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Abstract 

Many algorithms, particularly in the area of image processing, are expensive to de­

velop and computationally resource intensive. We illustrate the advantages of sym­

bolic code generation using an example - closed-loop visual target recognition and 

tracking in extreme lighting conditions. We quantify the effect of symbolic code gener­

ation methods on code efficiency, and explain how these methods allowed us to reduce 

the development time as well as improve reliability. Working directly with symbolic 

models improves software quality by reducing transcription errors, and enabled us to 

rapidly prototype different models for the visual tracking application, where the need 

to evaluate trackers in their real-time context precludes the effective use of scripting 

languages. We describe the model in detail, including formulations as an optimization 

problem; explain the challenges in solving the model; present our method of building 

the solvers; and summarize the impact on the performance of our methods. 
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Chapter 1 

Introduction 

1.1 Motivation 

Model fitting is a common subproblem in target recognition and can be described as 

follows: Given a set of data points, find a model that approximates the data best. 

Automatic target recognition is an application of computer vision to identify targets, 

such as tanks, airplanes or people in an image. The recognition procedure involves 

obtaining essential features from each local area in the image and comparing them to 

the templates of known targets. We present a target recognition application which is 

typical of model fitting: 

• it can be formulated as nonlinear optimization problem; 

• the objective function is sums over the indices of a large array; 

• efficiency depends primarily on efficient memory access patterns. 

1.1.1 Visual Tracking 

In visual tracking applications, a series of images captured from CCD cameras must 

be processed in real-time to extract information about spatial positioning. This in­

formation can be used for target identification, object measurement, and closed-loop 

target acquisition. In some applications, the target has a high degree of regularity, 

and can be modeled mathematically or, as in the present case, can be designed to 

1 



2 1. Introduction 

optimize a predefined objective function. To compensate for harsh, dynamic light­

ing conditions, we consider the use of multi-colour, multi-brightness patterns, which 

would provide quantitative information about lighting even for saturated images. To 

work at different scales, we expect successful patterns to be smoothly varying, thus 

we restrict our search to piecewise polynomial and rational polynomial patterns. The 

recognition of such patterns can be modeled as a constrained, nonlinear optimization 

problem. Recognition can be implemented as a solver, which in addition to estimat­

ing model parameters, can assign a likelihood (the probability of a specified outcome) 

to the estimates. Advanced model-based controllers make use of the likelihood in­

formation to improve the robustness of the controller in the presence of random and 

systematic noise sources. 

1.1.2 Satellite Acquisition 

The intended application of the tracking software is remote, unassisted satellite ac­

quisition. If one wishes to capture a satellite and perform maintenance on it, a 

camera mounted on a robotic arm could detect and track a predefined pattern on 

a satellite. Sudden changes of lighting, possibly saturating a significant part of the 

image, and complete or partial "blindness" caused by sunlight on the camera lens, 

pose significant obstacles to any algorithm. To overcome them, we propose the use 

of a model-predictive controller which incorporates confidence information derived in 

parallel with position estimates by our solver, as well as frame-by-frame illumination 

estimates to be used to control camera gain. In the constrained engineering environ­

ment of space, and the impossibility of direct human intervention, it is essential that 

the solver be able to extract position information from tens of images per second with 

resources significantly less than on a current desktop computer. 

1.1.3 Rapid Prototyping and Code Generation 

Prototyping is a process of creating pre-production models of a product to test various 

aspects of its design. The use of Rapid Prototyping (RP) technique allows us the quick 

production of prototypes. The quick production of prototypes was required for the 

purpose of determining which model will suit our application best. For example, RP 

would let us test the design for the tradeoffs between accuracy and efficiency. Some 
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models may lead to very accurate fitting, but require significant processing time. 

Other models may have the opposite properties. 

The employment of Maple code generation reduces time for design, implementa­

tion and testing phases for each underlying model change. Modifying C functions by 

hand would be time-consuming, and using a mathematical scripting language would 

not allow testing of the controller. 

1.2 Previous / Related Work 

In this section we provide an overview of the two main research areas related to this 

thesis: (i) visual tracking and (ii) code generation. 

1.2.1 Visual Tracking 

This section provides background information on existing methods to perform visual 

tracking. The topic of visual tracking spans many different disciplines, therefore our 

goal is to provide only a basic conceptual framework. 

Vision is a very useful robotic sensor, since it allows measurement of the environ­

ment without physical contact. Because a visual feedback loop can be used to correct 

the position of a robotic arm to increase the accuracy of a task, considerable effort 

has been devoted to the design of visual control of robot manipulators. In the past, 

visual sensing and manipulation were combined in an open-loop fashion, "looking" 

then "moving". The accuracy of the operations depends directly on the accuracy 

of the visual sensor and the robot end-effector. A visual feedback control loop will 

increase the overall accuracy of the system (Figure 1.1). In the perfect scenario, ma­

chine vision can provide closed-loop position control for a robot end-effector - this 

is referred to as "visual servoing" [9]. 

A taxonomy of visual servoing systems was introduced in 1980 by Sanderson and 

Weiss [14], into which all subsequent visual servo systems can be categorized. Their 

scheme can be described by asking the two following questions: 

1. Does the control system have hierarchical structure, with the vision system 

providing set-points as input to the robot's joint-level controller, or does the 

visual controller directly compute the joint-level inputs? 
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Figure 1.1: Visual feedback control loop. 

2. Is the error signal defined in 3D coordinates or directly in terms of image fea­

tures? 

Therefore, the resulting taxonomy has four major categories, which we now describe. 

If the control architecture has underlying hierarchical structure and uses vision to 

provide set-points to the joint-level controller, therefore making use of feedback to in­

ternally stabilize the robot, it is referred to as a "dynamic look-and-move" system. In 

contrast, "direct visual servoing" entirely eliminates the robot controller by replacing 

it with a visual servo controller that directly computes joint inputs, therefore using 

vision alone to stabilize the mechanism. 

Almost all implemented systems follow the dynamic look-and-move approach for 

the following reasons [9]: 

1. Relatively low sampling rates available from vision make direct control of a 

robot end-effector with complex, non-linear dynamics an extremely challenging 

control problem. 

2. Many robots already have an interface for accepting incremental position com­

mands, which simplifies the construction of the visual servo system, and makes 

the methods more portable. 

3. Look-and move approach separates the kinematic singularities of the mechanism 

from the visual controller, allowing the robot to be considered as an ideal motion 

device. 
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The second major classification of systems distinguishes "position-based" control 

from "image-based" control. In "position-based" control, extraction of features from 

the image is performed and features are used together with a geometric model of 

the target and the known camera model to estimate the position of the target with 

respect to the camera. In "image-based" servoing, control values are computed on the 

basis of image features directly. The image-based approach may lead to reduction 

of computational delay, elimination of the necessity for image interpretation, and 

elimination of errors due to sensor modeling and camera calibration. However, it 

presents a significant challenge to controller design, due to the plant being non-linear 

and highly coupled. 
, 

As it was mentioned earlier, in position-based visual servoing, features are ex-

tracted from the image and used to estimate the position of the target with respect 

to the camera. Using these values, an error between the current and the desired 

position of the robot is defined. A positioning task is fulfilled if the error is brought 

to zero. Position-based control efficiently separates the control issues - the computa­

tion of the feedback signal- from the estimation problems involved in computing the 

position from visual data. 

In image-based visual servo control the error is defined directly in terms of image 

feature parameters. As with position-based control, a task is achieved, when the 

error is equal to zero. This is usually resolved by the approach in which the robot is 

moved to a goal position and the corresponding image is used to compute a vector 

of desired image feature parameters. Although the error is defined in the image 

parameter space, the control input is defined either in joint coordinates or in task 

space coordinates. Therefore, there is a necessity to relate changes in the image 

feature parameters to changes in the position of the robotic arm. The disadvantage 

of image-based methods comes from the presence of singularities in this mapping. A 

singularity is a point at which an equation, surface, or mapping in this case, "blows 

up" or becomes degenerate. 

Independent of the control approach used, a vision system has to extract the infor­

mation needed to perform the servoing task. Hence, visual servoing infers the solution 

to a set of difficult static and dynamic vision problems. Many implementations sim­

plify the vision problem by: painting objects white or using artificial targets. Others 

use motion detection for locating a moving object to be grasped. 
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In less methodical situations, vision has typically relied on the extraction of sharp 

contrast changes, referred as "corners" or "edges", to indicate the presence of object 

boundaries or surface marks in an image. Processing of the entire image to extract 

these features would require the use of extremely high-speed hardware in order to work 

with a sequence of images at camera rate. However, not all pixels in the image are 

contributing, therefore a significant reduction in computation time can be achieved 

if only a small region around each image feature is processed. A promising technique 

for making vision less computationally intensive is to use "window-based" tracking 

methods. These methods have several advantages among them: little requirement for 

special hardware and computational simplicity; however initial positioning for each 

window typically pre-supposes a solution to a potentially complex vision problem. 

Window-based tracking algorithms are usually carried out in two stages. First, one or 

more windows are acquired using a nominal set of window parameters. In the second 

stage, the windows are processed to locate image features and from their parameters a 

new set of windows parameters is computed. A disadvantage of this technique is that 

this scheme is susceptible to mistracking caused by background and/or foreground 

obstructing edges. Also, large windows increase the range of motions that can be 

tracked, but greatly reduce the tracking speed and increase the likelihood that a 

distracting edge will cause the disruption of tracking. 

In many realistic cases, neither of the above mentioned approaches by themselves 

yield the robustness and desired performance. To illustrate the tradeoffs between 

these methods, we will use an example from [9]. Suppose a visual servoing task relies 

on tracking the image of a circular opening over time. In general, the opening will 

project as an ellipse in the camera. There are several algorithms for detecting this 

ellipse and recovering its parameters: 

1. If there is a high contrast between the interior of the "opening" and the area 

around it, binary thresholding, which is an imaging technique that labels all 

gray pixels as either black or white before processing begins, followed by a 

calculation of the first and second central moments can be used to localize the 

feature. 

2. If the ambient illumination changes greatly over time, but the brightness of 

the "opening" and of the surrounding region are roughly constant, a circular 
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template could be localized using sum of square differences (SSD) methods 

augmented with brightness and contrast parameters. 

3. The "opening" could be selected in an initial image, and located using SSD 

methods. This differs from (2) in that only correlation of the center of the 

"opening" with the starting image is found, and not the actual location of the 

center. This is useful for servoing a camera to maintain the opening within the 

view; this approach is not useful for a manipulation tasks that need to calculate 

a position relative to the centre of the "opening". 

4. If there are constant changes in contrast and background, the "opening" could 

be tracked by performing edge detection and fitting an ellipse to the edge lo­

cation. Short edge segments could be located using the feature-based methods. 

Once the segments have been fit to an ellipse, the orientation and location of 

the segments would be adjusted for the tracking using geometry of the ellipse. 

One of the most important issues in visual-based control is the choice between 

using an image-based or position-based system. Most systems dealing with moving 

objects are built on position-based methods. In contrast, the accuracy of image­

based methods for static positioning is less sensitive to calibration than comparable 

position-based methods. 

In order for a visual-servo system to provide good tracking performance for moving 

targets, attention must be paid to the modeling of the dynamics of the robot, the 

target, and the vision system. Other issues for consideration include whether or not 

vision system should "close the loop" around robot axes which can be controlled by 

position, velocity or torque. 

The remaining part of this subsection will provide a brief introduction to two of 

the widely used visual processing tools. 

MATLAB's Image Processing Toolbox provides a comprehensive set of reference­

standard algorithms and graphical tools for image processing, analysis, visualiza­

tion, and algorithm development. The toolbox consists of statistical functions, edge­

detection algorithms, image segmentation algorithms, and morphological operators. 

User can restore noisy or degraded images, enhance images for improved intelligibility, 

extract features, analyze shapes and textures, and register two images. Most toolbox 
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functions are written in the open MAT LAB language, which gives user the freedom 

to inspect the algorithms, modify the source code, and create custom functions. 

National Instruments vision development software includes IMAQ Vision, a li­

brary of vision functions, and IMAQ Vision Builder, an interactive environment for 

prototyping vision applications. IMAQ Vision provides the use of gauging, caliper, 

measurement, and edge-detection functions to automatically locate edges and to mea­

sure distance and angles between edges, points, and parts. Other functions include 

blob analysis, morphology, image enhancement and quantitative analysis. IMAQ 

Vision Builder and IMAQ Vision work closely together to simplify vision software 

development so that the developer can apply vision in measurement and automation 

applications. 

It should be noted that the goal of the thesis was not to focus on the existing visual 

processing algorithms such as edge-detection, but rather to illustrate the advantages 

of the symbolic code generation by solving the model-based visual tracking problem. 

1.2.2 Code Generation 

The text in this subsection is excerpted from the paper "Visual Tracking Employing 

Maple Code Generation" [1]. The paper was coauthored by Christopher Anand, 

Jacques Carette, and myself and presented at the Maple Summer Workshop 2004. 

Code generation is now ubiquitous (over 500,000 hits for a search on "code gener­

ation" on Google as of the writing of this thesis). It is present in various ways inside 

most serious development environments and frameworks. It is also quite old, with 

code generators already showing up in the early 1960s (e.g., [7, 13, 16]), as the leap 

from writing a compiler to writing a code generator is quite small. 

There are at least two circumstances in which code generation has proven to be 

effective: 

1. when complex program transformations are needed [8, 12], 

2. when a program can be expressed very succinctly in a domain-specific language, 

but requires lengthy and sometimes very complex code in mainstream languages 

[4,5]. 

The first situation occurs most famously when automatic differentiation [10] is both 



1. Introduction 9 

required and applicable. There is now ample literature ([15, 16]) that shows that 

smooth optimization problems are incomparably easier to solve when Jacobians and 

Hessians are available; on large problems of real interest, however, the functions to 

differentiate are usually given by very large programs with a multitude of inputs. 

Computing derivatives numerically is well-known to be a futile task, and computing 

them by hand (symbolically) is also fraught with error. On the other hand, symbolic 

differentiation is a relatively simple program. 

The second situation is now becoming common as well, though the growing pop­

ularity of GUI-builders, lexer and parser generators, Java-from-DTD builders, and 

so on. These code generation techniques are also related to the emerging fields of 

"software synthesis" and "automated software engineering" . 

The chosen method to solve target recognition problem examined in this thesis is 

particularly well-suited to being tackled by code generation techniques: 

1. it requires automatic differentiation, 

2. it can be succinctly described using mathematics as the "domain language", 

and 

3. it requires experimentation at the "model" level. 

1.3 Methodology and Contributions of the Thesis 

1.3.1 Methodology 

The following subsection summarizes the methodology introduced in the thesis. 

At a minimum, whatever target we choose, we must be able to recognize its 

translates under affine and perspective transformations. Ideally we would like to be 

able to robustly identify the transformation between the identified pattern and a 

base family member, giving us information on the relative position of the target. In 

this thesis we will focus on a simple family of radially-symmetric, essentially compact 

targets, which we we will call spots. Transformed spots will have elliptical equiradiant 

contours. Given a target image, we estimate parameters for the position (translation), 

size (scaling), orientation and asymmetry (rotation and pitch). 
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The advantages obtained by careful mathematical modeling and optimization­

based parameter extraction can easily be overwhelmed by development time, and 

sometimes by computational costs as well. The expense comes from two sources: 

freedom in choosing the target pattern/model and the need to develop multi-stage 

solvers to achieve convergence requirements for the highly nonlinear models. The 

present method of generating a family of efficient Newton solvers from any target 

model efficiently solves this problem. By generation of Newton solvers, we mean the 

generation of optimized Jacobian and Hessian matrices for different sets of parameters, 

which are used in a basic Newton method iteration. The code generator described 

in this thesis currently generates solvers for ID and 2D models, but could easily be 

generalized to higher dimensions. 

In model fitting against images, data is stored in large arrays. Calculation of the 

sum over elements in arrays is an expensive procedure. Efficient use of the cache is 

required to minimize the execution time, which will be bounded by memory accesses. 

The easiest way to ensure this is to group all accesses to one pixel of data (within a 

solver iteration) together. Jacobian and Hessian matrices will contain many common 

subexpressions, therefore optimization on "the inner sum" is crucial. Since Hessian 

matrices are symmetric, we only need to calculate the upper triangular portion of 

them. 

Given a family of Newton solvers (indexed by the power set of the set of model 

parameters), we can use heuristics or benchmarking to assemble them into a non­

linear solver with good convergence properties. 

1.3.2 Contributions of the Thesis 

In addition to the clearly-demonstrated efficiency of the final code, symbolic code 

generation also allowed us to reduce development time, and improve software quality. 

These were really the main motivators for using symbolic code generation in the first 

place. Software quality for such code is largely determined by the transparency of 

the translation between the mathematical model and the implementation in a pro­

gramming language. Symbolic code generation makes this as transparent as possible. 

Rapid development again depends on the time it takes to translate a model into a 

subroutine, which is essentially free once the framework for code translation is in 
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place. This was especially important for the visual tracking problem, because there is 

a large family of models we wanted to explore, and it would not have been practical 

to evaluate them without efficient implementations capable of doing model fitting in 

real time with the image acquisition. 

To summarize, using the visual tracking example, we have demonstrated how 

symbolic code generation can improve software quality, code efficiency and reduce 

development time. 

1.4 Development History 

The work presented in this thesis consisted of three major development stages: design, 

implementation, and testing. 

During the design stage, with guidance from Christopher Anand and Mark Law­

ford, methodology was decided. Proposed spot and light models were throughly 

investigated theoretically, together with 3D positioning ideas and mathematical de­

tails. 

Upon initial implementation of the proposed model in Maple, Christopher Anand 

and myself encountered problems attempting to generate code due to Maple's pitfalls 

as described in Section 6. At this point Jacques Carette was consulted due to his 

extensive experience with Maple as both a user and former developer of the product. 

He was able to identify the Maple limitations causing the problems and proposed 

the solution, described in Section 6, to overcoming these Maple pitfalls. Maple's 

shortcomings, and the need for thorough testing of the generated code, demanded 

significant effort to achieve efficient generation of the solvers. 

After the generated solvers satisfied our requirements, the QuickTime API was 

used to develop acquirement of images from the cameras. Sample code from "Ap­

ple Developers Connection" (SGDataProcSample) was used to attain initial ideas on 

interfacing with firewire devices. Implementation of a procedure to acquire arrays 

of RGB pixel values of images from the camera was carried out. Colour conversion, 

convergence, and saturation were the major issues that needed attention in the im­

plementation stage. Lastly, design and implementation of the main control module, 

which linked the acquisition of the data from the cameras with the generated solvers, 

was concluded. 
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In the testing stage, thorough testing of the application as a whole was carried 

out. Various spot models were tested. Efficiency and optimization issues, as well as 

accuracy versus speed tradeoffs for various spot models were confirmed. 

1.5 Organization of the Thesis 

In Chapter 2, we give a short context for symbolic computing and code generation, 

and provide a short description of Newton's method (as it is used in this application 

area). In Chapter 3, the experimental setup is described. Chapter 4 constitutes the 

core of the thesis, where the models and the structure of the solvers are described 

in detail. The Maple code generation procedure is outlined in Chapter 5. Detailed 

results are presented in Chapter 6, followed by the conclusions and ideas concerning 

future work. 



Chapter 2 

Preliminaries 

This chapter provides the background necessary to understand the thesis and provides 

pointers to more detailed sources for the interested reader. 

2.1 Maple and Symbolic Computing Basics 

Symbolic computation is computation with variables and constants according to the 

rules of analysis, algebra and other branches of mathematics - formula manipula­

tion using symbols, unknowns, and formal operations, as opposed to conventional 

computer calculation using numeric data and character strings. 

Consider the problem: Determine the value of a4 + b4 + c4 , when 

a+b+c 6 

a2 + b2 + c2 
_ 10 

a3 + b3 + c3 
_ 25 

Maple solves this problem via the following command, producing the result of 106: 

> simplify (a-4+b-4+c-4, {a+b+c=6, a-2+b-2+c-2=10, a-3+b-3+c-3=25}); 

106 

Furthermore, Maple solves a quadratic equation of the general form symbolically as 

follows: 

13 
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-b±~ -b-yp::4!iC 
2a ' 2a 

For a more complete introduction to Maple's use of symbolic computation refer 

to "Maple Help - [introduction]", which comes as a part of Maple package. 

2.2 Maple and Code Generation Basics 

We will demonstrate Maple code generation by a simple example: 

Define a function f = 1 - ~ + 3x2 - x3 + X4: 

> with (CodeGeneration): 
> res := [f := 1-x/2+3*x-2-x-3+x-4]; 

Create an optimized list of instructions to compute f: 

> genres := codegen[optimize] (res); 

Generate C code: 

> C ([genres], output=string, declare=[x::float]); 

"t2 - X * Xi 

t5 - t2 * t2i 

f - O.lel - x/O.2el + O.3el * t2 - t2 * X + t5i" 

Calling codegen with tryhard leads to generation of more efficient code: 

> genres_hard := codegen[optimize] (res, tryhard); 

> C ([genres_hard], output=string, declare=[x::float]); 

"tl x*xi 

f O.le1 - x/O.2el + (O.3el - x + t I ) * tIi" 



2. Preliminaries 15 

The resultant generated code to compute f with tryhard option has less floating 

point instructions and consumes less memory (less local variables) than without it. 

For a more complete introduction to Maple's use of code generation refer to "Maple 

Help - [codegenJ". 

2.3 Maple Functions 

In this section we briefly describe the list Maple functions used to define the models 

and generate the solvers. 

simplify 

with 

solve 

Matrix 

Transpose 

add 

sum 
seq 

diff 

C 

codegen[optimize] 

codegen[gradient] 

codegen[prep2trans] 

codegen[makeproc] 

codegen[joinprocs] 

"Apply simplification rules to an expression" 

"Interactive package management utilities" 

"Solve equations" 

"Construct a Matrix" 

"Transpose a Matrix, Vector, or scalar" 

"Add up a sequence of values" 

"Definite and indefinite summation" 

"Create a sequence" 

"Differentiation or Partial Differentiation" 

"Translate Maple code to C code" 

"Common subexpression optimization" 

"Compute the Gradient of a Maple procedure" 

"Prepare a Maple procedure for translation" 

"Make a Maple procedure from formulae" 

"Join the body of two Maple procedures together" 

For a more information on Maple commands refer to "Maple Help" . 

2.4 Newton's Method 

The solvers employed in the thesis are based on the multivariate Newton's method. 

Let Ju be the Jacobian and Hu be the Hessian of a function with respect to the 
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variables U. The Newton iteration is defined by the recursion: 

Un+l = Un - HU(Un)-l JU(un), 

which in practice is implemented by solving 

Hu(un)(un - un+!) = JU(un). 

2. Preliminaries 



Chapter 3 

Experimental Set Up 

3.1 Prototype Hardware and Software 

Hardware was chosen so that the clock speed of the CPU is relatively close to the 

upper limit of the clock speed of the CPU of a modern embedded system. Also, 

chosen platform was thought to simplify the development. 

• System Hardware Overview 

- Machine Model 

- CPU Type 

- Number OJ CPUs 

- CPU Speed 

: PowerBook G4 12" 

: PowerPC (1.1) 

: 1 

: 1 GHz 

- L2 Cache (per CPU) : 512 KB 

- Memory : 768 MB 

- Bus Speed : 133 MHz 

• System Software Overview 

- System Version : Mac OS X 10.3.4 (7H63) 

- Kernel Version : Darwin 7.4.0 

17 



18 3. Experimental Set Up 

3.2 Cameras 

Cameras were chosen to be colour and of low cost, with capability of supporting up 

to 15 frames per second. 

• Cameras Overview 

Camera type 

Interface 

Driver 

Camera type 

Interface 

Driver 

3.3 Quicktime 

Fire-i 

Fire Wire 400 Mbps 

: IOXperts, Version: 1.1b22 

: iSight 

: Fire Wire 400 Mbps 

: IOXperts, Version: 1.1b22 

The QuickTime API was chosen to provide acquisition of images from the cameras. 

QuickTime is Apple's multiplatform multimedia technology for handling video, sound, 

animation, graphics, text, interactivity, and music. As a cross-platform technology, 

QuickTime can deliver content on Mac OS X, as well as all major versions of Microsoft 

Windows. Augmenting its cross-platform capabilities, QuickTime supports every 

major file format for images, and every significant professional file format for video. 

QuickTime 6 is used to author professional-quality, ISO-compliant MPEG-4 audio 

and video files. 

The QuickTime API comprises more than 2500 functions that provide services to 

applications. These services include audio and video capture and playback, movie 

editing, composition, and streaming, still image display, audio-visual interactivity, 

and so on. The API also supports a wide range of standards-based formats. It is 

dedicated to extending the reach of application developers by letting them invoke the 

full range of QuickTime capabilities. 

A further motivation for using the QuickTime API was that we were interested in 

experimenting with the code generators, and not low level video handling. The high 

level API allowed us to concentrate on the main topic of the thesis. 



Chapter 4 

Models and Solvers 

In this chapter we describe the models and the structure of the solvers in detail, 

including formulations as optimization problems, and explanations of the challenges 

faced in solving the models. 

4.1 Model 

4.1.1 Colour Space 

The images are formatted as arrays of unsigned 8-bit RGB values. If the gain adjust­

ment is too high for the given lighting conditions, some of the pixels with one or more 

255 component values may in reality be clipped to that value from a higher value. In 

the target environment, this may be quite common. Before processing, these values 

are usually linearly transformed to another colour space (described in Section 4.1.2) 

and converted to floating point numbers, so that the effect of saturation may not be 

restriction to a cube in R3 aligned to the coordinate axes. We note that in this type 

of application, it is common to use binary (black and white, without intermediate 

gray values) patterns, and simpler image processing involving statistical rounding of 

byte values to binary values [9]. 
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4.1.2 Advantages of Coloured Gradients 

In current practice, binary (i.e., black and white) targets are used. Gradient (i.e., 

grayscale or coloured) images have many advantages over binary ones. In a noisy 

image, every point on the gradient contributes to the determination of the position. 

However only the points at the transition for the binary pattern are contributing; 

accordingly, the usage of the gradients should be more robust with reduced quantifi­

cation error. Calculation of the likelihood of estimated parameters is easier for the 

gradient model and can be used in robust model-based control. For suitable gradient 

targets, even saturated images yield information about lighting which can be used 

to adjust camera gain. This property is important when large lighting changes are 

expected. 

Simple coloured patterns can be used to identify orientation of the target. Having 

three spots of well differentiated colours, e.g. red, blue, and green, the position and 

the size of these three spots yield the position and the orientation of the target. Since 

differences in hues are orthogonal to brightness, there is no interference between the 

spots. While fitting each spot is a non-convex problem, the problem of locating the 

centre of each spot is convex. 

To simplify the exposition and the development of the algorithm, the problem 

of fitting the spots is decomposed into two parts: conversion to a colour space in 

which the different spot colours are pairwise orthogonal [including identification of 

the different colour values], followed by the extraction of spot parameters from a 

real-valued spot. Identification of the different colours must take lighting and camera 

calibration into account. The real-valued spot received from the camera can be either 

a gray-scale image or a single component of a multispectral image. We will not make 

a distinction. 

Colour conversion is achieved as follows: given the matrix of "real colours" as 

(

TO 

A= 90 

bo 
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and the spot colours as a, (3 and " we have that 

(a) ( Treal ) 
{3 = A-I greal , 

, breal 

where r real, greal and breal are the colour values of each pixel from the original image. 

Now the vector of a, {3 and, values of each pixel is processed by the algorithm. 

Note that coloured images are produced by the camera with red, blue and green 

values interleaved, so it may not be efficient to use a solver for a grayscale model for 

colour spot identification. 

4.1.3 Model Equations 

Although part of the motivation for performing code generation in Maple was to be 

able to inexpensively compare multiple models and families of models, this thesis 

focuses on the code generation aspects; therefore only the most successful family of 

models is presented here, with sufficient detail to expose the issues, common to all 

models, with non-convexity and the structure in the space of variables we can use to 

get around them. 

Let the two-dimensional array ¢x,y E JR represent the stored image. If the colour 

information is introduced, ¢x,y,c E lR is used, where x and y define a pixel on the 

image and c E {T, g, b} defines its colour. A model of a spot is fitted over a small 

region of pixels n c 'Z} which is believed to contain a light spot l with components 

x,y. 

The basic model of a spot (Figure 4.1) is 

where 

determine the radial profile 

aI, a2 and a3 determine the extent and eccentricity 

bx and by - x and y coordinates (in pixels) of the ellipse centre 
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Figure 4.1: Actual captured image of one gray-scale target image. 

Figure 4.1 represents an actual captured image of one gray-scale target image, with 

overlays to demonstrate how the model variables decompose naturally into subspaces 

according to their geometric meaning. The center of the spot (1) is determined by b; 

the shape of the spot , given by scaling/rotation is determined by a, and represented 

by the s = 1 contour (2); in the presented model, any cross-section through the centre 

of the spot (3) will be a stretching of the basic cross-section (4) determined by k. The 

background illumination is determined by Va and the brightness of the centre of the 

spot is VI. 

In addition, we add the following constraints and conventions 
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Figure 4.2: Three coloured spots. 

s ::; 1 spot extent 

118=1 = 0 - background value for spot exterior 

118=0 = 1 - ideal brightness value at spot centre 

a positive definite - so we get a spot 

23 

We use these constraints to eliminate the parameters ko = 1 and k3 = -(ko+k1 +k2). 

Variations of spot and background illumination are represented in the complete model, 

vd(l) + Vo· 

Using the least squares method, the best fit of this model to the actual light 

intensity function cP of that chosen area can be found. 

F = L (cPL - (vd(l) + VO))2 
LEn 

where 

n = {(x,y)ls::; I}. 

We now minimize the error between the chosen model and the actual light intensity 
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Y 

(Xred, Yred, Zred 

x 

Y 

Figure 4.3: (a) Single spot, and (b) calculation of angle of rotation around z-axis 

function as follows: 

min F. 
subset of {a's, b's, k's, v's} 

4.1.4 3D Position 

Using three colored spots as presented in (Figure 4.2), we can determine all six pa­

rameters needed for completely describing the position of the surface with the pattern 

on it. Let p describe the position and the orientation of one spot in 3D: 

where Pi are the space coordinates of the centre of the spot, and Bi are the angles of 

rotation of the spot around the i-th axis. 

Given the parameters aI, a2, a3, bx and by of a spot, the following quantities can 

be computed: Px, Py, PZ1 Bx and By. Having three different spots also allows the 

computation of Bz. Calculation of Px and Py is trivial from bx, by and a reference 

point. 

An ellipse of the general form al x2 + 2a2XY + a3y2 = 1 in xy coordinates (Fig-
/2 /2 

ure 4.3a), could be transformed to standard form ~ + ~ = 1 in the x'y'-plane. 
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Solving for the eigenvalues ..\1 and ..\2 of the matrix 

yields 

m= 

Pz is calculated as Pz = D,m,/m, where D, and m, are obtained from camera 

calibration - D, is the distance from the camera, and m, is the length of major 

semi-axis of the captured spot. 

To find ()x and ()y we need to determine lOLl and lOKI (Figure 4.3a). Land K 
are simply x- and Y- intercepts of an ellipse, and IOLI 2 = a\' IOKI2 = ;3' Now, 

lOLl 
cos()y = --,cos()x = 

m 

tan2 ()y + 1 
2 () m 2 

tan y + IOKI2 

Finally, by employing three spots, we calculate ()z. Let (xr, Yr, zr), (Xg, Yg, Zg), and 

(Xb, Yb, Zb) be coordinates of the centers of the red, green, and blue spots respectively 

(Figure 4.3b). In the desired orientation, vector h = (0, Yg, 0) makes an angle ~ with 

the positive x-axis. In an arbitrary position of the three spots, vector h becomes 

(X9~Xb _ X r, Y9~Yb - Yr, z9~zb - zr). The projection of the vector h onto the xy-plane 

becomes h' = (Xg~Xb - Xr , yg~Yb - Yr, 0). From h' we can obtain ()z: 

7r Y9~Yb - Yr 
tan(()z + -2) = x +x . 

~-X 2 r 

Using three coloured spots also solves the problem of deciding if the rotation was 

clock- or counter-clockwise around the x- and y-axis. Since Zr, Zg, and Zb are known, 

we can tell which of the spots is now closer to the camera, providing us with the 

direction of rotation around x and Y axes. Another benefit of using three spots is 

that the position is computed three times, and the results can be weighed with respect 

to how well each of the spots was captured. We are still determining the most robust 

and efficient method of using this redundant information. 
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4.2 Solver 

4.2.1 Saturation 

Before the fitting of the parameters defining the location and the shape of the spot 

can be performed, detection of saturation of the captured image must be carried 

out. If the image is found to be saturated, saturated pixels are removed when F is 

computed. Furthermore, if S is the set of saturated pixels, set n now becomes: 

o.without saturation = n \ S 

To perform the computation of F while excluding saturated pixels [which contain 

little useful information about illumination], the pixel by pixel processing must be 

conditional. This will increase execution time of the algorithm. Since saturation of 

the image will not always occur, for each set of parameters, two versions of the solvers 

will be produced-with and without saturation control. The likelihood of saturation 

is calculated each frame based on the estimate for v, and this information is used to 

decide which solver to use on the next frame. 

4.2.2 Initialization 

The solvers are based on the multivariate Newton's method. In theory, if the objective 

function being optimized is convex, and if the starting point for the Newton iteration 

is sufficiently close to the actual solution, Newton's method will converge at a second 

order rate [6]. In practice, convergence of the Newton's method may be very slow 

and numerical errors may prevent it from converging at all [2, 3]. 

However, for our practical purposes, convexity of the subproblems and good first 

approximations (Sections 4.2.4 and 4.2.5) provided to the Newton's method allow it to 

compute reasonable estimates of the model's parameters with quadratic convergence. 

Seven to ten iterations were required to efficiently locate the center of the spot, and 

only three to five interations to determine the spot's shape. These results closely 

correspond to the theoretical quadratic convergence results described in [2] for the 

pure multivariate Newton's method with a good initial approximation. 

Since Newton's method is extremely sensitive to initial starting points, we need to 

choose them well. We are currently using heuristics based on weighted averages and 
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pixel-value histograms. Since we have vendor-supplied, optimized libraries for these 

functions, we have not used code generation for this. From the image we can extract 

initial guesses for 

• the average radius of the light spot on the image, 

• the values for Vo and VI, 

• the position of centre 

The profile of every spot should be the same, thus the same values of k are used 

for all the spots. Vo describes a background light level. bx and by can be chosen as 

a centre of the image fragment. We have found it sufficient to use as a first guess a 

circular spot: 

al = 6.25 * 10-6
, a2 = 0.00, a3 = 6.25 * 10-6

. 

These dimensions ensure that the initial spot covers the entire (640 x 480) image 

fragment. 

4.2.3 Fitting 

To perform the fitting, let V = {Vo, Vll kll k2' bx , by, all a_2, a3}. It is necessary to 

minimize F with respect to a subset of the variables U ~ V. 

minF. 
u 

To find the minimum of this function, partial derivatives with respect to all pa­

rameters from U are taken. As a result a system of equations is obtained, each of 

which equals to zero. The multivariable Newton's method can now be applied. 

With the given model, we employ Maple to generate optimized C functions that 

calculate the Jacobian and Hessian matrices. These are used in a multivariate New­

ton's method to optimize F with respect to any subset of the system's parameters. 

4.2.4 Convexity 

We know that target recognition is not convex in general by looking at the multiple­

spot case, because, for example in one dimension, matching a periodic pattern such 
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II Eigenvalues of the Hessian matrices 

b all - real, positive, magnitude of 1.0 x 101:S 
a all - real, positive, magnitude of 1.0 x 1017 

a,b 
two - real, negative, magnitude of 1.0 x 105 

three - real, positive, magnitude of 1.0 x 1012 

Table 4.1: Eigenvalues of the Hessian matrices. 

as a sine wave to itself has multiple (periodic) minima: 

j n7l" 

error = -n7l" (sin(x) - sin(x + 8))2dx = 2mr(1 - cos(8)). 

To determine if our problem is convex for a single spot, we sampled the eigenvalues 

of the Hessian matrix during experiments with different solvers and various spots and 

lighting conditions. The problem is convex iff the Hessian is positive definite iff all 

the eigenvalues are positive. In practice, we require positive eigenvalues of similar 

magnitude. We found that, for the model described in this thesis, when fitting bx and 

by, eigenvalues were always real and positive with magnitude approximately 1.0 x 108 . 

As for aI, a2 and a3, eigenvalues were also always real and positive with magnitudes 

1.0 x 1017. However, when trying to solve for both, the position of the centre and the 

shape of the spot within the same procedure, it was found that the Hessian matrices 

always had at least one negative eigenvalue (three of the five eigenvalues were positive 

with the magnitude of 1.0 x 1012 , and the other two-negative with the magnitude of 

1.0 x 105 ) (Table 4.1). 

With this profiling information, we know that a naive implementation where we 

simultaneously optimize all variables is likely to fail, except when we are tracking an 

essentially stationary spot from frame to frame, uninterrupted by lighting changes. 

4.2.5 Need for Multiple Solver Stages 

Depending on the structure of the problem, it may be possible to find a series of 

functions which approximate the objective function and which are sufficiently convex 

to make a staged solver - one which solves a series of increasingly difficult problems 

- converge efficiently in practical cases. The most straightforward method of finding 
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such a series of objective functions is to restrict the original function to subspaces of 

the original domain. 

Due to lack of convexity when solving for the position of the centre and the shape 

of the spot in a single stage, it is necessary to have multiple solver stages. During the 

first stage, in seven to ten iterations, the location of spot is found (bx and by) under 

the assumption that the size of the spot is larger than the whole captured image. 

Having an exact position of the centre of the spot makes the fitting of aI, a2 and a3 

a convex problem. In the second stage, in just a few iterations, the shape of the spot 

is then quickly found. 
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Implementation 

Outline of Maple code generation procedure: 

1. Function F is defined. Summations over (x, y) are omitted. 

> f := add (kl Ii * s~i, i = 0 .. 3): 
> X := <x - b_x, y - b_y>: 
> A := Matrix (2, 2, symmetric, (x,y) -> al I (x + y - 1)): 
> sTmp := (Transpose (X).A).(X): 
> fTmp := (phi [xlnt, ylnt] - (vi 11 * function(x,y) + vi 10))~2: 
> F := eval (fTmp, function = unapply (eval (f, s = sTmp) , x, y)): 

2. Set U is defined (i.e., if we are fitting the center, U is defined as {bx , by}, etc). 

3. Jacobian and Hessian matrices are computed (note: only half of the entries of 

the Hessian matrix are computed due to symmetry). args = U and numArgs = 
#U. 

> allElements := [seq ( 
> seq (hess I Iii Ij = hess I Iii Ij + diff (diff (F,args[i]), args[j]), 
> i = 1. .j), j = 1. .numArgs), 
> seq(jacl Ii = jacl Ii + diff (F,args[i]), i = 1 .. numArgs)]: 

4. Code generation of Jacobian and Hessian matrices is performed. 

> opted := codegen[optimize] (allElements, tryhard): 
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5. Local variables are retrieved. On average, Maple introduces 20 temporary vari­

ables, which become local variables for the C functions. 

6. The loop body is generated into a string. 

> codeString := C ([opted], output=string, precision=single, 
> declare=[x::float, y::float]): 

7. • A C function is generated by wrapping the codeString in for loops over 

(x, y), 

• elements from the top right half of the Hessian matrix are copied to its 

bottom left one, and 

• local variables are declared. 

Fitting is then performed as follows. Variables which will be held constant for 

this particular optimization are initialized, and variables to be optimized are marked. 

The C function from above is used to generate Hand J. The LA PACK package 

is used for implementing Newton's method, via sgetrL and sgetrs_. sgetrL is 

used to factor the H matrix and sgetrs_ is used to solve the H x = J system. A 

better approximation to the initial guess is calculated, and is repeatedly used in the 

Maple-generated C function to obtain successively "better" values for the optimized 

variables. Depending on the application and the timing requirements, either the 

difference between two consecutive approximations or the number of iterations can 

be used as termination criteria for the algorithm. 

Examples of Maple generated functions could be found in Appendix A. 
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Results 

Measurements of floating point operations in code generated using optimization 

strategies described in Section 1.3 confirmed our expectations. Table 6.1 and Fig­

ure 6.1 show flops counts, with and without joint optimization of the generated code 

for the Jacobian and Hessian matrices, and with and without the Maple tryhard 

option that attempts to optimize the generated code for speed. Jointly optimizing 

the Jacobian and Hessian produced a 20 - 25% reduction in flops, while the use of 

the tryhard option produced a 30 - 40% reduction in flops. This does not reflect 

the equally important reduction in memory traffic and reduction in local variables 

by jointly calculating the Jacobian and Hessian in one loop. Therefore, by jointly 

calculating and optimizing the Jacobian and Hessian matrices, the resultant code is 

faster and requires less memory. 

The technology, at least as currently present in Maple 9, is finicky, but persever­

ance pays off: there are workarounds for most of the quirks, so that armed with some 

patience, it seems to always be feasible to coax Maple into producing usable code. 

And at least Maple helps: there are no such integrated packages in Mathematica, and 

the available third-party packages do not seem to be well-supported or up-to-date. To 

our knowledge, it is not possible to do model-driven symbolic development in Matlab. 

As an example of the interoperability problems we encountered, the Maple 

commands diff and codegen [GRADIENT] both know how to differentiate sum, 

but neither codegen [C] nor CodeGeneration [C] know how to deal with sum; 

more annoyingly, there is code available that can deal with this automatically 
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Separately Optimized Jointly Optimized 
Jacobian and Hessian Jacobian and Hessian 

+tryhard +tryhard 

b 152 97 112 78 
a 176 117 135 88 

a,b 396 220 325 205 
a,b,v 461 284 394 230 

Table 6.1: Number of flops per pixel in the generated solvers. 

+t:: opt'd with tryhard 
500 ... "'''''''',,, ,, ''''' ''' '''' '''' '''''''' '' ''' '' ''' 

400 

100 

01.---
b 8 

jointly oprd Jacob. & Hess. -
':>0,vvati::Y . '"G. aeon & Hp~~,:" ====> 

a,b a,b,v 

Figure 6.1: Number of flops per pixel in the generated solvers. 
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(codegen [prep2trans] ), but it needs to be hand-applied. Another annoyance is 

that optimization is very important-but the most powerful optimizations are only 

available from codegen [optimize] through its tryhard option, and not through 

CodeGeneration [C], even though it has an optimize option. Of course, tryhard is 

not a panacea: how is one to interpret 

codegen[optimize] (Sum(sin(i~2)+i~3*cos(i~2+1),i=a .. b),'tryhard'); 

returning 
b 

t29 = i 2
, tl = L sin ( t29) + t29 i cos (t29 + 1) . 

i=a 

However if an expression like the above is converted to an appropriate procedure (via 

prep2trans), then no optimizations at all are performed on the inner-loop expression. 

This forces a user to perform optimizations on very small code chunks, and then hand­

assemble the results into a larger more coherent whole. This seems rather counter to 

the idea of using code generation in the first place. Being able to correctly optimize 

models which use higher-order constructs like sum is crucial for the more complex 

models we want to investigate. 

Furthermore, other difficulties arise, in particular with the use of the C function 

pow in the C output. We have not been able to predict the actual pattern, but poly­

nomials such as x3 frequently get translated to pow(x, (double)3) instead of x * x * x, 

even if x is an integer variable. This appears to be related to CodeGeneration (cor­

rectly) guessing that the eventual output is supposed to be a floating point number, 

but this is not clear. 

Nevertheless, it is possible to generate code that is usable. It could be achieved 

as follows: 

• using the Maple symbolic differentiation operator diff on expressions, and 

codegen [optimize] with option tryhard on collections of Sum-free terms, then 

• partly hand-building the resulting code into a large procedure (with help from 

makeproc, prep2trans and joinprocs from the codegen package), followed by 

• post-processing pass to remove calls to pow. 
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Given the importance that code generation from models is likely to take in the 

future, we have been careful to submit all our observations on these matters to the 

makers of Maple, and we hope that these will help them to produce an improved 

version of the tools for code generation. 
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Conclusion and Future Work 

Model-based visual tracking in extreme lighting conditions is currently expensive 

both in terms of development and computation. Adaptation of Maple code genera­

tion to the problem of automatically generating efficient implementations of families 

of Newton solvers reduced the development cycle, improved reliability and reduced 

the computational requirements. Use of symbolic computation allowed the design of a 

code generator to be independent of the model and number of independent variables. 

The designed algorithm solved to the problem of imaging in extreme lighting condi­

tions in which the camera is saturated for a significant portion of the target image. 

We investigated the problems caused by limitations in the current implementation of 

code generation in Maple, as well as the other problems to which designed method is 

applied, and also carried out related approaches to code generation. 

Overlapping with the current work, Olesya Peshko (also at McMaster) is applying 

generated code to a visual contour extraction problem arising in radiation therapy 

planning. As part of that project, it will be necessary to generalize the code generators 

presented in this thesis to three and four dimensions. 

The principal task remaining in the current project is the integration of the solvers 

developed so far into a Model Predictive Controller (MPC) [11]. Originally, MPC 

was developed to meet specific control needs of power plants and petroleum refiner­

ies. MPC technology can now be found in a wide variety of application areas which 

include automotive, chemicals, aerospace, and metallurgy. By adapting these tech­

niques to target recognition, and incorporating uncertainty and brightness informa-

36 
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tion, our MPC will simultaneously control the acquisition mechanics and the camera 

parameters, which we expect to yield a significantly more robust closed-loop control 

system. 
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Appendix A 

Maple Generated Functions 

A.I Function to calculate Hessian and Jacobian 

void fuactioD __ opt __ ala2a3 ( float •• phi, float at, float &2, float a3. float b_x, float b_y. 

float ItO. float k1. float k2, float k3 , float vO, float vi, int N. int H. float *jac, float .hess 

{ 

float t64. 

float t2i 
float t39; 

float t3; 

float t12i 

float t5; 

float t66; 

float t49; 

float t63; 

float t20j 

float t48; 

float t47; 

float t6t; 
float t58; 

float t57i 

float t27j 

float t29j 

float t66j 

float t30; 

float t3li 

float t19; 

float t9j 

float t4; 

float tl0; 

float t7; 

float t46j 

float t50i 

float t43; 

float t44; 

float t62j 

float t59, 

float t60; 
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float tU; 

float t51; 

float t54j 

float t55; 

float t45j 

float t53j 

float hess 11 i 

float hess12; 

float heS822 i 

float hesst3 j 

float hess23 i 

float bass33; 

float jacl j 

float jac2i 

float jac3; 

int x_tnt. y _int i 

float x. Yi 

int x_1nt_Iover ,x_iDt_upper i 

float x_lower, x_upper. D4 j 

hassll .. 0, 

h.as12 - 0; 

h ••• 22 .. OJ 

he.a13 - 0; 

he •• 23 .. OJ 

hese3S • OJ 

jacl .. OJ 

jac2 - 0; 
jac3 .. 0; 

for (y - 1.t, y_illt .. OJ y_1nt < M; y_int++, y++) 

{ 

04 - a2n2*(y-b_y)*(y-b_y) - al*(a3*(y-b_y)*(y-b_y) - 1.0); 

if (04 < 0) 

{ 

x_tnt_lower .. 0 j 

x_1nt_upper .. -1 i 
} 

el •• 

04 - aqrt (04); 

x_lover - (- a2*(y-b-y) - 04) / al + b_x + 1.0; 

x_int_lover .. floor (x_lover) - 1 i 

x_lower =- l.fi 

x_int_Iower • 0 i 

x_upper" (- a2*Cy-b_y) + 04) / a1 + b_x + 1.0i 

x_int_upper .. ceil (x_upper) - 1 i 

if (x_int_upper > II) 

{ 

for ex - x_lower, x_1nt .. x_1nt_loveri x_int < x_int_upper; x_int++, x++) 
{ 

if (phi (x_intJ[y _int] < 256) 

41 



42 

t31 • x - b_Xj 

t29 - t31 • t31; 

t30 - y - b_y; 
t20 - t29 • al + (O.2elf • t31 •• 2 + t30 • &3) • t30j 

t65 • O.leU + t20j 

t19 • t20 • t20j 

t9 - (O.SeOf • t19 + O.leU) • t65; 

t58 - O.2oU / t9; 
t54 • phl(x_int] [y _int] - vO; 

t2 - -vi + t54 • t9,; 

t7 - pov(t9. -O.201f); 

t66 - t2 • t2 • t7 i 

t53 • t31 • tao; 

tlO - (O.2oU + O.201f • t20 + O.30U • t19) • t53; 

t3 - t54 • t10. 
tOO • t3 • t58j 

t39 • 0.IS81f • t19 + t6S. 

t12 • t39 • t29; 

t6 - t54 • t12; 

t49 • t6 • t68j 

t65 • t2 • t7; 

t47 • -O.20elf • t55j 

t64 - t49 + t12 • t47j 

t48 - t66 • t68: 
t63 • t48 • t12i 

t51 • t2 • t68; 

t62 - -O.lOoU • t66 + t54 • tSl; 

t57 - O.181f + O.381f • t20; 

t61 - t57 • t62; 

t27 • tSO • t30; 

t60 - t62 • t29 • t27; 

t59 - (O.281f + O.681f • t20) • t53 • t62; 

t46 - -o.4001f • t55; 

tll - t39 • t27; 

t46 • tll • t48j 

t44 - tll • t47; 

t43 - tlO • t47; 
t4 • t64 • t11; 

b ••• tl • basalt ... t5 • t5 • t58 + t29 • t29 • t61 + (tS • t46 + t63) • tt2; 

h ••• t2 • h.sal2 + t10 • t63 + t6 • t43 + t29 • t69 + t64 • t3j 
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h ••• 22 - he.a22 + tiO • tlO • t48 + (O.4e1f + 0.1282f • t20) • t60 + (ttO • t46 + t50) • t3; 

h •• at3 • he.at3 + t12 • t45 ... t5 • t44 ... t67 • tOO ... t64 • t4j 

h ••• 23 • h ••• 23 + tiO • t46 + t3 • t44 + t27 * t59 + (t50 + t43) * t4; 

h ••• 33 • h ••• 33 + ttt * ttl * t48 + (tll * t46 + t58 * t4) * t4 + t27 • t27 • t6t; 

jact - jacl - 0.10elf • tl2 • t66 + t2 • t49; 

jae2 - jae2 - O.lOoU • tlO • t66 + t2 • t50; 

jae3 - jae3 - O.lOoU • tll • t66 + t4 • t51; 

} 

jae[O] - jael; 
jae[1] • jac2j 

jac[2] - jac3; 

h.s.[O] - hessll; 

h ••• [1] - hesst2i 
ho •• [2] • bess13i 

haas [3] - heBs12j 

has. [4] • he8a22; 

hOBs[5] - hess23i 
hOBs[6] - heaa13i 
h.BB[7] - beas23i 
has. [8] - heBs33i 
} 
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A.2 Function to calculate Hessian and Jacobian 

matrices for bx and by. 

'include <math. h> 

VOl.d fuuctioD __ opt __ h_xb_y ( float •• ph1. float al. float &2, float a3, float b_x. float b_y. 
float kO, float kt, float k2. float k3. float vO, float v1, tnt N, int M, float *jac, float *hes8 

{ 

float tl; 

float t2j 

float t33; 

float t34; 

float t22; 

float t23; 

float t4; 

float t24; 

float t42i 

float t27i 

float t8j 

float t47j 

float t7i 

float t43; 

float t15; 

float t16; 

float t12i 

float tl0; 

float t3B; 

float t45; 

float t46; 

float t44; 

float t39; 

float t36; 

float t37; 

float t40j 

float hesatt; 
float he8s12; 

float b88822; 

float jaclj 

float jac2j 

iJlt x_int, y_int; 

float x, Yj 

tnt x_tnt_lover. x_int_upper i 
float x_lower. x_upper. D4; 

hessU ,. 0; 

hes812 = 0; 

he8a22 ,. OJ 

jacl • 0; 

jac2 • 0; 

for (y'"" 1.t. y_int cO; y_1Dt < Hi Y_int++, y++) 

D4 • a2*a2*(y-b_y)*(y-b_y) - al*(o3*(y-b_y)*(y-b_y) - 1.0); 

if (D4 < 0) 

{ 

x_int_lower :II: OJ 

x_lnt_upper .. -1; 

} 

e1s8 
{ 
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04 • aqrt (04), 

x_lovor • (- a2.(y-b_y) - 04) / at + b_x + 1.0; 

x_int_lover - floor (x_lower) - 1; 

x_lover - 1.fi 
x_tnt_lover - 0 j 

x_upper & (- &2. (y-b_y) + 04) / al + b_x + 1. 0; 

x_tnt_upper - cen (x_upper) - 1 i 

if (x_int_upper > N) 

( 

x_tnt_upper • Nj 

} 

if (phi [x_int) [y _int) < 255) 

{ 
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tl6 & (x - b_x) • (0.le-3f • x - 0.lo-3f • b_x) + (y - b_y) • (0.le-3f • y - 0.le-3f • b_y); 

t16 • tl6 • tl6; 

t12. (0.6eOf • tl5 + O.lelf) • (O.lelf + tl6); 

t43 • 0.2.1f I t12; 

t40 • phi[x_int] [y _int) - va; 

t4 • -vI + t40 • t12, 

tlO • pov(tI2. -0.2.lf); 

t47 • t4 • t4 • tlO; 

t34 • t16 + 0.16.1t ... t16; 
t27 • -O.2e-3f ... x + 0.2e-3f ... b_Xi 

t8 • t34 • t27 - 0.208-3f ... x + 0.208-3f ... b_xj 

t2 • t40 • t8j 

t46 • t2 • t43; 

t46 • t4 • tl0j 

t39 • t4 • t43j 
t44 • -o.1081f • t47 + t40 • t39; 

t42 • 0.381f • t16; 

t38 • t47 ... t43j 

t37 • -O.40elf • t45; 

t36 • -O.20elf • t45, 

t33 • 0.30e-3f • tl6 + 0.20e-3f + O.20e-3f • tl6; 

t24 • -0.2.-3f ... Y + 0.2e-3f ... b_Yi 

t23 • t27 • t27; 

t22 • t24 • t24i 

t7 • t34 • t24 - 0.20e-3f • y + 0.20e-3f • bS; 

tl - t40 • t7j 
he.8ti • h ... t1 + t8 ... t8 • t3B + t44 ... (t23 + t23 • t42 + t33) + (t8 ... t37 + t46) • t2i 

he •• 12 • h ••• 12 + t44 • (O.lelf + t42) • t27 • t24 + (t2 • t36 + tS • t3S) • t7 + (t46 + tS • t36) • tl; 

hess22 - h ••• 22 + t7 ... t7 • t3B + t44 • (t22 + t22 ... t42 + t33) + (t7 ... t37 + tl • t43) ... tlj 

jac1 1& jac1 - 0.10elf ... t8 • t47 + t2 ... t39; 

jac2 - jac2 - 0.10elf ... t7 ... t47 + tl • t39; 

} 

jac[O) • jac1; 

jac (1) • jac2; 

he.a[O) - hessl1; 

h8 •• [I) - h8B812; 

he.8[2] • h8ss12; 

he •• [3] • hes822; 

} 




