr(po
B £ X(D') for all B¢B, D'e¢d. Then H X(D') and HEX'(D')
are isomorphic for each object D'e€ D . The fact that
not all X G‘BbB) are naturally equivalent comes from
the fact that if this were so it would irzply that any
two lattice homomorphisms between two given complete

lattices would be naturally equivalent and therefore

equal, //

-~

In ending this section, it must be pointed
out that Isbell in [6] shows by counter-exariple that
these theorens do not apply in the case where B = & =,

the category of topological spaces.




Section 2

Considering the remarks made in introducing
the first section of this chapter, this section will
show that the ideas developed in Section 1 provide a
true generalization of what is intuitively expected
in the case of topological groups. The procedure
will be to show that this situation holds in the gene-
ral case of topological algebras. This section will
then proceed to study in detail some aspects cf one
such category of topological algebras, nanely the
category X,8l ‘whose objects are the zero-dimensional,
compact, Hausdorff, Boolean lattices.

To begin with, let A be an equational class
of algebras of type T, let T be the category of topo-
logical spaces, and let T4 be the category of topologi-
cal A - algebras.

*x
Proposition 2.5 There is an equivalence H % 'J"LA).

Proof:

We prove in detail part of this assertion.

For A = (¥,(£,),, I,o)e3—4 let the underlying
algebra of A be denoted by A = (Y,(fd)*el).and let the

underlying topological space of A be denoted.by Ag = (v,0).

44
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For Be A , let EB,A] be the space with the under-
lying set (B,Aa)‘ and with the subspace topology from AS'B'.
For h:B——>B' ¢ 4 , let [h,}i] be the map ﬁ3' ,Jﬂ—»[B,A] tUsuch,
The map u~-uch is continuous since prb(uch) = u(h(db))
= p‘rh(b) (u) is continuous. Then it is clear that there
is a functor [—,A]:A* —7.

Take a space X. Define an algebra (X,4) as follows.
The underlying set of the algebra is the set of all con-
tinuous functions f:X-——»As. The operations of the al-
gebra are functionally defined; i.e., for the functions
LIERETRLI the operations @, (uq,... ’un,\) 2 X—A  is
defined by the composite mapping

WN e NUa, oy f

X . = *As

X M(u,‘ (x),...,un*(x))mfd(u1 (x),...,un“(x)).
This map is continuous since A is a topological algebra.
For a continuous wiX——=X' let (w,A) be the nay
(X' yA)—>{X,L) sun~> Uow. The HED U newo UsW is continuous
since
épd(u1 S5 &S ,un‘)cw = f‘ (u1n...nun$)aw
=f *(u1own...r\undew)
= @, (u1ew,...,un; w) .
Hence there is a functor {(-,A): T— 4*.
It is clear that [-,A} and (-,A) are adjoint on the

right where the correspondences (X, [B,A])———= (B,{(X,A))

are given by h ~~— 1k where h(b)(x) = h(x)(b) and feunwg
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where &(x)(b) = g(b)(x). Hence [—,A—_Ie"I(A*).

Next, for h:A——C¢"J4 the mabs [B,.&]—»[B,C]
defined by U~~~ hou are continuous since pry(hou)
= h(u(b)) = (hepry)eu for each beB. Thus there exists
a natural transformation [,h):[-,A)——[-,B]. So in
all, we have defined a functor (5: 'it(;—'—%—fl(A*) where
BA =[-,4) and gh =[-,nl.

This P is faithful. To show this take h,k:A—»CeJ4
with h # k. Then there exists an acA where h(a) # k(a).
Take B free on{xq) in 4 and wiB———4, with u(xq) = a.

' Then.h.u £ keu. Thus (\}h)B # (ﬁ%k)B; hence, gh # B k.

It will now be proven that g is full.l For any
natural trensformation t:[-,A}——>[-,B], we have the na-
tural transformation si(-,A3)——(-,B;) on the level of
underlying sets, and hence by the dual of Proposition 1.9,
s has the forn (-,f) where f:Aa———»Bae/é(;. In particu-
lar, sFlz(Fl,Aa)————-—r(Fl,Ba) tun~~sfou is the underlying
set map of tFl:[Fl,A]'—r[Fl,B]. Since we can show
(which is omitted here) that An~——w[Fl,A] and A ~oAg
are naturally equivalent functors, this shows that f is
continuous; i.e., fsA—>B € T4, and t =[-,f].

It remains to show that {3 is representative.
Given any GE€ q(’**), let X = GFl. Operations @:xn“__»x
are defined by ¢,= Gh, where h, :Fl1—PFn :h(x,) = fa(x‘l"-"xn ).
Then A = (X, (¢, )aeI) is a topological algebra of the re-

quired type. That in fact Ae‘:l(é follows, by considering
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underlying sets, from the proof of Proposition l.12.
Then, G and [-,A] have isomorphic valueé for Fl since

X = GFl and [Fl,A] % Ag = X. lMoreover, for the under-
lying set functor U: %/ —Ins we have UG = (-yAg) by
the proof cf Proposition 1.12, and hence the hypothesis
of Theorem 2.3 are satisfied with B8=7, £= ,4 s D =F1,
and HB = U. It follows that G 2 [-,A]. At

In order to link this discussion with the
earlier discussion, notice that the distinguished ob-
jects in the categories 7 and A are the one point space
and the Iree a‘lgebra on one generator respectively.
With the natural forgetful functors F:, and FA from ZI{
to J and 4 reslﬁectively, and with the added catesory
equivalence $ , we now have from diagran (2.1) on p.36

the following dizgran.
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In order to show that the new d(_efinitions
generalize the usual procedure for topological al-

~

gebras, it is necessary to show that F;& £ Ykoﬁ and

FEI 4 m70§.

Proposition 2.6 Fu = VP
Proof:

To begin with it must be remarked that Y$ is
defined so that (B,V4G) £ UGB is natural in G and B.
For A€JA , ga = [-,4]. Hence (Vaop)A = V, ([-,40).
Thus, by the above remark, (B,Z%F.A) = U[B,a] = (B,Aa)
is natural in B and A. Hence ViopA & A, = 34 A 1.e4,

Vo= By - //

Proposition 2.7 F,J = v,Jo(g
Proof:

For Ae T, V() = [F1,4] 2 4g = Pg (4).
Hence'Vjo€= Fog . _ » //

These two propositions have shown that the new
definitions provide a true generalization of the usual
definitions associated with a topological algebra. As

mentioned in the introduction to this section, attention



will now be focused on the category K,Bl of zero-
dimensional, compact, Hausdorff, Boolean lattices.
Let By be the category of Boolean spaces and let BL
be the category of Boolean lattices respectively.
As a general notational convenience, if L eX,BL ,
then let LS and La denote the underlying space or
lattice respectively.

Proposition 2.8 X B QB@(BV)

Proof:

In the context of topological algebras «®, B
can be considered as a full subcategory of all topo-
logical Boolean lattices. By theorem 2.5 there exists

’I(Bm . Tor A€X.,8, [B,4 is a closed
RSB,

anemuwﬂameﬁﬁﬁ
subspace of AS'BI, hence Boolean. Thus [,Ale
Next, given the limit preserving functor T:BI* ¥, ,
then the construction of A ¢ 7BL such that ,A)% T (this
is a special case of the previous general discussion)

shows that Ag = T(Fl). Thus A_€¢RBs and so AecX. B . //

Among the limit preserving functors from BL*
to B is the Stone Dualify functor. The following
proposition proves this fact in a way that points out
that 2 € XoBl corresponds to this fﬁnctor under the

equivalence described in the previous proposition.
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Proposition 2.9 The Stone Duality functor H: BlL*—s3,

may be defined as that functor which maps any Boolean
lattice I to Hom (I,2,) ¢ 2JH.,

Proof:
Define G:ﬁip-—+33£:x‘~w¢(x,2s) where (X,2g) is taken
as a Boolesn sublattice of 2AXl
$(£:X—Y) ~— ((¥,25 ) —(X,25 ) tg o g £)
Now Gf(gvh) = (gvh)ef = (gef)v(hef). Also
Gf(gah) = (gah)ef = (gef)a(hef), and Gf(a') = Gf(a)'.
Therefore, as defined, Gf is a lattice homomorrhism.
Recall from example 1.2 that the functor S: Be — Bl
was defined to be the functor that mapped any Boolean
space X to the Boolean lattice of its open-closed sets.
Define .;(:S-——-ﬂ»G:SXfw\-)G}I:A~u~~~9)(,A where XA is
the characteristic function for A (as a subset of X).
Claims ‘AX is a natural eguivazlence between S and G.
It is clear that QXX is an isomorphism for each
X €%, Tt remains to chesk the naturality. For

fi:X——Y €8 consider the following diagran.

N § »GY
SX —= GX



Then Gfody(4) = GfeXy = Ayt

A (£1(8)) = o

Also dyo5f(A) (a)
| 1if £(x) € A
Note that ¥zeX, %, ef(x) =}, (£(x)) =(o if £(x) £ A

Hence 'onf = ’X’f.i(A) and therefore GfootY = o(X°Sf.

Iz}

Define H: Bl ——BotL v (1,2,) € 2

This H is just a specific example of the functor

[-4A] of the previous discussion in Proposition 2.5.
Recall from exanple 1.2 that the functor

T: Y ——Bse was defined to be the functor which

maps any lattice L to its ultrafilter space (L L.
Define Y:T———»H:TLMHL:UMIU,

where XU is the characteristic function for U.

Claims: ¥ is a natural equivalence between T and H.
Fii‘st, it will be shown that KL is a homeo-

morphism for each L € B@.. . In order to prove that XL
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is continuous, it suffices to show that all praoYL for a L

are continuous. Now praoer(U) = pra(’X,U) = ]Y,U(a).

= §4(V), s0 that proey. = ¢)_. Then 9,71}
={U:(Pa(U) = l} =(U:ZU(a) = l} =[U:an6.ﬂ_}= Q. Also
CPa"" {o} = (ﬂa)' =, Thus qﬂa is continuous and

therefore all DI, e XL are continuous. Therefore Y. is



continuous. Note that if ¥ € (L,Za) then Uy =1-1{ﬂ
is an ultrafilter. Now, Uy, 6 = TU and xUl = X . Hence
the mappings U M’X,U ahd L ~~~>Uy are inverses.
Therefore 'UL is one-to-one and onto. Hence, because
TH and HL are compact Hausdorff spaces, - T(L is a homeo-
morphisn. |

It remains to check the naturality of Y .

Let f:L——K and consider the following diagran.

K Ye > HK

T
T T
TL »HL

1N

Let Ue TK. Then erYK(U) = HE XU = ;L'Uf. Also

= -1 T — -
Therefore B’Lon = Hf -~ ?{K and hence the diagram comuutes.
Therefore ¥ is natural.

But ',}iUf = xf-i(

This completes the proof of this proposition.

The rest of this thesis will concern itself

with comparing the categories Ens and K. 8L,

//
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Define P:Ens —— X,BL:X a~o 2%, where 2 is the two
elenent object in )MBJ),.
:(f:X—rY)W(Pf:ZY——-»ZX:u«ww)uof),

Then P is a contravariant functor.

Lemma 2.10 P is faithful.

Proof:

Let f,g:X~—>Y where f ¥ g. Then there exists
an xeX such that f(x) # g(x). Now Pf,Pg:2Y———é—2X,
hence for ue2’ and xeX, pryePf(u) = ﬁrx(ucf) = u(f(x))
and pryePg(u) = pry(usg) = u(g(x)). since £(x) # g(x)
there exists a ue2Y such that u(f(x)) # u(g(x)), (for
example u = yﬁf(xﬂ P

Thus pryePf # pryePg and hence Pf # Pg. Vid

Lerma 2.11 Any norphisn h:2x-——e>2 in 74@% is a pro-

jeetion.
Proof':

This proof will first show that h factors
through a projection 2X—»2Y fror vex, v finite.
Then X may be assumed finite and the-proof of the
proposition will then be given.

Note that h=1{1}is an ultrafilter Uy,. Since
h is continuous, Uh is open-closed and hence it is a

neighbourhood of 162X.



54

For x€X, put U, = p]_c'1 {171 . Now Py is a
projection; hence, it is continuous and therefore
Ux is open-closed.

Note that xfe\x Ux = {1}0 In a compact Hausdorff
space X any filter basis T of closed neighbourhoods
of a €X with vfé}?v = [a} is a basis for the neighbourhood
filter of a¢ X. This inplies that there exist
Xp9eee9X € X such that Up2 Uxif\ e an.

It must now be shown for the restriction map
rs2X— 5 HiseeesXad that if u,ve2X and if u(x;) = v(xg)
for i = 1,...4n then h(u) = h(v). If this holds then
g:Z{X“""X“} — 2 can be defined by ge.r = h, where g
will then be continuous trivially (since its domain is
finite).

Now u(xi) = v(xi) implies uvv'e N U, so h(uvv') =1
and therefore h(u)vh(v)' = 1. FHence h(u)3s h(v). By
symmetry, also h(v)z h(u). Hence h(u) = h(v).

Eence h factors as 2X-—r—»2{x‘ ""’X”Y’-——g—>2.

Fow to prove the proposition. Suppose for each
x¢X, h  py. Hence there exists a u e oX with h(uy) # u, (x).

Now, if ux(x) = 1, consider u. instead. So it may be

x
assumed that uy(x) = 0 and h(ux) = 1, for each x. Using
the assunption that X is finite put u =A u . Then

u(z) =N u,(z) = 0 implies that u = O for all z¢X and

h(u) = 0. Also h(u) = A h(u,) = 1 which is contradictory.
Hence h = py and therefore any h:2x——>2 in ")(oﬂ is

a -projection. //
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Lerma 2.12 PiEns—X, 8 :X awwn 2X is full.

Proof:

Let h:2X —» 2Y be a morphism in X, 8! and
consider any projection py:ZY———> 2. (X¥ote that
if p, = p,ys then x = z'.) Then pyh = px-
Define u:Y—=X:u(y) = x where Pyh = py; i.e., Pu(y) = Pyh'
Then Pu:2X — 2Y: 4 ~nsPu(l) = tu.

h. //

So pyPu = Pu(y) = pyh implies that Pu

The following lerra points out the importance
played by the. two element object in X, Bl.
Lemma 2.13 Any object A € K. Bl is isowmorphic to 2(4,2)

Proof:
Define 'q:A-————>2(A’2) by B(x)(¢) = ¢(x) for
xeA and @€ (A,2). Now A is compact andq is cohtinuous;
hence, the image is closed.
Claims 7 1s dense. ’This will then imply thatv is onto.
The standard basic open sets of Z(A’Z) are
given by distinet {iyeeey ¢y Y9seeey Py €(4,2) consist-
ing of all f¢2(A4+2) such that £(¢;) = 1 and £(¥;) = O.
To show that there is a q(x) anong these, an x € A nust
be found such that ¢;(x) =1 and l}’i(x) = 0. Putting
Uy = ¢, '{1} and V5 = ¥,;7 {1} this says that an xe 4
mist be found such that xe€ f\Ui and x'e N Vj. Now, since

U # Vy for all i and j,nUi$Vj for each j.(fix j; pick
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z; € Uj with zj € V.5 then Vzy belongs to NU; and

j;

(Vz4)! =/\z;{ € Vj). Hence X € NTU; with % er, and

J
for x =ij, xeNT;, x' = szénvj.
Claims '7] is one-to-one.

Let a,bé A where a,b # 0, and a # b. Then
to show 7](a) # 7 (b) notice that 7(x)(¢) = ¢(x), and
hence this amounts to finding a ¢€(A,2) with §(a) # ¢ (b).
It is a known fact (see for intance [1]) that any A ¢X, %!
is pro-finite. Hence there exists an hiA——B in 7(,13@
where B is finite and h(a) # h(b). Then there exists
g:B——> 2 such that g(h(a)) # g(h(b)). Then goshe (A,2)

and it maps a and b differently. //

The following theorem sumarizes and finishes
the present discussion of K, &!.

Theorem 2.14 The functor P provides a dual equivalence

between Ins and X, BL.
Proof: '

PiBns —> KBl :X—s 2% is a full, faith-
ful'and representative contravariant functor by lemmas

2.12, 2.10, and 2.13 respectively. Therefore it defines
dual equivalence between Ens and K, BL. //
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