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INTRODUCTION

1.1 Introduction

The past decade has witnessed a resurgence of interest in spatial analysis methods

by geographers that coincides with the recent interest of geographers in the analysis of

longitudinal data using event history models. Much of the recent attention given to

spatial analysis methodology may be attributed to the emergence of powerful and graphic

oriented Geographic Information Systems (GIS) technology to desk-top computing (see

Fotheringham, 1993; Fotheringham and Rogerson, 1993; Openshaw, 1991; 1992), whilst

the current popularity of event history modelling stems from the common finding

amongst analysts that it is a more informative and powerful approach to temporal data

analysis than traditional methods (see Davies and Pickles, 1985; 1991, Clark, 1992).

Interestingly, the models used to analyze event history data are flexible enough to allow

spatial data analysis in some cases. The focus of this thesis is the application of event

history models to the analysis of a spatial point pattern. The wider goal of this research

is to identify and analyze the issues significant to the application of event history models

to the analysis of spatial point patterns and processes.
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1.2 Spatial Point Pattern Analysis

The description and explanation of the spatial patterns of objects and events are

two of the traditional intentions of geographic research (Harvey, 1968). Real world

phenomena can be represented on a map by three basic geometric forms: points, lines

and areas. Objects or events are represented as points if the sizes of the objects are

negligible when compared to the distances between them and the size of the study area.

Data in the form of a set of points arise in numerous geographical and ecological

contexts. An example would be the positions of individual trees in a naturally

regenerated forest. In this thesis, any such data set is called a spatial point pattern and

the points of interest are referred to as events.

The reason for the interest in a pattern of events is that, with an appropriate

choice of scale, even large objects may be best represented by an event location. It is

hoped that by identifying the characteristics of a pattern, some insight into the origins of

that pattern will be revealed. Thus, the process acting on individuals, whether they are

trees, settlements, stars or other data that can be treated as events, is the main concern

of spatial point pattern analysis (Upton and Fingleton, 1985). The statistical analysis of

spatial point patterns allows the geographer to obtain a quantitative description of spatial

point pattern maps and, in tum, maps of different regions can be compared objectively.

In addition, evidence can be gained to help identify the causal mechanisms that underlie

the locations of events in space.

Spatial point pattern analysis is distinct from other forms of spatial analysis in that

size variations of events are ignored and the matter of interest is basically their existence
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on a surface, not the variation in their size (or other characteristics) over space (Upton

and Fingleton, 1985). Spatial point pattern analysis methods can summarize and describe

map patterns and provide evidence in support of hypotheses concerning the processes

which formed the spatial pattern. In contrast, quantitative data techniques such as spatial

autocorrelation methods, are applied whenever a variable exhibits a regular pattern over

space where its values at a set of locations depend on values of the same variable at other

locations (Odland, 1988). Thus, spatial point pattern analysis is useful in contexts where

the location, not the value, of an event is significant. Over the past decades a number

of methods for the analysis of spatial point patterns have been developed that are now

well established in geography as well as other disciplines.

1.3 Event History Analysis

With respect to temporal data analysis, there is an increasing interest in the

collection and analysis of longitudinal data or "event histories" (Blossfeld, Hamerle and

Mayer, 1989; Tuma and Hannan, 1984). Researchers have recognized that event

histories, which record the exact timing and sequencing of events, are often better suited

for examining the dynamic nature of social science phenomena than cross-sectional

methods. The three primary research areas in the social sciences are unemployment

studies, consumer behaviour studies and migration (Uncles, 1988). Examples of

phenomena that can be thought of as events include: the births and deaths of individuals

or manufacturing plants, the date of leaving school or the completion of a training

course, employment changes, promotions, marriage formations and dissolutions, illness,
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strikes, crime and many more possibilities. To study such events effectively requires the

adoption of an explicitly dynamic approach, and therefore the collection of longitudinal

data.

Event history models form a broad class of statistical models based on stochastic

processes with discrete states and a continuous time scale. In practical terms, event

history analysis involves statistical methods used to analyze time intervals or durations

between successive state transitions or events. A wide range of models exist, mainly

extensions of survival, reliability or lifetime analysis methods, in which processes exhibit

only one event (i.e., one initial and one destination state) as in many biomedical or

engineering studies (Cox and Oakes, 1984; Kalb1eisch and Prentice, 1980; Lawless,

1982; Tuma and Hannan, 1984). It is precisely these methods that will be considered

in this thesis to analyze spatial durations between events in space, as opposed to the

standard temporal durations.

The literature available in the social sciences on event history analysis has

mushroomed in the past decade. Wrigley (1986) has suggested that the "era of

longitudinal data" has arrived and many of the studies published in the social sciences

share the underlying theme that event history analysis is more informative and powerful

than traditional cross-sectional data analysis (Clark, 1992; Davies and Pickles, 1985;

1991; Heckman and Singer, 1986; Tuma and Hannan, 1984). Perhaps this implication

will challenge the predominance of cross-sectional data analysis in applied research.

More importantly, however, are several extensions to event history models found in the

recent literature. For example, Allison (1984) notes that censoring and time-varying
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explanatory variables are common to event history data and are the major impediments

to the application of standard statistical techniques, such as multiple regression, to event

history data. In fact, the existence of these two problems leads to severe parameter bias

and loss of information when analyzed using conventional procedures. However, key

innovations, such as the seminal work of Cox (1972; 1975) in regressive event history

approaches, has led to rapid progress in the development of theory and method for the

analysis of event history data. For example, the partial likelihood estimation method

introduced by Cox (1972), is fundamental to partially parametric forms of proportional

hazards models that accommodate explanatory variables and censored data. In this

thesis, the above developments in regressive approaches for censored observations are

exploited in the spatial domain.

1.4 Problem Statement and Research Rationale

Spatial point pattern analysis and event history analysis are similar with respect

to the use of frequency distributions of durations separating events. In the case of spatial

point patterns, those durations are often distances separating neighbouring events (e.g.,

settlements). In contrast, temporal durations between successive events are the focus of

investigation in event history analysis (e.g., length of unemployment). The basic logic

employed in the analysis of temporal durations in event history models has recently been

applied to the spatial durations between settlements using nearest neighbour to define the

duration (Odland and Ellis, 1992). Essentially, this duration based approach is analogous

to distance based methods that investigate spatial point patterns based upon the assumed
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interdependence between events (see Chapter Two). Examples of such methods include

conditions of complete spatial randomness (CSR) where event locations are homogeneous

and independent, meaning that every location has the same chance of receiving an event

and that the chances of a location receiving an event are independent of the locations of

other events (Getis and Boots, 1978). Other methods incorporate some form of

interdependence among the locations of events such as contagion or inhibition. These

models imply particular frequency distributions for the distances separating events (Le.,

the durations) and comparisons of observed frequencies of inter-event distances with the

frequencies implied by a model may yield evidence against the operation of a particular

process.

As was noted above, the similarity of the distance based methods of spatial point

pattern analysis and event history analysis with regards to duration measurements allows

for linkages to be made between the temporal and spatial methodologies. This thesis

considers the issues of properly defining a spatial duration, the inclusion of edge effects

with a censoring variable and modelling the spatial duration as the response variable

depending on a function of explanatory variables. In principle, the range of event history

models can be used to control for any type of duration dependence and are explored in

this thesis for the analysis of spatial durations. Odland and Ellis (1992) used a

proportional hazards model, one class of event history models, to investigate variation

in the spacing of settlements in Nebraska. Besides this investigation, the utility of event

history methods for spatial analysis has hitherto been neglected by geographers.

Consequently, issues regarding the proper definition of a duration, boundary effects and
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spatial censoring, and the incorporation of explanatory variables must be investigated

further. The methodology in question requires a context; this thesis uses a spatial point

pattern derived from the diffusion of an innovation in farming technology in southern

Ontario as the data set enabling an investigation of these issues.

1.5 Specific Research Objectives and Significance

The aim of this thesis is to provide additional insight into the utility of event

history modelling for the investigation of spatial point patterns. More specifically,

exploring the definition of a "duration" in the context of a spatial diffusion process and,

subsequently, using these durations as the focus of investigation in an event history

modelling framework is the main objective of this research. To achieve this goal, one

must consider the data set used in the analysis, the diffusion of an agricultural

innovation, as analogous to a typical event history data set where the exact timing of each

event (in this case, each adoption) is known. To model the spatial durations however,

the location in space of each event, as well as information on a series of explanatory

variables for each event (i.e., adopter farm) are used. The coupling of event history

methodology and spatial diffusion data provides an opportunity to relate explanatory

variables to durations between events and define a "meaningful" spatial duration based

on the knowledge from the literature in the substantive field of spatial diffusion of

agricultural innovations. The results of this investigation are used to make

recommendations for applications of event history models in recovering information

regarding the process underlying a spatial point pattern. In theoretical terms, the
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currents pulling this thesis are those identified at the onset of this chapter: to further

developments in spatial analysis techniques and take advantage of existing analytical

methods in the field of event history analysis.

1.6 Outline of Thesis

This chapter has introduced the fields of event history modelling and spatial point

pattern analysis; the objective of the study has been identified. Chapter Two will review

the techniques, issues and applications of traditional spatial point pattern analysis and,

in particular, distance based methods. The chapter extends to a discussion of spatial

diffusion of innovation literature with the intention of identifying explanatory variables

and an appropriate spatial duration to model. In Chapter Three, a review of the methods

of event history analysis relevant to this thesis is presented. Both Chapters Two and

Three serve to further justify the rationale and set the context of this thesis. The fourth

chapter will outline the data and methods of analysis in detail. The fifth and final

chapter will present and interpret the results of the analysis.
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ABSTRACT

This thesis attempts to further the research by Odland and Ellis (1992) in applying
event history models to the analysis of spatial point patterns (i.e., event patterns). Its
empirical focus is the event pattern derived from the adoption of an agricultural
innovation, the Harvestore, in southern Ontario, Canada from 1963 to 1986.

Event history analysis involves the use ofdiscrete-state, continuous-time stochastic
models to investigate a temporal longitudinal record on discrete variables (event history
data). Event history models are primarily concerned with durations of time between
events and the effects of intertemporal time dependencies on future event occurrences.

Many of the methods used in event history analysis do not preclude the use of
other non-negative interval measurements in place of standard temporal intervals to
investigate a series of events. In particular, spatial intervals (durations) of distances
between points (events) may also be accommodated by event history models.

This thesis is methodological in nature, and extends the previous research of
Odland and Ellis (1992) by using a wider range of parametric models to explore duration
dependence, investigating the role of spatial censoring, and using a more extensive set
of explanatory variables. In addition, simulation experiments and graphical tests are used
to evaluate the empirical event pattern against one generated from Complete Spatial
Randomness.

Results indicate that the event pattern formed by the Harvestore adopter farms is
clustered (i.e., is described by positive duration dependency). Also, the sales agent is
found to be a significant factor in the distribution of Harvestore adopters. In addition,
contrasting results obtained from the analysis using censored data versus uncensored data
(traditional nearest neighbours) underscores the importance of considering edge effects
when using nearest neighbour durations. It appears that an event history approach is a
valuable methodology that provides insight into spatial point patterns and processes.
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CHAPTER TWO

SPATIAL POINT PATTERN ANALYSIS

2.1 Introduction

The intention of this chapter is to review the relevant literature in the area of

spatial point pattern analysis. The chapter begins with a review of the most often used

spatial point pattern analysis methods and focuses primarily on "distance based" methods.

It is noted that several inherent problems exist when defining distance intervals or

durations between events, specifically with nearest neighbour durations. In addition, the

problems of boundary events and edge effects are introduced. The next area of

consideration centres on spatial diffusion processes from both a geographical and rural

sociological perspective. In this regard, the literature reviewed is selected based on its

relevance to the empirical investigation of this thesis; that is, diffusion of an agricultural

innovation. Here, the literature provides some guidance as to the nature of the spatial

durations and explanatory variables that may be examined with event history models.

This chapter, along with Chapter Three, set the stage for the conceptual linkages between

spatial point pattern analysis and event history modelling pursued empirically in chapters

four and five.

9
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2.2 Spatial Point Pattern Analysis

In Chapter One, it was noted that the analysis of spatial distributions and the

processes that produce and alter them is a central theme in geographic research.

However, researchers in other disciplines (e.g., ecology, biology, geology, forestry,

astronomy, and statistics) are also concerned with spatial patterns and processes. As a

result, spatial analysis literature is extremely diverse, .and unifying these existing

approaches has been the goal of a number of texts (Getis and Boots, 1978; Cliff and Ord,

1981; Ripley, 1981; Diggle, 1983; Upton and Fingleton, 1985; Boots and Getis, 1988).

In regards to the origins of statistical analysis of point patterns, early studies appeared

over 50 years ago in plant ecology literature (Boots and Getis, 1988). During the

"Quantitative Revolution" of the 1960s, geographers embraced many of the spatial

analysis techniques and have since extended them to facilitate their own research.

The dot or point map is one of the most common tools used by geographers to

display, in a simple and precise manner, the distribution of events in space (Taylor,

1977; Unwin, 1981). The map patterns are assumed as having been created by one or

several spatial processes, either human or physical. The analysis of the spatial pattern

may reveal underlying causal relationships of events in space. The basic research

principle here is that every pattern of events is the result of some process which operated

over a region over a time period and this process may be continuing. In this section,

static evidence of point patterns is considered, although the intuitive goal is to investigate

processes in space and through time.

A spatial pattern may be defined as "a zero dimension characteristic of a spatial
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arrangement which describes the spacing of a set of objects with respect to one another"

(Hudson and Fowler, 1966). A spatial process is the force or mechanism generating

changes in the spatial arrangement or dispersion of objects, events or groupsl. A

process implies some sequence of reformations which are the result of certain forces

(perhaps physical, social, economic or psychological), necessitating a consideration of

time, either explicitly or implicitly (Upton and Fingleton, 1985). Thus, the observed

spatial pattern is merely a "snapshot" of a spatial process, which mayor may not be

ongoing, and our goal in analyzing this pattern would be to identify the responsible

spatial process(es) which influenced this pattern so that we could predict future

"snapshots" or explain similar spatial patterns in other locations. Haining (1990)

identifies four important types of spatial processes influencing spatial pattern, namely,

diffusion, exchange, interaction and dispersal (or spread). Section 2.3 defines these

processes and concentrates on diffusion processes, with particular attention given to the

diffusion of an agricultural innovation.

Popular methods of spatial point pattern analysis proceed by comparing an actual

pattern to a theoretical pattern generated from certain assumptions. The most basic

hypothesis tested is that of complete spatial randomness (CSR), which arises from the

homogeneous planar Poisson point process. This hypothesis is defined by the following

two fundamental properties. First, the number of events in a finite, bounded planar

region with area, A, follows a Poisson distribution with mean A(A). In mathematical

IMore specifically, dispersion refers to the pattern of points with respect to the study area, while
arrangement refers to the pattern of points with respect to each other (see Boots and Getis, 1988).
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terms, the Poisson distribution can be written as

A(A)ft e1(A)
P(n;A) -

n!
for n -0,1,2,3,..., (2.2.1)

where the parameter}.. is called the intensity of the process and is defined as the expected

number of events per unit area, while n is considered a random variable representing the

observed number of events in the region (Figure 2.2.1).

The second property which can be defined as "purely random" or "completely

random" (Stoyan et al., 1987) is dependent upon the conditions of uniformity and

independence. Uniformity implies that each location in the region has an equal

probability of receiving a event. This means that the study area can be regarded as

homogeneous and thus, being completely undifferentiated in space. In addition, this

property implies that the spatial point process is the same in all directions from every

location regardless of the orientation of A. Hagerstrand (1965) terms the abstract

geographical space of the homogeneous planar Poisson point process the "isotropic

plane." Finally, independence implies that the placement of one event does not influence

the placement of any other event, which means that there is no interaction between

events.

Obviously, patterns generated by a homogeneous planar Poisson point process will

hardly be observed in geographical reality due to the rigid assumptions it maintains.

However, the homogeneous planar Poisson point process can serve as a starting point for

models that approximate real world spatial point patterns more closely. Thus, in addition

to the random spatial point patterns, two other important general types of spatial point
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Figure 2.2.1: The Poisson model: (a) the PoisSon process, (b) the Poisson distribution.
(Source: Taylor, 1977)
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patterns are frequently distinguished. These patterns are termed regular or dispersed and

clustered (Figure 2.2.2). Regular patterns are thought to arise if the assumption of

independence is violated in such a way that the events interact by repelling each other.

This characteristic of repulsion may then indicate that some sort of competition or

inhibition takes place, although environmental heterogeneity cannot be ruled out.

Clustered patterns, on the other hand, can be explained by either environmental

heterogeneity, which implies that some locations are more likely to receive an event than

others, or that groups of events form because events attract each other. Consequently,

more information about the study area is needed to decide whether the violation of the

uniformity or the independence assumptions has led to the agglomeration of pointsl
.

The most frequently used techniques to compare the properties of empirical spatial

point patterns to theoretical models can broadly be subdivided into two classes: quadrat

analysis and distance based or nearest neighbour analysis. The first class describes the

geographic distribution of events according to their density whilst the second describes

the geographic distribution of a set of events according to their spacing. The later class

of methods is of interest in this thesis. Other methods of spatial point pattern analysis

include second-order analysis (Besag, 1978; Diggle, 1980; Getis, 1983; Ripley, 1976,

1977, 1979, 1981), spatial tessellations (Boots, 1981; Boots and Murdoch, 1983; Crain,

1972, 1978; Hinde and Miles, 1980) trend surface analysis (Agterberg, 1984; Chorley

and Haggett, 1965), and spectral analysis (Bartlett, 1963, 1964; Tobler, 1969), but are

IThis is the basic research problem in Odland and Ellis' (1992) application of an event history model
to the study of settlement patterns in Nebraska (see section 3.2.5).
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not directly relevant to this research and are not reviewed here.

2.2.1 Distance Based Methods of Spatial Point Pattern Analysis

Distance based analysis, better known as nearest neighbour analysis due to the

predominant use of this inter-event measurement, proceeds by comparing the

characteristics of the distribution of distances between events and their nearest neighbours

in the empirical spatial point pattern with those expected in a theoretical spatial point

pattern. This method can be extended to include neighbours of higher order (Le.,

second- third-, or higher-order neighbour distances). The general distance based

approach is analogous to the temporal duration approach used in event history modelling

and hence, is directly relevant to this thesis.

In practice, geographers have used the z test and the R statistic as descriptive tools

for measuring pattern on a two-dimensional surface. The z test proceeds by selecting a

number of events from the pattern at random. Of course, this means each event has an

equal chance of being selected and that the selection of any event in no way influences

the selection of other events. This sampling procedure requires the analyst to number

each event uniquely and randomly select sample events (Boots and Getis, 1988). The

mean nearest neighbour distance is then calculated by measuring the nearest neighbour

distance, di , for each of the sample events, i, and applying the formula:

_ n

d - L di I n
i-I

(2.2.2)
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where n is the number of sampled events. Further, the expected value of the mean

nearest neighbour distance, E(d) , for a random sample of events from a CSR pattern is

derived from the Clark and Evans (1954) formulation

E(d) - 0.5 J(A/N) (2.2.3)

Here, the total study area is A, while N represents the total number of events. The

observed and expected values may be compared using a normally distributed z statistic.

In this situation,

where

z _ [d - E(d)]

Jvar(;i)

var(d) - 0.0683 A/N'- .

(2.2.4)

(2.2.5)

The value of z from tables of the normal distribution is compared to the absolute value

of the calculated z as in standard hypothesis tests. The null hypothesis, Ro, is that the

pattern under investigation is CSR resulting from a homogeneous planar Poisson process.

The alternative or research hypothesis, HI> is that the pattern is not CSR. In general,

when d < E(d) and the Ho is rejected, the implication is that, on average, the individual

events are closer than they would be in a CSR pattern. Conversely, if the Ho is rejected

and d> E(d) , a regular pattern is indicated.

The R statistic is more common in geographical research and is basically the ratio

between the actual mean distance and the expected mean distance assuming a random

process. That is, the R statistic indexes the event pattern based on the distance between
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nearest neighbour events on a surface and may be expressed as

(2.2.6)

where all the variables are defined as before. The R statistic tells us how more or less

spaced the observed distribution is than a random one on a scale with values ranging

from 0 to 2.149 (Figure 2.2.3).

If events cluster on a surface, one on top of another in the same location, so that

all durations (or distances between events) are 0, the R statistic is O. An R statistic value

of 0 thus describes a clustered spatial pattern. When R= 1, the expected and actual

average distances between events are equal resulting in a random pattern being indicated.

A completely uniform pattern, where events are located as far apart from each other as

is physically possible (i.e., a triangular lattice), results in an R=2.149 value. In

summary, R values of less than 1 indicate distributions tending toward a clustered pattern

and R values greater than 1 indicate patterns tending toward dispersion.

2.2.2 Limitations of Distance Based Methods

Both measures discussed above are often used in geographical work, but are

subject to a number of obvious limitations. In this section, some of the shortcomings

concerning distance based measures such as the nearest neighbour statistic are presented.

Generally speaking, investigations which consider only the first-order neighbours do not

take into account the direction of each event to its neighbour. In addition, by taking

account of only the nearest neighbour distance, information about the pattern is lost.

These problems have been the subject of considerable research and second-order analysis
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and directional statistics are now available in the spatial point pattern literature (see

Getis, 1983; Ripley, 1981; Stoyan, Kendall and Mecke, 1987).

Another shortcoming of distance based methods involves the loss of information

from the calculation of a single statistic from sets of individual distances measurements.

This problem is best illustrated by examining applications of the R statistic. Basically,

the R statistic scale has been criticized in regards to its inability to accurately describe

a spatial point pattern. Vincent (1976) and Dawson (1975) illustrate this drawback with

the use of special pairs of events, called dumbbells, which are reciprocal nearest

neighbour events (Le., they are each others nearest neighbour), whose duration is always

smaller than the nearest neighbour distance between any other event in the study region.

Figure 2.2.4 illustrates that, by using dumbbells, any number of point patterns can be

produced whilst maintaining the same nearest neighbour R statistic. In a related issue,

the analysts also note the inaccurate use of the terms regular, random or clustered as

they correspond to measures of the R scale. In this case, the index describing a random

pattern, R= 1, may also be the index for patterns more similar in form to patterns

labelled as clustered or regular.

A more important concern to analysts of event patterns who are constantly

working with data in some geographic boundary, is that of edge effects. This problem

arises in applications of spatial point pattern analysis where the mapped spatial pattern

is merely a "window" or study area laid over a real world pattern that extends beyond

the mapped area (Figure 2.2.5). In this case, events close to the map border are forced

to find neighbours within the mapped area, whereas in the real world the true nearest
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neighbour events may well lie outside the map borders (Unwin, 1981). The main

problem here involves the measuring of nearest neighbour durations for events closer to

the boundary than to any other event (referred to as boundary events). An underlying

assumption of Clark and Evan's (1954) derivation of equations (2.2.3) and (2.2.5) is that

the values in these equations relate to the nearest neighbour properties of an irifinite or

unbounded CSR pattern. In some situations, applying these equations in the context of

a bounded area of a real world pattern can lead to spurious results (Boots and Getis,

1988). For example, nearest neighbour measurements on the boundary events defined

above will overestimate the mean nearest neighbour distance.

The problem of edge effects is severe if the number of events under study is

small, since the relative number of boundary events tends to increase with decreasing

sample size. Solutions to this problem include omission of these events or inclusion of

events across the boundary that lie in a predetermined "buffer zone" around the study

area. However, to omit boundary events from consideration may decrease an already

small sample size, and measuring distances across a boundary may be meaningless (e.g.,

a pattern of cities on a sea coast) or impossible (e.g., no event data exists outside the

study area). A third strategy to compensate for edge effects is known as toroidal

mapping. If the study area consists of a regular boundary (e.g, a rectangle or square),

it may be converted to a torus by joining together the opposite edges of the study area

to form a "doughnut" type of diagram (Dacey, 1975; Griffith and Amrhein, 1983). In

practice, the study area is then surrounded by identical spatial point patterns and we can

assume that the same processes responsible for the location of the events in the original
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study area are operating beyond its boundaries (Figure 2.2.6). An irregular study area

cannot be handled by the toroidal approach because the boundary edges could not be

joined properly without altering the study area.

The fundamental problem in spatial point pattern analysis of boundary or edge

effects cannot be ignored in this thesis, just as it must not be ignored in other

applications. It was noted that the various parameters· estimated in the techniques

reviewed in section 2.2 assume that we deal with an infinite plane. In practice, we

always deal with a bounded plane. The result is that the processes and patterns defined

in theory include no consideration of boundaries. If we are to avoid the bias toward

longer nearest neighbour durations for example, that imply a dispersed pattern and are

generated by a boundary, then edge effects must be considered. In response to this

problem, information on durations to boundaries for all boundary events is incorporated

in this thesis as spatial censoring, and the value of event history models is that they

allow this censored duration information to be included in the spatial point pattern

analysis.

The spatial censoring approach departs from the three methods mentioned above

for handling edge effects by incorporating the available knowledge on boundary events.

For instance, the analyst does have certain knowledge that, for a given boundary event,

no other event exists in the spatial pattern up to at least the shortest distance from that

event to the boundary. The other methods artificially continue boundary event durations,

or require information on out of boundary event locations which may not be available.

Of course, the spatial censoring method, by definition, would tend to underestimate the
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true inter-event duration. Hence, both a set of durations that include censored durations

for boundary events (accounting for some edge effects) and an uncensored set of

durations (where boundary event durations are measured to the nearest neighbour inside

the study area) are compared as part of the analysis in this thesis.

Despite the limitations, distance based methods, such as nearest neighbour

techniques, have an intuitive appeal as measures of dispersion characteristics of spatial

point patterns and, in general, the statistical theory that underlies them is sound.

However, in any spatial point pattern there are

x - n(n-l)/2 (2.2.7)

inter-event distances (or durations) to examine, where X is the number of possible

durations and n represents the number of events under examination. The nearest

neighbour distances are only one subset of these intervals. This is a general

methodological concern for distance based methods, including an event history approach

to the study of spatial point patterns. That is, event history methodology, in spatial

terms, takes the spatial duration as the basic unit of measurement and hence, the question

of defining a duration is a key research issue. In addition, the literature clearly

demonstrates the sensitivity of pattern inferences to duration measurements, notably

nearest neighbours, and this leads us to consideration of the diffusion of innovation

spatial point pattern under investigation to determine which duration to model.

To some extent, the aSPects of a spatial diffusion process will guide the process

of defining which of the many types of spatial duration should be modelled in order to

provide the most meaningful duration. The context of the spatial point pattern is
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important here because in the temporal domain, events have a natural order, whilst in

space they do not and so it is necessary to impose an ordering on the events to measure

a meaningful duration. The spatial diffusion data analyzed in this thesis does, in fact,

contain information on the exact timing, as well as location, of each event. Thus, we

do have the potential to measure spatial durations using time to order the events (i.e., a

nearest-neighbour-in-time duration). However, whether a temporal ordering or some

form of spatial ordering is more appropriate to discerning the spatial diffusion process

is a legitimate question and is addressed in section 2.3 when the literature on spatial

diffusion of innovations is reviewed.

At this point, we should recall that spatial point patterns are only abstractions of

reality because, in truth, time never stops and the process(es) generating the spatial point

pattern may be ongoing. Whatever the phenomena being studied, processes producing

an empirical spatial point pattern are many, and the resulting pattern is much more

complicated than the simple limiting case at either end of the R scale. This is evident

in empirical studies of settlement patterns in the United States by King (1962) where all

three general types of point patterns were found despite the fact that many settlements

were service centres and should, theoretically, have shown regularity due to a

competitive process hypothesized in central place systems. Furthermore, it should be

kept in mind that the spatial point patterns investigated with the aforementioned methods

are simplified representations, on the Euclidean plane, of complex objects, where

distances are straight lines. Consequently, additional information such as topography,

environmental factors, or human decisions that influence the location of geographic
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objects are absent.

In essence, no room for causal factors affecting distances between events is

allotted. The analyst is left to interpret the process inferred by the particular distance

method used based on their substantive knowledge of the subject at hand, but no

statistical or regressive analysis is available to aid their analysis. The implication here

is that spatial point pattern analysis based on some distance method precludes the use of

explanatory variables that potentially provide valuable insights into the process(es) at

hand. A simple statistic such as the R scale and a classification of the empirical pattern

as clustered, regular or random are useful only to limited extent and basically

oversimplify the analysis. In this thesis, the event history methodology allows the

explicit evaluation of the effects of explanatory variables on duration length. Once again,

however, we must tum to the context of the study (spatial diffusion) to provide the

necessary explanatory variables, as well as the appropriate duration to model.

2.3 Spatial Diffusion of an Agricultural Innovation

In this section, we review literature concerning spatial diffusion of an agricultural

innovation from which the spatial point pattern under investigation in this thesis results.

The aim of this section is to reveal, from the spatial diffusion literature, clues for

defining spatial durations and explanatory variables to be used in the event history

modelling. Diffusion studies, like the spatial point pattern literature discussed above, are

also interdisciplinary, but we focus on the work of geographers and their emphasis upon

space as a factor affecting the diffusion of innovations.
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In an effort to describe and explain rather complex spatio-temporal patterns,

geographers have traditionally considered the spatial behaviour of aggregate populations

as in urban land use models (Batty, 1976). In fact, some researchers have regarded the

spatial behaviour of individuals as both unique and unpredictable (Morrill and Pitts,

1967). However, a wealth of literature in diffusion studies by geographers, sociologists,

economists, anthropologists and analysts in the biosciences (e.g., botany and

epidemiology) have demonstrated the possibility of focusing geographic research at the

level of the individual (see Brown, 1981; Rogers, 1983). Diffusion of agricultural

innovations may be viewed as examples of individual level behavioural studies.

In section 2.2 we defined a spatial process and identified four categories of spatial

processes influencing spatial pattern (Raining, 1990). We define these processes briefly

here, and then concentrate on the spatial diffusion of innovations. First, an exchange

process is one involving the mutual exchange and commodity transfer between regional,

local or national economies. Second, an interaction process occurs when events at one

location influence and are influenced by events at other locations. Third, mechanisms

where the population spreads or disperses and the nature of the spread mechanism

influencing spatial structure are termed dispersal processes. The final group of processes

involve diffusion defined as the spread or movement of an attribute or phenomenon over

space and through time in a fixed population. Diffusion is distinguished from dispersal

since the latter involves the population itself spreading whilst the former entails some

variable (e.g., adoption of an innovation) dispersing through a fixed population. For any

spatial pattern, the underlying process may be classified into one or more of the above
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categories.

In the context of innovation diffusion, a diffusion process may be defined as "the

process by which an innovation is communicated through certain channels over time

among the members of a social system" (Rogers, 1983). The four elements of a

diffusion process (innovation, communication, time and the social system) are

considered, in tum, below. An innovation, in general, is simply "an idea, practice, or

object perceived as new by an individual" (Rogers and Shoemaker, 1971). More

specifically, technological innovations are "new production inputs, machines, processes

and techniques adopted by firms or entrepreneurs for their own use" (Malecki, 1975).

Communication is a process in which participants create and share information

with one another in order to reach a mutual understanding and overcome the uncertainty

associated with an innovation. It is the newness of the idea that gives potential adopters

of the innovation some degree of uncertainty. The uncertainty encountered by an

individual can be reduced by obtaining information. According to Hagerstrand (1967a),

a basic premise in the conceptualization of the spatial diffusion of innovations is that

adoption is primarily the result of a learning process, where an individual adopts an

innovation as soon as helshe has accumulated sufficient information to overcome the

resistance to adopt. This premise implies that spatial diffusion theory should be

concerned with those factors which relate to the spatial pattern of information flow.

Thus, fundamental to modelling the spatial aspects of innovation-adoption is the manner

in which information movement, or communication, from one location to another has

been explained (Rogers, 1983).
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There are two information sources or communication channels identified as being

relevant to the learning- and innovation-adoption process of a diffusion of innovation.

The first source, mass media, is considered important as the initial introduction of an

innovation to an individual, but after this introduction creates awareness of the

innovation, this source becomes less significant in persuading adoption. The second

source, interpersonal contact with others who have either (l) previously adopted the

innovation or (2) have relevant information and are regarded as reliable sources, is

considered more significant in persuading final adoption. For this reason, a central issue

in any diffusion study, including this thesis, is the role of the spatial mechanisms of

interpersonal contact (Brown, 1981).

The final two elements of a diffusion of innovation process are the involvement

of time and the social system. Time is an important consideration in the diffusion

process since it does not exist independently of events, but it is an aspect of every

activity. In fact, most quantitative approaches to the study of innovation diffusion, with

the exception of geographic studies, are primarily concerned with timel
• Time relates

to the rate at which the innovation is diffused or the relative speed with which it is

adopted by members of the social system. In the present context, the social system

consists of individuals, organizations, or agencies that share a common "culture" and are

potential adopters of the innovation (e.g., farmers, business organizations, residents of

a neighbourhood) (Brown, 1981).

IA comprehensive review of models investigating the temporal diffusion process of an innovation is
found in Mahajan and Peterson (1985).
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2.3.1 Hagerstrand's Diffusion Model

In spite of the fact that the diffusion of any innovation occurs simultaneously in

space and time, research on these two dimensions of diffusion has seldom been integrated

(Mahajan and Peterson, 1985). It was noted above that the time dimension has been

investigated by researchers representing a wide variety of disciplines, but that spatial

diffusion has, for the most part, only been investigated by geographers (Brown, 1981).

Hagerstrand's pioneering work in the early 1950s on spatial diffusion of innovations in

agriculture provided the initial stimulus for the development of a strong theoretical

tradition based on Monte Carlo simulation models (Hagerstrand, 1952, 1965a, 1965b,

1967a, 1967b).

This spatial diffusion work was clearly an attempt to capture, in a diffusion

model, the spatial structure of the innovation-adoption process and characteristics of

individual behaviour in space. Hagerstrand's approach was deductive and focused on

generative processes, and was based on his empirical observation that

The spatial order in the adoption of innovations is very often so
striking that it is tempting to try to create theoretical models which
simulate the process and eventually make certain predictions
achievable. (Hagerstrand, 1967b)

In contrast, much of the other work focusing on diffusion of innovations in agriculture

was conducted by rural sociologists and was largely descriptive [for example, Colman

(1968), Gross (1949) and Havens (1965) amongst others].

The learning process mentioned at the beginning of this section, wherein

information is spread to potential adopters, serves as the starting point for Hagerstrand's

conceptualization of spatial diffusion processes. His simulation model focuses
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exclusively on the spatial mechanisms of interpersonal contact - the second source of

information noted in an individuals learning-adoption process. Briefly, Hagerstrand's

methodological framework used Monte Carlo simulation to portray a diffusion process

characterized by learning through interpersonal communication - the neighbourhood effect

(a contagious process). Adoption takes place after a specified number of messages with

information about the innovation are received where the number or messages required

varies according to an individual's resistance to adoption. The destination of each

message depends on the probability of contact between the teller and potential receiver.

This probability is a function of the distance between them. A distance decay function

is used to compute the probabilities of interaction between each individual [see Cliff,

Haggett, Ord and Versey (1981) for additional details].

The notion of a diffusion of innovation process and the development of a

technique for operationalizing this conceptualization are only two of three contributions

to present diffusion research credited to Hagerstrand. The third contribution concerns

the three empirical regularities he identified during his investigations: the S-shaped

adoption curve, the hierarchical effect, and the neighbourhood effect. While Hagerstrand

(1952, 1967a) was not the first social scientist to identify these regularities, he is credited

with introducing these concepts to the discipline of geography (Brown, 1981; Rogers,

1983). Over time, the cumulative number of acceptors of an innovation is expected to

approximate an S-shape curve and can be described by the logistic distribution (see

Rogers, 1983). Here, the rate of acceptance is low as the innovation is introduced, but

as the innovation takes hold in a region, the proportion of adopters quickly rises. The
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rate of new acceptances falls off eventually because most people who will adopt the

innovation have already done so. In addition, the diffusion is expected to proceed from

larger to smaller population centres - the hierarchy effect. The final regularity refers to

the diffusion proceeding in a wavelike fashion outward from its origin, first progressing

to nearby rather than remote locations. This same pattern is expected in diffusion among

a rural population and is termed the neighbourhood or contagion effect (Figure 2.3.7).

Hagerstrand (l967a) posits that diffusion in the plane usually displays both

neighbourhood and hierarchical spread components (Cliff, Haggett, Ord and Versey,

1981). That is, local communication networks would control diffusion among farmers

in a single locale whereas a regional communication network may be operating at the

central place level of aggregation (Brown, 1981). A communication network consists of

interconnected individuals who are linked by patterned flows of information (Rogers,

1983).

2.3.2 Modelling Considerations for Event History Analysis

Since the influential work of Hagerstrand, diffusion research by geographers has

shifted towards substantive concerns of the processes under study, rather than the actual

mathematical modelling of the diffusion process (see Brown, 1981; Carlstein, 1978;

King, 1976; Morrill, 1974). In this section, the essential concepts necessary when

investigating a diffusion process are explored to provide the guidance necessary in

defining an appropriate spatial duration and the explanatory variables that affect this

duration. Based on the important role of communication channels facilitating innovation
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middle: the neighbourhood effect for spatial diffusion; bottom: the hierarchy effect for
spatial diffusion. (Source: Cliff, Haggett, Ord and Versey, 1981)
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diffusion noted in section 2.3, we focus on the micro-scale (individual to individual)

spatial mechanisms of interpersonal contact as key factors in the spatial diffusion

process of an agricultural innovation. The main element in these mechanisms is the

neighbourhood effect (or the contagion effect) associated with the communication process

in diffusion (Rogers, 1983).

First, we can consider the appropriateness of a temporal ordering of events to

define the spatial durations (i.e., the nearest-neighbour-in-time duration). In some ways,

it seems obvious that the temporal ordering of events in space can be used to measure

spatial durations (Figure 2.3.8). Here, we can imagine some inherent dependence

between the location of an adoption event and the previous adoption event in time (i.e.,

the neighbourhood effect). From a pragmatic modelling perspective, measuring spatial

durations as dependent variables in this space-time manner, albeit theoretically attractive,

incorporates some systematic bias in spatial duration measurements because of their

intimate connection to the scale of analysis. That is, the event density increases with

each new event that is added, and hence, the increased occurrence of shorter durations

through time over space. Thus, modelling these temporally defined durations will only

serve to describe the increasing density of events, rather than the spatial process that

determined the dispersion of events.

However, the use of temporal ordering of spatial durations does not explicit!y take

the spatial mechanisms of information flow and interpersonal contact into consideration.

In fact, there is reason to believe that the temporal sequence of adoption may have little

to do with the spatial pattern of events (adopters) resulting from the diffusion process.
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Figure 2.3.8: Nearest-neighbour-in-time duration measurements where the numbering
refers to the sequence of events.
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For instance, it reveals nothing about the spatial mechanism of communication and spatial

contagiousness of the innovation. As an example, consider that an adopter location on

the northeastern most region of the study area (event 3, Figure 2.3.8) has little influence,

in spatial dependency terms, on an adopter location on the southwestern most region of

the study area (event 4, Figure 2.3.8), even if they follow each other sequentially in

time. From a geographic perspective, we are not measuring the spatial dependency (how

near or far from each other adoption takes place) of the diffusion process directly by

following the temporal ordering of events. In fact, one can envision that adopters in

close spatial proximity share greater knowledge or communication channels, as opposed

to those who adopted the innovation close in time but not in space. Consider, as well,

that the communication channels and interpersonal sources of information are different

in various spatial locations so that the temporally defined spatial duration may not be the

most appropriate to model in order to capture the variation in the spatial diffusion of

innovations process.

The alternative to a temporal sequence definition of spatial duration is some form

of time independent, inter-event measurement such as the traditional nearest neighbour

(Figure 2.3.9). By measuring duration using nearest neighbour (the distance between an

event and the nearest other event in the spatial pattern, ignoring time) produces, from a

statistical standpoint, independent observations on durations and these observations are

readily compared to theoretical standards such as complete spatial randomness (CSR).

In addition, we can explicitly model the variation in the spacing of events and any spatial

dependencies that may exist. By investigating nearest neighbour durations, each event
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Figure 2.3.9: Traditional nearest neighbour durations where the numbering refers to the
sequence of events.
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will have an associated duration away from its nearest neighbour as well as a series of

characteristics defining this event. The characteristics of each event include sources of

interpersonal contact, shared communication channels and regional characteristics (e.g.,

farming density). In this way, the nearest neighbour duration now maintains some spatial

relationship between the distance separating events and the causal mechanisms that may

be operating between those events.

This conveniently leads us back to the point made earlier in this chapter on the

limitations of distance based methods (section 2.2.2) regarding the absence of a

regressive component to nearest neighbour analysis. Given the attractiveness of

modelling a nearest neighbour duration, from both a statistical and behavioural

representation, we can now focus on incorporating information on the causal factors

affecting durations associated with individual events. Event history models allow explicit

evaluation of the effects of covariates on given duration lengths, in this case, nearest

neighbours between events in space. This provides a distinct advantage over traditional

methods which rely on inferences made about the regularity, clustering or randomness

of a spatial point pattern to reveal the spatial process(es).

Duration lengths between adopters (i.e., events) may be affected by numerous

factors, some easily identified and measurable and others unknown, unmeasurable or

both. In terms of known, measurable factors in a spatial diffusion context, interpersonal

contacts and communication channels are the keys to innovation diffusion and thus,

provide insight into possible explanatory variables. For example, individuals

communicating the innovation idea include the change agent, opinion leaders, and



41

homophilous individuals. A change agent is an individual who influences potential

adopters' innovation decisions in a manner consistent with a change agency (for example,

a salesperson selling a new product). Opinion leaders are individuals who are able to

influence other individuals' attitudes and opinions based on their informal status in a

social system. Also, a fundamental principle of human communication is that the

transfer of ideas occurs most frequently between individuals who are alike, or

homophilous. These similarities include beliefs, education, social status, age or perhaps

those in the same farming operation. Interpersonal communication from salespersons,

opinion leaders and homophilous individuals are well documented in studies of the

diffusion of agricultural innovations (Katz, 1957; Lazarsfeld and Merton, 1964;

Lionberger, 1960; Rogers, 1983; Ryan and Gross, 1943), and must be considered in this

research to understand the diffusion process operating.

2.4 Conclusions

In this chapter, several important issues have been identified for consideration in

the event history methodology being adopted in this research. We introduced traditional

nearest neighbour statistics, some of their limitations, and ways of overcoming some of

these problems. In particular, it was noted that edge effects are a potential source of bias

in any spatial point pattern analysis. The notion of measuring a censored duration on

boundary events was then introduced as a mechanism to control for edge effects. Most

importantly, the chapter defined the duration to be modelled as the nearest neighbour

measurement between events in space. This definition was chosen based on the emphasis
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in this thesis on the spatial mechanisms of the diffusion process, wherein events in spatial

proximity are thought to be more related than those further apart. Also, the literature

on spatial diffusion revealed the types of explanatory variables that could be influencing

each event's associated duration. Still to be resolved are the actual explanatory variable

definitions, the way in which spatially censored data may be formally included in the

event history modelling framework and, more generally, the adaptation of temporally

based event history models to the spatial domain. The last two topics are the subject of

the next chapter, whilst the defining of explanatory variables is left for Chapter Four

where the spatial diffusion data is presented.
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CHAPTER THREE

EVENT HISTORY MODELLING

3.1 Introduction

This chapter surveys the literature and methods in the field of event history

modelling that are used for the analysis of a spatial point patterns in this thesis. The first

section looks at the interest of geographers in the field of event history modelling. The

second section defines relevant terms and concepts. Next, the three main sources of

variation in event history analysis, namely heterogeneity, state dependence and non

stationarity are introduced. The chapter progresses into a summary of the statistical and

mathematical concepts of event history analysis used in this thesis. The discussion

throughout the chapter focuses on redefining some basic event history concepts in terms

of spatial duration analysis, notably the standard parametric and partially parametric

model forms and spatial censoring.

3.1.1 Event History Modelling and Geography

The analysis of event histories, or data that follows a given sample of individuals

over time, has been the concern of analysts from various fields for several decades. For

43
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example, in the engineering, demography, and biostatistics literature, event history

analysis methods appear under the names of "failure-time" or "duration" analysis, "life

table" analysis and "survival" or "lifetime" analysis, respectively (Kalbfleisch and

Prentice, 1980; Lawless, 1982). The main interest in event history analysis is the time

interval between events, commonly called a duration. For example, in industrial

engineering, duration analysis methods are used to describe the useful lives of various

machines (Le., time until component failure) and in the biomedical sciences, to describe

events such as the survival times of heart transplant recipients (Le., time until death).

Many social scientists recognized the natural applicability of such methods to cope

with research questions in their respective disciplines. For instance, sociologists have

used these methods in life course/cycle research (Mayer and Tuma, 1990) and have made

some effort to introduce event history methods to researchers in their discipline

(Blossfeld, Hamerle and Mayer, 1989; Tuma and Hannan, 1984). Event history

methodology is also familiar to geographers who have had considerable experience with

event history data collection and analysis. In fact, Wrigley (1986) notes three historical

periods of activity by geographers focusing on event history modelling. The first

occurred in the late 1950s when central place systems were studied with manual diary

surveys. The second occurred in the early 1970s with geographers using comprehensive

diary surveys to study spatial behaviour and urban activity patterns. The third, and

ongoing, period of activity concerns the interest of geographers in the methods of

analysis rather than the collection of the data. Indeed, an increasing amount of literature

describing applications of event history data and methods confirms that this field is well-
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known to geographers (Clark, 1992, Crouchley, 1987; Crouchley, Pickles and Davies,

1982; Davies, 1984; 1987; 1988; Davies and Crouchley, 1984; 1985; Davies, Crouchley

and Pickles, 1982a; 1982b; Davies and Pickles, 1983; 1985; 1987; 1991; Davies, Pickles

and Crouch1ey, 1982a; 1982b; Halperin, 1985; Pickles, 1983; Pickles, Crouchleyand

Davies, 1982; Pickles and Davies, 1984; 1985; Pickles, Davies and Crouchley, 1982;

Reader, 1992; Reader and Uncles, 1988; Wrigley and Dunn, 1984a-c; 1985). The work

of geographers is restricted predominantly to applications of mobility (e.g., social, labour

and residential) and consumer behaviour (e.g., store choice), and focuses primarily on

temporal dependencies in individual behaviour. One notable exception is the work by

Odland and Ellis (1992), which used the Partially parametric proportional hazards model

of Cox (1972) to examine spatial dependencies in a settlement pattern. The research

reported in this thesis attempts to extend the linkage of event history modelling to the

spatial domain initiated by Odland and Ellis (1992).

3.2 Terms and Concepts of Event History Modelling

Event History data is defined as data that follows a given sample of individuals

over time and, thus, normally provides multiple observations of events associated with

each individual. An event can be formally defined as a transition between states. In

other words, an event may be viewed as a choice or response that translates as the

movement of an individual between states (e.g., a product purchase or a residential

move) (Allison, 1984). The time elapsed between events is called a spell or an episode.

The length of the observed spells are referred to as durations and, typically, the durations
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are the dependent variables under study (Kiefer, 1988). Using this terminology, the

events of interest in this thesis are locations of farms adopting an agricultural innovation,

and the durations are the Euclidean distances separating nearest neighbour events.

A useful method for introducing concepts of event history data analysis is the five

dimensional classification reviewed by Allison (1984). The first dimension, distributional

versus regression methods, distinguishes event history research which emphasizes

describing the distribution of durations from that where the emphasis is on explanation

using regressive model forms. More recently, event history analysis methods have

focused on regression models in which the occurrence of events is causally dependent on

one or more explanatory variables. In spatial duration terms, as with temporal durations,

it is useful to look first at which distributional (or parametric) form best suites the

duration data prior to adding regressors to the analysis. In this way, the distributional

form can describe the general behavioural form of the durations, whilst the regressive

analysis provides an assessment of the effects of explanatory variables.

The advent of regressive approaches to event history modelling resulted from the

difficulties that arise when more conventional regressive procedures are applied to event

history data. Two main problems typical of event history data, censoring and time

varying explanatory variables, limit the use of standard regressive procedures. To

illustrate these problems, the example of recidivism in Allison (1984) is useful. In this

study, 430 inmates released from prison were followed for one year after this release.

The events of interest were arrests and the aim of the research was to determine how the

likelihood of arrest depended on several explanatory variables including race, age at
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release, and income. Here, one might be tempted to use the actual duration, or length

of time from release to first arrest, as the dependent variable in a multiple regression

analysis. However, the analyst is faced with the problem of event censoring which refers

to the fact that the value of the dependent variable is unknown (or "censored") for

persons who were not arrested at all during the one year study period. Of course, if the

number of censored cases were small, it might be acceptable to exclude them; but if the

data contained a high percentage of censored cases, then exclusion of the censored cases

can produce large biases (Tuma and Hannan, 1978). In addition, assigning the maximum

time observed, in this case one year, to the censored cases also underestimates the true

values and, again, can result in considerable bias.

Beyond the problem of censored observations when modelling durations, the

analyst must now face the task of incorporating explanatory variables that change in value

over the observation period. These variables are termed time-varying explanatory

variables. To further complicate matters, time-varying variables can also vary across the

observation period, yet be static within certain durations (in a multiple spell situation, see

the discussion below). Using the same example of recidivism data from above, it is

reasonable that the variable income, for instance, may change over the one year period

of study, and any changes in income may be incorporated by conducting follow up

interviews with the individuals, perhaps on a monthly basis, to update income data.

Although including twelve income measures (i.e, one for each month) seems reasonable,

albiet long winded, for the person arrested in the twelfth month, it is inappropriate for

persons arrested during the first few months after release. In this regard, the person
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arrested after one month may have been incarcerated during the remainder of the

observation period, so his/her income becomes a consequence, rather than a cause, of

recidivism. In essence, his/her income after the month of arrest is irrelevant to tha

analysis.

Both censoring and time-varying explanatory variables are common to event

history data, but, fortunately, several innovative approaches to handle these problems

have been developed by the interdisciplinary researchers using event history data and

methods. The notion of event censoring, and its role in the presence of potentially

severe edge effects in a spatial context, is explored further in section 3.2.2. In terms of

a spatial analogue to time-varying variables, we look at spatially varying variables at the

end of the chapter (section 3.2.5) when the discussion turns to Odland and Ellis' (1992)

analysis of variations in the spacing of settlements with an event history model. In this

thesis, event censoring is incorporated into the analysis, but spatially varying explanatory

variables are not included.

Allison's (1984) second dimension of event history modelling, repeated versus

non-repeated events, distinguishes the work within biostatistics and engineering and that

of many geographic and social science applications. In this regard, many social scientists

are concerned with events that may occur numerous times to each individual as in

residential mobility or employment status studies. In contrast, much of the biostatistical

work, as in the example of heart transplant recipients at the beginning of the chapter, is

concerned with single (or terminal) events. In this case, the transition in state (or event)

is death which is a final, absorbing state. This thesis is concerned with survival type
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analysis (Le., single duration data) within the broader field of event history analysis. In

Figure 3.2.1, we see that all the spatial durations are converted so each duration is

unidirectional, has the same "starting point," and each event has only one duration

associated with itl
.

The third dimension, single versus multiple kinds ofevents, refers to the analysis

of durations measured for various event types. In the field of biostatistics, for example,

it is important to distinguish deaths due to cancer from deaths due to other causes, and

analyze the duration data accordingly. Formulations known as competing risks models

accommodate multiple event type data and have been used in studies of housing careers

in the geographic literature (see Pickles, 1983; Pickles and Davies, 1985). It is quite

likely that multiple event type models will appear more frequently in social science

applications given that multiple event type, multiple duration data are the norm. In this

thesis, only one event type, the adoption of a farming innovation, is considered, so

competing risks formulations are not explored.

The fourth dimension, fully parametric (or partially parametric) versus

nonparametric methods, concerns the treatment given to the distribution of duration

lengths. In the social sciences, the typical fully parametric approach is to specify a

particular distributional form for the durations such as the Weibull or exponential

distributions. On the other hand, nonparametric methods make no assumptions about the

distribution of durations. The proportional hazards model, developed by Cox (1972),

is a partially parametric (or semi-parametric) model in that it does not specify the exact

lIn this respect, the spatial durations now resemble temporal cohort data.
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Figure 3.2.1: Converted nearest neighbour durations.
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form of the distribution of durations, whilst a functional form is specified for a regressive

component in the model. This partially parametric model is common in the biomedical

literature (Cox and Oakes, 1984), and has recently been applied to spatial durations by

Odland and Ellis (1992). In this thesis, both fully and partially parametric modelling

approaches are used to examine spatial durations separating the locations of innovation

adopters.

The final dimension identified by Allison (1984) is the discrete time versus

continuous time methods of analysis for event history data. This dimension can be

thought of as "discrete space versus continuous space" methods for the purposes of this

thesis. Essentially, methods that assume the measurement of durations are exact would

be classified as continuous. In contrast, when the measurement units of durations are

large enough that they do not permit very precise measurements, they are termed

discrete. To some extent, the distinction is relative. For instance, when the discrete

units are very small, it is usually acceptable to treat the duration measurements as if they

were, in fact, on a continuous measurement scale. The spatial event data used in this

thesis is continuous since event coordinate locations may, in theory, be measured to any

level of precision, and hence, continuous time event history models are used.

3.2.1 Spatial versus Temporal Variation

Models containing stochastic as well as structural components have been

constructed in an attempt to understand three inter-related sources of behavioural

variation in event history modelling. The variation amongst a population of events in
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space is very different than variation in time, but some analogies may be drawn from the

temporal domain that are useful for understanding spatial processes. First, we should

clearly state the distinction between a temporal and spatial series of events. In the case

of a series of events randomly distributed in time, for example, the proliferation of cells

in an organism, the statistical methods used for analyses of these processes reflect the

essentially unidirectional quality of the time dimension. Hence, an investigation for a

temporal series of events might depend on the inherent ordering of the observations from

earliest to latest. In contrast, to investigate a series of events in space, no corresponding

directionality exists; hence, the problem of defining which spatial duration to measure

and, subsequently, model. In other words, the analysis must impose some "ordering"

or dependency structure on the spatial events. In the following discussion, the sources

of variation that can be distinguished by event history analysis are defined in temporal

terms for clarity of presentation, but subsequently redefined in spatial terms for this

thesis.

Typically, event history data for a group of individuals allows analysts to model

the probability of a change in state, or the occurence of an event, as some function of

three sources of behavioural variation. If we take as an example a group of shoppers and

use event history analysis to study the effects of grocery shopping interpurchase times

on switching shopping centre choice, then the durations are the time intervals between

grocery shopping trips, and the events are the store switch (Reader and Uncles, 1988).

To understand the individual consumers behaviour and appropriately model the

probability of a store switch, three main sources of variation, namely heterogeneity, state
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dependence and non-stationarity, are incorporated into the model. Heterogeneity is

defined as those measured variables which in some way influence shopping behaviour,

such as income, car ownership and other socio-demographic or interpersonal variables.

Since these variables are known and measurable by the analyst, this variation is more

suitably termed observed heterogeneity. Conversely, unobserved heterogeneity comprises

those variables which might influence behaviour, but have not been measured, either

because they have not been collected or because the variables are unobservable (e.g.,

individual motivation or tastes) (Reader, 1988). Non-stationarity refers to the variation

over time of individual event probabilities due to the effects of time-varying exogenous

variables (related to the process environment or the individual). In other words, non

stationarity may include the effects of store promotions (process environment) or an

income change (individual) on store switching for our shopping example.

The third major source of behavioral variation, state dependence, is a general

term incorporating the effect on behaviour of the individual consumer's record of events.

The consumer's record of events, or the probability of a change in state, is related to one

of four different forms:

(1) Markovian: the current state, or previously occupied states for higher order

Markovian effects.

(2) Occurrence: the number of times different states have been occupied.

(3) Duration: the length of time the current state has been occupied.

(4) Lagged Duration: the lengths of time previous states have been occupied where all

previous states, or only those durations occurring in the same state under investigation,
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may be considered (after Heckman and Borjas, 1980).

The main focus of research concerning state dependence is the need to distinguish

true state dependence effects from spurious state dependence effects to prevent biased

parameter estimates (Davies and Crouchley, 1984; Pickles and Davies, 1984). True state

dependence refers to the influence of past behaviour on future choices based on real

barriers or aids to a change in state, such as benefits (utilities), commitments or motives.

True state dependence is also called structural dependence, feedback effects, cumulative

inenia and true contagion. Apparent state dependence, in contrast, arises when

individuals differ in their propensity to experience an event (i.e., heterogeneity). When

these differences are correlated over time, previous experience will appear to determine

future events or choices.

Several well-established examples of the apparent state dependence effect that

introduces bias into the parameter estimates of the observed exogenous variables are

available from the literature in the social sciences. In the context of unemployment

durations, apparent state dependence may arise in the presence of an omitted variable,

for instance, the "motivation" of individuals to seek new employment. This variable is

independent of the observed exogenous variables, but is positively correlated with the

chances of obtaining work. The observed event history data will show a decline in the

chances of obtaining work with increasing duration of unemployment producing an

apparent state dependence effect and misleading results (Davies and Pickles, 1985a,

1985b). Therefore, apparent state dependence is not a result of any inter-temporal state

dependence, rather it is an indicator of unobserved or unmeasurable variables that persist
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through time. Spurious state dependence and spurious contagion are equivalent terms

for the related phenomena of omitted variables and apparent state dependence (Davies

and Crouchley, 1984; Davies, Pickles and Crouchley, 1982b; Davies and Pickles, 1983;

Pickles and Davies, 1984, 1985; Pickles, Crouchley and Davies, 1982).

Translating the temporal sources of variation to their spatial analogues is essential

so that spatial sources of variation may be considered in the event history analysis of

spatial durations. Here, heterogeneity and non-stationarity are more difficult to discern

in spatial terms. In fact, Odland and Ellis' (1992) use of an event history model to

examine spatial heterogeneity in a settlement point pattern is actually, in spatial point

pattern terminology, an attempt to measure spatial non-stationarity in a region. Perhaps,

then, a more general term is appropriate, for example, environmental heterogeneity,

which describes the variation in the propensity of different locations in a region to

experience an event. In Chapter Two, we noted that clustered patterns may be the result

of either some spatially contagious process or, alternatively, environmental heterogeneity

where the event clusters represent locations that are more likely to contain an event than

others. In this thesis, we incorporate explanatory variables to account for some of the

environmental heterogeneity in the spacing of adopter events. However, this term is not

restricted to process environment variables, such as farm density measurements across

a rural landscape as in an agricultural diffusion study; but also incorporates event-specific

characteristics that might influence the spacing of neighbouring events. For example,

various characteristics of farmers (e.g., farm operation type, feed type preference) that

may influence the duration associated with those adopter locations, and should be
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included in a regressive analysis.

State dependency, unlike heterogeneity and non-stationarity, is more easily

reinterpreted in spatial terms. In this case, spatial state dependency involves endogenous

factors produced by, or directly related to, the spatial process. The same four types of

dependency from time can be identified in spatial terms as the probability of an event

occurring at a location could be modelled as dependent on: the nearest current event

(Markovian), the number of events (occurrence) within a specified distance, the length

of the nearest neighbour duration (duration) or several nearest neighbour durations

(lagged duration). In this thesis, event history hazard rate models with and without

duration dependency are used to analyse spatial dependencies between adopter farm

locations. Given the preceeding discussion, we must be aware of the potential for

spurious duration dependency arising from unobserved spatial (or environmental)

heterogeneity. For example, some events may occur at large nearest neighbour durations

from one another. This may be the result of a situation where areas in space that are

predisposed to an event occurrence are saturated, and so a greater share of events occur

at distant locations. The longer spatial durations associated with this phenomena may

mislead analysts if the variable for predisposed areas (Le., unobserved heterogeneity) is

absent from the model.
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3.2.2 Event Censoring and Edge Effects

The notion of event censoring was presented earlier, but is explored more fully

here. As with the previous section's discussion, event censoring is first defined in

traditional temporal terms, and then redefined in a spatial context. In general, event

censoring occurs when the time until the first event (left-censoring) or the time until the

event following the end of the observation period (right-censoring) is not fully known

(Kiefer, 1988). The loss of information stemming from either meaningful (Le., birth

date for cohorts) or arbitrary (Le., survey inception) starting dates is termed an initial

conditions problem and is related to the left-censoring problem. This problem usually

falls under the unobserved heterogeneity component from a modelling standpoint since

it refers to omitted or unmeasurable variables connected to the time period before the

survey.

Ifevent occurrence probabilities are assumed dependent on the time since the last

event, then naturally left-censoring is a concern. The degree of parameter bias due to

censoring varies with the model being estimated, but as the duration of the study period

increases relative to the mean duration times between events, the bias decreases (Flinn

and Heckman, 1982). In contrast, failure to account for left-censoring especially in low

involvement situations (Le., where the number of events per individual is small and thus

the influence of any lost information is important) results in significant parameter bias

(Davies and Crouchley, 1984; Tuma and Hannan, 1984).

Left-censoring may be considered problematic since the censored observation has

a relationship to the past history of the process on which no information exists. In
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contrast, the problem of right-censoring or final conditions relates to lost post-sample

information and, although frequently encountered, is less problematic since the censored

observation is simply an unobserved continuation of the observed process (Tuma and

Hannan, 1978). Ignoring the available information on right censored observations would

underestimate the true survival rate or the probability that a duration extends to at least

some specified time. Again, final conditions may arise from meaningful (Le., a terminal

event such as component failure or death) or arbitrary (Le., termination of survey) event

dates, similar to initial conditions.

Figure 3.2.2 illustrates a typical event history data set which represents a

complete marital history including state occupancies and times of events. The horizontal

axis in Figure 3.2.2 represents time and the vertical axis shows the individuals status at

a given point t with regard to the three states: dead, married, not-married. The dashed

vertical lines denoted "1 and "2' identify the observation period for these individuals. The

information to the left and right of this set is an example of censored data, since their

values are unknown to the researcher. Kalbfleisch and Prentice (1980) note that the

necessity of obtaining methods of analysis that accommodate censoring is probably the

most important reason for developing specialized models and procedures for event history

data.

In this thesis, spatial censoring is defined as the shortest distance from a

boundary event to the boundary. This distance is measured by extending a line from the

boundary event (Le., adopter location) to a boundary point so that the line is

perpendicular to the boundary. Recall that boundary events are those events whose
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Figure 3.2.2: Hypothetical marital history of a typical person. (Source: Tuma and
Hannan, 1984)
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distance to the boundary is less than their associated nearest neighbour duration. Spatial

censoring is related to "right-censoring" in temporal terms since the censored observation

is an unobserved continuation of an observed process. In other words, we use data from

events where the duration has not "terminated" at a nearest neighbour duration, and so

is actually incomplete (Figure 3.2.3). This means that the analyst has certain knowledge

that no other event, up to the censored duration measurement, is closer to that boundary

event, and this information can be included in model parameter estimation. Notice,

however, that the true length of the duration is actually unknown, but that forcing

boundary events to find a nearest neighbour would tend to overestimate the nearest

neighbour durations (see Chapter Two). A first step at examining the utility of spatial

censoring is to compare the analysis results of the data set with some censored durations

to the conventional nearest neighbour durations (Le., uncensored durations) results,

where both sets of observed durations stem from the same empirical event pattern. Thus,

both an uncensored and censored set of spatial durations are analyzed in this thesis. For

the purposes of this thesis then, the censored duration measurement provides absolute

knowledge of the distance around a boundary event where no other event exists.
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3.2.3 Statistical Concepts of Event History Analysis of Spatial Durations

Although developed for the analysis of temporal durations, the formulations of

event history models do not preclude the use of other non-negative random variables, for

example, values of distance. The discussion that follows applies to spatial durations and

is confined to models where population homogeneity is initially assumed, whilst

explanatory variables are introduced in section 3.2.4. "Here, space is a continuous

variable since an event (or adoption of the innovation) may occur at any location. The

length of the distance measurements between nearest neighbour events define a spatial

duration - the basic observation in these models.

The class of statistical models known as survival or duration models, within the

broader field of event history modelling, have generally been developed on the basis of

the probability density, survivor and hazard functions. The probability density and

distribution functions for the duration X(X~O), where X is a non-negative, continuous

random variable, are denoted by f(x) and F(x), respectively. In mathematical terms,

1C

F(x) - P(X ~ x) - ff(u)du,
o

and for all points for which F(x) may be differentiated

f(x) - F' (x) .

(3.2.1)

(3.2.2)
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The survivor function is

S(x) - P(X ~ x) (3.2.3)

and expresses the probability that the duration extends (or "survives") until distance x.

Alternatively, the survivor function can be expressed as

S(x) - 1-F(x) (3.2.4)

where S(x) is a non-increasing function of distance approaching zero as distance (or

duration) increases (see Figure 3.2.4). The probability density function may be

equivalently expressed as

f(x) - lim P(x~X<x+Ax) .
4%-0 Ax

(3.2.5)

The hazard rate (also known as the hazard function, failure rate, or risk function) is

defined as the instantaneous probability that durations in the interval x to x+Ax end,

given that they extend at least to x (Tuma and Hannan, 1984). The hazard rate is

normally interpreted as the rate at which durations of time come to an end, but, in this

thesis, the durations are values of nearest neighbour distances. The hazard rate is

specified as

i..(x) _ lim P(x~X<x+AxIX~x)

4%-0 Ax
(3.2.6)
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Figure 3.2.4: Typical shape of a survivor function, where t=x. (Source: Blossfeld,
Hamerle and Mayer, 1989)
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The hazard rate defined above and formulated in equation (3.2.6) is the key

concept used in the analysis of event history data. In temporal analysis, the hazard rate

contains information concerning the future course of an individual under study, given that

they have survived (Le., no event has taken place) to a certain time, as opposed to a

distance, x. In most cases, researchers have some a priori information concerning the

form of the hazard rate from the substantive theory of the current application. An

example from temporal analysis is the hazard rate for human mortality which is

characterized by the U or bath-tub shaped curve (Figure 3.2.5). The curve is explained

by the following process: due to high infant mortality at the beginning of the life cycle,

the hazard rate of dying is high, then decreases and remains approximately constant until

aging causes it to rise once again (Blossfeld, Hamerle and Mayer, 1989; Kalbfleisch and

Prentice, 1980). Monotonic increasing, monotonic decreasing or constant hazard

functions are also found in various substantive contexts.

The relationship between the hazard rate and the survivor function is derived from

equation (3.2.6) as

A (x) _ I(x)
S (x) ,

substituting equation (3.2.4) we have

A (x) _ I(x)
1 - F (x)

(3.2.7)

(3.2.8)



66

Figure 3.2.5: Hazard function of human mortality, where t=time. (Source: Blossfeld,
Hamerle and Mayer, 1989)
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The relationship between the survivor function and the hazard function (the inverse of

the above situation) is obtained by integration of the hazard function which yields

1C

S(X) - exp (- ! I..(u) du) .
o

(3.2.9)

From equations (3.2.7) and (3.2.9), the probability density function is obtained as a

function of the hazard rate

1C

f(x) - l..(x)oS(x) -I..(x)oexp(-! I..(u) du).
o

(3.2.10)

The equations shown in (3.2.7) to (3.2.10) illustrate that each of the three measurements

f(x), S(x), and "A(x) may be used to describe the spatial durations. Thus, if one of these

functions is known, it is always possible to derive both the other functions (Kiefer,

1988).

In most cases, event history analysis models the hazard rate, "A(x), rather thanf(x)

or S(x). One reason to model the hazard rate is that, in substantive terms, it is important

to consider the probability of a duration terminating, given that the duration has not

ended at that distance. In addition, it is possible to model the effects of the present

values of the explanatory variables on the hazard rate, even if this probability is

dependent on certain spatially-varying explanatory variables. Without modelling "A(x),

it is difficult to make reasonable assumptions about the way f(x) or S(x) depend on

previous values of time-varying explanatory variables. In general, the hazard rate

illustrates the notion that individuals, or adopter location events, may differ in their
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hazard rates, where events associated with large hazard rates are more likely to

experience an event at shorter nearest neighbour durations, whilst those with small hazard

rates are likely to experience the event at longer nearest neighbour durations (Yamaguchi,

1992).

Two major analytical methods are used for analyzing hazard rates: fully

parametric models and partially parametric models. Recall that fully parametric

approaches involve the use of a parametric distributional form to describe the nature of

duration dependency. Partially parametric approaches are generalizations of parametric

models, originally proposed by Cox (1972). They are referred to as partially parametric

because the function describing the duration dependency is not specified a priori, whilst

a functional form is specified for a regressive component in the model. Both fully and

partially parametric models estimate the effects of explanatory variables on hazard rates.

In contrast, nonparametric methods do not specify a relation between the hazard rate and

explanatory variables, and are not used in this thesis (Yamaguchi, 1992). The

subsequent discussion outlines some technical details of the fully parametric approach

while the partially parametric approach is discussed in section 3.2.4.

Several parametric distributions could be considered for the duration or "distance

to neighbouring event", X, distribution. Four widely used distributions in event history

modelling are used in this thesis, the exponential, Weibull, Gompertz and log-logistic

distributions. One of the most commonly applied distributions is the exponential

distribution. In this case, the hazard rate is constant and represents the situation where

no duration dependency exists. In mathematical terms, the constant hazard is represented
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by

A(X) - A, where x~O, A>O.

The respective survivor and density functions are

S(X) - exp( -AX),

f(x) - A exp( - AX),

(3.2.11)

(3.2.12)

(3.2.13)

and the graphical representation of these formulations is shown in Figure 3.2.6.

A constant hazard in time may be an unrealistic assumption in many cases such

as employment history where time invested in a job is likely to cause a decreasing hazard

rate if the event is employer change. Similarly, with spatial durations, the constant

hazard rate is equivalent to a completely spatial random distribution of events where the

location of one event has no effect on the location of its neighbour - a very rigid

assumption. Thus, a closely related distribution known as the Weibull model is often

used to analyse durations. The hazard now has the form

(X>O) (3.2.14)

where Aand a are parameters greater than zero (Kalbfleisch and Prentice, 1980). The

respective survivor and density functions are

S(X) - exp( -(AX)CIl) (3.2.15)
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l(t)

Figure 3.2.6: Density function, survivor function and hazard rate of the exponential
distribution, where t=x. (Source: Blossfeld, Hamerle and Mayer, 1989)
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(3.2.16)

The hazard function of the Weibull distribution increases monotonically if ex> 1,

decreases monotonically if ex < 1, and reduces to the exponential distribution when ex = 1

(i.e., constant hazard rate). The Weibull model is quite flexible and therefore adaptable

in many situations (Figure 3.2.7). However, it does not allow for a V-shaped or inverted

V-shaped hazard rate. This implies that the hazard may either decrease or increase with

duration, but may not change direction (e.g., cannot increase and then decrease) with

distance (Allison, 1984).

Another commonly used alternative to the exponential model is the Gompenz

distribution. In this case, a Gompertz model for the distance to a neighbouring event,

X, distribution yields the following hazard rate

A(X) - AO eh
.

The survival and density functions of the Gompertz model are

Sex) - exp[(-Ao/5) (eIlX_I)]

I(x) - (Aoeh)exp[(-Ao/5)(eIlX-I)]

(3.2.17)

(3.2.18)

(3.2.19)

where 0 is a positive or negative constant. Like the Weibull model, the Gompertz model

is a monotonic distribution that allows the hazard to increase or decrease with duration

(Figure 3.2.8).

In contrast to the constant and monotonic increasing or decreasing distributions

discussed so far, the log-logistic is a non-monotonic distribution which accommodates a
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S(t)
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Figure 3.2.7: Density function, survivor function and hazard rate of the Weibull
distribution, where t=x. (Source: B1ossfe1d, Hamer1e and Mayer, 1989)
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Figure 3.2.8: Density function, survivor function and hazard rate of the Gompertz
distribution, t=x and 1'0=0. (Source: Blossfeld, Hamerle and Mayer, 1989)
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hazard rate that changes direction (e.g., may increase and then decrease) with duration

(Figure 3.2.9) (Kiefer, 1988). The log-logistic is specified in terms of log X with two

parameters, A and (J, greater than zero. In mathematical terms,

lnX = I.L +0 W

and a logistic distribution for w is specified with the density function

f( (i) = exp( w)

[1 +exp( w)f

(3.2.20)

(3.2.21)

By setting A=e-I' and Ci. = (J-I, the density function for the log-logistic distribution IS

obtained as

f(x) = A IX (AX)Il-1 [l +(AX)r2

The hazard and survivor functions are given by

A(X)
AIX(AX)Il-1

1 +(AX)1l

Sex)
1=

1 +(AX)1l

(3.2.22)

(3.2.23)

(3.2.24)

For Ci. > 1 the hazard first increases with duration, then decreases. If 0< Ci.:::;; 1, the

hazard function decreases with duration.

The choice of a particular model involves deciding between theoretical

appropriateness, empirical evidence and mathematical convenience. Given the unique

nature of analyzing spatial point patterns using event history models and the availability

of custom estimation routines in the software package used in this research, the approach
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Figure 3.2.9: Density function, survivor function and hazard rate of the log-logistic
distribution, where t=x. (Source: Blossfeld, Hamerle and Mayer, 1989)
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taken in this thesis is to estimate, on an individual basis, the various parametric models

outlined above, as well as the partially parametric Cox model. In this way, comparisons

can be made as to how well commonly used distributional forms fit the spatial durations

of the spatial diffusion point pattern data used in this analysis. Alternatively, substantive

theory or well-known graphical methods such as an empirical graph of the survivor

function using the "product-limit" (or Kaplan-Meier estimate) can be used to gather

information on an appropriate model. Plots of estimated survivor functions provide

useful depictions of event history data, as well as information on the underlying

distribution (Blossfeld, Hamerle and Mayer, 1989; Lawless, 1982).

3.2.4 Regressive Event History Approaches

As was noted in section 3.2.1, one of the most important developments in event

history analysis has been the incorporation of explanatory variables. The introduction

of a regressive component to event history analysis is a reflection of the desire to use

maximum information on units of study (e.g., event locations), including explanatory

variables normally collected within an event history data set, to ascertain the quantitative

influence of these exogenous or endogenous variables on the hazard rate. Here, the sign

of the regression coefficient(s) indicates the directional effect explanatory variables have

on the likelihood of a duration ending. Regressive event history models can be divided

into two broad classes, namely acceleratedfailure-time models and proponional hazards

models, depending on how the explanatory variables are presumed to affect the baseline

hazard rate (i.e., the hazard without explanatory variables). In the case of accelerated
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failure-time models, the effect of the explanatory variables is to alter the distance at

which a duration comes to an end. In other words, a baseline hazard rate is assumed,

Ao(X), and the regression variables increase or decrease the distance to event occurrence,

X. In contrast, proportional hazards models represent the class of regression models in

which the effect of explanatory variables is to multiply the hazard function itself by a

scale factor, therefore, shifting the hazard rate up or down. In this thesis, both classes

of models are estimated.

First, we consider the class of proportional hazards models. These models

include the Cox (1972) model which differs from the fully parametric approaches defined

earlier because no baseline hazard function is specified, yet estimates of the effects of

explanatory variables are readily available. In the general form of the proportional

hazards model, explanatory variables enter the model as a vector denoted z while 13

represents the corresponding parameter vector. The hazard rate of the model is then

A(xlz) - Ao(x)exp(z' p) . (3.2.25)

The baseline hazard rate, Adx), is usually specified by a specific parametric form, and

in this thesis the Weibull and Gompertz distributions are used. In contrast, the Cox

proportional hazards model does not specify the baseline hazard rate which allows greater

flexibility for modelling, but requires panial likelihood estimation (as opposed to

maximum likelihood used with the fully parametric models, see below). This so-called

panially parametric approach suits an analysis where the main concern is with the effects

of explanatory variables, while the dependence on distance is of little interest. For

example, in biomedical applications using temporal durations, the interest focuses on the
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effects of alternate treatments (the explanatory variables) rather than the dependence of

the hazard on time.

The proportionality of the hazard rates means that the quotient

(3.2.26)

for two event locations with explanatory variables ZI and Z2 does not depend on duration

(x). That is, for any two event locations, the ratio of their hazards is a constant over

distance, x. Allison (1984) notes that this is not a crucial feature for either fully

parametric models or the Cox model because the hazards cease to be proportional as soon

as one introduces spatially-varying explanatory variables. He also adds that even when

the proportionality assumption is violated, it is, nevertheless, often a satisfactory

approximation, and analysts should be more concerned with any omitted explanatory

variables then nonproportionality.

As noted above, by assuming a certain parametric form of the baseline hazard

rate, the fully parametric proportional hazards models are obtained. In all the models

used in this thesis, the non-negative functional form, exp(z /(j), is used to specify the

effects of the vector of covariates, once again z is a vector of explanatory variables and

(j is the corresponding parameter vector. For example, the Weibull is specified as

l(xlz) - (exp{.t'p»CI-l«exp(z'p) (3.2.27)
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and the exponential model is obtained from equation (3.2.27) by setting a=l. Fully

parametric proportional hazards models are used to examine the effects of both duration

and explanatory variables on the hazard rate by comparing results obtained by partially

parametric formulations, where no assumption on the form of the baseline hazard is

made, a priori.

The class of accelerated failure time models, also known as "log-linear models,"

are obtained from the general form in equation (3.2.20) for the random variable

representing the duration, X. Recall that the error variable, w, can be specified as the

logistic distribution which produces the log-logistic model. Adding the regressive

component as before, the hazard rate of the log-logistic model is

A(X I z) _ exp(z'{J) a (exp(z'{J)x)",-t
I + (exp(z'{J)x)'"

(3.2.28)

and allows the hazard rate to be nonmonotonic, unlike the exponential, Weibull and

Gompertz models. Given the unexplored nature of duration analysis in the spatial

domain, a model with a nonmonotonic hazard rate may be appropriate for the spatial

durations associated with complex spatial processes. Here, it is also prudent to note the

multiplicative effect of the explanatory variables on x (or additively on lnX) in the

accelerated failure time model, rather than on the hazard rate as in the proportional

hazards formulation.

The fully parametric models SPecified above, both the proportional hazards and

accelerated failure time versions, are estimated using maximum likelihood procedures.

Maximum likelihood estimation (MLE) has become a standard procedure for parametric
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model estimation and detailed explanations can be found in Blossfeld, Hamerle and

Mayer (1989) or Kalbfeisch and Prentice (1980). Since MLE is used to estimate the

parametric models in this thesis!, a brief discussion of some of its properties is in order.

MLE requires a parametric specification of the baseline hazard function, ho(x) and can

accommodate both censored and uncensored observations (Tuma and Hannan, 1984;

Yamaguchi, 1992). Also, ML estimators have been shown to possess superior

asymptotic properties in large samples under fairly general conditions for the probability

distribution function of the random variable, in this case distance, X (Tuma and Hannan,

1984). Thus, as the sample size tends to infinity, the MLEs are unbiased, normally

distributed and efficient (i.e., contain minimal variance). Finally, MLE is not a

computationally strenuous method as opposed to alternative methods of estimation such

as Ordinary Least Squares for event history analysis (Allison, 1984).

The partially parametric Cox model, however, is estimated by partial likelihood.

Recall that the partially parametric approach is useful when there is little theoretical

guidance on the choice of an appropriate parametric baseline hazard, but unbiased and

consistent estimates on the explanatory variables coefficients are required. The term

partial likelihood refers to the fact that estimates based on this function depend only on

the ordering of the lengths of durations and do not use information on the exact distance

to a neighbouring event. This loss of information in partial likelihood estimation may

be important if the major concern is with dependence of the hazard rate on distance, but

IMLE is available in most event history software packages, such as RATE (Tuma, 1979), SURVREG
(Preston and Clarkson, 1983) and the package used in this thesis, LIMDEP (Greene, 1990). Chapter Four
provides an overview of all the software used in this research.
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where the concern is with the effects of the explanatory variables, partial likelihood

estimation has been shown to be very efficient (Lawless, 1982; Tuma, 1982; Tuma and

Hannan, 1984).

The partial likelihood approach proposed by Cox (1972, 1975) can be used for

estimating the coefficients of {j in the proportional hazards model [as in equation

(3.2.25)], in the presence of censoring, without specifying the form of the baseline

hazard function Aa. We let a set of k durations be ordered from the shortest to the

longest, where x j is either the censored distance or the distance to a nearest neighbour,

Xl <X2< .. .xk and let Rj denote the set of events with associated durations smaller than xj •

An indicator, in this thesis denoted CEN, is set to 1 if the duration ends at a nearest

neighbour, or 0 if the distance ends at the boundary (i.e., the distance is censored). In

partial likelihood estimation, the likelihood function is the product of likelihoods for all

completed (or uncensored) durations only, not the likelihoods for all the observed

durations. This method is best illustrated with an example derived from Allison (1984).

Given k=lO (i.e., 10 durations), for n=lO event locations ranked from shortest

to longest, and the 4th, and 7th ranking durations are censored (i.e., measured to the

boundary), this means n=8 events have uncensored durations. If the 1st ranking

duration (i.e., the shortest) ended at distance xi' then all the other events in this example

were at risk of their duration ending (meeting a nearest neighbour or the boundary) at

this distance from their location because it is the shortest. Thus, the likelihood that the

duration ended for event n= 1 rather than to one of the other 9 events is derived by

taking the hazard rate of event n= 1 at distance xj and dividing by the sum of the hazards
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for all the events at risk at distancexj . However, the likelihood function for event n=4,

which is censored, is not constructed, and this is also the case for event n=7. Basically,

the censored durations are incorporated in the denominator of the likelihood as part of

the events "at risk" of a duration ending, but since they are not complete observations,

they do not have a corresponding likelihood function.

Formally, the conditional probability that a particular duration (indexed by i) is

the duration which ends at xj is

(3.2.29)

where zlx) is the regressive component of the kth duration, evaluated at xj ' Estimates

of {j are based on the likelihood function that is obtained as the product of these

conditional probabilities,

(3.2.30)

where 1 is the set of completed (Le., uncensored) durations. The maximum of this

likelihood function provides estimates that are asymptotically normally distributed under

very general conditions (Kalbfleisch and Prentice, 1980). The basic notion here is that,

in the absence of all information about the baseline hazard, only the order of the

durations provides information about the unknown coefficients (Kiefer, 1988).

The inclusion of explanatory variables into event history models is important for

two reasons. First, it is consistent with explanatory data analysis where the estimation
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of the coefficients on the structural variables is intrinsically valuable. Second, the

inclusion of explanatory variables is important in correctly identifying distance (or

duration) dependency in the hazard rate. This issue concerns the distinction between true

duration dependence and spurious duration dependence arising from variation in hazard

rates across event locations (i.e., environmental heterogeneity). In general, if the

substantive concern is with the dependence of the hazard rate on distance, then fully

parametric regression methods may be more appropriate then the partially parametric

approaches which do not provide direct assessment of the baseline hazard rate. The main

attraction of the partially parametric Cox model is that it allows the effects of explanatory

variables to be examined under general conditions for the baseline hazard rate thereby

reducing the risk of model misspecification from incorrect parametric assumptions. This

feature has lead to widespread application of this method in the analysis of time intervals

and, recently, to the analysis of distance measurements by Odland and Ellis (1992) that

is discussed below.

3.2.5 Settlement Pattern Analysis with Proportional Hazards Models

In their application of proportional hazards models to the analysis of a spatial

point pattern (i.e., settlements), Odland and Ellis (1992) note that spatial point process

models maintain some restrictive assumption on either the interdependence or

heterogeneity in the density of events which leads to ambiguous conclusions about the

heterogeneity of the study area. For example, under CSR, the assignment of events to

locations is homogeneous and independent, whilst alternative models incorporate some
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form of interdependence among the locations of events such as contagion or inhibition.

Models allowing for heterogeneity in the density of events are also available, but

maintain restrictive conditions on event interdependence (Diggle, 1983). Typically, these

spatial process models imply particular frequency distributions for the distances

separating points and comparisons of observed inter-event distances with the frequencies

implied by a model would reveal the operation of a particular process. However, such

comparisons provide only ambiguous evidence about alternative processes, because the

frequency distributions implied by these models depend on specific conditions for both

heterogeneity and interdependence and deviation from the implied frequency distributions

may result from the failure of either condition.

Odland and Ellis (1992) tum to the partially parametric proportional hazards

model as an alternative to spatial process models. In this respect, they are able to

measure trends in the nearest-neighbour durations between events in space, rather than

the interdependence among event locations, and, therefore, a null hypothesis of

homogeneity could be tested without an explicit specification for the interdependence of

event locations. Recall that the proportional hazards model can be specified in both the

fully parametric and partially parametric format. If the main concern is with testing the

location of an event in space based on the effects of explanatory variables, a model could

be specified without assuming a particular form for the spatial dependence. Thus, the

proportional hazards model allows for the unbiased estimation of spatial heterogeneity

effects, unlike the standard spatial process models (Odland and Ellis, 1992).

The straightforward application to settlement spacing by Odland and Ellis (1992)
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included testing for CSR by comparing the partially parametric proportional hazards

model with the constant hazard Weibull model shown in equation (3.2.27), which is

equivalent to the exponential distribution. In this regard, a process in which events are

located randomly and independently within a two-dimensional plane leads to an

exponential distribution for the distances between neighbouring events. Therefore,

evidence for or against a random and independent assignment of nearest neighbour

distances may be sought by comparing a set of observed distances to those implied by

the exponential distribution. Spatially varying explanatory variables were incorporated

by including both the distance north-south and east-west from the south-east corner of the

study area, Nebraska. Results indicated that a definite east-west trend existed in the

settlement pattern, with the spacing of settlements increasing toward the western part of

the state. This finding confirmed the authors hypothesis based on the obvious east-west

trend available by visual inspection of the spatial point pattern.

Further analysis considered any interdependencies between these settlement

locations by comparing survivor functions of the proportional hazards model with the

survivor functions of a model of Complete Spatial Randomness (CSR). Recall that CSR

incorporates the assumptions of homogeneity and independence. Comparisons of these

survivor functions at a series of areas defined by isolines oriented orthogonally to the

direction of change (in this case, north-south) indicate a tendency towards uniform

spacing at these small spatial scales (Figure 3.2.10). In other words, there is less

variation in the distance intervals between nearest neighbours (Le., fewer very large or

very small measures) than would be expected under CSR implying a competition for
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Figure 3.2.10: Comparisons of survivor plots for the Proportional Hazards Model (PHM)
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Nebraska. (Source: Odland and Ellis, 1992)
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market areas and uniform spacing (Odland and Ellis, 1992).

3.3 Conclusions

In this chapter, basic definitions and statistical concepts of event history analysis

were introduced. More importantly, however, this chapter sought to translate concepts

associated with the analysis of time intervals into useful methods for the analysis of

spatial duration (or distance) measurements. Sources of spatial variation such as

environmental heterogeneity of the process environment and the individual event, along

with duration dependency were defined. The emphasis in this chapter was clearly on

regressive models and the measurement of censored durations. The need to evaluate the

effects of explanatory variables on a duration measured from an event location to its

nearest neighbour allows some assessment of the spatial diffusion process of interest in

this thesis. Chapter Two identified general explanatory variables, such as the sales agent

and homophilous individuals, that may influence the spread of information about an

agricultural innovation to other farmers and, presumably, lower their resistance to

adoption. The next chapter defines the explanatory variables used in this thesis and

provides hypotheses concerning their possible effects.

Besides the obvious utility of regressive approaches, the notion of spatial

censoring has intuitive appeal for the analysis of a series of events in space. In Chapter

Two, the problems associated with boundary or edge effects, notably the bias toward

longer mean nearest neighbour distances, was discussed. In this chapter, "right

censoring" was redefined in spatial terms so that edge effects could be incorporated into
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model parameter estimation. In this sense, spatial censoring occurs when an event in

space is closer to the boundary then to a nearest neighbour (i.e., a boundary event) is

associated with a duration measurement defined as the shortest distance from itself to the

boundary. This censored duration is incorporated into the model estimation procedure

and provides certain knowledge that no event is closer to that event with the censored

duration than the boundary is. To properly assess the usefulness of measuring censored

durations, the results should be compared to results from conventional nearest neighbour

durations. Therefore, spatial durations that include censored durations and those that are

strictly uncensored (where the boundary event must now find a neighbour within the

study area) are analysed separately.

Chapter Three also summarized the analysis by Odland and Ellis (1992) based on

proportional hazards models. From the review of relevant methods provided in this

chapter, several other areas of investigation are clear with respect to the usefulness of

event history methods for the analysis of spatial point patterns. Two have already been

mentioned above. First, this thesis attempts to measure the effects of explanatory

variables on nearest neighbour durations associated with a diffusion process. Second,

nearest neighbour durations that may terminate outside the boundary because they are

closer to the boundary then to a neighbouring event are incorporated as spatially censored

durations. These censored durations are analyzed separately from uncensored or

conventional durations whose nearest neighbours must all lie in the study area. Also, a

wider range of distributional forms for the baseline hazard rate are compared to assess

their fit with the nearest neighbour durations, as opposed to Odland and Ellis' (1992) use



89

of only the exponential model. Spatially-varying explanatory variables are not included

in this thesis, although Odland and Ellis' (1992) method of incorporating these variables

is possible. However, the spatial point pattern in this thesis has no obvious trends in the

spacing of events that can be associated with any explanatory variable, as was the case

in the spatial point pattern used by Odland and Ellis (1992). The next chapter presents

the data and analysis outline.



Tms STUDY IS CONCERNED WITH THE ANALYSIS OF A SPECIFIC GEOGRAPHIC AREA; ITS

OBJECT IS TO DEAL WITH THE DIFFUSION OF INNOVATIONS AS A SPATIAL PROCESS. THAT

THE MATERIAL USED TO THROW LIGHT ON THE PROCESS RELATES TO A SINGLE AREA

SHOULD BE REGARDED AS A REGRETTABLE NECESSITY RATHER THAN A

METHODOLOGICAL SUBTLETY.

HAGERSTRAND



CHAPTER FOUR

DATA AND RESEARCH METHODOLOGY

4.1 Introduction

This chapter seeks to present the data and methodology under investigation in this

thesis. The data consists of a spatial point pattern derived from the diffusion of an

agricultural innovation (the A.O. Smith Harvestore Feed Crop Storage System) in a

predominantly rural area between April, 1963 and September, 1986. In particular, the

data includes the precise location of each adopter farm along with a series of explanatory

variables associated with that farm and/or location. This data is analyzed in terms of the

spatial durations between adopter locations (Le., events) and departs from other spatial

point pattern and spatial diffusion studies through the event history approach taken. In

addition, although the methodology adopted in this research includes variables based on

traditional diffusion of agricultural innovation studies, it does not concentrate on

communication patterns cognate with studies done by rural sociologists.

This investigation attempts to further the research by Odland and Ellis (1992) in

applying event history models to the analysis of spatial point patterns. In this respect,

this thesis is methodological in nature with an emphasis on the utility of an event history

90
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approach to the study of spatial patterns and processes. The present analysis is similar

to that of Odland and Ellis (1992) in that it utilizes a spatial point pattern which contains

some inherent spatial dependence between event locations. However, it extends the

previous research by exploring a wider range of parametric models, spatially censored

durations, and a more extensive set of explanatory variables. The investigation also

employs simulated spatial point patterns and graphical methods to test the empirical

spatial point pattern against one generated by complete spatial randomness (CSR). In

addition, the spatial data handling capabilities of Geographic Information Systems (GIS)

are used to facilitate the construction of the simulated events and measure the durations.

4.2 The Innovation: The Harvestore Feed Crop Storage System

The "Harvestore System," also known as the Cadillac of silos, is a unique feed

crop storage system that has a number of advantages over ordinary farm silos. A serious

problem with feed crop storage in ordinary silos is that up to one quarter of the feed crop

is lost through oxidation. Atmospheric temperature changes cause gases inside silos to

expand and contract. This action exerts pressure on the silo structure which cannot be

compensated for without allowing air to enter and contact the feed crop, so causing

oxidation (DeTemple, 1971; Scorgie, 1973).

The major advantage of the Harvestore System is that it can be sealed air-tight

to reduce feed crop loss through oxidation. The Harvestore structure is constructed of

glass-fused-to-steel plates that are impervious to air. Inside the structure, pressure

absorbing gas bags vested to the outside compensate for changes in atmospheric
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temperature and pressure. A rise in outside temperature causes gases inside the structure

to expand and push air out of the breather bags. Conversely, a decline in outside

temperature causes gases inside the silo to contract and the breather bags are filled with

air. Thus, the system, by controlling in and out air flow, compensates for pressure

changes inside the Harvestore structure without allowing air to contact the feed crop.

In addition to the obvious advantage a Harvestore System provides to a farmer

by significantly reducing feed crop loss through oxidation, it also gives the farmer greater

flexibility in cropping and harvesting, and allows the farmer to increase both the quantity

and quality of animal feed. In this regard, feed crops can be harvested early when

moisture and protein content are high and stored in the Harvestore structure without the

worry or cost of drying the harvest (DeTemple, 1970, 1971). Double-cropping with a

winter crop and an early spring harvest is a possibility that allows the farmer to get an

extra crop per year from the same acreage. For example, beef farmers use the

Harvestore structure for alfalfa haylage (high moisture hay), but this could be topped

with high moisture corn in the fall season. Thus, the farmer could grow and store all

the feed necessary for optimum production from the livestock without having the added

expense of commercial feeds, vitamin supplements or other additives (Scorgie, 1973).

Related to the notion of double-cropping is the automatic unloading from the

bottom of the Harvestore structure - another advantage of a Harvestore System. The

automatic unloading of the stored feed from the bottom means that it is not necessary to

unload the structure before refilling. Ordinary silos, on the other hand, load and unload

from the top, thus they must be emptied before refilling. In other words, bottom
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unloading enables farmers to "feed out" the feed placed in first, as well as being able to

feed out while filling the structure with new feed.

Basically, the Harvestore System can be considered an innovation because of three

features discussed above. In summary, the Harvestore System is an innovative feed crop

storage system in that it does three things of which no other silo is capable:

(1) It resists corrosion from feed acids on the inside as well as from the outside

with its glass-steel encasing.

(2) It provides maximum protection from oxygen to preserve feed nutrients with

a "breather bag" system suspended from the top of the structure that permits air to

transfer in an out of the structure (in the bags) and compensates for pressure differences

inside and outside the air-tight structure.

(3) It automatically unloads from the bottom allowing double-cropping and

reduces the heavy labour involved in unloading/loading the silo at harvest.

Basic to understanding the diffusion of the Harvestore System, and the reasons

for its acceptance to any farmer, is knowledge of the context in which the Harvestore

was developed. The history of the Harvestore is discussed in detail by Scorgie (1973,

1992), but some key aspects of the Harvestore's establishment are worth noting here.

After the Second World War, the expansion of industry and the subsequent increase in

the demand for agricultural products led to farmers increasing production and taking

advantage of economies of scale. The competition within farming intensified such that

the alternative to expansion was elimination from profitable farming. Adding to this

climate of change in farming was the growing importance of corn as the primary feed



94

upon which Ontario livestock producers have come to rely. Along with the "corn

revolution, " the demand for feed storage silo towers swelled dramatically. Thus, farming

operations with the storage of hay and grain in a barn shifted to silos and automatic feed

handling systems. Most silo towers were built of poured concrete, cement blocks or

cement staves. Through the 1960s, the number and average size (in diameter) of silos

increased reflecting the competitive nature of farming wherein farmers cropped more

land, bought more livestock and generally increased the scale of their farming operations

(Scorgie, 1973).

The corn revolution extended the limits of commercial farming in North America

through the introduction of "hybrid corn. II Hybrid corn, which give different yields and

mature at different rates than regular corn, can be used for different types of feed. In

fact, corn is considered the best field crop for producing energy in livestock in terms of

total calories (Scorgie, 1973). Also, corn may be fed to animals as corn silage which

uses all the plant minus the roots (i.e., chopped leaves, stock, cob, and kernels are

combined as a feed). Alternatively, corn may also be fed to livestock as grain by

removing the protein rich kernels from the cobs. The kernels may be dried or stored as

high moisture corn; they may be ground before using them as feed. The versatility of

corn and its high energy factor is in sharp contrast to traditional winter feeds such as

alfalfa, buckwheat, clover or legumes, which are cut, dried, cured and stored in the barn

as hay or in compacted form as bales. However, hay does not have as many total

digestible nutrients (TDN) as corn silage (Scorgie, 1992).

A major trend in southwestern Ontario farming since the 1960s has been the shift
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to higher energy corn from the lower TDN feeds (Scorgie, 1973). The three main types

of feed crop, namely corn, grain and hay, are used on hog, beef cattle and dairy cattle

farms in southwestern Ontario. The townships in the study area contain farms that are

livestock feed-growing and livestock raising although fruit and vegetable, tobacco, cash

crops and marginal pasturing farm areas exist. This trend towards corn and "wet feed"

in general, lead to the increased use of silos to store feed. Wet feed, including the high

moisture content corn, simply refers to feed not put through a long, labour intensive

drying procedure common with hay usage. Thus, alfalfa haylage (high moisture content

hay) and high moisture corn revolutionized feed crop farming in general (Scorgie, 1973;

1992).

The commercial Harvestore silo first made its appearance in southern Wisconsin

and northern Illinois in 1949. Developed originally by the A. O. Smith Corporation in

1944, the structure was constructed of a glass-fused-to-steel material invented by steel

fabricators decades earlier. The resulting silo exhibits the surface characteristics of hard,

smooth, corrosive-resistant glass and yet it has the structural strength of steel. Unlike

the cement cast-in-place silos, the Harvestore silo could be dismantled and reassembled

elsewhere because it was designed to be bolted together. It is possible to take apart a

stave silo piece by piece and rebuild it, but the result may be inferior to the original

structure in terms of strength and ability to keep oxygen from reaching the silage. Most

unwanted silos, in fact, are removed from their position by dynamiting or through

demolition by wrecking crane resulting in worthless cement or, at best, cement fill that

must be removed. The Harvestore structure could be sold and rebuilt at another location
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as opposed to the more permanent cement alternatives.

In addition to the unique features mentioned above, the Harvestore is a complete

system. That is, a farmer deciding to buy an oxygen free or sealed storage Harvestore

System received the silo structure, a foundation, a filler hood, pipes and an unloader.

In contrast, companies associated with concrete or stave silos may build an extension on

to an existing silo (even if it did not erect it originally), may add unloading and

conveying equipment, or may construct other farm buildings. Hence, a farmer bought

a complete unit which was ready to be used when feed was supplied rather than simply

buying a "hollow tube." Along with the complete package, however, was a price tag two

to three times more expensive than the same size concrete silo (Scorgie, 1973; 1992).

A final aspect of the Harvestore System to consider is the attention required of

the farmer for proper use and care of the structure. In this context, the farmer must take

several precautions including checking the moisture content in the feed being placed in

the structure; closing the hatch after each filling to prevent oxygen from entering the tank

which would otherwise defeat the purpose of oxygen free storage; inspecting the

unloading equipment to prevent unnecessary breakdowns; and replacing the plate at the

end of the unloader to keep oxygen from reaching the feed at the bottom of the structure.

Likewise, servicing damaged or malfunctioning Harvestore's was an important function

of the two companies that marketed the Harvestore during the study period (see below).

Indeed, farmers whose livestock depended on being fed daily would be less inclined to

adopt the Harvestore if fast, dependable service was not available.
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4.3 The Study Data Set

The data set analyzed in this thesis consists of coordinate locations of 528 adopter

farms of the Harvestore Feed Crop Storage System between 1963 to 1986 (termed

events). The Harvestore was marketed in the study area by two companies: Reliable

Farm Specialties from 1962 to 1966 and Ontario Harvestore Systems from 1967 onwards.

The data was collected by Mr. E. K. Scorgie and details of its collection are provided

in Scorgie (1992). The Harvestore data is particularly well suited to this analysis as it

contains records of each adoption both in terms of the exact location, date of purchase,

and a set of explanatory variables. In this regard, the data set could accomodate both

temporal and spatial regressive analyses, although in this thesis, only the spatial aspect

is explored. The diffusion of agricultural innovations using the spread of Harvestores

as data has previously been investigated by DeTemple (1970, 1971) and Scorgie (1973).

However, in this research, the focus is on the spatial durations between adopter locations

(events) and the resultant spatial pattern, rather than investigating the complex and

dynamic sociological and economic diffusion mechanisms that characterize these earlier

studies.

The pattern formed by the locations of adopters in southwestern Ontario is shown

in Figure 4.3.1 using TransCAD GIS software. This set of 528 adopter locations

consists of all farms that were initial adopters of the Harvestore system and excludes

farmers purchasing subsequent Harvestore structures at the same location. The locations

of these adopters may have been influenced by several factors discussed previously in

section 2.3.2 and these include various sources of interpersonal communication. In the
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following discussion, the dependent and independent variables are defined and some

hypotheses concerning their influence on the parameter coefficients are presented.

4.3.1 Explanatory Variable Definitions

Recall that in this thesis, an event refers to the farm location of an initial

purchaser (adopter) of the Harvestore system in the study area. This definition therefore

excludes, as events, additional Harvestore purchases at this same location or relocated

silos. A duration, to be modelled as the dependent variable, is defined as the Euclidean

distance measured between nearest neighbour events. In other words, each event is

associated with a distance measurement to the nearest Harvestore adopter. In addition,

several characteristics of each event are available that may have some influence on the

distance separating an event from its neighbour, and these may be defined as explanatory

variables. Also, in regards to the durations of interest, recall from Chapter Three that

two data sets of observed durations will be analysed: uncensored and censored durations.

In the uncensored data set, each event has an associated duration that ends at a

neighbouring event, while in the censored data set, some events (termed boundary events)

will have associated durations that terminate at the boundary, but both types of duration

can be influenced by the explanatory variables.

From the discussion in Chapter Two on the spatial diffusion of agricultural

innovations, it is apparent that the spatial mechanisms of information flow are an

important part of the learning and adoption process. A pivotal source of interpersonal

communication and information flow in any diffusion study is the change agent of the



100

innovation (Rogers, 1983). In this thesis, the sales agent (SAL) is the change agent of

interest and is one of the series of explanatory variables measured for each event (i.e.,

adopter farm). Over the 23 year period for which data was collected, a total of 42 sales

agents sold Harvestore systems, at one time or another, in the study area. The sales

agents worked for different periods of time, some for many years and some for only a

few weeks, and the amount of agents working in the study area at one time was not

consistent during the 23 year period (Scorgie, 1992). In addition, the sales agents

generally worked in distinct spatial markets or sales territories within the study area, with

the size of these territories varying considerably amongst agents and through time

(Scorgie, 1992).

The above description of the sales agents role in diffusing the Harvestore

innovation suggests a complex web of temporal and spatial mechanisms and using this

variable as a meaningful regressor appears difficult. Nevertheless, the sales agents

are viewed by Scorgie (1992) as the key ingredient in the spread of Harvestore systems,

and must be included in an investigation of the diffusion process of Harvestore's for

several reasons. First, the motivation which initiates information transmission is central

to understanding the influence of sales agents on the learning and adoption process

(Brown, 1981). In general, potential adopters of the Harvestore may obtain information

by seeking it or by merely receiving it without solicitation. In the case of Harvestore

sales agents, their motivation was the latter where agents looked for ideal farmers to

approach with the idea of sealed storage. For example, a farmer contemplating a change

in his/her operations to decrease expenses on feed or protein supplements, labour,
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equipment or by increasing productivity, was a prime target of Harvestore sales

proposals. This potential adopter was differentiated amongst the population of farmers

by the sales agents through information gained by personal contact with farmers in their

sales territory or by examining relevant census figures for hogs, dairy cattle, and beef

cattle to calculate an index of the potential market for Harvestores by township (Scorgie,

1973; 1992).

Further, the Harvestore innovation, in broad terms, sought to make the

conventional farm capital intensive rather than labour intensive, as is typical of the

modern agricultural sector (Scorgie, 1973). For this reason, sales agents approached,

for the most part, working farmers, generally under the age of 40, who have had some

success in their farming operation, showing that they possessed managerial ability and

that they would probably use the Harvestore silo properly. This was essential since the

Harvestore carried a significantly higher price than conventional silos and, very often,

financing was required. This being the case, the Harvestore should be able to help

farmers reduce their labour input in the farm operation, at the same time reducing the

feed costs and providing better quality feed for the livestock. To operate in this manner,

the farmer had to plan to farm for at least more ten years - the realistic time required to

repay the initial outlay of capital for the Harvestore (Scorgie, 1973). Thus, the definition

of an "ideal" potential adopter of the Harvestore, from the sales agents point of view,

is extended to young, innovative farmers, looking for a change on their farm: either to

reduce labour or to increase profit, or both, and who could properly manage the

Harvestore and its associated financing.
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In some cases, it was easy for sales agents to find farmers who would want a

change in their farming operations. For instance, sales agents were attracted to farmers

whose barns had been destroyed by fire and whose farm operation would change through

necessity. In other cases, farmers lacked storage facilities for the feed which they had

grown, and they were forced to watch that feed deteriorate because it was not stored

properly (Scorgie, 1973). However, sales agents were also confronted by farmers very

resistant to change. In these instances, farmers with highly successful operations did not

feel a need to invest more money in their already effective farming system. The

Harvestore is, in fact, a system which does change a farmer's operation, from the crops

he/she plants to the his/her harvesting and storing procedures, then on to the handling

of his/her feed, and finally to his/her marketing of the agricultural product (Scorgie,

1973). Once again then, we may amend the notion of an "ideal adopter" to include

farmers who are conscious of the necessity of getting the greatest amount of feed from

the land that they have at their disposal, and so willing to change an established farming

operation.

In summary, the sales agents look for prospects who are dedicated to farming and

expect to farm for the foreseeable future. Since farming is their livelihood, they are

interested in improving their position, as is any concerned business person. Farmers may

improve their economic position by decreasing expenses or increasing productivity, or

both, and the Harvestore provides this possibility for farmers. Therefore, the sales

agents are looking for farmers who are contemplating a change. Secondly, a farmer

must have shown from his/her past experiences that he/she is a good manager, not only
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in his/her utilization of time and physical resources, but also in his/her ability to work

with money. Both of these characteristics of potential adopters are linked to another

marketing strategy by Harvestore sales agents - the neighbourhood effect (Scorgie, 1973).

In this regard, a successful operation displaying the distinctive blue coloured

Harvestore silo was the best advertising to neighbouring farm operators any sales agent

could ask for. On the other hand, selling a Harvestore to a farmer with poor managerial

skills and a marginal farming operation could easily have lead to reposession of the

Harvestore by a bank, and adverse publicity for the Harvestore. In the same vein, sales

agents routinely visited owners in their sales territory up to four times each year,

illustrating a willingness to service the Harvestore. This high level of customer service,

according to Scorgie (1992), was also a neighbourhood effect selling strategy. Here, the

sales agents hoped that satisfied Harvestor owners would "sell" the idea of sealed storage

to other farmers (neighbours or social groups), while the agents themselves attempted to

communicate information on the Harvestore silo to neighbouring farmers. In his earlier

study, Scorgie (1973) noted that the greatest number of potential adopters were brought

to the attention of sales agents through satisfied Harvestore owners, consistent with the

neighbourhood effect of diffusion.

Given the importance of the sales agent as the"contagion" facilitating the farmer's

decision-making process and potential acceptance of the innovation, the sales agent data

was considered more closely. Visualizing the data as a histogram revealed an interesting

dichotomy in the sales agent data (Figure 4.3.2). Here, we see that three sales agents

(coded 5, 6, and 14) accounted for approximately 62% of Harvestore adoptions and each
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had greater than 10% of the total adoptions. The remaining 39 sales agents each

contributed less than 10% of the total adoptions. Obviously, sales agents 5, 6, and 14

were exceptional in terms of Harvestore sales, whilst the others were typical sales agents,

in terms of their Harvestore sales. Defined in this manner, the original 42 sales agents

were divided into two distinct groups in terms of Harvestore sales generated: SAL= 1 for

exceptional agents, SAL=O otherwise. Further, this binary variable facilitated discerning

the effectiveness, strategies and spatial pattern of adopters associated with both the

typical agents and the exceptional agents. Note, however, the number of adoptions was

the only criteria used in this binary definition, while the length of employment was not

considered explicitly for any of the agents, but one could easily imagine some sales

agents who accounted for very few adoptions (i.e., also classified in the typical category)

as being employed for a shorter time periods.

Based on the prominent role played by sales agents in the adoption of the

Harvestore, two distinct spatial patterns and, therefore, associated parameter estimates,

are likely to result from the typical versus exceptional sales agent definition. Given the

selling strategy of sales agents and their use of the neighbourhood effect as revealed in

Scorgie (1973; 1992), it is hypothesized that most sales agents likely remained in smaller,

well-defined regions of the study area. If this pattern is true for the typical sales agents,

this would be reflected in positive parameter estimates for the SAL variable. More

specifically, a significant positive parameter estimate for SAL would indicate that longer

durations are associated with Harvestore adopter locations sold by an exceptional sales

agent and shorter durations exist at adopter locations sold by the typical sales agents.
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Conversely, a significant negative parameter estimate would indicate that adopter

locations associated with an exceptional sales agent tend to be in closer proximity to

other adopters (i.e., shorter durations) than adopter locations associated with typical sales

agents are farther apart (i.e., longer durations), relatively speaking. If this second

hypothesis holds true, then the exceptional sales agents may be associated with a few

large clusters of adopter locations or many small clusters of adopters.

Similarly, other independent variables connected with the interpersonal sources

of communication and spatial mechanisms of information flow, based on the notion of

homophilus individuals could also effect the length of durations associated with adopter

locations. In this regard, the type of farming operation (hog, beef or dairy) and the feed

type used (corn, haylage or grain) may have influenced the adoption of the Harvestore

in the study area. Intuitively, farmers with similar farm operations and using similar

feed types will likely encounter similar circumstances in day to day operations and the

communication level between them is most probably high. Thus, the adoption or

rejection of sealed storage and the Harvestore amongst farmers would likely be

influenced by the opinions of homophilus individuals interacting. In terms of measuring

this effect in an event history methodology, one must consider the possibility that shorter

or longer durations are associated with particular farm and feed types.

The percentage of adopters by farm type is shown in Figure 4.3.3 where "other"

indicates some multi-type farms. The predominant farm types are dairy (44.3 %) and hog

(36.0%), whilst beef (6.6%) and other (13.1 %) are much less common amongst

adopters. In terms of feed type, Figure 4.3.4 clearly shows that the majority of adopters
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of the Harvestore utilize the sealed structure for the storage of high moisture content

corn. This is not surprising given the preceeding discussion in section 4.2. The second

most popular feed type used by Harvestore adopters is haylage, again the high moisture

content of this feed type makes sealed storage appropriate.

Given this situation, a set of dummy variables for farm type (COR, HAY) and

a set for feed type (DAI, HOG) are considered in the regressive event history analysis.

The hypothesis for the farm and feed type dummy variables are that stronger

communication ties might exist amongst farmers with the same type of farm operation

or those using the same feed type. To some extent, the variation in the spacing of

adopter locations based on communication by homophilus individuals can be measured

to determine the degree in which homophilus farmers (in terms of farm and feed type)

act as contagions in the diffusion of the Harvestore. A significant positive parameter

estimate for one of the farm types indicates longer durations associated with this farm

type relative to durations associated the alternative farm types. Likewise, any significant

positive parameter estimate for one of the feed types indicates longer durations relative

to durations associated with the alternate feed types. Clearly, one would expect to see

a negative parameter estimate for the COR dummy variable relative to all the other feed

types, since the Harvestore is ideal for high-moisture content corn and farmers using this

feed type might share their knowledge of the Harvestore to neighbouring farmers using

corn feed. However, it is important to note that the farm and feed type data assumes that

the spatial variation in farm and feed types is homogeneous. This is an important

assumption to consider, especially in the context of modelling durations
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between events, where any spatial variation amongst farm and feed types may well

obscure the effects of homophilus farmers on duration.

In contrast to the preceeding explanatory variables that were concerned with

mechanisms of spatial information flow, variables regarding the spatial structure of the

study area are now defined. In this respect, these variables attempt to measure

environmental heterogeneity of the study area. The importance of accounting for as

much measurable environmental heterogeneity as possible was discussed in Chapter Three

and is important with regard to identifying duration dependencies in the data as opposed

to spurious duration dependencies caused by unobserved or unmeasured environmental

heterogeneity. A definite factor affecting the distribution of Harvestores in the study area

is the number of commercial farmers in each are. Therefore, the density (DEN) of

commercial farming operators in each township was calculated within the TransCAD GIS

database using census figures from 1971, 1976 and 1981 for consistency. Each adopter

location was associated with the farming density measure of the township in which it is

located. This information is shown in Table 4.3.1. Accounting for variations in farming

density may explain areas with inherently shorter durations between adopter locations.

One would suspect the DEN variable to have a significant negative parameter estimate

which would imply that areas of higher farming density account for shorter durations,

associated with adopter farms in those areas, as compared to the durations associated

with adopter farms in the remaining, lower density areas.

The final explanatory variable in this regression analysis also concerns the spatial

structure of the study area. A Corn Heat Unit (CHU) is defined as the number of days
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that the temperature exceeds 50 degrees Fahrenheit in the day and 40 degrees Fahrenheit

in the evening during a growing season based on the latest 30 year record of

temperatures. In other words, CHUs are analogous to the more familiar "growing

degree days" used to classify geographic areas by length of growing season. In southern

Ontario, the minimum CHU required for corn to mature is 2000; the entire study area

exceeds this minimum. However, the level of CHU's has a definite north - south trend

in the study area where the level of CHUs increases steadily when moving from the north

to the south of the study area. In this regard, we can hypothesize that farmers in areas

with lower CHUs may be more apt to adopt sealed storage to preserve their smaller yield

as opposed to farmers in the south (higher CHU's) who likely have less need for a

Harvestore due to the availability of corn for longer time periods (Scorgie, 1992). If this

were true, the event density would increase with decreasing CHU, and this spatial

variation of events would result in a significant negative parameter estimate. However,

a significant positive parameter estimate is also reasonable to hypothesize. In this

respect, the farmers in areas of higher CHU's may want to use all of the larger corn

supply they grow to increase farm operations.

From the discussion above, it is apparent that the spatial structure and information

flow explanatory variables may either increase or decrease the duration (or distance)

between adopter locations. This increase or decrease in duration length is also

interpreted as a decreasing or increasing effect on the hazard rate, respectively. For

some variables, it is reasonable to discern contradictory hypotheses for the influence of

that variable on duration length, as with the effect of CHU's. Indeed, the complex
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nature of the innovation adoption process (as discussed in Chapter Two) suggests that

many more variables, some difficult to quantify, would be required to completely model

such a process. In any event, the approach adopted here is an original attempt to

incorporate explanatory variables into, essentially, a distance based, spatial point pattern

analysis and the results should provide further insights into the utility of an event history

approach to modelling spatial point patterns.

4.4 The Study Area

The region chosen for this study includes 42 townships in 8 counties in

southwestern Ontario and comprises approximately 3,650 square miles (9,500 square

kilometres or 2,300,000 acres) in total land area. The county and township level maps

of the study area are shown in Figures 4.4.1 and 4.4.2, respectively. The study area was

selected primarily because of the availability of detailed Harvestore diffusion data

collected in Scorgie (1992). This area is appropriate for a study of innovation diffusion

since southwestern Ontario is located in the recently expanded North American corn belt

- where the development of hybrid corns and their storage has extended the geographical

limits of commercial farming as previously discussed.



Figure 4.4.1: County level map of the study area.
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4.5 Outline of Analysis

Typically, the analysis of an event history data set commences with an exploratory

stage in order to identify potential explanatory variables that correlate with the behavior

under investigation (i.e., migration, shopping). In the context of this thesis, the data set

is a planar point pattern and as such, the exploratory phase of analysis is concerned with

comparing the empirical point pattern to a model of Complete Spatial Randomness (CSR)

defined fully in Chapter Two. Consequently, the first part of the analysis utilizes

powerful graphical tests and simulated spatial point patterns to explore the data and

determine whether or not the set of events, taken as a whole, should be considered as

randomly distributed or, in some way, clustered or regularly distributed.

To review, the hypothesis of CSR implies two important assumptions. First, that

the intensity (mean number of events per unit area) does not vary over the plane.

Second, that there are no interactions amongst the events. In other words, there is an

assumption of independence which would be violated if an event at a location either

encouraged or inhibited the occurrence of other events in that neighborhood. Basically,

CSR represents an idealized standard which, although nearly always untenable in

practice, is a valuable aid to the formulation of hypotheses concerning pattern and

process. Thus, most spatial point pattern investigations start with a test of CSR. Diggle

(1983) outlines several reasons for this approach. First, a pattern for which CSR is not

rejected hardly merits any further formal analysis. Second, tests of CSR are a means of

exploring the data set; the rejection of CSR is not particularly important per se. Finally,

CSR acts as a dividing hypothesis to distinguish between patterns which include "regular"
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and "clustered" at either end of the spectrum (see Chapter Two).

Rejection of CSR via graphical tests leads to the second stage of analysis

concerned with the statistical evaluation of a series of explanatory variables using an

event history modelling approach. The regression analysis involves modelling the hazard

function (which describes the process) as dependent on the duration lengths and different

explanatory variables. Regression methods permit the consideration of the influence of

the spatial mechanisms of information flow and spatial structure on the pattern of

Harvestore adoptions. Two regressive methods are employed in this thesis: the partially

parametric Cox model and the fully parametric models. Recall from Chapter Three that

the Cox model can determine the influence of explanatory variables without having to

make further assumptions about the form of the hazard rate. In contrast, fully parametric

models are used when certain hypotheses concerning the duration dependency are to be

tested.

4.5.1 Graphical Analysis

The analysis begins with graphical tests designed to check for randomness in the

spatial point pattern. This analysis involves the construction of a theoretical distribution

to represent a completely spatial random (CSR) pattern in an area of the same shape and

size as the study area with the same number of points from computer simulation. The

test proceeds by computing an empirical distribution function (EDF) which is the

observed proportion of nearest neighbour distances. The EDF is plotted against the

theoretical distribution function from the simulation. If the data are compatible with
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CSR, the graphical EDF plot should be roughly linear. The theoretical distribution

function can also be derived by mathematical approximation, rather than simulation, and

this avenue is also explored at this stage of analysis. The analysis in this thesis involves

only the nearest neighbour measurements and interpretations of EDF plots are discussed

in detail in Chapter Five.

At this point, several issues are worth noting regarding the graphical analysis.

First, the strength of the EDF graphical test cannot be underestimated. Diggle (1983)

suggests that they often make further testing of the spatial point pattern unnecessary and

are almost always informative. Indeed, Diggle (1983) goes on to say that no single test

statistic should be allowed to over-ride a critical inspection of the EDF plot. Second,

empirical and theoretical distribution functions are derived for both data sets: the

censored and uncensored durations. In this regard, the effect of censoring is considered

at every stage of the analysis, including the regressive component described below.

Lastly, reciprocal nearest neighbours, although often included in statistics describing

spatial point patterns, are excluded in the evaluation of the empirical and theoretical

distribution function plots. This does not effect the results so long as the chances of

reciprocity are independent of the lengths of the durations, and acts as a precaution

against the potential problem of "dumbbells" affecting pattern inference discussed in

Chapter Two. However, reciprocal durations are not a concern in the event history

regressive analysis, where the focus shifts from the general event pattern to duration

dependency and the effects of explanatory variables on all durations.
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4.5.2 Event History Regression Modelling

Initially, the analysis of the spatial durations derived from the nearest neighbor

measurements between adopter locations is concerned with the fit of parametric models

(see Chapter Three). Here, the fit of the various parametric forms is of intrinsic interest

without including the explanatory variables defined earlier in this chapter. Parameter

estimates for the exponential, Weibull, Gompertz and log-logistic models are derived and

the associated hazard rate curves are produced and evaluated.

This stage of analysis re-introduces the reciprocal durations so that each adopter

location's duration could be associated with a series of explanatory variables. The

regression analysis is initially concerned with examining the effects of all the explanatory

variables. Subsequent model specifications remove variables not considered to have a

significant effect on model fit. In all cases (Le., either no variables or various regressive

specifications), the main interest was the fit of various parametric models and the effects

of censoring. The estimated hazard rate curves calculated at the mean of the explanatory

variables are plotted to provide insight into the distributional form of spatial duration

dependence. The final stage of the regressive analysis involves using the partially

parametric Cox model to model the durations, and determine, in an unbiased manner, the

effects of explanatory variables on the durations. Again, in all cases, both the censored

and uncensoring data sets are examined independently and the results compared.
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4.6 Description of Applied Software

Fortunately, several powerful software packages for the analysis of event history

data exist and one in particular, LIMDEP, provides all of the features and flexibility

required by this research. LIMDEP (Greene, 1990) is a flexible econometric software

package which can be used to estimate a wide variety of models including the continuous

time event history models of interest in this research. Strictly command driven,

LIMDEP provides all the parametric and partially-parametric estimation procedures

(including maximum likelihood). In addition, LIMDEP allows for macro programming

in the form of user written procedures which were indispensable to this research when

the simulation results required analysis.

The other major software utilized in this research included two geographical

information system (GIS) packages. The first, TransCAD, was developed by Caliper

Corporation and can be described as a menu-driven, PC-based, full featured GIS.

TransCAD provides a database manager with tools such as spreadsheets, pie and bar

charts, and statistical analysis routines. In addition, TransCAD incorporates a set of

network analysis, operations research and transportation models suitable for many

applications. In the context of this thesis, TransCAD's powerful map display and data

manipulation tools were utilized to derive summary statistics of the data and to calculate

farming densities per township.

The second GIS was IDRISI, a grid or raster based, low cost, menu-driven

teaching package developed by Ronald Eastman at Clark University. IDRISI was

specifically created for microcomputers using DOS that allows users to analyze and
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manipulate spatially referenced data using a series of independent modules linked by a

simple data structure (Eastman, 1988; 1991). A raster GIS divides space into a grid of

cells for which various attributes (e.g., land use, altitude) may be stored. This regular

structure makes IDRISI particularly appropriate for coupling with high level

programming languages using similar logical data structures. For this research, IDRISI's

grid referencing system provided the information needed to reconstruct the study area

shape and size for the simulation routines. Specialized programs for simulating the point

process and data conversion were written in Fortran by Dr. Steven Reader and the

author, while custom estimation routines for LIMDEP were written by Dr. Reader.

Additional graphical output was achieved using AXUM and Quattro Pro software

packages.



IT IS BETTER TO KNOW SOME OF THE QUESTIONS THAN ALL OF THE ANSWERS.

JAMES THURBER



CHAPTER FIVE

RESEARCH FINDINGS AND DISCUSSION

5.1 Tests of Complete Spatial Randomness

The first stage of the data analysis required the formulation of a computer

program to generate 100 simulated CSR spatial point patterns. This simulation exercise

provided the experimental (or theoretical) distribution of nearest neighbour durations

from a CSR process in a bounded region identical to the empirical study area. This

simulation data was then used in a graphical evaluation of the empirical durations versus

durations generated from the CSR process. Having some knowledge of the

characteristics of the event pattern aided in interpreting the explanatory variable

coefficients and the parametric models that best fit the durations. For example, if the

empirical durations showed clustering versus the experimental CSR durations, then the

regressive analysis could focus on the possible clustering mechanisms (i.e., perhaps the

contagion(s) or environmental heterogeneity). Hence, it was of intrinsic value to the

interpretation of parameter estimates affecting duration lengths whether or not the

observed event pattern was clustered, random or regular. The logic of the computer

simulation program is described below, and Appendix One contains the actual Fortran

122
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77 code.

The simulation program proceeded by randomly generating 528 coordinate

locations (i.e., events) in Cartesian space. Several obstacles had to be overcome in

accomplishing this task, however. For instance, the simulated events had to be contained

within the same size (to scale) and irregularly shaped study area as the empirical data.

This problem was handled by including a sub-routine in the program that evaluated each

XY coordinate location to determine its inclusion or exclusion from the simulated study

area using an interface with IDRISI, the grid referencing (or raster based) geographical

information system (GIS) software package described in Chapter Four. A cartographic

modelling or map algebra approach was used, applying Boolean logic MAP OVERLAY

functions to isolate the study area from surrounding (or external) map pixels.

Cartographic modelling involves using the output from one analytic mapping function as

the input data (i.e., map) for the next function (Arnoff, 1989). In addition, the

RECLASS function enabled the distinguishing of coordinate locations (i.e., events) within

the study area, from those on its boundary, as well as from any external coordinate

locations. The digitized map stored in IDRISI was recoded so that the internal

coordinate locations of the study area had a value of 1 associated with them. Similarly,

the boundary coordinate locations were recoded to 2, whilst the external coordinate

locations were coded O. By comparing the simulated event coordinates to the IDRISI

recoded coordinate locations, the simulation program could determine inclusion or

exclusion of each randomly generated coordinate location. As an aside, the IDRISI GIS

analysis also provided measures of the study area perimeter and area which were used
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as input variables to approximation formulae used later in the analysis.

The simulation process was repeated 100 times so that an experimental random

distribution of nearest neighbour durations could be derived and used as a CSR standard

to compare to the empirical durations. The necessity of this experimental distribution

was based on the fact that approximation formulae for nearest neighbour durations under

CSR are typically derived based on the assumption of an unbounded plane and thus do

not account for edge effects. Alternatively, if the formulae are derived for a bounded

region, they are unreliable for use with highly irregularly shaped regions, as is the case

with the empirical study region (Diggle, 1983). An experimental distribution provided

a theoretically attractive distribution of nearest neighbour duration measurements under

the conditions of CSR within a bounded region. Therefore, we could be reasonably

confident of any pattern inferences made concerning the empirical distribution of nearest

neighbour durations as compared to durations measured from the 100 random

simulations. It is also important to note that experimental distributions were derived for

both the uncensored case, and the case in which some durations were censored. This

approach facilitated an evaluation of the utility of measuring spatially censored durations.

After generating the simulated random spatial point patterns, the program

computed nearest neighbour distances (or durations) between events. To achieve this,

a crude search algorithm was used to explore all the inter-event distances from each

event until its nearest neighbour event was found. Alternative algorithms for deriving

nearest neighbour durations exist, however, including the construction of Dirichlet

tessellations around the n events and then searching for the nearest neighbour distances
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within the tessellation (i.e., the Green-Sibson algorithm). Essentially, this tessellation

method makes use of the fact that each event is contiguous to, on average, about six

other events, one of which must be its nearest neighbour. Consequently, only a small

fraction of the inter-event distances need to be calculated resulting in decreased

computational costs. However, Diggle (1983) notes that the crude search method is more

efficient than the tessellation method for n less than 500, but thereafter becomes

progressively less efficient with increasing n. Hence, the crude method was adopted in

this thesis because the relative gain in computational efficiency for n=528 was trivial in

comparison to the increased programming complexity.

In addition, the simulation program was purposefully designed in an adaptable

format to achieve two main goals. First, the program had to check for reciprocal nearest

neighbours and "flag" these durations so they could be eliminated as required. Removing

one reciprocal duration from each pair eliminated the chance of spurious pattern

inference associated with the existence of "dumbbells" of events which could act to

obscure event pattern evaluations when using nearest neighbour distances. For instance,

in Chapter Two it was noted that a spatial point pattern with a substantial amount of

dumbbell events, and therefore reciprocal durations, could actually be statistically

classified as all three general pattern types, dependent only the distribution of the

dumbbells, whilst visually, the event pattern actually resembled an alternative pattern

type. By eliminating the reciprocal nearest neighbours at this stage of analysis, the

problems associated with pattern inference from dumbbells of events were not an issue.

Although removing these reciprocal durations decreased the number of durations to
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analyze, it maintained methodological consistency, so long as the chances of reciprocity

were independent of the lengths of durations; no theoretical basis for rejecting this

assumption exists in this analysis (Clark and Evans, 1954; Odland and Ellis, 1992).

The second goal achieved by programming flexibility was the derivation of both

a censored and an uncensored experimental CSR distribution to compare to the empirical

distribution of nearest neighbour durations. For the uncensored durations, the program

computed the traditional nearest neighbour durations for each of the 100 simulated data

sets. In the censored duration case, however, the program's crude search for a nearest

neighbour event included exploring the distances from each event to each coordinate

location on the boundary resulting in two possible outcomes: a regular nearest neighbour

duration terminating at an event (equivalent to an uncensored duration), or alternatively,

a censored duration from an event (i.e., a boundary event) which terminated at the

nearest boundary coordinate location. In other words, the censored observation indicated

that, for a certain boundary event, no other event was closer to this event then the

distance from the boundary event to the boundary coordinate.

As expected, the removal of reciprocal durations resulted in a decrease in the

number of durations to be examined. On the other hand, a slight increase in the number

of durations occurred by allowing durations to be censored. This result is illustrated in

the form of a histogram in Figure 5.1.1 where the censored simulations were shown to

routinely contain, on average, 17 more durations than the uncensored simulated data sets.

This result was easy to explain intuitively since the actual censored observations, within

the simulations allowing for censoring, could not have a reciprocal, and consequently,
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would contain more durations than the uncensored durations which have had the

reciprocal durations removed. The average number of durations minus the reciprocals

for the censored data sets was 380.5 (range 350 to 376), whilst the uncensored data set

averages 363.5 durations (range 364 to 397) per simulated spatial point pattern. When

the portion of the simulation program for computing nearest neighbour durations was run

on the real data, the uncensored version contained 374 durations, while the censored

version had 387. Again, these nearest neighbour durations were minus the reciprocals,

and the numbers were consistent with those in the simulation exercise.

It was mentioned earlier that approximation formulas to test for CSR were

available, although subject to limitations. At this point, it was interesting to contrast the

simulation CSR duration results with a test of CSR derived from approximation formulae

proposed by Donnelly (1978) for the normally distributed sample mean and variance of

nearest neighbour durations under CSR; formally,

E(i)
1 1

= .!.(n-lIA 1)2 + (0.051 +0.042n -2)n-1 l(A)
2

(5.1.1)

1

Var(i) = 0.070n-2 IAI + 0.037(n-s IAI)21(A) ,
(5.1.2)

where irA) denotes the length of the boundary of a region with area A and n events (here

we used the perimeter and area calculations from the earlier Cartographic Modelling).

Significantly small or large values of x would indicate aggregation or regularity,

respectively. However, in very convoluted regions A, this approximation often breaks

down and implementation of graphical tests based on experimental distributions is
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recommended (Diggle, 1983). By comparing the estimates derived by the approximation

formula from the estimates derived by simulation, we can assess the validity of these

formulae with regards to the empirical data used in this thesis. Since the empirical study

area is irregularly shaped, we might expect the approximation formulae to be unreliable.

When the area, perimeter and number of events for the empirical data set were

input in equations (5.1.1) and (5.1.2), they yielded an expected sample mean of 8.518

with variance 0.427 for nearest neighbour durations, if the spatial point pattern were, in

fact, CSR. To compare these approximation figures to the simulated CSR patterns, the

mean of the means of all the 100 simulated data sets (for both the uncensored and

censored cases) had to be determined, and then the variance around this mean of means

was calculated. The simulated durations have mean 8.569 and variance 0.054 for the

data sets with censored durations, and mean 9.598 and variance 0.037 for the uncensored

durations. In the case of the censored data, the approximation formulae and the

simulated random process results were not significantly different, indicating a random

process. However, in the case of the uncensored data, which were basically traditional

nearest neighbour distances, the expected mean of the simulated durations was

significantly greater than that derived from the formula, indicating regularity in the

spacing of events. In spite of the simulated censored durations result, only the result of

the simulated uncensored durations was directly comparable since censored measurements

were not accommodated in the approximation formulae. In this respect, the Donnelly

(1978) formulations incorrectly classify the simulated CSR durations as coming from a

regular pattern rather than a CSR pattern. It can be concluded, therefore, that the
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formulations taken from Donnelly (1978) were sensitive to the irregular shape of the

empirical study area. This result underscored the importance of simulation experiments

in spatial point pattern analyses given the limitations of various approximation formulae,

especially in the presence of edge effects.

5.1.2 Graphical Analysis

The spatial point pattern could be formally tested for CSR with Empirical

Distribution Function (EDF) plots produced by graphing the empirical distribution

function of nearest neighbour durations, R(x), against the theoretical distribution function

of durations from CSR, T(x). In this thesis, the T(x) of nearest neighbour durations

under CSR was derived from the experimental distribution based on 100 random

simulations, for both censored and uncensored sets of durations. In this sense, the

distribution of nearest neighbour durations which represented a CSR pattern in an area

of the same shape and size as the study area with the same number of events provided

strong evidence for or against CSR when compared with the actual distribution of nearest

neighbour durations. Further, both the censored and uncensored durations were

compared to their respective CSR durations derived from the simulations in order to

assess the affect of measuring censored durations to account for edge effects.

The EDF plots were formed by the following procedure. Recalling the statistical

concepts of event history modelling outlined in Chapter Three, the notion of a hazard

rate was introduced as the dependent variable in event history model specification, along

with its relationship to the survivor and density functions [see equations (3.2.7) to
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(3.2.11)]. Another function related to the hazard is the cumulative or integrated hazard

function, defined as

x

A(x) = !h(u)d(u) (5.1.3)

The integrated hazard is a useful tool for model specification checks (i.e., it provides a

smooth plot used to evaluate the appropriateness of various parametric models to a

particular data set) and is equal to the negative of the logarithm of the survival rate

(Kiefer, 1988). For the purposes of this thesis, however, we note that the distribution

function of durations, F(x), may be derived from the integrated hazard in the following

manner:

F(x) = 1 -exp( -A(x)) (5.1.4)

Recall that the variable x represents the length of a spatial duration. Employing this

rearrangement of formulas was convenient since LIMDEP could take each distinct

duration measurement from the durations produced in the simulation program and, in an

automated fashion, provided the integrated hazards, which were then transformed via

equation (5.1.4) to develop a T(x) for the EDF plots, this is explained further below.

A total of 11,180 distinct durations (or distinct nearest neighbour measurements)

for the uncensored case and 10,183 distinct durations for the censored case resulted from

the 100 CSR simulations. These durations were analyzed using LIMDEP's "macro-like"

user-defined procedure library which was able to run the custom "survival analysis"

procedure that derived the integrated hazard for each distinct duration (this program is
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shown in Appendix Two). The distinct duration, and subsequent integrated hazard

information, was tabulated to track the average duration, maximum duration, minimum

duration and the number of occurrences at each distinct duration measurement.

The average, maximum and minimum distinct durations were then used to define

the T(x) , and upper U(x) and lower L(x) simulation "envelopes", respectively. The

integrated hazard value which corresponded to each distinct duration was converted to

the distribution function using equation (5.1.4). The graphical procedure then consisted

of plotting T(x), U(x) and L(x) against R(x). The resulting plot illustrates the proportion

of durations which are at most length x, that would be observed under CSR (by reading

the horizontal axis and the dotted diagonal line), and the observed proportion of durations

which are at most length x, from the empirical data (by reading the vertical axis and the

solid line). It is important to note that the durations are portrayed as distribution

functions, and so, by definition, the actual duration lengths are not available from the

vertical or horizontal axes. If the empirical durations were consistent with CSR, the

solid and dotted diagonal lines would be very close throughout their range. The upper

and lower envelopes are used to aid in interpretation of the EDF plot by illustrating the

extreme cases (i.e., the maximum and minimum duration lengths observed) from the

CSR simulations for a given duration length. Too few short durations (a solid line below

the dotted diagonal and near or slightly below the dashed lower envelope line) indicates

regularity in the spacing of events, while too many short durations (a solid line above the

dotted diagonal and near or slightly above the dashed upper envelope line) indicates

clustering in the event pattern (Diggle, 1983).
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The information on the number of occurrences of each distinct duration was

required because the longer durations were much less common, by definition, when using

nearest neighbour to define durations. To avoid meaningless calculations or potentially

spurious results caused by the few longer distinct durations, the average for a distinct

duration was only calculated if the occurrence of that distinct duration was greater than

30 in the 100 simulations. Similarly, the maximum and minimum duration values were

derived only for those distinct durations with an incidence greater than 30. This

minimum of 30 occurrences tends to make the upper portion of the resulting plots rather

disjointed and unreliable beyond about the .95 portion of the EDF plot, but removes the

chances of meaningless duration measurements from the EDF evaluation.

Figure 5.1.2 shows the EDF plot of the uncensored durations while Figure 5.1.3

shows the EDF plot for the censored durations, recall that the R(x), T(x) , U(x) and L(x)

for these plots are consistent in terms of using either the censored or uncensored

durations. The plots look very similar and can be interpreted in the same manner. The

observed proportion of durations at a given length (i.e., the solid lines), for both the

censored and uncensored data, contain an excess of shorter nearest neighbour durations

than the theoretical number of durations under CSR (i.e., the dotted diagonal line).

Further, the solid lines on both the censored and uncensored plots exceed the upper

envelope (i.e., the dashed line above the theoretical distribution) throughout the shorter

range of durations. These characteristics of the EDF plots are consistent with a clustered

or aggregated pattern of events (Diggle, 1983). Thus, both the censored and uncensored

durations indicate that the empirical event pattern of Harvestore adopters shows a
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tendency towards clustering.

To be comprehensive with the analysis of the event pattern, an approximation

formula for the distribution of nearest neighbour durations under CSR proposed by

Diggle (1983) can also be plotted against the empirical distribution function. This

formulation, however, "ignores" edge effects which means that it was derived with the

assumption of an unbounded plane. Thus, it would tend to approximate a greater number

of shorter nearest neighbour durations than expected in a bounded region. This being

the case, this test formula could be considered a more conservative test of clustering or

aggregation amongst events in space then the previous simulated CSR graphical test. The

formula for the approximate distribution function is

G(x) = 1-exp( -A7l"X 2
) ,

(5.1.5)

where A=nA1
, n is the number of events, and A is the area. Figures 5.1.4 and 5.1.5

show the EDF plot of the observed distribution of uncensored and censored durations,

respectively, against Diggle's (1983) approximation formula for a CSR distribution.

Once again, both the censored and uncensored durations showed similar patterns on the

graphs and can be interpreted in the same manner. The observed durations (i.e., the

solid lines) illustrate the excess of shorter durations then would have been expected under

CSR according to the approximation formula. Again, this is an indication of a clustered

pattern of events. The solid lines tend to follow the upper simulation envelopes (i.e., the

upper dashed lines) throughout their range, as opposed to exceeding the upper envelope

in the theoretical EDF plot earlier. This indicates that the approximation formula did,

in fact, predict a larger proportion of shorter durations since it "ignores" edge effects,
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and thus, the number of durations observed, that are at most length x, was increased

significantly.

Further, the empirical durations were closer to the Diggle approximation in terms

of the predicted number of shorter durations then in the EDF plot using a theoretical

distribution derived from random simulation. The clustering of the empirical events

indicated by Figures 5.1.2 and 5.1.3 and the over-estimation of shorter durations by

Diggle's (1983) approximation account for this result. Given that the EDF plot based

on random simulations and the more conservative test of clustering provided by the

Diggle (1983) approximation both indicate a clustered pattern of events, we accept the

notion that the event pattern is, on the whole, clustered. In the regressive analysis that

follows, this information is useful in terms of interpreting the parameter estimates of

explanatory variables and their affect on duration length. The results of this graphical

analysis also demonstrate that both the censored and uncensored data sets show clustering

and, at this point, no distinction based on the manner in which durations are measured

is reflected in the assessment of the event pattern. With this knowledge of the clustering

of Harvestore adopters in space, the analysis progresses into an event history

investigation of duration dependency and the role of explanatory variables.
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5.2 Event History Modelling

This stage of the analysis considers the distributional form of duration dependence

using an event history modelling approach. Initially, description of duration dependence

was confined to evaluation the alternative distributional forms of the hazard rate without

considering the influence of explanatory variables. It should be noted that inclusion of

explanatory variables does not alter the distributional form of duration dependence, but

may provide further insights into the most appropriate parametric form to describe the

data. Here, the analysis considers the appropriateness of the parametric specifications

of the exponential, Weibull, Gompertz and log-logistic distributions in representing the

observed durations associated with all 528 events, for the censored and uncensored data

sets. The relative fit of these different event history models to the observed censored and

uncensored durations was assessed in terms of the log-likelihood estimates.

Briefly, the exponential model is a one parameter distribution which assumes that

the hazard rate is independent of duration length. The Weibull is a two parameter model

which specifies the dependence of the hazard rate on duration length, and simplifies to

the exponential model as a special case. The Gompertz model is also a two parameter

model, but, unlike the Weibull, does not reduce to exponential model. The exponential,

Weibull and Gompertz models are all monotonic functions whereas the log-logistic model

allows for the hazard rate to change direction with duration.

The four parametric models were used to estimate the hazard rates for the

duration data using the statistics package LIMDEP. Custom estimation routines existed

and were used to evaluate all model types, except the Gompertz. In the case of the



141

Gompertz model, LIMDEP's estimation routine was very sensitive to starting values

using the Davidon, Fletcher and Powell (DFP) algorithm and would rarely converge.

To overcome this problem, the log-likelihood equation for the Gompertz model was

programmed directly into LIMDEP and the log-likelihood function calculated using the

MINIMIZE utility in LIMDEP, and the Berndt, Hall, Hall and Hausman (BHHH)

algorithm. However, the custom survival model routines within LIMDEP were based

on using the log of duration as the dependent variable. The procedure outlined above

for the Gompertz model estimation, however, used duration directly. This had the effect

of producing log-likelihood values on a different scales then those of the custom routines.

Therefore, to achieve consistency and compare the log-likelihoods, the final models were

re-calculated using the MINIMIZE utility.

The log-likelihood values given in Table 5.2.1 indicate that a Weibull model with

constant=2.088 and a= 1.460 provides the best fit to the censored durations, whilst a

Weibull model with constant =2. 109 and a= 1.422 provides the best fit to the uncensored

durations. Conversely, the exponential model is seen to give the worst fit to the

durations in both the censored and uncensored cases which indicates that the constant

hazard rate assumption is inappropriate for this data. This also implies that duration

dependence does exist. In other words, the findings of our event history analysis thus

far is in line with the earlier graphical analysis, that is, the event pattern is not CSR.

To examine duration dependency further, Figure 5.2.1 illustrates the form of the

hazard rates for the parametric distributions for censored data (the uncensored data shows

very similar hazard rate curves). All of the hazard rates, except, of course, the



Variable

Censored Data

constant

a/[u]

Log-likelihood

Model Parameter Estimates

Exponential Weibull Gompertz Log-logistic

2.008 2.088 2.418 1.759
(0.061) (0.032) (0.071) (0.038)

1.000 1.460 [0.068] 2.07

-1483.4 -1435.0 -1452.6 -1455.7
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constant

a/[u]

Log-likelihood

2.011
(0.060)

1.000

-1589.9

2.109
(0.033)

1.422

-1543.6

2.369
(0.072)

[0.055]

-1562.8

1.772
(0.038)

2.082

-1566.0

Table 5.2.1: Model parameter estimates with no explanatory variables.
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exponential, increase with increasing duration (i.e., they exhibit positive duration

dependence). It is important to note that the vast majority of the observations are

concentrated in the medium to short durations (see Figure 5.2.2), and so particular

attention should be paid to the form of the hazard rates in that range. Further, Figure

5.2.1 shows that, in this range, the Weibull hazard rate lies just below that of the log

logistic, but above the Gompertz. The log-logistic hazard illustrates a rapid rise with

duration in this range, then declines slowly with increasing duration. The Gompertz

hazard rate increases at an increasing rate with duration, but has a smaller hazard rate

then even the exponential in the lower duration range. The positive duration dependence

across the models, except the exponential, is consistent with a clustered event pattern of

adopters indicated earlier by the graphical analysis. This clustering is best represented

by the Weibull hazard rate, primarily because it provides a better fit at the medium to

small data range.
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Figure 5.2.2: Histogram of the number of durations at different duration lengths.
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5.2.1 Event History Regression Modelling

At this point in the analysis, consideration of the influence of explanatory

variables on duration was the focus of attention. Examination of the effects of

explanatory variables on duration was initially concerned with the exploration of various

combinations of explanatory variables for both the parametric models and the partially

parametric Cox model. Recall that the explanatory variables can be examined by

including them in the parametric forms previously investigated or alternatively, they can

be examined using Cox's (1972) proportional hazards model in which there is no

parametric specification of the baseline hazard rate. This exploratory regressive analysis

used only the LIMDEP custom routines, hence the Gompertz model was excluded, and

attempted to determine which explanatory variables exhibited a significant influence on

duration.

Table 5.2.2 shows the parameter estimates of the exponential, Weibull, log

logistic and Cox models for the SAL, DEN, HAY, and COR variables, and for both the

censored and uncensored data. For the censored data, the SAL (i.e., the sales agent)

variable was significant in all models (except, of course, the exponential) at the 90%

level. It is important to note here, that the SAL variable also came out as significant in

the Cox model, which reinforces the notion that this explanatory variable is important,

since the Cox model makes no assumptions regarding the form of the baseline hazard.

The DEN variable, measuring the farming density of the townships within the study area,

is significant in the log-logistic model for the censored data, but subsequent parameter

estimates for DEN were consistently not significant for all the other models and variable



Variable

Censored Data

constant

SAL

DEN

HAY

COR

Log-likelihood

Model Parameter Estimatest

Exponential Weibull Log-logistic

1.094 1.975 1.400
(0.962) (0.158) (0.176)

0.198 0.115* 0.143*
(0.124) (0.063) (0.074)

0.079 0.019 0.088*
(0.092) (0.047) (0.051)

0.009 -0.145 -0.046
(0.334) (0.151) (0.157)

-0.112 -0.054 -0.089
(0.126) (0.064) (0.076)

1.000 0.680 0.477

-669.9 -618.3 -637.8

Cox·

0.183*
(0.095)

0.029
(0.061)

-0.189
(0.182)

-0.088
(0.096)

-2642.2
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Uncensored Data

constant

SAL

DEN

HAY

COR

Log-likelihood

• based on Partial Lil::elihood estimation
t estimated with LIMDEP custom models
*significant at the 90% level

1.975 2.158 1.472
(0.298) (0.157) (0.174)

0.051 0.036 0.100
(0.124) (0.062) (0.073)

0.006 -0.016 0.077
(0.092) (0.048) (0.510)

-0.151 -0.182 -0.062
(0.304) (0.159) (0.157)

-0.021 -0.009 -0.062
(0.124) (0.062) (0.074)

1.000 0.700 0.477

-683.5 -636.4 -657.6

0.061
(0.091)

-0.016
(0.060)

-0.237
(0.181)

-0.024
(0.093)

-2794.5

Table 5.2.2: Model parameter estimates with explanatory variables.



148

combinations, including the Cox model. For the uncensored data, none of the parameter

estimates were significant. This contrast in results represents the first time in this

analysis that measuring censored durations has made a significant difference in results

as compared to the uncensored data.

The estimated log-likelihoods for the parametric models with explanatory variables

indicate that the Weibull model with constant= 1.975 and cx=O.680 provides the best fit

for the censored durations, whilst the Weibull model with constant=2.158 and cx=O.700

best fits the uncensored durations. The exponential models provide the worst fit to both

the censored and uncensored durations and this result is not at all surprising given the

clustered pattern (i.e., positive duration dependence) of events. The explanatory

variables shown in Table 5.2.2 were the most consistent of all the variables in terms of

sign, despite only having SAL and DEN as significant. For instance, the HAY (i.e., hay

feed type) and COR (i.e., corn feed type) variables exhibited a negative influence on

duration and, therefore, increased the hazard rate. The DEN variable, as mentioned

above, had an unexpected positive influence on duration for the censored durations, but

changed signs in the uncensored case. The remaining farm type variables (i.e., HOG,

DAI) and the spatial structure variable, Corn Heat Units, (CHU) were similarly

inconsistent in terms of sign, and never statistically significant in terms of their t-ratio,

for both the censored and uncensored cases.

At this stage of analysis, the MINIMIZE routines for all the parametric models

and the Cox model were used to re-calculate the log-likelihoods, for comparison

purposes, including only the SAL variable. Table 5.2.3 shows that the SAL variable is
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I Variable I Model Parameter Estimates I
Censored Data Exponential Weibull Gompertz Log-logistic Cox•

constant 1.935 2.009 2.310 1.673 -
(0.096) (0.049) (0.085) (0.058)

SAL' 0.114 0.123t 0.185 t 0.138* 0.190t

(0.124) (0.062) (0.092) (0.074) (0.093)

a/reT] 1.000 0.681 [0.070] 2.078 -

Log-likelihood -1482.7 -1433.2 -1450.7 -1454.1 -2643.1

Uncensored Data :::~:::::::.\:::;;::?{i::\;:;~:::f:::?;:::::::~:::i;j:;::: ·j::;~!;[:I::::~::::I;:1~!;II:li:(r;:::i;;:::;:::·:: ':':::·:.::·:·i:. ":\:;i·:::::;::·:;.·.~:::1,: ..::.. :i ".:., .:::\. :::.::::::::::: ,:·;:.::\{t\ t:':':';:};;.:':.:':::,:':::::";
....: ....... ::.' ..: ..

constant 1.973 2.081 2.340 1.708 -
(0.089) (0.047) (0.090) (0.057)

SALt 0.116 0.045 0.045 0.099 0.073
(0.123) (0.059) (0.084) (0.072) (0.089)

a/reT] 1.000 1.422 [0.055] 2.087 -

I Log-likelihood I -1589.9 I -1543.4 I -1562.7 I -1565.2 I -2795.4 I
• based on Partial Likelihood estimation
t significant at the 95 % level
*significant at the 90% level
f Sales Agent defined in binary terms: 1= exceptional, O=typical.

Table 5.2.3: Model parameter estimates including the sales agent variable.
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significant at the 95% level for the Cox, Weibull and Gompertz models, and at the 90%

level for the log-logistic model, but again, only for the censored data. Not surprisingly,

the Weibull provides the best fit to both the censored and uncensored durations. The

Gompertz model, which was absent from the previous regressive analysis, is shown to

have the next best fit to the Weibull, which is expected given that the Gompertz hazard

can be specified as monotonically increasing similar to the Weibull hazard. Given these

results, two areas of further investigation were apparent. First, the role of the sales

agent variable, and secondly, the discrepancy between the results of the censored and

uncensored duration results.

With regards to the role of the sales agent variable, remember that the variable

was dichotomized so that SAL= 1 referred to sales by exceptional sales agents, while

SAL=O indicated Harvestore sales by typical sales agents. Given the significant positive

parameter estimate of the SAL variable, it appears that Harvestore adopters who

purchased their silos from typical sales agents (i.e., those that sold less than 10% of all

the Harvestore's in the study area, individually) are associated with shorter durations

relative to the adopters who purchased their silos from one of the exceptional sales

agents. The positive parameter estimate not only indicates longer durations associated

with exceptional sales agents, but also a lower hazard rate. This effect of the SAL

variable on the hazard rate is clearly shown in Figure 5.2.3 where the hazard rate for the

best fit model, the Weibull, is plotted at SAL= 1 and SAL=O. The hazard rate plot

shows that the probability of a duration terminating is higher for the typical sales agents

(SAL=O), then the for the exceptional sales agents (SAL= 1), since the hazard associated
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Figure 5.2.3: Hazard rate curves for censored Weibull model including sales agent.
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with the former is above that of the exceptional sales agents. This also means that the

typical sales agents are associated with shorter nearest neighbour durations as opposed

to the exceptional sales agents, who are associated with longer durations.

The implication from the findings for the SAL variable lend support to Scorgie's

(1992) hypothesis that the sales agent was one of, if not the, major contagion in the

spread of the Harvestore in southern Ontario. The results also indicate that the

exceptional and typical sales agents had different strategies and spatial mechanisms of

information flow in regards to selling the Harvestore silo. The typical sales agents likely

worked in small, well-defined boundaries within the study area, whilst the exceptional

sales agents likely had large, dispersed sales territories to account for the number of

Harvestore sales they generated, and the longer durations associated with the location of

their sales. The typical sales agents probably relied more heavily on the neighbourhood

effect of diffusion than the three exceptional sales agents who, taken together, far out

sold all the other sales agents. Of course, it should be noted that some of the typical

agents might have only worked for a short time and, therefore, sold very few silos to,

most likely, a localized group of farmers.

However, the above result for the SAL variable was only obtained in the censored

data case. When each of the events was forced to find a nearest neighbour event within

the study area (i.e., the uncensored data), none of the variables, not even the SAL

variable, were significant. To further examine this result, some descriptive statistics on

the dependent variable (i.e., the durations) for the censored and uncensored cases

provided some insight into these conflicting results. Tables 5.2.4 (a) and (b) compare



153

the durations associated with each event in the censored and uncensored cases. Table

5.2.4 (a) shows the mean duration for the 325 events sold by the exceptional sales agents

as being slightly shorter than the mean duration for the typical sales agents (203 events).

This is true for the censored and uncensored data, although, as expected, the mean

durations in the uncensored data are larger. This result is consistent with the parameter

estimates, but does not explain the difference in results between the censored and

uncensored data since both data sets show that longer durations are associated with the

exceptional sales agents. Table 5.2.4 (b) shows the mean durations again, but only for

the 35 boundary events (Le., those events whose duration would end at the boundary in

the censored data). In this case, the censored data mean durations are consistent with

the general findings, but the uncensored data mean durations for these boundary events

indicate the exact opposite trend. The means for SAL= 1 and SAL=O are higher, as

expected when durations are forced to find neighbours in the study area, but now the

mean duration for the typical sales agents (Le., 17.233) is much higher relative to the

mean duration for the exceptional sales agents (Le., 13.709).

The dramatic difference in the mean durations for the 35 boundary events clearly

accounts for the differing regression results between the censored and uncensored data

sets. However, the question remains as to which result is revealing more of the true

story behind the process that lead to the event pattern of Harvestore adopters. Certainly,

by incorporating the information on censored durations in the estimation of model

parameters and attaining two very different results, one showing a significant effect of

the sales agent on duration and the other no significant effect, we are forced to
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(a)

I SAL=l' n=325 II Censored I Uncensored I,

mean 7.386 7.647
std. dey. 5.109 5.364

SAL=O; n=203

mean 6.280 7.192
std. dey. 4.478 5.629

(b)

I SAL=I; n=19 I Censored Uncensored

mean 8.409 13.709
std. dey. 4.748 6.334

SAL=O; n=16

mean 7.495 17.233
std. dey. 6.951 7.955

Table 5.2.4 (a) Mean durations for all events, (b) mean durations for boundary events.
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reconsider simply ignoring censored observations in this type of regressive analysis. In

fact, these results provide a strong argument in favour of some sort of sensitivity analysis

between censored and uncensored data sets.

As with any regressive analysis, the findings here are subject to some limitations.

For instance, it is likely that the effects of farm and feed type dummy variables were

either dampened or emphasized by the likelihood of spatial heterogeneity in the

distribution of the various farm and feed types in the study area. This notion is

emphasized by the lack of statistical significance of either spatial structure variable, the

farm operator density (DEN) and the spatial variation in the level of Corn Heat Units

(CHU), indicating that other variable measuring variation in spatial structure might have

been more appropriate. For example, the distance from each event to the nearest urban

centre may have better accounted for the farm density around each event. Thus, the

consistent, although not statistically significant, negative influence of the Corn and Hay

feed types might be either the result of spurious heterogeneity in the study area, given

that the spatial structure variables were not significant, or might indicate stronger

communication ties, and therefore, more adoptions amongst farmers using corn and hay

feed.
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5.3 Thesis Conclusions

This thesis sought to extend the research of Odland and Ellis (1992) in applying

event history models to the analysis of spatial point patterns. Although methodological

in nature, an empirical investigation of the event pattern resulting from the spatial

diffusion of an agricultural innovation, the Harvestore, was an important component of

this research. The thesis began with a review of some distance based methods of spatial

point pattern analysis which are analogous, in terms of their use of frequency

distributions of intervals (or durations) between events, to event history methods.

Chapter Two revealed some of the problems associated with distance based methods of

spatial point pattern analysis, notably nearest neighbour statistics. Of particular interest

in this thesis was the problem of edge effects, which tends to increase the mean nearest

neighbour distance between events. Other issues of concern from this review of

literature included the notion that nearest neighbour durations, although intuitively

appealing for measuring spatial dependencies between events, are only one subset within

a multitude of possible inter-event durations that may be analyzed to investigate a spatial

event pattern. Also, it was noted that distance based methods did not provide a

regressive component to investigate the influence of explanatory variables on duration

lengths.

The issues of defining an appropriate duration to model, and potential explanatory

variables related to these durations was the focus of section 2.3 on the spatial diffusion

of agricultural innovations. In this regard, the empirical focus of this thesis was used to

guide the specification of an appropriate duration definition and explanatory variables.
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After considering modelling durations based on the temporal sequence of events (i.e.,

adopters), traditional nearest neighbour distances were chosen as the most appropriate

duration to model. This decision was based on the emphasis in this thesis on the spatial

mechanisms of the diffusion process, where events close in spatial proximity are though

to be more related, in terms of information flow regarding the innovation, then events

further apart. In addition, several explanatory variables were derived from the literature

on the spatial diffusion of agricultural innovations, including the spatial mechanisms of

interpersonal contact.

In Chapter Three, the methods of event history data analysis that were used for

the analysis of the event pattern of adopters were introduced. Here, the spatial durations

could be viewed in as cohort survival data in temporal analysis terms. In other words,

the durations are one-dimensional and have a common start point. This chapter also

formally introduced spatial censoring as a means of accounting for some edge effects.

In this regard, spatial censoring is analogous to "right-censoring" in temporal terms and

may be defined as the shortest distance from a boundary event to the boundary, and thus,

it does not terminate at a nearest neighbour event. Recall that boundary events were

defined as those events closer to the boundary than any internal event location. The

concepts of right censoring and spatial censoring are similar in that they both convey the

notion that the censored observation in not fully known, but the analyst has certain

knowledge that the duration extends to at least the observed length. Spatially censored

observations can be incorporated into model estimation, and, therefore, can be readily

compared to a data set consisting entirely of uncensored durations.
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The primary interest of this research is concerned with evaluating the

distributional form of duration dependence in the event pattern. Duration dependency

corresponds to one type of spatial state dependence, and in this thesis, was defined as the

length of the nearest neighbour duration between adopter farms. That is, the probability

of an event occurring is modelled as dependent on the length of the nearest neighbour

duration. The results of the graphical analysis indicated that the event pattern was

clustered and so positive duration dependency in the data was expected. In the context

of the event history models used in this thesis, the distributional form of this duration

dependence can be expressed in terms of the hazard rate.

The main findings of this thesis relate to the performance of alternative event

history models in representing the duration dependence in the event pattern. Results

indicate that a hazard rate derived from an monotonically increasing Weibull model best

described both the censored and uncensored data. The exponential model, as expected,

consistently gave the worst fit to both sets of durations, which, of course, indicated that

a constant hazard rate assumption was inappropriate for this event pattern. The other

main finding in this thesis concerns the regressive analysis. Several interesting results

at this stage of the analysis illustrate both the important contribution event history

methods provide to spatial point pattern analysis, and the significance of the research in

this thesis. For instance, the sales agent variable was shown to have a significant effect

on duration, illustrating their role as the contagion in the diffusion of the innovation.

This result was reinforced by the fact that identical results were derived from the Cox

model, which made no assumption about the baseline hazard. Further, the exceptional
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sales agents were found to have longer durations associated with them (i.e., a positive

effect on duration) and therefore, decreased the hazard rate. This result implied that the

typical sales agents had more localized selling patterns and likely used the neighbourhood

effect to influence potential adopters. Conversely, the exceptional sales agents had more

dispersed sales territories and likely relied less on the neighbourhood effect for selling

the Harvestore to farmers.

Another important finding in regards to the regressive analysis was the fact that

the sales agent variable was only significant for the censored data. The fact that the

coefficient estimate was significant in the censored case, and not significant in the

uncensored case, illustrates the sensitivity of model parameter estimates to edge effects.

An evaluation of the mean durations associated with the boundary events in the censored

and uncensored data revealed that the uncensored durations (which were forced to find

neighbours in the study area) reversed the trend found throughout the rest of the

durations in that the durations associated with the typical sales agents now were longer

than those associated with the exceptional sales agents. This finding suggests that some

sensitivity analysis be undertaken, in terms of measuring both censored and uncensored

durations, in other regressive analyses of this nature.

5.4 Directions for Future Research

In many ways, research directed at methodological issues related to the adaptation

of methods from one discipline or one domain to another, as in the case of this research,

and other work by geographers (e.g., spatial interaction modelling), the aim is to raise
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as many questions as answers and uncover some of the salient issues that must be

examined on the road to incorporating that methodology into the arsenal of tools

presently available. In bringing event history models into the spatial domain, Odland and

Ellis (1992) and, hopefully, the research reported here, have set a clear research agenda

for geographers and other spatial scientists.

Many issues for further investigation are evidenr from this thesis. The most

obvious involves evaluating the effectiveness of incorporating spatially censored

observations. The method employed in this thesis is intuitively appealing because it uses

certain knowledge about the minimum nearest neighbour distance from an event, and this

observation is incorporated in model estimation. However, an interesting assessment of

the usefulness of censored observations could be examined through an analysis similar

to the one undertaken in this thesis, but with the addition of having actual information

on events outside of the boundary, using, perhaps, some sort of buffer zone of events

around the study area. In this way, the censored, uncensored and actual durations may

be analyzed, and the results compared to see if the censored durations provide a better

depiction of the actual durations then the uncensored (or traditional nearest neighbour)

durations. Given that methods of model estimation in the presence of censored data

already exist, a thorough evaluation of their usefulness is important.

Research issues incorporating both temporal and spatial event history modelling

are another area of consideration for further work. In this vein, we can envision a data

set, not unlike the one used in this thesis, containing both the exact timing and location

of events, as well as some spatial and temporal explanatory variables. Temporal hazard
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rates can then be estimated separately from spatial hazard rate estimates, and this

information could eventually be brought together to provide probability surface contours.

Thus, for selected discrete time intervals, a map of event probabilities could be

constructed illustrating areas most or least likely to experience an event. In the case of

some natural disasters and contagious diseases, where the location of an event will effect

the timing and location of the next event, such an analysis is significant. Certainly, the

advent of Temporal GIS, where temporal changes to geographic phenomena are stored

and visually represented with hypermedia (Le., sound and changing colours) may well

be an avenue to operationalize such methods.

Finally, it is important to note that the event history models used in this thesis

represented only a small subset of the available methods of longitudinal analysis. On the

basis of the interesting findings in this thesis and those by Odland and Ellis (1992), it

seems obvious that entirely new avenues can be pursued in terms of the linkage between

spatial point pattern analysis and event history modelling. Odland and Ellis (1992)

looked at spatially varying explanatory variables and spatial heterogeneity, and this thesis

considered duration dependency with a range of parametric models, spatial censoring and

the effects of a series of explanatory variables (using parametric and partially parametric

models), but, taken together, these efforts merely scratch the surface of techniques

available in the expanding literature on event history modelling.
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Appendix One

Fortran Program to Produce Simulated Data

C Program to Produce Simulated Data Set
C
C Written by Steven Reader and Pasquale A. Pellegrini
C
C

PROGRAM RANFRl
REAL A,X,Y,Q(IOOO),R(lOOO),

$ U(528),V(528),DIS(528),CENA(528),B(460,470),
$ CDIS(528),CENB(528),XA(5000), YA(5000)
INTEGER IX,IY,ISEED,NR,NP,ID(528) ,IK(528) ,IK2(528)

$ ,ID2(528),P(460,470)
EXTERNAL RNSET,RNUN,RNGET,SSCAL,SADD

C
C

OPEN(9,FILE='indata' ,STATUS='OLD')
C
C Production of 470x460 grid to duplicate collected data
C

X=460.5
Y=470.5

C
C

lONE= 1
NR=I000
M=O
NP=528
A=0.5
IX=INT(X)
IY=INT(Y)

C
DO 75 NA= I,NP
CENA(NA) = 1.0
CENB(NA) = 1.0

75 CONTINUE
C
C
C
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DO 5 KY=I,IY
DO 5 KX=I,IX
READ(9, *) P(KX,KY)
IF(P(KX,KY).EQ.2)THEN
M=M+l
XA(M)=KX
YA(M)=KY
ELSE
CONTINUE
ENDIF

5 CONTINUE
C
C
C Program Compares Selected Points to GIS produced study area and
C determines if it is included or not
C
C Compares all inter-event and boundary point Euclidean distances
C and classifies censored and uncensored durations
C
C

DO 85 1=1,90
C

KA=O
KZ=O
N=O

C
CALL RNSET(O)
CALL RNUN(NR,R)
CALL SSCAL(NR,X-A,R,I)
CALL SADD(NR,A,R,I)
CALL RNGET(ISEED)
CALL RNSET(ISEED)
CALL RNUN(NR,Q)
CALL SSCAL(NR,Y-A,Q,I)
CALL SADD(NR,A,Q,I)

C
DO 10 J=I,NR

IR = NINT(R(J))
IQ=NINT(Q(J))

C
IF(P(IR,IQ).NE.O.O)THEN
N=N+l
U(N)=IR
V(N)=IQ
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ELSE
CONTINUE
ENDIF

C
C
C

IF(N.EQ.NP)THEN
GOTO 11
ELSE
CONTINUE
ENDIF

C
C
C
10 CONTINUE

IF(N.LT.528)THEN
WRITE(4, *) N
ELSE
CONTINUE
ENDIF

C
C
C
11 DMIN=9999.0

DO 21 Kl=I,NP
DO 20 J=I,NP
IF(J.NE.Kl)THEN
D=SQRT«ABS(U(J)-U(Kl»)**2 + (ABS(V(J)-V(Kl»)**2)

IF(D.EQ.O.O)THEN
D=l.O
ELSE
CONTINUE
ENDIF
IF(D.LT.DMIN)THEN
DMIN=D
DIS(Kl)=DMIN
ID(Kl)=J
ID2(Kl)=J
ELSE
CONTINUE
ENDIF

ELSE
CONTINUE
ENDIF
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20 CONTINUE
DMIN=9999.0

21 CONTINUE
C
C
C

DMIN2=9999.0
DO 25 J=I,NP
CDIS(J) =0.0
CENB(J) = 1.0
DO 24 K=I,M
D=SQRT«ABS(U(J)-XA(K»)**2 + (ABS(V(J)-YA(K»)**2)

IF(D.EQ.O.O)THEN
D=l.O
ELSE
CONTINUE
ENDIF
IF(D. LT. DIS(J»THEN
ID(J) =999
CENB(J) =0.0

C
C
C

IF(D.LT.DMIN2)THEN
DMIN2=D
CDIS(J)=DMIN2
ELSE
CONTINUE
ENDIF

C
C
C

ELSE
CONTINUE
ENDIF

24 CONTINUE
DMIN2=9999.0

25 CONTINUE
C
C Sub-program to remove recipricol nearest neighbors
C
C

DO 15 K=I,NP
IK2(K)=0
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IK(K)=0
DO 13 L=I,NP
IF(ID2(K).EQ.L.AND.ID2(L).EQ.K.AND.L.GT.K) THEN
IK2(K) = 1
ELSE
CONTINUE
ENDIF

13 CONTINUE
IF(IK2(K).NE.l)THEN
KZ=KZ+l
WRITE(II,999) DIS(K),CENA(K)
ELSE
CONTINUE
ENDIF
IF(CDIS(K).EQ.O.O)THEN

DO 12 Ll=I,NP
IF(ID(K).EQ.Ll.AND.ID(Ll).EQ.K.AND.Ll.GT.K)THEN
IK(K) = 1
ELSE
CONTINUE
ENDIF

12 CONTINUE
IF(lK(K).NE.l)THEN
KA=KA+l
WRITE(8,999) DIS(K),CENA(K)
ELSE
CONTINUE
ENDIF
ELSE
KA=KA+l
WRITE(8,999) CDIS(K),CENB(K)
ENDIF

15 CONTINUE
WRITE(l2,998) KZ,KA

998 FORMAT(lX,2(I3,2X»
85 CONTINUE
999 FORMAT(lX,2(F8.2,2X»

STOP
END
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Appendix Two

LIMDEP Procedure to Analyze Simulated Data

proc
sample;nl-n2 $
surv;lhs =dur,cen;list;res =inth;fill $
sample; 1-numexit $
write;dur,inth $
calc;n1 =n1 +x3{k1} $
calc;k1 =k1 + 1 $
calc;n2=n2+x3{k1} $
endproc
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