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A study of gradient optimization techniques,

in particular as applied to the cost-tolerances

problem, is made. Three efficient techniques

are used to obtain the tolerances based on

minimum cost. The optimization techniques

are the Fletcher-Powell method, a more recent

method proposed by Fletcher and a method

based on a more general objective function

proposed by Jacobson and Oksman.
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Firstly, the constrained cost-tolerance

problem, under special constraints, is

transformed to an unconstrained optimization

problem using two methods.

Secondly, the three gradient methods are

applied to. get the optimum set of tolerances.
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AB.STRACT

A possible mathematical formulation of the practical

problem of computer - aided design for any system or any

engineering design subject to tole~ances on the n independent

parameters is used to solve some special cases under certain

restrictions. The sequential unconstrained minimization

technique of Fiacco - McCormick is used to get the optimum

solution. The scheme used is : starting from arbitrary

initial acceptable or unacceptable designs and culminating in

designs which under reasonable restrictions are acceptable.
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CHAPTER 1

INTRODUCTION

Today many important decisions are made by choosing a

quantitative measure of effectiveness and then optimizing it.

Deciding how to design, build, regulate, or operate a

physical or economic system ideall~ involves three steps.

First, one should know how the system variables interact.

Second, one needs a single measure of system effectiveness

expressible in terms of the system variables. Finally, one

should choose those values of the system variables yielding

optimum effectiveness. Thus optimization and choice are

closely related. Optimization is decisive because it narrows

down the possible choices to one - the best one.

In the design of any machine or mechanism it is

necessary to assign tolerances to all components. This

combination of these tolerances must be sUfficiently tight to

guarantee that the device will perform as intended. Another

consideration that is equally as important for a mass

produced item is that the manufacturing cost should be as low

as is consistent with the quality and proper operation of the

device.

The design engineer is usually anxious to assign

tight tolerances to all components in order to guarantee

proper operation and a quality product.

The manufacturing engineer is more interested in

1
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increasing the production and lowering the cost and hence en­

courages a loosening of tolerances.

The problem investigated in this work is the problem

of optimal design cost subject to tolerances in some"special

cases. Recently published work (References 1 to 4) has

yielded some practical insight into the nature of the

problem.

Many types of objective functions (more appropriately,

cost functions) can be formulated. In this work two possible

objective functions have been investigated.

It was assumed that the parameter tolerances can be

independently specified, and the design parameters and toler­

ances can be continuously varied. The tolerance regions are

defined by "a set of linear constraints imposed by the device

specifications.

The present work is based on the above approach with

the use of efficient minimization techniques. Firstly the

constrained optimization problem is transformed to an

unconstrained one using two methods described in chapter 3.

Then three gradient methods, because they utilize

gradient information, are applied to solve the unconstrained

optimization problem. These techniques show a rapid rate of

convergence. A co~parative study is made between the three

most efficient gradient techniques which are described in

chapter 2.

The results of applying these three techniques to



some special cases of the cost-tolerances problem are shown

in chapter 4 &
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CHAPTER 2

UNCONSTRAINED OPTIMIZATION METHODS

The existence of optimization problems is as old as

mathematics. The first systematic techniques for the

solution of these problems stem from the development of the

calculus and are associated with the names Newton, Lagrange

and Cauchy (who made the first application of the method of

the steepest descent). However, little substantive progress

was made until the middle of this century, when development

was greatly accelerated by the availability of computers

and by an increasing requirement for the solution of

decision problems.

2.1 Concepts and definitions

Assuming that the unconstrained optimization problem

is defined as

Minimize the function U where

where

U Q U (¢)- -

..

(1)

U is called the objective function

4
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~ represents a set of independent parameters

The problem, where the values of the components of ~

are not restricted by side conditions or constraints is

called an unconstrained optimization problem.

The classic methods of calculus give necessary

conditions

.... au
= a~n= 0 (2)

which must be satisfied by a stationary point.

In this sense the problem of finding a stationary point

of a function is equivalent with that of solving a system of

nonlinear equations.

Let

called the gradient vector and

au
~2

(3)
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G l:!.
=

....

(4 )

called the Hessian matrix.

The matrix H denotes the inverse Hessian, G- l , which

will be approximated by different formulae in each of the

gradient techniques as shown in chapter 3.

In recent years unconstrained problems have been

attacked successfully by a number of direct search and

descent methods.

2.2 Direct search

Methods which do not rely explicitly on evaluation or

estimation of partial derivatives of the objective function

at any point are usually called direct search methods. They

rely on the sequential examination of trial solutions in

which each solution is compared with the best obtained up to

that time, with a strategy usually based on past experience

for deciding where the next trial solution should be located.

Methods of this type are useful in the early stages

of optimization and can provide efficient information about a

region in which a minimum is located. In general they do not



give a rapid rate of ultimate convergence and hence are

inefficient for finding a minimum with high precision.

For more than one independent variable, a method was

developed by Rosenbrock[S] This method uses a set of

n mutually orthogonal directions in each cycle of

searches. This set of directions is then rotated so

that it adopts itself to the directions of most rapid

decrease of the objective function.

The method of Hooke and Jeeves [6] can be regarded

as a further development of the Rosenbrock technique •

This method changes the parameters one at a time start­

ing from an initial point, but once the full series of

perturbations has been completed it takes a step along

the direction joining the last and the initial point.

This method is called the Pattern Search method.

2.3 Methods using conjugate directions

There are efficient techniques which utilize

additional information about the function to be

minimized. In these methods the solution of a general

optimization problem is found by solving a sequence of

one-dimensional problems. These methods are called

descent methods. The most important descent methods

for solving general minimization problems are the

conjugate direction methods. These assume that in a

neighbourhood of a minimum the function can be closely

7
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approximated by a positive definite quadratic form.

There is the possibility of using -yu as the descent

vector at each stage. This resulting method is called the

steepest descent method.

2.4 Methods used in this work

2.4.1 Definitions

Let Li</>l

0 Li Li</>2 (5 )
-

Li</>n

called the increment vector

In all minimization methods 0 is chosen so that

U (~+~) < U (~) (6)

Another n-dimensional vector ~ will denote the direction in

which 0 is taken.

Algorithms terminate.after one or more of the following

criteria are satisfied

(a) if the change in the objective function becomes less

than a small positive number.

(b) if the absolute values of the elements of the

increment vector become smaller than another small

positive number



(c) if the norm of the gradient vector becomes less than

another small positive number.

As a safeguard the algorithms should go through n

iterations, where n is the number of variables, after

terminating criterion is satisfied, before the program

terminates. A comparison between the results from each of

the next three gradient method are given in tables 3, 6, 9.

9

The Fletcher - Powell method

The main feature of the Fletcher - Powell method [7]

is that the increment a is taken along the direction s where

That is

s = - H 2:

a = cx ~

(7)

(8 )

where cx is chosen to minimize U(2+cx2) along the direction of

·s. The inverse Hessian H may initially be chosen to be any

positive definite symmetric matrix. Then H is modified at

each iteration from information presently available using

the formula

where

a aT H. T H.
-1 r r -1

Hi +l = H. +
-1 aT :r.T H.- Y -1 Y

a = - cx H. g.
-1 -1

·(9)

(10)
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and

1 = gi+l - gi (11)

It can be shown [7] that this method is stable, that is,

formula (9) has the following property: if H. is positive
-l

definite then H
i

+
1

is also positive definite. Since we have

chosen H. from the beginning to be the identity matrix then
-l

all Hi + l will be positive definite.

It was shown also that if the objective function is

quadratic the procedure will terminate after n iterations.

This property of quadratic convergence depends on accurate

location of the minimum along each direction of search, and

this is the main disadvantage of the method.

2.4.3 The Fletcher method

The Fletcher method [8] is basically similar to the

Fletcher - Powell method [7] in that both methods consider

quadratic objective functions and the increment 0 depends on

the gradient and the updating matrix H.

In this method the property of quadratic convergence

is replaced by another property which requires, for quadratic

functions, that the eigenvalues of H must tend mononically to

-1those of G •

The change ~U in U on an iteration would be expected

by Taylor's series to be approximately gT~ for small ~, but
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much less than gT~ in absolute value when the position of the

minimum along a line is overestimated.

The change in U(¢) relative to gT O cannot become

arbitrary small if

(12)

where O<~«l , ~ is assigned the value 0.0001.

In fact if the corrections are determined by

then trying values of A 2 3= l,w,w ,w , •.•

(13)

(O<w<l) for w = 0.1

will eventually produce a 0 which. will satisfies equation

(12) • It is necessary now to find formula to possess

the properties of positive definiteness and eigenvalue

convergence. The new formula developed by Fletcher [8] is

Hi +l
(14)

where 0 and yare defined in equations (10), (11). The use- -
of formula (14) by itself might cause H to become unbounded.

For this reason a condition is tested to choose between the

two updating formulae (equations (9) and (14)).

This test condition is

if

(15)



12

then the formula (14) is used: otherwise formula (9) is used.

2.4.4 The Jacobson - Oksman method

The Jacobson - Oksman method [9] differs from the

previous two in that it is not based on quadratic functions,

but on homogeneous functions.

Consider the homogeneous function

(16 )

"where 8 is the degree of homogeneity, ~ is the location of
\J

the minimum and U(~) is the minimum value.

The quadratic function considered earlier is

(17)

where 9 is an nxn constant positive definite matrix (the

second derivative matrix i.e. Q.. = a
2
u(p})

1J a¢.a¢.·
1 J

By comparing equations (16) and (17) it can be seen that (17)

is a special case of (16) with B = 2.

By rearranging equation (16) we have

Let

(18)
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v ~ q? g (!)
=

y ~ [~T(~) U (¢) -1] T (19 )
=

ex ~ [¢T e x]T
=

where
v

X = e u (~)

and £ and yare (n+2)-vecotrs with ex containing the unknowns
v v

(¢,e,U(¢)) •- -
For a point ¢. equation (18) now becomes

-1

If ~ and yare evaluated at (n+2) distinct points

(20)

¢l' ¢2'···'¢n+2' so that the resultant ~i's are linearly in­

dependent, we can write

T
:ll

T
Y2

·•·
T

Yn+2

or in matrix form

y ex = v

= ( 21)

(22 )
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.
Since the y. 's are linearly independent, Y is invertible and

_1 "-

we can solve for the unknown vector ~.

ex = Y-Iv ( 2 3 )

Matrix inversion is avoided by using a recursive formula as

new y. and v. are evaluated. Starting with P_ o = _I, an
_1 -1

(n+2)x(n+2) identity matrix and ~o = ~o' an arbitrary initial

guess, successive estimates of the vector ex are given by

~i+l =
T

~i+l ~i+l

(24)

where ~i+l is a unit (n+2)-vector having unity as the (i+l)th

element and zero elsewhere, and where

successively from the formula

P. are obtained
-1

P. T T
~i+l (~i+l P. - ~i+l)

~i+l P.
-1 -1= -

-1
T

~i+l
P.

~i+l-1

It can be shown [9] that, for homogeneous functions, the

(25)

v
algorithm finds the minimum ~, the degree of homogeneity e ,

.,
and the value of the minimum U(~) after (n+2) iterations.



CHAPTER 3

METHODS FOR HANDLING CONSTRAINTS

An important class of applications for the techniques

discussed in the previous chapter is to the solution of

constrained optimization problems that have been suitably

transformed.

There are two main types of transformation that can

be used to transform a constrained optimization problem to an

unconstrained one. First, by suitably transforming the

independent variables it may be possible to introduce new

variables which are unconstrained. Second, it is possible to

transform the objective function by adding severe penalties

to it whenever a constraint is violated in such a way that

the unconstrained optimization techniques are forced to find

minima in the feasible region. In this case the solution is

found as the limit of a sequence of solutions to suitably

transformed problems.

3.1 Transformation of the independent variables

Simple transformations, whose application is limited

to certain forms of inequality constraints, have been

summarized by Box [10]. These transform the independent vari­

ables and leaves the objective function unaltered. Assuming

some or all independent variables are subject to constant

15
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lower and upper constraints such as,

9.,. < 4>. ~ u. (26)
l.

,
l. l.

If, for example, 4>. has to be positive then the following
l.

transformation can be used
2 4>.

4>. abs (4). ) 4>. 4>. 4>. = l. (27)= = e
l. l. l. l. l.

In a general case of constant lower and upper con-

straints asih equation (26)1 we can apply the transformation

.~l.' - 5/,. + (u. - 5/,.) sin 2 4>.
l. l. l. l.

(28)

After applying any of these transformations the unconstrained

optimum of an objective function with respect to 4>. variables
l.

is sought.

3.2 Transformation of the objective function

There are two methods used in this work to transform

the constrained objective function to an unconstrained one.

Comparisons between the results from these two

techniques are given in tables 4, 7, 10.

3.2.1 The Fiacco - McCormick Technique

This approach was first suggested by Caroll [11] and

further developed by Fiacco - McCormick [12].

It was suggested that the solution to the constrained

minimization problem

minimize U (~) (29)



subject to the constraints

17

i = 1, 2, .'., m (30)

might be found as the limit as rk+O to the unconstrained

minimization problem.

Minimize p(!,rk ) = U(!) + r k G(g(!»

where r k > 0 and G(g(1» has the following properties

(31 )

(1) G(g(~) ) is continuous for g (~) > 0

(2) G(g<.~» + 00 for any g. (<P) + a
1. -

One possible form of G (?J) is

m 1G(g) = L (32)

i=l g i (1)

This form was the one chosen to be used in this work.

However, other alternatives are possible, e.g.,

m
G (g) = - L log (g i (1) )

i=l

The definition of a feasible point is that point which

belongs to a feasible region i.e.

(33)

R = {tlgi (1) ~ 0, i = 1,2, .•• ,m} (34)

An interior-feasible region is defined as

RO = {1!gi (1) > 0, i = 1,2, .•. ,m} (35)

Let us assume that we know at least one point <po E RO and

that we can use one of the efficient unconstrained optimiza-

tion techniques.



nonfeasible
4>_ 2

g =0
1

I
I,

I

I
I
, g =0
\ 4

,
I

I,,
I
I

-I,

-Figure l' )

--
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Sequence of solutions of a 2-dimensional problem



U,g,G,P

decrea.sil1g r

---------

Figure ( 2 )

The effect of r on the unconstrained function P.
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The following procedure is then possible:

Starting from 1° decrease the value of p(!,r l ) where
m -1

p(!,rl ) = V(.'E) + r l .L gi (.p) (36)
. 1=1

and r l > O. .Suppose that the feasible region R is never left.

Assuming that our minimization method defines a continuous

n-dimensional curve on which p(!,r l ) is decreasing. Moving
v

along this curve we should be able to find a point !(rl ) E RO

which minimizes p(!,r l ). Clearly the boundary can never be

violated because P(!,r l ) ~ 00 as the boundary is approached,

as shown from equations (30) and (32), so that the minimum
v
!(rl ) (if it exists) must belong to the interior feasible

region Figure (1). This procedure is repeated for

o < r k+l < r k , k = 1,2, ••• and the minimization of p(±,rk )

can be achieved without violating the constraints.
v

Ultimately it is hoped that a sequence of v(!(rk )) will

converge to t.he minimum of V (1) as the value of r k tends to

zero. We can expect that by taking r k small enough we should

be able to approach as close to the boundary as we wish

Figure (2). A bad initial value of r k will slow down

convergence onto each response surface minimum. Too large a

value of r l will cause the first few minima of P to be

relatively independent of V, whereas too small a value will

render the penalty term ineffective, except near the

constraint boundaries where the surface rises very steeply.

In this work the values chosen for r k are,



1 0 10-2,. , -4 -810 , ••• 10 •
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New approach for constrained optimization problems

This is a new approach proposed by Bandler and

Charalambous [13] to transform the constrained optimization

problem into minimization of an unconstrained objective

function. The original nonlinear programming problem is

formulated as an unconstrained minimax problem.

The nonlinear programming problem can be stated as

defined in equations (29) and (30) ,

Assuming ,a continuous function with continuous partial

derivatives, then consider the problem of minimizing the

unconstrained function

V(t,a) = max [u (.1) , u (.1) - a. g. (.1) ]
l~i~m

1 1

where

a ~[a a 2
... .. am]T1

and

(37)

(38)

a. > 0
1

i = 1,2, ••• , m (39)

In this work the value of a is taken to be 1 and 50.

There are a number of advantages obtained by this new

approach. The first is that the minimization of V can be re-

garded as an essentially unconstrained problem and a number

of simple and suitable methods are available for its sOlution.

The second is that the starting point can be anywhere. There

is no need to distinguish between feasible and nonfeasible



points. The third is that once suitable values for the a.
1

22

have been determined, one complete optimization yields the

solution unlike penalty function methods.

3.3 Penalties for nonfeasible points

Inequality ·constraints only

Assuming that the initial solution is feasible, the

simplest way of disallowing a constraint violation is by

rejecting any set of parameter values which produces a non-

feasible solution. This may be achieved by imposing a

sufficiently large penalty on the objective function when any

violation occurs. Thus, we may add the term

m

L
i=l {

= 0

w. g~(¢) where w.
11- 1

> 0 g.(¢) < 0
1 -

(40)

to the objective function. As long as the constraints are

satisfied the objective function is not penalized. However,

nonfeasible points can be obtained with this formulation. An

alternative which can prevent this is simply to set the

objective function to its most unattractive value when

g. (¢) < O. In practice such a value may be easy to determine
1 -

on. physical grounds.

In this work the value of w. is taken to be very large when
1

any g. (¢) < 0 and this value is 1020.
1 -



CHAPTER 4

RESULTS

4.1 Computational information

The computer used for all the problems is a CDC 6400.

The terminating criterion for the Fletcher - Powell method,

was set at 10- 6 and the algorithm terminated if the change in

the objective function or parameters was less than that

number. The terminating criterion' for the Fletcher method

was also set at 10- 6 and the algorithm terminated if the

change in parameters was less than this number. In the

Jacobson - Oksman algorithm there is the facility that the

algorithm terminates when the change in the objective

function is less than a number, set at 10- 6 , and also when

the norm'of the gradient becomes smaller than a number set at

10-9 •

4.2 Cost - tolerances relation

A number of potentially useful and fairly well-

behaved objective functions which might be used to represent

the cost of a design can be formulated. In practice a

suitable modelling problem would first have to be solved to

determine the significant parameters involved partially or

totally in the actual cost. Here we will assume either the

23
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absolute or the relative tolerances to be the main variables.

Furthermore we assumed the total cost (C(~O,~) where ~ is a

-set of ~olerances) of the design is j~st the sum of the cost

of the individual components.

It is intuitive to assume that

and

(41 )

for any E.+O
1

(42)

Two out of many possible functions which fulfil these

requirements are

subject to

where

n
C = I

i=l

k.
1

E.
1

(43)

(44)

C is the total cost of the de~ign.

E. is the tolerance of the ith component (i=1,2, ••• ,n)
1

k. is a constant value
1

n is the total number of components

This function is shown in Figure (3)

The second possible objective function is

subject to

n
C = I

i=l

cj>~
..::..Lk. log E.

1 1
- (45)

(46)
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Figure ( 3 )

The Cost - Tolerances Relationship (Equation (43)).
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200 400 600 800 1000
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Figure ( 4 )

The Cost - Tolerances Relationship (Equation (45)).
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This function is shown in Figure (4). In both cases

k. ~ 0
1.

i ::: 1,2, ... ,n (47)

4.3 The .first objective..f1.mc.tion [equation (43) ]

In this case it is assumed that the feasible region

is defined by the following constraints and it is represented

in Figure (5)

g2(~) = 6 - <1>1 -2 <1>2 ~ 0 (48)

g3(~) = 182 +14<1>1 -13<1> ~ 02

In order to guarantee that all the points of the polytope, its

vertices are defined as (<1>1-£1,<1>2+£2)' (<1>1+£1,<1>2+£2)'

(<1>1+£1,<1>2-£2) and (<1>1-£1,<1>2-£2)' will satisfy all the

constraints, we have to modify the constraints as follows, for

example the first constraint will be

gIl = -10 -2(<1> -£ ) +5(<1>2+£2) ~ 01 1

g12 = -10 -2(<1>1+£1) +5(<P 2+£2) ~ 0
(49)

g13 = -10 -2 (<P 1+£1) +5(<P 2-£2) ~ 0

g14 = -10 -2(<p -£ ) +5(<P 2-£2) ~ 01 1

where £1' £2' <PI and <P 2 are the independent variables.

By using the Fiacco - McCormick transformation for the

constrained objective function (discussed in 3.2.1) and the

penalties for nonfeasib1e points (discussed in 3.3), now we

have the unconstrained objective function as follows:
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Figure ( 5 )

The feasible region defined by

equation (48).
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k l k 2 m n -1 m n 2p =- + + r L L g .. (¢)
+w L L g .. (¢)

£1 £2 i=l j=l 1J - i=l j=l 1J -

where

m is the number of constraints (m=3)

n is the number of independent variables (n=4)

r>O (started at r = 1. 0)

w is a large number to prevent nonfeasible points

(w=lOlO)

(50)

. m n
. As explaiped before in 3.3 the term w L I

i=l j=l

2g .. (¢) will be
1J -

active only when any violation of any constraint occured,

i.e. when any gij (1)<0.,

The gradients of the new objective function, [given

in equation (50)] ,were calculated and the minimization process

started using the three gradient methods discussed'previously

in 2.4.2, 2.4.3 and 2~4.4 repeating optimization process with

decreasing sequence of the r values i.e.

and each minimization being started at the previous point,

e.g. minimization of P(!,r2 ) would be started

values of r 'are chosen to range from 1.0 to

v
at !(r l ).

l.OxlO- 8 .

The

The solution of this problem is unique independent of

-the starting point.

When k l and k 2 are taken to be equal 1, the result

was as follows
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The minimum for the feasible

region shown in figure (5).



k k Min. -Cost' <1>1 <1>2 E1 E 2
1 2

(P)

0.2 5.0 1. 856987 -6.750497 2.781046 0.690973 3.190298

0.1 0.2 0.133234 -6.198300 2.702344 2.110575 2.332161

0.01 0.1 0.042967 -6.552011 2.764792 1.173904 2.910214

50.0 5.0 17.205863 -5.467933 2.634744 4.143075 0.975764

10.0 0.8 3.129029 -5.384869 2.551266 4.349907 0.964569

0.05 0.2 0.106900 -6.361567 2.732650 1. 662812 2.606219

5.0 7.0 5.318757 -6.113290 2.687336 2.359197 2.188449

1.0 1.0 0.877085 -5.978965 2.662207 2.723588 1.962063

Table (1): The minimum cost for different values of k i
(for the feasible region shown in Figure (5)).

w.....
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The mir.imum cost = 0.877" (Analytical solution = 0.8765)

The first tolerance = 2.72 (Analytical solution = 2.7210)

The second tolerance =1. 96 (Analytical solution = 1.9621)

and this result is shown in Figure (6) .

The advantage of this method of optimization is, even start-

ing with a nonfeasible point, the solution is feasible and

uriique.

The values of k l and k 2 are changed and the results are

summarized in Table (1).

4.4 The second objective function [equation (45))

In this case three different feasible regions are

investigated.

4.4.1 The first feasible region

This feasible region was defined by three constraints

'which are

gl (.<E) = 2 + 2¢1 - ¢2 ~ 0

g 2 (.<E) = 143 ll¢l - 13¢2 > 0 (51)--
g3 (~) = -60 + 4¢1 + 15¢2 > 0

--

This feasible region is shown in Figure (7). Using the same

procedure as before in 4.3" wi tr.

¢l ¢2 m n 1 m n 2p = k l log -- + k 2 log -- + r "I I + w I I g .. (¢)e El e E2 i=l j=l g .. (¢) i=l j=l 1) -
1) -

(52)
In this case we have a unique solution which is shown in

Figure (8) for k l = k 2 = 1.
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k 1
k 2 Min. Cost ~1 <1>2 c 1 c 2

(P)

20~0 0.3 5.70341 4.68316 3.80718 3.75177 0.05554

1.5 0.02 0.41713 4.68673 3.80264 3.76049 0.04958

3.0 1.5 3.93812 4.16222 4.46937 2.46671 0.92148

0.02 0.5 0.47261 3.24815 5.63151 0.211067 2.44133

0.5 2.0 2.64611 3.53298 5.26925 0.91443 1. 96750

1.0 1.0 2.02289 3.94371 4.74714 1.92763 1.28473

Table (2) The minimum cost for different values of k.
1.

(for feasible region shown in Figure (7)).

w
U1



---- ---------------

Values of New Fletcher Jacobson- Fletcher-
,

Oksman Powell

r Method Method Method

*LO 5.6702 5.9784 5.6702

10-1 *2.6529 2.8630 2.6529

10-2 * *2.1741 ,2.5628 2.2259

10-3 * *2.0659 2.5328 2.1282

10- 4 * *2.0359 2.5298 2.0974

10-5 * *2.0269 2.5295 2.0885

10- 6 * *2.0241 2.5295 2.0883

10-7 * *2.0232 2.5295 2.0883

10- 8 * *2.0229 2.5295 2.0882

36

Table (3) The minimum value of the function for different

values of r' for the three gradient-methods.

(Feasibie region shown in figure (7)).

* Cubic interpolation seems to have failed to work, function

value does not change significantly.
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Feasible region

shown New Approach Fiacco - McCormick

in Figure (7 )

Independent

Variables

¢1 3.94368 3.94371

¢2 4.74715 4.74715

£1 1. 92771 1. 92763

£2 1.28474 1.28473

Objective Function
2.02277 2.02289

No. of Function
196 37

Evaluations

Initial Values of a=l.O rk=l.O
Parameters

Final Values of -8a=l.O r =10
Parameters k

Table (4) Comparison between the results using the Fiacco-

McCormick technique [12] and the New approach [13],

using the Fletcher method.



The minimum cost = 2.02 (Analytical solution = 2.0237)

The first parameter = 3.94 (Analytical solution = 4.0026)

The first tolernnce = 1. 93 (Analytical solution = 1.9368)

The second parameter = 4.75 (Analytical solution = 4.7425)

The second tolerance = 1.28 (Analytical solution = 1.2786)

Different values of k l and k 2 are chosen and the results are

summarized in Table (2) .

38

4.4.2 The second feasible region

This feasible region is defined by the three

constraints which are

gl (~) = -3 -ep +ep2 > 01 ..
g2 (~) = 12 -ep -2ep > 01 2 ..
g3 (~) = epl > 0..

(53)

This feasible region is shown in Figure (9). Using the same

objective function and the same procedure as in 4.4.1, we

get the unique solution for k l = k
2

= 1

The minim"un cost = 1.106 (Analytical solution = / . I

The first parameter = 2.01xlO- 3 (Analytical solution = 0)

The first tolerance -3 (Analytical solution 0)= 2.01xlO =

The second parameter = 4.501· (Analytical solution = 4.5)

The second tolerance = 1.497 (Analytical solution = 1.5)

Different values of k i are chosen and the results are

summarized in Table (5).
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Figure ( 9 )

The feasible region defined bi equation (53).



k k· Min. Cost Jh 4>2 q £2
1 2

(P)

20.0 0.3 0.34188 0.01208 4.50604 0.01208 1.48161

1.5 0.02 0.2409 0.03064 4.51532 0.03063 1.45300

3.0 1.5 1. 65923 0.00221 4.50111 0.00221 1.49656

0.02 0.5 0.55091 0.00090 4.50044 0.00088 1.49845

0.5 2.0 2.20422 0.00101 4.50050 0.00101 1.49838

1.0 1.0 1.10552 0.00201 4.50101 0.00201 1.49683

Table (5) The minimum cost for different values of k.
~

(for the feasible region shown in Figure (9)).



Table (6)
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Values of New Fletcher Jacobson- F1etcher-

Oksman Powell

r· Method Method Method

*1.0 20.0612 24.1595 20.0612

10-1 * *4.5404 5.1519 4.7778

10- 2 * *2.1609 2.7878 2.8352

10-3 * *1.5075 2.5514 2.1051

10- 4 * *1.2698 2.5277 1.9476

10-5 * *1.1733 2.5253 1.9220

10- 6 * *1.1320 2.5251 1.9215

10- 7 * *1.1137 2.5251 1. 9214

10- 8 * *1.1055 2.5251 1. 9214

The minimum value of the function for different

values of ~. fo~ the three gradient methods.

(Feasib~e region shown in figure (9) ).

* Cubic interpolation seems to have failed to work, function

value does not change significantly.
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Feasible Region
Shown New Approach Fiacco-McCormick

in Figure ( 9 )

Independent
Variables

<P1 0.00270 0.00210

<P2 4.4813 4.50100

£ 1 0.00270 0.00210

£2 1. 48069 1. 49683

Objective Function
1.10823 1.10551

No. of Function
293 58

Evaluations

Initial Values of
a=50 r k=1. 0

Parameters

Final Values of
-8a=5000 r =10

Parameters k

Table (7) Comparison between the'results using the Fiacco-

McCormick technique [12] and the new approach [13],

using the Fletcher method,
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It was found, as shown in Table (5) that one of the

components of the device can be removed, which will give

minimum cost, and the device still functions properly as de-

fined by the constraints because none of constraints has

been violated.

4.4.3

are

The third feasible region

This region is defined by four constraints which

gl (~) = 5 -¢ + ¢2 > 01 .-

g 2 (.p) = 2 -¢ ~ 02

g 3 (.p) = -8 +2¢1 + ¢2 ~ 0

g4 (~) = ¢2 > 0.-

(54)

This feasible region is shown in Figure (10). Using the

same objective function and the same procedure as in 4.4.1,

we get the unique solution for k l = k 2 = 1.

The minimum cost = 2.144 (Analytical solution = 2.1437)

The first parameter = 4.57 (Analytical solution = 4.5664)

The first tolerance = 0.69 (Analytical solution = 0.6992)

The second parameter = 1.13 (Analytical solution = 1.1328)

The second tolerance = 0.87 (Analy"i.:ical solution = 0.8672)

This result is shown in Figure (11) . Different values of

k l and k 2 are chosen and the results are summarized in

Table '(8).
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k k Min. Cost <1>1 <1>2 £1 £2
1 2

(P)

20.0 0.3 19.96516 4.98853 1.97707 1.96559 0.02289

1.5 0.02 1.4863"4 4.98973 1.97949 1.96919 0.02036

3.0 1.5 5.62602 4.71116 1.42231 1.13348 0.57757

0.02 0.5 0.04413 4.49990 0.99184 0.49950 0.99170

0.5 2.0 1. 09908 4.49999 0.99475 0.49994 0.99466

1.0 1.0 2.14408 4.56637 1.13265 0.69908 0.86708

Table (8) The minimum cost for different values of k. •
1

(for the feasible region shown in Figure (10)).
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Values of New Fletcher Jacobson- Fletcher-
Oksman Powell

r Method Method Method

1.0 16.7352 .16.7352 16.7352

10-1 *4.2891 4.2891 4.5374

10-2 2.6064 2.6064 2.6064

10-3
2.2675 2.2675 2.2675

10-4 *2.1811 2.1811 2.2047

10-5 *2.1551 2.1551 2.1975

10-6 *2.1473 2.1488 2.1968

10- 7 * *2.1449 2.1488 2.1968

10- 8 * *2.1441 2.1488 2.1968

Table (9) The minimum value of the function for different

values of r for the three gradient methods.

(Feasible region shown in figure (10)).

* Cubic interpolation seems to have failed to work, function

value does not change significantly.



Feasible Region

shown

in Figure (10)

Independent

Variables

<PI

Objective Function

_. New Approach

4.56211

1.13143

0.69324

0.86532

2.13415

48

Fiacco - McCormick

4.56637

1.13265

0.69908

0.86708

2.14408

No. of Function
150 30

Evaluations .-

Initial Values of
a=l.O r k=1. 0

Parameters

Final Values of
-8a=l.O r =10

Parameters k

Table (10) Comparison between the results using the Fiacco-

McCormick technique [12] and the New approach [13],

using the Fletcher method.
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4.5 Conc~uding remarks

It was found from the computer results that the higher

the value of w the steeper the objective function in the non­

feasible region resulting in the failure of the cubic

interpolation as shown in tables (3), (6), and (9) for the

Jacobson - Oksman and Fletcher - Powell methods. It was found

also that theuse of the Fiacco - McCormick technique generally

requires fewer function evaluations to reach the minimum

accurately compared with the new approach using the Fletcher

method.



CHAPTER 5

CONCLUSIONS

Minimum cost of any design based on reasonable

tolerance, under certain constraints (in some special cases),

have been obtained using the transtormation of the

constrained problem, by two methods [12] and [13], to an

unconstrained minimization problem in conjunction with three

efficient gradient minimization problems.

In general the use of gradient techniques have been

found efficient for solving the cost-tolerance problem.

In this work it was considered, if the algorithm con­

verged to a unique point, starting from n arbitrary starting

points, where n is the number of independent variables

(n = 4 for this work), then this point was considered an

optimum.

From the minimization techniques ?sed, Fletcher ­

Powell [7] was found to be- reliable in the sense that the

algorithm never diverged. But it is relatively slow com­

pared to the method proposed by Fletcher [8], and the one by

Jacobson and Oksman [9].

The method proposed by F1etGher was found the most

efficient of the methods used. In most cases it requires

the least number of function evaluations to reach the

optimum.

50
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In this work it was found that, if we have a feasible

region similar to that in Figure (9), we can omit one of the

components of this device, and hence lower the cost but the

device will still function properly, because none of the con­

straints has been violated. For this feasible region the re­

sult was

So

= 2.01 x 10- 3

which will be still relatively small. Also it was found that

starting with any point, feasible or nonfeasible point, the

algorithms still converge to the same minimum. This is due

to the penalty function [3.3] which w~s added to the

objective function every time any of the constraint is

violated,i.e. when any gi(1) < o.

If, as is usual in the design of systems, the optimal

design is obtained, then a fairly large number of inequality

constraints usually define the acceptable region. For any

particular set of reasonable tolerances one could exploit the

likelihood of the worst case (point most likely to violate a

given constraint) being predictible by a local linearization

or higher-order approximation of the constraints to greatly

reduce the actual cost of the necessary computations that is

implied by the 2n vertices of the tolerance region.
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