HEAT TRANSFER IN POLYMER MELT FLOWS

by

ENNO ERIC AGUR, B.A.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree
Master of Engineering

McMaster University
April 1978

MASTER OF ENGINEERING (1978)
TITLE: Heat Transfer in Polymer Melt Flows
AUTHOR: Enno Eric Agur, B.A.Sc. (University of Waterloo)
SUPERVISOR: Dr. J. V1achopoulos
NUMBER OF PAGES: xvi, 266

The heat transfer problem of polymer melts flowing through narrow channels and tubes has been studied. Four types of flow with constant temperature boundary conditions were examined:
(i) drag (or Couette) flow between parallel plates,
(ii) Poiseuille flow between parallel plates,
(iii) Poiseuille flow through a tube with circular cross-section, and
(iv) drag flow between converging plates.

In each case, the equations of conservation of mass, momentum and energy were solved simultaneously by the implicit finite difference method. A power-1aw temperature-dependent viscosity model was used and viscous dissipation was taken into account. Velocity and temperature profiles, pressure distributions, bulk temperatures and local Nusselt numbers have been calculated and are presented as a function of the axial distance along the channel. Results obtained by using the power-1aw temperaturedependent viscosity model were also compared with the power-1aw temperature-independent viscosity model and the Newtonian, constant viscosity model results.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge my gratitude to my research supervisor, Dr. John Vlachopoulos of the Department of Chemical Engineering. His patience, guidance and encouragement made this research project very interesting and enjoyable.

I would also like to express my appreciation to others who helped:

To the National Research Council of Canada which provided financial support in the form of a post graduate scholarship and research grants;

To Ms. Debbie Sanché who typed this manuscript, and
To my wife, Anne, for her patience and encouragement. It is to her that I dedicate this thesis.

CONTENTS

1. INTRODUCTION 1
2. LITERATURE SURVEY 3
2.1 Laminar flow through a tube with circular cross-section 3
2.2 Other flow geometries 7
3. GENERAL MOMENTUM AND HEAT TRANSFER ANALYSIS 23
3.1 Conservation equations 23
3.2 Constitutive equation 25
3.3 Method of solution 27
3.4 Convergence, stability and step size 30
4. DRAG FLOW BETWEEN PARALLEL PLATES 32
4.1 Mathematical formulation 32
4.2 Computational procedure 40
4.3 Convergence, stability and step size 44
4.4 Results and discussion 45
4.5 Concluding remarks 60
5. POISEUILLE FLOW BETWEEN PARALLEL PLATES 64
5.1 Mathematical formulation 64
5.2 Computational procedure 74
5.3 Convergence, stability and step size 78
5.4 Results and discussion 80
5.5 Concluding remarks 97
6. POISEUILLE FLOW THROUGH A TUBE WITH CIRCULAR CROSS-SECTION 99
6.1 Mathematical formulation 99
6.2 Computational procedure 111
6.3 Convergence, stability and step size 115
6.4 Results and discussion 116
6.5 Concluding remarks 129
7. DRAG FLOW BETWEEN CONVERGING PLATES 131
7.1 Mathematical formulation 131
7.2 Computational procedure 145
7.3 Convergence, stability and step size 149
7.4 Results and discussion 151
7.5 Concluding remarks 171
8. CONCLUSIONS AND RECOMMENDATIONS 173
REFERENCES 176
Appendix A. DERIVATION OF FINITE DIFFERENCE EQUATIONS 182
A. 1 Drag flow between parallel plates 182
A. 2 Poiseuille flow between parallel plates 185
A. 3 Poiseuille flow through a tube with circular cross-section 188
A. 4 Drag flow between converging plates 192
Appendix B. THE LOCAL NUSSELT NUMBER 198
B. 1 Derivation of the local Nusselt number 198
B. 2 Calculation of local heat transfer coefficients from 200 plots of local Nusselt numbers
Appendix C. FINITE DIFFERENCE APPROXIMATIONS OF DERIVATIVES 201
C. 1 Derivative at node 1 202
C. 2 Derivative at node 2 203
C. 3 Derivative at node m 205
C. 4 Derivative at node M 206
C. 5 Derivative at node $\mathrm{M}+1$ 207
Appendix D. ALGORITHMS FOR SOLVING SIMULTANEOUS EQUATIONS BY GAUSSIAN ELIMINATION 211
D. 1 Thomas' method 211
D. 2 Gaussian elimination to solve continuity and momentum equations in Chaps. 5 and 6 213
D. 3 Gaussian elimination to solve continuity and momentum equations in Chap. 7 216
Appendix E. ANALYTICAL SOLUTIONS FOR A NEWTONIAN, CONSTANT VISCOSITY FLUID 222
E. 1 Drag flow between parallel plates 222
E. 2 Poiseuille flow between parallel plates 225
E. 3 Poiseuille flow through a tube with circular cross-section 228
E. 4 Drag flow between converging plates 231
Appendix F. PROGRAM LISTINGS 233
F. 1 Drag flow between parallel plates 234
F. 2 Poiseuille flow between parallel plates 241
F. 3 Poiseuille flow through a tube with circular cross-section 248
F. 4 Drag flow between converging plates 254
3-1. Finite difference grid 28
4-1. Drag flow between parallel plates 32
4-2. Finite difference grid 35
4-3. Development of temperature profiles 47
4-4. Development of temperature profiles 48
4-5. Bulk temperature vs X 50
4-6. Bulk temperature vs X 52
4-7. Bulk temperature vs X 53
4-8. Local Nusselt number vs X 54
4-9. Local Nusselt number vs X 55
4-10. Local Nusselt number vs X 57
4-11. Local Nusselt number vs X 58
4-12. Local Nusse1t number vs X 59
4-13. Local Nusselt number vs X 61
4-14. Local Nusselt number vs X 62
5-1. Poiseuille flow between parallel plates 64
5-2. Finite difference grid 68
5-3. Development of temperature profiles 83
5-4. Development of temperature profiles 84
5-5. Bulk temperature vs X 86
5-6. Bulk temperature vs X 87
5-7. Bulk temperature vs X 88
5-8. Bulk temperature vs X 89
5-9. Bulk temperature vs X 91
5-10. Local Nusselt number vs X 92
5-11. Local Nusselt number vs X 94
5-12. Local Nusselt number vs X 95
5-13. Local Nusselt number vs X 96
6-1. Poiseuille flow through a tube with circular cross-section 99
6-2. Finite difference grid 104
6-3. Development of temperature profiles 120
6-4. Bulk temperature vs Z 121
6-5. Bulk temperature vs Z 123
6-6. Bulk temperature vs Z 124
6-7. Local Nusselt number vs Z 125
6-8. Local Nusse1t number vs Z 127
6-9. Local Nusselt number vs Z 128
7-1. Drag flow between converging plates 131
7-2. Finite difference grid for continuity and momentum equations 135
7-3. Finite difference grid for energy equation 140
7-4. Development of velocity profile 153
7-5. Pressure distributions 154
7-6. Development of temperature profiles 156
7-7. Bulk temperature vs X 158
7-8. Bulk temperature vs X 159
7-9. Bulk temperature vs X 160
$7-10$. Bulk temperature vs X 162
7-11. Local Nusselt number vs X 163
7-12. Local Nusselt number vs X 164
7-13. Local Nusse1t number vs X 166
7-14. Local Nusse1t number vs X 167
7-15. Local Nusselt number vs X 168
7-16. Local Nusse1t number vs X 169
7-17. Local Nusselt number vs X 170
A-1. Finite difference grid 182
A-2. Finite difference grid 185
A-3. Finite difference grid 188
A-4. Finite difference grid 192
B-1. Temperature profile for flow between two parallel plates 199
C-1. Finite difference grids for derivative estimation 201
E-1. Drag flow between converging plates 231

TABLES

2-1. Summary of literature 8
4-1. Step sizes for finite difference program 44
5-1. Step sizes for finite difference program 79
5-2. Comparison of dimensionless bulk temperatures and local Nusselt numbers 80
6-1. Step sizes for finite difference program 116
$\mathrm{C}-1$. Estimates of $\mathrm{F}^{\mathrm{I}}(\mathrm{y})$ using finite difference formulae 210
E-1. Pressure distribution for drag flow of a Newtonian fluid between converging plates 232

NOTATION

Dimensions and units
The absolute system of dimensions (mass-1ength-time-temperature)
is used, and the units are normally SI (Système International d'Unités) units:
m mass, kg (kilograms)
L length, m (metres)
$t \quad$ time, s (seconds)
T temperature, ${ }^{\circ} \mathrm{C}$ (Celsius) or K (Kelvin)
E energy, J (joules)
F force, N (newtons)

Variab1es

A constant in constitutive equation (3.13), $\mathrm{Pa} \cdot \mathrm{s}^{\mathrm{n}}$.
$A_{m} \quad$ coefficient in finite difference equations, dimensionless.
a inside radius of circular tube, cm.
B constant in constitutive equation (3.13), K^{-1}.
$B(X)$ dimensionless distance between converging plates, Eq. (7.7).
$B_{m} \quad$ coefficient in finite difference equations, dimensionless.
$\mathrm{b}, \mathrm{b}(\mathrm{x})$ distance between plates, cm.
$\mathrm{C}_{\mathrm{m}} \quad$ coefficient in finite difference equations, dimensionless.
$C_{p} \quad$ specific heat of fluid, $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
D diameter, cm.
$D_{m} \quad$ coefficient in finite difference equations, dimensionless.
$\mathrm{E}_{\mathrm{m}} \quad$ coefficient in finite difference equations, dimensionless. $\mathrm{F}_{\mathrm{m}} \quad$ coefficient in finite difference equations, dimensionless. $G_{m} \quad$ coefficient in finite difference equations, dimensionless. $\overline{\mathrm{g}} \quad$ gravitational acceleration, $\mathrm{m} / \mathrm{s}^{2}$.
$\mathrm{H}_{\mathrm{m}} \quad$ coefficient in finite difference equations, dimensionless. $h \quad$ heat transfer coefficient, $W /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$.
$\mathrm{k} \quad$ thermal conductivity of fluid, $\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$.
L length, cm.
M number of grid divisions perpendicular to the direction of flow on the finite difference grid.
number of grid divisions in the direction of flow on the finite difference grid.
n power-1aw index, dimensionless.
P dimensionless pressure, Eqs. (5.7), (6.9) and (7.7).
$\mathrm{p}^{\mathrm{n}} \quad$ dimensionless pressure at column n on finite difference grid.
p pressure, Pa.
Q volumetric flow rate, $\mathrm{cm}^{3} / \mathrm{s}$.
q heat flux, w / m^{2}.
R dimensionless radial distance in tube, Eq. (6.9).
r radial distance in tube, cm .
T temperature of fluid, ${ }^{\circ} \mathrm{C}$ or K .
$\mathrm{T}_{\mathrm{o}} \quad$ temperature of fluid at the entrance of channe $1,{ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\text {bulk }}$ bulk temperature of fluid, ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{\mathrm{m}} \quad$ melting temperature of polymer, K .
$T_{W}, T_{w 1}, T_{w 2} \quad$ wall temperatures, ${ }^{\circ} \mathrm{C}$.

$\overline{\bar{\Delta}} \quad$ rate of deformation tensor, Eq. (3.10), s^{-1}.
$\Delta \mathrm{a} \quad \mathrm{a}_{2}-\mathrm{a}_{1}$, in which 1 and 2 refer to two control surfaces.
η shear viscosity, Pa•s.
$\eta_{m}^{n} \quad$ shear viscosity at node (m, n) on finite difference grid, Pa.s.
θ dimensionless temperature, Eqs. (4.6), (5.7), (6.9), (7.7).
$\theta_{\text {bulk dimensionless bulk temperature. }}$
$\theta_{m}^{n}, \theta 1_{m}^{n}, \theta 2_{m}^{n}, \theta P_{m}^{n}, \theta Q_{m}^{n}$ dimensionless tenperature at node (m, n) on finite difference grid.
$\nu \quad \frac{\mathrm{n}+1}{\mathrm{n}}$
$\pi \quad 3.14159 \ldots$
$\rho \quad f l u i d$ density, $\mathrm{kg} / \mathrm{m}^{3}$.
$\overline{\bar{\tau}} \quad$ viscous stress tensor, Pa.
${ }^{\tau} y x \quad$ shear stress in the x-direction and acting on the plane perpendicular to the y-axis, Pa.
$\phi_{m} \quad$ coefficient in finite difference equations, dimensionless.
$\psi_{\mathrm{m}} \quad$ coefficient in finite difference equations, dimensionless.

Subscripts

a refers to an average heat transfer coefficient.
$m \quad$ refers to a row in the finite difference grid.
o refers to the entrance of the channel.
$x, z \quad r e f e r ~ t o ~ l o c a l ~ h e a t ~ t r a n s f e r ~ c o e f f i c i e n t s . ~$

Superscripts

n refers to a column in the finite difference grid.

Overscripts

- refers to a vector.
$=\quad$ refers to a tensor or matrix.

Dimensionless Groups
$\mathrm{Gz} \quad$ Graetz number $\equiv \frac{\mathrm{wC}}{\mathrm{p}}$.
$\mathrm{Nu} \quad$ Nusselt number $\equiv \frac{\mathrm{hD}}{\mathrm{k}}$.
Re Reynolds number $\equiv \frac{\rho u D}{\eta}$.

Mathematical Conventions
$\frac{D}{D t} \quad$ substantial derivative; $\frac{D T}{D t}=\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z}$.
$\nabla \quad$ vector differential operator.

CHAPTER 1

INTRODUCTION

The heat transfer problem for fluids flowing through narrow channels and tubes has been studied quite extensively and many publications have appeared in the 1iterature. Both Newtonian and non-Newtonian fluids have been treated by either approximate analytical or numerical methods. A large number of papers published thus far, however, report only velocity and temperature profiles inside the channel without any mention of the heat transfer coefficients involved. These analyses can be used for such things as the determination of temperature rise due to viscous dissipation, and the influence of the power-law index on velocity and temperature profile development. The publications that include heat transfer coefficients are mostly restricted to cases of limited applicability. For instance, some deal with dilute polymer solutions where the heat generated by viscous dissipation is neg1igible. Others do not include temperature dependent rheological laws. In most cases, average heat transfer coefficients have been reported. Local heat transfer coefficients are presented only in a few papers.

The objective of this thesis is to develop a systematic and comprehensive heat transfer analysis of polymer melts flowing through narrow channels and tubes. Four types of flow with different temperature boundary conditions will be examined:

1. drag (or Couette) flow between parallel plates,
2. Poiseuille flow between paralle1 plates,
3. Poiseuille flow through a tube with circular cross-section, and
4. drag flow between converging plates.

In each case, the equations of conservation of mass, momentum and energy are solved simultaneously by an implicit finite difference method. A temperature and shear rate dependent viscosity model is used and viscous dissipation is taken into account. The velocity and temperature profiles, bulk temperatures and local Nusselt numbers are calculated along the length of each channel.

aHAPTER 2

LITERATURE SURVEY

2.1 Laminar Flow through a Tube with Circular Cross-section

Most of the studies available in the literature on heat transfer to fluids flowing through narrow channels and tubes are for tubular geometry. Other flow geometries including flow between parallel and converging plates will be reviewed in the next section. Since the flow of polymer melts is laminar, this literature review is restricted to those publications dealing with laminar fluid flows. Also, since polymer melts are non-Newtonian, most of the papers reviewed deal with nonNewtonian fluids, with the exception of some earlier papers.

In the literature, the problem of heat transfer to fluids flowing through narrow channels is often referred to as the Graetz-Nusselt problem (33). It was Graetz (24) in 1885 and Nusselt (47) in 1910 who first presented solutions to the following problem: A fluid flows with a fullydeveloped laminar parabolic velocity profile in the $+z$-direction in a circular tube of constant radius R. In the region $z<0$, the fluid is at a constant temperature T_{0}. At $z=0$, the fluid passes into a region where the tube walls are held at a constant temperature T_{W}, greater or smaller than T_{o}, for all $z>0$. The problem can be described by the following differential equations:

Momentum: $\quad \frac{-d p}{d z}+\frac{1}{r} \frac{d}{d r}\left(r \tau_{r z}\right)=0$

Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial z}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+{ }^{\tau} r z \frac{d u}{d r}$

with the accompanying boundary conditions:

$$
\begin{array}{ll}
\text { at } \mathrm{z}=0, \mathrm{O} \leq \mathrm{r} \leq \mathrm{R} & \mathrm{~T}=\mathrm{T}_{\mathrm{O}} \tag{2.3}\\
\text { at } \mathrm{z}>0, \mathrm{r}=\mathrm{R} & \mathrm{~T}=\mathrm{T}_{\mathrm{w}}
\end{array}
$$

Both Graetz and Nusselt obtained the temperature profiles $T(r, z)$ in the flowing fluid by an approximate analytical method. They assumed that the viscosity was constant and ignored viscous dissipation. Graetz obtained the following expression for the average Nusselt number:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{a}}=\frac{2 \mathrm{wC} \mathrm{p}}{\pi \mathrm{~kL}}\left[\frac{1-8 \psi_{1}(\mathrm{X})}{1+8 \psi_{1}(\mathrm{X})}\right] \tag{2.4}
\end{equation*}
$$

where $\quad \mathrm{Nu}_{\mathrm{a}}=$ average Nusselt number
$\psi_{1}(X)=$ convergent infinite series of exponential functions in $\frac{\pi k L}{4 w C_{p}}$

In 1951, Brinkman (7) presented an approximate analytical solution to the above problem, taking into account viscous dissipation. In addition to the constant wall temperature problem, he also solved the adiabatic wall problem. However, no Nusselt numbers were reported for either case. Bird (4) in 1955 extended Brinkman's solutions to include non-Newtonian fluids which obey the power-law relation. More recently, approximate analytical solutions for non-Newtonian fluids have been presented by

Lyche and Bird (33), Toor (67, 68), Schenk and Van Laar (57), Whiteman and Drake (72), Bird (5), Gill (22, 23), Foraboschi and Federico (15), Matsuhisa and Bird (37), Martin (36), Šesták and Charles (59), Mitsuishi and Miyatake (44), Smorodinskii and Froishteter (60), Sukanek (62), Koyama, Kanamaru and Wada (29), Galili, Rigbi and Takserman-Krozer (18), Sundaram and Nath (63), Faghri and Welty (13) and Pearson (51). Their work, in addition to others which will be discussed later, is summarized in Table 2-1.

The analytical solutions found in the literature are very complex, as they consist of converging infinite series of exponential functions. When the series are slow to converge, the solutions usually are not very accurate. However, with the advent of high-speed computers, it has become possible to solve the Graetz-Nusselt problem numerically. The finite difference method is most commonly used. Numerical solutions found in the literature include those by Gee and Lyon (20), Christiansen and Craig (8), McKillop (38), Christiansen, Jensen and Tao (9), Morrette and Gogos (45), Forsyth and Murphy (17), Kim and Collins (28), Forrest and Wilkinson (16), Vlachopoulos, Larocque and Ho (71), Mahalingam, Tilton and Coulson (34), Mahalingam, Chan and Coulson (35), Winter (74), Popovska and Wilkinson (53), and Nunn and Fenner (46). Their work is summarized in Table 2-1.

An alternative method which follows Lévêque's approximation has been used in several papers. The method is discussed here for the sake of completeness, since it is relevant to dilute polymer solutions and not to molten polymers. In 1922 Lévêque (32) solved the same Newtonian
fluid flow problem as did Graetz and Nusselt, except that he assumed the velocity profile near the wall to be linear. His final result was:

$$
\begin{align*}
\mathrm{Nu}_{\mathrm{a}} & =1.75 \mathrm{Gz}^{1 / 3} \tag{2.5}\\
\text { where } \quad \mathrm{Gz} & =\text { Graetz number }=\frac{\mathrm{wC}_{\mathrm{p}}}{\mathrm{~kL}}
\end{align*}
$$

It should be noted that temperature profiles cannot be obtained from this method. Lévêque's approximation has been extended to non-Newtonian fluids by the use of empirical corrections to account for temperature dependence of viscosity and the effect of free convection. Solutions using this method have been presented by Pigford (52), Metzner, Vaughn and Houghton (39), Metzner and Gluck (40) and Oliver and Jenson (48). In all of the solutions, viscous dissipation has been neglected. For this reason, the derived equations are not relevant for molten polymers, but are acceptable only for dilute polymer solutions where the heat generated by viscous dissipation is negligible.

In addition to the papers discussed above, four review papers have appeared in the literature, namely those by Metzner (41), Porter (54), Astarita and Mashelkar (1) and Winter (75). A recently published book by Middleman (43) contains a discussion of heat and mass transfer to flowing polymer melts. There is also a discussion of heat generation and heat transfer in polymer melt flows in a paper by Pearson (50).

Few papers have been published which report experimentally measured temperature profiles of molten polymers flowing through circular tubes. These include papers by Griskey and Wiehe (25), Saltuk, Siskovik and

Griskey (56) and Bassett and Welty (2). Here, the experimental results obtained have been compared with theoretical predictions made by other investigators.

2.2 Other F1ow Geometries

Studies involving flows through geometries other than circular tubes have been covered less extensively in the literature. Drag flow between paralle1 plates has been studied by Tien (65), Turian (69), Gavis and Laurence (19) and Winter $(73,74)$. Poiseuille flow between paralle1 plates has been studied by Prins, Mulder and Schenk (55), Tien (66), Suckow, Hrycak and Griskey (61), Vlachopoulos and Keung (70), Payvar (49), V1achopoulos, Larocque and Ho (71), Cox and Macosko (11), Winter (74), Sundaram and Nath (63) and Pearson (51). Both approximate analytical and numerical solutions have been presented. They are summarized in Table 2-1.

Very little has been reported in the literature about drag flow between converging plates. Schlichting (58), Bergen (3) and Tadmor and Klein (64) have obtained analytical solutions for the velocity profiles and pressure distribution of a Newtonian fluid. Huebner (27) has obtained velocity and temperature profiles for a Newtonian fluid using the finite element method. As yet, no work on non-Newtonian fluids has been published in this area.

Table 2-1. Summary of Literature

Investigator(s)	Ref.	Fluid	$\begin{array}{c}\text { Viscous } \\ \text { Dissipation }\end{array}$	$\begin{array}{c}\text { Temperature } \\ \text { Dependent Viscosity }\end{array}$	Comments
Graetz (1885)	24	Newtonian	No	No	$\begin{array}{l}\text { Tube with circular cross-section } \\ \text { Approximate analytical solution } \\ \text { Temperature profiles } \\ \text { Average Nusselt numbers }\end{array}$
Nusselt (1910)	47	Newtonian	No	No	$\begin{array}{l}\text { Tube with circular cross-section }\end{array}$
Approximate analytical solution					
Temperature profiles					
Average Nusselt numbers					

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Bird (1955)	4	Power-1aw	Yes	No	Tube with circular cross-section (i) (ii) Isothermal walls Adiabatic walls
Pigford (1955)	52	Power-1aw	No		Approximate analytical solution Temperature profiles Experimental data (polymer melts)

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Metzner, Vaughn and Houghton (1957)	39	Pseudoplastic	No	Yes	Tube with circular cross-section Isothermal walls Levêque's approximation Average Nusselt numbers Experimental data (polymer solutions)
Toor (1958)	68	Power-1aw	Yes	No	Tube with circular cross-section Isothermal walls Approximate analytical solution Temperature profiles and average Nusselt numbers
Schenk and Van Laar (1958)	57	Power-law, Prandt1Eyring	Yes	No	Tube with circular cross-section Constant heat flux at walls Approximate analytical solution Temperature profiles and local Nusselt numbers
Whiteman and Drake (1958)	72	Power-1aw	No	No	Tube with circular cross-section Isothermal walls Approximate analytical solution Temperature profiles and Average Nusselt numbers

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	$\begin{array}{c}\text { Viscous } \\ \text { Dissipation }\end{array}$	$\begin{array}{c}\text { Temperature } \\ \text { Dependent Viscosity }\end{array}$	Comments		
Bird (1959)	5	Power-1aw	No	No	$\begin{array}{l}\text { Tube with circular cross-section } \\ \text { Constant heat flux at walls } \\ \text { Approximate analytical solution } \\ \text { Temperature profiles and }\end{array}$		
local Nusselt numbers						$]$	Drag flow-converging plates
:---							
Analytical solution							
Bergen (1959)							

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Gi11 (1962)	22	Power-1aw	Yes	No	Tube with circular cross-section (i) Isothermal walls (ii) Constant wall heat flux Approximate analytical solution Temperature profiles
Christiansen and Craig (1962)	8	Power-1aw	No	Yes	Tube with circular cross-section Isothermal walls Finite difference solution Average Nusselt numbers Experimental data (polymer solutions)
Tien (1962)	66	Power-1aw	No	No	Poiseuille flow-parallel plates Isothermal walls Approximate analytical solution Temperature profiles and local Nusselt numbers
Gil1 (1963)	23	Power-1aw	No	No	Tube with circular cross-section Isothermal walls. Approximate analytical solution Temperature profiles and local Nusselt numbers

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	$\begin{array}{c}\text { Viscous } \\ \text { Dissipation }\end{array}$	$\begin{array}{c}\text { Temperature } \\ \text { Dependent Viscosity }\end{array}$	Conments
$\begin{array}{l}\text { Foraboschi and } \\ \text { Federico (1964) }\end{array}$	15	Power-law	No	No	$\begin{array}{l}\text { Tube with circular cross-section } \\ \text { Arbitrary internal heat } \\ \text { generation }\end{array}$
				$\begin{array}{l}\text { Isothermal walls }\end{array}$	
Approximate analytical solution					
Temperature profiles and					
local Nusselt numbers					

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Turian (1965)	69	Power-1aw, Ellis mode1	Yes	Yes	Drag flow-paralle1 plates No convective term (i) Isothermal wa11s (ii) One isothermal, one adiabatic wall Perturbation solution Temperature profiles
Metzner (1965)	41				Review article (130 references)
Griskey and Wiehe (1966)	25				Experimental temperature profiles and average Nusselt numbers (polymer melts)
Christiansen, Jensen and Tao (1966)	9	Power-1aw	No	Yes	Tube with circular cross-section Isothermal walls Finite difference solution Average Nusselt numbers Experimenta1 data (polymer solutions)

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Martin (1967)	36	Power-1aw	Yes	Yes	(i) Tube with circular crosssection (ii) Tangential flow-concentric cylinder (iii) Drag flow-parallel plates No convective term Isothermal walls Approximate analytical solution Temperature profiles
Gavis and Laurence (1968)	19	Power-1aw	Yes	Yes	Drag flow-parallel plates No convective term (i) Isothermal walls (ii) One isothermal and one adiabatic wall Approximate analytical solution Temperature profiles
Morrette and Gogos (1968)	45	Power-1aw	Yes	Yes	Tube with circular cross-section (i) Isothermal walls (ii) Adiabatic walls Finite difference solution Temperature profiles
Sesták and Charles (1968)	59	Power-1aw	Yes	No	Tube with circular cross-section Constant heat flux at walls Approximate analytical solution Local Nusselt numbers

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
$\begin{aligned} & \text { Sch1ichting } \\ & \text { (1968) } \end{aligned}$	58	Newtonian	No	No	Drag flow-converging plates Analytical solution Velocity profiles and pressure distribution
Mitsuishi and Miyatake (1969)	44	Power-1aw	No	Yes	Tube with circular cross-section Constant heat flux at walls Approximate analytical solution Local Nusselt numbers
Forsyth and Murphy (1969)	17	Power-1aw	Yes	Yes	Tube with circular cross-section Isotherma1 walls Finite difference solution Temperature profiles Experimental data (polymer melts)
Tadmor and Klein (1970)	64	Newtonian	No	No	Drag flow-converging plates Analytical solution Velocity profiles and pressure distribution
Kim and Collins (1971)	28	Power-1aw	Yes	Yes	Tube with circular cross-section Isotherma1 walls Predictor-corrector, Euler methods Temperature profiles Experimental data (polymer me1ts)

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Smorodinskii and Froishteter (1971)	60	```Power-law with yield stress```	Yes	No	Tube with circular cross-section Isothermal wall Approximate analytical solution Temperature profiles and local Nusselt numbers
Suckow, Hrycak and Griskey (1971)	61	Power-1aw	No	No	Poiseuille flow-paralle1 plates Isothermal walls Approximate analytical solution Temperature profiles
Sukanek (1971)	62	Power-1aw	Yes	Yes	Tube with circular cross-section No convective term Isothermal walls Analytical solution Temperature profiles
Porter (1971)	54				Review article (263 references)
Koyama, Kanamaru and Wada (1972)	29	Power-1aw	No	No	Tube with circular cross-section Isothermal walls Approximate analytical solution Temperature profiles Experimental data (polymer solutions)

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity		
Vlachopoulos and Keung (1972)	70	Power-law	Yes	No		Comments
:---						
Saltuk, Siskovic and Griskey (1972)						

Table 2-1. (continued)

Investigator (s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Griskey, Choi and Siskovic (1973)	26				Experimental measurement of temperature profiles (polymer melts)
Forrest and Wilkinson (1973)	16	Power-1aw	Yes	Yes	Tube with circular cross-section Isothermal walls Finite difference solution Average Nusselt numbers
V1achopoulos, Larocque and Нo (1974)	71	Power-1aw	Yes	No	Poiseuille flow-paralle1 plates -circular tubes Isothermal walls Finite difference solution Bulk temperatures and local Nusse1t numbers
Cox and Macosko (1974)	11	Pseudoplastic	Yes	Yes	```Poiseuille flow-circular die -slit die -annular die Constant heat transfer coefficient Finite difference solution Temperature profiles Experimental data (polymer melts)```

Table 2-1. (continued)

Investigator(s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Huebner (1974)	27	Newtonian	Yes	Yes	Drag flow-converging plates Adiabatic walls Finite element method Velocity and temperature profiles
Mahalingam, Tilton and Coulson (1975)	34	Power-1aw	No	Yes	Tube with circular cross-section Constant heat flux at walls
					Finite difference solution Local Nusselt numbers
Experimental data (polymer					
solutions)					

Table 2-1. (continued)

Investigator (s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Comments
Winter (1975)	74	Power-1aw	Yes	Yes	Poiseuille flow-circular tube -plane slit -annular slit (i) Isothermal walls (ii) One isothermal, one adiabatic wall Finite difference solution Temperature profiles
Bassett and Welty (1975)	2				Experimental measurement of average Nusselt numbers (polymer solutions)
Sundaram and Nath (1976)	63	Power-1aw	Yes	No	Poiseuille flow-circular tube -parallel plates Constant heat flux at walls Approximate analytical solution Local Nusse1t numbers
Astarita and Mashelkar (1977)	1				Review article (247 references)
Faghri and Welty (1977)	13	Power-1aw	No	No	Tube with circular cross-section Arbitrary circumferential wall heat flux Approximate analytical solution Temperature profiles and local Nusselt numbers

Tab1e 2-1. (continued)

Investigator (s)	Ref.	Fluid	Viscous Dissipation	Temperature Dependent Viscosity	Cormments
Winter (1977)	75				Review article (133 references)
Middleman (1977)	43				Discussion of heat and mass transfer to flowing polymer melts
Popovska and Wilkinson (1977)	53	Power-1aw	Yes	Yes	Tube with circular cross-section Isothermal walls Finite difference solution Temperature profiles and average Nusselt numbers Experimental data (polymer solutions)
Pearson (1977)	51	Power-1aw	Yes	Yes	Poiseuille flow-parallel plates -circular tube Isothermal walls Similarity solution No results given
Nunn and Fenner (1977)	46	Power-1aw	Yes	Yes	Tube with circular cross-section Adiabatic walls Finite difference solution Temperature profiles and bulk temperatures

CHAPTER 3

GENERAL MOMENTUM AND HEAT TRANSFER ANALYSIS

The problem of heat transfer to molten polymers flowing through narrow channels can be fully described in terms of the equations of conservation of mass, momentum and energy. To obtain solutions, we need the boundary conditions at the channel walls and constitutive relations which describe the stress and temperature behaviour of the melts. Solutions of the conservation equations in general form are very complicated even for Newtonian, constant property fluids. The introduction of constitutive equations describing polymer melt behaviour renders the system of equations extremely difficult even for very simple boundary conditions. The conservation equations must be simplified substantially to even make solution by numerical methods feasible. A usual simplification in polymer melt processing is referred to as the lubrication approximation (14).

In this chapter, the conservation equations, the constitutive relation and the method of solution are presented and discussed. The principal assumptions involved are numbered consecutively as they occur in the analysis. The boundary conditions will be covered in the subsequent chapters dealing with the individual flow cases.

3.1 Conservation Equations

In general tensorial form, the conservation equations are (6):

Mass: $\quad \frac{\mathrm{D} \rho}{\mathrm{Dt}}+\rho(\nabla \cdot \overline{\mathrm{v}})=0$

Momentum: $\quad \rho \frac{\mathrm{D} \overline{\mathrm{v}}}{\mathrm{Dt}}=-\nabla \mathrm{p}+\nabla \cdot \overline{\bar{\tau}}+\rho \overline{\mathrm{g}}$

Energy: $\quad \rho C_{p} \frac{D T}{D t}=-\nabla \cdot \bar{q}+\overline{\bar{\tau}} \cdot \nabla \overline{\mathrm{v}}$

Assuming that:
(a) the melt is incompressible (constant density), the continuity equation for conservation of mass (3.1) reduces to:

$$
\begin{equation*}
\nabla \cdot \bar{v}=0 \tag{3.4}
\end{equation*}
$$

The equation of conservation of momentum involves a balance between inertia, viscous, pressure and body forces. Because polymer melt flows are very slow flows with Re of the order of 10^{-4}, it may be assumed that:
(b) inertia effects are negligible in comparison with viscous and pressure forces.

Also assuming that:
(c) body forces (such as gravity) are negligible in comparison with viscous and pressure forces, and
(d) the flow is steady $\left(\frac{\partial}{\partial t} \equiv 0\right)$,
the equation of conservation of momentum (3.2) reduces to:

$$
\begin{equation*}
-\nabla \cdot p+\nabla \cdot \overline{\bar{\tau}}=\overline{0} \tag{3.5}
\end{equation*}
$$

Turning to the equation of conservation of energy (3.3), the following assumptions are usually made:
(e) the thermal conductivity, k , is constant, and
(f) the specific heat at constant pressure, C_{p}, is constant.

The resulting energy equation is:

$$
\begin{equation*}
\rho C_{p} \overline{\mathrm{v}} \cdot \nabla \mathrm{~T}=\mathrm{k} \nabla^{2} \mathrm{~T}+\overline{\bar{\tau}}: \nabla \overline{\mathrm{v}} \tag{3.6}
\end{equation*}
$$

Further simplifications to the conservation equations are usually introduced with the aid of the lubrication approximation (14) which is applicable for flows through narrow channels. Assuming that:
(g) the velocity components perpendicular to the direction of flow are negligible compared to the axial velocity component,
(h) the pressure is uniform perpendicular to the direction of flow,
(i) normal stresses are neglected,
(j) there is no slip at the walls,
(k) heat transfer by conduction in the direction of flow is negligible compared to both convection in the direction of flow and conduction perpendicular to the direction of flow,
the conservation equations (3.4, 3.5 and 3.6) reduce to the following, in Cartesian co-ordinates:

Mass: $\quad \frac{d u}{d x}=0$
Momentum: $\quad-\frac{d p}{d x}+\frac{d \tau}{d y}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\tau_{y x}\left(\frac{d u}{d y}\right)^{2}$

For flow through a circular tube, the above equations must be expressed using cylindrical co-ordinates.

3.2 Constitutive Equation

Constitutive equations describe the stress and temperature
behaviour of polymer melts. For polymer melts flowing through narrow channe1s, the power-1aw temperature-dependent constitutive equation has been used extensively in the literature. One way of expressing such an equation is (64):

$$
\begin{equation*}
\overline{\bar{\tau}}=\eta \overline{\bar{\Delta}} \tag{3.10}
\end{equation*}
$$

where the shear viscosity, n, is given by

$$
\begin{equation*}
n=A e^{-B n(T-T m)}\left|\sqrt{\frac{I_{2}}{2}}\right|^{n-1} \tag{3.11}
\end{equation*}
$$

and A, B are empirical constants

$$
\begin{aligned}
& \mathrm{n}= \\
& \mathrm{T}_{\mathrm{m}}= \\
& \begin{aligned}
\bar{\Delta} & =\text { melting temperature of polymer } \\
= & 2 \frac{\partial u}{\partial \mathrm{x}} \quad \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
& \frac{\partial v}{\partial \mathrm{x}}+\frac{\partial u}{\partial y} \quad 2 \frac{\partial v}{\partial y} \\
I_{2}= & \text { second invariant of } \overline{\bar{\Delta}} \\
= & \Delta_{i j} \Delta_{j i} \\
= & 4\left(\frac{\partial u}{\partial x}\right)^{2}+2\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+4\left(\frac{\partial v}{\partial y}\right)^{2}
\end{aligned}
\end{aligned}
$$

Using the continuity equation (3.7) and the assumption (g) that the velocity component, v, is negligible compared to the velocity component, u, Eqs. (3.10) and (3.11) reduce to the following:

$$
\begin{equation*}
{ }^{\tau} y x=n \frac{d u}{d y} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d y}\right|^{n-1} \tag{3.13}
\end{equation*}
$$

In using the above form of constitutive equation, it is assumed that the viscosity is independent of pressure. This is a good assumption for usual processing conditions.

Power-1aw constitutive equations, the above included, yield an infinite apparent viscosity at shear rates approaching zero, as is the case for flow at the centre-1ine of a tube. This problem can be overcome by choosing a minimum shear rate, below which the apparent viscosity is held constant. This is a good assumption because most polymer melts behave like Newtonian fluids at very low shear rates (usually less than $10^{-1}-10^{-2} \mathrm{sec}^{-1}$).

The type of constitutive equation described above has been applied quite successfully to polymer melts in steady shear flow. Earlier it was assumed that the effect of normal stresses on the flow is negligible. This assumption is valid for simple shear flow such as flow between long paralle1 plates and through long tubes. However, in flows through tapered channels, such as drag flow between converging plates, normal stresses have a small effect on the flow, but their importance in heat transfer is not known (43).

3.3 Method of Solution

Given a suitable constitutive equation and appropriate boundary conditions for velocity, pressure and temperature, the simplified conservations equations can be solved numerically. An iterative implicit finite difference method (21) has been used to obtain velocity and
temperature profiles and a pressure distribution in each of the four flow cases. A brief description of the method will be given here. More detailed descriptions are located in the subsequent chapters dealing with the different types of flow.

A finite difference grid is superimposed on the flow field as illustrated in Fig. 3-1.

FILLED NODES DENOTE KNOWN VALUES (BOUNDARY CONDITIONS) BLANK NODES DENOTE UNKNOWN VALUES (TO BE SOLVED FOR)

Fig. 3-1. Finite difference grid.

Values of velocity, pressure and temperature are calculated at the nodal points of the grid by replacing the derivatives in the conservation equations with the appropriate finite difference approximations, and then solving these difference equations at each node. This can be done explicitly or implicitly. In the explicit method, the difference equations are solved one node at a time for all the nodes in the grid. In the implicit method, two possibilities exist. The equations for an entire column of nodes can be solved simultaneously, in which case progress.
through the grid is made by "marching" downstream column by column. A1ternatively, the equations at each node in the grid can be solved simultaneously. When the system of equations is parabolic (when boundary conditions are specified at three of the four boundaries of the flow field) the marching procedure is used. When the system of equations is elliptic (when boundary conditions are specified at all four boundaries) the equations for the entire grid must be solved simultaneously.

Looking at the conservation equations and keeping in mind the constitutive equations (3.12) and (3.13), we see that the momentum equation (3.8) contains a viscosity term which is a function of temperature and shear rate, and that the energy equation (3.9) contains a viscosity, velocity and velocity gradient. Since these equations are coupled by velocity and temperature, they cannot be solved independently. It is, however, possible to iterate to a solution by alternately solving the momentum and energy equations until the solutions converge. For example, in the "marching" procedure at a given column, the initial estimates of the velocity and temperature profiles along the column are obtained from the final profiles calculated in the preceding column. Once the new profiles have been calculated, they are compared with the estimated profiles. If the changes are greater than a specified tolerance, the profiles are recalculated until the desired error tolerance is achieved. The most recently calculated profiles are always used as profile estimates in the next iteration. When the desired error tolerance has been attained, the profiles at the next column downstream are calculated. Thus, the temperature and velocity profiles and the pressure distribution is. calculated for the entire flow field.

3.4 Convergence, Stability and Step Size

Problems with convergence and stability arise from the substitution of finite difference approximations in the differential equations. By convergence, it is meant that the results of the finite difference method approach analytical values as the step sizes become infinitely small (21). By stability, it is meant that errors made at one stage of the calculations do not grow as the computations are continued, but instead damp out (21). These errors are due to round-off, the choice of a finite step size, and the use of a finite tolerance in the iteration procedure.

Convergence to the correct solution of the finite difference results can only be rigorously tested by comparison with an analytical solution. In simpler cases, stability criteria have been developed, such as for the solution of single linear partial differential equations. (21). However, in our case, less rigorous techniques for testing convergence and stability must be used since no analytical solutions have been developed, and the equations to be solved are much more complex.

A good indication of the convergence and stability of the finite difference results is the negligible change in results obtained when the step sizes in the finite difference grid are decreased (10). In selecting step sizes, it should be remembered that by using smaller step sizes, the cost of computing increases. This increase can be significant when an iterative type of solution is used. There is also a lower limit of accuracy attainable by decreasing the step size, that being when roundoff errors begin to dominate. Usually, however, such accuracy is not necessary in engineering design.

These general guidelines were followed in selecting the appropriate
step sizes in the finite difference programs. The programs were run using several step sizes and step size ratios across and along the flow field. The step sizes used are given in the subsequent chapters. In each case, the results obtained are independent of step size within at least 3 significant digits.

CHAPTER 4

DRAG FLOW BETWEEN PARALLEL PLATES

4.1 Mathematical Formulation

The physical system for drag (or Couette) flow between semiinfinite paralle1 plates is illustrated in Fig. 4-1. The two plates are spaced apart by a distance, b. One plate is stationary and has a constant temperature, $\mathrm{T}_{\mathrm{W} 1}$, and the other plate is moving with a constant velocity, $u_{\max }$, and has a constant temperature, $\mathrm{T}_{\mathrm{w} 2}$.

Fig. 4-1. Drag flow between parallel plates.

Flow Equations

The simplified conservation equations for drag flow between paralle1 plates are:

Momentum: $\quad \frac{d \tau y x}{d y}=0$

Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\tau_{y x} \frac{d u}{d y}$

By substituting the constitutive relation, Eqs. (3.12) and (3.13), into the above equations, we obtain:

Momentum: $\quad \eta \frac{d^{2} u}{d y^{2}}+\frac{d \eta}{d y} \frac{d u}{d y}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\eta\left(\frac{d u}{d y}\right)^{2}$
where $\quad n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d y}\right|^{n-1}$

The boundary conditions for the above equations are:

$$
\begin{array}{lll}
x=0 & u=u_{0}(y)=u_{\max } \cdot \frac{y}{b} & T=T_{0} \\
y=0 & u=0 & T=T_{w 1} \\
y=b & u=u_{\max } & T=T_{w 2} \tag{4.0}
\end{array}
$$

A linear velocity profile, $u_{0}(y)$, and a constant temperature profile have been chosen at $x=0$. However, other profiles can also be used.

Let

$$
\begin{align*}
& \mathrm{U}=\frac{\mathrm{u}}{\mathrm{u}_{\max }} \\
& \theta=\frac{\mathrm{T}-\mathrm{T}_{\mathrm{w} 1}}{\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{w} 1}} \tag{4.6}\\
& \mathrm{X}=\frac{\mathrm{kx}}{\rho \mathrm{C}_{\mathrm{p}} \mathrm{u}_{\max } \mathrm{b}^{2}} \\
& \mathrm{Y}=\frac{\mathrm{y}}{\mathrm{~b}}
\end{align*}
$$

Substituting the above into Eqs. (4.3) and (4.4), we obtain in terms of dimensionless parameters:

Momentum: $\quad n \frac{\mathrm{~d}^{2} \mathrm{U}}{d Y^{2}}+\frac{d \eta}{d Y} \frac{d U}{d Y}=0$
Energy: $\quad \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\beta\left(\frac{d U}{d Y}\right)^{2}$
where

$$
\begin{aligned}
& \beta=\frac{\eta u_{\max }^{2}}{k\left(T_{0}-T_{w 1}\right)} \\
& n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d U}{d Y} \cdot \frac{u_{\max }}{b}\right|^{n-1}
\end{aligned}
$$

The accompanying non-dimensional boundary conditions are:

$$
\begin{array}{lll}
X=0 & U=U_{0}(Y)=Y & \theta=1 \\
Y=0 & U=0 & \theta=0 \tag{4.9}\\
Y=1 & U=1 & \theta=\frac{T_{W 2}-T_{W 1}}{T_{0}-T_{W 1}}
\end{array}
$$

Finite Difference Equations

An implicit finite difference method is used to solve Eqs. (4.7) and (4.8) with the accompanying boundary conditions (4.9). The finite difference grid is illustrated in Fig. 4-2.

Momentum Equation

For the momentum equation, the following finite difference approximations are used:

$$
\begin{equation*}
\frac{\mathrm{dU}}{\mathrm{dY}}=\frac{\mathrm{U}_{\mathrm{m}+1}^{\mathrm{n}}-\mathrm{U}_{\mathrm{m}-1}^{\mathrm{n}}}{2 \Delta \mathrm{Y}} \tag{4.10}
\end{equation*}
$$

Fig. 4-2. Finite difference grid. Drag flow between parallel plates.

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{dY}^{2}}=\frac{\mathrm{U}_{\mathrm{m}-1}^{\mathrm{n}}-2 \mathrm{U}_{\mathrm{m}}^{\mathrm{n}}+\mathrm{U}_{\mathrm{m}+1}^{\mathrm{n}}}{(\Delta \mathrm{Y})^{2}} \tag{4.11}
\end{equation*}
$$

Substituting Eqs. (4.10) and (4.11) into Eq. (4.7), we obtain for column n (details in App. A, Sec. 1.1):

$$
\begin{equation*}
A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m+1}^{n}=0 \tag{4.12}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A_{m}=-\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d n}{d Y}\right)_{m}^{n}+1 \\
B_{m}=-2 \\
C_{m}=\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d n}{d Y}\right)_{m}^{n}+1
\end{array}\right\}(m=2,3, \ldots, M)
$$

Thus, for column n we have a tridiagonal system of $M-1$ equations with M-1 unknowns $\left(U_{2}^{n}\right.$ to $\left.U_{M}^{n}\right)$. The equations can be written as follows:

$$
\begin{align*}
& A_{2} U_{1}^{n \prime,}+B_{2} U_{2}^{n}+C_{2} U_{3}^{n}=0 \\
& A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m+1}^{n}=0 \quad(m=3,4, \ldots, M-1) \tag{4.13}\\
& A_{M} U_{M-1}^{n}+B_{M} U_{M}^{n}+C_{M} U_{M+1}^{n}=0
\end{align*}
$$

or in matrix form:

$$
\left[\begin{array}{ccccccc}
\mathrm{B}_{2} & \mathrm{C}_{2} & & & & & \tag{4.14}\\
\mathrm{~A}_{3} & \mathrm{~B}_{3} & \mathrm{C}_{3} & & & \underline{0} \\
& \ddots & \ddots & \ddots & & & \\
& & & & & & \\
& & \mathrm{~A}_{\mathrm{m}} & \mathrm{~B}_{\mathrm{m}} & \mathrm{C}_{\mathrm{m}} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & & A_{M-1} & \mathrm{~B}_{\mathrm{M}-1} \\
& & & & C_{M-1} \\
& \underline{0} & & & & A_{M} & \mathrm{~B}_{\mathrm{M}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{U}_{2}^{\mathrm{n}} \\
\mathrm{U}_{3}^{\mathrm{n}} \\
\vdots \\
\\
\mathrm{U}_{\mathrm{m}}^{\mathrm{n}} \\
\vdots \\
\mathrm{U}_{\mathrm{M}-1}^{\mathrm{n}} \\
\mathrm{U}_{\mathrm{M}}^{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
-\mathrm{C}_{\mathrm{M}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{H}_{2} \\
\mathrm{H}_{3} \\
\vdots \\
\vdots \\
\mathrm{H}_{\mathrm{m}} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1} \\
\mathrm{H}_{\mathrm{M}}
\end{array}\right]
$$

This system of equations is solved for the velocity profile at column n by Gaussian elimination using Thomas' method (details in App. D, Sec. 1).

Energy Equation

For the energy equation, the following finite difference approximations are used:

$$
\begin{align*}
& \frac{\partial \theta}{\partial \mathrm{X}}=\frac{\theta_{m}^{n}-\theta_{m}^{\mathrm{n}-1}}{\Delta X} \tag{4.15}\\
& \frac{\partial^{2} \theta}{\partial \mathrm{Y}^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m-1}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \tag{4.16}
\end{align*}
$$

Substituting Eqs. (4.15) and (4.16) into Eq. (4.8), we obtain for column n (details in App. A, Sec. 1.2):

$$
\begin{equation*}
A_{m} \theta \frac{n}{m-1}+B_{m} \theta_{m}^{n}+C_{m} \theta{ }_{m+1}^{n}=D_{m}+E_{m}+F_{m}+G_{m}=H_{m} \tag{4.17}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A_{m}=-1 \\
B_{m}=\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}+2 \\
C_{m}=-1 \\
D_{m}=\theta_{m}^{n-1} \\
E_{m}=\left[\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}-2\right] \theta_{m}^{n-1} \\
F_{m}=\theta_{m}^{n-1} \\
G_{m}=2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)_{m}^{2}
\end{array}\right\} \quad(m=2,3, \ldots, M)
$$

Thus, for column n we have a tridiagonal system of $\mathrm{M}-1$ equations and $\mathrm{M}-1$ unknowns $\left(\theta_{2}^{n}\right.$ to $\left.\theta_{M}^{n}\right)$. The equations can be written as follows:

$$
\begin{gather*}
A_{2}, \theta_{1}^{n^{\prime} 0}+B_{2} \theta_{2}^{n}+C_{2} \theta_{3}^{n}=H_{2} \\
A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=H_{m} \quad(m=3,4, \ldots, M-1) \tag{4.18}\\
A_{M} \theta_{M-1}^{n}+B_{M} \theta_{M}^{n}+C_{M} \theta_{M+1}^{n}=H_{M} \\
\frac{T_{w 2}}{T_{0}-T_{w 1}}
\end{gather*}
$$

Again, this system of equations is solved for the temperature profile along column n by Gaussian elimination using Thomas' method (details in App. D, Sec. 1).

Bulk Temperature
The dimensionless flow-average (bulk) temperature is defined as follows:

$$
\theta_{\text {bulk }}=\frac{\int_{Y=0}^{Y=1} \theta(X, Y) U(X, Y) d Y}{\int_{Y=0}^{Y=1} U(X, Y) d Y}
$$

Equation (4.20) for column n is written in finite difference form, using Simpson's Rule, as follows:

$$
\begin{equation*}
\theta_{\text {bulk }}^{n}=\frac{\theta_{1}^{n^{\prime}} U_{1}^{n}+4 \theta_{2}^{n} U_{2}+2 \theta_{3}^{n} U_{3}+\ldots+4 \theta_{M}^{n} U_{M}^{n}+\theta_{M+1}^{n}+4 U_{2}^{n}+2 U_{3}^{n}+\ldots+4 U_{M}^{n}+U_{M+1}^{n}}{U_{0}^{n}} \tag{4.21}
\end{equation*}
$$

Local Nusselt Number
The local Nusselt number is calculated from the following definition which is derived in App. B:

$$
\begin{equation*}
N u_{x}=\frac{h b}{k}=\frac{\left(\frac{d T}{d y}\right)_{w a 11} \cdot b}{T_{\text {bulk }}-T_{\text {wall }}} \tag{4.22}
\end{equation*}
$$

In dimensionless form we have:

$$
\begin{align*}
& \left(N u_{X}\right)_{Y=0}=\frac{\left(\frac{d \theta}{d Y}\right)_{Y=0}}{\theta_{\text {bulk }}} \tag{4.23}\\
& \left(N u_{X}\right)_{Y=1}=\frac{-\left(\frac{d \theta}{d Y}\right)_{Y=1}}{\left(\theta_{\text {bulk }}-\theta_{W 2}\right)} \tag{4.24}
\end{align*}
$$

The dimensionless temperature gradients at the walls are estimated for column n by the following finite difference approximations:

$$
\begin{align*}
& \left(\frac{d \theta}{d Y}\right)_{Y=0}^{n}=\frac{1}{6 \Delta Y}\left(-11, \theta_{1}^{n^{n}}+18 \theta_{2}^{n}-9 \theta_{3}^{n}+2 \theta_{4}^{n}\right) \tag{4.25}\\
& \left(\frac{d \theta}{d Y}\right)_{Y=1}^{n}=\frac{1}{6 \Delta Y}\left(-2 \theta_{M-2}^{n}+9 \theta_{M-1}^{n}-18 \theta_{M}^{n}+11 \theta_{M+1}^{n}\right) \tag{4.26}
\end{align*}
$$

The above equations are derived in App. C, Sec. 1 and 5.

4.2 Computational Procedure

It was stated in Chap. 3, Sec. 3, that the momentum and energy equations are coupled by velocity and temperature, and therefore cannot
be solved independently. However, the coupled equations can be solved iteratively at a given column on the finite difference grid by alternately solving the set of momentum equations (4.13) and the set of energy equations (4.18) until the solutions converge. The iterative "marching" procedure used to calculate the velocity and temperature profiles, the bulk temperature and the local Nusselt numbers at each column in the grid is now outlined.

Notation

$\mathrm{Ul}_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the estimated velocity profile at column n.
$\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the most recently calculated velocity profile at column n.
$\theta_{m}^{\mathrm{n}-1}(\mathrm{~m}=1,2, \ldots, \mathrm{M}+1)$ refers to the termperature profile at column $\mathrm{n}-1$.
$\theta 1_{m}^{n} \quad(m=1,2, \ldots, M+1)$ refers to the estimated temperature profile at column n .
$\theta 2_{m}^{n}(m=1,2, \ldots, M+1)$ refers to the most recently calculated temperature profile at column n.

Procedure

1. Assume values for the velocity and temperature profiles at the entrance of the channel (at column 0).

$$
\left.\begin{array}{l}
\mathrm{Ul}_{\mathrm{m}}^{0}=\mathrm{Y} \\
\theta_{\mathrm{m}}^{\mathrm{O}}=1
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)
$$

2. Print the velocity and temperature profiles at column 0 .
3. Set the estimates of the velocity and temperature profiles to be used in the first iteration of columm 1 equal to the values of the respective profiles at column 0 .

$$
n=1
$$

$$
\begin{array}{ll}
U 1_{\mathrm{m}}^{1}=\mathrm{U1}_{\mathrm{m}}^{0} & (\mathrm{~m}=1,2, \ldots, \mathrm{M}+1) \\
\theta 1_{1}^{1}=\theta 2_{1}^{1}=0, \theta 1_{\mathrm{M}+1}^{1}= & \theta 2_{\mathrm{M}+1}^{1}=\frac{\mathrm{T}_{\mathrm{w} 2}-\mathrm{T}_{\mathrm{w} 1}}{\mathrm{~T}_{0}-\mathrm{T}_{\mathrm{W} 1}} \\
\theta 1_{\mathrm{m}}^{1}=\theta_{\mathrm{m}}^{0} & (\mathrm{~m}=2,3, \ldots, \mathrm{M})
\end{array}
$$

4. To economize on computing time, increase ΔX by a factor of 10 after the final velocity and temperature profiles have been calculated at column $n=N A$, and again after they have been calculated at column $\mathrm{n}=\mathrm{NB}$ (see program 1isting, App. F, Sec. 1) .

$$
\Delta X=10 \Delta X \text { at column } N A+1 \text {, and again at column } N B+1
$$

5. Using $U 1_{m}^{n}$ and $\theta 1_{m}^{n}(m=1,2, \ldots, M+1)$, calculate $\left(\frac{d U}{d Y}\right)_{m}^{n}$ and η_{m}^{n} ($m=1,2, \ldots, \mathrm{M}+1$) at column n.
6. Using $U 1_{m}^{n},\left(\frac{d U}{d Y}\right)_{m}^{n}, \theta_{m}^{n}$ and $\theta_{m}^{n-1}(m=1,2, \ldots, M+1)$, solve the set of energy equations (4.19) by Gaussian elimination using Thomas' method (see App. D, Sec. 1) to obtain $\theta 2_{m}^{n}(m=2,3, \ldots, M)$.
7. Using $U 1_{m}^{n}$ and $\theta 2_{m}^{n}(m=1,2, \ldots, M+1)$, calculate η_{m}^{n} and $\left(\frac{d \eta}{d Y}\right)_{m}^{n}$ ($m=1,2, \ldots, M+1$) at column n.
8. Using n_{m}^{n} and $\left(\frac{d \eta}{d Y}\right)_{m}^{n}(m=1,2, \ldots, M+1)$, solve the set of momentum equations (4.14) by Gaussian elimination using Thomas' method (see App. D, Sec. 1) to obtain $U 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=2,3, \ldots, \mathrm{M})$.
9. Compare $U 1_{m}^{n}, U 2_{m}^{n}$ and $\theta 1_{m}^{n}, \theta 2_{m}^{n}(m=1,2, \ldots, M+1)$. If $\left|U 2_{m}^{n}-U 1_{m}^{n}\right|<$ tolerance and $\left|\theta 2_{m}^{n}-\theta 1_{m}^{n}\right|<$ tolerance for all m, then proceed to step 12. Otherwise, continue to step 10.
10. Set the estimates of the velocity and temperature profiles to be used in the next iteration at column n equal to the most recently calculated profiles.

$$
\left.\begin{array}{r}
\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}=\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \\
\theta 1_{\mathrm{m}}^{\mathrm{n}}=\theta 2_{\mathrm{m}}^{\mathrm{n}}
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)
$$

11. Repeat steps 5 through 9 until the desired error tolerances have been achieved.
12. Set the velocity and temperature profiles to be used in the first iteration at column $n+1$ equal to the final values of the profiles calculated at column n. Also, retain the final temperature profile calculated at column n for use in calculating temperature profiles at column $\mathrm{n}+1$.

$$
\begin{aligned}
& \mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}+1} \\
& =\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \\
& \theta 1_{\mathrm{m}}^{\mathrm{n}+1}
\end{aligned}=\theta 2_{\mathrm{m}}^{\mathrm{n}}, \quad(\mathrm{~m}=1,2, \ldots, \mathrm{M}+1)
$$

13. Repeat steps 4 through 12 to calculate the velocity and temperature profiles at the next column downstream in the channel ($n=n+1$).

The following steps are to be carried out at periodic intervals along the length of the channel:
14. Print the velocity and temperature profiles.
15. Calculate the bulk temperature using Simpson's Rule (see Eq. (4.21)).
16. Calculate the local Nusselt numbers at the walls (see Eqs. (4.23) and (4.24)).
17. Print the bulk temperature and the local Nusselt numbers.

Computations using the above algorithm have been carried out in McMaster's CDC 6400 computer. A sample program listing with results is located in App. F, Sec. 1.

4.3 Convergence, Stability and Step Size

It was stated in Chap. 3, Sec. 4, that a good indication of the convergence and stability of the finite difference results is the negligible change in results obtained when the step sizes in the finite difference grid are decreased. It should be noted here that special care must be taken in choosing step sizes when calculating local Nusselt numbers. Although the temperature profiles may appear to be sufficiently accurate, the local Nusselt numbers can still be incorrect. Local Nusselt numbers are calculated from temperature derivatives (see Eq. (4.22)). Since derivatives are very sensitive to step size changes, smaller step sizes must be used when calculating local Nusselt numbers, than when only calculating velocity and temperature profiles. The step sizes shown in Table 4-1 were used in the finite difference program. The results presented in the subsequent figures in this chapter are independent of step size within at least 3 significant digits.

Table 4-1. Step sizes for finite difference program. Drag flow between parallel plates.

Range of X	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
$0-0.1$	0.0001	$1 / 60$
$0.1-0.4$	0.001	$1 / 60$

An additional test for convergence was carried out by first calculating analytically the fully-developed temperature profile, the limiting bulk temperature and the limiting local Nusselt number (at large X) for a Newtonian, constant viscosity fluid with viscous
dissipation (see App. E, Sec. 1), and then comparing these with the corresponding finite difference results for the same fluid. The analytical and finite difference results were indistinguishable.

4.4 Results and Discussion

Solutions of the momentum and energy equations for drag flow between parallel plates are presented in Figs. 4-3 through 4-14. The following velocity and temperature boundary conditions have been used:

$$
\begin{array}{lll}
\mathrm{x}=0 & \mathrm{u}=60 \mathrm{ycm} / \mathrm{s} & \mathrm{~T}_{\mathrm{o}}=130^{\circ} \mathrm{C} \\
y=0 & \mathrm{u}=0 & \mathrm{~T}_{\mathrm{w} 1}=160^{\circ} \mathrm{C} \\
y=b=0.25 \mathrm{~cm} & u=u_{\max }=15 \mathrm{~cm} / \mathrm{s} & \mathrm{~T}_{\mathrm{w} 2}=160^{\circ} \mathrm{C}
\end{array}
$$

In obtaining some of the results, different temperature boundary conditions were used for comparison. The following power-1aw temperature-dependent viscosity model and fluid properties representing a typical high-density polyethylene melt were used in the computations:

$$
\begin{equation*}
\text { Viscosity: } \quad n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d y}\right|^{n-1} \tag{4.28}
\end{equation*}
$$

where $A=282000$ poise $\cdot \mathrm{s}^{\mathrm{n}-1}$
$=28200 \mathrm{~Pa} \cdot \mathrm{~s}^{\mathrm{n}}$
$B=0.024 \mathrm{~K}^{-1}$
$\mathrm{n}=0.453$
$\mathrm{T}_{\mathrm{m}}=399.5 \mathrm{~K}$
Density: $\quad \rho=794 \mathrm{~kg} / \mathrm{m}^{3}$

Specific Heat:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{p}} & =0.6 \mathrm{cal} /(\mathrm{g} \cdot \mathrm{~K}) \\
& =2.51 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})
\end{aligned}
$$

$$
\text { Thermal conductivity: } \begin{aligned}
\mathrm{k} & =6.1 \times 10^{-4} \mathrm{cal} /(\mathrm{cm} \cdot \mathrm{~s} \cdot \mathrm{~K}) \\
& =0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})
\end{aligned}
$$

The temperature profiles, bulk temperature and local Nusselt numbers in Figs. 4-3 through 4-14 are shown as functions of the dimensionless axial distance, X . Because the bulk temperatures and local Nusselt numbers change the most near the entrance of the flow channe1, they have been plotted semilogarithmically. X on the abscissa of these plots ranges from 0.001 to 0.4. This corresponds to x ranging from 0.7 cm to 293 cm . At $\mathrm{X}=0.4$, the temperature profile has become fully developed. Beyond this point in the channe1, the temperature profiles, bulk temperatures and local Nusselt numbers remain the same, and thus are known as the 1imiting or asymptotic values.

In Figs. 4-3 and 4-4, the temperature profiles for the power-law temperature-dependent viscosity model and for a power-law temperature-independent viscosity model are compared. Two different temperature boundary conditions have been considered: both the stationary and moving plates at $160^{\circ} \mathrm{C}$ in Fig. $4-3$, and the stationary plate at $190^{\circ} \mathrm{C}$ and the moving plate at $130^{\circ} \mathrm{C}$ in Fig. 4-4. The temperature-independent viscosity model used is identical to the temperature-dependent viscosity model given in Eq. (4.28), except that T is held constant and equal to the average of the temperatures of the two plates ($160^{\circ} \mathrm{C}$ in both cases). The temperatures in the temperature-dependent cases are in general lower than in the temper-ature-independent cases. Since the viscosity decreases with increasing

DEVELOPMENT OF TEMPERATURE PROFILES
POWER-LAW FLUID
——TEMPERATURE-DEPENDENT VISCOSITY ------TEMPERATURE-INDEPENDENT VISCOSITY

$$
T_{0}=130^{\circ} \mathrm{C}, T_{w 1}=T_{w 2}=160^{\circ} \mathrm{C}
$$

Fig. 4-3. Development of temperature profiles. Drag flow between parallel plates. Channel dimensions and flow properties given on pp. 45-46.

DEVELOPMENT OF TEMPERATURE PROFILES
POWER-LAW FLUID
——TEMPERATURE-DEPENDENT VISCOSITY
----TEMPERATURE-INDEPENDENT VISCOSITY

$$
T_{0}=130^{\circ} \mathrm{C}, T_{w 1}=190^{\circ} \mathrm{C}, T_{w}=130^{\circ} \mathrm{C}
$$

Fig. 4-4. Development of temperature profiles. Drag flow between paralle1 plates. Channel dimensions
and fluid properties given on pp. 45-46. and fluid properties given on pp. 45-46.
temperature, the heat generated by viscous generation will be less for the fluid which has a higher temperature in the constitutive equation.

In Fig. 4-3, it is seen that the temperature profile is symmetric about the centre-line of flow only when it has become fully developed at $X=0.4$. For $X<0.4$, the temperatures near the moving plate are always lower than near the stationary plate. At a given distance along the channel, the fluid near the stationary plate has been heated more than the fluid near the moving plate. This also accounts for the bulging of the temperature profile near the stationary plate at $X=0.02$ and 0.05 .

Plots of the bulk temperatures along the length of the channel are presented in Figs. 4-5, 4-6 and 4-7 for the power-1aw temperature-dependent and temperature-independent viscosity models and for the Newtonian, constant viscosity model. In Fig. 4-5, the bulk temperatures are shown for power-1aw temperature-dependent viscosity fluids with different inlet temperatures. In each case, the limiting bulk temperature is the same $\left(174^{\circ} \mathrm{C}\right)$. This is to be expected since the fully-developed velocity and temperature profiles are only influenced by the wall boundary conditions and by the viscosity and thermal conductivity of the fluid, but not by the inlet conditions of the fluid. Also shown in Fig. 4-5 is the effect of removing the viscous dissipation term from the energy equation. Without viscous dissipation, the limiting bulk temperature is equal to the wall temperature $\left(160^{\circ} \mathrm{C}\right)$. The difference of $14^{\circ} \mathrm{C}$ is an indication of the importance of viscous dissipation in the drag flow of polymer melts between parallel plates. It will be seen in subsequent chapters, that for Poiseuille flow, the difference is even greater.

The rise in bulk temperature for the power-1aw temperature-dependent

Fig. 4-5. Bulk temperature vs. X. Drag flow between parallel plates. Channel dimensions and
fluid properties given on pp. 45-46.
and temperature-independent viscosity fluids is shown in Fig. 4-6 for the two temperature boundary conditions discussed earlier. In both cases, the limiting bulk temperature for the temperature-independent viscosity model is about $1^{\circ} \mathrm{C}$ higher than for the temperature-dependent viscosity model. In Fig. 4-7, the rise in bulk temperature is shown for the powerlaw temperature-dependent viscosity model and several Newtonian, constant viscosity models.

Plots of the local Nusselt numbers at both the stationary and moving plates are presented in Figs. 4-8 through 4-14 for the power-1aw temperature-dependent and temperature-independent viscosity models and the Newtonian, constant viscosity model. The local Nusselt numbers must be calculated at each wall separately because generally they are not the same for a given X. Since the local Nusselt number is a function of the temperature derivative (see Eq. (4.22)), it will be different as long as the temperature gradients at the walls are not the same. It can be seen that when both walls are at the same temperature, the local Nusselt numbers at both plates converge to one value when the temperature profile becomes fully developed.

In Figs. 4-8 and 4-9, the local Nusselt numbers for power-1aw temperature-dependent viscosity fluids with different inlet temperatures are shown for the stationary and moving plates respectively. In each case the limiting local Nusselt number at both walls is 5.63 . Although not shown, the limiting Nusselt numbers for the case where viscous dissipation has been neglected are 3.63 and 5.85 at the stationary and moving walls respectively. It can be seen that when the fluid is heated by the channel walls ($\mathrm{T}_{\mathrm{O}}=130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{W} 1}=\mathrm{T}_{\mathrm{W} 2}=160^{\circ} \mathrm{C}$), there is a region along the channel

Fig. 4-6. Bulk temperature vs. X. Drag flow between parallel plates. Channe 1 dimensions and

Fig. 4-7. Bulk temperature vs. X. Drag flow between parallel plates. Channe1 dimensions and
fluid properties given on pp. 45-46.

Fig. 4-8. Local Nusse1t number vs. X. Drag f1ow between parallel plates. Channel dimensions and fluid properties given on pp. 45-46.

Fig. 4-9. Local Nusselt number vs. X. Drag flow between parallel plates. Channel dimensions and fluid properties given on pp. 45-46.
where the local Nusselt number is negative and a point where it is discontinuous. With the aid of Eq. (4.22), this behaviour is explained as follows for the stationary plate:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=\frac{\mathrm{hb}}{\mathrm{k}}=\frac{\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }} \cdot \mathrm{b}}{\mathrm{~T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{4.21}
\end{equation*}
$$

$X<0.02$	$\frac{d T}{d y}<0$	$T_{b}<T_{W}$	$N u_{x}>0$
$X \simeq 0.02$	$\frac{d T}{d y}=0$	$T_{b}<T_{W}$	$N_{x}=0$
$0.02<X<0.05$	$\frac{d T}{d y}>0$	$T_{b}<T_{W}$	$N u_{x}<0$
$X \simeq 0.05$	$\frac{d T}{d y}>0$	$T_{b}=T_{W}$	$N u_{x}= \pm \infty$
$X>0.05$	$\frac{d T}{d y}>0$	$T_{b}>T_{W}$	$N u_{x}>0$

When the inlet temperature is higher than the wall temperature, the local Nusselt number is always positive.

The local Nusselt numbers for the power-1aw temperature-dependent and temperature-independent viscosity models are shown in Figs. 4-10, 4-11 and 4-12 for the two temperature boundary conditions discussed earlier. In Figs. 4-10 and 4-11, the local Nusselt numbers are shown for the case where both walls are at $160^{\circ} \mathrm{C}$. There is very little difference between the temperature-dependent and temperature-independent viscosity models here. The limiting local Nusselt numbers for the two models are 5.63 and 6.00 respectively. The local Nusselt numbers for the case where the stationary plate is at $190^{\circ} \mathrm{C}$ and the moving plate is at $130^{\circ} \mathrm{C}$ are shown

Fig. 4-10. Local Nusselt number vs. X. Drag flow between paralle1 plates. Channel dimensions and fluid properties given on pp. 45-46.

Fig. 4-11. Local Nusse1t number vs. X. Drag flow between parallel plates. Channel dimensions and fluid properties given on pp. 45-46.

Fig. 4-12. Local Nusselt number vs. X. Drag flow between parallel plates. Channel dimensions and fluid properties given on pp. 45-46.
in Fig. 4-12. In Figs. 4-13 and 4-14, the local Nusselt numbers are presented for the power-1aw temperature-dependent viscosity model and several Newtonian, constant viscosity mode1s.

The results for the power-1aw temperature-dependent viscosity model have been compared with the power-law temperature-independent viscosity model and the Newtonian, constant viscosity mode1 results. Given an appropriate temperature for the temperature-independent model, or an appropriate viscosity for the Newtonian model, it can be seen that the temperature-dependent model results are adequately estimated by the use of either of the simpler models. The choice of temperature and viscosity was made by inspection. However, if we did not have any temperaturedependent model results to compare our more simplified model results with, then we would not have anything to base our choice of temperature of viscosity on. Furthermore, the given temperature or viscosity is usually suitable for one type of flow only. For example, in Fig. 4-7 it can be seen that the rise in bulk temperature for the temperature-dependent model is closely approximated by that of a Newtonian fluid with a viscosity of about $2000 \mathrm{~Pa} \cdot \mathrm{~s}$, while in Poiseuille flow between parallel plates (as described in Chap. 5), a Newtonian viscosity of $700 \mathrm{~Pa} \cdot \mathrm{~s}$ is required (see Fig. 5-9).

4.5 Concluding Remarks

1. A computer program has been developed to analyze the heat transfer problem for the drag flow of polymer melts between parallel, constant temperature plates. Results have been presented for specified velocity and temperature boundary conditions, fluid properties and channel

Fig. 4-13. Local Nusse1t number vs. X. Jrag flow between parallel plates. Channel dimensions and fluid properties given on pp . 45-46.

Fig. 4-14. Local Nusse1t number vs. X. Drag flow between parallel plates. Channel dimensions and fluid properties given on pp. 45-46.
dimensions.
2. Care must be taken when choosing the proper step sizes to ensure that the local Nusselt numbers and not only the temperature profiles have converged.
3. It is very important to consider viscous dissipation in the drag flow of polymer melts between parallel plates. A rise of $14^{\circ} \mathrm{C}$ in the limiting bulk temperature due to viscous dissipation was obtained using the specified boundary conditions, fluid properties and channel dimensions given earlier in this chapter.
4. The results obtained using the power-1aw temperature-dependent viscosity model were compared with those using the simpler power-1aw temperature-independent viscosity mode1 and the Newtonian, constant viscosity model. It was seen that the results obtained using the temper-ature-dependent model were in most cases adequately approximated by those of the two simpler models, provided that the choice of temperature or viscosity was correct. However, if there are no temperature-dependent model results available, then we have no basis with which to choose a temperature for the temperature-independent model, or a viscosity for the Newtonian, constant viscosity model.

CHAPTER 5

POISEUILLE FLOW BETWEEN PARALLEL PLATES

5.1 Mathematical Formulation

The physical system for Poiseuille (or pressure) flow between parallel plates is illustrated in Fig. 5-1. It consists of flow between two stationary semi-infinite parallel plates spaced apart by a distance, b. Each plate is at a constant temperature.

Fig. 5-1. Poiseuille flow between parallel plates.

Flow Equations

The simplified conservation equations for Poiseuille flow between parallel plates are:

Continuity (integral form) :

$$
\begin{equation*}
\int_{y=0}^{y=b} u d y=u_{a v g} \cdot b \tag{5.1}
\end{equation*}
$$

Momentum: $\quad-\frac{d p}{d x}+\frac{d \tau y}{d y}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\tau_{y x} \frac{d u}{d y}$

Substituting the constitutive relation, Eqs. (3.12) and (3.13) into the above momentum and energy equations, we obtain:

Momentum: $\quad-\frac{d p}{d x}+\eta \frac{d^{2} u}{d y^{2}}+\frac{d \eta}{d y} \frac{d u}{d y}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\eta\left(\frac{d u}{d y}\right)^{2}$

$$
\text { where } n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d y}\right|^{n-1}
$$

The boundary conditions for the above equations are:

$$
\begin{array}{ll}
x=0 \quad u=u_{o}(y)=u_{a v g}\left(\frac{v+1}{v}\right)\left(1-\left|\frac{2 y}{b}-1\right|^{\nu}\right) & T=T_{o} \quad \mathrm{p}=\mathrm{p}_{0} \\
\text { where } v=\frac{n+1}{n}, n=\text { power-1aw index } & \tag{5.6}\\
y=0 \quad u=0 & T=T_{w 1} \\
y=b \quad u=0 & T=T_{W 2}
\end{array}
$$

A $\frac{n+1}{n}$ degree parabolic velocity profile, $u_{0}(y)$, has been chosen at $x=0$. Since the hydrodynamic entrance length for the flow of polymer melts is
very short ${ }^{1}$, a fully-developed velocity profile can be assumed at the entrance of the channe1. A constant temperature profile was used at $\mathrm{x}=0$.

$$
\text { Let } \begin{align*}
U & =\frac{u}{u_{a v g}} \\
P & =\frac{p-p_{o}}{\rho u_{a v g}^{2}} \\
\theta & =\frac{T-T_{w 1}}{T_{o}-T_{w 1}} \tag{5.7}\\
X & =\frac{\mathrm{kx}}{\rho C_{p} u_{a v g} b^{2}} \\
Y & =\frac{y}{b}
\end{align*}
$$

Substituting the above into Eqs. (5.1), (5.4) and (5.5), we obtain in terms of dimensionless parameters:

Continuity (integral form):

$$
\begin{equation*}
\int_{Y=0}^{Y=1} U d Y=1 \tag{5.8}
\end{equation*}
$$

Momentum: $\quad-\frac{k}{C_{p}} \frac{d P}{d X}+\eta \frac{d^{2} U}{d Y^{2}}+\frac{d \eta}{d Y} \frac{d U}{d Y}=0$

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{\rho uD}}{n} \simeq 10^{-4} \text { for the flow of polymer melts. } \frac{x}{D} \simeq 0.05 \mathrm{Re}_{\mathrm{D}}=
$$

5×10^{-6} where x is the hydrodynamic entrance length. When $\mathrm{D}=0.25 \mathrm{~cm}$, $\mathrm{x}=1.25 \times 10^{-6} \mathrm{~cm}$.

Energy: $\quad U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\beta\left(\frac{d U}{d Y}\right)^{2}$

$$
\begin{equation*}
\text { where } \beta=\frac{n u^{2} a v g}{k\left(T_{o}-T_{w l}\right)} \tag{5.10}
\end{equation*}
$$

$$
n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d U}{d Y} \cdot \frac{u_{a v g}}{b}\right|^{n-1}
$$

The accompanying dimensionless boundary conditions are:

$$
\begin{array}{lll}
X=0 & U=U_{0}(Y)=\left(\frac{\nu+1}{\nu}\right)\left(1-|2 Y-1|^{\nu}\right) & \theta=1 \\
\mathrm{P}=0 \tag{5.11}\\
\mathrm{Y}=0 & \mathrm{U}=0 & \theta=0 \\
Y=1 & U=0 & \theta=0
\end{array}
$$

Finite Difference Equations

An implicit finite difference method is used to solve Eqs. (5.8), (5.9) and (5.10) with the accompanying boundary conditions (5.11). The finite difference grid is illustrated in Fig. 5-2.

Continuity Equation

Using Simpson's Rule, the integrated continuity equation is given in the following finite difference form:

$$
\begin{equation*}
s_{Y=0}^{Y=1} U d Y=\frac{\Delta Y}{3}\left(U_{1}^{n}+4 U_{2}^{n}+2 U_{3}^{n}+\ldots+4 U_{M}^{n}+U_{M}^{n} n_{n+1}^{n}\right) \tag{5.12}
\end{equation*}
$$

Substituting the above into Eq. (5.8), we obtain for column n:

Fig. 5-2. Finite difference grid. Poiseuille flow between paralle1 plates.

$$
\begin{equation*}
4 \mathrm{U}_{2}^{\mathrm{n}}+2 \mathrm{U}_{3}^{\mathrm{n}}+\ldots+4 \mathrm{U}_{\mathrm{M}}^{\mathrm{n}}=\frac{3}{\Delta \mathrm{Y}}=3 \mathrm{M} \tag{5.13}
\end{equation*}
$$

Momentum Equation

For the momentum equation, the following finite difference approximations are used:

$$
\begin{align*}
& \frac{d P}{d X}=\frac{P^{n}-P^{n-1}}{\Delta X} \tag{5.14}\\
& \frac{d U}{d Y}=\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y} \tag{5.15}\\
& \frac{d^{2} U}{d Y^{2}}=\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}} \tag{5.16}
\end{align*}
$$

Substituting Eqs. (5.14), (5.15) and (5.16) into equation (5.9), we obtain for column n (details in App. A, Sec. 2.1):

$$
\left.\begin{array}{l}
A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m+1}^{n}+W_{m} P^{n}-W_{m} P^{n-1}=0 \\
\text { where } A_{m}=-\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}+1 \\
B_{m}=-2 \\
C_{m}=\frac{\Delta Y}{2 n_{m}^{n}\left(\frac{d \eta}{d Y}\right)_{m}^{n}+1} \\
W_{m}=-\frac{k}{n_{m}^{n} C_{p}} \cdot \frac{(\Delta Y)^{2}}{\Delta X}
\end{array}\right\}(m=2,3,
$$

Combining Eqs. (5.13) and (5.17), we have for column n a modified tridiagonal system of M equations and M unknowns (U_{2}^{n} to U_{M}^{n} and P^{n}). The equations can be written as follows:

$$
\begin{align*}
& A_{2} U_{1}^{n}+B_{2} U_{2}^{n}+C_{2} U_{3}^{n}+W_{2} P^{n}-W_{2} P^{n-1}=0 \\
& A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m+1}^{n}+W_{m} P^{n}-W_{m} P^{n-1}=0 \quad(m=3,4, \ldots, M-1) \\
& A_{M} U_{M-1}^{n}+B_{M} U_{M}^{n}+C_{M} U_{M+1}^{n}+W_{M} P^{n}-W_{M} P^{n-1}=0 \tag{5.18}\\
& 4 U_{2}+2 U_{3}+\ldots+4 U_{M}=3 M
\end{align*}
$$

or in matrix form:
or

$$
\left[\begin{array}{cccccccc}
\mathrm{B}_{2} & \mathrm{C}_{2} & & & & & & \mathrm{~W}_{2} \tag{5.20}\\
\mathrm{~A}_{3} & \mathrm{~B}_{3} & \mathrm{C}_{3} & & & \underline{0} & & \mathrm{~W}_{3} \\
& \ddots & \ddots & \ddots & & & & \vdots \\
& & A_{\mathrm{m}} & \mathrm{~B}_{\mathrm{m}} & \mathrm{C}_{\mathrm{m}} & & & \mathrm{~W}_{\mathrm{m}} \\
& & & \ddots & \ddots & \ddots & \vdots \\
& & & A_{\mathrm{M}-1} & \mathrm{~B}_{\mathrm{M}-1} & \mathrm{C}_{\mathrm{M}-1} & \mathrm{~W}_{\mathrm{M}-1} \\
& & & & & & \\
& \underline{0} & & & A_{\mathrm{M}} & \mathrm{~B}_{\mathrm{M}} & \mathrm{~W}_{\mathrm{M}} \\
\mathrm{z}_{2} & \mathrm{z}_{3} & \mathrm{z}_{4} & \cdots & \mathrm{Z}_{\mathrm{M}-1} & \mathrm{Z}_{\mathrm{M}} & \mathrm{Z}_{\mathrm{M}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}_{2}^{\mathrm{n}} \\
\mathrm{U}_{3}^{\mathrm{n}} \\
\vdots \\
\mathrm{U}_{\mathrm{m}}^{\mathrm{n}} \\
\vdots \\
\mathrm{U}_{\mathrm{M}-1} \\
\mathrm{U}_{\mathrm{M}}^{\mathrm{n}} \\
\mathrm{P}^{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{H}_{2} \\
\mathrm{H}_{3} \\
\vdots \\
\mathrm{H}_{\mathrm{m}} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1} \\
\mathrm{H}_{\mathrm{M}} \\
\mathrm{Z}_{\mathrm{M}+2}
\end{array}\right]
$$

This system of equations is solved for the velocity profile and pressure at column n by Gaussian elimination using the algorithm that is shown in App. D, Sec. 2.

Energy Equation

For the energy equation, the following finite difference approximations are used:

$$
\begin{align*}
& \frac{\partial \theta}{\partial X}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X} \tag{5.21}\\
& \frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \tag{5.22}
\end{align*}
$$

Substituting Eqs. (5.21) and (5.22) into equation (5.10), we obtain for column n (details in App. A, Sec. 2.2):

$$
\begin{equation*}
A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=D_{m}+E_{m}+F_{m}+G_{m}=H_{m} \tag{5.23}
\end{equation*}
$$

where $A_{m}=-1$

$$
\begin{aligned}
& B_{m}=\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}+2 \\
& C_{m}=-1 \\
& D_{m}=\theta_{m-1}^{n-1} \\
& E_{m}=\left[\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}+2\right] \theta_{m}^{n-1} \\
& F_{m}=\theta_{m+1}^{n-1} \\
& G_{m}=2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)_{m}^{2}
\end{aligned}
$$

Thus for column n, we have a tridiagonal system of M-1 equations and M-1 unknowns $\left(\theta_{2}^{n}\right.$ to $\left.\theta_{M}^{n}\right)$. The equations can be written as follows:

$$
\begin{align*}
& \mathrm{A}_{2} \theta_{1}^{\hat{\hat{n}_{1}^{0}}}+\mathrm{B}_{2} \theta_{2}^{\mathrm{n}}+\mathrm{C}_{2} \theta_{3}^{\mathrm{n}}=\mathrm{H}_{2} \\
& A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=H_{m} \quad(m=3,4, \ldots, M-1) \tag{5.24}\\
& A_{M} \theta_{M-1}^{n}+B_{M} \theta_{M}^{n}+C_{M}^{\prime} \theta_{M+1}^{n}=H_{M} \\
& \frac{\mathrm{~T}_{\mathrm{w} 2}-\mathrm{T}_{\mathrm{w} 1}}{\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{w} 1}}
\end{align*}
$$

or in matrix form:

$$
\left[\begin{array}{ccccccc}
\mathrm{B}_{2} & \mathrm{C}_{2} & & & & & \tag{5.25}\\
\mathrm{~A}_{3} & \mathrm{~B}_{3} & \mathrm{C}_{3} & & & \underline{0} & \\
& \ddots & \ddots & \ddots & & & \\
& & & & & \\
& & \mathrm{~A}_{\mathrm{m}} & \mathrm{~B}_{\mathrm{m}} & \mathrm{C}_{\mathrm{m}} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & A_{M-1} & \mathrm{~B}_{\mathrm{M}-1} & \mathrm{C}_{\mathrm{M}-1} \\
& & & & A_{M} & \mathrm{~B}_{\mathrm{M}}
\end{array}\right]\left[\begin{array}{c}
\theta_{2}^{\mathrm{n}} \\
0
\end{array}\right.
$$

This system of equations is solved for the temperature profile along column n by Gaussian elimination using Thomas' method (details in App. D, Sec. 1).

Bulk Temperature

The dimensionless flow-average (bulk) temperature is calculated from the following definition:

$$
\begin{equation*}
\theta_{\text {bulk }}=\frac{\int_{Y=0}^{Y=1} \theta(X, Y) U(X, Y) d Y}{\int_{Y=0}^{Y=1} U(X, Y) d Y} \tag{5.26}
\end{equation*}
$$

For column n, Eq. (5.26) is written in finite difference form using Simpson's Rule as follows:

$$
\begin{equation*}
\theta_{b u l k}^{n}=\frac{\theta_{1}^{n} U_{1}^{n}+4 \theta_{2}^{n} U_{2}^{n}+2 \theta_{3}^{n} U_{3}^{n}+\ldots+4 \theta_{M}^{n} U_{M}^{n}+\theta_{M+1}^{n} U_{M+1}^{\hat{n}_{n}^{n}}}{U_{1}^{n}+4 U_{2}^{n}+2 U_{3}^{n}+\ldots+4 U_{M}^{n}+U_{M+1}^{n}} \underset{\substack{n \\ 0}}{0} \tag{5.27}
\end{equation*}
$$

Local Nusselt Number
The local Nusselt number is calculated from the following definition which is derived in App. B:

$$
\begin{equation*}
N u_{x}=\frac{h b}{k}=\frac{\left(\frac{d T}{d y}\right)_{w a l l} \cdot \mathrm{~b}}{\left(T_{b u l k}-T_{\text {wall }}\right)} \tag{5.28}
\end{equation*}
$$

In dimensionless form, we have:

$$
\begin{align*}
& \left(N u_{X}\right)_{Y=0}=\frac{\left(\frac{d \theta}{d Y}\right)_{Y=0}}{\theta_{\text {bulk }}} \tag{5.29}\\
& \left(N u_{X}\right)_{Y=1}=\frac{-\left(\frac{\mathrm{d} \theta}{\mathrm{dY}}\right)_{Y=1}}{\theta_{\text {bulk }}{ }^{-\theta}{ }_{w 2}} \tag{5.30}
\end{align*}
$$

The dimensionless temperature gradients at the walls are estimated for column n by the following finite difference approximations:

$$
\begin{align*}
& \left(\frac{d \theta}{d Y}\right)_{Y=0}^{n}=\frac{1}{6 \Delta Y}\left(-11 \theta_{1}^{n}+18 \theta_{2}^{n}-9 \theta_{3}^{n}+2 \theta_{4}^{n}\right) \tag{5.31}\\
& \left(\frac{d \theta}{d Y}\right)_{Y=1}^{n}=\frac{1}{6 \Delta Y}\left(-2 \theta_{M-2}^{n}+9 \theta_{M-1}^{n}-18 \theta_{M}^{n}+11 \theta_{M+1}^{n}\right) \tag{5.32}
\end{align*}
$$

The above equations are derived in App. C, Sec. 1 and 5.

5.2 Computational Procedure

It was stated in Chap. 3, Sec. 3, that the momentum and energy equations are coupled by velocity and temperature, and therefore cannot be solved inḍependently. However, the coupled equations can be solved
iteratively at a given column on the finite difference grid by alternately solving the set of continuity and momentum equations (5.18) and the set of energy equations (5.24) until the solutions converge. The iterative "marching" procedure used to calculate the velocity and temperature profiles, the pressure, the bulk temperature and the local Nusselt numbers at each colum in the grid is now outlined.

Notation

$\mathrm{U1} \mathrm{~m}_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the estimated velocity profile at column n .
$\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the most recently calculated velocity profile at column n.
$\theta_{m}^{n-1}(m=1,2, \ldots, M+1)$ refers to the temperature profile at column $n-1$.
$\theta 1_{m}^{n}(m=1,2, \ldots, M+1)$ refers to the estimated temperature profile at column n.
$\theta 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the most recently calculated temperature profile at column n.

Procedure

1. Assume values for the velocity and temperature profiles and the pressure at the entrance of the channel (at column 0).

$$
\left.\begin{array}{l}
\mathrm{U}_{\mathrm{m}}^{\mathrm{O}}=\left(\frac{\mathrm{v}+1}{v}\right)\left(1-|2 \mathrm{Y}-1|^{v}\right) \\
\theta_{\mathrm{m}}^{0}=1 \\
\mathrm{P}^{0}=0
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)
$$

2. Print the velocity and temperature profiles at column 0 .
3. Set the estimates of the velocity and temperature profiles to be used in the first iteration at column 1 equal to the values of the respective profiles at column 0 .

$$
\begin{aligned}
& \mathrm{n}=1 \\
& \mathrm{U} 1_{\mathrm{m}}^{1}=\mathrm{U} 1_{\mathrm{m}}^{\mathrm{O}} \quad(\mathrm{~m}=1,2, \ldots, \mathrm{M}+1) \\
& \theta 1_{1}^{1}=\theta 2_{1}^{1}=0, \quad \theta 1_{M+1}^{1}=\theta 2_{M+1}^{1}=\frac{T_{w 2}-T_{w 1}}{T_{o}-T_{w 1}} \\
& \theta 1_{m}^{1}=\theta_{m}^{O} \quad(m=2,3, \ldots, M)
\end{aligned}
$$

4. To economize on computing time, increase ΔX by a factor of 10 after the final velocity and temperature profiles have been calculated at column $n=N A$, and again after they have been calculated at column $n=N B$ (see program listing, App. F, Sec. 2).

$$
\Delta X=10 \Delta X \text { at column } N A+1 \text { and again at column } N B+1
$$

5. Using $U 1_{m}^{n}$ and $\theta 1_{m}^{n} \quad(m=1,2, \ldots, M+1)$, calculate $\left(\frac{d U}{d Y}\right)_{m}^{n}$ and n_{m}^{n} ($\mathrm{m}=1,2, \ldots, \mathrm{M}+1$) at column n .
6. Using $U 1_{m}^{n},\left(\frac{d U}{d Y}\right)_{m}^{n}, n_{m}^{n}$ and $\theta_{m}^{n-1}(m=1,2, \ldots, M+1)$, solve the set of energy equations (5.25) by Gaussian elimination using Thomas' method (see App. D, Sec. 1) to obtain $\theta 2_{m}^{n}(m=2,3, \ldots, M)$.
7. Using $U 1_{m}^{n}$ and $\theta 2_{m}^{n}(m=1,2, \ldots, M+1)$, calculate n_{m}^{n} and $\left(\frac{d n}{d Y}\right)_{m}^{n}$ ($m=1,2, \ldots, M+1$) at column n.
8. Using P^{n-1}, n_{m}^{n} and $\left(\frac{d n}{d Y}\right)_{m}^{n}(m=1,2, \ldots, M+1)$, solve the set of
continuity and momentum equations (5.19) by Gaussian elimination (see App. D, Sec. 2 for algorithm) to obtain $U 2_{m}^{n}$ and $P^{n}(m=$ $2,3, \ldots, M)$.
9. Compare $\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}, \mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}$ and $\theta 1_{\mathrm{m}}^{\mathrm{n}}, \theta 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$. If $\left|\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}-\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}\right|$ < tolerance and $\left|\theta 2_{m}^{n}-\theta 1_{m}^{n}\right|<$ tolerance for all m, then proceed to step 12. Otherwise, continue to step 10.
10. Set the estimates of the velocity and temperature profiles to be used in the next iteration at column n equal to the most recently calculated profiles.

$$
\left.\begin{array}{rl}
U 1_{m}^{n} & =U 2_{m}^{n} \\
\theta 1_{m}^{n} & =\theta 2_{m}^{n}
\end{array}\right\} \quad(m=1,2, \ldots, M+1)
$$

11. Repeat steps 5 through 9 until the desired error tolerances have been achieved.
12. Set the estimates of the velocity and temperature profiles to be used in the first iteration at column $n+1$ equal to the final values of the profiles calculated at column n. Also, retain the final temperature profile calculated at column n for use in calculating temperature profiles at column $n+1$.

$$
\left.\begin{array}{l}
U 1_{m}^{n+1}=U 2_{m}^{n} \\
\theta 1_{m}^{n+1}=\theta 2_{m}^{n} \\
\theta_{m}^{n}=\theta 2_{m}^{n}
\end{array}\right\} \quad(m=1,2, \ldots, M+1)
$$

13. Repeat steps 4 through 12 to calculate the velocity and temperature
profiles at the next column downstream in the channel $(\mathrm{n}=\mathrm{n}+1)$. The following steps are to be carried out at periodic intervals along the length of the channel:
14. Print the velocity and temperature profiles and the pressure.
15. Calculate the bulk temperature using Simpson's Rule (see Eq. (5.27)).
16. Calculate the local Nusselt numbers at the walls (see Eqs. (5.29) and (5.30)).
17. Print the bulk temperature and the local Nusselt numbers.

Computations using the above algorithm have been carried out in McMaster's CDC 6400 computer. A sample program listing with results is located in App. F, Sec. 2.

5.3 Convergence, Stability and Step Size

It was stated in Chap. 3, Sec. 4, that a good indication of the convergence and stability of the finite difference results is the negligible change in results obtained when the step sizes in the finite difference grid are decreased. It should be noted that special care must be taken in choosing step sizes when calculating local Nusselt numbers. Although the temperature profiles may appear to be sufficiently accurate, the local Nusselt numbers can still be incorrect. Local Nusselt numbers are calculated from temperature derivatives (see Eq. (5.28)). Since derivatives are very sensitive to step size changes, smaller step sizes must be used when calculating local Nusselt numbers, than when only calculating
velocity and temperature profiles. The step sizes shown in Table 5-1 were used in the finite difference program. The results presented in the subsequent figures are independent of step size within at least 3 significant digits.

Table 5-1. Step sizes for finite difference program Poiseuille flow between parallel plates.

Range of X	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$
$0-0.1$	0.0001	0.01
$0.1-0.3$	0.001	0.01
$0.3-1.0$	0.01	0.01

Two additional tests for the convergence of the finite difference results were carried out. In the first test, the dimensionless bulk temperatures and local Nusselt numbers were obtained for a Newtonian, constant viscosity fluid with no viscous dissipation, and compared with the results obtained by V1achopoulos and Keung (70) by the explicit finite difference method. The results are compared in Table 5-2, and as can be seen, differ by very little. In the second test, the fullydeveloped temperature profile, the limiting bulk temperature and the limiting local Nusselt number (at large X) were calculated analytically for a Newtonian, constant viscosity fluid with viscous dissipation (see App. E, Sec. 2), and compared with the corresponding finite difference results for the same fluid. The analytical and finite difference results were indistinguishable.

Table 5-2. Comparison of dimensionless bulk temperatures and local Nusselt numbers. Newtonian fluid with no viscous dissipation.

	Present work		Vlachopoulos and Keung	
X	$\theta_{\text {bulk }}$	Nu_{x}	$\theta_{\text {bulk }}$	$\mathrm{Nu} \mathrm{x}_{\mathrm{x}}$
0.0075	0.892	5.36	0.89	5.35
0.01875	0.798	4.31	0.80	4.31
0.0375	0.690	3.89	0.69	3.89
0.075	0.520	3.77	0.52	3.77
0.150	0.293	3.77	0.29	3.77
0.225	0.167	3.77	0.18	3.77
0.300	0.095	3.77	0.09	3.77
0.375	0.054	3.77	0.05	3.77

5.4 Results and Discussion

Solutions of the continuity, momentum and energy equations for Poiseuille flow between parallel plates are presented in Figs. 5-3 through 5-13. The following velocity and temperature boundary conditions have been used:

$$
\begin{array}{lll}
\mathrm{x}=0 & \mathrm{u}=\mathrm{u}_{\mathrm{avg}}\left(\frac{v+1}{\nu}\right)\left(1-\left|\frac{2 y}{\mathrm{~b}}-1\right|^{\nu}\right) & \mathrm{T}_{\mathrm{o}}=130^{\circ} \mathrm{C} \quad \mathrm{p}_{\mathrm{o}}=0 \\
\text { where } u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, v=\frac{\mathrm{n}+1}{\mathrm{n}}, \quad \mathrm{n}=0.453 & \tag{5.33}\\
y=0 & \mathrm{u}=0 & \mathrm{~T}_{\mathrm{w} 1}=160^{\circ} \mathrm{C} \\
\mathrm{y}=\mathrm{b}=0.25 \mathrm{~cm} & \mathrm{u}=0 & T_{\mathrm{w} 2}=160^{\circ} \mathrm{C}
\end{array}
$$

In obtaining some of the results, different temperature boundary conditions
were used for comparison. The following power-1aw temperature-dependent viscosity model and fluid properties representing a typical high-density polyethylene melt were used in the computations:

$$
\text { Viscosity: } \begin{aligned}
& n=A e^{-\mathrm{Bn}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{m}}\right)}\left|\frac{\mathrm{du}}{\mathrm{dy}}\right|^{\mathrm{n}-1} \\
& \text { where } \mathrm{A}=282000 \mathrm{poise} \cdot \mathrm{~s}^{\mathrm{n}-1} \\
&=28200 \mathrm{~Pa} \cdot \mathrm{~s}^{\mathrm{n}} \\
& \mathrm{~B}=0.024 \mathrm{~K}^{-1} \\
& \mathrm{n}=0.453 \\
& \mathrm{~T}_{\mathrm{m}}=399.5 \mathrm{~K}
\end{aligned}
$$

Density: $\quad \rho=794 \mathrm{~kg} / \mathrm{m}^{3}$

Specific heat:

$$
\begin{aligned}
C_{p} & =0.6 \mathrm{cal} /(\mathrm{g} \cdot \mathrm{~K}) \\
& =2.51 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})
\end{aligned}
$$

Thermal conductivity:

$$
\begin{aligned}
\mathrm{k} & =6.1 \times 10^{-4} \mathrm{cal} /(\mathrm{cm} \cdot \mathrm{~s} \cdot \mathrm{~K}) \\
& =0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})
\end{aligned}
$$

The temperature profiles, bulk temperatures and local Nusselt numbers in Figs. 5-3 through 5-13 are shown as functions of the dimensionless axial distance, X. Because the bulk temperatures and local Nusselt numbers change the most near the entrance of the flow channel, they have
been plotted semi-logarithmically. X on the abscissa of these plots ranges from 0.001 to 1.0 . This corresponds to x ranging from 0.7 cm to 732 cm . At $X=1.0$, the temperature profile has become fully developed. Beyond this point in the channel, the temperature profiles, bulk temperatures and local Nusselt numbers remain the same, and thus are known as the limiting or asymptotic values.

In Figs. 5-3 and 5-4, the temperature profiles for the power-law temperature-dependent viscosity model and for a power-1aw temperatureindependent viscosity model are compared. Two different temperature boundary conditions have been considered: both plates at $160^{\circ} \mathrm{C}$ in Fig. 5-3, and one plate at $190^{\circ} \mathrm{C}$ and the other at $130^{\circ} \mathrm{C}$ in Fig. 5-4. The temperature-independent viscosity model used is identical to the temper-ature-dependent viscosity model given in Eq. (5.34), except that T is held constant and equal to the average of the temperatures of the two plates $\left(160^{\circ} \mathrm{C}\right.$ in both cases). In Fig. $5-4$, it can be seen that near the cold wall $\left(\mathrm{T}=130^{\circ} \mathrm{C}\right)$ the temperature of the fluid is higher with the temperature-dependent model than with the temperature-independent mode1. The opposite is true near the hot wall $\left(\mathrm{T}=190^{\circ} \mathrm{C}\right)$. The reason for this is that the viscosity decreases with increasing temperature. Near the cold wall, the temperature in the constitutive equation of the temperaturedependent model is lower than that of the temperature-independent model. Therefore, the viscosity will be higher in the temperature-dependent case resulting in more heat generated by viscous dissipation. Near the hot wall, more heat is generated in the temperature-independent case. In

DEVELOPMENT OF TEMPERATURE PROFILES
POWER-LAW FLUID
———TEMPERATURE-DEPENDENT VISCOSITY
-----TEMPERATURE-INDEPENDENT VISCOSITY

$$
T_{0}=130^{\circ} \mathrm{C}, T_{w} 1=T_{w} 2=160^{\circ} \mathrm{C}
$$

Fig. 5-3. Development of temperature profiles. Poiseuille flow between parallel plates. Channel dimensions and fluid properties given on pp. 80-81.

DEVELOPMENT OF TEMPERATURE PROFILES

POWER-LAW FLUID
——TEMPERATURE-DEPENDENT VISCOSITY
------TEMPERATURE-INDEPENDENT VISCOSITY

$$
T_{0}=130^{\circ} \mathrm{C}, T_{w} 1=190^{\circ} \mathrm{C}, T_{w}=130^{\circ} \mathrm{C}
$$

Fig. 5-4. Development of temperature profiles. Poiseuille flow between parallel plates. Channel dimensions and fluid properties given on pp. 80-81.
both Figs. 5-3 and 5-4, the bulges in the temperature profiles indicate that more heat is generated by viscous dissipation near the walls than near the centre-line of flow. This is due to the fact that the shear rates are highest near the channel walls.

Plots of the bulk temperatures along the length of the channel are presented in Figs. 5-5 through 5-9 for the power-law temperaturedependent and temperature-independent viscosity models and for the Newtonian, constant viscosity model. In Fig. 5-5, the bulk temperatures are shown for power-law temperature-dependent viscosity fluids with different inlet temperatures. In each case, the limiting bulk temperature is the same $\left(201.2^{\circ} \mathrm{C}\right)$. This is to be expected since the fullydeveloped velocity and temperature profiles are only influenced by the wall boundary conditions and by the viscosity and the thermal conductivity of the fluid, but not by the inlet conditions of the fluid. Also shown in Fig. 5-5 is the effect of removing the viscous dissipation term from the energy equation. Without viscous dissipation, the limiting bulk temperature is equal to the wall temperature $\left(160^{\circ} \mathrm{C}\right)$. The difference of $41.2^{\circ} \mathrm{C}$ is an indication of the importance of viscous dissipation in the Poiseuille flow of polymer melts between parallel plates.

The rise in bulk temperature of the power-1aw temperature-dependent viscosity fluid is shown in Fig. 5-6 for the two temperature boundary conditions discussed earlier. Even though the average of the wall temperatures is the same $\left(160^{\circ} \mathrm{C}\right)$, the limiting bulk temperatures differ by $3^{\circ} \mathrm{C}$. In Figs. 5-7 and 5-8, the bulk temperatures of the power-law temp-erature-dependent and temperature-independent viscosity fluids are compared

Fig. 5-5. Bulk temperature vs. X. Poiseuille flow between parallel plates.

Fig. 5-6. Bulk temperature vs. X. Poiseuille flow between paralle1 plates.

Fig. 5-7. Bulk temperature vs. X. Poiseuille flow between parallel plates. Channel dimensions and fluid properties given on pp. 80-81.

Fig. 5-8. Bulk temperature vs. X. Poiseuille flow between paralle1 plates.
for the two temperature boundary conditions. Although the temperature profiles of the temperature-dependent and temperature-independent viscosity fluids differ substantially, especially when the two wall temperatures are different, the bulk temperatures differ much less. The rise in bulk temperature of the power-1aw temperature-dependent viscosity fluid is compared with several Newtonian, constant viscosity fluids in Fig. 5-9.

Plots of the local Nusselt number along the length of the channel are presented in Figs. 5-10 through 5-13 for the power-law temperaturedependent and temperature-independent viscosity models and the Newtonian, constant viscosity model. When the two wall temperatures are not the same, the local Nusselt number must be calculated at each wall separately. Since the local Nusselt number is a function of the temperature gradient at the wall (see Eq. (5.28)), it will be different at the two walls when the wall temperatures are different.

In Fig. 5-10, the local Nusselt numbers are shown for the powerlaw temperature-dependent viscosity fluids having different inlet temperatures. In each case, the limiting local Nusselt number is 8.95 . Although not shown, the limiting local Nusselt number for the case where viscous dissipation has been neglected is 4.00 . It can be seen that when the fluid is heated by the channel walls ($\mathrm{T}_{\mathrm{o}}=130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 1}=\mathrm{T}_{\mathrm{w} 2}=160^{\circ} \mathrm{C}$), there is a region along the channel where the local Nusselt number is negative, and a point where it is discontinuous. With the aid of Eq. (5.28), this behaviour is explained as follows:

Fig. 5-9. Bulk temperature vs. X. Poiseuille flow between parallel plates.

Fig. 5-10. Local Nusselt number vs. X. Poiseui11e flow between paralle1 plates.

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=\frac{\mathrm{hb}}{\mathrm{k}}=\frac{\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }}{ }^{\bullet b}}{\mathrm{~T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{5.28}
\end{equation*}
$$

$X<0.002$	$\frac{d T}{d y}<0$	$T_{b}<T_{W}$	$N u_{x}>0$
$X \simeq 0.002$	$\frac{d T}{d y}=0$	$T_{b}<T_{W}$	$N u_{x}=0$
$0.002<X<0.06$	$\frac{d T}{d y}>0$	$T_{b}<T_{W}$	$N u_{x}<0$
$X \simeq 0.06$	$\frac{d T}{d y}>0$	$T_{b}=T_{W}$	$N u_{X}= \pm \infty$
$X>0.06$	$\frac{d T}{d y}>0$	$T_{b}>T_{W}$	$N u_{x}>0$

When the inlet temperature is higher than the wall temperature, the local Nusselt number is always positive.

The local Nusselt numbers for the power-1aw temperature-dependent and temperature-independent viscosity models are presented in Figs. 5-11 and 5-12 for the temperature boundary conditions discussed earlier. In Fig. 5-11, the local Nusselt numbers are shown for the case where both walls are at $160^{\circ} \mathrm{C}$. The limiting local Nusselt numbers for the temperaturedependent and temperature-independent cases are 8.95 and 11.22 respectively. In Fig. 5-12, the local Nusselt numbers are shown for the case where one wall is at $190^{\circ} \mathrm{C}$ and the other is at $130^{\circ} \mathrm{C}$. Here, the limiting local Nusselt numbers for the temperature-dependent and temperature-independent cases are 5.77 and 7.43 at the $190^{\circ} \mathrm{C}$ wall and 21.88 and 32.50 at the $130^{\circ} \mathrm{C}$ wall. In Fig. 5-13, the local Nusselt numbers are presented for the power-1aw temperature-dependent viscosity model and several Newtonian,

Fig. 5-11. Local Nusselt number vs. X. Poiseuille flow between paralle1 plates.

Fig. 5-12. Local Nusselt number vs. X. Poiseuille flow between parallel plates. Channel dimensions and fluid properties given on pp. 80-81.

Fig. 5-13. Local Nusselt number vs. X. Poiseuille flow between parallel plates.
constant viscosity models.
The results for the power-1aw temperature-dependent viscosity model have been compared with the power-law temperature-independent viscosity model and the Newtonian, constant viscosity model results. Given an appropriate temperature for the temperature-independent model, or an appropriate viscosity for the Newtonian model, it can be seen that the temperature-dependent model results are adequately estimated by the use of either of the simpler models. The choice of temperature and viscosity was made by inspection. However, if we did not have any temperature-dependent model results to compare our more simplified model results with, then we would not have anything to base our choice of temperature or viscosity on. Furthermore, the given temperature or viscosity is usually suitable for one type of flow only. For example, in Fig. 5-9 it can be seen that the rise in bulk temperature for the temperature-dependent model is closely approximated by that of a Newtonian fluid with a viscosity of about $700 \mathrm{~Pa} \cdot \mathrm{~s}$, while in drag flow between parallel plates, a Newtonian viscosity of $2000 \mathrm{~Pa} \cdot \mathrm{~s}$ is required (see Fig.-4-7).

5.5 Concluding Remarks

1. A computer program has been developed to analyze the heat transfer problem for the Poiseuille flow of polymer melts between parallel, constant temperature plates. Results have been presented for specified velocity, pressure and temperature boundary conditions, fluid properties and channel dimensions.
2. Care must be taken when choosing the proper step sizes to ensure that the local Nusselt numbers and not only the temperature profiles have converged.
3. It is very important to consider viscous dissipation in the Poiseuille flow of polymer melts between parallel plates. A rise of $41.2^{\circ} \mathrm{C}$ in the 1 imiting bulk temperature due to viscous dissipation was obtained using the specified boundary conditions, fluid properties and channel dimensions given earlier in this chapter.
4. The results obtained using the power-1aw temperature-dependent viscosity model were compared with those using the simpler power-1aw temperature-independent viscosity model and the Newtonian, constant viscosity model. It was seen that the results obtained using the temper-ature-dependent model were in most cases adequately approximated by either of the two simpler models, provided that a correct temperature or viscosity was chosen. However, if there are no temperature-dependent model results available, we have then no basis with which to choose a temperature for the temperature-independent model, or a viscosity for the Newtonian, constant viscosity model.

CHAPTER 6

POISEUILLE FLOW THROUGH A TUBE WITH CIRCULAR CROSS-SECTION

6.1 Mathematical Formulation

The physical system for Poiseuille (or pressure) flow through a tube with circular cross-section is illustrated in Fig. 6-1. It consists of flow through a tube with an inside radius, a, and constant temperature walls.

Fig. 6-1. Poiseuille flow through a tube with circular cross-section.

Flow Equations

The simplified conservation equations for Poiseuille flow through a circular tube are:

Continuity (integral form) :

$$
\begin{equation*}
\int_{r=0}^{r=a} u r d r=\frac{a^{2}}{2} u_{a v g} \tag{6.1}
\end{equation*}
$$

Momentum: $\quad-\frac{d p}{d z}+\frac{1}{r} \frac{d}{d r}\left(r \tau_{r z}\right)=0$
or

$$
\begin{equation*}
-\frac{d p}{d z}+\frac{1}{r} \quad \tau_{r z}+\frac{d}{d r} \tau_{r z}=0 \tag{6.3}
\end{equation*}
$$

Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial z}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)+\tau_{r z} \frac{d u}{d r}$
or $\quad \rho C_{p} u \frac{\partial T}{\partial z}=k \frac{\partial^{2} T}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}+\tau_{r z} \frac{d u}{d r}$

Substituting the constitutive relation, Eqs. (3.12) and (3.13) into the momentum and energy equations, we obtain:

Momentum: $\quad-\frac{d p}{d z}+\eta \frac{d^{2} u}{d r^{2}}+\left(\frac{\eta}{r}+\frac{d \eta}{d r}\right) \frac{d u}{d r}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial r}=k \frac{\partial^{2} T}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}+n\left(\frac{d u}{d r}\right)^{2}$

$$
\text { where } n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d r}\right|^{n-1}
$$

The boundary conditions for the above equations are

$$
\begin{aligned}
& z=0 \quad u=u_{o}(r)=u_{a v g}\left[\frac{v+2}{v}\right]\left[1-\left(\frac{r}{a}\right)^{\nu}\right] \quad T=T_{o} \quad \mathrm{p}=\mathrm{p}_{0} \\
& \text { where } v=\frac{n+1}{n}, n=\text { power-1aw index }
\end{aligned}
$$

$$
\begin{array}{lll}
r=0 & \frac{d u}{d r}=0 & \frac{\partial T}{\partial r}=0 \tag{6.8}\\
\text { (symmetry) } \\
r=a & u=0 & T=T_{W}
\end{array}
$$

A $\frac{n+1}{n}$ degree parabolic velocity profile, $u_{o}(r)$, has been chosen at $z=0$. Since the entrance length for the flow of polymer melts is very short, ${ }^{2}$ a fully-developed velocity profile can be assumed at the entrance of the tube. In addition, a constant temperature profile was used at $z=0$.

Let

$$
\begin{align*}
& u=\frac{u}{u_{a v g}} \\
& P=\frac{p-p_{o}}{\rho u^{2} a v g} \\
& \theta=\frac{T-T_{W}}{T_{o}^{-T} T_{W}} \tag{6.9}\\
& z=\frac{k z}{\rho C_{p} u_{a v g} a^{2}} \\
& R=\frac{r}{a}
\end{align*}
$$

Substituting the above into Eqs. (6.1), (6.6) and (6.7), we obtain in terms of dimensionless parameters:

Continuity (integral form) :

$$
\begin{equation*}
\int_{R=0}^{\mathrm{R}=1} \mathrm{URdR}=\frac{1}{2} \tag{6.10}
\end{equation*}
$$

$$
{ }^{R_{e}}{ }_{D}=\frac{\rho u D}{\eta} \simeq 10^{-4} \text { for the flow of polymer melts. } \frac{z}{D} \simeq 0.05 \operatorname{Re}_{D}=
$$ 5×10^{-6} where z is the entrance length. When $\mathrm{D}=0.25 \mathrm{~cm}, \mathrm{z}=1.25 \times 10^{-6}$ cm.

Momentum: $\quad-\frac{k}{C_{p}} \frac{d P}{d z}+\eta \frac{d^{2} U}{d R^{2}}+\left(\frac{\eta}{R}+\frac{d \eta}{d R}\right) \frac{d U}{d R}=0$
Energy: $\quad U \frac{\partial \theta}{\partial z}=\frac{\partial^{2} \theta}{\partial R^{2}}+\frac{1}{R} \frac{\partial \theta}{\partial R}+\gamma\left(\frac{d U}{d R}\right)^{2}$

$$
\text { where } \begin{aligned}
\gamma & =\frac{\eta u_{a v g}}{k\left(T_{o}-T_{W}\right)} \\
\eta & =A e^{-B n\left(T-T_{m}\right)}\left|\frac{d U}{d R} \cdot \frac{u_{a v g}}{a}\right|^{n-1}
\end{aligned}
$$

The accompanying dimensionless boundary conditions are:

$$
\begin{array}{lll}
Z=0 & U=U_{0}(R)=\frac{v+2}{v}\left[1-R^{\nu}\right] & \theta=1 \\
P=0 \tag{6.13}\\
R=0 & \frac{d U}{d R}=0 & \frac{\partial \theta}{\partial R}=0 \\
R=1 & U=0 & \theta=0
\end{array}
$$

In Eqs. (6.11) and (6.12), when $R=0$ (at the centre of the tube), $\frac{1}{R} \frac{d U}{d R}$ and $\frac{1}{R} \frac{\partial \theta}{\partial R}$ are represented by the indeterminate form, $\frac{0}{0}$. By L'Hospital's Rule ${ }^{3}$:

$$
\begin{align*}
& \lim _{R \rightarrow 0}\left[\frac{1}{R} \frac{d U}{d R}\right]=\frac{d^{2} U}{d R^{2}} \tag{6.14}\\
& \lim _{R \rightarrow 0}\left[\frac{1}{R} \frac{\partial \theta}{\partial R}\right]=\frac{\partial^{2} \theta}{\partial R^{2}} \tag{6.15}
\end{align*}
$$

$\quad{ }^{3}$ L'Hospital's Rule: $^{\prime}$ If $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{0}{0}$, then $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=$
$\lim _{x \rightarrow a}\left[\frac{f^{I}(x)}{g^{I}(x)}\right]$.

Thus, the momentum and energy equations become:
Momentum: $\quad-\frac{\mathrm{k}}{\mathrm{C}_{\mathrm{p}}} \frac{\mathrm{dP}}{\mathrm{dz}}+\frac{\mathrm{d} \eta}{\mathrm{dR}, \frac{d U^{\prime \prime}}{d R}+2 \eta \frac{\mathrm{~d}^{2} \mathrm{U}}{\mathrm{dR}^{2}}=0 \quad \text { for } \mathrm{R}=0}$

$$
\begin{equation*}
-\frac{k}{C_{p}} \frac{d P}{d z}+\eta \frac{d^{2} U}{d R^{2}}+\left(\frac{\eta}{R}+\frac{d \eta}{d R}\right) \frac{d U}{d R}=0 \quad \text { for } R>0 \tag{6.16b}
\end{equation*}
$$

Energy:

$$
\begin{array}{ll}
U \frac{\partial \theta}{\partial z}=2 \frac{\partial^{2} \theta}{\partial R^{2}}+\gamma\left(\frac{\left.\partial U^{\frac{\pi}{d R}}\right)^{2}}{}\right. & \text { for } R=0 \\
U \frac{\partial \theta}{\partial z}=\frac{\partial^{2} \theta}{\partial R^{2}}+\frac{1}{R} \frac{\partial \theta}{\partial R}+\gamma\left(\frac{d U}{d R}\right)^{2} & \text { for } R>0
\end{array}
$$

Finite Difference Equations
An implicit finite difference method is used to solve Eqs. (6.10), $(6.16 a, b)$ and $(6.17 a, b)$ with the accompanying boundary conditions (6.13). The finite difference grid is illustrated in Fig. 6-2.

Continuity Equation

Using Simpson's Rule, the integrated continuity equation is given in the following finite difference form:

Substituting Eq. (6.18) into Eq. (6.10), we obtain for column n:

Fig. 6-2. Finite difference grid. Poịseuille flow through a tube with circular cross-section.

$$
\begin{equation*}
4 \mathrm{U}_{2} \mathrm{R}_{2}+2 \mathrm{U}_{3} \mathrm{R}_{3}+\ldots+4 \mathrm{U}_{\mathrm{M}} \mathrm{R}_{\mathrm{M}}=\frac{3}{2 \Delta \mathrm{R}}=1.5 \mathrm{M} \tag{6.19}
\end{equation*}
$$

Momentum Equation

For the momentum equation, the following finite difference approximations are used:

$$
\begin{align*}
& \frac{d P}{d z}=\frac{P^{n}-P^{n-1}}{\Delta z} \tag{6.20}\\
& \frac{d U}{d R}=\frac{U^{n}+1-U_{m}^{n}-1}{2 \Delta R} \tag{6.21}\\
& \frac{d^{2} U}{d R^{2}}=\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta R)^{2}} \tag{6.22}
\end{align*}
$$

Substituting Eqs. (6.20) , (6.21) and (6.22) into Eqs. (6.16a) and (6.16b), we obtain for column n (details in App. A, Sec. 3.1):

$$
\begin{gathered}
U_{2}^{n} \text { by symmetry } \\
U_{0}^{n}-2 U_{1}^{n}+U_{2}^{n}+\frac{W_{1}}{2} P^{n}-\frac{W_{1}}{2} P^{n-1}=0 \quad \text { for } R=0 \\
A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m}^{n}+W_{m} P^{n}-W_{m} P^{n-1}=0 \quad \text { for } R>0 \\
\text { where } A_{m}=-\left[\frac{\Delta R}{2 R_{m}}+\left(\frac{d n}{d R}\right)_{m}^{n} \frac{\Delta R}{n_{m}}\right]+1 \\
B_{m}=-2 \\
C_{m}=\left[\frac{\Delta R}{2 R_{m}}+\left(\frac{d n}{d R}\right)_{m}^{n} \frac{\Delta R}{n_{m}}\right]+1
\end{gathered}
$$

$$
W_{m}=-\frac{k}{n_{m} C_{p}} \frac{(\Delta R)^{2}}{\Delta z} \quad(m=1,2, \ldots, M)
$$

Combining Eqs. (6.19), (6.23a) and (6.23b), we have for column n a modified tridiagonal system of $M+1$ equations and $M+1$ unknowns (U_{1} to U_{M} and P^{n}). The equations can be written as follows:

$$
-2 U_{1}^{n}+2 U_{2}^{n}+\frac{W_{1}}{2} P^{n}-\frac{W_{1}}{2} P^{n-1}=0
$$

$$
\begin{equation*}
\mathrm{A}_{2} \mathrm{U}_{1}^{\mathrm{n}}+\mathrm{B}_{2} \mathrm{U}_{2}^{\mathrm{n}}+\mathrm{C}_{2} \mathrm{U}_{3}^{\mathrm{n}}+\mathrm{w}_{2} \mathrm{P}^{\mathrm{n}}-\mathrm{W}_{2} \mathrm{P}^{\mathrm{n}-1}=0 \tag{6.24}
\end{equation*}
$$

$$
\begin{equation*}
A_{m} U_{m-1}^{n}+B_{m} U_{m}^{n}+C_{m} U_{m+1}^{n}+W_{m} P^{n}-W_{m} P^{n-1}=0 \quad(m=3,4, \ldots, \tag{M-1}
\end{equation*}
$$

$$
4 R_{2} U_{2}^{n}+2 R_{3} U_{3}^{n}+\ldots+4 R_{M} U_{M}^{n}=1.5 \mathrm{M}
$$

or in matrix form:

$$
\left[\begin{array}{cccccccc}
\mathrm{B}_{1} & \mathrm{C}_{1} & & & & & & \mathrm{~W}_{1} \tag{6.26}\\
\mathrm{~A}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} & & & \underline{2} & & \mathrm{~W}_{2} \\
& \ddots & \ddots & \ddots & & & \vdots \\
& & & & & & & \\
& & \mathrm{~A}_{\mathrm{m}} & \mathrm{~B}_{\mathrm{m}} & \mathrm{C}_{\mathrm{m}} & & & \mathrm{~W}_{\mathrm{m}} \\
& & & \ddots & \ddots & \ddots & & \vdots \\
& & & & A_{M-1} & \mathrm{~B}_{\mathrm{M}-1} & \mathrm{C}_{\mathrm{M}-1} & \mathrm{~W}_{\mathrm{M}-1} \\
& & & & A_{M} & \mathrm{~B}_{\mathrm{M}} & \mathrm{~W}_{\mathrm{M}} \\
& \underline{0} & & & & & \\
\mathrm{X}_{1} & \mathrm{X}_{2} & & \cdots & & \mathrm{X}_{\mathrm{M}-1} & \mathrm{X}_{\mathrm{M}} & \mathrm{X}_{\mathrm{M}+1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{U}_{1}^{\mathrm{n}} \\
\mathrm{U}_{2}^{\mathrm{n}} \\
\vdots \\
\mathrm{H}_{1} \\
\mathrm{H}_{2} \\
\vdots \\
\mathrm{U}_{\mathrm{m}}^{\mathrm{n}} \\
\vdots \\
\mathrm{P}^{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{U}_{\mathrm{M}-1} \\
\mathrm{U}_{\mathrm{M}}^{\mathrm{n}} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1} \\
\mathrm{H}_{\mathrm{M}} \\
\mathrm{X}_{\mathrm{M}+2}
\end{array}\right]
$$

This system of equations is solved for the velocity profile and pressure at column n by Gaussian elimination using the algorithm that is shown in App. D, Sec. 2.

Energy Equation

For the energy equation, the following finite difference approximations are used:

$$
\begin{align*}
& \frac{\partial \theta}{\partial z}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta z} \tag{6.27}\\
& \frac{\partial \theta}{\partial R}=\frac{\theta_{m+1}^{n}-\theta_{m}^{n}-1}{4 \Delta R}+\frac{\theta_{m+1}^{n-1}-\theta_{m}^{n-1}}{4 \Delta R} \tag{6.28}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial R^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta \mathrm{R})^{2}}+\frac{\theta_{m-1}^{\mathrm{n}-1}-2 \theta_{m}^{\mathrm{n}-1}+\theta_{m+1}^{\mathrm{n}-1}}{2(\Delta \mathrm{R})^{2}} \tag{6.29}
\end{equation*}
$$

Substituting Eqs. (6.27) , (6.28) and (6.29) into Eqs. (6.17a) and (6.17b), we obtain for column n (details in App. A, Sec. 3.2) :

$$
\begin{align*}
& i_{n}^{n} \text { by synmetry } \\
& A_{1} \theta_{0}^{n}+B_{1} \theta_{1}^{n}+C_{1} \theta_{2}^{n}=D_{1}+E_{1}+F_{1}+G_{1}=H_{1} \quad \text { for } R=0 \tag{6.30a}
\end{align*}
$$

where $A_{1}=-1$

$$
\begin{align*}
B_{1} & =\frac{(\Delta R)^{2}}{\Delta z} U_{1}^{n}+2 \\
C_{1} & =-1 \\
D_{1} & =\theta_{0}^{n-1}=\theta_{2}^{n-1} \text { by symmetry } \\
E_{1} & =\left[\frac{(\Delta R)^{2}}{\Delta z} U_{1}^{n}-2\right] \theta_{1}^{n-1} \\
F_{1} & =\theta_{2}^{n} \\
G_{1} & =2(\Delta R)^{2} \gamma_{1}^{n}\left(\frac{d U^{n}}{d R}\right)^{2}=0 \\
A_{m} \theta_{m-1}^{n} & +B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=D_{m}+E_{m}+F_{m}+G_{m}=H_{m} \quad \text { for } R>0 \tag{6.30b}\\
\text { where } A_{m} & =\frac{\Delta R}{2 R_{m}}-1 \quad \text { (6.30t } \\
B_{m} & =\frac{2(\Delta R)^{2}}{\Delta z} U_{m}^{n}+2
\end{align*}
$$

$$
\begin{aligned}
& C_{m}=-\left(\frac{\Delta R}{2 R_{m}}+1\right) \\
& D_{m}=\left[-\frac{\Delta R}{2 R_{m}}+1\right] \theta_{m-1}^{n-1} \\
& E_{m}=\left[\frac{2(\Delta R)^{2}}{\Delta z} U_{m}^{n}-2\right] \theta_{m}^{n-1} \\
& F_{m}=\left[\frac{\Delta R}{2 R_{m}}+1\right] \theta_{m+1}^{n-1} \\
& G_{m}=2(\Delta R)^{2} \gamma_{m}^{n}\left(\frac{d U}{d R}\right)_{m}^{2}
\end{aligned}
$$

Thus for column n, we have a tridiagonal system of M equations and M unknowns $\left(\theta_{1}^{n}\right.$ to $\theta_{\mathrm{M}}^{\mathrm{n}}$). The equations can be written as follows:

$$
\begin{align*}
& B_{1} \theta_{1}^{n}+2 C_{1} \theta_{2}^{n}=H_{1} \\
& A_{2} \theta_{1}^{n}+B_{2} \theta_{2}^{n}+C_{2} \theta_{3}^{n}=H_{2} \tag{6.31}\\
& A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=H_{m} \quad(m=3,4, \ldots, M-1) \\
& A_{M} \theta_{M-1}^{n}+B_{M} \theta_{M}^{n}+C_{M}^{i_{M}^{n}}{\underset{M}{M+1}}_{n}^{n_{0}}=H_{M}
\end{align*}
$$

or in matrix form:

This system of equations is solved for the temperature profile profile along column n by Gaussian elimination using Thomas' method (see App. D, Sec. 1).

Bulk Temperature

The dimensionless flow-average (bulk) temperature is calculated from the following definition:

$$
\theta_{\text {bulk }}=\frac{\int_{\mathrm{R}=0}^{\mathrm{R}=1} \theta(\mathrm{Z}, \mathrm{R}) \mathrm{U}(\mathrm{Z}, \mathrm{R}) \mathrm{RdR}}{\int_{\mathrm{R}=1}^{\mathrm{R}=0} \mathrm{U}(\mathrm{Z}, \mathrm{R}) \mathrm{RdR}}
$$

For column n, Eq. (6.33) is written in finite difference form using Simpson's Rule as follows:

Local Nusse1t Number

The local Nusse1t number is calculated from the following definition which is derived in App. B:

$$
\begin{equation*}
\mathrm{Nu}_{z}=2 \frac{\mathrm{ha}}{\mathrm{k}}=\frac{-2\left(\frac{\mathrm{dT}}{\mathrm{dr}}\right)_{\mathrm{wall}} \cdot \mathrm{a}}{\left(\mathrm{~T}_{\mathrm{bulk}}-\mathrm{T}_{\mathrm{wall}}\right)} \tag{6.35}
\end{equation*}
$$

In dimensionless form, we have:

$$
\begin{equation*}
\left(\mathrm{Nu}_{\mathrm{z}}\right)_{\mathrm{R}=1}=\frac{-2\left(\frac{\mathrm{~d} \theta}{\mathrm{dR}}\right)_{\mathrm{R}=1}}{\theta_{\text {bulk }}} \tag{6.36}
\end{equation*}
$$

The dimensionless gradient at the wall is estimated for column n by the following finite difference approximation:

$$
\begin{equation*}
\left(\frac{\mathrm{d} \theta}{\mathrm{dR}}\right)_{R=1}^{\mathrm{n}}=\frac{1}{6 \Delta \mathrm{R}}\left(-2 \theta_{M-2}^{\mathrm{n}}+9 \theta_{M-1}^{\mathrm{n}}-18 \theta_{M}^{\mathrm{n}}+11 \theta_{M+1}^{\mathrm{n}}\right) \tag{6.37}
\end{equation*}
$$

The above equation is derived in App. C, Sec. 5.

6.2 Computational Procedure

It was stated in Chap. 3, Sec. 3, that the momentum and energy equations are coupled by velocity and temperature, and therefore cannot be solved independently. However, the coupled equations can be solved
iteratively at a given column on the finite difference grid by alternately solving the set of continuity and momentum equations (6.24) and the set of energy equations (6.31) until the solutions converge. The iterative procedure used to calculate the velocity and temperature profiles, the pressure, the bulk temperature and the local Nusselt number at each column in the grid is now outlined.

Notation

$\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the estimated velocity profile at column n.
$\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the most recently calculated velocity profile at column n.
$\theta_{\mathrm{m}}^{\mathrm{n}-1}(\mathrm{~m}=1,2, \ldots, \mathrm{M}+1)$ refers to the temperature profile at column $\mathrm{n}-1$.
$\theta 1_{m}^{n}(m=1,2, \ldots, M+1)$ refers to the estimated temperature profile at column n.
$\theta 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$ refers to the most recently calculated temperature profile at column n.

Procedure

1. Assume values for the velocity and temperature profiles and the pressure at the entrance of the tube (at column 0).

$$
\left.\begin{array}{rl}
U 1_{\mathrm{m}}^{0} & =\frac{\nu+2}{v}\left[1-\mathrm{R}^{\nu}\right] \\
\theta_{\mathrm{m}}^{0} & =1 \\
\mathrm{P}^{o} & =0
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)
$$

2. Print the velocity and temperature profiles at column 0 .
3. Set the estimates of the velocity and temperature profiles to be used in the first iteration at column 1 equal to the values of the respective profiles at column 0 .

$$
\begin{aligned}
& \mathrm{n}=1 \\
& \mathrm{U} 1_{\mathrm{m}}^{1}=\mathrm{U} 1_{\mathrm{m}}^{\mathrm{O}} \quad(\mathrm{~m}=1,2, \ldots, \mathrm{M}+1) \\
& \theta 1_{\mathrm{M}+1}^{1}=\theta 2_{\mathrm{M}+1}^{1}=0 \\
& \theta 1_{m}^{1}=\theta_{m}^{\circ} \quad(m=1,2, \ldots, M)
\end{aligned}
$$

4. To economize on computing time, increase ΔX by a factor of 10 after the final velocity and temperature profiles have been calculated at column $n=N A$, and again after they have been calculated at column $\mathrm{n}=\mathrm{NB}$ (see program listing, App. F, Sec. 3).

$$
\Delta Z=10 \Delta Z \text { at column } N A+1 \text {, and again at column } N B+1
$$

5. Using $U 1_{m}^{n}$ and $\theta 1_{m}^{n}(m=1,2, \ldots, M+1)$, calculate $\left(\frac{d U}{d R}\right)_{m}^{n}$ and η_{m}^{n} ($\mathrm{m}=1,2, \ldots, \mathrm{M}+1$) at column n .
6. Using $U 1_{m}^{n},\left(\frac{d U}{d R}\right)_{m}^{n}, n_{m}^{n}$ and $\theta_{m}^{n-1}(m=1,2, \ldots, M+1)$, solve the set of energy equations (6.32) by Gaussian elimination using Thomas' method (see App. D, Sec. 1) to obtain $\theta 2_{m}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, M)$.
7. Using $U 1_{m}^{n}$ and $\theta 2_{m}^{n}(m=1,2, \ldots, M+1)$, calculate η_{m}^{n} and $\left(\frac{d n}{d R}\right)_{m}^{n}$ ($m=1,2, \ldots, M+1$) at column n.
8. Using $\mathrm{P}^{\mathrm{n}-1}, \eta_{m}^{n}$ and $\left(\frac{d n}{d R}\right)_{m}^{n}(m=1,2, \ldots, M+1)$, solve the set of continuity and momentum equations (6.25) by Gaussian elimination (see App. D, Sec. 2 for algorithm $)$ to obtain $U 2_{m}^{n}$ and $P^{n}(m=1,2, \ldots, M)$.
9. Compare $\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}, \mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}$ and $\theta 1_{\mathrm{m}}^{\mathrm{n}}, \theta 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{M}+1)$. If $\left|\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}-\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}\right|$ < tolerance and $\left|\theta 2_{m}^{n}-\theta 1_{m}^{n}\right|$ < tolerance for all m, then proceed to step 12. Otherwise, continue to step 10.
10. Set the estimates of the velocity and temperature profiles to be used in the next iteration at column n equal to the most recently calculated profiles.

$$
\left.\begin{array}{l}
U 1_{\mathrm{m}}^{\mathrm{n}}=\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \\
\theta 1_{\mathrm{m}}^{\mathrm{n}}=\theta 2_{\mathrm{m}}^{\mathrm{n}}
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, M+1)
$$

11. Repeat steps 5 through 9 until the desired error tolerances have been achieved.
12. Set the estimates of the velocity and temperature profiles to be used in the first iteration at column $n+1$ equal to the final values of the profiles calculated at column n. Also, retain the final temperature profile calculated at column n for use in calculating temperature profiles at column $\mathrm{n}+1$.

$$
\left.\begin{array}{l}
U 1_{\mathrm{m}}^{\mathrm{n}+1}=\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \\
\theta 1_{\mathrm{m}}^{\mathrm{n}+1}=\theta 2_{\mathrm{m}}^{\mathrm{n}} \\
\theta_{\mathrm{m}}^{\mathrm{n}}=\theta 2_{\mathrm{m}}^{\mathrm{n}}
\end{array}\right\} \quad(\mathrm{m}=1,2, \ldots, 1+1)
$$

13. Repeat steps 4 through 12 to calculate the velocity and temperature profiles at the next colunn downstream $(n=n+1)$.

The following steps are to be carried out at periodic intervals along the length of the tube:
14. Print the velocity and temperature profiles and the pressure.
15. Calculate the bulk temperature using Simpson's Rule (see Eq. (6.34)).
16. Calculate the local Nusselt number at the tube wall (see Eq. (6.36)).
17. Print the bulk temperature and the local Nusselt number.

Computations using the above algorithm have been carried out in McMaster's CDC 6400 computer. A sample program listing with results is located in App. F, Sec. 3.

6.3 Convergence, Stability and Step Size

It was stated in Chap. 3, Sec. 3, that a good indication of the convergence and stability of the finite difference results is the negligible change in results obtained when the step sizes in the finite difference grid are decreased. It should be noted that special care must be taken in choosing step sizes when calculating local Nusselt numbers. Although the temperature profiles may appear to be sufficiently accurate, the local Nusselt numbers can still be incorrect. Local Nusselt numbers are calculated from temperature derivatives (see Eq. (6.35)). Since derivatives are very sensitive to step size changes, smaller step sizes must be used when calculating local Nusselt numbers, than when only calculating velocity and temperature profiles.

The step sizes shown in Table 6-1 were used in the finite difference program. The results presented in the subsequent figures are independent of step size within at least 3 significant digits.

Table 6-1. Step sizes for finite difference program. Poiseuille flow through a tube with circular cross-section.

Range of Z	ΔZ	ΔR
$0-0.4$	0.0004	0.02
$0.4-0.12$	0.004	0.02
$0.12-4.0$	0.04	0.02

Two additional tests for the convergence of the finite difference results were carried out. In the first test, the fully-developed temperature profile, the limiting bulk temperature and the limiting local Nusselt number (at large Z) were calculated analytically for a Newtonian, constant viscosity fluid with viscous dissipation (see App. E, Sec. 3), and compared with the corresponding finite difference results for the same fluid. In the second test, the limiting local Nusselt number was obtained for a Newtonian, constant viscosity fluid without viscous dissipation, and was compared with the analytical value of 3.66 (12). In both cases, the analytical and finite difference results were indistinguishable.

6.4 Results and Discussion

Solutions of the continuity, momentum and energy equations for

Poiseuille flow through a tube with circular cross-section are presented in Figs. 6-3 through 6-9. The following velocity, pressure and temperature boundary conditions have been used:

$$
\begin{array}{ll}
z=0 & u=u_{a v g}\left[\frac{\nu+2}{\nu}\right]\left[1-\left(\frac{r}{a}\right)^{\nu}\right] \\
T_{0}=130^{\circ} \mathrm{C} & p_{0}=0 \tag{6.38}\\
\text { where } u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, v=\frac{n+1}{n}, n=0.453 & \\
r=0 & \frac{\partial T}{\partial r}=0 \\
r=a=0.125 \mathrm{~cm} & T_{W}=160^{\circ} \mathrm{C}
\end{array}
$$

Also, the following power-law temperature-dependent viscosity model and fluid properties representing a typical high-density polyethylene melt were used in the computations:

Viscosity: $\cdot n=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d r}\right|^{n-1}$
where $A=282000$ poise $\cdot \mathrm{s}^{\mathrm{n}-1}$
$=28200 \mathrm{~Pa} \cdot \mathrm{~s}^{\mathrm{n}}$
$B=0.024 \mathrm{~K}^{-1}$
$\mathrm{n}=0.453$
$\mathrm{T}_{\mathrm{m}}=399.5 \mathrm{~K}$
Density: $\quad \rho=794 \mathrm{~kg} / \mathrm{m}^{3}$

Specific heat:

$$
\begin{aligned}
C_{p} & =0.6 \mathrm{cal} /(\mathrm{g} \cdot \mathrm{~K}) \\
& =2.51 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})
\end{aligned}
$$

Thermal conductivity:

$$
\begin{aligned}
\mathrm{k} & =6.1 \times 10^{-4} \mathrm{cal} /(\mathrm{cm} \cdot \mathrm{~s} \cdot \mathrm{~K}) \\
& =0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})
\end{aligned}
$$

The temperature profiles, bulk temperatures and local Nusselt numbers in Figs. 6-3 through 6-9 are shown as functions of the dimensionless axial distance, Z. Because the bulk temperatures and local Nusselt numbers change the most near the entrance of the tube, they have been plotted semilogarithmically in the figures. Z on the abscissa of these plots ranges from 0.004 to $4.0 .^{4}$ This corresponds to z ranging from 0.7 to 732 cm . At $Z=4.0$, the temperature profile has become fully developed. Beyond this point in the tube, the temperature profiles, bulk temperatures and local Nusselt numbers remain the same, and thus are known as the limiting or asymptotic values.

[^0]In Fig. 6-3, the temperature profiles for the power-1aw temperaturedependent viscosity model and for a power-law temperature-independent viscosity model are compared. The temperature-independent viscosity mode1 used is identical to the temperature-dependent viscosity model given in Eq. (6.39), except that T is held constant and equal to the tube wall tenperature $\left(160^{\circ} \mathrm{C}\right)$. It can be seen that the temperature of the fluid obtained with the temperature-independent model is generally higher than is the case with the temperature-dependent model. However, the fully-developed temperature profiles for the two models are about the same. At intermediate values of Z, the temperature profiles bulge near the wall, indicating that more heat is generated by viscous dissipation here, than is generated near the centre-line of the tube. This is due to the fact that the shear rates are the highest near the tube walls.

Plots of the bulk temperatures along the length of the tube are presented in Figs. 6-4, 6-5 and 6-6 for the power-1aw temperature-dependent and temperature-independent viscosity models and for the Newtonian, constant viscosity model. In Fig. 6-4, the bulk temperatures are shown for power-1aw temperature-dependent viscosity fluids with different inlet temperatures. In each case, the limiting bulk temperature is the same $\left(204.7^{\circ} \mathrm{C}\right)$. This is to be expected since the fully-developed velocity and temperature profiles are only influenced by the wall boundary conditions and by the viscosity and thermal conductivity of the fluid, but not by the inlet conditions of the fluid. Also shown in Fig. 6-4 is the effect of removing the viscous dissipation term from the energy equation. Without viscous dissipation,

DEVELOPMENT OF TEMPERATURE PROFILES
POWER-LAW FLUID
——TEMPERATURE-DEPENDENT VISCOSITY
-----TEMPERATURE-INDEPENDENT VISCOSITY

$$
T_{0}=130^{\circ} \mathrm{C}, T_{W}=160^{\circ} \mathrm{C}
$$

Fig. 6-3. Development of temperature profiles. Poiseuille flow through a tube with circular cross-section. Tube dimension and fluid properties given on pp. 117-118.

Fig. 6-4. Bulk temperature vs. Z. Poiseuille flow through a tube with circular crosssection. Tube dimension and fluid properties given on pp. 117-118.
the limiting bulk temperature is equal to the wall temperature $\left(160^{\circ} \mathrm{C}\right)$. The difference of $44.7^{\circ} \mathrm{C}$ is an indication of the importance of viscous dissipation in the Poiseuille flow of polymer melts through a tube. The rise in bulk temperature for the power-law temperature-dependent viscosity model is compared with the temperature-independent model and several Newtonian, constant viscosity models in Figs. 6-5 and 6-6 respectively.

Plots of the local Nusselt number along the length of the tube are presented in Figs. 6-7, 6-8 and 6-9 for the power-1aw temperaturedependent and temperature-independent viscosity models and for the Newtonian, constant viscosity mode1. In Fig. 6-7, the local Nusselt numbers are shown for power-law temperature-dependent viscosity fluids having different inlet temperatures. In each case, the limiting local Nusselt number is 8.97. Although not shown the limiting local Nusselt number for the case where viscous dissipation has been neglected is 4.00 . It can be seen that when the fluid is heated by the tube walls $\left(\mathrm{T}_{\mathrm{O}}=130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{W}}=160^{\circ} \mathrm{C}\right)$, there is a region along the tube where the local Nusselt number is negative, and a point where it is discontinuous. With the aid of Eq. (6.35), this behaviour is explained as follows:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{z}}=2 \frac{\mathrm{ha}}{\mathrm{k}}=\frac{-\left(\frac{\mathrm{dT}}{\mathrm{dr}}\right)_{\text {wall }} \cdot 2 \mathrm{a}}{\mathrm{~T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{6.35}
\end{equation*}
$$

Fig. 6-5. Bulk temperature vs. Z. Poiseuille flow through a tube with circular crosssection. Tube dimension and fluid properties given on pp. 117-118.

Fig. 6-6. Bulk temperature vs. Z. Poiseuille flow through a tube with circular crosssection. Tube dimension and fluid properties given on pp . 117-118.

Fig. 6-7. Bulk temperature vs. Z. Poiseuille flow through a tube with circular crosssection. Tube dimension and fluid properties given on pp. 117-118.

$\mathrm{Z}<0.005$	$\frac{\mathrm{dT}}{\mathrm{dr}}<0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{z}}>0$
$\mathrm{Z} \simeq 0.005$	$\frac{\mathrm{dT}}{\mathrm{dr}}=0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{z}}=0$
$0.005<\mathrm{Z}<0.01$	$\frac{\mathrm{dT}}{\mathrm{dr}}>0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{z}}<0$
$\mathrm{Z} \simeq 0.01$	$\frac{\mathrm{dT}}{\mathrm{dr}}>0$	$\mathrm{~T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{z}}= \pm \infty$
$\mathrm{Z}>0.01$	$\frac{\mathrm{dT}}{\mathrm{dr}}>0$	$\mathrm{~T}_{\mathrm{b}}>\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{z}}>0$

When the inlet temperature is higher than the tube wall temperature, the local Nusselt number is always positive.

The local Nusselt numbers for the power-law temperature-dependent and temperature-independent viscosity fluids are compared in Fig. 6-8. The limiting local Nusselt numbers are 8.97 and 12.09 respectively for the two fluids. In Fig. 6-9, the local Nusselt numbers are shown for the power-law temperature-dependent viscosity fluid and several Newtonian, constant viscosity fluids.

The results for the power-law temperature-dependent viscosity model have been compared with the power-law temperature-independent viscosity model and the Newtonian, constant viscosity model results. Given an appropriate temperature for the temperature-independent model, or an appropriate viscosity for the Newtonian model, it can be seen that the temperaturedependent model results are adequately estimated by the use of either of the simpler models. The choice of temperature and viscosity was made by inspection. However, if we did not have any temperature-dependent model

Fig. 6-8. Local Nusselt number vs. Z. Poiseuille flow through a tube with circular cross-

Fig. 6-9. Local Nusselt number vs. Z. Poiseuille flow through a tube with circular crosssection. Tube dimension and fluid properties given on pp. 117-118.
results to compare our more simplified model results with, then we would not have anything to base our choice of temperature or viscosity on. Furthermore, the given temperature or viscosity usually works for one type of flow only. For example, in Fig. 6-6 it can be seen that the rise in bulk temperature for the temperature-dependent model is closely approximated by a Newtonian fluid with a viscosity of about 600 Pa .s, while in Poiseuille flow between parallel plates, a viscosity of about $700 \mathrm{~Pa} . \mathrm{s}$ is required (see Fig. 5-9).

6.5 Concluding Remarks

1. A computer program has been developed to analyze the heat transfer problem for the Poiseuille flow of polymer melts through a constant temperature tube with circular cross-section. Results have been presented for specified velocity, pressure and temperature boundary conditions, fluid properties and tube dimensions.
2. Care must be taken when choosing the proper step sizes in order to ensure that the local Nusselt numbers and not only the tenperature profiles have converged.
3. It is very important to consider viscous dissipation in the flow of polymer melts through a tube. A rise of $44.7^{\circ} \mathrm{C}$ in the limiting bulk temperature due to viscous dissipation was obtained using the specified boundary conditions, fluid properties and channel dimensions given earlier in this chapter.
4. The results obtained using the power-1aw temperature-dependent
viscosity model were compared with those using the simpler power-1av temperature-independent viscosity model and the Newtonian, constant viscosity model. It was seen that the results obtained using the temperaturedependent model were in most cases adequately approximated by either of the two simpler models, provided that a correct temperature or viscosity was chosen. However, if there are no temperature-dependent model results available, we have then no basis with which to choose a temperature for the temperature-independent model, or a viscosity for the Newtonian, constant viscosity model.

CHAPTER 7

DRAG FLOW BETWEEN CONVERGING PLATES

7.1 Mathematical Formulation

The physical system for drag (or Couette) flow between converging plates is illustrated in Fig. 7-1. The lower plate is moving with a constant velocity, $u_{\max }$, and has a constant tenperature, $T_{w 1}$. The upper inclined plate is stationary and has a constant temperature, $\mathrm{T}_{\mathrm{w} 2}$. The distance, $\mathrm{b}(\mathrm{x})$, between the plates is very small compared to the length, L, of the lower plate. Often this flow case is referred to as the sliderbearing problem (58).

Fig. 7-1. Drag flow between converging plates

Flow Equations

The simplified conservation equations for drag flow between converging plates are:

Continuity (integral form) :

$$
\begin{equation*}
\int_{y=0}^{y=b(x)} \text { udy }=Q=u_{a v g}, o \cdot b_{o} \tag{7.1}
\end{equation*}
$$

Momentum: $\quad-\frac{d p}{d x}+\frac{d}{d y} \tau_{y x}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\tau_{y x} \frac{d u}{d y}$

Substituting the constitutive relation, Eqs. (3.12) and (3.13) into the momentum and energy equations, we obtain:

Momentum: $\quad-\frac{d p}{d x}+\frac{d \eta}{d y} \frac{d u}{d y}+\eta \frac{d^{2} u}{d y^{2}}=0$
Energy: $\quad \rho C_{p} u \frac{\partial T}{\partial x}=k \frac{\partial^{2} T}{\partial y^{2}}+\eta\left(\frac{d u}{d y}\right)^{2}$

$$
\text { where } \eta=A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d y}\right|^{n-1}
$$

The boundary conditions for the above equations are:

$$
\text { Let } \quad \mathrm{U}=\frac{\mathrm{u}}{\mathrm{u}_{\max }}
$$

Substituting the above into Eqs. (7.1), (7.4) and (7.5), we obtain in terms of dimensionless parameters:

Continuity (integral form):

$$
\int_{Y=0}^{Y=B(X)} U d Y=U_{a v g, o}
$$

Momentum: $\quad-\frac{k}{C_{p}} \frac{d P}{d X}+\frac{d \eta}{d Y} \frac{d U}{d Y}+\eta \frac{d^{2} U}{d Y^{2}}=0$

$$
\begin{align*}
& \mathrm{x}=0 \quad \mathrm{~T}=\mathrm{T}_{\mathrm{o}} \quad \mathrm{p}=\mathrm{p}_{\mathrm{o}} \\
& x=L \quad p=p_{o} \tag{7.6}\\
& y=0 \quad u=u_{\max } \quad T=T_{w 1} \\
& y=b(x) \quad u=0 \quad T=T_{w} 2 \\
& \mathrm{P}=\frac{\mathrm{p}-\mathrm{p}_{\mathrm{o}}}{\rho \mathrm{u}_{\max }^{2}} \\
& \theta=\frac{T-T_{W}}{T_{o}-T_{w} 1} \tag{7.7}\\
& \mathrm{X}=\frac{\mathrm{kx}}{\rho \mathrm{C}_{\mathrm{p}} \mathrm{u}_{\max } \mathrm{b}_{\mathrm{o}}^{2}} \\
& Y=\frac{y}{b_{o}} \\
& B(X)=\frac{b(x)}{b_{0}}
\end{align*}
$$

Energy: $\quad U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\delta\left(\frac{d U}{d Y}\right)^{2}$

$$
\text { where } \begin{align*}
\delta & =\frac{\eta u_{\max }^{2}}{k\left(T_{0}-T_{w 1}\right)} \tag{7.10}\\
\eta & =A e^{-B n\left(T-T_{m}\right)}\left|\frac{d u}{d Y} \cdot \frac{u_{\max }}{b_{0}}\right|^{n-1}
\end{align*}
$$

The accompanying dimensionless boundary conditions are:

$$
\begin{array}{lll}
X=0 & \theta=1 & P=0 \\
X=\frac{k L}{\rho C_{p} u_{m a x} b_{0}^{2}} & P=0 & \tag{7.11}\\
Y=0 & U=1 & \theta=0 \\
Y=B(X) & U=0 & \theta=\frac{T_{W 2}-T_{W 1}}{T_{0}-T_{W 1}}
\end{array}
$$

Finite Difference Equations

An implicit finite difference method is used to solve Eqs. (7.8), (7.9) and (7.10) with the accompanying boundary conditions (7.11).

Continuity and Momentum Equations

The continuity and momentum equations are solved simultaneously over the entire finite differences grid because velocity or pressure boundary conditions have been specified at each of the four boundaries in this problem. An 18-point grid, shown in Fig. 7-2, has been chosen

Fig. 7-2. Finite difference grid for continuity and momentum equations. Drag flow between converging plates.
to illustrate the method. Naturally, more points are used in the actual computations.

To represent the integrated continuity equation (7.8) in finite difference form, we use the trapezoidal rule: ${ }^{5}$

$$
\begin{align*}
& \int_{Y=0}^{Y=B(X)} U d Y=\frac{\Delta Y}{2},\left(U_{\max }^{n+1}+2 U_{1}+\ldots+2 U_{5}+U_{\text {Stat }}^{n}\right) \text { for column } 1 \\
& =\frac{\Delta Y}{2}\left(\underset{/}{U^{n}} \max ^{1}+2 \mathrm{U}_{13}+2 \mathrm{U}_{14}+\underset{\left./ \mathrm{U}_{\text {stat }}^{n}\right)}{0}\right. \text { for column 4 } \tag{7.12}
\end{align*}
$$

Substituting the above into Eq. (7.8), we obtain:

$$
\begin{array}{ll}
\text { column 1: } & 2 \mathrm{U}_{1}+2 \mathrm{U}_{2}+\ldots+2 \mathrm{U}_{5}-2 \mathrm{M} \cdot \mathrm{U}_{\text {avg }, \mathrm{o}}=-1 \quad\left(\mathrm{M}=\frac{1}{\Delta \mathrm{Y}}\right) \\
\text { column 2: } & 2 \mathrm{U}_{6}+2 \mathrm{U}_{7}+\ldots+2 \mathrm{U}_{9}-2 \mathrm{M} \cdot \mathrm{U}_{\text {avg }, \mathrm{o}}=-1 \tag{7.13}\\
\text { column 3: } & 2 \mathrm{U}_{10}+2 \mathrm{U}_{11}+2 \mathrm{U}_{12}-2 \mathrm{M} \cdot \mathrm{U}_{\text {avg }, \mathrm{o}}=-1 \\
\text { column 4: } & 2 \mathrm{U}_{13}+2 \mathrm{U}_{14}-2 \mathrm{M} \mathrm{U}_{\text {avg, }}=-1
\end{array}
$$

Thus, we have 4 continuity equations and 15 unknowns (U_{1} to U_{14} and $U_{\text {avg,0 }}$).
For the momentum equation (7.9), the following finite difference approximations are used:
${ }^{5}$ Simpson's Rule cannot be used because the number of grid divisions at each colum alternates between even and odd along the length of the flow channel.

$$
\begin{align*}
& \frac{d P}{d X}=\frac{P^{n+1}-P^{n}}{\Delta X} \tag{7.14}\\
& \frac{d U}{d y}=\frac{U_{m+1}^{n}-U_{m}^{n}-1}{2 \Delta Y} \tag{7.15}\\
& \frac{d^{2} U}{d Y^{2}}=\frac{U_{m}^{n}-1^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}} \tag{7.16}
\end{align*}
$$

Substituting the above approximations into Eq. (7.9), we obtain the following for each node on the grid (details in App. A, Sec. 4.1) :

$$
\begin{align*}
& A_{m}^{n} U_{m-1}^{n}+B_{m}^{n} U_{m}^{n}+C_{m}^{n} U_{m+1}^{n}+\phi_{m}^{n_{P}^{n}}+\psi_{m}^{n_{P}^{n+1}}=0 \tag{7.17}\\
& \text { where } A_{m}^{n}=-\frac{\Delta Y}{2 \eta_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}+1 \\
& B_{m}^{n}=-2 \\
& C_{m}^{n}=\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}+1 \quad \begin{array}{l}
m=1,2, \ldots, K J \\
n=1,2, \ldots, N+1
\end{array} \\
& \phi_{m}^{n}=\frac{k}{n_{m}^{n} C_{p}} \frac{(\Delta Y)^{2}}{\Delta X} \\
& \psi_{m}^{n}=\frac{-k}{n_{m}^{n_{C}}} \frac{(\Delta Y)^{2}}{\Delta X}
\end{align*}
$$

Combining the 4 continuity equations (7.13) and the 14 momentum equations (7.17), we have for the entire grid, a modified tridiagonal system of 18 equations with 18 unknowns (U_{1} to $\mathrm{U}_{14}, \mathrm{P}^{2}, \mathrm{P}^{3}, \mathrm{P}^{5}$ and $\mathrm{U}_{\text {avg,o }}$). The
equation can be written as follows:

$$
\begin{aligned}
& \text { node 1: } \mathrm{A}_{1} \mathrm{U}_{\max }^{\lambda^{1}}+\mathrm{B}_{1} \mathrm{U}_{1}+\mathrm{C}_{1} \mathrm{U}_{2}+\phi_{1} \mathrm{P}^{1^{70}}+\psi_{1} \mathrm{P}^{2}=0 \\
& \text { node 2: } \mathrm{A}_{2} \mathrm{U}_{1}+\mathrm{B}_{2} \mathrm{U}_{2}+\mathrm{C}_{2} \mathrm{U}_{3}+\phi_{2} \mathrm{P}^{1^{\lambda 0}}+\psi_{2} \mathrm{P}^{2}=0 \\
& \quad \vdots \\
& \text { node 14: } \mathrm{A}_{14} \mathrm{U}_{13}+\mathrm{B}_{14} \mathrm{U}_{14}+\mathrm{C}_{14} \mathrm{U}_{5 \text { stat }}^{\lambda^{0}}{ }^{0} \phi_{14} \mathrm{P}^{4^{\lambda 1}}+\psi_{14} \mathrm{P}^{5}=0 \\
& \text { column 1: } 2 \mathrm{U}_{1}+2 \mathrm{U}_{2}+\ldots+2 \mathrm{U}_{5}-2 \mathrm{M} \cdot \mathrm{U}_{\mathrm{avg}, \mathrm{o}}=-1 \\
& \quad \vdots \\
& \text { column 4: } 2 \mathrm{U}_{13}+2 \mathrm{U}_{14}-2 \mathrm{M} \cdot \mathrm{U}_{\mathrm{avg}, \mathrm{o}}=-1
\end{aligned}
$$

or in matrix form:

This system of equations is solved for the velocities at each grid point, the pressures at each column, and the average velocity at $X=0$ by Gaussian elimination using the algorithm that is shown in App. D, Sec. 3.

Energy Equation

The energy equation is solved by the 'marching' procedure, that is, one column at a time, and not like the continuity and momentum equations which were solved simultaneously for the entire grid. However, in order that the finite difference method can work properly for the energy equation, the grid used for the velocities and pressures must be subdivided along the X -axis, as illustrated in Fig. 7-3. Velocities at the intermediate points are calculated by linear-interpolation. For the energy equation (7.10), the following finite difference approximations are used:

FILLED NODES DENOTE KNOWN TEMPERATURES (BOUNDARY CONDITIONS)
BLANK NODES DENOTE UNKNOWN TEMPERATURES
(TO BE SOLVED FOR)

Fig. 7-3. Finite difference grid for energy equation. Drag flow between converging plates.

$$
\begin{align*}
& \frac{\partial \theta}{\partial X}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X} \tag{7.21}\\
& \frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \tag{7.22}
\end{align*}
$$

Adjacent to the stationary, inclined wall, the second derivative is approximated as follows (see App. A, Sec. 4.2 for derivation):

$$
\begin{align*}
\frac{\partial^{2} \theta}{\partial \mathrm{Y}^{2}}= & \frac{1}{(1+\sigma)(\Delta \mathrm{Y})^{2}}\left[\theta_{\mathrm{m}-1}^{\mathrm{n}}-\left(\frac{1}{\sigma}+1\right) \theta_{\mathrm{m}}^{\mathrm{n}}+\frac{1}{\sigma} \theta_{\mathrm{m}+1}^{\mathrm{n}}\right] \\
& +\frac{1}{(1+\varepsilon)(\Delta \mathrm{Y})^{2}}\left[\theta_{\mathrm{m}-1}^{\mathrm{n}-1}-\left(\frac{1}{\varepsilon}+1\right) \theta_{\mathrm{m}}^{\mathrm{n}-1}+\frac{1}{\varepsilon} \theta_{\mathrm{m}+1}^{\mathrm{n}-1}\right] \tag{7.23}
\end{align*}
$$

where σ and ε are defined in Fig. 7-3.
Substituting the above approximations into Eq. (7.10), we obtain for column n (details in App. A, Sec. 4.2) :

$$
\begin{equation*}
A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=D_{m}+E_{m}+F_{m}+G_{m}=H_{m} \tag{7.24}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{m}=-1 \\
& B_{m}=\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}+2 \\
& C_{m}=-1 \\
& D_{m}=\theta_{m-1}^{n-1}
\end{aligned}
$$

$$
\left.\begin{array}{l}
E_{m}=\left[\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}-2\right] \theta_{m}^{n-1} \\
F_{m}=\theta_{m+1}^{n-1}
\end{array}\right\} \quad m=1,2, \ldots, K J-1
$$

$$
\mathrm{G}_{\mathrm{m}}=2(\Delta \mathrm{Y})^{2} \delta_{\mathrm{m}}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dY}}\right)_{\mathrm{m}}^{2}
$$

and

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{KJ}}=\frac{-1}{1+\sigma} \\
& \mathrm{B}_{\mathrm{KJ}}=\frac{(\Delta \mathrm{Y})^{2}}{\Delta \mathrm{X}} \mathrm{U}_{\mathrm{KJ}}^{\mathrm{n}}+\frac{1}{\sigma} \\
& \mathrm{C}_{\mathrm{KJ}}=\frac{-1}{\sigma+\sigma^{2}} \\
& \mathrm{D}_{\mathrm{KJ}}=\left[\frac{1}{1+\varepsilon}\right] \quad \theta_{\mathrm{KJ}-1}^{\mathrm{n}-1} \\
& \mathrm{E}_{\mathrm{KJ}}=\left[\frac{(\Delta \mathrm{Y})^{2}}{\Delta \mathrm{X}} \cdot \mathrm{U}_{\mathrm{KJ}}^{\mathrm{n}}-\frac{1}{\varepsilon}\right] \theta_{\mathrm{KJ}}^{\mathrm{n}-1} \\
& \mathrm{~F}_{\mathrm{KJ}}=\left[\frac{1}{\varepsilon^{+} \varepsilon^{2}}\right] \theta_{K J+1}^{\mathrm{n}-1} \\
& \mathrm{G}_{\mathrm{KJ}}=(\Delta \mathrm{Y})^{2} \delta_{K J}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dY}}\right)_{K J}^{2}
\end{aligned}
$$

Thus, for column n , we have a tridiagonal system of KJ equations with KJ unknowns (θ_{1}^{n} to $\theta_{K J}^{n}$). The equations can be written as follows:

$$
A_{1} \theta_{0}^{n^{n^{0}}}+B_{1} \theta_{1}^{n}+C_{1} \theta_{2}^{n}=H_{1}
$$

$$
\begin{aligned}
& A_{m} \theta_{m-1}^{n}+B_{m} \theta_{m}^{n}+C_{m} \theta_{m+1}^{n}=H_{m} \quad(m=2,3, \ldots, K J-1)
\end{aligned}
$$

The above equations can be written in matrix form as follows:

This system of equations is solved for the temperature profile at column n by Gaussian elimination using Thomas' method (details in App. D, Sec. 1).

Bulk Temperature

The dimensionless flow-average (bulk) temperature is defined as follows:

$$
\begin{equation*}
\theta_{\text {bulk }}=\frac{\int_{Y=0}^{Y=B(X)} \theta(X, Y) U(X, Y) d Y}{\int_{Y=0}^{Y=B(X)} U(X, Y) d Y} \tag{7.27}
\end{equation*}
$$

For column n, Eq. (7.27) is written in finite difference form using the trapezoidal rule as follows:

$$
\begin{equation*}
\theta_{b u l k}^{n}=\frac{\theta_{0}^{n^{n}} U_{0}^{n}+2 \theta_{1}^{n} U_{1}^{n}+\ldots+2 \theta_{K J}^{n} U_{K J}^{n}+\theta_{K J+1}^{n} U_{K J+1}^{\hat{n}_{n}^{n}}}{U_{0}^{n}+2 U_{1}^{n}+\ldots+2 U_{K J}^{n}+U_{K J+1}^{n}} \sum_{0}^{U_{1}^{n}} \tag{7.28}
\end{equation*}
$$

It should be noted that the above equation can be used only when all the points in column n are evenly spaced. In secondary columns, the step adjacent to the stationary inclined plate is smaller than the other steps. This will result in an error when Eq. (7.28) is used to calculate the bulk temperature.

Local Nusse1t Number
The local Nusselt number is calculated from the following definition which is derived in App. B:

$$
\begin{equation*}
N u_{x}=\frac{h b_{o}}{k}=\frac{\left(\frac{d T}{d y}\right)_{\text {wall }}{ }^{\cdot \mathrm{b}_{o}}}{\left(\mathrm{~T}_{\text {bulk }}^{\left.-T_{\text {wall }}\right)}\right.} \tag{7.29}
\end{equation*}
$$

In dimensionless form, we have:

$$
\begin{align*}
& \left(N u_{X}\right)_{Y=0}=\frac{\left(\frac{d \theta}{d Y}\right)_{Y=0}}{\theta_{\text {bulk }}} \tag{7.30}\\
& \left(N u_{X}\right)_{Y=B(X)}=\frac{-\left(\frac{d \theta}{d Y}\right)_{Y=B(X)}}{\left(\theta_{b u l k}-\theta_{w 2}\right)} \tag{7.31}
\end{align*}
$$

The dimensionless temperature gradients at the walls at column n are estimated by the following finite difference approximations:

$$
\left.\begin{array}{l}
\left(\frac{\mathrm{d} \theta}{\mathrm{dY}}\right)_{\mathrm{Y}=0}=\frac{1}{6 \Delta \mathrm{Y}}\left(-11, \theta_{0}^{\mathrm{n}^{\pi}}+18 \theta_{1}^{\mathrm{n}}-9 \theta_{2}^{\mathrm{n}}+2 \theta_{3}^{\mathrm{n}}\right) \\
\left(\frac{\mathrm{d} \theta}{\mathrm{dY}}\right)_{\mathrm{Y}=\mathrm{B}(\mathrm{X})}=\frac{1}{6 \Delta \mathrm{Y}}\left(-2 \theta_{\mathrm{KJJ}-2}^{\mathrm{n}}+9 \theta_{\mathrm{KJ}-1}^{\mathrm{n}}-18 \theta_{\mathrm{KJ}}^{\mathrm{n}}+11 \theta_{!}^{\mathrm{n}} \mathrm{KJ}+1\right. \tag{7.33}
\end{array}\right) .
$$

The above Eqs. (7.32) and (7.33) are derived in App. C, Sec. 1 and 5.

7.2 Computational Procedure

It was stated in Chap. 3, Sec. 3, that the momentum and energy equations are coupled by velocity and temperature, and therefore cannot be solved independently. However, the coupled equations can be solved iteratively at each node on the finite difference grid by alternately solving the set of continuity and momentum equations (7.18) and the set of energy equations (7.25) until the solutions converge. The velocity at each node and the pressure at each column are calculated simultaneously for the entire grid, while the temperatures at the nodes are calculated simultaneously one column at a time for all the columns in the grid. The iterative procedure used to calculate the velocity and temperature profiles, the pressure, the bulk temperature and the local Nusselt numbers at each column in the grid is now outlined.

Notation

U 1 m refers to the estimated velocity at node (m, n) on a primary column. $\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}$ refers to the most recently calculated velocity at node (m, n) on a primary column.
$\mathrm{V}_{\mathrm{m}}^{\mathrm{n}}$ refers to the velocity at node (m, n) on a secondary column (calculated by interpolation from values of U2).
$\theta 1_{m}^{n}$ refers to the estimated temperature at node (m, n) on a primary column.
$\theta 2_{\mathrm{m}}^{\mathrm{n}}$ refers to the most recently calculated temperature at node (m, n) on a primary column.
${ }_{\theta} \mathrm{P}_{\mathrm{m}}^{\mathrm{n}-1}(\mathrm{~m}=1,2, \ldots, K J)$ refers to the temperature profile at column n-1 (primary or secondary).
$\theta Q_{m}^{n} \quad(m=1,2, \ldots, K J)$ refers to the temperature calculated at column n (primary or secondary). When $\theta Q_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{KJ})$ is calculated at a primary column, then $\theta 2_{m}^{n}$ is set equal to θQ_{m}^{n} for each node in the column.

Procedure

1. Assume values for the velocity and temperature at each node on the grid.

$$
\left.\begin{array}{l}
U 1_{m}^{n}=\frac{Y(X)}{B(X)} \\
\theta 1_{m}^{n}=1
\end{array}\right\} \quad \begin{aligned}
& \mathrm{m}=1,2, \ldots, K J \\
& n=1,2, \ldots, N+1
\end{aligned}
$$

2. Using $U 1_{m}^{n}$ and $\theta 1_{m}^{n}(m=1,2, \ldots, K J$ and $n=1,2, \ldots, N+1)$ calculate n_{m}^{n} and $\left(\frac{d n}{d Y}\right)_{m}^{n}$ at each node on the grid.
3. Using η_{m}^{n} and $\left(\frac{d \eta}{d Y}\right)_{m}^{n}(m=1,2, \ldots, K J$ and $n=1,2, \ldots, N+1)$, solve the set of continuity and momentum equations (7.19) by Gaussian elimination (see App. D, Sec. 3 for algorithm) to obtain $U 2_{m}^{n}$ and P^{n} $(\mathrm{m}=1,2, \ldots, K J$ and $\mathrm{n}=1,2, \ldots, \mathrm{~N}+1)$.
4. Assume a temperature profile at the entrance of the channel.

$$
\theta \mathrm{P}_{\mathrm{m}}^{\mathrm{O}}=1 \quad(\mathrm{~m}=1,2, \ldots, \mathrm{KJ})
$$

Perform steps 5 through 11 at each primary column n on the grid ($\mathrm{n}=1,2$, $\ldots, N)$.
5. Divide the primary step from column n to $n+1$ into $L Z$ secondary steps.

Perform steps 6 through 9 at each secondary column $\ell(\ell=1,2, \ldots$, LZ-1).
6. Calculate V_{m}^{ℓ} and $\theta Q_{m}^{\ell}(m=1,2, \ldots, K J)$ at column ℓ by linear interpolation from values of $U 2_{\mathrm{m}}^{\mathrm{n}}, \mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}+1}$ and $\theta 1_{\mathrm{m}}^{\mathrm{n}}, \theta 1_{\mathrm{m}}^{\mathrm{n}+1}(\mathrm{~m}=1,2, \ldots, K J)$.
7. Using V_{m}^{l} and $\theta Q_{m}^{l}(m=1,2, \ldots, K J)$, calculate $\left(\frac{d V}{d Y}\right)_{m}^{l}$ and $\eta_{m}^{l}(m=$ $1,2, \ldots, K J$) at column ℓ.
8. Using $V_{m}^{\ell},\left(\frac{d V}{d Y}\right)_{m}^{\ell}, \eta_{m}^{l}$ and $\theta P_{m}^{\ell-1}(m=1,2, \ldots, K J)$, solve the set of energy equations (7.26) by Gaussian elimination using Thomas' method (see App. D, Sec. 1) to obtain $\theta Q_{m}^{\ell}(m=1,2, \ldots, K J)$.
9. Retain the temperature profile calculated at column ℓ for use in calculating the temperature profile at column $\ell+1$, and then proceed to column $\ell+1$.

$$
\begin{aligned}
& \theta P_{m}^{\ell}=\theta Q_{m}^{\ell} \quad(m=1,2, \ldots, K J) \\
& \ell=\ell+1
\end{aligned}
$$

When a primary column has been reached (when $\ell=L Z$), the following steps are carried out:
10. Repeat steps 7 through 9 , replacing V_{m}^{ℓ} and $\theta Q_{m}^{\ell}(m=1,2, \ldots, K J)$ by $\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}+1}$ and $\theta 1_{\mathrm{m}}^{\mathrm{n}+1}(\mathrm{~m}=1,2, \ldots$, KJ).
11. Retain the temperature profile calculated at column LZ as a temperature profile for primary column $n+1$ and also for use in calculating the temperature profile at secondary column 1 in the next primary step.

$$
\left.\begin{array}{l}
\theta 2_{m}^{n+1}=\theta Q_{m}^{L Z} \\
\theta P_{m}^{o}=\theta Q_{m}^{L Z}
\end{array}\right\} \quad(m=1,2, \ldots, K J)
$$

When the temperature profiles at all the primary columns ($n=2,3, \ldots, N+1$) have been calculated, the following steps are carried out:
12. Compare $\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}, \mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}$ and $\theta 1_{\mathrm{m}}^{\mathrm{n}}, \theta 2_{\mathrm{m}}^{\mathrm{n}}(\mathrm{m}=1,2, \ldots, \mathrm{KJ}$ and $\mathrm{n}=1,2, \ldots, \mathrm{~N}+1)$. If $\left|\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}}-\mathrm{U} 1_{\mathrm{m}}^{\mathrm{n}}\right|$ < tolerance and $\left|\theta 2_{\mathrm{m}}^{\mathrm{n}}-\theta 1_{\mathrm{m}}^{\mathrm{n}}\right|$ < tolerance for all m and n, then proceed to step 15 . Otherwise continue to step 13.
13. Set the estimates of the velocities and temperatures at each node in the grid equal to the most recently calculated values.

$$
\left.\begin{array}{l}
U 1_{\mathrm{m}}^{\mathrm{n}}=\mathrm{U} 2_{\mathrm{m}}^{\mathrm{n}} \\
\theta 1_{\mathrm{m}}^{\mathrm{n}}=\theta 2_{\mathrm{m}}^{\mathrm{n}}
\end{array}\right\} \begin{aligned}
& \mathrm{m}=1,2, \ldots, \mathrm{KJ} \\
& \mathrm{n}=1,2, \ldots, \mathrm{~N}+1
\end{aligned}
$$

14. Repeat steps 2 through 12 until the desired error tolerances have been achieved.
15. Print the final velocity and temperature profiles and the pressure at the primary columns.
16. Calculate the bulk temperature at each primary column using the trapezoidal rule (see Eq. (7.28)).
17. Calculate the local Nusselt numbers at the walls of the channel (see Eqs. (7.30) and (7.31)).
18. Print the bulk temperatures and local Nusselt numbers.

Computations using the above algorithm have been carried out in McMaster's CDC 6400 computer. A sample program listing with results is located in App. F, Sec. 4.

7.3 Convergence, Stability and Step Size

It was stated in Chap. 3, Sec. 4, that a good indication of the convergence and stability of the finite difference results is the negligible change in results obtained when the step sizes in the finite difference grid are decreased. This was the main criterion used in deciding which step sizes should be used in the finite difference program. However, when the velocity profiles and pressure distribution are calculated, the number of nodes in the finite difference grid that can be used is limited by the memory capacity of the computer. When solving the energy equation, it is necessary to divide each primary step in the X-direction
into 100 secondary steps to ensure that the temperature profiles and local Nusselt numbers converge. This is especially important in the calculation of the local Nusselt numbers because they are calculated from temperature derivatives (see Eq. (7.29)), and derivatives are very sensitive to step size changes. The following step sizes were used in the finite difference program:

Continuity and momentum equations:

$$
\begin{aligned}
\Delta X & =0.0546 \\
\Delta Y & =0.02
\end{aligned}
$$

Energy Equation:

$$
\begin{aligned}
\Delta X & =0.000546 \\
\Delta Y & =0.02
\end{aligned}
$$

The results presented in the subsequent figures are independent of step size within at least 2 significant digits.

An additional test for convergence was carried out by calculating the pressure distribution for a Newtonian, constant viscosity fluid using an analytical expression given by Schlichting (58), and comparing this with the corresponding finite difference results for the same fluid (for details, see App, Sec. 4). A difference of 4% between the analytical and finite difference results was primarily due to the use of a coarse finite difference network.

7.4 Results and Discussion

Solutions of the continuity, momentum and energy equations for drag flow between converging plates are presented in Figs. 7-4 through 7-17. The following velocity, pressure and temperature boundary conditions have been used:

$$
\begin{array}{lll}
x=0 & b_{o}=0.025 \mathrm{~cm} & T_{o}=130^{\circ} \mathrm{C} \\
x=L=10 \mathrm{~cm} & \mathrm{p}_{\mathrm{O}}=0 \tag{7.34}\\
\mathrm{~b}=0.0125 \mathrm{~cm} & \mathrm{p}_{\mathrm{L}}=0 \\
y=0 & \mathrm{u}=u_{\max }=15 \mathrm{~cm} / \mathrm{s} & T_{\mathrm{w} 1}=160^{\circ} \mathrm{C} \\
\mathrm{y}(\mathrm{x}) & \mathrm{u}=0 & T_{\mathrm{w} 2}=160^{\circ} \mathrm{C}
\end{array}
$$

In obtaining some of the results, different temperature boundary conditions were used for comparison. The following power-law temperature-dependent viscosity model and fluid properties representing a typical high-density polyethylene melt were used in the computations:

Viscosity:

$$
\begin{align*}
& \begin{aligned}
& n=A e^{-\mathrm{Bn}(T-T)}\left|\frac{d u}{d y}\right| n-1 \\
& \text { where } A=282000 \quad \text { poise } \cdot \mathrm{s}^{\mathrm{n}-1} \\
&=28200 \quad \mathrm{~Pa} \cdot \mathrm{~s}^{\mathrm{n}} \\
& B=0.024 \mathrm{~K}^{-1} \\
& \mathrm{n}=0.453
\end{aligned} \tag{7.35}
\end{align*}
$$

$$
\mathrm{T}_{\mathrm{m}}=399.5 \mathrm{~K}
$$

Density: $\quad \rho=794 \mathrm{~kg} / \mathrm{m}^{3}$

Specific heat:

$$
C_{p}=2.51 \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})
$$

Thermal conductivity:

$$
\begin{aligned}
\mathrm{k} & =6.1 \times 10^{-4} \mathrm{cal} /(\mathrm{cm} \cdot \mathrm{~s} \cdot \mathrm{~K}) \\
& =0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})
\end{aligned}
$$

The velocity and temperature profiles, pressure distributions, bulk temperatures and local Nusse1t numbers in Figs. 7-4 through 7-17 are shown as functions of the dimensionless axial distance, X. Because the bulk temperatures and local Nusselt numbers change the most near the entrance of the flow channel, they have been plotted semi-logarithmically. X on the abscissa of these plots ranges from 0.0055 to 1.366 . This corresponds to x ranging from 0.04 cm to 10 cm .

In Fig. 7-4, the velocity profiles are shown for the power-1aw temperature-dependent viscosity model. Near the entrance of the channel, the profiles are characteristic of drag flow, but near the exit, they resemble more those of Poiseuille flow. The reason for the transition is the rise in pressure in the channel as seen in Fig. 7-5. The pressure distributions for the power-1aw temperature-dependent viscosity model and several Newtonian, constant viscosity models are presented in Fig. 7-5. In the case of the power-1aw fluid, the maximum pressure of about 50 MPa

Fig. 7-4. Development of velocity profile. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.

Fig. 7-5. Pressure distributions. Drag flow between converging plates. Channe1 dimensions and fluid properties given on pp. 151-152.
is approximately equal to the pressure build-up inside the barrel of an extruder. The pressure distributions for the Newtonian fluids are shown for comparison.

In Fig. 7-6, the temperature profiles for the power-1aw temperaturedependent viscosity model and for a power-law temperature-independent viscosity model are shown. The temperature-independent viscosity model used is identical to the temperature-dependent viscosity model given in Eq. (7.35), except that T is held constant and equal to the average of the temperatures of the two plates $\left(160^{\circ} \mathrm{C}\right)$. Near the entrance of the channel, the temperatures in the temperature-dependent case are higher than in the temperature-independent case. However, farther downstream, the opposite is true. The reason for this is that as the temperature in the constitutive equation increases, the viscosity decreases. Near the channel entrance, the temperature in the constitutive equation of the temperature-dependent fluid is lower than that of the temperatureindependent fluid. Therefore, the viscosity will be higher in the temper-ature-dependent case resulting in more heat generated by viscous dissipation. Farther downstream, more heat is generated by viscous dissipation in the temperature-independent case. Also, it is seen that after a maximum in temperature rise has been reached, the tenperature decreases with decreasing gap between the plates. This is to be expected since the temperature of the fluid will approach the wall temperature as the gap becomes smaller and smaller.

Plots of the bulk temperatures along the length of the channel are

Fig. 7-6. Development of temperature profiles. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.
presented in Figs. 7-7 through 7-10 for the power-1aw temperaturedependent and temperature-independent viscosity model and the Newtonian, constant viscosity model. In Fig. 7-7, the bulk temperatures are shown for power-law temperature-dependent viscosity fluids with different inlet temperatures. In each case, the bulk temperature at $X=0.2$ is the same $\left(164.2^{\circ} \mathrm{C}\right)$. This is to be expected since the temperature profiles at large X are not influenced by the inlet temperature of the fluid. At the exit of the channel, the bulk temperature is $162.9^{\circ} \mathrm{C}$. Also shown in Fig. 7-7 is the effect of removing the viscous dissipation term from the energy equation. Without viscous dissipation, the bulk temperature at large X is equal to the wall temperature $\left(160^{\circ} \mathrm{C}\right)$. The difference of $4^{\circ} \mathrm{C}$ is an indication of the importance of viscous dissipation in the drag flow of polymer melts between converging plates. If a wider gap or higher plate velocity were used, the temperature rise due to viscous dissipation would be much more significant.

The rise in bulk temperature for the power-law temperaturedependent and temperature-independent viscosity fluids is shown in Fig. 7-8 for two temperature boundary conditions: both stationary and moving plate at $160^{\circ} \mathrm{C}$, and the stationary plate at $130^{\circ} \mathrm{C}$ and the moving plate at $190^{\circ} \mathrm{C}$. When both walls are at $160^{\circ} \mathrm{C}$, the difference between the two models is almost negligible. However, when the stationary wall is at $130^{\circ} \mathrm{C}$ and the moving wall is at $190^{\circ} \mathrm{C}$, the difference between the two models is quite significant. Here the bulk temperatures differ between 1.5° and $5^{\circ} \mathrm{C}$ at a given X. In Fig. 7-9 the rise in bulk temperature for

Fig. 7-7. Bulk temperature vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152

Fig. 7-8. Bulk temperature vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.

Fig. 7-9. Bulk temperature vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.
the power-law temperature-dependent viscosity fluid and several Newtonian, constant viscosity fluids is compared. In Fig. 7-10, the rise in bulk temperature for the power-law temperature-dependent viscosity fluid is compared for drag flow between paralleI and converging plates. The distance between the parallel plates is 0.025 cm , the same as the inlet gap of the converging plates. The temperature rise between the converging plates is faster, but at $X \geq 0.2$, the difference between the two cases is quite small.

Plots of the local Nusselt numbers at both the stationary and moving plates are presented in Figs. 7-11 through 7-17 for the power-1aw temperature-dependent and temperature-independent viscosity models and the Newtonian, constant viscosity model. The local Nusselt numbers are shown for both plates because in general they are not the same for a given X. Since the local Nusselt number is a function of the temperature derivative (see Eq. (7.29)), it will be different as long as the temperature gradients at the walls are not the same.

In Fig. 7-11 and 7-12, the local Nusselt numbers for power-1aw temperature-dependent viscosity fluids with different inlet temperatures are shown for the moving and stationary (inclined) plates respectively. It can be seen that when the fluid is heated by the channel walls ($\mathrm{T}_{\mathrm{o}}=$ $130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 1}=\mathrm{T}_{\mathrm{w} 2}=160^{\circ} \mathrm{C}$, there is a region along the channe1 where the local Nusselt number is negative and a point where it is discontinuous. With the aid of Eq. (7.29), this behaviour is explained as follows for the moving plate:

Fig. 7-10. Bulk temperature vs. X. Drag flow between (a) converging and
(b) parallel plates. Gap at channel entrance is 0.025 cm in
both cases. Fluid properties given on pp. 151-152.

Fig. 7-11. Local Nusselt number vs. X. Drag flow between converging plates.

Fig. 7-12. Local Nusselt number vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given in pp. 151-152.

$$
\begin{equation*}
N u_{x}=\frac{h b_{o}}{k}=\frac{\left(\frac{d T}{d y}\right)_{\text {wall }} \cdot \mathrm{b}_{0}}{T_{\text {bulk }}-T_{\text {wall }}} \tag{7.29}
\end{equation*}
$$

$\mathrm{X}<0.05$	$\frac{\mathrm{dT}}{\mathrm{dy}}<0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{X}}>0$
$\mathrm{X} \simeq 0.05$	$\frac{\mathrm{dT}}{\mathrm{dy}}=0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{X}}=0$
$0.05<\mathrm{X}<0.06$	$\frac{\mathrm{dT}}{\mathrm{dy}}>0$	$\mathrm{~T}_{\mathrm{b}}<\mathrm{T}_{\mathrm{W}}$	$\mathrm{Nu}_{\mathrm{X}}<0$
$\mathrm{X} \simeq 0.06$	$\frac{\mathrm{dT}}{\mathrm{dy}}>0$	$\mathrm{~T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{W}}$	$N u_{\mathrm{X}}= \pm \infty$
$\mathrm{X}>0.06$	$\frac{\mathrm{dT}}{\mathrm{dy}}>0$	$\mathrm{~T}_{\mathrm{b}}>\mathrm{T}_{\mathrm{W}}$	$N u_{\mathrm{X}}>0$

For the cases where the inlet temperature is higher than the wall temperature, the local Nusselt number is always positive.

The local Nusselt numbers for the power-1aw temperature-dependent and temperature-independent viscosity mode1s are shown in Figs. 7-13, 7-14 and 7-15 for the two temperature boundary conditions discussed earlier. In all of the cases, it can be seen that there is very little difference between the local Nusselt numbers obtained by using either model. In Figs. 7-16 and 7-17, the local Nusselt numbers are shown for the power-1aw temperature-dependent viscosity model and several Newtonian, constant viscosity models.

The results for the power-1aw temperature-dependent viscosity model have been compared with the power-law temperature-independent viscosity model and the Newtonian, constant viscosity model results. Given an appropriate temperature for the temperature- independent model,

Fig. 7-13. Local Nusselt number vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.

Fig. 7-14. Local Nusselt number vs. X. Drag flow between converging plates.

Fig. 7-15. Local Nusselt number vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.

Fig. 7-16. Local Nusselt number vs. X. Drag flow between converging plates. Channel dimensions and fluid properties given on pp. 151-152.

Fig. 7-17. Local Nusselt number vs. X. Drag flow between converging plates.
or an appropriate viscosity for the Newtonian model, it can be seen that the temperature-dependent model results are adequately estimated by the use of either of the simpler models. The choice of temperature and viscosity was made by inspection. However, if we did not have any temperature-dependent mode1 results to compare our more simplified model results with, then we would not have anything to base our choice of temperature or viscosity on. Furthermore, the given temperature or viscosity is usually suitable for one type of flow only. For example, in Fig. 7-9 it can be seen that the rise in bulk temperature for the temperature-dependent model is closely approximated by that of a Newtonian fluid with a viscosity of about $500 \mathrm{~Pa} \cdot \mathrm{~s}$ while in drag flow between parallel plates (as described in Chap. 4), a Newtonian viscosity of $2000 \mathrm{~Pa} \cdot \mathrm{~s}$ is required (see Fig. 4-7).

7.5 Concluding Remarks

1. A computer program has been developed to analyze the heat transfer problem for the drag flow of a polymer melt between converging constant temperature plates. Results have been presented for specified velocity, pressure and temperature boundary conditions, fluid properties and channel dimensions.
2. Care must be taken when choosing the proper step sizes to ensure that the local Nusselt numbers and not only the temperature profiles have converged.
3. It is very important to consider viscous dissipation in the drag flow of polymer melts between converging plates. A rise of $4^{\circ} \mathrm{C}$ in the bulk temperature at large X due to viscous dissipation was obtained using the specified boundary conditions, fluid properties and channel dimensions given earlier in this chapter. If a wider gap or higher plate velocity was used, the temperature rise due to viscous dissipation would be much greater.
4. The results obtained using the power-1aw temperature-dependent viscosity model were compared with those using the simpler power-law temperature-independent viscosity model and the Newtonian, constant viscosity mode1. It was seen that the results obtained using the temper-ature-dependent model were in most cases adequately approximated by those of the two simpler models, provided that the choice of temperature or viscosity was correct. However, if there are no temperature-dependent model results available, then we have no basis with which to choose a temperature for the temperature-independent model, or a viscosity for the Newtonian constant viscosity mode1.

CONCLUSIONS AND RECOMMENDATIONS

Finite difference programs have been developed to solve the heat transfer problem for polymer melts flowing through narrow channels and tubes with constant temperature walls. Four types of flow were studied:
(i) drag flow between parallel plates,
(ii) Poiseuille flow between paralle1 plates,
(iii) Poiseuille flow through a tube with circular crosssection, and
(iv) drag flow between converging plates.

Results have been presented for typical velocity, pressure and temperature boundary conditions, fluid properties and channel dimensions encountered in polymer extrusion. It should be stressed that these results are not general in the sense that they are not applicable to other boundary conditions, fluid properties (in particular, viscosity) and channel dimensions. They do, however, show trends that would be expected when using a different set of conditions. To obtain results for a given type of flow and a given set of conditions, the corresponding finite difference program must be run specifically for these conditions. In all of the programs, a power-law temperature-dependent viscosity model representing a typical high-density polyethylene melt was used. It is possible, however, to use any constitutive equation in the programs.

In all of the flow cases, the results obtained using the power-1aw temperature-dependent viscosity model were compared with those obtained using the power-1aw temperature-independent viscosity model and the Newtonian, constant viscosity mode1. It was seen that given the proper choice of temperature or viscosity, the temperature-dependent viscosity model results could be adequately estimated by using either of the simpler models. If we had no power-1aw temperature-dependent viscosity model results with which to compare the results obtained using the simpler models, then we would have no basis with which to choose an appropriate temperature or viscosity. It may be possible to develop general guidelines on the choice of appropriate temperatures and viscosities when certain flow types, boundary conditions or shear rates are encountered. In any case, the best approach to solving a given flow problem is the use of a finite difference program that has been developed for temperature-dependent viscosities.

In the flow of polymer melts, it can be seen from the results presented that extremely long channel lengths are required to obtain fullydeveloped thermal conditions. The channels encountered in polymer processing (for example, extrusion dies) are much shorter $(42,46)$, and consequently the flows leaving these channels are far from being thermally fully developed. If fully-developed conditions were assumed in the channel (to simplify heat transfer calculations), serious errors would be obtained in the resulting calculations. The finite difference programs that have been developed, however, provide accurate heat transfer results for the thermally developing region of flow in the channels.

The discussion up to now has centred around the flow of polymer
melts through channels with constant temperature walls. The finite difference programs can, however, be easily adapted to solve the problem of flow through channels with varying wall temperatures or with known heat flux at the walls (for example, adiabatic walls when the heat flux equals zero). Generally in polymer processing, the wall temperatures can be readily measured, and for this reason, the constant wall temperature case has been considered here.

In polymer extruders, the polymer granules are melted and then pumped through a die. As a future area of study, it is suggested that the finite difference programs be modified to take into account melting of the polymer at one of the boundaries of the flow field.

REFERENCES

1. Astarita, G. and Mashelkar, R.A.: "Heat and Mass Transfer in NonNewtonian Fluids'", Chem. Eng. (London), No. 317, 100 (1977).
2. Bassett, C.E. and We1ty, J.R.: "Non-Newtonian Heat Transfer in the Thermal Entrance Region of Uniformly Heated, Horizontal Pipes', AIChE J., 21, 699 (1975).
3. Bergen, J.T. (E.C. Bernhardt, ed.): Processing of Thermoplastic Materials, p. 405. Van Nostrand Reinhold (1959).
4. Bird, R.B.: "Viscous Heat Effects in Extrusion of Molten Plastics", Soc. Plast. Eng. J., 11, 35 (1955).
5. Bird, R.B.: "Zur Theorie des Wärmeübergangs an nicht-Newtonsche Flüssigkeiten bei laminarer Rohrströmung', Chem.-Ing.-Tech., 31, 569 (1959).
6. Bird, R.B., Stewart, W.E. and Lightfoot, E.N.: Transport Phenomena, J. Wiley (1960).
7. Brinkman, H.C.: 'Heat Effects in Capillary F1ow I', App1. Sci. Res., A2, 120 (1951).
8. Christiansen, E.B. and Craig, S.E. Jr.: 'Heat Transfer to Pseudoplastic Fluids in Laminar Flow'", AIChE J., 8, 154 (1962).
9. Christiansen, E.B., Jensen, G.E. and Tao, F-S.: "Laminar Flow Heat Transfer", AIChE J., 12, 1196 (1966).
10. Churchi11, S.W.: "Choosing between Theory and Experiment", Chem. Eng. Prog., 66, No. 7, 86 (1970).
11. Cox, H.W. and Macosko, C.W.: "Viscous Dissipation in Die Flows", AIChE J., 20, 785 (1974).
12. Eckert, E.R.G. and Drake, R.M. Jr.: Analysis of Heat and Mass Transfer. McGraw-Hill (1972).
13. Faghri, M. and Welty, J.R.: "Analysis of Heat Transfer for Laminar Power-Law Pseudoplastic Fluids in a Tube with an Arbitrary Circumferential Wall Heat Flux', AIChE J., 23, 288 (1977).
14. Fenner, R.T.: "Developments in the Analysis of Steady Screw Extrusion of Polymers' , Polymer, 18, 617 (1977).
15. Foraboschi, F.P. and Di Federico, I.: 'Heat Transfer in Laminar Flow of Non-Newtonian Heat-Generating Fluids', Int. J. Heat Mass Transfer, 7, 315 (1964).
16. Forrest, G. and Wilkinson, W.L.: 'Laminar Heat Transfer to Power Law Fluids in Tubes with Constant Wall Temperature', Trans. Inst. Chem. Eng., 51, 331 (1973).
17. Forsyth, T.H. and Murphy, N.F.: 'Temperature Profiles of Molten Flowing Polymers in a Heat Exchanger', AIChE J., 15, 758 (1969).
18. Galili, N., Rigbi, Z. and Takserman-Krozer, R.: 'Heat and Pressure Effects in Viscous Flow through a Pipe. Part II. Analytical Solution for Non-Newtonian Flow', Rheol. Acta, 14, 816 (1975).
19. Gavis, J. and Laurence, R.L.: 'Viscous Heating of a Power-Law Liquid in Plane Flow', Ind. Eng. Chem. Fundam., 7, 525 (1968).
20. Gee, R.E. and Lyon, J.B.: 'Non-isothermal Flow of Viscous NonNewtonian Fluids'", Ind. Eng. Chem., 49, 956 (1957).
21. Gerald, C.F.: Applied Numerical Analysis. Addison-Wesley (1970).
22. Gill, W.N.: 'Heat Transfer in Laminar Power-Law Flows with Energy Sources', AIChE J., 8, 137 (1962).
23. Gill, W.N.: 'The Thermal Entrance Region in Laminar Power-Law Flows", App1. Sci. Res., All, 10 (1963).
24. Graetz, L.: "Über die Warmeleitungs fahigkeit von Flussigkeiten", Ann. Phys., 25, 337 (1885).
25. Griskey, R.G. and Wiehe, I.A.: 'Heat Transfer to Molten Flowing Polymers', AIChE J., 12, 308 (1966).
26. Griskey, R.G., Choi, M.H. and Siskovic, N.: 'Heat Transfer to Flowing Thermally Softened Polymers", Polym. Eng. Sci., 13, 287 (1973).
27. Huebner, K.H.: "Application of Finite Element Methods to Thermohydrodynamic Lubrication', Int. J. Numerical Methods Eng., 8, 139 (1974).
28. Kim, H.T. and Collins, E.A.: 'Temperature Profiles for Polymer Melts in Tube Flow. Part II. Conduction and Shear Heating Corrections', Polym. Eng. Sci., 11, 83 (1971).
29. Koyama, K., Kanamaru, K. and Wada, E.: "Temperature Distribution in Laminar Flow through a Circular Tube'", Int. Chem. Eng., 12, 541 (1972).
30. Lapidus, L.: Digital Computation for Chemical Engineers. McGrawHill (1962).
31. Larocque, J.: Pseudoplastic Entry Flow in Straight and Convergent Channels. M.Eng. Thesis, McMaster University, (1973).
32. Lévêque, J., Ann. Mines, 13, 201 (1928).
33. Lyche, B.C. and Bird, R.B.: "The Graetz-Nusselt Problem for a Power-Law Non-Newtonian Fluid'', Chem. Eng. Sci., 6, 35 (1956).
34. Mahalingam, R., Tilton, L.O. and Coulson, J.M. : 'Heat Transfer in Laminar Flow of Non-Newtonian Fluids', Chem. Eng. Sci., 30, 921 (1975).
35. Mahalingam, R., Chan, S.F. and Coulson, J.M.: 'Laminar Pseudoplastic Flow Heat Transfer with Prescribed Wall Heat Flux', Chem. Eng. J., $\underline{9}, 161$ (1975).
36. Martin, B.: "Some Analytical Solutions for Viscometric Flows of Power-Law Fluids with Heat Generation and Temperature Dependent Viscosity", Int. J. Non-Linear Mechanics, 2, 285 (1967).
37. Matsuhisa, S. and Bird, R.B.: "Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian E1lis Fluid", AIChE J., 11, 588 (1965).
38. McKillop, A.A.: 'Heat Transfer for Laminar F1ow of Non-Newtonian Fluids in Entrance Region of a Tube', Int. J. Heat Mass Transfer, ㄱ, 853 (1964).
39. Metzner, A.B., Vaughn, R.D. and Houghton, G.L.: 'Heat Transfer to Non-Newtonian Fluids'", AIChE J., 3, 92 (1957).
40. Metzner, A.B. and Gluck, D.F.: 'Heat Transfer to Non-Newtonian Fluids under Laminar-F1ow Conditions", Chem. Eng. Sci., 12, 185 (1960).
41. Metzner, A.B.: 'Heat Transfer in Non-Newtonian Fluids', Adv. Heat Transfer, 2, 357 (1965).
42. Michaeli, W. and Menges, G.: 'Effects on Flow in Sheet Dies", Soc. Plast. Eng. 34th ANTEC, 22, 186, Atlantic City, N.J. (Apri1 1976).
43. Middleman, S.: Fundamentals of Polymer Processing. McGraw-Hill (1977).
44. Mitsuishi, N. and Miyatake, O.: 'Heat Transfer with Non-Newtonian Laminar Flow in a Tube Having a Constant Wall Heat Flux", Int. Chem. Eng., 9, 352 (1969).
45. Morrette, R.A. and Gogos, C.G.: "Viscous Dissipation in Capi11ary Flow of Rigid PVC and PVC Degradation', Polym. Eng. Sci., 8, 272 (1968).
46. Nunn, R.E. and Fenner, R.T.: "F1ow and Heat Transfer in the Nozzle of an Injection Molding Machine", Polym. Eng. Sci., 17, 811 (1977).
47. Nusselt, W.: Z. Ver. Dtsch. Ing., 54, 1154 (1910).
48. Oliver, D.R. and Jenson, V.G.: 'Heat Transfer to Pseudoplastic Fluids in Laminar Flow in Horizontal Tubes", Chem. Eng. Sci., 19, 115 (1964).
49. Payvar, P.: "Asymptotic Nusselt Numbers for Dissipative NonNewtonian Flow through Ducts", App1. Sci. Res., 27, 297 (1973).
50. Pearson, J.R.A.: 'Heat-Transfer Effects in Flowing Polymers', Prog. Heat Mass Transfer, 5, 73 (1972).
51. Pearson, J.R.A.: 'Variable-Viscosity Flows in Channels with High Heat Generation', J. Fluid Mech., 83, 191 (1977).
52. Pigford, R.L.: 'Non-isothermal Flow and Heat Transfer Inside Vertical Tubes", Chem. Eng. Prog. Symp. Ser., 51, No. 17, 79 (1955).
53. Popovska, F. and Wilkinson, W.L.: 'Laminar Heat Transfer to Newtonian and Non-Newtonian Fluids in Tubes'", Chem. Eng. Sci., 32, 1155 (1977).
54. Porter, J.E.: 'Heat Transfer at Low Reynolds Number (Highly Viscous Liquids in Laminar Flow)", Trans. Inst. Chem. Eng., 49, 1 (1971).
55. Prins, J.A., Mulder, J. and Schenk, J.: "Heat Transfer in Laminar Flow between Paralle1 Plates", App1. Sci. Res., A2, 431 (1951).
56. Saltuk, I., Siskovic, N. and Griskey, R.G.: "Energy Transport to Molten Flowing Polymer Systems. Part I. Analysis of Data and Development of Temperature Profiles with Axial Length", Polym. Eng. Sci., 12, 402 (1972).
57. Schenk, J. and Van Laar, J.: 'Heat Transfer in Non-Newtonian Laminar Flow in Tubes'', App1. Sci. Res., A7, 449 (1958).
58. Schlichting, H. (J. Kestin, trans.): Boundary Layer Theory (6th ed.). McGraw-Hill (1968).
59. Šesták, J. and Charles, M.E.: 'Limiting Values of the Nusselt Number for Heat Transfer to the Pipeline Flow of Non-Newtonian Fluids with Arbitrary Internal Heat Generation', Chem. Eng. Prog. Symp. Ser., 64, No. 82, 212 (1968).
60. Smorodinskii, E.L. and Froishteter, G.B." "Analytical Solution of the Problem of the Laminar Heat Transfer of Non-1inearly Viscoplastic Fluids Taking Account of the Dissipation of Kinetic Energy', Teor. Osn. Khim. Tekhnol., 5, 542 (1971).
61. Suckow, W.H., Hrycak, P. and Griskey, R.G.: 'Heat Transfer to Polymer Solutions and Melts Flowing between Parallel Plates', Polym. Eng. Sci., 11, 401 (1971).
62. Sukanek, P.C.: ''Poiseuille Flow of a Power-Law Fluid with Viscous Heating'", Chem. Eng. Sci., 26, 1775 (1971).
63. Sundaram, K.M. and Nath, G.: "Heat Transfer to Power-Law Fluids in Thermal Entrance Region with Viscous Dissipation for Constant Heat Flux Conditions", Proc. Indian Acad. Sci., 83A, 50 (1976).
64. Tadmor, Z. and Klein, I.: Engineering Principles of Plasticating Extrusion. Van Nostrand Reinhold (1970).
65. Tien, C.: "The Extension of Couette Flow Solution to Non-Newtonian Fluid'", Can. J. Chem. Eng., 39, 45 (1961).
66. Tien, C.: "Laminar Ileat Transfer of Power-Law Non-Newtonian Fluid The Extension of Graetz-Nusselt Problem', Can. J. Chem. Eng., 40, 130 (1962).
67. Toor, H.L.: 'Heat Generation and Conduction in the Flow of a Viscous Compressible Liquid' ${ }^{\prime}$, Trans. Soc. Rheo1., 1, 177 (1957).
68. Toor, H.L.: 'Heat Transfer in Forced Convection with Internal Heat Generation', AIChE J., 4, 319 (1958).
69. Turian, R.M.: 'Viscous Heating in the Cone-and-Plate Viscometer. Part III. Non-Newtonian Fluids with Temperature-Dependent Viscosity and Thermal Conductivity'', Chem. Eng. Sci., 20, 771 (1965).
70. V1achopoulos, J. and Keung, C.K.J.: 'Heat Transfer to a Power-Law Fluid Flowing between Paralle1 Plates', AIChE J., 18, 1272 (1972).
71. Vlachopoulos, J., Larocque, J. and Ho, J.S-J.: ''Numerical Studies of Non-Newtonian Fluid Flow and Heat Transfer', SymposiumHeat Transfer in Polymer Processing, Paper 5. University of Bradford (1974).
72. Whiteman, I.R. and Drake, W.B.: 'Heat Transfer to Flow in a Round Tube with Arbitrary Velocity Distribution", Trans. ASME, 80, 728 (1958).
73. Winter, H.H.: 'Wärmedissipation in Polymerschmelzen bei ebener Schleppströmung, thermischer Anfahrvorgang und Gleichgewichtszustand", Rheol. Acta., 11, 216 (1972).
74. Winter, H.H.: 'Temperature Fields in Extruder Dies with Circular, Annular, or Slit Cross-Section', Polym. Eng. Sci., 15, 84 (1975).
75. Winter, H.H.: 'Viscous Dissipation in Shear Flows of Molten Polymers', Adv. Heat Transfer, 13, 205 (1977).

APPENDIX A

DERIVATION OF FINITE DIFFERENCE EQUATIONS

The finite difference equations used in Chaps. 4, 5, 6 and 7 are derived in detail in this appendix.

A. 1 Drag Flow Between Paralle1 Plates

Fig. A-1. Finite difference grid. Drag flow between parallel plates.

Momentum Equation

$$
\begin{equation*}
\eta \frac{d^{2} U}{d Y^{2}}+\frac{d \eta}{d Y} \frac{d U}{d Y}=0 \tag{A.1}
\end{equation*}
$$

Let $\quad \frac{d U}{d Y}=\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y}$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{dY}^{2}}=\frac{\mathrm{U}_{\mathrm{m}-1}^{\mathrm{n}}-2 \mathrm{U}_{\mathrm{m}}^{\mathrm{n}}-\mathrm{U}_{\mathrm{m}+1}^{\mathrm{n}}}{(\Delta \mathrm{Y})^{2}} \tag{A.2}
\end{equation*}
$$

Substitute Eqs. (A.2) and (A.3) into Eq. (A.1) :

$$
\begin{equation*}
n_{m}^{n}\left[\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}}\right]+\left(\frac{d n}{d Y}\right)_{m}^{n} \frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y}=0 \tag{A.4}
\end{equation*}
$$

Rearranging, we obtain:

$$
\begin{aligned}
& U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}+\frac{\Delta Y}{2 \eta_{m}^{n}}\left(\frac{d n}{d Y}\right)_{m}^{n}\left[U_{m+1}^{n}-U_{m-1}^{n}\right]=0 \\
& \alpha_{m}^{n}=\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}
\end{aligned}
$$

Thus, Eq. (A.5) becomes:

$$
\begin{equation*}
\left(-\alpha_{m}^{n}+1\right) U_{m-1}^{n}-2 U_{m}^{n}+\left(\alpha_{m}^{n}+1\right) U_{m+1}^{n}=0 \tag{A.6}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\beta\left(\frac{d U}{d Y}\right)^{2} \tag{A.7}
\end{equation*}
$$

where $\quad \beta=\frac{\eta u_{\max }^{2}}{k\left(T_{0}-T_{w 1}\right)}$
Let $\quad \frac{\partial \theta}{\partial \mathrm{X}}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X}$

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial Y^{2}}=\left[\frac{\theta_{\mathrm{m}-1}^{\mathrm{n}}-2 \theta_{\mathrm{m}}^{\mathrm{n}}+\theta_{\mathrm{m}+1}^{\mathrm{n}}}{2(\Delta \mathrm{Y})^{2}}\right]+\left[\frac{\theta_{\mathrm{m}-1}^{\mathrm{n}}-2 \theta_{\mathrm{m}}^{\mathrm{n}-1}+\theta_{\mathrm{m}+1}^{\mathrm{n}-1}}{2(\Delta \mathrm{Y})^{2}}\right] \tag{A.9}
\end{equation*}
$$

Substitute Eqs. (A.8) and (A.9) into Eqs. (A.7) :

$$
\begin{align*}
U_{m}^{n}\left[\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X}\right]= & {\left[\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}\right]+} \\
& {\left[\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}}\right]+\beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} } \tag{A.10}
\end{align*}
$$

Rearranging, we obtain:

$$
\begin{align*}
\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}\left[\theta_{m}^{n}-\theta_{m}^{n-1}\right]= & \theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}+\theta_{m-1}^{n-1}+\theta_{m}^{n-1} \\
& +\theta_{m+1}^{n-1}+2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.11}
\end{align*}
$$

Let $\quad \alpha_{m}^{n}=\frac{2(\Delta Y)^{2}}{\Delta X} U_{m}^{n}$

Thus, Eqs. (A.12) becomes:

$$
\begin{align*}
-\theta_{m-1}^{n}+\left(\alpha_{m}^{n}+2\right) \theta_{m}^{n}-\theta_{m+1}^{n}= & \theta_{m-1}^{n-1}+\left(\alpha_{m}^{n}-2\right) \theta_{m}^{n-1}+\theta_{m+1}^{n-1} \\
& +2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.12}
\end{align*}
$$

A. 2 Poiseuille Flow Between Parallel Plates

FILLED NODES DENOTE KNOWN VALUES

BLANK NODES DENOTE UNKNOWN VALUES

Fig. A-2. Finite difference grid. Poiseuille flow between parallel plates.

Momentum Equation

$$
\begin{equation*}
\frac{-k}{C_{p}} \frac{d P}{d X}+\eta \frac{d^{2} U}{d Y^{2}}+\frac{d \eta}{d Y} \frac{d U}{d Y}=0 \tag{A.13}
\end{equation*}
$$

Let $\quad \frac{d P}{d X}=\frac{P^{n}-P^{n-1}}{\Delta X}$

$$
\begin{align*}
& \frac{d U}{d Y}=\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y} \tag{A.15}\\
& \frac{d^{2} U}{d Y^{2}}=\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}}
\end{align*}
$$

Substitute Eqs. (A.14), (A.15) and (A.16) into Eq. (A.13):

$$
\begin{align*}
\frac{-k}{C_{p}}\left[\frac{p^{n}-p^{n-1}}{\Delta X}\right] & +n_{m}^{n}\left[\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}}\right]+\left(\frac{d n}{d Y}\right)_{m}^{n} \\
& \cdot\left[\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y}\right]=0 \tag{A.17}
\end{align*}
$$

Rearranging, we obtain:

$$
\begin{gather*}
\frac{-k}{n_{m}^{n} C_{p}} \frac{(\Delta Y)^{2}}{\Delta X}\left[P^{n}-P^{n-1}\right]+U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}+\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d n}{d Y}\right)_{m}^{n} \\
\cdot\left[U_{m+1}^{n}-U_{m-1}^{n}\right]=0 \tag{A.18}
\end{gather*}
$$

Let $\quad \alpha_{m}^{n}=\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}$

$$
\beta_{m}^{n}=\frac{k}{n_{m}^{n} C_{p}} \frac{(\Delta Y)^{2}}{\Delta X}
$$

Thus, Eq. (A.18) becomes:

$$
\begin{equation*}
\left(-\alpha_{m}^{n}+1\right) U_{m-1}^{n}-2 U_{m}^{n}+\left(\alpha_{m}^{n}+1\right) U_{m+1}^{n}-\beta_{m}^{n} p^{n}+\beta_{m}^{n} p^{n-1}=0 \tag{A.19}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
U \frac{\partial \theta}{\partial \bar{X}}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\beta\left(\frac{d U}{d Y}\right)^{2} \tag{A.20}
\end{equation*}
$$

where $\quad \beta=\frac{\eta u_{a v g}^{2}}{k\left(T_{0}-T_{w 1}\right)}$

Let $\quad \frac{\partial \theta}{\partial X}=\frac{\theta_{m}^{n}-\theta_{m-1}^{n}}{\Delta X}$

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \tag{A.22}
\end{equation*}
$$

Substitute Eqs. (A.21) and (A.22) into Eq. (A. 20) :

$$
\begin{align*}
U_{m}^{n}\left[\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X}\right]= & \frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \\
& +\beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.23}
\end{align*}
$$

Rearranging, we obtain:

$$
\begin{align*}
\frac{2(\Delta Y)^{2}}{\Delta X} \cdot U_{m}^{n}\left[\theta_{m}^{n}-\theta_{m}^{n-1}\right]= & \theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}+\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1} \\
& +\theta_{m+1}^{n-1}+2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.24}
\end{align*}
$$

Let $\quad \alpha_{m}^{n}=\frac{2(\Delta Y)^{2}}{\Delta X} U_{m}^{n}$

Thus, Eq. (A.24) becomes:

$$
\begin{align*}
-\theta_{m-1}^{n}+\left(\alpha_{m}^{n}+2\right) \theta_{m}^{n}-\theta_{m+1}^{n}= & \theta_{m-1}^{n-1}+\left(\alpha_{m}^{n}-2\right) \theta_{m}^{n-1}+\theta_{m+1}^{n-1} \\
& +2(\Delta Y)^{2} \beta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.25}
\end{align*}
$$

A. 3 Poiseuille Flow Through a Tube with Circular Cross-Section

FILLED NODES DENOTE KNOWN VALUES

BLANK NODES DENOTE UNKNOWN VALUES

Fig. A-3. Finite difference grid. Poiseuille flow
through a tube with circular cross-section.

Momentum Equation
For $R=0, \quad \frac{-k}{C_{p}} \frac{d P}{d z}+2 n \frac{d^{2} U}{d R^{2}}+\frac{d \eta}{d R}, \frac{\lambda^{\prime} U}{d R}=0$
For $R>0, \quad \frac{-k}{C_{p}} \frac{d P}{d Z}+\eta \frac{d^{2} U}{d R^{2}}+\left[\frac{\eta}{R}+\frac{d \eta}{d R}\right] \frac{d U}{d R}=0$

Let $\quad \frac{d P}{d Z}=\frac{P^{n}-P^{n-1}}{\Delta Z}$

$$
\frac{d U}{d R}=\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta R}
$$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{dR}^{2}}=\frac{\mathrm{U}_{\mathrm{m}-1}^{\mathrm{n}}-2 \mathrm{U}_{\mathrm{m}}^{\mathrm{n}}+\mathrm{U}_{\mathrm{m}+1}^{\mathrm{n}}}{(\Delta \mathrm{R})^{2}} \tag{A.29}
\end{equation*}
$$

Substitute Eqs. (A.27), (A.28) and (A.29) into Eqs. (A.26a) and (A.26b):
For $R=0, \quad \frac{-k}{C_{p}}\left[\frac{P^{n}-P^{n-1}}{\Delta Z}\right]+2 n_{1}^{n}\left[\frac{U_{0}^{n}-2 U_{1}^{n}+U_{2}^{n}}{(\Delta R)^{2}}\right]=0$
For $R>0, \quad \frac{-k}{C_{p}}\left[\frac{p^{n}-p^{n-1}}{\Delta Z}\right]+n_{m}^{n}\left[\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m}^{n}+1}{(\Delta R)^{2}}\right]+\left[\frac{n}{R}+\frac{d \eta}{d R}\right] \frac{n}{m}$

$$
\begin{equation*}
\cdot\left[\frac{\mathrm{U}_{\mathrm{m}+1}^{\mathrm{n}}-\mathrm{U}_{\mathrm{m}-1}^{\mathrm{n}}}{2 \Delta \mathrm{R}}\right]=0 \tag{A.30b}
\end{equation*}
$$

Rearranging, we obtain:

For $R=0, \quad \frac{-k}{2 \eta_{1}^{n} C_{p}} \frac{(\Delta R)^{2}}{\Delta Z}\left[P^{n}-P^{n-1}\right]+U_{0}^{n}-2 U_{1}^{n}+U_{2}^{n}=0$
For $R>\theta, \quad \frac{-k}{n_{m}^{n} C_{p}} \frac{(\Delta R)^{2}}{\Delta Z}\left[P^{n}-P^{n-1}\right]+U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}+\frac{\Delta R}{2 \eta_{m}^{n}}$

$$
\begin{equation*}
\cdot\left[\frac{n}{R}+\frac{d n}{d R}\right]_{m}^{n} \quad\left[U_{m+1}^{n}-U_{m-1}^{n}\right]=0 \tag{A.31b}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \alpha_{m}^{n}=\frac{\Delta R}{2 n_{m}^{n}}\left[\frac{n}{R}+\frac{d n}{d R}\right]_{m}^{n} \\
& \beta_{m}^{n}=\frac{-k}{n_{m}^{n} C_{p}} \frac{(\Delta R)^{2}}{\Delta Z}
\end{aligned}
$$

Thus, Eqs. (A.31a) and (A.31b) become:

For $R=0, \quad-2 U_{1}+2 U_{2}^{n}-\beta_{1}^{n} P^{n}+\beta_{1}^{n} P^{n-1}=0$

For $R>0, \quad\left(-\alpha_{m}^{n}+1\right) U_{m-1}^{n}-2 U_{m}^{n}+\left(\alpha_{m}^{n}+1\right) U_{m+1}^{n}-\beta_{m}^{n} p^{n}$

$$
\begin{equation*}
+\beta_{m}^{n} p^{n-1}=0 \tag{A.32b}
\end{equation*}
$$

A.3.2 Energy Equation

For $R=0, \quad U \frac{\partial \theta}{\partial Z}=2 \frac{\partial^{2} \theta}{\partial R^{2}}+\gamma\left(\frac{d U^{\prime}}{d R}\right)^{\prime} 2^{\circ}$
For $R>0, \quad U \frac{\partial \theta}{\partial Z}=\frac{\partial^{2} \theta}{\partial R^{2}}+\frac{1}{R} \frac{\partial \theta}{\partial R}+\gamma\left(\frac{d U}{d R}\right)^{2}$
where

$$
\begin{equation*}
\gamma=\frac{\eta u_{a v g}^{2}}{k\left(T_{0}-T_{w}\right)} \tag{A.33b}
\end{equation*}
$$

Let $\quad \frac{\partial \theta}{\partial z}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta Z}$

$$
\begin{align*}
& \frac{\partial \theta}{\partial R}=\frac{\theta_{m+1}^{n}-\theta_{m}^{n}-1}{4 \Delta R}+\frac{\theta_{m+1}^{n-1}-\theta_{m-1}^{n-1}}{4 \Delta R} \tag{A.35}\\
& \frac{\partial^{2} \theta}{\partial R^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta R)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta R)^{2}}
\end{align*}
$$

Substitute Eqs. (A.34) , (A.35) and (A.36) into Eqs. (A.33a) and (A.33b) :

For $R=0, \quad U_{1}^{n}\left[\frac{\theta_{1}^{n}-\theta_{1}^{n-1}}{\Delta Z}\right]=\frac{\theta_{0}^{n}-2 \theta_{1}^{n}+\theta_{2}^{n}}{(\Delta R)^{2}}+\frac{\theta_{0}^{n-1}-2 \theta_{1}^{n-1}+\theta_{2}^{n-1}}{(\Delta R)^{2}}$
For $R>0, \quad U_{m}^{n}\left[\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta Z}\right]=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta R)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta R)^{2}}$

$$
+\frac{1}{R_{m}}\left[\frac{\theta_{m+1}^{n}-\theta_{m-1}^{n}}{4 \Delta R}+\frac{\theta_{m+1}^{\mathrm{n}-1}-\theta_{m-1}^{\mathrm{n}-1}}{4 \Delta \mathrm{R}}\right]
$$

$$
\begin{equation*}
+\gamma_{m}^{n}\left(\frac{d U}{d R}\right)^{2} \tag{A.37b}
\end{equation*}
$$

Rearranging, we obtain:
θ_{2}^{n} by symmetry $\theta_{2}^{\mathrm{n}-1}$
For $R=0, \quad \frac{(\Delta \mathrm{R})^{2}}{\Delta \mathrm{Z}} \mathrm{U}_{1}^{\mathrm{n}}\left[\theta_{1}^{\mathrm{n}}-\theta_{1}^{\mathrm{n}-1}\right]=\theta_{0}^{1}-2 \theta_{1}^{\mathrm{n}}+\theta_{2}^{\mathrm{n}}+\theta_{0}^{\mathrm{n}^{n}-1}-2 \theta_{1}^{\mathrm{n}-1}$

$$
\begin{equation*}
+\theta_{2}^{\mathrm{n}-1} \tag{A.38a}
\end{equation*}
$$

For $R>0, \quad \frac{2(\Delta R)^{2}}{\Delta Z} U_{m}^{n}\left[\theta_{m}^{n}-\theta_{m}^{n-1}\right]=\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}+\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}$

$$
\begin{align*}
& +\theta_{\mathrm{m}+1}^{\mathrm{n}-1}+\frac{\Delta \mathrm{R}}{2 \mathrm{R}_{\mathrm{m}}}\left[\theta_{\mathrm{m}+1}^{\mathrm{n}}-\theta_{\mathrm{m}-1}^{\mathrm{n}}+\theta_{\mathrm{m}+1}^{\mathrm{n}-1}\right. \\
& \left.-\theta_{\mathrm{m}-1}^{\mathrm{n}-1}\right]+2(\Delta \mathrm{R})^{2} \gamma_{\mathrm{m}}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dR}}\right)^{2} \tag{A.38b}
\end{align*}
$$

Let $\quad \alpha_{m}^{n}=\frac{2(\Delta R)^{2}}{\Delta Z} U_{m}^{n}$

$$
\beta_{\mathrm{m}}^{\mathrm{n}}=\frac{\Delta \mathrm{R}}{2 \mathrm{R}_{\mathrm{m}}}
$$

Thus, Eqs. (A.38a) and (A.38b) become:

For $R=0, \quad\left(\frac{\alpha_{1}^{n}}{2}+2\right) \theta_{1}^{n}-2 \theta_{2}^{n}=\left(\frac{\alpha_{1}^{n}}{2}-2\right) \theta_{1}^{n-1}-2 \theta_{2}^{n-1}$

For $R>0, \quad\left(\beta_{m}^{n}-1\right) \theta_{m-1}^{n}+\left(\alpha_{m}^{n}+2\right) \theta_{m}^{n}-\left(\beta_{m}^{n}+1\right) \theta_{m+1}^{n}$

$$
\begin{align*}
= & \left(-\beta_{m}^{n}+1\right) \theta_{m-1}^{n-1}+\left(\alpha_{m}^{n}-2\right) \theta_{m}^{n-1}+\left(\beta_{m}^{n}+1\right) \theta_{m+1}^{n-1} \\
& +2(\Delta R)^{2} \gamma_{m}^{n}\left(\frac{d U}{d R}\right)^{2} \tag{A.39b}
\end{align*}
$$

A. 4 Drag Flow Between Converging Plates

Fig. A-4. Finite difference grid. Drag flow between converging plates.
(a) Primary or secondary grid lines (in Y-direction),
(b) Secondary grid lines (in Y-direction) adjacent to inclined stationary plate.

A.4.1 Momentum Equation

$$
\text { Let } \begin{align*}
& \frac{-k}{C_{p}} \frac{d P}{d X}+n \frac{d^{2} U}{d Y^{2}}+\frac{d n}{d Y} \frac{d U}{d Y}=0 \tag{A.40}\\
& \frac{d P}{d X}=\frac{P^{n+1}-p^{n}}{\Delta X} \tag{A.41}\\
& \frac{d U}{d Y}=\frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 \Delta Y} \tag{A.42}\\
& \frac{d^{2} U}{d Y^{2}}=\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}} \tag{A.43}
\end{align*}
$$

Substitute Eqs. (A.41), (A.42) and (A.43) into Eqs. (A.40):

$$
\begin{gather*}
\frac{-k}{C_{p}}\left[\frac{p^{n+1}-P^{n}}{\Delta X}\right]+n_{m}^{n}\left[\frac{U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}}{(\Delta Y)^{2}}\right]+\left(\frac{d n}{d Y}\right)_{m}^{n} \\
\cdot\left[\frac{U_{m}^{n}-1-U_{m-1}^{n}}{2 \Delta Y}\right]=0 \tag{A.44}
\end{gather*}
$$

Rearranging, we obtain:

$$
\begin{align*}
& \frac{-k}{\eta_{m}^{n} C_{p}} \frac{(\Delta Y)^{2}}{\Delta X}\left[P^{n+1}-P^{n}\right]+U_{m-1}^{n}-2 U_{m}^{n}+U_{m+1}^{n}+\frac{\Delta Y}{2 n_{m}^{n}}\left(\frac{d n}{d Y}\right)_{m}^{n} \\
& \quad \cdot\left[U_{m+1}^{n}-U_{m-1}^{n}\right]=0 \tag{A.45}
\end{align*}
$$

Let

$$
\begin{aligned}
& \alpha_{m}^{n}=\frac{k}{\eta_{m}^{n} C_{p}} \frac{(\Delta Y)^{2}}{\Delta X} \\
& \beta_{m}^{n}=\frac{\Delta Y}{2 \eta_{m}^{n}}\left(\frac{d \eta}{d Y}\right)_{m}^{n}
\end{aligned}
$$

Thus, Eq. (A.45) becomes:

$$
\left(-\beta_{m}^{n}+1\right) U_{m-1}^{n}-2 U_{m}^{n}+\left(\beta_{m}^{n}+1\right) U_{m+1}^{n}-\alpha_{m}^{n} p^{n+1}+\alpha_{m}^{n} p^{n}=0
$$

A.4.2. Energy Equation

$$
\begin{equation*}
U \frac{\partial \theta}{\partial X}=\frac{\partial^{2} \theta}{\partial Y^{2}}+\delta\left(\frac{\partial U}{d Y}\right)^{2} \tag{A.47}
\end{equation*}
$$

where $\quad \delta=\frac{n u_{\max }^{2}}{k\left(T_{0}-T_{W 1}\right)}$
Let $\quad \frac{\partial \theta}{\partial X}=\frac{\theta_{m}^{n}-\theta_{m}^{n-1}}{\Delta X}$

For rows $\mathrm{n}<\mathrm{KJ}$,

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial Y^{2}}=\frac{\theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}}{2(\Delta Y)^{2}}+\frac{\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1}+\theta_{m+1}^{n-1}}{2(\Delta Y)^{2}} \tag{A.49}
\end{equation*}
$$

Substitute Eqs. (A.48) and (A.49) into Eq. (A.47) :

For rows $\mathrm{n}<\mathrm{KJ}$,

$$
\begin{align*}
\mathrm{U}_{\mathrm{m}}^{\mathrm{n}}\left[\frac{\theta_{\mathrm{m}}^{\mathrm{n}}-\theta_{\mathrm{m}}^{\mathrm{n}-1}}{\Delta \mathrm{X}}\right]= & \frac{\theta_{\mathrm{m}-1}^{\mathrm{n}}-2 \theta_{\mathrm{m}}^{\mathrm{n}}+\theta_{\mathrm{m}+1}^{\mathrm{n}}}{2(\Delta \mathrm{Y})^{2}}+\frac{\theta_{\mathrm{m}-1}^{\mathrm{n}-1}-2 \theta_{m}^{\mathrm{n}-1}+\theta_{m+1}^{\mathrm{n}-1}}{2(\Delta \mathrm{Y})^{2}} \\
& +\delta_{\mathrm{m}}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dY}}\right)^{2} \tag{A.50}
\end{align*}
$$

Rearranging, we obtain:

$$
\begin{align*}
\frac{2(\Delta Y)^{2}}{\Delta X} U_{m}^{n}\left[\theta_{m}^{n}-\theta_{m}^{n-1}\right]= & \theta_{m-1}^{n}-2 \theta_{m}^{n}+\theta_{m+1}^{n}+\theta_{m-1}^{n-1}-2 \theta_{m}^{n-1} \\
& +\theta_{m+1}^{n-1}+2(\Delta Y)^{2} \delta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.51}
\end{align*}
$$

Let $\quad \gamma_{m}^{n}=\frac{2(\Delta Y)^{2}}{\Delta X} U_{m}^{n}$

Thus, Eq. (A.51) becomes:

For rows $\mathrm{n}<\mathrm{KJ}$,

$$
\begin{align*}
-\theta_{m-1}^{n}+\left(\alpha_{m}^{n}+2\right) \theta_{m}^{n}-\theta_{m+1}^{n}= & \theta_{m-1}^{n-1}+\left(\alpha_{m}^{n}-2\right) \theta_{m}^{n-1}+\theta_{m+1}^{n-1} \\
& +2(\Delta Y)^{2} \delta_{m}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.52}
\end{align*}
$$

For row KJ,

$$
\begin{aligned}
\frac{\partial^{2} \theta}{\partial Y^{2}}= & \frac{1}{2}\left[\frac{\left.\frac{\theta_{K J+1}^{n}-\theta_{K J}^{n}}{\sigma \Delta Y}-\frac{\theta_{K J}^{n}-\theta_{K J-1}^{n}}{\Delta \mathrm{Y}}\right]+}{\frac{1}{2}(\Delta \mathrm{Y}+\sigma \Delta \mathrm{Y})}\right] \\
& \frac{1}{2}\left[\frac{\frac{\theta_{\mathrm{KJ}+1}^{\mathrm{n}-1}-\theta_{\mathrm{KJ}}^{\mathrm{n}-1}}{\varepsilon \Delta \mathrm{Y}}-\frac{\theta_{\mathrm{KJ}}^{\mathrm{n}-1}-\theta_{\mathrm{KJ}-1}^{\mathrm{n}-1}}{\Delta \mathrm{Y}}}{\frac{1}{2}(\Delta \mathrm{Y}+\varepsilon \Delta \mathrm{Y})}\right]
\end{aligned}
$$

(continued)

$$
\begin{align*}
= & \frac{1}{(\Delta \mathrm{Y})^{2}(1+\sigma)} \cdot\left[\theta_{\mathrm{KJ}-1}^{\mathrm{n}}-\left(\frac{1}{\sigma}+1\right) \theta_{\mathrm{KJ}}^{\mathrm{n}}+\frac{1}{\sigma} \theta_{\mathrm{KJ}+1}^{\mathrm{n}}\right] \\
& +\frac{1}{(\Delta \mathrm{Y})^{2}(1+\varepsilon)}\left[\theta_{\mathrm{KJ}-1}^{\mathrm{n}-1}-\left(\frac{1}{\varepsilon}+1\right) \theta_{\mathrm{KJ}}^{\mathrm{n}-1}+\frac{1}{\varepsilon} \theta_{\mathrm{KJ}+1}^{\mathrm{n}-1}\right] \\
= & \frac{1}{(\Delta \mathrm{Y})^{2}}\left[\frac{1}{1+\sigma} \theta_{\mathrm{KJ}-1}^{\mathrm{n}}-\frac{1}{\sigma} \theta_{\mathrm{KJ}}^{\mathrm{n}}+\frac{1}{\sigma+\sigma^{2}} \theta_{\mathrm{KJ}+1}^{\mathrm{n}}+\frac{1}{1+\varepsilon} \theta_{\mathrm{KJ}-1}^{\mathrm{n}-1}\right. \\
& \left.-\frac{1}{\varepsilon} \theta_{\mathrm{KJ}}^{\mathrm{n}-1}+\frac{1}{\varepsilon+\varepsilon^{2}} \theta_{K J+1}^{\mathrm{n}-1}\right] \tag{A.53}
\end{align*}
$$

Substitute Eqs. (A.48) and (A.53) into Eq. (A.47) :

For row KJ,

$$
\begin{align*}
\mathrm{U}_{\mathrm{KJ}}^{\mathrm{n}}\left[\frac{\theta_{\mathrm{KJ}}^{\mathrm{n}}-\theta_{\mathrm{KJ}}^{\mathrm{n}-1}}{\Delta \mathrm{X}}\right]= & \frac{1}{(\Delta \mathrm{Y})^{2}}\left[\frac{1}{1+\sigma} \theta_{\mathrm{KJ}-1}^{\mathrm{n}}-\frac{1}{\sigma} \theta_{\mathrm{KJ}}^{\mathrm{n}}+\frac{1}{\sigma+\sigma^{2}} \theta_{\mathrm{KJ}+1}^{\mathrm{n}}\right. \\
& \left.+\frac{1}{1+\varepsilon} \theta_{\mathrm{KJ}-1}^{\mathrm{n}-1}-\frac{1}{\varepsilon} \theta_{\mathrm{KJ}}^{\mathrm{n}-1}+\frac{1}{\varepsilon+\varepsilon^{2}} \theta_{\mathrm{KJ}+1}^{\mathrm{n}-1}\right] \\
& +\delta_{\mathrm{m}}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dY}}\right)^{2} \tag{A.54}
\end{align*}
$$

Rearranging, we obtain:

$$
\frac{(\Delta \mathrm{Y})^{2}}{\Delta \mathrm{X}} \mathrm{U}_{\mathrm{KJ}}^{\mathrm{n}}\left[\theta_{\mathrm{KJ}}^{\mathrm{n}}-\theta_{\mathrm{KJ}}^{\mathrm{n}-1}\right]=\frac{1}{1+\sigma} \theta_{\mathrm{KJ}-1}^{\mathrm{n}}-\frac{1}{\sigma} \theta_{\mathrm{KJ}}^{\mathrm{n}}+\frac{1}{\sigma+\sigma^{2}} \theta_{\mathrm{KJ}+1}^{\mathrm{n}}
$$

$$
\begin{align*}
& +\frac{1}{1+\varepsilon} \theta_{K J-1}^{\mathrm{n}-1}-\frac{1}{\varepsilon} \theta_{K J}^{\mathrm{n}-1}+\frac{1}{\varepsilon+\varepsilon^{2}} \theta_{K J+1}^{\mathrm{n}-1} \\
& +(\Delta \mathrm{Y})^{2} \delta_{K J}^{\mathrm{n}}\left(\frac{\mathrm{dU}}{\mathrm{dY}}\right)^{2} \tag{A.55}
\end{align*}
$$

Since $\quad r_{m}^{n}=\frac{2(\Delta Y)^{2}}{\Delta X} U_{m}^{n}$,
then Eq. (A.55) becomes:

For row KJ,

$$
\begin{align*}
\frac{-1}{1+\sigma} \theta_{K J-1}^{n} & +\left(\frac{\gamma_{m}^{n}}{2}+\frac{1}{\sigma}\right) \theta_{K J}^{n}-\frac{1}{\sigma+\sigma^{2}} \theta_{K J+1}^{n}=\frac{1}{1+\varepsilon} \theta_{K J-1}^{n-1} \\
& +\left(\frac{\gamma_{m}^{n}}{2}-\frac{1}{\varepsilon}\right) \theta_{K J}^{n-1}+\frac{1}{\varepsilon+\varepsilon^{2}} \theta_{K J+1}^{n-1}+(\Delta Y)^{2} \gamma_{K J}^{n}\left(\frac{d U}{d Y}\right)^{2} \tag{A.56}
\end{align*}
$$

APPENDIX B

THE LOCAL NUSSELT NUMBER

B. 1 Derivation of the local Nusselt number

The local Nusselt number is calculated from the following definition:

$$
\begin{align*}
& N u_{x}=\frac{h b}{k} \tag{B.1}\\
& q=h\left(T_{\text {wall }}-T_{\text {bulk }}\right)=\mp k\left(\frac{d T}{d y}\right)_{\text {wall }} \tag{B.2}
\end{align*}
$$

where $q=$ heat flux to fluid per unit area of wall

$$
\begin{equation*}
\mathrm{h}= \pm \frac{\mathrm{k}\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }}}{\mathrm{T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{B.3}
\end{equation*}
$$

Substituting Eq. (B.3) into Eq. (B.1), we obtain:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}= \pm \frac{\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }}^{\bullet b}}{\mathrm{~T}_{\mathrm{bulk}}-\mathrm{T}_{\text {wall }}} \tag{B.4}
\end{equation*}
$$

Fig. B-1. Temperature profile for flow between two parallel plates.

It can be seen in Fig. B-1 that at wall $1, \frac{d T}{d y}>0$ and $T_{\text {bulk }}>T_{w 1}$, and at wall $2, \frac{d T}{d y}<0$ and $T_{b u l k}>T_{w 2}$. To keep the sign of the local Nusselt number at both walls consistent, Eq. (B.4) is written as follows:

For wall 1: $\quad\left(N u_{x}\right)_{\text {wall } 1}=\frac{\left(\frac{d T}{d Y}\right)_{\text {wall }} \cdot b}{T_{\text {bulk }}-T_{w 1}}$

For wall 2: $\quad\left(N u_{x}\right)_{\text {wall } 2}=-\frac{\left(\frac{d T}{d y}\right) w a l l ~_{2 \cdot b}}{T_{b u 1 k}-T_{w 2}}$

In dimensionless form we have:

$$
\begin{align*}
& \left(N u_{x}\right)_{\text {wall } 1}=\frac{\left(\frac{\mathrm{d} \theta}{\mathrm{dY}}\right)_{\text {wall }} 1}{\theta_{\text {bulk }}} \tag{B.7}\\
& \left(N u_{x}\right)_{\text {wall } 2}=-\frac{\left(\frac{\mathrm{d} \theta}{\mathrm{dY}}\right)_{\text {wall }} 2}{\theta_{\text {bulk }}-\theta_{w} 2} \tag{B.8}
\end{align*}
$$

B. 2 Calculation of local heat transfer coefficients from plots of

local Nusselt numbers

Given the local Nusselt number and bulk temperature, the local heat transfer coefficient and the heat flux to the fluid can be calculated using Eqs. (B.1) and (B.2). From Fig. 4-12, the local Nusselt numbers for drag flow between paralle1 plates $\left(T_{\mathrm{o}}=130^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 1}=190^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{w} 2}=130^{\circ} \mathrm{C}\right.$, $\mathrm{b}=0.25 \mathrm{~cm}, \mathrm{k}=0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K}))$ at $\mathrm{X}=0.002$ are 4.92 and 3.89 at the stationary and moving walls respectively. The bulk temperature at $X=0.002$ is $132.5^{\circ} \mathrm{C}$ (from Fig. 4-6). Using Eqs. (B.1) and (B.2), we obtain the following:

$$
\begin{aligned}
& \mathrm{h}(\text { at stationary wall })=\frac{(4.92)(0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}))}{0.0025 \mathrm{~m}}=501.84 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \mathrm{h}(\text { at moving wall })=\frac{(3.89)(0.255 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}))}{0.0025 \mathrm{~m}}=396.78 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \\
& \mathrm{q}(\text { at stationary wall })=(501.84)\left(190^{\circ} \mathrm{C}-132.5^{\circ} \mathrm{C}\right)=28855.8 \mathrm{~W} / \mathrm{m}^{2} \\
& \mathrm{q}\left(\text { at moving wall) }=(396.78)\left(130^{\circ} \mathrm{C}-132.5^{\circ} \mathrm{C}\right)=-991.95 \mathrm{~W} / \mathrm{m}^{2}\right.
\end{aligned}
$$

It can be seen from the above calculations that the fluid at $X=0.002$ is heated at the stationary plate, but at the moving plate it is being cooled. This is verified in Fig. 4-4 where the temperature profiles for this case are shown.

APPENDIX C

FINITE DIFFERENCE APPROXIMATIONS OF DERIVATIVES

Fig. C-1. Finite difference grids for derivative estimation.

In this appendix, the finite difference approximations of firstorder derivatives are derived for several nodes on the finite difference grid shown in Fig. C-1. Two-, three-, four-, and five-point formulae are derived using the following Taylor's series expansion about the point, a:

$$
\begin{align*}
\mathrm{F}(\mathrm{a}+\mathrm{h}) & =\mathrm{F}(\mathrm{a})+\frac{\mathrm{hF}^{\mathrm{I}}(\mathrm{a})}{1!}+\frac{h^{2} \mathrm{~F}^{I I}(\mathrm{a})}{2!}+\frac{\mathrm{h}^{3} \mathrm{~F}^{I I I}(a)}{3!}+\frac{h^{4} \mathrm{~F}^{I V}(a)}{4!}+\ldots \\
& =F(a)+h F^{I}(a)+\frac{h^{2} F^{I I}(a)}{2}+\frac{h^{3} \mathrm{~F}^{I I I}(a)}{6}+\frac{h^{4} \mathrm{~F}^{I V}(a)}{24}+\ldots \tag{C.1}
\end{align*}
$$

C. 1 Derivative at Node 1 (see Fig. C-1(a))
$\underline{\text { 2-Point Formula }}$
From Eq. (C.1), we obtain:

$$
\begin{equation*}
F(2)=F(1)+(\Delta Y) F^{I}(1) \tag{C.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(1)=\frac{\mathrm{F}(2)-\mathrm{F}(1)}{\Delta \mathrm{Y}} \tag{C.3}
\end{equation*}
$$

3-Point Formula
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(3)=F(1)+2(\Delta Y) F^{\prime}(1)+\frac{4}{2}(\Delta Y)^{2} F^{I I}(1) \tag{C.4}\\
& F(2)=F(1)+(\Delta Y) F^{I}(1)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(1) \tag{C.5}
\end{align*}
$$

Add Eq. (C.4) and $-4 x$ Eq. (C.5) to eliminate $F^{I I}(1)$:

$$
\begin{equation*}
F(3)-4 F(2)=-3 F(1)-2(\Delta Y) F^{I}(1) \tag{C.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(1)=\frac{-3 \mathrm{~F}(1)+4 \mathrm{~F}(2)-\mathrm{F}(3)}{2 \Delta \mathrm{Y}} \tag{С.7}
\end{equation*}
$$

4-Point Formula

From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& \mathrm{F}(4)=\mathrm{F}(1)+3(\Delta Y) \mathrm{F}^{\mathrm{I}}(1)+\frac{9}{2}(\Delta Y)^{2} \mathrm{~F}^{\mathrm{II}}(1)+\frac{27}{6}(\Delta \mathrm{Y})^{3} \mathrm{~F}^{\mathrm{III}}(1) \tag{C.8}\\
& \mathrm{F}(3)=\mathrm{F}(1)+2(\Delta Y) \mathrm{F}^{\mathrm{I}}(1)+\frac{4}{2}(\Delta Y)^{2} \mathrm{~F}^{\mathrm{II}}(1)+\frac{8}{6}(\Delta Y)^{3} \mathrm{~F}^{\mathrm{III}}(1) \tag{C.9}\\
& \mathrm{F}(2)=\mathrm{F}(1)+2(\Delta Y) \mathrm{F}^{\mathrm{I}}(1)+\frac{1}{2}(\Delta Y)^{2} \mathrm{~F}^{\mathrm{II}}(1)+\frac{1}{6}(\Delta Y)^{3} \mathrm{~F}^{\mathrm{III}}(1) \tag{С.10}
\end{align*}
$$

Add $-2 x$ Eq. (C. 8), $9 x$ Eq. (C.9) and $-18 x$ Eq. (C.10) to eliminate F^{II} (1) and $\mathrm{F}^{\mathrm{III}}(1)$:

$$
\begin{equation*}
-2 F(4)+9 F(3)-18 F(2)=-11 F(1)-6(\Delta Y) F^{I}(1) \tag{С.11}
\end{equation*}
$$

or

$$
\begin{equation*}
F^{I}(1)=\frac{-11 F(1)+18 F(2)-9 F(3)+2 F(4)}{6 \Delta Y} \tag{C.12}
\end{equation*}
$$

C. 2 Derivative at Node 2 (see Fig. C-1(a))

3-Point Formula

From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& \mathrm{F}(3)=\mathrm{F}(2)+(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(2)+\frac{1}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{I I}(2) \tag{C.13}\\
& \mathrm{F}(1)=\mathrm{F}(2)-(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(2)+\frac{1}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{I I}(2) \tag{C.14}
\end{align*}
$$

Add Eq. (C.13) and $-1 x$ Eq. (C.14) to eliminate $F^{I I}(2)$:

$$
\begin{equation*}
F(3)-F(1)=2(\Delta Y) F^{I}(2) \tag{С.15}
\end{equation*}
$$

or

$$
\begin{equation*}
F^{I}(2)=\frac{F(3)-F(1)}{2 \Delta Y} \tag{С.16}
\end{equation*}
$$

4-Point Formula
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(4)=F(2)+2(\Delta Y) F^{I}(2)+\frac{4}{2}(\Delta Y)^{2} F^{I I}(2)+\frac{8}{6}(\Delta Y)^{3} F^{I I I}(2) \tag{C.17}\\
& F(3)=F(2)+(\Delta Y) F^{I}(2)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(2)+\frac{1}{6}(\Delta Y)^{3} F^{I I I}(2) \tag{C.18}\\
& F(1)=F(2)-(\Delta Y) F^{I}(2)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(2)-\frac{1}{6}(\Delta Y)^{3} F^{I I I}(2) \tag{C.19}
\end{align*}
$$

Add Eq. (C.17) , $-6 x$ Eq. (C.18) and $2 x$ Eq. (C.19) to eliminate $F^{I I}(2)$ and $\mathrm{F}^{\mathrm{III}}(2)$:

$$
\begin{equation*}
F(4)-6 F(3)+2 F(1)=-3 F(2)-6(\Delta Y) F^{I}(2) \tag{C.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(2)=\frac{-\mathrm{F}(4)+6 \mathrm{~F}(3)-3 \mathrm{~F}(2)-2 \mathrm{~F}(1)}{6 \Delta \mathrm{Y}} \tag{C.21}
\end{equation*}
$$

C. 3 Derivative at Node m (see Fig. C-1(b))

3-Point Formula
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(m+1)=F(m)+(\Delta Y) F^{I}(m)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(m) \tag{C.22}\\
& F(m-1)=F(m)-(\Delta Y) F^{I}(m)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(m) \tag{C.23}
\end{align*}
$$

Add Eq. (C.22) and -1x Eq. (C.23) to eliminate $\mathrm{F}^{\mathrm{II}}(\mathrm{m})$:

$$
\begin{equation*}
F(m+1)-F(m-1)=2(\Delta Y) F^{I}(m) \tag{C.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{~m})=\frac{\mathrm{F}(\mathrm{~m}+1)-\mathrm{F}(\mathrm{~m}-1)}{2 \Delta \mathrm{Y}} \tag{C.25}
\end{equation*}
$$

5-Point Formula
From Eq. (C.1), we obtain

$$
\begin{align*}
\mathrm{F}(\mathrm{~m}+2)= & \mathrm{F}(\mathrm{~m})+2(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(\mathrm{~m})+\frac{4}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{I I}(\mathrm{~m})+\frac{8}{6}(\Delta \mathrm{Y})^{3} \mathrm{~F}^{I I I}(\mathrm{~m}) \\
& +\frac{16}{24}(\Delta \mathrm{Y})^{4} \mathrm{~F}^{I V}(\mathrm{~m}) \tag{C.26}\\
\mathrm{F}(\mathrm{~m}+1)= & \mathrm{F}(\mathrm{~m})+(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(\mathrm{~m})+\frac{1}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{I I}(\mathrm{~m})+\frac{1}{6}(\Delta \mathrm{Y})^{3} \mathrm{~F}^{I I I}(\mathrm{~m}) \\
& +\frac{1}{24}(\Delta \mathrm{Y})^{4} \mathrm{~F}^{I V}(\mathrm{~m}) \tag{C.27}
\end{align*}
$$

$$
\begin{align*}
F(m-1)= & F(m)-(\Delta Y) F^{I}(m)+\frac{1}{2}(\Delta Y){ }^{2} F^{I I}(m)-\frac{1}{6}(\Delta Y){ }^{3} F^{I I I}(m) \\
& +\frac{1}{24}(\Delta Y){ }^{4} F^{I V}(m) \tag{C.28}\\
F(m-2)= & F(m)-2(\Delta Y) F^{I}(m)+\frac{4}{2}(\Delta Y){ }^{2} F^{I I}(\mathrm{~m})-\frac{8}{6}(\Delta Y){ }^{3} \mathrm{~F}^{I I I}(\mathrm{~m}) \\
& +\frac{16}{24}(\Delta Y){ }^{4} F^{I V}(\mathrm{~m}) \tag{C.29}
\end{align*}
$$

Add $-1 x$ Eq. (C.26), $8 x$ Eq. (C. 27), $-8 x$ Eq. (C.28) and Eq. (C. 29) to eliminate $\mathrm{F}^{\mathrm{II}}(\mathrm{m}), \mathrm{F}^{\mathrm{III}}(\mathrm{m})$ and $\mathrm{F}^{\mathrm{IV}}(\mathrm{m})$:

$$
\begin{equation*}
-F(m+2)+8 F(m+1)-8 F(m-1)+F(m-2)=12(\Delta Y) F^{I}(m) \tag{C.30}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{~m})=\frac{-\mathrm{F}(\mathrm{~m}+2)+8 \mathrm{~F}(\mathrm{~m}+1)-8 \mathrm{~F}(\mathrm{~m}-1)+\mathrm{F}(\mathrm{~m}-2)}{12 \Delta \mathrm{Y}} \tag{C.31}
\end{equation*}
$$

C. 4 Derivative at Node M (see Fig. C-1(c))

3-Point Formula
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(M+1)=F(M)+(\Delta Y) F^{I}(M)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M) \tag{C.32}\\
& F(M-1)=F(M)-(\Delta Y) F^{I}(M)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M) \tag{С.33}
\end{align*}
$$

Add $-1 x$ Eq. (C.32) and Eq. (C. 33) to eliminate $F^{I I}(M)$:

$$
\begin{equation*}
-F(M+1)+F(M-1)=-2(\Delta Y) F^{I}(M) \tag{C.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{M})=\frac{\mathrm{F}(\mathrm{M}+1)-\mathrm{F}(\mathrm{M}-1)}{2 \Delta \mathrm{Y}} \tag{C.35}
\end{equation*}
$$

4-Point Formula

From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(M+1)=F(M)+(\Delta Y) F^{I}(M)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M)+\frac{1}{6}(\Delta Y)^{3} F^{I I I}(M) \tag{С.36}\\
& F(M-1)=F(M)-(\Delta Y) F^{I}(M)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M)-\frac{1}{6}(\Delta Y)^{3} F^{I I I}(M) \tag{С.37}\\
& F(M-2)=F(M)-2(\Delta Y) F^{I}(M)+\frac{4}{2}(\Delta Y)^{2} F^{I I}(M)-\frac{8}{6}(\Delta Y)^{3} F^{I I I}(M) \tag{C.28}
\end{align*}
$$

Add $2 x$ Eq. (C.26), $-6 x$ Eq. (C.37) and Eq. (C. 38) to eliminate $F^{I I}(M)$ and $\mathrm{F}^{\mathrm{III}}(\mathrm{M})$:

$$
\begin{equation*}
2 F(M+1)-6 F(M-1)+F(M-2)=-3 F(M)+6(\Delta Y) F^{I}(M) \tag{C.39}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{M})=\frac{2 \mathrm{~F}(\mathrm{M}+1)+3 \mathrm{~F}(\mathrm{M})-6 \mathrm{~F}(\mathrm{M}-1)+\mathrm{F}(\mathrm{M}-2)}{6 \Delta \mathrm{Y}} \tag{C.40}
\end{equation*}
$$

C. 5 Derivative at Node $\mathrm{M}+1$ (see Fig. C-1(c))

2-Point Derivative
From Eq. (C.1), we obtain:

$$
\begin{equation*}
F(M)=F(M+1)-(\Delta Y) F^{I}(M+1) \tag{С.41}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{M}+1)=\frac{\mathrm{F}(\mathrm{M}+1)-\mathrm{F}(\mathrm{M})}{\Delta \mathrm{Y}} \tag{C.42}
\end{equation*}
$$

3-Point Derivative
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
& F(M)=F(M+1)-(\Delta Y) F^{I}(M+1)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M+1) \tag{C.43}\\
& F(M-1)=F(M+1)-2(\Delta Y) F^{I}(M+1)+\frac{4}{2}(\Delta Y)^{2} F^{I I}(M+1) \tag{C.44}
\end{align*}
$$

Add $-4 x$ Eq. (C.43) and Eq. (C. 44) to eliminate $F^{I I}(M+1)$:

$$
\begin{equation*}
-4 F(M)+F(M-1)=-3 F(M+1)+2(\Delta Y) F^{I}(M+1) \tag{C.45}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{M}+1)=\frac{3 \mathrm{~F}(\mathrm{M}+1)-4 \mathrm{~F}(\mathrm{M})+\mathrm{F}(\mathrm{M}-1)}{2 \Delta \mathrm{Y}} \tag{С.46}
\end{equation*}
$$

4-Point Derivative
From Eq. (C.1), we obtain the following:

$$
\begin{align*}
F(M)= & F(M+1)-(\Delta Y) F^{I}(M+1)+\frac{1}{2}(\Delta Y)^{2} F^{I I}(M+1) \\
& -\frac{1}{6}(\Delta Y)^{3} F^{I I I}(M+1) \tag{С.47}
\end{align*}
$$

$$
\begin{align*}
\mathrm{F}(\mathrm{M}-1)= & \mathrm{F}(\mathrm{M}+1)-2(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(\mathrm{M}+1)+\frac{4}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{\mathrm{II}}(\mathrm{M}+1) \\
& -\frac{8}{6}(\Delta \mathrm{Y}){ }^{3} \mathrm{~F}^{I I I}(\mathrm{M}+1) \tag{C.48}\\
\mathrm{F}(\mathrm{M}-2)= & \mathrm{F}(\mathrm{M}+1)-3(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(\mathrm{M}+1)+\frac{9}{2}(\Delta \mathrm{Y})^{2} \mathrm{~F}^{I I}(\mathrm{M}+1) \\
& -\frac{27}{6}(\Delta \mathrm{Y}){ }^{3} \mathrm{~F}^{I I I}(\mathrm{M}+1) \tag{C.49}
\end{align*}
$$

Add $-18 x$ Eq. (C.47), 9x Eq. (C. 48) and $-2 x$ Eq. (C.49) to eliminate $\mathrm{F}^{\mathrm{II}}(\mathrm{M}+1)$ and $\mathrm{F}^{\mathrm{III}}(\mathrm{M}+1)$:

$$
\begin{equation*}
-18 \mathrm{~F}(\mathrm{M})+9 \mathrm{~F}(\mathrm{M}-1)-2 \mathrm{~F}(\mathrm{M}-2)=-11 \mathrm{~F}(\mathrm{M}+1)+6(\Delta \mathrm{Y}) \mathrm{F}^{\mathrm{I}}(\mathrm{M}+1) \tag{C.50}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{M}+1)=\frac{11 \mathrm{~F}(\mathrm{M}+1)-18 \mathrm{~F}(\mathrm{M})+9 \mathrm{~F}(\mathrm{M}-1)-2 \mathrm{~F}(\mathrm{M}-2)}{6 \Delta \mathrm{Y}} \tag{C.51}
\end{equation*}
$$

The accuracy of the above formulae is checked in Table C-1 for the following function:

$$
\begin{equation*}
F(y)=1-y^{\frac{n+1}{n}} ; 0 \leq y \leq 1 \tag{C.52}
\end{equation*}
$$

where

$$
\mathrm{n}=0.453
$$

True derivative:

$$
\begin{equation*}
\mathrm{F}^{\mathrm{I}}(\mathrm{y})=-\left(\frac{\mathrm{n}+1}{\mathrm{n}}\right) y^{\frac{1}{\mathrm{n}}} \tag{C.53}
\end{equation*}
$$

Table C-1. Estimates of $\mathrm{F}^{\mathrm{I}}(\mathrm{y})$ using finite difference formulae.

$$
M=40, \Delta Y=\frac{1}{40}
$$

	Node 1	Node 2	Node 3	Node 40	Node 41
2-point derivative	-3.1199				-0.0003
3-point derivative	-3.2057	-3.0340	-2.8650	-0.0013	0.0007
4-point derivative	-3.2075	-3.0332		-0.0009	0.0001
5-point derivative			-2.8641		
True derivative	-3.2075	-3.0332	-2.8641	-0.0009	0

From the above table, it is seen that $\mathrm{F}^{\mathrm{I}}(\mathrm{y})$ is accurate within 4 decimal places when either the 4 - or 5 -point formula is used.

APPENDIX D

ALGORITHMS FOR SOLVING SIMULTANEOUS EQUATIONS BY GAUSSIAN ELIMINATION

To solve a general system of n simultaneous equations with n unknowns by Gaussian elimination on the computer, about $n(n+1)$ memory locations are required (one for each coefficient in the equations). Thus, the number of equations that can be solved simultaneously is limited by the storage capacity of the computer memory. In the tridiagonal and modified tridiagonal systems of equations encountered in Chaps. 4, 5, 6 and 7, most of the coefficients in the equations are zeros. It would be more beneficial to solve these systems of equations by using algorithms such as Thomas' method (30) which do not require the storage of the zero elements. These algorithms are simpler and much faster than the more general methods because the zeros are not stored. More equations, therefore, can be solved simultaneously using these algorithms. Three algorithms used to solve the tridiagonal and modified tridiagonal systems of equations encountered in Chaps. 4, 5, 6 and 7 are now outlined.

D. 1 Thomas' Method

Thomas' method (30) is used to solve a tridiagonal system of equations, such as the one given by matrix equation (D.1).

$$
\left[\begin{array}{ccccccc}
\mathrm{B}_{1} & \mathrm{C}_{1} & & & & \underline{0} \tag{D.1}\\
\mathrm{~A}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} & & & & \\
& \ddots & \ddots & \ddots & & & \\
& & A_{\mathrm{m}} & \mathrm{~B}_{\mathrm{m}} & \mathrm{C}_{\mathrm{m}} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & A_{M-1} & \mathrm{~B}_{\mathrm{M}-1} & C_{M-1} \\
& & & & & A_{M} & B_{M}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots
\end{array}\right.
$$

To solve matrix equation (D.1) by Thomas' method, the following steps are performed:

1. Set $S_{1}=B_{1}$

$$
\mathrm{T}_{1}=\frac{\mathrm{H}_{1}}{\mathrm{~S}_{1}}
$$

2. Set $Q_{i-1}=\frac{C_{i-1}}{S_{i-1}}$

$$
\left.\begin{array}{l}
S_{i}=B_{i}-A_{i} \cdot Q_{i-1} \\
T_{i}=\frac{H_{i}-A_{i} \cdot T_{i-1}}{S_{i}}
\end{array}\right\} \quad(i=2,3, \ldots, M)
$$

Thus, matrix equation (D.1) becomes:

$$
\left[\begin{array}{ccccc}
1 & Q_{1} & & & \tag{D.2}\\
& 1 & Q_{2} & \underline{0} \\
& & \ddots & \ddots & \\
& & & 1 & Q_{M-1} \\
\underline{0} & & & & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{M-1} \\
x_{M}
\end{array}\right]=\left[\begin{array}{l}
T_{1} \\
T_{2} \\
\vdots \\
T_{M-1} \\
T_{M}
\end{array}\right]
$$

3. Set $\quad X_{M}=T_{M}$
4. Set $\quad X_{i}=T_{i}-Q_{i} \cdot X_{i+1}$

$$
(i=M-1, M-2, \ldots, 2,1)
$$

Thus, matrix equation (D.1) is solved for $X_{i}(i=1,2, \ldots, M)$.
D. 2 Gaussian Elimination to Solve Continuity and Momentum Equations

in Chaps. 5 and 6

An algorithm has been developed (31) to solve the following modified tridiagonal system of equations:

$$
\left[\begin{array}{cccccc}
\mathrm{B}_{1} & \mathrm{C}_{1} & & & & \mathrm{~W}_{1} \tag{D.3}\\
\mathrm{~A}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} & & \underline{0} & \mathrm{~W}_{2} \\
& \ddots & \ddots & \ddots & & \vdots \\
& & \mathrm{~A}_{\mathrm{M}-1} & \mathrm{~B}_{\mathrm{M}-1} & \mathrm{C}_{\mathrm{M}-1} & \mathrm{~W}_{\mathrm{M}-1} \\
& \underline{0} & & & \mathrm{~A}_{\mathrm{M}} & \mathrm{~B}_{\mathrm{M}} \\
\mathrm{Z}_{1} & \mathrm{Z}_{2} & \cdots & \mathrm{~W}_{\mathrm{M}} \\
\mathrm{Z}_{\mathrm{M}-1} & \mathrm{Z}_{\mathrm{M}} & \mathrm{Z}_{\mathrm{M}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\vdots \\
\mathrm{U}_{\mathrm{M}-1} \\
\mathrm{U}_{\mathrm{M}} \\
\mathrm{P}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{H}_{1} \\
\mathrm{H}_{2} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1} \\
\mathrm{H}_{\mathrm{M}} \\
\mathrm{Z}_{\mathrm{M}+2}
\end{array}\right]
$$

To solve matrix equation (D.3), the following steps are performed:

1. Set $\quad B_{1}^{\prime}=B_{1}$

$$
\begin{aligned}
& \mathrm{W}_{1}^{\prime}=\mathrm{W}_{1} \\
& \mathrm{H}_{1}^{\prime}=\mathrm{H}_{1}
\end{aligned}
$$

2. Set

$$
\left.\begin{array}{l}
{S S_{i}}=\frac{-A_{i}}{B_{i-1}^{\prime}} \\
B_{i}^{\prime}=B_{i}+C_{i-1} \cdot S_{i} \\
W_{i}^{\prime}=W_{i}+W_{i-1}^{\prime} \cdot S S_{i} \\
H_{i}^{\prime}=H_{i}+H_{i-1}^{\prime} \cdot S S_{i}
\end{array}\right\}(i=2,3, \ldots, M)
$$

Thus, matrix equation (D.3) becomes:

$$
\left[\begin{array}{cccccc}
\mathrm{B}_{1}^{\prime} & \mathrm{C}_{1} & & & & W_{1}^{\prime} \tag{D.4}\\
& \mathrm{B}_{2}^{\prime} & \mathrm{C}_{2} & & & \mathrm{~W}_{2}^{\prime} \\
& \ddots & \ddots & & \vdots \\
& & & B_{M-1}^{\prime} & \mathrm{C}_{M-1} & W_{M-1}^{\prime} \\
& & & & B_{M}^{\prime} & W_{M}^{\prime} \\
& & & & { }^{\prime} \\
Z_{1} & Z_{2} & \cdots & Z_{M-1} & Z_{M} & Z_{M+1}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
\vdots \\
U_{M-1} \\
{ }^{\mathrm{U}} \\
P
\end{array}\right]=\left[\begin{array}{l}
H_{1}^{\prime} \\
H_{2}^{\prime} \\
\vdots \\
H_{M-1}^{\prime} \\
H_{M}^{\prime} \\
Z_{M+2}
\end{array}\right]
$$

3. Set $\quad B_{M}^{*}=B_{M}^{\prime}$

$$
W_{M}^{*}=W_{M}^{\prime}
$$

$$
H_{M}^{*}=H_{M}^{\prime}
$$

4. Set

$$
\mathrm{SS}_{\mathrm{i}}=\frac{-\mathrm{C}_{\mathrm{i}}}{\mathrm{~B}_{\mathrm{i}+1}^{*}}
$$

$$
\left.\begin{array}{l}
B_{i}^{*}=B_{i}^{\prime} \\
W_{i}^{*}=W_{i}^{\prime}+W_{i+1}^{*} \cdot S S_{i} \\
H_{i}^{*}=H_{i}^{\prime}+H_{i+1}^{*} \cdot S S_{i}
\end{array}\right\}(i=M-1, M-2, \ldots, 2,1)
$$

Thus, matrix equation (D.4) becomes:

$$
\left[\begin{array}{ccccc}
\mathrm{B}_{1}^{*} & & & & \tag{D.5}\\
& \mathrm{~B}_{2}^{*} & & \underline{0} & \\
& & & & \mathrm{~W}_{1}^{*} \\
& & \ddots & & \vdots \\
& & \mathrm{~B}_{\mathrm{M}-1}^{*} & & \\
& \underline{0} & & & \mathrm{~B}_{\mathrm{M}}^{*} \\
& & \mathrm{~W}_{\mathrm{M}-1}^{*} \\
\mathrm{Z}_{1} & \mathrm{Z}_{2} & \cdots \mathrm{Z}_{\mathrm{M}-1} & \mathrm{Z}_{\mathrm{M}} & \mathrm{Z}_{\mathrm{M}+1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\vdots \\
\mathrm{U}_{\mathrm{M}-1} \\
\mathrm{U}_{\mathrm{M}} \\
\mathrm{P}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{H}_{1}^{*} \\
\mathrm{H}_{2}^{*} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1}^{*} \\
\mathrm{H}_{\mathrm{M}}^{*} \\
\mathrm{Z}_{\mathrm{M}+2}
\end{array}\right]
$$

5. Set $Z_{M+1}^{*}=Z_{M+1}$

$$
\mathrm{z}_{\mathrm{M}+2}^{*}=\mathrm{Z}_{\mathrm{M}+2}
$$

6. Set $\quad \mathrm{SS}_{\mathrm{i}}=\frac{-Z_{i}}{B_{i}^{*}}$

$$
\left.\begin{array}{l}
Z_{M+1}^{*}=Z_{M+1}^{*}+W_{i}^{*} \cdot S S_{i} \\
Z_{M+2}^{*}=Z_{M+2}^{*}+H_{i}^{*} \cdot S S_{i}
\end{array}\right\} \quad(i=1,2, \ldots, M)
$$

Thus, matrix equation (D.5) becomes:

$$
\left[\begin{array}{cccc}
\mathrm{B}_{1}^{*} & & & \tag{D.6}\\
& \mathrm{~B}_{2}^{*} & & \underline{W_{1}^{*}} \\
& \ddots & & \mathrm{~W}_{2}^{*} \\
& & & \\
& & \mathrm{~B}_{\mathrm{M}-1}^{*} & \\
& & & \mathrm{~W}_{\mathrm{M}-1}^{*} \\
0 & & & \mathrm{~B}_{\mathrm{M}}^{*} \\
\mathrm{~W}_{\mathrm{M}}^{*} \\
& & & \\
\mathrm{Z}_{\mathrm{M}+1}^{*}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\vdots \\
\mathrm{U}_{\mathrm{M}-1} \\
\mathrm{U}_{\mathrm{M}} \\
\mathrm{P}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{H}_{1}^{*} \\
\mathrm{H}_{2}^{*} \\
\vdots \\
\mathrm{H}_{\mathrm{M}-1}^{*} \\
\mathrm{H}_{\mathrm{M}}^{*} \\
\mathrm{Z}_{\mathrm{M}+2}^{*}
\end{array}\right]
$$

7. Set $P=\frac{Z_{M+2}^{*}}{Z_{M+1}^{*}}$
8. Set $U_{i}=\frac{H_{i}^{*}-W_{i}^{*} \cdot P}{B_{i}^{*}}$

$$
(i=1,2, \ldots, M)
$$

Thus, matrix equation (D.3) is solved for $U_{i}(i=1,2, \ldots, M)$ and P.

D. 3 Gaussian Elimination to Solve Continuity and Momentum Equations

in Chap. 7
An algorithm has been developed to solve the following modified tridiagonal system of equations:
where $\quad \underline{\underline{W}}=\left[\begin{array}{cccc}W_{2,1} & W_{3,1} & W_{4,1} & W_{5,1} \\ W_{2,2} & W_{3,2} & W_{4,2} & W_{5,2} \\ W_{2,3} & W_{3,3} & W_{4,3} & W_{5,3} \\ W_{2,4} & W_{3,4} & W_{4,4} & W_{5,4}\end{array}\right]$

To solve matrix equation (D.7), the following steps are performed:

1. Set $\quad B_{1}^{\prime}=B_{1}$

$$
\begin{aligned}
& \phi_{1}^{\prime}=\phi_{1}=0 \\
& \psi_{1}^{\prime}=\psi_{1} \\
& E_{1}^{\prime}=E_{1}
\end{aligned}
$$

2. Set

$$
\left.\begin{array}{l}
S S_{i}=\frac{-A_{i}}{B_{i-1}^{\prime}} \\
B_{i}^{\prime}=B_{i}+C_{i-1} \cdot S S_{i} \\
\phi_{i}^{\prime}=\phi_{i}+\phi_{i-1} \cdot S S_{i} \\
\psi_{i}^{\prime}=\psi_{i}+\psi_{i-1} \cdot S S_{i} \\
E_{i}^{\prime}=E_{i}+E_{i-1} \cdot S S_{i}
\end{array}\right\}(i=2,3, \ldots, 14)
$$

Thus, the matrix equation (C.7) becomes:

5. Set $W_{i, j}^{*}=W_{i, j}$
6. Eliminate $Z_{k}(k=1,2, \ldots, 14)$ from matrix equation (D. 8).

$$
\left.\begin{array}{l}
\mathrm{SS}_{\mathrm{k}}=\frac{-\mathrm{Z}_{\mathrm{k}}}{\mathrm{~B}_{\mathrm{k}}^{*}} \\
\mathrm{~W}_{\mathrm{i}, \mathrm{i}}^{*}=\mathrm{W}_{\mathrm{i}, \mathrm{i}}^{*}+\phi_{\mathrm{k}}^{*} \cdot \mathrm{SS}_{\mathrm{i}} \\
\mathrm{~W}_{\mathrm{i}+1, \mathrm{i}}^{*}=\mathrm{W}_{\mathrm{i}+1, i}+\psi_{\mathrm{k}}^{*} \cdot \mathrm{SS}_{\mathrm{k}} \\
\mathrm{~W}_{6, \mathrm{i}}^{*}+\mathrm{W}_{6, \mathrm{i}}^{*}+\mathrm{E}_{\mathrm{k}}^{*} \cdot \mathrm{SS}_{\mathrm{i}}
\end{array}\right\} \begin{array}{r}
\begin{array}{l}
(\mathrm{k}=1,2, \ldots, 12) \\
i=1,2, \text { or } 3 \\
\\
\equiv \text { row in which } Z_{k} \text { is } \\
\text { located }
\end{array} \\
\end{array}
$$

$$
\begin{aligned}
& \mathrm{SS}_{\mathrm{k}}=\frac{-\mathrm{z}_{\mathrm{k}}}{\mathrm{~B}_{\mathrm{k}}^{*}} \\
& \mathrm{~W}_{4,4}^{*}=\mathrm{W}_{4,4}^{*}+\psi_{\mathrm{k}}^{*} \cdot \mathrm{SS}_{\mathrm{k}} \\
& \mathrm{~W}_{6,4}^{*}=\mathrm{W}_{6,4}^{*}+\mathrm{E}_{\mathrm{k}}^{*} \cdot \mathrm{SS}_{\mathrm{k}}
\end{aligned}
$$

Thus, matrix equation (C. 8) becomes:

7. Solve matrix equation (D. 10) to obtain $\mathrm{P}^{2}, \mathrm{P}^{3}, \mathrm{P}^{5}$ and $\mathrm{U}_{\text {avg, }} \mathrm{o}^{\circ}$

$$
\left[\begin{array}{l}
\mathrm{W}^{*} \tag{D.10}\\
= \\
\mathrm{P}^{5} \\
\mathrm{P}_{\text {avg }, \mathrm{o}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}^{2} \\
\mathrm{P}^{3} \\
\mathrm{~W}_{6,4}^{*}
\end{array}\right]
$$

8. Set $\quad U_{k}=\frac{E_{k}^{*}-\psi_{k}^{*} P^{2}}{B_{k}^{*}} \quad(k=1,2, \ldots, 5)$

$$
\begin{array}{ll}
=\frac{E_{k}^{*}-\phi_{k}^{*} P^{2}-\psi_{k}^{*} P^{3}}{B_{k}^{*}} & (k=6,7, \ldots, 9) \\
=\frac{E_{k}^{*}-\phi_{k}^{*} P^{3}}{B_{k}^{*}} & (k=10,11,12) \\
=\frac{E_{k}^{*}-\psi_{k}^{*} P^{5}}{B_{k}^{*}} & (k=13,14)
\end{array}
$$

Thus, matrix equation (D.7) is solved for $U_{k}(k=1,2, \ldots, 14), P^{2}$, $\mathrm{P}^{3}, \mathrm{P}^{5}$ and $\mathrm{U}_{\mathrm{avg}, \mathrm{o}^{\circ}}$

APPENDIX E
HEAT TRANSFER CALCULATIONS FOR A NEWTONIAN, CONSTANT VISCOSITY FLUID

The fully developed velocity and temperature profiles, the limiting bulk temperatures and local Nusselt numbers for a Newtonian, constant velocity fluid flowing between parallel plates or through a circular tube are calculated in this appendix. The analytical expressions given by Schlichting (58) for the velocity profiles and pressure distribution of a Newtonian fluid flowing between converging plates are also presented. The analytical and finite difference results are compared.

E. 1 Drag Flow Between Parallel Plates

Momentum Equation

$$
\begin{array}{ll}
\eta \frac{d^{2} u}{d y^{2}}=0 \\
y=0 & u=0 \tag{E.2}\\
y=b=0.25 \mathrm{~cm} & u=15 \mathrm{~cm} / \mathrm{s}
\end{array}
$$

The velocity profile for a Newtonian fluid is obtained by integrating Eq. (E.1) and using the accompanying boundary conditions (E.2).

Velocity profile:

$$
\begin{equation*}
u(y)=60 y \tag{E.3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{u}[=] & \mathrm{cm} / \mathrm{s} \\
\mathrm{y}[=] & \mathrm{cm}
\end{array}
$$

Energy Equation

$$
\begin{array}{ll}
k \frac{d^{2} T}{d y^{2}}+\eta\left(\frac{d u}{d y}\right)^{2}=0 & \\
y=0 & T=T_{W}=160^{\circ} \mathrm{C} \tag{E.5}\\
y=b=0.25 \mathrm{~cm} & T=T_{W}=160^{\circ} \mathrm{C}
\end{array}
$$

The fully developed temperature profile for a Newtonian fluid is obtained by integrating Eq. (E.4) and using the accompanying boundary conditions (E.5).

Fully developed temperature profile:

$$
\begin{equation*}
T(y)=-0.18 \frac{\eta}{k} y^{2}+0.045 \frac{\eta}{k} y+160 \tag{E.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}[=]{ }^{\circ} \mathrm{C} \\
& \mathrm{n}[=] \mathrm{Pa} \cdot \mathrm{~s} \\
& \mathrm{k}[=] \mathrm{W} / \mathrm{m} \cdot \mathrm{~K}) \\
& \mathrm{y}[=] \mathrm{cm}
\end{aligned}
$$

When $\eta=2000$ Pa.s and $k=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), T=T_{\max }=182.1^{\circ} \mathrm{C}$ at the centre-1ine of flow.

Bulk Temperature

$$
\mathrm{T}_{\mathrm{bulk}}=\frac{\int_{o}^{\mathrm{o}} \mathrm{~T}(\mathrm{y}) \mathrm{u}(\mathrm{y}) \mathrm{dy}}{\int_{0}^{\mathrm{b}} \mathrm{u}(\mathrm{y}) \mathrm{dy}}
$$

By substituting Eqs. (E.3) and (E.6) into the above equation, the following expression for the limiting bulk temperature of a Newtonian fluid is obtained:

Limiting bulk temperature:

$$
\begin{equation*}
\mathrm{T}_{\text {bulk }}=-0.09 \frac{\mathrm{n}}{\mathrm{k}} \mathrm{~b}^{2}+0.03 \frac{\mathrm{n}}{\mathrm{k}} \mathrm{~b}+160 \tag{E.8}
\end{equation*}
$$

When $\eta=2000$ Pa.s and $k=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), \mathrm{T}_{\text {bulk }}=174.71^{\circ} \mathrm{C}$

Local Nusse1t Number

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=\frac{\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }} \cdot \mathrm{b}}{\mathrm{~T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{E.9}
\end{equation*}
$$

By substituting Eqs. (E.6) and (E.8) into the above equation, the following expression is obtained for the local Nusselt number for a Newtonian fluid:

Limiting local Nusselt number:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=6.00 \tag{E.10}
\end{equation*}
$$

E. 2 Poiseuille Flow Between Parallel Plates

Momentum Equation

$$
\begin{align*}
& -\frac{d p}{d x}+\eta \frac{d^{2} u}{d y^{2}}=0 \tag{E.11}\\
& y=0 \tag{E.12}\\
& y= \pm a= \pm 0.125 \mathrm{~cm} \\
& y=1.5 u_{a v g}=22.5 \mathrm{~cm} / \mathrm{s} \\
& y=0
\end{align*}
$$

By integrating Eq. (E.11) and using the accompanying boundary conditions (E.12), the following velocity profile is obtained for a Newtonian fluid:

Velocity profile:

$$
\begin{equation*}
u(y)=1.5 u_{a v g}\left[1-\left(\frac{y}{a}\right)^{2}\right] \tag{E.13}
\end{equation*}
$$

$$
\begin{gathered}
\text { where } u, u_{a v g}[=] \mathrm{cm} / \mathrm{s} \\
y, a \quad[=] \mathrm{cm}
\end{gathered}
$$

Energy Equation

$$
\begin{align*}
& \mathrm{k} \frac{\mathrm{~d}^{2} \mathrm{~T}}{\mathrm{dy}}+n\left(\frac{d u}{d y}\right)^{2}=0 \tag{E.14}\\
& \mathrm{y}= \pm \mathrm{a}= \pm 0.125 \mathrm{~cm} \quad \mathrm{~T}=\mathrm{T}_{\mathrm{W}}=160^{\circ} \mathrm{C} \tag{E.15}
\end{align*}
$$

The fully developed temperature profile for a Newtonian fluid is obtained by integrating Eq. (E.14) and using the accompanying boundary conditions (E.15).

Fully developed temperature profile:

$$
\begin{equation*}
\mathrm{T}(\mathrm{y})=\mathrm{A}\left[1-\left(\frac{\mathrm{y}}{\mathrm{a}}\right)^{4}\right]+160 \tag{E.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{A}=7.5 \times 10^{-4} \mathrm{u}_{\mathrm{avg}}^{2} \frac{\eta}{\mathrm{k}} \\
& \mathrm{u}_{\mathrm{avg}} \quad[=] \mathrm{cm} / \mathrm{s} \\
& \eta \quad[=] \mathrm{Pa} . \mathrm{s} \\
& \mathrm{n} \quad[=] \mathrm{W} /(\mathrm{m} \cdot \mathrm{~K}) \\
& \mathrm{T} \quad[=]^{\circ} \mathrm{C}
\end{aligned}
$$

When $u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, \eta=700 \mathrm{~Pa} . \mathrm{s}$ and $\mathrm{k}=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), \mathrm{T}=\mathrm{T}_{\max }=206.3^{\circ} \mathrm{C}$ at the centre-1ine of the flow channel.

Bulk Temperature

$$
T_{\text {bulk }}=\frac{\int_{-a}^{a} T(y) u(y) d y}{\int_{-a}^{a} u(y) d y}
$$

By substituting Eqs. (E.13) and (E.16) into the above equation, the following expression for the 1imiting bulk temperature of a Newtonian fluid is obtained:

Limiting bulk termerature:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{bulk}}=\frac{32 \mathrm{~A}}{35}+160 \tag{E.18}
\end{equation*}
$$

When $u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, \eta=700 \mathrm{~Pa} . \mathrm{s}$ and $\mathrm{k}=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), \mathrm{T}_{\text {bulk }}=202.3^{\circ} \mathrm{C}$

Local Nusse1t Number

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=\frac{\left(\frac{\mathrm{dT}}{\mathrm{dy}}\right)_{\text {wall }} \cdot 2 \mathrm{a}}{\mathrm{~T}_{\mathrm{bu}} \mathrm{~b}^{-\mathrm{T}_{\mathrm{wall}}}} \tag{E.19}
\end{equation*}
$$

By substituting Eqs. (E.16) and (E.18) into the above equation, the following expression for the limiting local Nusselt number for a Newtonian fluid is obtained:

Limiting local Nusselt number:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=8.75 \tag{E.20}
\end{equation*}
$$

E. 3 Poiseuille Flow Through a Tube with Circular Cross-section

Momentum Equation

$$
\begin{array}{ll}
-\frac{d p}{d z}+\frac{n}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right) & =0 \\
r=0 & u=2 u_{a v g}=30 \mathrm{~cm} / \mathrm{s} \tag{E.22}\\
r=a=0.125 \mathrm{~cm} & u=0
\end{array}
$$

By integrating Eq. (E.21) and using the accompanying boundary conditions (E.22), the following belocity profile is obtained for a Newtonian fluid:

Velocity profile:

$$
\begin{equation*}
u(r)=2 u_{\operatorname{avg}}\left[1-\left(\frac{r}{a}\right)^{2}\right] \tag{E.23}
\end{equation*}
$$

where

$$
\begin{aligned}
& u, u_{a v g}[=] \mathrm{cm} / \mathrm{s} \\
& r, \text { a } \quad[=] \mathrm{cm}
\end{aligned}
$$

Energy Equation

$$
\begin{align*}
& \frac{k}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)+\eta\left(\frac{d u}{d r}\right)^{2}=0 \tag{E.24}\\
& r=a \quad T=T_{W}=160^{\circ} \mathrm{C} \tag{E.25}
\end{align*}
$$

The fully developed temperature profile for a Newtonian fluid is obtained by integrating Eq. (E.24) and using the accompanying boundary condition (E.25).

Fully developed temperature profile:

$$
\begin{equation*}
T(r)=A\left[1-\left(\frac{r}{a}\right)^{4}\right]+160 \tag{E.26}
\end{equation*}
$$

where

$$
\mathrm{A}=10^{-4} \mathrm{u}_{\mathrm{avg}}^{2} \frac{\eta}{\mathrm{k}}
$$

$$
\mathrm{T} \quad[=]^{\circ} \mathrm{C}
$$

$$
u_{\mathrm{avg}}[=] \mathrm{cm} / \mathrm{s}
$$

$$
\eta \quad[=] \mathrm{Pa} . \mathrm{s}
$$

$$
\mathrm{k} \quad[=] \mathrm{W} /(\mathrm{m} . \mathrm{K})
$$

When $u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, \eta=600$ Pa.s and $k=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), \mathrm{T}=\mathrm{T}_{\max }=212.9^{\circ} \mathrm{C}$ at the centre-1ine of the tube.

Bulk Temperature

$$
\mathrm{T}_{\text {bulk }}=\frac{\int_{0}^{\mathrm{a}} \mathrm{~T}(\mathrm{r}) \mathrm{u}(\mathrm{r}) \mathrm{rdr}}{\int_{0}^{\mathrm{a}} \mathrm{u}(\mathrm{r}) \mathrm{rdr}}
$$

By substituting Eqs. (E.23) and (E.26) into the above equation, the following expression for the limiting bulk temperature of a Newtonian
fluid is obtained:

Limiting bulk temperature:

$$
\begin{equation*}
\mathrm{T}_{\text {bulk }}=\frac{5 \mathrm{~A}}{6}+160 \tag{E.28}
\end{equation*}
$$

When $u_{a v g}=15 \mathrm{~cm} / \mathrm{s}, \eta=600 \mathrm{~Pa} . \mathrm{s}$ and $\mathrm{k}=0.255 \mathrm{~W} /(\mathrm{m} . \mathrm{K}), \mathrm{T}_{\text {bulk }}=204.1^{\circ} \mathrm{C}$.

Local Nusselt Number

$$
\begin{equation*}
\mathrm{Nu}_{z}=\frac{-\left(\frac{\mathrm{dT}}{\mathrm{dr}}\right)_{\text {wall }} \cdot 2 \mathrm{a}}{\mathrm{~T}_{\text {bulk }}-\mathrm{T}_{\text {wall }}} \tag{E.29}
\end{equation*}
$$

By substituting Eqs. (E.26) and (E.28) into the above equation, the following expression is obtained for the limiting local Nusselt number for a Newtonian fluid:

Limiting local Nusselt number:

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{z}}=9.60 \tag{E.30}
\end{equation*}
$$

E. 4 Drag Flow Between Converging P1ates

Fig. E-1. Drag flow between converging plates.

Schlichting (58) has obtained the following analytical expressions for the velocity profiles and the pressure distribution for drag flow of a Newtonian fluid between converging plates:

$$
\begin{equation*}
u(x, y)=u_{\max }\left[1-\frac{y}{b(x)}\right]-\frac{b(x)^{2} p^{I}(x)}{2 n} \cdot \frac{y}{b(x)}\left[1-\frac{y}{b(x)}\right] \tag{E.31}
\end{equation*}
$$

where

$$
\begin{align*}
& p^{I}(x)=\frac{d p(x)}{d x} \\
& p(x)=p_{0}+6 \eta \quad u_{\max } \frac{x(L-x)}{b(x)^{2}(2 a-L)} \tag{E.32}
\end{align*}
$$

The analytical and finite difference solutions for the pressure distribution in the flow channel are compared in Table E-1. The finite difference grid has been divided into 25 steps in the X-direction and 50 steps in the Y-direction at the entrance of the channel.

Table D-1. Pressure distribution for drag flow of a Newtonian fluid between converging plates. $p_{o}=0, \eta=200 \mathrm{~Pa} \cdot \mathrm{~s}$, $u_{\max }=15 \mathrm{~cm} / \mathrm{s}, \mathrm{L}=10 \mathrm{~cm}, \mathrm{a}=20 \mathrm{~cm}, \mathrm{~b}_{\mathrm{o}}=0.025 \mathrm{~cm}$.

	p, MPa	
x, cm	Analytical	Finite differences
0	0	0
2	18.96	18.31
4	36.00	34.66
6	47.02	45.11
8	42.67	40.75
10	0	0

In the above table, the analytical and finite difference results differ by less than 4%.

APPENDIX F
PROGRAM LISTINGS

F. 1 Drag Flow Between Parallel P1ates


```
    TNHP=T=1&TM, MX +(TEMPO-TEMPW1) +TENPW1
    NNNT1(0,Y Q1(I),U1(I)FUMAXX,THETA1OI),TEMP
    F=YMA (Z F,F16.3,F11.4,F12.4,F12.4,F11.1)
    SOWTINUE
    \2(1)=0.
    2(MI)=1.
    THETAZ(1)=OI)=(TEMPH2-TEMPW1)/(TEMPO-TEMPW1)
    L=0
    IN
    G0 TC M 4,
    Mx=0x*10.
    4x=iv/110
    IF(LAQ.EQ.NB+1) GO TO 5
    G0 IC 5
    x=0x+1.0.
    CO
    3=5
    CONTINUE
    IF(LE.EQ.40) GOTO 27
C C SOLVE SET OF ENEPGY EQS. (4.1g)
    JUDY (1) =(2.*U1(4)-N:*U1(3)+18&*U1(2)-11(*U1(1))/6./OY
    *)
```



```
8 CONTINUE
    DUCY(I)三(2,*U1(MI)+3.*U1(M)-6.*U1(*J)+U1(MK))/6./DY
    JU0Y(MT)=(11,+U1(MI)-13.+U1(M)+9.+U1(MJ)-20+U1(M-2))/6./OY
    ALPPH(IT)=2,MIOOY**2/DX*U1(I)
    T-MF=THETA1(I)*(T=MPC-TENDW(1)+TENPW1
    EIA(I)=282OJU0*EXP(-.024*P(1+(TEMP-TEMPM))*(ABS (OUCY (I)*UMAX
    1%=, )})==(\mp@subsup{0}{N}{\prime}-1.
    COHTIFUE
        ##TA=2.3001*10.**(-3)*UMAX**2/(TEMPC -TEMPW1)/K
        (2)=ALPHA
        (2)=(ALFHA(2)-2.)*THETA (2)
        (2)=THETA(3)*BETA*ETA(2)*OUDY (2)**2 +THETA(1) +THETAZ(1)
        G(2)=2:(2)+F(2)+G(2)
        C IT 11 I I=3,MJ
        (IT)=AL!HA(I)+2.
        (I) =-1.
        M(I)=THGTA(IT-1)
        G(I)=2*OY****BETA*ETA(I)*DUDY(I)**2
        H(I)=C(IT)+E(I)+F(I)+G(I)
        COHTISUE
        A (4)=-1.
        3(M)=ALPHA (M) +Z.
        (M)=(ALPHA(M)-2.) OTHETA(H)
        j(M)=2.* OY**2*BETA*ETA}(M)*DUOY (M) * +2 +THETA(MI) +THETAZ(MI)
        S(M)=0(M)
        T(2)=H(2)/S(2)
        Z(I-1)=0(I-1)/S(I-1)
        S(IT)=B(I)-A(I)%Q(I-1)
        (I)=(H(I)-A(I)*T(I-1))/S(I)
            COMTIAUE
            THETAZ(\overline{M})=T(M)
            L=HJ
            OO =12
            HETAL(L)}=T(L)-Q(L)+THETAZ(L+1
            13 CCHIINGE
C SOLVE SET OF MOMENTUM EQS.(4.14)
```



```
    1/RO))*=(PN-1.)*EXP(-0.24*PN*(TEMF-TEMPR))*(ABS (DUOY(I)*UMAX
```

```
    COUTIKUE
```



```
    \(A L P H A(I)=0.5+D Y * D E T A D Y(I) / E T A(I)\)
    DETAEY(M) \(=\left(2 . * E T A(M I)+3 . * E T A(i 1)-\sigma_{0} * E T A(M J)+E T A(M-2)\right) / 6 \cdot / 0 Y\)
    ALPHA (M) \(=0.5+D \bar{D} * J E T A D Y(M) / E T A(M)\)
    \(3(2)=-2\).
    C (2) =ALPHA(2) +1.
    \(H(2)=(A, P H A(2)-1) * U .1(1)\)
    0016 I=3, 0
    \(A(I)=-A L P H A(I)+1\).
```



```
    H( F\()=\mathrm{C}\) 。
    CORTIP:UE
    \(A(H)=-4 E P H A(: 1)+1\).
    \(3(N)=-2 \quad\) ( F (M)
    \(\begin{array}{c}-1(M)=-(L i \\ S\end{array}(2)=B(2)\) A \(\left.(M)+i \cdot\right)+U 1(M I)\)
    \(S(2)=B(2)\)
    \(12)=\mathrm{H}(2) / 5(2)\)
    Q \((I-1)=C\left(2^{14}-1\right) / S(I-1)\)
    \(T(I)=(4(I)-A(I)+T(I-1)) / S(I)\)
    T(I) COHIT !
        \(U 2(M)=T(M)\)
        L=MJ
    30, \(\mathrm{O}=2\), MJ
    \(U 2(L)=T(L)-Q(L)+U 2(L+1)\)
    CONTINUE
    CHECK UZ AND THETAZ FOR CONVERGENGE
```



```
    IF (AES (UZ(I)-U1(I)),GE:GCO1) GO TO 20 GO TO 20
    GOATINUE
    GOHTCNUE
    0021 I=1, HI
    THETEI (I) = HETAC(I)
    GONTITVE
    GO TC 7
        \(\bar{x}=x+E x\)
        IF (LL-NX,NE.0) GO TO 25
        -
        PRINT VELOCITY,TEMPERATURE ANJ VISCOSITY PRCFILES
```



```
        \(1 \neq T\) TVF \((Y) \neq, 3 X, \neq E T A\) (POISE) \(\neq 1)\)
```



```
            TEMP=THETAZ(I)* (TEMPG-TEMPW1) + TEMPW1
            PRINT \(113, Y, U 2(I), U 2(I) \neq U M A X, T H E T A Z(I), T E M P, ~ E T A(I)\)
```



```
            \(Y=Y+\mu X * O Y\)
CONTINUE
23 CONTINUE
C CALCULATE BULK TEHPERATURE ANJ LOCAL RIUSSELT NUMBERS
    \(A R E A:=A \approx E A 2=J\).
```



```
    14 CY/3 \(\left.{ }^{2} 2(I-2)+40 * U 2(I-1)+U 2(I)\right)+D Y / 3\).
        \(A R E A 1=A R E A 1+A \frac{1}{2}\)
\(A P B A C=A R E A 2+A 2\)
    AREAC=ARE
            CONTMUE
            JTHCY1 = (2.*THETAZ(4) -9.*THETA2(3) + 16.*THETA2(2)-11.*THETA2(1))
```


24

Y	U(Y)	$U(Y) * U M A X$	THETA (Y)	$T \equiv M P(Y)$	ETA (POLSE)
	[. coso - 0337 - 1836 - 1257 - 2244 - 2774 - 3323 - 387 - 4459 - 5035 - 5509 - 6176 - 6731 - 727 -77.9 - 8235 - F756 - 91才y 1. 0.514			433.0 436.5 439.7 442.5 445.0 447.1 448 .? $45 \mathrm{~J} \cdot \mathrm{j}$ $45 \mathrm{~J} \cdot 3$ 451.3 451.4 45 j. 3 443.3 447.5 44 . 2 44401 4410 $439 . \frac{1}{2}$ 433.0	
THETABULK	-. 3995	BULK TEHP $=445.0 \mathrm{~K}$			
LOCAL NUS	LT NO	$M=1=6$.	AT M=i I	5.62	
HO CF ITE	TIO:1S =				

F. 2 Poiseuille Flow Between Parallal Plates


```
    V=(PN+1.)/PH
    Y=0.
    U@(年)==2,**V*(V+10)/V*(ABS (Y-0 5))*+V+(V+10)/V
    TH二TII(I; =THETA(I)=1.
    Y}=\overline{Y}+C\overline{Y
    COHIINUE
    Y=1.
```



```
    TRMF=THE,A1,(U) (TENPORTEMPW1)+TEYPW1
    110 FORMAT(Z &,F16.3,F11,4,F12.4,F12.4,F11.1)
    Y=Y+MX*DY
    CONTINUE
    U2(1)=U2(MI)=0.
    THETAZ(MI)=(TEMP&2-TEMPW1)/(TE,TPJ-TE&PW1)
    LI=3
        L LA=1,N
    l
    OX=0x*10.
    gonTINUE
    IF(LA, EQ.NB+1) GO TO 5
    O
    * }x=0x*11
    AX=1;X/10
    CON
    CONTINUE
    LB=L立+1
    IF(LE.EQ.4J) GOTO 35
    SOLVE SET OF ENERGY EQS.(5.25)
    DUJY(1)=(2.*U1(4)-9.*U1(3) +1Z.*U1(2)-11.*U1(1))/6./0Y
    JUJY(2)=(-U1(4)+5.*U1(3)-3.*U1(2)-2.*U1(1))/5./0Y
    }URY
    SO.1TIT,UE (2.*U1(MI)+3.*U:(M)-5.*U:(MJ)+U1(MK))/5./0Y
    JUZY(MI )=(1\pm.*U1I(MZ)-16.*U1(M)+\dot{Y}+U1(HJ)-2.*U1(H.K))/6./OY
```



```
    IF (AES (DUQY(I) ULVG/RB).LT.1.) GJ IO G
```



```
    1/RZ))+=(P!i-10)
    ALPHA(I) =2.*OY**2/OX*U1(I)
    3ETA(I) =2.39U1*13***(-\varepsilon)*ETA(I)*UAVG**2/(TEMPJ-TEMPW1)/K
    *UVY(I)***
    GOHTC It
```



```
    A
    META(I)=2,39,1*13.**(-8)*ETA(I)*UAVG**2/(TEMPO-TEMPW1)/K
    40UDY(T)=&
    G(%)ItUG
    3(2)=LL\overline{PHA}(2)+2.
    三(z)=-\hat{A}L?HA(2)-2.)*THETA(2)
    F(2) =THETA (3)
    G(2)=2.*OY** Z*BETA (2) +THETA(1)
    H(2)=E(2)+F(2)+G(2)
    00 11 I=3,MJ
    A(I) =-1!
    (I)=-1
    O}(I)=THETA(I-1
    E(I)=(AG:PHA(F)}-2.)*THETA(I
    F
    G(I) =2.0 D Y* 2 2* EETA(I)
    H(I)=C(I)+E(I)+F(I)+G(I)
    CONT JHUUE
    A (M) =-1:
    S(M)=ALPHA(M)+
    E(M)=(ALPHA (M)-20)*THETA(M)
    G(M)=2.*JY**2+EETA(M) +THETA(MI) +THETAZ (MI)
    H(N)=U:(M)+E(H)+G(M)
    S (2) =B (2)
    T(<) =H(2)/S(2)
    OC 12 I= 3,N
    Q(I-1)=C(I-1)/S(I-1)
    S (I)=E(I)-A(I)*Q(I-1)
```

C
C
C
CONTI:UE

THET
$i=M$

 THE \({ }^{13} \mathrm{~A} 2 \mathrm{I}=2, \mathrm{MJ}\)
 THETARCL
 SOLVE SET OF CONTINUITY ANO MOMENTUM EQS. (5.19)
    ```

```

 TEMF=THETAZ(T) +(TEMPC-TEMPW1)+TEMPH1
    ```

```

 \(G 0\)
 conTIt ij
    ```

```

 \(3=T A=Y(\hat{2})=(-E T A(4)+6 . * T A(3)-3 . * E T A(2)-2 . * E T A(1)) / 6 . / 0 Y\)
 \(A L F H A(2)=35^{-} J Y^{*} \cup T A J Y(2) / E T A(2)\)
 3ETA (2) = OY + + 2/OX*K/ETA (2) /CP
 IC (AESVOQYJ
    ```


```

 COKiTAUE
 DETAFY(I) \(=(2 . * E T A(T+1)+3 * * E T A(I)-6 . * E T A(I-1)+E T A(I-2)) / 6 . / D Y\)
 ALFHA IT=O.5:OY*JETAOY (IT/ETA
    ```

```

 1)
 ALFHA \((I+1)=0.5+D Y+0 E T A O Y(I+1) / E T A(I+1)\)
 I \(\bar{A}=I+2\)
 IF (AES (EUA,M(I+1) + UAVG/RB), GE・さ・) GO TO 19
 \(0=T A C Y(I)=0\).
 ALFHA (I) = 0.
 BTA (I) \(=0 Y+* 2 / O X * K / E T A(I) / C P\)
 18
 19
CONTIUUE
1/AY/E
(I) $=0.5^{*}$ כY*כETACY (I)/ETA (I)
BETA(I) $=0 Y * 2 / 0 X+K / E T A(I) / \bar{C} P$
JETAEY $(I+1)=(=$ ETA $(I+3)+6 . * E T A(I+2)-3 . * E T A(I+1)-2 . * E T A(I)) / 6 . / 0 Y$
ALPHA $(I+1)=5 \cdot 5 * 0 Y * 5 E T A D Y(I+1) / E T A(I+1)$
I $A=I+2$

```

```

 DETACY(I)=(-TA(I+2)+8.*ETA(I+1)-8.*ETA(I-1)+ETA(I-2))/12./DY
    ```


```

 ALPHA \((M)=0.50 Y\) YOETADY \((M)\) AETA \((M)\)
 \(3 E T A(M)=D Y+* 2\) フX \(-K / E T A(M) / C P\)
 \(3(2)=-2\).
 (2) \(=A\)
 \(N(2)=-J A(2)\)
 $H(2)=-T A(2)+P$
$0021 \quad 3, M J$
$A(I)=-A L P H A(I)+1$.
B (T) =-2.
(I) $=A$ IOHA $^{\circ}$ (I) +1 .
$C(I)=A 10 H A(I)+$
$N(I)=-3 E T A(I)$
$H(I)=-3 E T A(I)$
A (M)
COT
$A(M)=-2 L P H A(H)+1$.
$\begin{array}{ll}A(M) & =-2 L P H A(H)+1 \\ 3 & (\mu)=-2\end{array}$
(H) $=-\vec{G} T A(N)$
$H(M)=-2 E T A(M) * P$
$\begin{array}{ll}1(M)=-3 E T A(M) * P \\ 00,22 \\ 2 & M K, 2\end{array}$
$Z(T)=4$.
$(T+1)=2$ 。

```

```

 \(Z(\) H) \(=i\)
 $z(\mu)=j$
$\begin{array}{ll}7 \\ 2 \\ (M+2) & =3 \\ M\end{array}$

```


```

 \(3(T)=E(T)+C(=-1) * S S\)
 $W(T)=W(T)+W(T-1) * S$
$3(I)=E(T)+C(T-1) * S$
$W(T)=W(T)+W(I-1) * S$
$H(T)=W(=+H(I-1) * S$

```
COHIINLE
=0%J
OO 24 I=3
*(L)-C(L)寻(L+1)
N(L)=W(L)+W(L+N)*SS
CGHIT, 年
SS=25(I=2,品(I)
Z(:1I)=I (MI)+W(I)*SS
l
P1=Z(M+2)/Z
U2(I)=(H(I)-N(I)*P1)/B(I)
    26
CTHETA2 FOR CONV
```



```
PRINT il&,:A,X
DRItT 1:12
```



```
I\not=TEMF(Y)\not=,3X,\not=1m (POISE)\not=1)
Y=う.
    OORP=THET,MOT,HM
    PRIdT : %,Y,\U2(I) 2UZ(I)&UAVG,THETAZ(I),TEMP, ETA(I)
```



```
    Y=r+Nx*OY
GALCULATE BULK TEMPERATURE AND LOGAL NUSSELT NUMBEFS
AREA1=AKEAR=C.
    A = (TH#TAZ(I-2)*U2(I-2) +4.*THETAC(I-i)*U2(I-1) +THETAZ(I) * U2 (I))
    14 JY/3.
    A2=(U2)(I-2)+4.*UZ(I-1)+U2(I))*DY/3.
    AREA1=AREA 1+A1
    CONTINU
    THETAB=A FEM1/AFEm2
    JTHDY1=(2.*THETAZ(4)-9.*THETA2(3) + 18.*THETA2(2)-11.*THETL2(1))
    1/6./EY
    1/6
    NU1=こTHGY1/THETAZ
    NU2=-DTHOY2/(THETAB-THETA2(MI))
    PRIIT 114,P1,P1*)ERUUAVG*+2+PJ
114
35 PQINC 35 , , A
118
```



```
PRTitT 116,GU1,NU
1,F7.2/)
PRI行117,LB
```



```
    C0ilTIr:UE
    O=P1
    ]0 
    OC 34 I=1, MI
    U1(T)=U2(I)
    GCNTIT,UE
```



```
    STGF
```

```
FLOW GETWEEA PARLLLEL FLATES WITH SONVECTEVE TERM
POWER LAW FLUID - TEMPERATURE DEPENDEHT VISCOSITY
```

```
H= 1G0 TEAPU = 403.i K TEMFWI= 433.0 K TEMPW2= 433.0 K
```

H= 1G0 TEAPU = 403.i K TEMFWI= 433.0 K TEMPW2= 433.0 K
POWEF. LAW INOEX=.453 UAVG=15.0 CM/SEC K= . UJ Ј\sigma1 CNL/CM SEC K
POWEF. LAW INOEX=.453 UAVG=15.0 CM/SEC K= . UJ Ј\sigma1 CNL/CM SEC K
OENSITY =.794 G/CN3 CP=.60 CAL/GK L = 5.0 CM S=.25 CM
OENSITY =.794 G/CN3 CP=.60 CAL/GK L = 5.0 CM S=.25 CM
DX=.0001 x AT L=.00583
DX=.0001 x AT L=.00583
DX= . EO1E AFTER }X=.1
DX= . EO1E AFTER }X=.1
OX=.010C AFTER X= .3J
OX=.010C AFTER X= .3J
N= 0 X=0.0丁

Y	$U(Y)$	$U(Y)+U A V G$	THETA (Y)	TEMP(Y)
0.000	C.0030	0.3000	1.0030	403.5
. 050	- 3762	5.5425	$\therefore 3000$	403.5
- 100	- 5735	15.J580	1.000	403.0
-150	- 2939	13.4090	1.0340	$4 \mathrm{J3.3}$
- 200	1. 5569	15.5539	1.0JuJ	403.3
- 250	1.1599	17.5465	1.3030	403.
- 200	1. 2424	15.6353	1. 3000	403.0
-35]	1. 2942	19.2627	1.00cy	4030
-403	1. 3.143	19.5638	1.0300	403.6
-45]	1.3110	19.5543	1. 0000	403.5
- 500	1. 3118	19.6765	$1 \cdot 6000$	403.5
- 550	1. 2114	19.6643	1.jugu	4030
- 500	1.3343	19.5638	1. 1303	403.0
-650	1. 2342	19.2627	1. 0000	403.0
- 700	1. 2424	18.6353	1.0300	40303
-750	1. 1678	17.5465	1.0000	4030
-60	1. 1569	15.3539	1.0050	403.0
- 850	-8939	13.4090	1.3000	40300
- 906	-6735	10.0583	1.3030	
- 250	- 3752	5.6425	1.0Ju	453.9
1.600	- 6030	- 3000	1.0030	453.0

```


PRESSURE = -10J81091. = -160J955112. CYAE/CM2
THETABULK \(=-.3468\) BULK TEMP \(=443.4 \mathrm{~K}\) LOCAL NUSSELT NO AT \(M=1=29.09\) AT M=MI \(=29.09\) NO OF ITERATIONS \(=2\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(y\) & \(U(Y)\) & \(U(Y) *\) UAVG & THETA(Y) & TEMP(Y) & ETA (FOISE) \\
\hline  &  &  &  &  &  \\
\hline PRESSUEE & \multicolumn{5}{|l|}{-19369571. \(=-3406776370\). JYNE/CM2} \\
\hline THETARULK & -. 8855 & \multicolumn{4}{|l|}{EULK TEMP \(=459.5 \mathrm{~K}\)} \\
\hline LOCAL R:USS & LT NJ A & \(=1=12.7\) & AT \(H=M I\) & 12. 71 & \\
\hline ifo OF ITEF & ICNS & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(Y\) & U(Y) & \(U(Y) * U A V G\) & THETA(Y) & TEMP(Y) & ETA (POTSE) \\
\hline  &  & \[
\begin{array}{r}
0.3000 \\
3: 9031 \\
8: 1283 \\
12: 1079 \\
15: 4135 \\
17: 8593 \\
19: 4751 \\
20: 4142 \\
20: 3639 \\
21: 137 \\
21: 93197 \\
20: 8539 \\
26: 4142 \\
1974761 \\
17: 3593 \\
15: 4135 \\
12: 1379 \\
8: 1203 \\
3: 30 \\
5030
\end{array}
\] & \[
\begin{array}{r}
0.0004 \\
-: 5262 \\
-: 5991 \\
-1: 1345 \\
-1: 2637 \\
=-3221 \\
-1: 3452 \\
-1: 3396 \\
-1: 3335 \\
-1: 3293 \\
-: 3264 \\
-: 3263 \\
-1: 3335 \\
=1: 3396 \\
-1: 3402 \\
=1: 3221 \\
-1: 2637 \\
-1: 1345 \\
-: 5991 \\
-5262 \\
0.0300
\end{array}
\] & 433. 440 . 46 J .3 467.0 47.9 \(472 \cdot 7\) 473.2 473.0 472.8 \(472 \cdot 8\) 472 . 3 473. 473. 473.2 \(475 \cdot 9\) 467. \(46 \mathrm{j} \cdot\) 44
43
3 &  \\
\hline PRESSURE \(=\) & -360 & - = & 1797369. & /C.2 & \\
\hline \multicolumn{6}{|l|}{THETABULK \(=-1.2521\) SULK TEMP \(=47.9 \mathrm{~K}\)} \\
\hline \multicolumn{6}{|l|}{\multirow[b]{2}{*}{NO CF ITERATICNS \(=2\)}} \\
\hline & & & & & \\
\hline
\end{tabular}
F. 3 Poiseuille Flow Through a Tube with Circular Cross-section


    \(T H=T A(I)=T H E T A 1(I)=1\) 。

    COHTINUE


110 FORNAT ( \(\neq \neq F 16.3, F 11,4, F 12.4, F 12.4, F 11\).1)
2 GONTINUE
    GONTINUE
    \(\begin{array}{ll}U 2(\mu I)=G \\ T H E T A & (M I)=0 .\end{array}\)

    50 ic
\(3 \mathrm{Z}=0 \mathrm{Z}\)
S
10

    COHTI: UE \(2(12+1)\) GO TO 5
    GO iC 5
    in \(x=4 x / 10\).

    \(18=3\)
    CONTMNE
LB=LE +1
    L \(\mathrm{B}=\mathrm{F}\left(\mathrm{L} \mathrm{E}+\frac{1}{\mathrm{E}} 0.40\right)\) GOTO 33
\(C\)
\(C\)
\(C\)
    OUDF \(\left.\left(\frac{1}{2}\right)=0 \cdot 0 \cdot U_{1}(4)+5 . * U 1(3)-3 . * U 1(2)-2 . * U 1(1)\right) / 5 \cdot / D R\)
    30 I = \(3, \mathrm{MJ}\)
    วUQR \((I)=\left(-U_{1}(I+2)+\varepsilon_{0} * U_{1}(I+1)-0 . * U_{1}(I-1)+U 1(I-2)\right) / 12 \cdot / D R\)

    JUOR \((M I)=\left(110+U 1(M I)-10_{0}+U 1(M)+9 .+U 1(M J)-2 .+U 1(M K)\right) / 6 \cdot 10=\)
    \(A_{L P H A}(1)=2 .+U 1(1)+E P+* 2 / D Z\)
    2 = J
    00
    \(A L F H A(I)=\{+4 U 1(I) * U R * * 2 / C Z\)
\(B E T A(I)=O R\)
    \(T=M F=T H E T A 1(I)+(T E r P,-T E M P h)+T E M D W\)
    I二MPETHETA1 (I) + (TENPG-TEMPh) + TEMPW


    GO TO 10
    SOATTAUE \(2000 *\) *XP ( \(-0.024 * P\) N* (TEMFKTEMPR))

    cJNTITUE
    C
Sility
(1)
A
    \(C(1)=-\overline{2}\).
    \(\hat{F}(1)=(4 \dot{P} H A(1) / 2 \cdot-2) * T H E T A.(1)\)
    \(F(1)=2 \cdot\) THETA
    \(H(1)=E(1)+F(1\)
    D -11
    \(A(\dagger)=A L P H A(I)+\dot{C}\)
    \(C(I)=-\) SETA \((I)-1\).
\(D(I)=(-E T A(I)+1 .+\) THETA \((I-1)\)
\(E(I)=(A L P H A(I)-2)+\) THETA 1\()^{\prime}\)
\(F(I)=(B E T A(I)+1 . j * T H E T A(I+1)\)
    \(G(I)=(S E T A(I)+1 \cdot j * T H E T\)
\(G(T)=2 \cdot O R \pm 2 *\) GAMM A (I)
    \(G(I)=2 \cdot{ }^{*} R^{+*} 2 * G A M M A(I)\)
\(I(I)=0(I)+E(I)+F(I)+G(I)\)
    COHTIITUE
    \(A(H)=B E T A(M)-1\).
    \(B(N)=A L P H A(M)+20)+T H E T A(H J)\)
\(J(N)=(M E T A(M)+1 \cdot)+T H E T A(M)\)

    \(G(M)=20^{*}\)
\(H(M)=0(M)+E(M)+G(M)\)
    S(1) \(=\stackrel{1}{1}(1)\)
    \(T(1)=H(1) / S(1)\)
    \(0012 \quad I=2, M\)

    \(S(I)=B(I)-A(I)+2(T-1)\)
\(T(I)=(H(I)-A(I)+T(I-1)) / S(I)\)
    T(O) =(H(I)
CONTINUE
```

 THETAL2(H)=T(M)
 THETAZT=1, MS =T(L
 CONTInUE
 SOLVE SET OF CONTINUITY ANO MOMENTUM EQS.(5. 25)
 TOMP=TH=T, AL (I) + (TE|P)-TEMPW) +TEMPW
 IF(AES(OUCR(I)*UAV/FA).LT.1.)GGOTO 14
 1/PA))*(PYO-10)
 1/PA))=-(F!(-1.)
 GOTCH
 #TA(I)=282000.*EXP(-. 3244PiN*(TEMP-TEMPM))
 3ETM(i)=K/ETA(1)/CP*JD**2/כZ
 OO, IE T=2,MJ
    ```

```

 3ETA(I)=K/ETA(I)/GD*D?**2/DZ
 16
COMACNE
1/GR/2.0
ALPHA(I)=DR/2:/R*DETADZ(I)*D
JETACF}(I+1)=(-ETA(I+3)+5**ETA(I+2)-3.*ETA(I+1)-2.*ETA(I))/6./DF
ALPHA(IT1)=DZ/2./R+DETAON(I+1)+DK/ETふ(I+1)/2.
3=TA(I+1)=K/ETA (I+1)/C=-DR+\& 2/OZ
I A=I+2
00 1% I=IA,MJ
R=R+CR = AA,MJ
JETACF}(I)=(-ETA(I+2)+8.*ETA(I+1)-8.*ETA(I-1)+ETA(I-2))/12./0R

```

```

 BETA(I)=KノETA(I)/CF*OP** 2/OZ
 BONTINUE
 ROP+INUE
 R=Z+CF: M = 2.*ETA(HI) +3.*ETA(M) - 6.*ETA (MJ)
 ALPHA(M)=DF/2./F+DETADF(M)*DR/STA(H)/2.
 BETA (M)=K/ETA (M)/CD}+JP+42/O
 S(1)=-2.
 u(1)=2.
 W(士)=-3ETA(1)/2.**D
 OO 1G C T =2,MJ
 A (I)==胙LPRA(I) +1.
 3(I)=-2.
 O(T)=A-\dot{O}
 W(T)=-暚
 C(A)=-会TA(I)*P
 CONTINLE PHA (M)+1.
 A (M)=-20}3\mp@code{M (M)
 W(M)=-STA (M)*
 l(m)=-B
 R=ER
 x (T T)=4.
 S=R+CF
 < (I+1)=2.
 x (t,)=4.4R
 x(M)=404R
 x (M
 SS=-A(I)
 SS=A(I)/B(I-1)
 OHTI
 L=HJ,
 30 2% I=2, 2'1
 W(L)=W(L)+W(LL+L)*SS
 W(L)=H(L)+H(L+L)*SS
 COMTIINUE
    ```

```

 x(GI)=x(*(I)+W(I)*SS
 OCii+INUE
 P1=X(1+ +2)/X(MI)
 00 24 T=1 N(MI)
 U2(2)=(H(2)-H(I)*P1)/B(I)
 COITTITVUE
 CHECK UZ AND THETAZ FOR COMVERGEVCE
 IO 25
    ```

```

 GOMTITUE
 U1{
 THSTA1(I)=THETA2(I)
 GOTIC}
 C=HTINUE
 IF(LL-HX,NE.J) GO TO 31
 C
1 1 1

```

```

 ROM2gT=1,MI,HX
 TEMP=THETA2(I)*(TEMPO-TEMPW) +TEMPW
 PRINT 113,R,U2(I),U2(I)*UAVG,THETA2(I),TEMP, ETA(I)
 113 FORMAT(士 *,F16.3,F11.4,F12.4,F12.4,F11.1,F12.1)
 C GALCULATE BULK TEMPERATURE AND LOCAL NUSSELT NUMGEF.
AREA1=AREA2=0.
R= 0, = 3,MT,
A 1={THETAS(I-2)*1%2(I-2)*F+4**THETAZ(I-1)*U2(I-1)*(R+DR)
+ H=TA2(I)*12(I)*(F+2**DE) *-2/3.
AR=(U2(I-2)*r+40+U2(I-1)* (R+ER) +U2(I)*(R+2.*UR)) + [R/Z.
A=O+20+DP
AF=A1=ASEA1+A1
35
CONTIRUE
THETAB=AREA 1/AAREA?
OTHOス=(11.*THETAZ(HI)-18.*THETA2(H) +9.*THETAZ(HJ)-2.*THETAZ(MK))
1/5./LF
if U=-2.*OTHOF/THETAB
114 FCNMAF(T-2,
115 FUPMAT(ま F,10X,\not=1HETABULK=\&,FG.4,3X,\not=BULK TEMP=F,F7.1,\not=K\not=/)
115 FOFMAT(\not又\not=,1)X,FLOCAL NUSSELT HO AT R=1 =F,F7.21)
117 FOFMAT(ま, \#,1JX,\not=10 OF ITERATIONS =\&,I3)
C0:iTInU=
P=P1
U0 3
THETA(I)=THETA1(I)=THETAZ(I)
32 GOH:ItUE
33, PRINT 118,LA
344 STOF

```
```

FLOW IN A CIFCULAR TU?E WITH CO:NVECTIVE TERN
POWEF. LAW FLUIO - TEMPEFATURZ OEDEINDENT VISCOSITY
M= 50 TEMP: = 403.0 K TEMFW=433.0 K TENPN= 399.5 K
POWEF LAW IH:DEX=.453 UAVG=15.0 CM/SEC K=.00061 CAL/CM SEC K
OE|SI-Y=.7G4 G/CM3 CP=.50 CNL/G K L= 5.J CM A=.125 CM
DZ=.0004 Z AT L=.32732
OZ=.604C AFTER Z=.40
DZ= .E4CC AFTER Z= 1.2J
H=0\quadZ=i.こ.0

```


```

PRESSURE= -4774E63. = - 352886345. OYNE/CM2
THETABULK= .1413 BLLK TEMP= 428.8 K
LOCAL NUSSELT HO AT }\tilde{~}=1=-70.1
NO CF ITERATICNS = 2
N=1005 Z= .4000

| R | U (2) | U(F)*UAVG | THETA(₹) | TEMP(た) | ETA (POISE) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4. 309 | 1.7529 | 26.4431 | -. 7848 | 455.5 | 151571.6 |
| -100 | 1.7519 | 26.4253 | -.7987 | 457.1 | 682162 |
| - 206 | 1.7525 | $2 \epsilon .2859$ | -. 0394 | 458.2 | 287:2. |
| - 309 | 1. 7235 | 25.3532 | -9034 | 46 J .1 | 16797.0 |
| - 460 | 1. 5631 | 24.9414 | - 9301 | 452.4 | 11222.9 |
| - 590 | 1. 5437 | 23.1559 | -1.4528 | 464.6 | 8132.4 |
| - 630 | 1. 3552 | 20.3260 | -1.0709 | 465.7 | 6346.6 |
| - 80 | 1: 9355 | 16.2365 | 1.05u7 | 454.5 | 542103 |
| - GEj | - 3548 | 5.3221 | -. 5349 | 44300 | $5790 \cdot 0$ |
| 1. 600 | 0.0000 | 0.3000 | 0.0000 | 433.0 | 7507.5 |

PRESSUFE= -209331JE. = -3739696343. DYNE/CM2
THETABULK= -..7493 BULK TEMP= 451.5 K
LOCAL NUSSELT NO AT R=1 = 13.16
NO OF ITERATIONS = 2

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(N=1100\) & \(z=. \varepsilon\) & & & & \\
\hline R & U（2） & \(U(P)+U A V G\) & THETA（P） & TEMP（天） & ETA（POISE） \\
\hline 0.000 & 1．E635 & 27.0545 & －1．4738 & 477.2 & 121：44．5 \\
\hline －109 & 1．\＆ 521 & \(27.93-8\) & －1：4776 & \(477 \cdot 3\) & \[
-214 \div 270
\] \\
\hline － 293 & \[
\text { 1. } 6487
\] & 27.7309 & \[
-1.4384
\] & 477.7 & \[
19134.6
\] \\
\hline － 309 & 1． 8132 & 27.1227 & \[
\text { -1. } 5029
\] & \(475 \cdot 1\) & \[
11576.7
\] \\
\hline －400 & \[
1.7227
\] & \[
25.8433
\] & \[
-105126
\] & 473.4 & 8113.9 \\
\hline － 507 & \[
1 \cdot 5742
\] & 23.5125 & \[
-1.5055
\] & \[
\begin{aligned}
& 478.9 \\
& 476.2
\end{aligned}
\] & \[
5247: 2
\] \\
\hline － 509 & \[
\begin{aligned}
& 1.2453 \\
& 1:[455
\end{aligned}
\] & 2.23332 & －1．4331 & \[
\begin{aligned}
& 475 \cdot 2 \\
& 471: 7
\end{aligned}
\] & \[
\begin{aligned}
& 5236.4 \\
& 4334.4
\end{aligned}
\] \\
\hline － 805 & －6398 & 10．3456 & －1． 4158 & 463.5 & \[
\begin{aligned}
& 4334 \cdot 4 \\
& 5013 \cdot 3
\end{aligned}
\] \\
\hline －O6す & \[
\begin{array}{r}
3243 \\
-324 \\
\hline
\end{array}
\] & － 4.3551 & －：58 E3 & \(45{ }^{4}\) ， 5 & \[
5923 \cdot 8
\] \\
\hline 1.060 & ［．0うう」 & 0.3000 & U．Judu & 433.0 & \\
\hline PRESSUEE \(=\) & －39530 & ．\(=\) & 83311577 。 & E／CM2 & \\
\hline THETASULK＝ & －1．345 & SULK TEM & 473.4 K & & \\
\hline LOCAL NUSSE & ELT NJ A & \(F=1=9.7\) & & & \\
\hline NO CF ITERA & TIONS & & & & \\
\hline
\end{tabular}



\section*{F. 4 Drag Flow Between Converging Plates}

```

 APPENEIX F. 4 CRAG FLOW EETWEEN CONVERGING PLATES
 \(T U=130 \quad\) TWI \(=160 \quad \mathrm{C} \quad\) TH2 \(=150 \mathrm{C}\)
    ```

```

 \(K A=\forall-1=\) NUMBER OF GRIC POIHTS (FOT IHCLUDING END POINTS) ALCVG
 LX \(=\mathrm{N}+1=\) WUEER OF PRINARY GRID POINTS ALONG X-AXIS AT Y=0
 MX = TOTAL NUNEER CF DRINARY GRID POINTS
 \(4=\) KUMBEF OF GRID OIVISIDRS ALOIGG Y-AXIS AT \(X=0\)
    ```

```

 TEMPQ DIVISIOV ALOUG XOAXIS \(=\) FUIU IEMDERATURE AT CHANAEL INLET, K
    ```

```

 \(\mathrm{J}^{\prime}=V E L O C I T Y\) OF YOVING FLATE \(\mathrm{CM} / \mathrm{S}^{-}\),
 PN = POWER-LAW INDEX 2 OIMENSICNLESS
 K = THEFMAL CONDUCTIVITY OF FLUID, CAL/CM S K
 DEN = SEHSITY OF FLUID GQU/CH3 CAL/GK
    ```

```

 REAL A \((949), B(947), C(949), E(940), F(676), G(25), F A(949), P 3(949)\)
 REAL PR(2G), \((49), S(49)\), i (49), THETA1 (949), THETA2 (94G), THETAP(50)
 PAAL THETAQ(50), U1 (949), U2 (949), V (49), Z (949), ZZ (25, 26), ETA (50)
 र्टAL K, NU1
 READ \(-, K A, L X, M X, M, N, L Z, T E M P O, T E M P W 1, T E T P W 2, T E M F M, \cup O\), FN, K, DEN, CF
 \({ }^{1}\) SRL, NE, RSL
 FRIAT \(170,1 \neq 16 X, \neq T H E\) LUERICATION FROBLEM - POWER LAW FLUIO \(\neq 1)\)
 PRIMT \(101,10 X, \neq T\) EMPERATURE OEPENDENT VISCOSITY \(\neq 1\))
 ORINTTGU2 \(\neq 10 X\), \#FINITE SIFFERENCES SOLUTION \(1 / 1\))
 PRIT:T 103, IEMPG,TETPWI, TEMFWZ, TEMFM
 FCRMAT \(\neq \neq 10 X, \pm T E M P G= \pm, ~ F 6.1, \neq K \neq, 3 X, \pm T E M P W 1= \pm, F 6.1, \neq K \neq, 3 X\),
 \(1 \pm T E M F W 2= \pm, F \sigma_{0} 1, \pm K \neq 3 X, \neq\) TEMPM \(\left.= \pm, F 6.1, \neq K \neq 1\right)\)
    ```







```

 \(\zeta \times X_{L} / N\)
 \(3 Y=1.1 /\)
 \(302 I=1, L X\)
 \(\dagger 01[=1, k j\)
 \(\cup 1(j)=(K j+1-L) /(K J+1 。)\)
 THETA1 \((j)=0\).
 \(J=j+1\)
 1 COHTIKUE

```

```

108 FORMAT(\# *, 1こX,士ITERATION\#,Iこ//)
C C
<K=KA
KJ=KA IK=1 2LX SO 5 IK,
CO 5 IK=12LT, CALBET`,KJ, YY,OX,UJ, FB, PN,K,CP,TEMPI,TEMFW1,TENPW2,TEMOM

```

```

 A}=
 3(J)= 2;
 S(j)=BETA(I)+1.
 OB(j)= ALPLPHA(I)
 Z(j)=BETA}(I)-1
 JI= J+1
 IF(JI.EQ.KK) GOTO 4
 KKJ=KK=1 KI,KKJ
 \Delta (I J) = - BETA(I)+1.
 B(J)=-2*TA (I)+1.
 O(J)=EETA(I)+1.
 PA(J)=ALPHA(II)
 PB(j)=0.
 E(j)=0.0
 CONIINUE
 I=I+1
 A(J)=-BETA(I) +1.
 B(j)=-2.
 C(j)=0.
 PA(J)=ALPHA(I)
 PZ(J)=-ALPHA(I)
 E(j)=c.
 j=j+1
 < j=kJ-1
 KK=KK+K
 IF(KK.GT, KX) GO,TO 7
 IF (J:F2OKK) GO TO 5
 GCNTINUE
 OMiTIt:U
 CALL CALEET(J,KJ,OY,OX,UO, NE, PY, K, CP,TLLMPO,TEMFW1,TEMPW2,TEMPM
 1,U1,[VOY,THETA1, JETAOY',ETA,ALPHM,BETA)
 A(j)=0.0
 3(J)=-2.
 O&(J)=ALLPHA (1)
 PQ(j)=-ALFHA(1)
 E(J)=EETA(1)-1.
 gONTINUE
 OO, S,I=1,KA
 OA(T)=0
 MXB=NX-2+KA+2*LX-3
 YXA=NX-KA+_X-1
 KKI='X S +1
 JO I=KKI,MXA
 COMT=U足
 KKI=~XM+1
 00 10 I= KKI,MX
 1 0
A(I)=O
OONIINUE 1,4X
Z(J)=2.0
OONTII:UE=1,LX
OC 12 J=1,LX
Z2(テ,J)=0.
CONTY界UE*
I=LXI=L \overline{X}+1
30}1\frac{1}{3}J=1,L
ZZ(I,J)=-20*M
MZ(I'J)=-2.*M
1 3
30,14}J=2,4
IF(A(J)=2,GX, M, GO TO 14
SS=-A(j;/E(J-1)
S (J)=S(J)+C(J-1)*SS
PA (J)=PA(J)+FA(J-1)*SS

```
```

14
\#(J)=E(J)+E(J-1)*SS
L=H-1
OO 1\epsilon J=2,MX
IF(C(L), 尤.J.) GO TO 15
SS=-C(L)
PA(L)=PA(L)+PA (L+1)*SS
E(L)=E (L)+S(LS+LI+SS

```

```

16 COLGTIかUE
J=1
l
<J=KA
SS=-2(L)
ZZ(J,J)=ZZ(J,J)+DA(L)*SS
{Z
ZZ(LX2,J)=ZZ(LX2,J)+E(
j=j+1
l
1
KKIIIINURE
00 18 L=K KKI,MXA
SO 18 L=KKI,MX
ZZ(J,J)=ZZ(J,J)+PA(L)*SS
ZZ(LX2,UJ)=ZZ(LXX2,JJ+E(L)+SS
KKI=~XA+1
J=J+1
JO 1OGL=KKI,MX
Z
1
CONTIMUE

```

```

 F(L)=ZZZ(IT;J)
 COK+1ITVUE
 i=I+1
 i=I+1
 2 1
 CCHTIHUE,
 CALL SIMQ (F,G,LX,KS)
 K
 OO 22 1==1,KA
 U2(LL)=(EE(L)-PT)/B(L)
 CONTIRUE
 j=1
 KKI=KKK+1
    ```

```

 jo 23 L=KKI,4XA
 PT=G(J)*PA(L)+G(J+1)*PE(L)
 U2(L)=(E(L)-OT)/B(L)
 IF(L-KK.NE.O) GO TO 23
 J=j+1
 KJ=KJ-1
 KK=KK+KJ
 KKI=rXA+
 3024 L=KKI,t,X
 U2(L)=(E(L)-PT)/S(L)
 PF(11)=0容(LX)=0
 LXJ=LX-1
    ```

```

 COhTIIUUEX)
 C
PRIHT INITIAL VELOCITY ANO TEHFERATURE PROFILES

```


    Y=NOAQ=10
    111 }\begin{array}{l}{\j=KA}\\{}\\{jO\2E}\\{Y=Y+CY=1,KJ}
    TH=TAP(
    ENF=THETAP(I) +(TEMPO-TEMPW1)+TシトPW1
```



```
    GONTIYUE
    THETAP(KJ+1)=1.
    PRIHT 1:3,Y,G,G.,THETAP(KJ+1),TEMPC
    113 POINT 113,Y,G:G,G0,GHETAP(KJ+1),TEMPC
```



```
    THETAQ(KJ+1)=(TEMDW2-TEMPW1)/{TEMPJ-TEMPW1)
    00,43 LLL=2,LX
    &Zj=Lz-1
    L3=0
    00 32 L=1,LZJ
    LB=LE
    J
    KJJ=KJ-1
    V(I)
    THHTAQ(I)=THETA1(J)+L+(THETA1(J+KJ)-THETA1 (J))/LZ
    J=J+1
    J=J+1
    THETAQ(KJ)=THEU2(J)/LZ
    THETAG(KJ)=THETA1(J)-L+THETA1(J)/LZ
    JVCY(1)=(V(2)-1.)/2./DY
    OO28}T=2,KJJ
    OVCY(I)=(V(I+1)-V(I-1))/ Z./OY
    SCNTINLE
```



```
        TENP=THETAD(I)*(TEMOM-TEMOW1)+TEMPW1
        IE(AOS(DVCY(I)*UNGO
        1/RE)(I)* (PN-1.)
        GO TC 3J
        三TA(T)=282360.*EXP(-.0 24*PN* (TEMP-TEMPR))
        CONTINUE
        GAMMA(IJ=2:*OV**2*LZ/DX*V(I)
            COLSN
            AK=10-(:-10)/LZ
        CALL GAUSS(K), OY,CA,DA,THETAO,A,B,C,E,F,PA,P\Xi,Z,Q,S,T
        1,THETAD,THETAQ,GNYNA,DELTTA)
        LTHETAP,THETAQ,GMNA,DEL
C
    CALCLLATE BULK TEMPERATURE ANO LOCAL NUSSELT NUMBER. (AT Y=O) AT
    AREA 1 = 0. % /2
    l
    \
    COHTINリE
    THETAB=ANEA1/AAEAZ(2)-9.*THETAQ(2) +18.*THETAQ(1))/5./0Y
C
200
201
    PRIHT 200,L
    ORTHL
    2RINT 201
```



```
    Y=0.
202
    FORMAT (I 1,Y,F:O,UO,THETAO,TEMPU
    Y=Y+CY
    H=TAP(T)=TH=TA2(j)=1.
    2% 
        *)
```



```
    \(30{ }_{Y}{ }^{51} \quad I=1, K J\)
    \(Y=Y+C y\)
    T MP THETAZ(I) *(TEMPT-TEHPW1) +TEMPW
```



```
    51
```



```
        GOMINUE
        Y \(=1+C Y(L Z-L) / L Z\)
    FOEM 2N4, 2 , , 3., THETAO(KJ+1), TEMPW
    D2,
```



```
    2C5 FOPHATU
C SOLVE SET OF EIERGY EQS. (7.25) AT PRIMARY COLUMIVS
    \(K J=K J-1\)
```



```
    \(0 j=j+1\)
\(0 \cup J(2)=(-U 2(J+2)+3 . * U 2(J+1)-8 . * \cup 2(J-1)+1.) / 12.10 Y\)
```



```
    00
\(j=1+1\)
    \(j=J+1\)
juors
GOTINU
    COHTIN
    \(K J J=K\)
    KJJ=KJー1
    JVJY(KJJ) \(=(3 . * U 2(J+1)-5 \cdot * U 2(J-1)+U 2(J-2)) / 12 \cdot / 0 Y\)
    JVEY \(K\) K \(K=K J+1=(3 . * U 2(J+1)-6 . * U 2(J)+U 26 J-1)) / 6 . / D Y\)
    \(\left.K J T=K J+\frac{1}{2}\right)=(-18 . * 12(J+1)+9 * * U 2(J)-2 * * U 2(J-1)) / 6 . / D Y\)
```



```
    GOTC 35
CONTINUE
    =TA A =2820 03.*EXP(-. \(\left.324+P N^{*}(T E M F W 1-T E M P M)\right)\)
    \(\mathrm{j}=\mathrm{JA}\)
    TOMP \(38 T=T=1, K J\)
```



```
    \(1 / \mathrm{FiS})\) ) * \(4(\) Pit-1.)
36
37


```

 \(J=j+1\)
    ```


```

 \(1 / \overline{\mathrm{K}} 3))^{++(\mathrm{FN}-10)}\)
 COOTC 40
 COPTTH,UE
 ETA $(K J I)=282000 . * E X P(-.024 * P N *(T E M P W ~ Z-T E M P M)) ~$
COHTINUE
COHTI
OA $=:{ }^{\circ}$
$T H E T A$

```

```

$\begin{array}{ll}C \\ C & \text { OPIINT VELCEITY,TEMPEFATURE AND VISCOSITY PROFILES AT PFIMAFY } \\ C\end{array}$
$14 \mathrm{PPIVT} 114, L L, X L *(L L-1) /$,
114 FORNAT $(\neq \neq 13 \mathrm{X}, \neq \mathrm{COLUMN} \pm, I 3,3 \mathrm{X}, \pm \mathrm{X}= \pm, F 6,4 /$)
115 FORMAT $\left(\neq \neq, 14 X_{2} \neq Y \neq 0 X_{2} \neq U(Y) \neq, 5 X, \neq U(Y) * U J \neq, 5 X, \neq T H E T A(Y) \neq, 5 X\right.$,

```

```

 \(J=j A\)
 $00 Y_{4} 1, I=1, K J$
$Y=Y+{ }^{4} 1 Y^{2} I=1, K J$
THETAC(J) =THETAO(I)
Tシ~P=THETAL(J) (TEMPラ-TEMPW1) + TEMPW1
117

```
```

 41 yONtINUE
 \(Y=Y+C Y\)
    ```

```

CL GALCULATE BULK TEMPERATURE AND LOCAL NUSSELT NUMBERS AT PKIMARY
$\begin{aligned} & A R E A 1=9 \\ & A R E A \\ & C\end{aligned}=D Y / 2$.
$J=J A$

```

```

 - \(2=\cup 2(j) * 0 Y\)
 \(A R E A 1=A R E A 1+A \frac{1}{2}\)
 $A R E A Z=A P E A 2+A 2$
$J=j+1$
THNTAUE
JTHOY1 =A FEA 1/AREA 2

```

```

 * THEIAO (KJ-2)) \(/ 6.10 Y\)
 iUU \(=-0 T H O Y 2 /(T H E T A Z-T H E T A Q(K J T))\)
 PRIHT 119, THETAB, THETAB* (TEMD -TEHPW 1) +TEMPW 1
    ```

```

 120 FOFMATY
 \(1 \neq A T \quad Y=4= \pm, F\rangle \cdot 215\)
    ```

```

 PREFFA
 121 FORMAT (\(\ddagger \neq 10 X, \neq P R E S S U R E=\neq F 11.0,3 X, \neq F=F 13.0, \neq \operatorname{DYNE/CM} 2 \neq, 3 X, \neq \neq \neq\),
 1F7.0, \(\neq \mathrm{FSI} \neq / /\))
 43 CONTITUE
c
44
45
$45^{\text {. }}$
46
47
CHECK UZ ANO THETAZ FOR COHVERGEIICE

```



```

 GOTC \(4_{4} 7\)
 CONTINUE
 うo \(4 E T=1, ~ M X\)
 U1 (T) = U2 (2)
 THETA1 (I)
COHETHZ (I)
COMITVE
COMHİLLE
STOP

```

    THTS SUQFOUTTNE CALCULATES ALPHA ANO BETA USED IH SOLVING THE
    SET. CF CONTIHITY Aid MOMEHTUM \(=2 S\) ( 7.19 )
    REAL U(1), DUDY(1), THETA (1), DETAOY(1), ETL (i), ALFHA(i), GETL (1), K
    J=J~
    KJI \(=\times J+1\)

    OUSY \(=(2 \cdot * \cup(j+2)-9 * \cup(J+1)+13 * \cup(J)-11 \cdot) / 6.1\) or

    \(j=j+1\)
\(D U C Y(2)=(-U(J+2)+8 . * U(J+1)-6 .+U(j-1)+1) / .12 . / 0 Y\)
    \(j=j+12=3, k j k\)

    \(j=j+1\)
    CONTTHUE
    CUCY(KJJ) \(=\left(8_{0} * U(J+1)-8 . * U(J-1)+U(J-2)\right) / 12 . / 0 Y\)
    \(J=j+1\) (kJ) \(=(3 . * U(J)-5 . * U(J-1)+U(J-2)) / 6.1 כ Y\)

    IF AES (UUVY

    GOTTO 3
    ETAOO2E2E \(60 .{ }^{2} E X P\left(-.024^{*}\right.\) PN* (TEMPW1-TEMPM))
    COMTMUE

    \(J=j+1\).


    150705
    CCNTIHUE
    COAISUEUCY(KJI)*UO/FB), LT, 1~) GO TO 6


    GCTC 7

    CON:
    I \(A=1\)
    COHTIFUE
    T=1

    COTACY IUUE
    COH:IH:
I \(A=I+1\)
    DO

    CONTHUE
    GOUTIT 15


    GOTC
    CCTACY(I +1\()=(3 . * E T A(I+1)-4 . * E T A(I)+E T A(I-1)) / 2 . / D Y / Z\).
    \(I A=I+2\)

    IF (AES (DUCY
14
        (1) \(=3\) 。
    GOTC INU
    COMTINUE (-ETA(I+2) + 4 * ETA(I+1) -30 *
    JETACY(I) \(=\left(-E T A(I+2)+40^{* E T A}(I+1)-3 . * E T A(I)\right) / 2\). \(10 \mathrm{Y} / 2\) 。
    COn il ituen kJ
    PO RPHA (I) = K/ETA (I) / CP*OY**2/DX
    ALPHA(I) \(=k / E T A(I) / C D * O Y * * 2 / D X\)
    CETA (I) =
    END

```

THE LUBFICATICN PNOELEN - FOWER LAN FLUIO
TEMPERATUFE OEPEMDENT VISCOJITY
FINITE CIFFERENOES SOLUTICH
TEMPO= 4CZ.C K TEMFW1= 433.J K TEMPW2= 433.0 K TEMPM= 309.5 K
UO=15.CG CM/SEC K=.0.U51 CAL/CM SECK CEHSITY=.794 G/CM3
POWEF LAW IT.DEX=.453 CP= .6 CAL/G K L= LC.C CM
M=50.
SOLUTION
ITERATIOR: 5
CCLUMA: 1 X=0. UAVG= .3457

```


\begin{tabular}{|c|c|c|c|c|c|}
\hline \(Y\) & \(U(Y)\) & \(U(Y) * \cup 0\) & THETA（Y） & TEMP（Y） & ETA PPO \\
\hline \begin{tabular}{l}
0.000 \\
－ 645 \\
－ 46 \\
-12
-140
-145 \\
\(-150\) \\
－ 200 \\
-240
-260 \\
 \\
－ 805
\end{tabular} &  &  &  &  &  \\
\hline \multicolumn{6}{|l|}{THETABULK \(=-.1232\) BULK TEMP \(=\$ 36.8 \mathrm{~K}\)} \\
\hline LOGAL HUSS & T N & \(=6\) & AT \(Y=H\) & －U3 & \\
\hline DRESSURE＝ & 243225 & \(=42\) & 325．OYtiE & \(=621\) & FSI \\
\hline
\end{tabular}


```


[^0]: ${ }^{4} Z$ is four times as large as X for a given $x=z$ due to their respective definitions:

 $$
 \begin{aligned}
 & \mathrm{Z}=\frac{\mathrm{kz}}{\rho \mathrm{C}_{\mathrm{p}} \mathrm{u}_{\mathrm{avg}} \mathrm{a}^{2}} \text { where } \mathrm{a}=\text { radius of tube } \\
 & \mathrm{X}=\frac{\mathrm{kx}}{\rho \mathrm{C}_{\mathrm{p}} \mathrm{u}_{\mathrm{avg}} \mathrm{~b}^{2}} \text { where } \mathrm{b}=\text { distance between plates }
 \end{aligned}
 $$

