
PRE/POSTCONDITION AND RELATIONAL APPROACHES

A COMPARATIVE STUDY

OF

PRE/POSTCONDITION AND RELATIONAL APPROACHES

TO PROGRAM DEVELOPMENT

By

HONG DUAN, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Hong Duan, December 2004

MASTER OF SCIENCE(2004)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE:

AUTHOR:

A Comparative Study of Pre/postcondition and Relational
Approaches to Program Development

Hong Duan
B.Sc. (Shandong Institute of Building Materials Industry, China)

SUPERVISOR: Dr. David L. Parnas and Dr. Robert L. Baber

NUMBER OF PAGES: x, 132

Abstract

With so many software-related failures happening these days, there is an increasing

demand for software quality. Rigorous development approaches, which apply

mathematical techniques to the design and implementation, should be getting more

consideration as one of the solutions to software reliability.

Pre/postcondition approaches and relational approaches are two groups of

influential rigorous techniques. Both of them use classical mathematical concepts to
describe and simplify programming objects. To further propel the application of

these approaches, their relative strengths and limitations in terms of practicability

and accessibility need to be identified and elaborated.

In this thesis, we conduct a comparative study between the pre/postcondition

approaches, proposed by Floyd, Hoare, Dijkstra and Baber, and the relational

approaches, proposed by Mills and Parnas. We investigate aspects related to their
mathematical models. Their abilities of specifying different termination behaviours,

dealing with non-determinism, distinguishing between specifications and

descriptions, etc. are discussed. Some practical issues, such as considerations on
common programming constructs, side effects, verification procedures, etc. are

reviewed. The comparison criteria are grouped into two categories - theory and
practice. Under each criterion, we illustrate and evaluate the strength or weakness of

each approach. Suggestions regarding the applications of these approaches are also
presented.

Acknow ledgelTIents

I would like to express my deep and sincere gratitude to my supervisors, Dr. Robert

Laurence Baber and Dr. David Lorge Pamas, for their invaluable guidance, help and

encouragement throughout my graduate study and my thesis-writing period. Without

their consistent support, it would not have been possible for me to finish this work.

I am grateful to Dr. Soltys and Dr. Khedri, for reviewing my thesis, and for their

valuable suggestions and comments. I would like to thank my many student

colleagues, especially the friends in Room 223, for providing a stimulating and fun

environment and for their wonderful friendship.

Special thanks to my parents who always believe in me and have encouraged me

in so many ways.

Lastly, and most importantly, I wish to thank my loving husband Yuxin for his

everlasting support he has given me at the time I needed the most. He has been a
source of strength in helping me maintain my sanity throughout the whole process.

11

Contents

Abstract ... i

Acknowledgements ... ii

List of Figures ... vi

List of Tables ... vii

1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation for this research ... 2
1.3 Thesis scope .. 4
1.4 Organization of this thesis .. 4

2 Historical Survey of Formal Program Development Approaches 5

2.1 The pre/postcondition approach ... 6
2.1.1 Floyd ... 6

2.1.2 Hoare ... 7

2.1.3 Dijkstra .. 8
2.1.4 Baber ... 9

2.2 The functional/relational approach .. 9

2.2.1 Mills .. 10

2.2.2 Pamas .. 10

2.3 The model-based approach .. 11

iii

2.3.1 VDM .. 12

2.3.2 Z ... 13

2.3.3 B-method ... 14

2.4 Summary ... 16

3 Theoretical Comparison .. 17
3.1 Termination of programs .. 19

3.1.1 Can the approach specify that a program must terminate? 23

3.1.2 Can the approach specify that a program may but need not terminate?

... 26

3.1.3 Can the approach specify that a program is not permitted to

terminate? .. 27

3.2 Does the approach distinguish between a specification and a description of

a program? .. 28

3.3 Non-determinism .. 30

3.3.1 Does the approach deal with non-deterministic specifications? 30

3.3.2 Does the approach deal with non-deterministic programs? 32

3.4 Is the structure of the state of program execution explicitly defined? If so,

how is it defined? .. ,. 34

3.5 Does the approach clearly distinguish between variables and their names?

... 35

3.6 Transformation rules / Proofrules , 37

3.6.1 Are the rules explicitly stated? ... 37

3.6.2 Does the set of rules support verification for both partial correctness

and total correctness? ... 40
3.7 How are the values of variables before and after execution distinguished?41

3.8 Conclusion ... 43

4 Practical Comparison .. 45

4.1. Types of program statements considered .. .48

4.1.1 Primitive program statements .. .48

4.1.2 Control constructs ... 54

4.2 How does the approach support verification of a program? 80

4.3 Side effects handled? .. 82

IV

4.4 How does the notation of an approach facilitate its use in documentation?83

4.5 How does the approach handle program derivation/design? 86

4.6 Programming languages limitation .. 88

4.7 Does the approach provide explicit descriptions on how to use the

transformation/proof rules? .. 89

4.8 Conclusion ... 90

5 Conclusion and Future Work ... 93

5.1 Conclusions and suggestions ... 93

5.2 Future work .. 96

Bibliography .. 97

Appendix A Program Documentation - Specification, Design and Verification
for the Partition Subprogram .. 107

A.l Introduction .. 107

A.2 Documentation of Partition subprogram ... 108
A.2.1 Informal description .. 108

A.2.2 Documentation .. 108

Appendix B Program Specifications Written in Both Pre/postcondition and

Relational Approaches .. 123
B.l Introduction ... 123
B.2 Specifications of Partition subprogram ... 124

B.2.1 Informal description .. 124
B.2.2 Specifications .. 124

B.3 Specifications of ExtractStr subprogram ... 125

B.3.1 Informal description .. 125

B.3.2 Specifications .. 126

Index ... 129

v

List of Figures

2.1 An example of an abstract machine in the B-method 15

2.2 An example of an Abstract State Machine ... 16

3. 1 Illustrations of four sets of starting states ... 20

3.2 An example of an implementation that must terminate 25

3.3 An example of a program description in pre/postcondition approaches 29

3.4 An example of transformation rules in pre/postcondition approaches 38

4.1 Verification using Floyd's approach ... 65

4.2 An example of decomposition process diagram in Baber's approach 84
4.3 An example of tabular notation ... 85

VI

List of Tables

3.1 Theoretical comparison of six approaches .. 18

3.2 InitiallFinal values of variables ... 41

4.1 Practical comparison of six approaches (1) ... 46

4.2 Practical comparison of six approaches (2) ... 47

4.3 Abort .. 50
4.4 Skip .. 50

4.5 Assignment statements .. 51

4.6 Declaration and Release statements .. 53

4.7 Sequential composition ... 5S
4.8 Conditional composition ... 56

4.9 While loops .. 63

Vll

V111

Chapter 1

Introduction

1.1 Background

Mathematics is part of the everyday toolset of every working engineer. It is such an

integral part of engineering that many engineers often are unconscious of the fact

that they are using mathematics in their work [Par96, Par98]. However,

mathematical methods have not been fully utilized in software development.
Although there was an early recognition of mathematical ideas in computing, the

approach of most software developers does not use mathematics. "Software
development is not yet an engineering discipline, at least not in the sense commonly
accepted by engineers in traditional engineering fields" [Bab97].

Software produced by standard software engineering practice typically contained
around 1-3 errors per 1000 lines of code at the time of early 1990's [GY91]. At this

rate, the potential for failure of software has increased as software has grown in size

and complexity. According to a study conducted in 2002 by the Research Triangle

Institute for the National Institute of Standards and Technology (NIST), software

bugs are costing the U.S. economy an estimated $59.5 billion a year, or
approximately 0.6 percent of the annual gross domestic product [R TI02]. Improving

software reliability has become a rising issue. To attain high quality in software

products, the standard approach is to test it. The more testing developers do of a
system, the more convinced they might be of its correctness. However, testing can

1

MSc. Thesis - H. Duan McMaster - Computing and Software

hardly ensure the correctness of the system in realistic software development

practice. Its primary contribution to quality is to identify problems that could have

been prevented in the first place.

In order to prevent errors in the early stages of development, many researchers

have put a large amount of effort into developing an effective method to utilize

mathematics in software development. Formal program development is the result of
this process. In this area, there are several major methods. One is pre/post-condition

approaches introduced by Floyd [Fl067] and further elaborated by Hoare [Hoa69]

and Dijkstra [Dij75, Dij76]. Functional/relational approaches were originated by N.
G. de Bruijn [deB50], Albert Meyer [MR67], et al. through their research on

function theory. It is further popularized in verification and inspection by Mills

[MiI75a] and Parnas [ParS3] et al. Model-based approaches are also influential in

formal development area. They are represented by VDM, Z and B-method.

1.2 Motivation for this research

Mathematical development techniques can provide high assurance of correctness by

eliminating ambiguity and inconsistency in the early stages of development. They
give precise definitions of problems. They can ensure the implementation conform
to the specification. They also facilitate maintenance and reuse at the specification

level instead of at the source code level. Although it is widely accepted that high­

quality software would result if a rigorous development process is followed
carefully, mathematical development techniques have not been applied widely in

industrial projects. With so many software-related failures happening these days,

formal development techniques deserve constant advocacy to popularize their

application.

Why don't most software developers use those approaches? How can we

facilitate the adoption of formal techniques in the software industry? To answer

these questions one has to begin with the reasons behind the phenomena.

2

McMaster - Computing and Software MSc. Thesis - H Duan

One of the reasons for the unpopularity of mathematics methods in the software

industry is that practitioners traditionally have limited exposure to using

mathematics in development; lack of familiarity intimidates them and keeps them

from applying these methods.

Another reason is that the introduction to each approach usually concentrates on

the merits of a particular approach. However a practitioner also needs to know:

1) what are the weak points of the approach and if they can be overcome, and

2) whether the approach best fits the intended application, before devoting time and

effort to study how to use a particular method.

One more reason is that mathematical methods offered to the working software

developer are perceived to be impractical. While they are sound mathematically,
they are believed to be too difficult to use. A rigorous process is considered to be
burdensome in practice, and hence is eschewed by many software developers

[Par86]. It would be a mistake for researchers to ignore this sentiment and simply
admonish programmers to "get with it".

While many researchers are trying different ways to popUlarize various formal

techniques, this thesis presents a "bird's eye view" of several influential methods
through a comparison. By going through a set of properly selected comparison

criteria, we will provide a clear illustration for each approach, which will help

understanding greatly.

The comparative study will offer a fresh outlook on how different formalization
techniques, specification structures and verification strategies affect the applicability

of an approach. The relative strengths or weaknesses of each approach in terms of its
practicability can be revealed. Examples and recommendations are also provided.
We believe that the discussion in this thesis presents concrete ideas and guides on
how effective the approaches are when they are applied in the real world.

3

MSc. Thesis - H. Duan McMaster - Computing and Software

1.3 Thesis scope

In this thesis, we compare the pre/postcondition approaches, proposed by Floyd,

Hoare, Dijkstra and Baber, with the relational approaches, proposed by Mills and

Parnas. Comparisons are also conducted within each group.

Because we attempt to identify the relative strengths and limitations of an

approach in terms of its practicability, the comparison criteria are chosen mostly

from a user's perspective. The criteria are grouped into two categories - the

theoretical aspect, which focus on the mathematical model of an approach, and the

practical aspect, which focus on whether an approach provides concrete solutions to

practical issues that are often encountered in development. Reflecting on the results

of the comparison, suggestions and recommendations are also provided.

These formal approaches can be applied to various programs in software

development. The programs we discussed in this thesis are sequential programs.

They are usually considered as components of a larger program or system. The

special problems involved in the development of concurrent systems will not be

discussed here although some approaches could be applied in that context.

1.4 Organization of this thesis

Chapter 2 presents a historical survey of the formal program development field.

Chapter 3 compares the approaches in their theoretical aspects. The individual

features are described first and the differences are discussed. Chapter 4 compares the

approaches in their practical aspects. Chapter 5 presents some thoughts and

conclusions drawn from the comparison and gives suggestions for future work.

4

Chapter 2

Historical Survey ofFonnal Progratn
Developtnent Approaches

In this chapter, we present a survey of the most influential approaches in the area of

formal program development.

The field of research on formal program development began in the late nineteen

forties. At that time, Turing observed that reasoning about sequential programs was
made simpler by annotating them with properties about program states at specific

points [Tur49]. In the early sixties, John McCarthy [McC62, McC63] developed a
technique called recursion induction for proving properties of recursively defined

functions. He discussed that program correctness could be established through
regarding programs as recursive functions.

There were several research issues investigated during the history of formal
program development - program verification, program semantic modeling, program

specification and program construction. Examples of program verification can be

found as early as 1966 with Naur's work on 'general snapshots' [Nau66], which are
program invariants used for correctness proofs of programs. Program verification
became popular to study in the 1970s. Then, program semantics was studied on its

own, that is without trying to provide an associated practical verification technique.
It was popular from the late 1970s to the late 1980s [PZOl]. At about the same time,

5

MSc. Thesis - H. Duan McMaster - Computing and Software

developing program specifications and deriving programs that implement the

specification were also of interest to some researchers. Many approaches were

developed based on different research interests. In the following sections, three

major classes of approaches are described - the pre/postcondition approach, the

functional/relational approach, and the model-based approach.

2.1 The pre/postcondition approach

In the late sixties, the pre/postcondition approach was proposed for proving the
consistency between sequential programs and their specifications. It occurred in the

work of Floyd, who first introduced the idea [Fl067], and Hoare [Hoa69]. In this

approach, one generally uses a correctness proposition such as of the form: if the
precondition of the program is true before the program is executed, then the
postcondition will be true afterward. Floyd's and Hoare's initial work focused more

on program verification. This approach is illustrated by N. Wirth in [Wir73] and by

J. R. Kelley and C. L. McGowan in [MK75]. Dijkstra introduced the method known

as predicate transformers [Dij76, Gri81]. A predicate transformer computes the

precondition of the postcondition for a program. This computation results in an

equivalent proof of program correctness. Dijkstra's approach deals with both partial
and total correctness by using two kinds of transformers. Baber's approach [Bab87,
Bab91, Bab02] is designed to make the traditional pre/postcondition techniques

more accessible for practical applications. It provides more guidelines and

procedures for applying the method in design and verification.

2.1.1 Floyd

In [Fl067], Floyd proposed a method of formally inferring the correctness of
programs. The method is known as the Inductive Assertion Method. Floyd

associated assertions with some points in a program. The assertions are logical

formulas that characterize the set of data states that can occur when control passes to
that point in the program. One proves by induction that if the execution reaches a

6

McMaster - Computing and Software MSc. Thesis - H. Duan

command in a specified state that is characterized by the assertion then it reaches the

next command in a specified state.

Floyd used flow charts to explain his ideas. The basic scheme is: Suppose two

edges have associated assertions Al and A2 such that there is an execution path

from the first to the second. An edge is said to be an entrance/exit to the command at

a vertex if its destination/origin is that vertex. An execution path is restricted to one

statement or block of statements. The verification condition VC associated with

these edges is then the statement that, if A I holds when control is at its edge, and the

execution path is traversed to the other edge, then A2 holds at its edge. At this point,

the partial correctness of that part of the program is established. Note that this did

not show that control would actually reach the second point. It only showed what
would be true if it reached that point. This is called partial correctness.

Floyd also shows how to prove termination in order to establish what is called

total correctness. He defined consistency and completeness for verification
condition functions eVC's) and gave theorems for manipUlating them.

2.1.2 Hoare

In [Hoa69], Hoare introduced an axiomatic approach, which was derived from
Floyd's approach. He defined an axiomatic system for proving that a program is
partially correct with respect to a specification. This system does not include rules

for proving that a program terminates, hence it only ensures partial correctness.

Floyd's and Hoare's methods are different: Floyd verified a program through a
general idea of generating and proving verification conditions of the program.

Verification conditions are constructed based on the same strategy that was explained in

2.1.1. Floyd used flow charts to present general ideas of proofs using his approach. The

approach can also be applied to structured/unstructured program constructs. Hoare
associated Floyd's idea with the structured programming language. He used a very

simple language that has only assignment, sequencing of statements, if-then-else,

and while. He then provided "axiomatic semantics" for this language. The reasoning

7

MSc. Thesis - H Duan McMaster - Computing and Software

is based on an axiom (the assignment rule) together with three inference rules (the

rules for consequence, composition and iteration). All the rules use some form of the

expression {V}S{P}, which reads "if the precondition V is true before execution of

S, then the postcondition P will be true after execution of S, provided S terminates."

2.1.3 Dijkstra

Dijkstra [Dij75, Dij76] built on the approaches of Floyd and Hoare by using a

predicate transformer that transforms a postcondition into a precondition.

In Hoare's approach, suppose we have shown that {V}S{P} is true when V

states that the initial value of the program variable is any positive integer. Ifwe were

to suspect that program S is also applicable to negative integers, we would have to

repeat the proof with a modified V. Dijkstra noted that the program. proof should

define the set of all input values for which the output satisfies P. He provided a

means of reasoning backwards from the postcondition to establish the precondition.

The predicate that characterizes all initial states for which the program S is

guaranteed to terminate in a state satistying the postcondition P is called the weakest

precondition of P for S. A weakest precondition, denoted by wp (S, P), is the least

restrictive precondition that can guarantee the postcondition. It ensures the total

correctness of a program. For a complete description of non-deterministic programs,

another predicate transformer known as a weakest liberal precondition "wlp" is

needed. w/p(S, P) [Dij76] is the condition that characterizes the set of all initial

states such that activation of S will either not terminate or terminate in a state

satistying the condition P. It corresponds to partial correctness.

In [Dij75, Dij76], Dijkstra also proposed constructing programs by

simultaneously deriving and veri tying them from the postcondition rather than the

"verification afterward" orientation of Floyd and of Hoare.

8

McMaster - Computing and Software MSc. Thesis - H Duan

2.1.4 Baber

Unlike the authors above, Baber was developing software and discovered several

practical problems that the others had overlooked or ignored. His innovations dealt

with complex data structures, parameter passing, and issues that arise if a program

does not always terminate [personal communication from Dr. David L. Parnas].

Baber introduced different types of preconditions - Ordinary, Strict, Complete and

Semistrict, which can specify the behaviors of different programs completely

[Bab87, Bab91, Bab02]. In Baber's framework, both partial correctness and total

correctness of the program can be established formally. His definition of total

correctness is different from others' in that total correctness of the program means

the program not only terminates but also yields a defined result, i.e. a result without

run-time errors. The others had considered termination because of run-time errors as

a termination state like any other. Baber knew that these require special treatment in

practice.

Baber paid more attention to tackling the problems which are encountered

frequently in practice. He defined a concrete structure for the program state, which

enables one to handle more practical issues - 1) to model the situation that run-time

errors may occur, 2) to handle recursion, 3) to deal with more than one declaration

of variables with the same name. Baber's model provides formal definitions for

declare and release statements, which are ignored in other approaches.

To increase the applicability and accessibility of the approach, verification rules

are developed in more detail, which can be used to facilitate the design. An

approach combining formal and informal proof techniques in order to enable the

widespread use of correctness proofs in practice is also introduced [Bab87, Bab91].

2.2 The functional/relational approach

The research of functional approaches was initiated through the study on function

theory by N. G. de Bruijn [deBSO] and Albert Meyer [MR67] et al. Mills [Mil7Sa,

LMW79] then used functional semantics to provide a description of structured

9

MSc. Thesis - H. Duan McMaster - Computing and Software

programs and provided a method for verifying that a program is correct with respect

to an abstract specification function.

Mills' approach has no provision for non-detenninacy. Pamas extended Mills'

work to allow for non-detenninistic programs. In Pamas' Limited Domain relation

(LD-relation), he supplements the relation with a set, called the competence set

[ParS3], containing the states in which tennination is guaranteed. In this framework,

one can provide complete descriptions of both detenninistic and non-detenninistic

programs.

2.2.1 Mills

Mills used the notion of a program as a function between initial states and final

states. It is based on the observation that any detenninistic program can be described

by mathematical function on a program's states. "For each initial data state X for

which execution terminates, a final data state Y is detennined. The value Y is
unique, given X, so that the set of all ordered pairs {(X, Y)} so defined is a function.

We call this function the program function of a program."[LMW79].

Mills' approach can be illustrated by using his box notation "[]" [MBGS7] ,

which means that if p is a program, then [P] denotes the function that the program

produces. If/is the specification of this program, then verification means showing

the truth of/= [p]. However, this restricts specifications to be detenninistic.

2.2.2 Parnas

Parnas extended Mills' work to allow for non-determinacy [ParS3, Par97]. The
behavior of a program can be described by a set of ordered pairs (x, y) where x and

yare possible states of the data, and it is possible for the program to stop in state y

after being started in state x. However, two non-deterministic programs with the
same relational description can have different behaviour. For example, consider PI,

which will always terminate in state y when started in state x, and P2, which does

10

McMaster - Computing and Software MSc. Thesis - H. Duan

not always terminate when started in state x, but if it does terminate it will stop in

state y. (x, y) would be part of the relation describing both programs. The

competence set in LD-relations can remove this ambiguity by containing the set of

states in which termination is certain. The LD-relations, introduced in [Par83,
Par97], can be described by two predicates on the values of the program variables.

One defines the relation between initial and final states, the other characterizes a set

- the competence set - for which program termination is guaranteed. With both of

them, the complete description of an unrestricted class of programs can be provided.

Pamas' research is oriented to practice and covers various issues in software

engineering. In order to popularize the usage of mathematical methods in program

development among practitioners, he advocates that mathematically precise

documentation is of value even if proof of correctness is not attempted [Par97]. He

also promotes research on inspections, which combines formal and informal
techniques. To make mathematical documentation more readable, he defined tabular

notations to increase the readability and verifiability of the documentation [Par92].

Tabular notations are multi-dimensional tables used to represent relations. They are

particularly suitable for describing the conditions, relations and functions, which

frequently occur in program documentation.

2.3 The model-based approach

Model-Based approaches, represented by VDM, Z and B-method, are methods that

model the states of a system together with operations which change the state [Jon80,

Spi89, Abr96]. Advocates of these methods tend to provide models of systems
rather than specifications of program behaviours. A model is a simplified version of

a product, while a specification is a statement of some of the properties required of a

product [Par97]. In these approaches mathematical entities such as sets and
functions are used to formulate a model of the system. System operations are

specified by defining their effect on the system state. These approaches are based

heavily on formal specification languages, which consist of a large set of specific
notations and conventions. Although their underlying semantic principles differ
subtly, they are similar enough to be considered as sister methods [HJN93].

11

MSc. Thesis - H Duan McMaster - Computing and Software

2.3.1 VDM

VDM is short for Vienna Development Method, a reference to the IBM Vienna

Laboratory, which started relevant work in the early 1960's under the direction of
Heinz Zemanek [LucS7]. The aim of this research group was to specify the

semantics of the PL/I programming language. The Meta-language in which the

definition was written is known as VDL (short for Vienna Definition Language). In

1976, IBM decided to divert the Vienna Laboratory to other activities. The work on

VDM was continued mostly by Dines Bj0mer at the Technical University of

Denmark, and by C. B. Jones at the University of Manchester.

What is VDM? There is no easy way to precisely answer the question. Ever
since VDM emerged in the seventies, several individuals and groups have modified,

redefined, extended the original "VDM". There are basically four schools of the

VDM - the Danish school, the English school, the Irish school and the Polish

school. The Danish and English schools have more influence than the other two.

The Danish school has preferred the explicit operational approach [BjoS2]. Its

notation tends towards the symbolic. Later the Danish school moved from VDM to
RAISE [PBDS5]. RAISE stands for Rigorous Approach to Industrial Software
Engineering. RAISE is derived from VDM with added facilities such as

concurrency, axiomatic and imperatjve styles. Modularity is also an integrated

feature of RAISE whereas it is not supported as part of standard VDM. Some
attempts have been made to add modularization to VDM but they have not yet been

universally accepted.

The English school uses pre/postconditions in the specification [JonSO, JonS6].
Its specifications are built in terms of models and operations specified by

pre/postconditions. Steps of design by data reification or operation decomposition
give rise to proof obligations. Data reification is the process of replacing an abstract

mathematical data type by a more concrete representation which usually has a

counterpart in the intended implementation language. The underlying logic of VDM

12

McMaster - Computing and Software MSc. Thesis - H. Duan

is a non-standard logic - the three-value logic, in order to deal with partial functions.

The notation adopted by the English school tends to be more verbose. Currently

most researchers consider the version of the English school as VDM.

The Irish school is characterized by its constructive approach, classical

mathematical style, and its notation [Air91]. In particular, this method combines the

"what" and the "how" of the operation in the specification. The Polish school of
VDM pursued the similar formal foundation and support tools for the VDM as

RAISE through the MetaSoft project [Bli87, Bli88, Bli90].

2.3.2 Z

Z is the result of an effort started by Jean-Raymond Abrial around 1975. He

continued it during his stay in Oxford. At that time the ideas of Z were taken over by

the Oxford group [Spi89, PST91, Lig91, Jac97].

Z is based on concepts and notations of first-order logic and Zerme1o-Fraenkel
set theory. All the specifications are written in terms of pre-defined set manipulation

operations. The basic specification unit in Z, called a Schema, is normally

represented as:

Schema Name --

declaration

predicate

A schema has a name, which can be used in other schemas, a declaration (also
called a signature) of a set of variables (also called observations) together with their

type information, and a predicate asserting the relations among these variables. A

specification in Z is a collection of schemas where each schema introduces some
specification entities and sets out relationships between these entities.

13

MSc. Thesis - H. Duan McMaster - Computing and Software

Z is more a notation than a method. In [Jac97], the author stated, "Z dictates few

assumptions about what can be modeled ... The meaning of a Z text is determined by
its authors".

2.3.3 B-method

The B-method is a method designed to be used in the specification and code

generation phases of software development [Abr96, SchOl]. It was originally

developed by Jean-Raymond Abrial. Later, a company called B-Core [Bco02] was
formed to commercialize the method and the original B-toolkit. Also, another

commercial toolset - Atelier-B - was developed by a French group [Ate02].

In B, specifications and codes are structured into the AMN (Abstract Machine

Notation). The abstract machine is a concept that is very close to certain notions

well-known in programming under the names of modules or classes. The main

components of an abstract machine are an invariant and the operations. An invariant
states properties over variables that must always hold. The operations are the only

means to modify variables encapsulated by the abstract machine. Most operations

have a precondition, which states the conditions under which executing the services

makes sense (meets the postcondition). Operations are formalized by substitutions,

which are constructs that determine and change the state of a machine. These

substitutions correspond to what would be called statements in a programming

language. Figure 2.1 shows an abstract machine. It is used in a queue ticket
dispenser. The number of taken tickets, served tickets and waiting tickets are
counted and stored.

MACHINE
Ticket

VARIABLES
take _ t, serve _ t

INVARIANT

take_tEN /\ take_t~O /\ serve_tEN /\ serve_t~O /\ take_t~serve_t

INITIALIZATION
take_t, serve_t:= 0,0

OPERATIONS

14

McMaster - Computing and Software

Take
PRE true
THEN take t:= take t + 1 - -
END;

Serve
PRE serve t < take t - -
THEN serve t:= serve t + 1 - -
END;

ns ~ ToBeServe =

END

PRE serve_t::5take_t
THEN ns:= take_t - serve_t
END;

MSc. Thesis - H. Duan

Figure 2.1: An example of an abstract machine in the B-method

When developing software in B, one starts by a specification, then one writes

none or several intermediate refinements. The last refinement is called an
implementation. This implementation can call operations of other machines and this

activity is called importation. Once the B implementation machines are written, the

compiler generates a program in a target implementation language, for example,

Ada or C.

There is other research that uses the notion of Abstract Machine. The term

Abstract Machine was used by Dijkstra [Dij68] in the context of defining the
operating system T.H.E. Research on the Abstract State Machine (ASM) started in

1984 by Gurevich [Gur84] based on Turing's thesis that every computable function

is Turing computable. ASMs appear in embryo under the name of dynamic
structures, later also called evolving algebras whose idea is that a computation is an
evolution of the state [Gur93].

ASM is a language to describe software and hardware systems [Sch99]. Its

author [GurOO] asserts that any computing system can be described at its natural
level of abstraction by an appropriate ASM. The basic idea of ASM is the stepwise

transformation of states by executing rules. The state is a collection of sets (called
universes) with arbitrary functions and relations defmed on them. The rules are the
ASM statements. The most general form of rules to transform states is : if Cond then

15

MSc. Thesis - H. Duan McMaster - Computing and Software

Updates. Cond is an arbitrary condition. Updates consists of finitely many function

updates - f(tl ... tn) : = t. In Figure 2.2, we re-write the example in Figure 2.1 using

ASM's language.

var take_t as natural number = 0
var serve t as natural number = 0
var ns as integer = 0
Take(tt as natural number)

tt := tt + 1
Serve(st as natural number)

st := st + 1
ToBeServe(tt as natural number, st as natural number) as integer

return (tt - st)

Main ()
Take (take_t)
iftake_t> serve_t then Serve(serve_t)
iftake_t~ serve_t then ns:= ToBeServe(take_t, serve_t)

Figure 2.2 An example of an Abstract State Machine

2.4 Summary

We have presented three groups of formal development approaches. Model-based

approaches are based heavily on a particular specification language, which requires

considerable effort to learn and use. In contrast, Floyd's, Hoare's, Dijkstra's,

Baber's, Mills' and Parnas' methods have very few restrictions or assumptions on

the representation. And Mills' approach has no assumptions about representation.

Instead of paying great attention on how to model the program, pre/postcondition

approaches and relational approaches focus more on dealing with various program

behaviours. In the following chapters, we will further compare these two groups of
methods.

16

Chapter 3

Theoretical Comparison

At the start of this work we identified a set of theoretical questions to be asked about
each approach. These are summarized in Table 3.1. The remainder of this chapter
discusses those questions.

17

Floyd's
Hoare's Baber Mills' Pamas'

Theoretical Comparison Criteria
Inductive

pre/post-
Dijkstra's

pre/post- LD-
Assertion wp&wlp

program

Method
conditions conditions functions relations

Can the approach specify that a program
must terminate? N 1 N y y y y

(see Section3.1.1)
Termination of --- .. __ .. ---- -- - ... _---_. ,--- -- ------ - -~- ... - ---- .- . . -- --- - - - - --------- ------

'H_~ _______ - - -- - --
Can the approach specify that a program may

programs but need not terminate? y y y y N y

-_. - - (see_S~c.ti~m}.1.2) _
~ - -_. . - --- -- -- ---~-- -~ - - --- ---

Can the approach specify that a program is
not permitted to terminate? N N y y y y

(see Section 3.1.3)

Does the approach distinguish between a specification and a
N N N N Y y

description of a program? (see Section 3.2)

Does the approach deal with non-deterministic
Implicitly Implicitly Y y N y

Non- specif!~ati()l1s?Jsee._S.ecti().'1: 3}:1) ___ .. -~- ------ _.- .-- -- - --- - - - - - - ---- -~--

_ ~_ _ _ _H -- -
determinism Does the approach deal with non-deterministic

N N y N N y
programs? (see Section 3.3.2)

Is the structure of the state of program execution explicitly defined?
Implicitly Implicitly Implicitly Y N N

If so, how is it defined? (see Section 3.4)

Does the approach clearly distinguish between variables and their
N N N y Implicitly Implicitly

names? (see Section 3.5)

Are the rules explicitly stated? y y y y y y
Transformation rules / Proof ci~~~- Sec~!()l11:t?:_U ____ .. ___ . __ -----.- -- __ H ___ ____ -- - --- -----.-- -- - ----- ~ - -I- ----

rules Does the set of rules support
verification for both partial For partial For partial y y For total y
correctness and total correctness? correctness correctness correctness
(see Section 3.6.2)

How are the values of variables before and after execution
Intuitively Intuitively Intuitively Explicitly Implicitly Explicitly distinguished? (see Section 3.7)

Table 3.1: Theoretical comparison of six approaches

I Y _ Yes, N - No. All the further explanations are given in corresponding sections

18

McMaster - Computing and Software MSc. Thesis - H. Duan

3.1 Termination of programs

While a program may exhibit many kinds of behaviours, in this study we focus on

its externally observable behaviours after termination. We are not discussing the

behaviour of programs that do not terminate or the behaviour of terminating

programs while running.

For a given starting state, the execution of the program may (a) continue

indefinitely, (b) sometimes continue indefinitely and sometimes terminate, (c)

always terminate in a specific state, or (d) always terminate but in one of a finite set

of possible termination states. In case (a) and (c), the program is called deterministic

since the result is fully determined by the starting states. In cases (b) and (d), the

program is called non-deterministic. The approaches we compare treat this issue

differently. We define several sets of starting states, which are illustrated in Figure

3.1, to enable further discussions on various treatments.

Definition 3.1. TI is the set of all starting/initial states for which program P is

guaranteed to terminate. Tl includes all states in cases (c) and (d).

Definition 3.2. T2 is the set of all starting/initial states for which program P mayor

may not terminate. T2 includes both the initial states for which termination is certain

and those where termination is possible but not certain. T2 includes all states that are

case (b), (c) and (d).

Definition 3.3. T3 is the set of all starting/initial states for which program P will

never terminate. T3 includes all states that are case (a).

Definition 3.4. T4 is the set of all starting/initial states for which program P will

terminate with all of the intended results computed. Note that a program may

terminate after some kind of run-time error or with an error message. These final

states are not the intended ones. Starting states that lead to these states are in Tl but

not T4.

19

MSc. Thesis - H. Duan McMaster - Computing and Software

//(l~=:;:~-'~)
.....................•. • .•• l

.......... ::::::~: ' T3:

i---~;<~---·············i
\ l l'~) 'I'll
\ >:::::::::< /

'1'3
" , :

Tl T2

~~~~) T2 

~ .. \:.::::~~~:!. ............. / 
T3 ((~:t:~0Ll i 

: ........................................................................................ : 

T3 T4 

c=J denotes the set of all possible starting states of a program. 

) denotes the set under discussion. 

Figure 3.1 Illustrations of four sets of starting states. 

The approaches we compare may not consider all the sets defined here. They 

focus on different aspects of specifying the starting states of a program. Below we 

discuss different treatments in each approach. 

Floyd, Hoare 

Floyd and Hoare did not consider the four sets we defined. They [Flo67, Hoa69] 

introduced the precondition of a program. This precondition characterizes a set of 

starting states for which the program will satisfy a specific postcondition when it 

terminates, but the program may not terminate at all. The set described by their 

precondition may include the subsets of Tl, T2 and T3. Their approaches cannot 

indicate which states are in the various sets we have identified. 

20 



McMaster - Computing and Software MSc. Thesis -H. Duan 

Dijkstra 

Dijkstra [Dij75, Dij76] defined wp and w/p to characterize particular sets of starting 

states. For any program S, by definition of wp, wp (S, true) = Tl. By definition of 

wip, wlp (S, true) = T2 and wlp (S, false) = T3. 

Baber 

Baber's approach is based on Hoare's approach. He defines a program/program 

construct as a function mapping a state to a state [Bab02, Bab87]. He does not 
consider non-deterministic programs. This function is typically partial, i.e. is not 

defined for all initial states. Baber denotes the domain of this function by Sl.llJ, 

where S represents the program or the program statement and 1lJ represents the set of 

all states. By definition, SI.llJ = T4. None of the others recognize the issue of 

intended results explicitly and defme T4 accordingly. 

In [HHH87], Hoare gave some consideration to an undefined expression which 

may cause an undefined result upon execution, " ... the effect of attempting to 

evaluate an expression outside its domain is wholly arbitrary ... ". He did not provide 

any elaboration of that. Dijkstra took account of undefined expressions. He defmed 
it - using the predicate D(E), which means "in the domain of the expression E". 
However, undefined results may be caused not only by evaluating expressions 

whose value is undefined, i.e. x:=1/0, but also by assigning a value to a variable 
which has different type. For instance, trying to assign a Boolean value to an integer 

variable would result in an undefined result in some languages. Baber's definitions 
provide a way to handle this - the value of an expression on the right-hand side of 

the assignment not only has to be defined, it also has to be an element of the set 

associated with the variable being assigned to. He provided a specific definition of 
domain for each major program statements and constructs. 

For example, given a program statement "x:= x*5". The domain ofx:= x*5 is the 
set of all states in which the value of the expression x*5 is an element of the set 
associated with the variable x, written as x*5eSet."x". If x is a bounded variable, 

21 



MSc. Thesis - H. Duan McMaster - Computing and Software 

such as, Set. "x"= INT(O, .,. , 1000), then the domain of x := x* 5 will be the set of 

states in which x* 5 E INT(O, ... , 1000) according to Baber's definition. If one only 

considers that x* 5 is defined, without considering x* 5 E Set. "x", an error of type 

mismatch may occur. 

Mills 

Mills [MiI75a, LMW79] described a deterministic program, P, by a mathematical 

function that is called its "program function", written as [P]. In most of his writings, 

Mills did not consider non-deterministic programs. He defined that the domain of a 

program function is T 1. 

For the previous example, x:= x*5 where XEZ and OSxSlOOO, in Mills' 

approach, its domain will be the set {'x: Z lOS 'x S 200/\ 'X*5EZ} (Here we use 

'x to represent the value of x before the execution). While Mills did not explicitly 

identify T4, the domain of a program function implicitly specifies the conditions 

that ensure defined results. In Mills' approach there is consideration of states in 

which not all of the variables of interest have defined values. 

Parnas 

Parnas' approach is an extension of Mills approach in that he considers non­

deterministic programs as well. In his approach the term "program function" is 

replaced by "program LD-relation" [Par83, Par97, IMP93]. He defines a LD-relation 

on initial and final states of the program execution, which provides a complete 

treatment for both deterministic and non-deterministic programs. 

The definition of LD-relation: 

Definition LDI. Let U be a set. A Limited-Domain (LD) relation on U is an 

ordered pair L = (RL, CL), where: 

• RL, the relation component of L, is a relation on U, i.e., RL c U X U, 

• CL, the competence set of L, is a subset of the domain of RL, i.e., 
CL c Dom(RL). 0 

22 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Below are the interpretations of the LD-relations with respect to the program and 

specification. 

The definition of the LD-relation of a program P: 

Definition LD2. Let P be a program, let U be a set of states, and let Lp = (R p, 

Cp ) be an LD-relation on U such that: 

• (x, y) E Rp , if and only if P can terminate in state y, when started in x, and 

• Cp , is the set of initial states for which P's termination is guaranteed. 0 

The definition of what it means to satisfy a specification that is given as an LD­

relation: 
Definition LD3. Let Lp = (Rp, Cp) be the LD-relation of a program P. Let S, 

called a specification, be a set of LD-relations on the same universe, and let Ls = 

(Rs, Cs) be an element of S. We say that: 

• P satisfies the LD-relation Ls, if and only if Cs c Cp and Rp c Rs, 

• P satisfies the specification S, if and only P satisfies at least one element of S. 

Often, S has only one element. 0 

Parnas uses the domain of a LD-relation and the competence set to specify sets 

of starting states. By definition, Cp = TI, Dom(Rp) = T2, and the complement set of 

Dom(Rp) is T3. When dealing with deterministic programs, we have Dom(Rp) = Cpo 

In this case we need not describe Cp and LD-relations are the same as the program 

functions in Mills' approach. 

3.1.1 Can the approach specify that a program must terminate? 

Floyd, Hoare 

The termination will only be specified informally. As discussed previously, they 

cannot distinguish among Tl, T2 and T3 because the sets other than Tl are not 

concerned in their approaches. Therefore, only partial correctness specification is 

23 



MSc. Thesis - H Duan McMaster - Computing and Software 

provided, which ensure the program will satisfy a specific postcondition when it 

terminates, but the program may not terminate at all. 

Dijkstra 

wp(S, P) can specify those initial states for which program statement S will always 

terminate in a state satisfying P. For instance, we specify "n:=m-k" using wp: 

wp ("n:=m-k", n> 10) = m-k > 10, which characterizes a subset ofTl. 

IfP = TRUE, we get exactly Tl. 

Baber 

Based on the definition of T4, Baber [Bab02] defines strict precondition of the 

given postcondition. The strict precondition V of a postcondition P specifies that the 

program must terminate: 

{V}S{P}strictly = {V}S{P} /\ Vc S-I.JIll o 
The set described by a strict precondition IS a subset of T4. It guarantees the 

termination and the intended results. We specify "n:=m-k" using a strict 

pre/postcondition pair, 

V: {Set."n"= INT(0 ... 1000) /\ m-k> 1 0 /\ m-kESet."n" }, 

P: {Set."n"= INT(0 ... 1000) /\ n>10}. 

IfP = TRUE, V c T4. 

Mills 

Tl is the domain of the intended function of a program. For example, in the function 

f= {«a, z, x), (x, x!, x») I aEZ /\ ZEZ /\ XEZ /\ x~O}, "aEZ /\ ZEZ /\ XEZ /\ x~O" is 

used to characterize the domain of the function, i.e. T1. A program equivalent to it 

could be: 

a:= 0; z:=O; 
While a:;tx do 

a:= a+l; 

24 



McMaster - Computing and Software 

z:= a*z; 

endwhile 

MSc. Thesis - H. Duan 

Figure 3.2 An example of an implementation that must terminate 

As a notational convenience, Mills [LMW79, MBG87] used concurrent 

assignments and conditional rules to express functions. A concurrent assignment 
summarizes the effects of several statements, mapping one state to another. A 

conditional rule is a sequence of (predicate ~ rule) pairs separated by vertical bars 

and enclosed in parentheses: 

(PI~ rll P2~ r21 '" I Pk~ rk) 

The meaning of this conditional rule is "evaluate predicates PI, P2, ... , Pk in 

order; for the first predicate, Pi. which evaluates True, if any, use the rule ri; if no 

predicate evaluates True, the rule is undefined" [LMW79, MBG87]. Note that "p~ 

r is not a logical implication, so we are not concerned about the truth of p~r". A 

concurrent assignment C can be considered as (True~C). There are also a few 

conventions that are used with this notational form: 

(1) only the variables specified in the concurrent assignment are changed, other 

variables are not allowed to change, 

(2) the type of variables, which is part of the domain of the function, are specified 

individually. 

Hence, the functionf= {«a, z, x), (x, x!, x») I ae:l. /\ ze:l. /\ xe:l. /\ x~O}, can be 

written as: 

f= (x~O ~ a, z:= x, x!) (a an integer, z an integer, x an integer). 

That is, if x~O and a, z and x are integers, the effect of the function is described by 

the concurrent assignment. 

Parnas 

By using the competence set Cs, one can do this. Anything that can be specified 

using Mills' program function can also be specified using a LD-relation. When 

specifying a deterministic execution, Cs = Dom(Rs). When the competence set is the 

25 



MSc. Thesis - H. Duan McMaster - Computing and Software 

same as the domain of the relation, an explicit convention states that it may be 

omitted. 

3.1.2 Can the approach specify that a program may but need not 
terminate? 

I.e. the specification permits program to terminate but also permits it not to 

terminate. 

Floyd, Hoare, Baber 

They all defined a precondition for this kind of specification - the precondition can 

specify the initial states for which the execution will yield a correct result if it 

terminates, but it is not required to terminate. 

Floyd uses the derived verification conditions based on assertions along the 

execution path. Hoare's triple {V}S{P} has exactly the same meaning. Baber uses 

the ordinary precondition. It is equivalent to Hoare's precondition. 

Dijkstra 

wlp(S, P)-wp(S, P) can specify this kind of behaviour of a program. It characterizes 

the set of all initial states for which the execution is guaranteed to yield the result 
satisfying postcondition P if it terminates, but it may not terminate. lfP = TRUE, we 

get T2-Tl. 

Mills 

Mills does not deal with this situation. With one mmor exception, his papers 

explicitly deal only with deterministic programs so this issue does not arise. He uses 

a function to specify the program, which require that the program either always 
terminates or never terminates. 

26 



McMaster - Computing and Software MSc. Thesis - H Duan 

Parnas 

(Dom(Rs)-Cs) specifies T2-Tl from which a program may but need not terminate. 

3.1.3 Can the approach specify that a program is not permitted to 
terminate? 

Here we mean the execution of the program results in an infinite sequence of states, 
but the sequence is well defined. 

Floyd, Hoare 

They did not take into account this kind of situation. 

Dijkstra 

By specifying wlp(S, P) is false, one is forbidding termination of program S in the 
set of states characterized by P. IfP = TRUE, we get T3. 

Baber 

One can do this by using the semistrict precondition and specifying the 

postcondition to be false, i.e. {V} S {false} semistrictly. 

Both strict preconditions and semistrict preconditions ensure that each statement 
in a program segment executes with a defined result. While strict preconditions 

provide extra conditions to ensure termination, semistrict preconditions do not. 

Mills, Parnas 

One can do this by leaving a state out of the domain of the function or relation. 
Programs started from states outside the domain of the function or relation will not 

27 



MSc. Thesis - H. Duan McMaster - Computing and Software 

terminate. For the example in Figure 3.2, f= (x~O ~ a, z := x, x!) (a an integer, x an 

integer, z an integer), the program started from the set of states characterized by 

x<O, which is outside the domain of the function, will not terminate. 

Discussion 

While most approaches can only give a specification to be either partial correctness 

or total correctness, a single LD-relation can specifY both kinds of correctness. With 

Rs, one can provide the partial correctness, while with Cs, the total correctness can 

be specified. 

3.2 Does the approach distinguish between a specification 
and a description of a program? 

In software engineering, a precise description of the program can be required when 

documenting programs, and it is particularly useful in program inspections [Par94b]. 

As defined by Parnas in [Par94a, Par95, Par97], a description is "a statement of 

some of the actual attributes of a product, or a set of products". A specification is "a 

statement of some of the properties required of a product, or a set of product". The 

differences between specifications and descriptions are illustrated by the following 

points: 

• A description must describe a product as it actually is. 

• A description may include attributes that are not required. 

• A specification may include attributes that a (faulty) product does not possess. 

• Many visibly distinct products may satisfY a given specification. 

We may use the same formalism for both of descriptions and specifications. 

Hence "a list of attributes should be accompanied by a statement of intent to indicate 

whether it is to be interpreted as a description, or as a specification. ... There is 

never a complete description of a product" [Par97]. Here descriptions of program 

functional behaviour are of most interest. 

28 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Floyd, Hoare, Dijkstra, Baber 

All four of these methods can be used for both description and specification but the 

authors did not choose to emphasize a distinction between the two activities of 
describing and specifying. As the example showed in Figure 3.3, the precondition­

postcondition transformation describes the functional behaviour of a program, at 

least to the extent covered by the underlying model. 

{O:::;m 1\ O:::;n 1\ O:::;k} 

if m<k then m:=m+k; 

{O:::;k:::;m 1\ O:::;U} 

if n<k then n:=n+k 
{O:::;k:::;m 1\ O:::;k:::;n} 

Figure 3.3: An example of a program description in pre/postcondition approaches 

Mills 

In Mills' approach, he used different terms when distinguishing specifications and 
descriptions. The intended/given function is used to specify the program. The 

program function is used to describe the program. 

Mills [LMW79] considers two kinds of correctness of the program - complete 
correctness and sufficient correctness. If complete correctness is required, the 

domain of both the intended function and the program function are the same, i.e., 
Dom(/) = Dom([P]). If only sufficient correctness is required, the domain of the 

intended function will be a proper subset of the domain of the program function, i.e., 
Dom(/) c Dom([P]), which means that the program may compute values for 

arguments not belonging to the domain of f, in other words, the program may 
terminate for initial states outside the domain of the intended function. In Mills' 

approach, complete correctness is always required unless otherwise specified. 

Therefore, the domain of the program function must be the same as the domain of 

the intended function to ensure desired results. 

29 



MSc. Thesis - H. Duan McMaster - Computing and Software 

Parnas 

Parnas considers and defines explicitly (Definition LD2, LD3) the distinction 

between descriptions and specifications. LD-relation can give precise descriptions 

for either deterministic programs or non-deterministic programs. Program 

descriptions are used primarily in documenting and inspecting programs in his 
approach. For the example in Figure 3.3, its description in LD-relation is: 

Rp('m, 'n, 'k), (m', n', k')) = ( ((('m<'k) /\ (m'='m+'k)) v (('m~'k) /\ (m'= 'm))) 
/\ ((('n<'k) /\ (n'='n+'k)) v (('n~'k) /\ (n'= 'n))) 

/\ (k'= 'k) ), 

Cp = Dom(Rp), 

where the prime before and after variables represents the initial and final values of 

the variable respectively. 

3.3 Non-determinism 

Under this criterion, we will discuss whether the approaches in question deal with 

non-deterministic specifications and non-deterministic programs. In 3.1, we 

discussed that a non-deterministic program mayor may not terminate, and 
moreover, even the termination of the program may be also indeterminate. If a non­

deterministic program terminates, it may terminate in several different states. 

3.3.1 Does the approach deal with non-deterministic 
specifications? 

Non-deterministic specifications allow any of several outcomes or non-termination 

for a given starting state. It states some useful properties of the result that is returned 
by the program, but does not fully determine what that result should be. 

Implementers have the freedom to change their implementation to return different 

results as long as the new implementation still satisfies the specification. 

30 



McMaster - Computing and Software MSc. Thesis - H Duan 

Floyd, Hoare, 

In their systems, non-determinism is not included intentionally. It is seldom to write 

specifications in a non-deterministic way using their approaches. 

Baber 

Non-deterministic specifications are allowed intentionally in Baber's model. One 

can do so as follows: 

V: { O<n} 

P: { 1::; k ::;n+ 1 } 

The postcondition asks for a range of accepted values instead of requiring a specific 

one. It is up to the programmer to determine the implementation as long as the 

values ofn and k satisfy the postcondition. More examples can be found in [Bab87]. 

Dijkstra 

Non-determinism is one of the features in Dijkstra's system. wlp specifies the non­
deterministic behaviour of a program. 

Mills 

In his approach, specifications are constructed using functions, which are 

deterministic. In [MBG87, Mil88], Mills mentioned that a program specification is a 

mathematical function or relation and considered the specification to be non­

deterministic. However, he did not further define or formalize this consideration in 

his approach. 

Parnas 

Non-deterministic issues are fully considered and treated in Parnas' system. LD­

relation can be used to construct non-deterministic specifications as defined in 
Definition LD3 (see 3.1 ). 

31 



MSc. Thesis - H. Duan McMaster - Computing and Software 

3.3.2 Does the approach deal with non-deterministic programs? 

When non-determinism happens in execution of concurrent programs, its occurrence 

is mostly implicit in concurrent programming since there is no explicit programming 

construct for expressing it. There are also sequential non-deterministic programs. 

Floyd, Hoare, Baber and Mills do not discuss non-deterministic programs. Some 

of their ideas can apply but one must approach them with caution as they were not 

developed for this purpose. 

Dijkstra, Parnas 

Dijkstra defined a non-deterministic language - guarded command language [Dij75, 

Dij76]. Parnas defines a non-deterministic construct - a generalized control structure 

[Par83]. 

Dijkstra used wp to give meanings for non-deterministic constructs do ... od and 

if .. ft [Dij76] of his guarded command language, however wp alone can not, by 

itself, completely describe them. To provide complete semantics, one needs to use 

wlp. Dijkstra introduced wlp informally and did not use it to provide complete 

semantics for his non-deterministic constructs. From other authors [Maj80], we 

know that wlp can give the same semantics for a non-deterministic program as 

relational approach does. 

Pamas provides complete semantics for a non-deterministic control structure 

using LD-relations [Par83], by which one can tell if the termination is certain or 

only possible or impossible. 

From the definitions of wlp and Definition LD3, we know that wlp can provide 

the same semantics as Rp does. Also, both wp and Cp can specifY states that ensure 

the termination. We have two programs Pl and P2 written in Dijkstra's non­

deterministic constructs do ... od and if .. ft [Dij76]. Pl is a non-deterministic program 

and P2 is a deterministic one. They have identical behaviours when they terminate. 

32 



McMaster - Computing and Software 

PI: if x~ 1 ~x:=y 
o x ~ 1 ~ do x= 1 ~ skip od 
fi 

Their descriptions using LD-relation will be 

PI: Rpl«'X, 'y), (x', y'» 

MSc. Thesis - H. Duan 

P2: if x ~ 1 ~ x:= y 
o x < 1 ~ skip 
fi 

= «('x~l) /\ (x'= 'y) /\ (y'= 'y» v «('x<l) /\ (x'= 'x) /\ (y'= 'y»), 

CPI = ('x*l) . 

P2: Rp2 is the same as Rpl , 

CP2 = Dom(Rp2). 

Using wlp and wp, we have 

PI: wlpl = «x~l) ~ wlp (x:=y, P» /\ «x~l) ~ wlp (do x=1 -» skip od, P» 
= «x~l) /\ 2p ~) v «x<l) /\ P), 

"x=l" should be excluded from the domain because the program may not 

terminate when x= 1, thus 

wpl = (last line ofwipi above) /\ (x *1). 

P2: wlp2 = «x~l) ~ wlp (x:=y, P» /\ «x<l) ~ wlp (skip, P» 
= «x~l) /\ P ~) v «x<l) /\ P), 

wp2 = «x~l) ~ wp (x:=y, P» /\ «x<l) ~ wp (skip, P» 
= «x~l) ~ P~) /\ «x<l) ~ P) 

=wlp2. 

In this example, wlp and wp together give the same descriptions for both 

deterministic and non-deterministic programs as the LD-relation does. 

2 P ~ is the predicate we get by replacing all occurrences of x in P with E [HW73]. It is often used in 

pre/postcondition approaches. 

33 



MSc. Thesis - H. Duan McMaster - Computing and Software 

3.4 Is the structure of the state of program execution 
explicitly defined? If so, how is it defined? 

There are two distinct approaches to defining or describing the state of execution of 

a program. The most common one views the data state as a collection of variables 

with (at least) names and values. Mills, Parnas, and others make no such assumption. 

They express their semantics in terms of states without saying how they are 

represented. Of course, to apply the methods one will need to chose a representation 

and this is likely to be the same as the representation used in one of the other 

approaches. 

Floyd, Hoare, Dijkstra 

They implicitly assume that states are described in terms of a mapping from variable 

names to values, for example {(pi, 3.1415926), (dd, "day"), (y, 66)}. 

Baber 

Only Baber's approach explicitly defines the structure of the state of program 

execution. A data environment is defined to represent a state. It is a sequence of 

program variables, for example: [(x, N, 1), (y, R, 5.77), (z, Strings, "abc"), (x, N, 

10)]. Each program variable is defined as a triple, consisting of a name, a set and a 

value. The value must be an element of the set. Although in Baber approach, there 

are more restrictions on the representation comparing to Floyd et aI's approaches, 
Baber representation is more capable of representing the distinctions between the 
states. 

By defining the structure in this way, Baber can facilitate his notion of "the value 

assigned to the variable must be an element of the set associated with the variable". 

One must ensure that each variable satisfies the definition and hence the resulting 

sequence of triples would be a data environment. For instance, trying to execute the 

assignment statement x:= 5 with a data environment in which the variable named x 

is associated with the set of Boolean values would result in setting the variable x to 

34 



McMaster - Computing and Software MSc. Thesis - H. Duan 

the triple (x, Boolean, 5) which is not a program variable (as defined above), so this 

operation will lead to an undefined result. 

Mills, Parnas 

In their framework, one does not assume any particular state representation. 

Discussion 

Different design goals give rise to the difference on state representations. A general 

view of states, like Mills and Pamas, will provide flexibility when an approach is 

applied in different contexts. The general views also make the approaches simpler to 

apply because they do not have rules on how to manipulate the representations. On 

the other hand, they give less guidance. A programmer has to decide what kind of 

state representation slhe should adopt. The structure in Floyd et al.' s approaches is 

assumed as a function between variable names and their values, whereas in real 

program, this assumption is not valid. Baber uses a more concrete representation. 

This model is appropriate for the vast majority of programs. With this concrete 

structure, Baber's model can distinguish between certain "run-time errors" and 

"normal" outcomes of executing a program. In addition, Baber's particular state 

representation gives a didactical advantage to the approach. Especially for software 

developers in practice, a concrete view can give ease of understanding. Mills and 

Pamas could introduce the same information as Baber does when they pick a 

representation for an actual application. Their approach differs from all the others in 

that the assumption is not built into the method but chosen by the user. 

3.5 Does the approach clearly distinguish between 
variables and their names? 

Variables are the basic units for storing data, i.e. they can be thought of as a sort of 

"containers". The value of the variable is the content of such a container. At any 

moment they will have a value. Each variable has a name, which can be used to 

35 



MSc. Thesis - H Duan McMaster - Computing and Software 

refer to its value and a type, which determines what values the variable can hold and 

what operations can be performed. 

During a variable's lifetime, the binding between this variable and its name can 

change dynamically during the program execution. Their relationship is not 

necessarily one-to-one correspondence. A variable may have one or more names -
aliasing. This happens either during parameter passing or in complex data structure 

(array, structure, etc.). Sometime variables may share the same name (e.g. because 

of block structure rules). A clear distinction between the variables and their names is 

necessary to deal with various binding situations in verification. 

Floyd, Hoare, Dijkstra 

In these approaches, they make simplifying assumptions that all the variables have 
unique names and that no variable has two names, e.g. a one-to-one correspondence 

between variables and their names. Variables and their names are not distinguished 

during the formalization. Due to this assumption, the possibility of having two 

variables with the same identifier is ignored. And these approaches cannot deal with 

the possibility that a variable will have two names at some point in the program 

(aliasing). It makes the approach being inapplicable for many real programs. 

Suppose we have a simple pre/postcondition formula {a=l}b:= a+2{a=1}. If a 

and b are refer to the same variable, i.e. a and bare aliased, then the formula will be 

invalid. The problem is ignored in their approaches instead of handling it. 

Baber 

Baber does not make this assumption. His definition of variables, as we have seen in 
3.4, clearly distinguish the variable and its name. It adds much more flexibility to 
the traditional approach. The value of the variable x is defined to be the value of the 

first program variable in a data environment whose name is x. It is possible that a 
data environment may contain more than one program variable with the same name. 

Even identical program variables may appear in a data environment. Baber also 

introduced hidden variables [Bab02], which allow the user to relate the 

36 



McMaster - Computing and Software MSc. Thesis - H. Duan 

pre/postcondition for an individual declare and release statement. This variable also 
add capability for handling recursion. 

Mills, Parnas 

They avoid this issue by not specifyng a representation. The representation chosen 

could be Baber's if they want to handle the problems being discussed here. 

Discussion 

To distinguish the variable and its name is a practical issue in applying the approach 
to real program. Things like references/pointers are all related to it. Since the 

introduction of pointers into high-level languages, there have been warnings against 

them. For example, Hoare criticized the introduction of pointers into high-level 

languages [Hoa74]. Formal methods advocates see references, especially aliasing, as 
the primary obstacle in verification [Ku102]. However, practitioners consider it as a 

necessary tool for efficient implementation. Some researchers have simply ignored 

these problems by telling programmers to avoid them. Instead of ignoring, Baber 
has shown how to deal with them. 

3.6 Transformation rules / Proof rules 

The rules we discuss here are the set of procedures or standards to allow proofs or 

justify transformations of expressions to equivalent or stronger/weaker expressions. 

3.6.1 Are the rules explicitly stated? 

All these approaches provide certain rules to facilitate verification or design. 

Floyd, Hoare, Dijkstra, Baber 

In pre/postcondition approaches, all provide a set of systematic rules for 

transforming predicates on states based on the program statements (see Section 4.1). 

37 



MSc. Thesis - H Duan McMaster - Computing and Software 

In pre/postcondition approaches, one decomposes and reduces the theorems (given 

as specifications) based on the transformation rules associated with program 

statements/constructs to prove the correctness of a program. Programs are put into a 

context of a logic system. Transformation rules are, actually inference rules, given 

for a small set of statement types. One applies rules repeatedly throughout the 

program. 

For example, in Figure 3.4, a program segment and a postcondition are given. A 

precondition of this segment needs to be derived in order to prove its correctness. 

First, according to the transformation rules for the if and assignment statements in 

pre/postcondition approaches, we have a formula for the precondition of the if 

statement: 

((-1<y<4):x 1\ x<O) v ((-1<y<4)~ /\ x2:0) 

which can be reduced to -4<x<4. Then, according to the proof rule for the assignment 
statement, we have (-4<x<4)~+z as the precondition of the whole segment. It can be 

reduced to -4<x+z<4. 

{?} {?} {-4 < x+z < 4 } 
x:= x+z; x:= x+z; x :=x+z; 
ifx<O { -4<x<4 } { -4<x<4 } 

then y:=-x ifx<O q ifx<O 
else y:= x then y:=-x then y:=-x 

endif else y:= x else y:= x 
{ -1 <y<4 } endif endif 

{ -1<y<4 } { -1<y<4 } 

Figure 3.4: An example of transformation rules in pre/postcondition approaches 

In the course of proving the correctness of a program, one can either derive the 

precondition of a program from its postcondition, or in a reverse order, derive a 

38 



McMaster - Computing and Software MSc. Thesis - H Duan 

postcondition from a precondition. The former is used in Dijkstra's approach [Dij76] 

and the latter is usually done in Hoare's [Hoa69, Hoa71a]. 

Mills, Parnas 

They provide general rules about how to construct program functionsILD-relations. 

These rules are actually definitions of programming language constructs. One 

follows the rules to generate program relations, then prove the equivalency between 

intended relations and program relations. 

The rules given are compact and abstract, however, the authors intended not to 

provide a specific representation so that one has to build his own more concrete 

rules when using them. Mills did provide some concrete solutions in his books 

[LMW79, MBG87], but they are not the rules one has to stick to and do not restrict 

one from choosing his/her own representation. 

Rules can be applied hierarchically by summarising long programs by a single 

relation based on the relations of its component parts. For example, the program 

relation of the example in Figure 3.4 can be constructed using the convention in 
Pamas' approach: 

Rp(('x, 'y, 'z), (x', y', z'» 
= Rp1 0 Rp2 

= {(x'= 'x + 'z) /\ (z'= 'z)} 0 {(('x<O) /\ (y'= -'x» v (('x~O) /\ (y'= 'x»} 

where Rp1 and Rp2 represent the program relations of the assignment statement and the if 

statement respectively. Then, by doing the relational composition, we have the relation 

that describes the program: 

Rp(('x, 'y, 'z), (x', y', z')) 
= {(('x + 'z < 0) /\ (y'= -'x -'z) /\ (z' = 'z» v (('x + 'z ~ 0) /\ (y'= 'x +'z) /\ (z' = 'z»} 

39 



MSc. Thesis - H Duan McMaster - Computing and Software 

3.6.2 Does the set of rules support verification for both partial 
correctness and total correctness? 

Floyd, Hoare 

They only provide rules for partial correctness verification. Floyd provided partial 

correctness rules for different command types of a flow chart language and for Algol 

and some special constructs, such as Go-To and LABEL. Hoare provides partial 

correctness rules for most of the constructs in a Pascal-like language [Hoa69, 

HW73, HHH87]. 

Dijkstra, Baber 

The rules associated with wp support total correctness verification. From the 

definition of wlp, we know that wlp can specify partial correctness for a program, 

but Dijkstra did not provide verification rules using wlp. 

Baber provides complete rules for both partial and total correctness verification. 

His rules were developed at a more practical level than Dijkstra' s when dealing with 

total correctness. 

Mills, Parnas 

Mills' method deals with total correctness by applying his rules of constructing 

program functions. Parnas' LD-relation can be reduced to Mills' function when 
dealing with total correctness, and all the rules in Mills' method can also apply. LD­

relation can also specify partial correctness of a program but the related verification 

rules are not provided. 

40 



McMaster - Computing and Software MSc. Thesis - H. Duan 

3.7 How are the values of variables before and after 
execution distinguished? 

To specify the before/after behaviour or input/output relation for a program, it IS 

necessary that one be able to refer to the initial value of the variable. 

FI~d J Hoare 1 Dijkstra Baber Mills Pamas 

Initial No specific 
X' 'X 

value No specific convention. convention. 

Final Distinguished intuitively. Distinguished 
X X' 

value implicit~ 

Table 3.2 InitiallFinal values of variables 

Note that, the references to initial values in Baber and Parnas' method are 

opposite in that a prime after means "before" in Baber's while it means "after" in 

Pamas. Parnas uses the absence of primes to indicate that the value does not change. 

Floyd, Hoare, Baber, Dijkstra 

In "pure" pre/postcondition approaches, each assertion only characterizes the current 

state in terms of program variables. In the original version, Hoare [Hoa69] followed 

this notion and his assertion on postcondition did not have any references to initial 

values. However, in many situations, it is necessary to refer to the initial value of a 

variable in order to describe the program behaviour precisely. 

F or example, we have a pre/postcondition pair {x>y} and {y>x}. One can 

simply use an assignment to achieve the postcondition. Only if one refers to the 

initial values could one demand that the fmal values be a swap of the initial values. 

The most famous example was presented by Yelowitz and Gerhard [GY76]. It 

illustrated the necessity of referring to the initial values in the postcondition in the 

case of specifying a program that sorted an array. The postcondition not only needs 

to state that the value in the array are sorted, but also has to refer to the initial values 

to state that the final values are a permutation of the initial values. Without 

41 



MSc. Thesis - H Duan McMaster - Computing and Software 

specifying the permutation, the postcondition would be satisfied by a program that 

simply filled array A[i] with i. 

In fact, extra variables, which refer to initial values in a postcondition, have 

appeared in Floyd's, Hoare's and Dijkstra's work. These variables were used 

intuitively and were not formally introduced. Much literature on pre/postcondition 
approaches gave this artificial variable different names, such as auxiliary variable 

[Kle98], dummy variable, logic variable [Gri8l] and specification variable [KaI90], 

etc. The notion of pre/postcondition approaches is to characterize the current state of 

execution, while artificial variables have nothing to do with the current state of 

execution. They are used to indicate a relation between initial and final states. When 

one adds them in the postcondition, the postcondition indeed becomes a relation on 

initial and final states. 

Baber extends the traditional notion of a pre/postcondition approach. In his 

approach, variable names in conditions are functions mapping the state (data 
environment dO, dl, ... ) in question to a value, specifically, the value of the first 

variable in the data environment with the name in question. Thus, the term x' is not 

an intuitive "add-on". It is to be interpreted as x.dO and the term x to be interpreted 

as x.dl, where dO and dl are the initial and final states respectively. 

Mills, Parnas 

In relational approaches, one refers to the value of initial and final state directly and 
does not have to add any extra variables. The only variables used are those that 
represent the values of program variables. 

Mills used Xo, Xl, X2, etc. intuitively to distinguish the initial and final values. 
Pamas gave explicit considerations on this issue. For the above example of swap, 

the program relation can be represented in Parnas' convention as Rp = ((x' = 'y) /\ 

(y' = 'x)). The relationship between initial and final states is clearly described. 

42 



McMaster - Computing and Software MSc. Thesis - H. Duan 

3.8 Conclusion 

Floyd's and Hoare's methods have limited abilities on specifying program 

behaviours because their concerns are mostly focus on partial correctness. 

Dijkstra's wp&wlp and Pamas' LD-relations can handle both deterministic and 

non-deterministic programs. They are based on different viewpoints of 
formalization, but both have powerful expressive abilities that enable specifiers to 

deal with all three kinds of terminating behaviours of programs. In addition, these 

two methods are capable of specifying both partial. and total correctness. 

Mills' program functions method focuses on deterministic programs and total 

correctness. His and Parnas' methods provide abstract rules that are simpler and less 

restrictive but also result in less guidance for the users. 

Baber's method also has strong expressive ability on specifying terminating 

behaviours of programs, and can handle partial and total correctness as well. Only 

his method recognizes the intended results of a program and can further specify 
them. Baber's method is intended to provide more guidance and concrete rules to 

facilitate specifying and verifying programs. 

43 



MSc. Thesis - H. Duan McMaster - Computing and Software 

44 



Chapter 4 

Practical COlTIparison 

When we began this research, we identified a set of practical questions to be asked 

about each approach. These are summarized in Tables 4.1 and 4.2. The remainder of 

this chapter discusses those questions. 

45 



Floyd's 
Hoare's Baber's 

Practical Comparison Criteria 
inductive 

pre/post-
Dijkstra's 

pre/post-
Assertion wp&wlp 
Method 

conditions conditions 

Does the approach defme a fixed set of yl y Y Y 
primitive program statements? 

"" --- -- --- ---------- ------ --- -- - - -

Primitive Is Abort handled? N Y Y Y 
program ,- ._- -" 1-------- ---- - - ----- ---- -'" 

statements Is Skip/Null handled? N Y Y Y 

(see Section -"- -" - .. ---r--"--- """ . --- -----------

4.1.1) Are assignment statements handled? Y Y Y Y 
,-- ---- - " ----------- --- -- .. --1------

Are declaration and release statements 
N Partially N Y 

handled? 

Is sequential composition handled? Y y y y 
Types of "---" 

H. ____________ 
.. --- .. ---

program Is conditional composition handled? Y y y y 
statements __ ~ __ H'__ .. __ ---------. - .... .,,"-- .. " -------
considered Are loop constructs handled? Y Y Y Y 

.. ---- ------ ---- - .. --- --- -- -------- ------ ---- _H. ___ _ ._- -- ----
A procedure call without 

N y N y 
Control _ ~orm~1 parameters .. __ " ____ " ._-_. __ ... -_._-

constructs ! Call by 
(see Section i value 

N Partially N Y 

4.1.2) Are procedure 
._ .. H. ________ ----- "-- ---------, 

calls handled? 
A procedure call Call by 

N Partially N Y 
with formal name 1--"" --" -'" ... --- .. " -
parameters Call by 

I Others N N N value-

"_J result ,,-- ---- .. -- --- ". . -_... .. -------- " - .--- . ------------
Is the recursive invocation of programs 

N Partially N Y 
handled? 

Table 4.1: Practical comparison of six approaches (1) 

1 Y _ Yes, N - No. All the further explanations are given in corresponding sections. 

46 

Mills' Pamas' 
program LD-
functions relations 

N N 

Y Y 

N N 

Y Y 

N N 

y y 

y y 

Y Y 

y y 

N N 

N N 

N N 

Y N 



Floyd's 
Hoare's Baber's Mills' Pamas' 

Practical Comparison Criteria 
Inductive 

pre/post-
Dijkstra's 

pre/post- LD-
Assertion wp&wlp 

program 

Method 
conditions conditions functions relations 

How does the approach support verification of a program? 
4.2 4.2 4.2 4.2 4.2 4.2 

(see Section 4.21 

Side effects handled? (see Section 4.3) N N N N y y 

Math, 
Conditional 

How does the notation of an approach facilitate its use in 
Math Math Math 

natural 
rules & 

Tabular 
documentation? (see Section 4.4) language 

trace tables 
Notation 

&diagrams 

Derivation! 
Derivation! 

How does the approach handle program derivation / 
N N Stepwise 

Informal Stepwise 
4.5 

design? (see Section 4.5) 
refinement 

design refmement 
guidelines 

Programming languages limitation (see Section 4.6) 
Imperative, Imperative, Imperative, Imperative, Imperative, Imperative, 

OOP OOP OOP OOP OOP OOP 

Does the approach provide explicit descriptions on how to 
4.7 4.7 y y y y 

use the transformation!proofrules? (see Section 4.7) 

Table 4.2: Practical comparison of six approaches (2) 

47 



MSc. Thesis - H. Duan McMaster - Computing and Software 

4.1 Types of program statements considered 

Specifications enable us to write correct programs. Verification proves programs' 

consistency with their specifications. However, these will be impossible if we do not 

know what the various statements and constructs in the programming language are 

supposed to do. The meaning of the program needs to be defined and understood. 

We will discuss the semantics of common primitive program statements and 

program constructs defined in these approaches2
• Most of these definitions are also 

used as rules for proving programs' correctness or assisting the program design. 

4.1.1 Primitive program statements 

• Does the approach define the basic semantics for a fixed set of primitive 

program statements? 

Floyd, Hoare, Baber, Dijkstra 

All define the basic semantics for some primitive program statements in order to 

provide a logical basis for proofs of the program correctness. 

Floyd provided the semantic definition for each common statement type, 

which is also the rule for constructing a verification condition VC(P, Q) [Fl067]. 
Hoare [Hoa69] defines an inference system. In this system, the assignment rule 

serves as an axiom and inference rules are introduced based on the axiom. 

Dijkstra [Dij76] defined predicate transformers for program constructs, which 

are the "rules of inference" in his system. These predicate transformers work 

backwards to transform the predicate characterizing the postcondition to the one 

2 Dijkstra introduced wlp to specify the non-deterministic behaviour of a program. But he did not use 

w/p to provide semantic definitions for either program statements or constructs. The formulae using 

wlp that are presented in the follows are constructed only through his definition ofwlp. 

48 



McMaster - Computing and Software MSc. Thesis - H. Duan 

characterizing the precondition. Baber [Bab02] defines the relationships, called 

proof rules (his "rules of inference"), between preconditions and postconditions 

according to each statement type. 

Mills, Parnas 

They do not define the basic semantics for primitive program statements. The 
axioms in their systems would be the definitions of the basic functions/relations 

associated with a set of programs. 

Mills' rules of inference are more abstract than the others. They are the rules 

for composition of functions. Pamas followed Mills in that but allowed relations. 

Both of them derive the function/relation of a constructed program from the 
function/relation of its components. Mills [MiI75a, LMW79, MBG87] provided 
composition rules for control constructs of structured programs, which are built 
on the algebra of functions. Pamas [Par83] defines the algebra of LD-relations 

which are slightly different of conventional relations and functions. Pamas also 

defines a generalized control structure and provides its formal definition using 
LD-relations. 

Discussion 

One of the major differences between pre/postcondition approaches and 

relational approaches are due to the different way that they define the semantics 
of the program. In the pre/postcondition approaches, the meaning of a program is 

based on the definitions of basic program statements/constructs. In the relational 
approaches, the meaning of a program is based on the notion that a program can 

be described by a relation between the initial and final states, no matter if it is for 

a large program or a basic statement/construct, their semantics are captured in 
same way. 

• Abort 

Abort is a program that fails to terminate properly. In terms of pre/postcondition, 

49 



MSc. Thesis - H. Duan McMaster - Computing and Software 

it always fails to establish any postcondition. Some formal systems use 

mathematical theories that admit its existence in order to prove the absence of 

such an error [Dij76]. In Baber's approach, any program with an empty domain 

corresponds to others' abort statement, e.g. x:=1/0. 

Floyd No definition. 

Hoare {V} abort {False} [HHH87] 

Dijkstra 
wp (abort, P) = False rDij761 

wlp (abort, P) = True 

Baber Empty domain [Bab02] 

Mills Empty function [LMW79] 

Parnas Empty relation rPar831 

Table 4.3: Abort 

• Skip/Null 

The Skip statement is an empty statement. Its execution always terminates, 

leaving everything unchanged. Except the approaches in Table 4.4, other 
approaches did not consider it. 

Hoare 

Baber 

Dijkstra 

Table 4.4: Skip 

• Assignment statements 

Table 4.5 shows the definitions for. assignment statements used in 
pre/postcondition approaches and the program functions of assignment 

statements in relational approaches. 

50 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Floyd F or assignment statement, x:= E, its Verification Condition 

VC= (3xo) (S~ (V) 1\ X = S~ (E)) => P, S~ means substituting Xo for 

each occurrence of x and E is considered as a true function of its free 
variables. [Flo67] 

Hoare P~ {x:=E}P 

P ~ is the predicate we get by replacing all occurrences of x in P with 

E. (same meaning applied in other approaches) [HW73] 

Dijkstra wp ("x:=E", P) = D(E) cand3 P ~ [Dij76] 

wlp ("x:=E", P) = P~ 

Baber Proof rules for total correctness: 

1. {P ~ and E E Set. "x"} x:=E {P} completely and strictly. 

2. If V ~ p~ and E E Set."x" 

then {V} x:=E {P} strictly. [Bab02] 

Proof rules for partial correctness: 
1. { P~ } x:=E {P} completely. 

Used to derive a precondition for a given postcondition and 
assignment statement. 
2. If V~px 

E 

then {V} x:=E {P}. 

Used for verification. [Bab02] 

Mills rx:=El = {((x, y, .. .},{E, y, ... ))1 [LMW791 

Parnas Rs= {C'x, 'y, ... ), (x', y', ... )1 x' = 'E 1\ y' = 'y 1\ ... } 

Cs = Dom(Rs) [Par83] 

Table 4.5: Assignment statements 

3 cand represents conditional conjunction [Dij76]. A conditional conjunction is one in which the second 
operand is evaluated if and only if this is necessary to detennine the value of the conjunction. When both 
operands are defined, the boolean expression "P cand Q" has the same value as "P and Q". "P cand Q" is 
also defined to have the value "false" where P is "false", regardless of the question whether Q is defmed. 

51 



MSc. Thesis - H. Duan McMaster - Computing and Software 

Discussion 

• In Mills' approach, one can also write the function for [x:=E] as {«x, y, ... ), 
(u, v, ... » I u=E /\ v=y /\ ... }. The variable's name in the assignment 

statement and the associated program function could be completely different 

because the purpose of the function is to reflect the changes of states caused 

by the assignment. On the other hand, this brings the problem that the 

programmer has to decide how to represent the states in a consistent way in 

the formulation. Mills [LMW79, MBG87] used (x:=E) to represent such 

functions. Pamas also introduces a concrete way (variable names with the 

before and after prime) for representation. 

• Compared to Dijkstra's approach, Baber's specification on total correctness 

gives stricter conditions. The value of E not only has to be defined, it also has 

to be an element of the set associated with variable x. In Pamas' approach, 

the type of the variable are usually not specified since it is assumed that the 

information is provided elsewhere. 

• Most programming languages allow more complicated left-hand sides of 
assignments, including array references and pointers. Both Mills and Baber 

provide a method with examples of handling the array assignment [LMW79, 

Bab02]. A pointer can be viewed as an index (subscript) to an array. While 
none of the approaches provide explicit treatment for pointers, Baber's and 

Mills' approaches that handle arrays could handle pointers easily. 

• Declaration and release statements 

Most approaches have no treatment of declaration and release statements. Hoare 

provides a rule, which is only intended to handle the local variable declaration in 

a subprogram. Baber's treatments on these two statements assist to avoid and 

detect the scope problem of local variables through giving a clear indication on 
the variable's lifetime. Though Baber does not consider scope rules [Bab02], the 

scope of a variable could be handled by his proof rules of declare and release 

52 



McMaster - Computing and Software MSc. Thesis - H. Duan 

statements. It is particular useful when dealing with subprogram calls with 

formal parameters and recursion problems. 

Hoare {V}S~ {P} , where y is not free in V or P, nor does it occur in S (unless 
{V} new x; S{P} 

y is the same identifier as x). [HW73] 

Baber Proof rules for total correctness, 

Declaration 1: {p~'r"X' and EeS} declare (x, S, E) {P} completely , 

and strictly. 

P ~: ~''x'' means replacing 1) every reference to the value 

of the variable x in P by E and 2) every reference to the 

set associated with x in P by S. 

Declaration 2: If V:::::::> P x, Set''x'' and E e S 
E,S 

then {V} declare (x, S, E) {P} strictly. 

F or array variable declaration: 

If V:::::::> pX(ie), Set.''x(ie)'' dES d' S' E,S an e an lee IV 

then {V} declare (x(ie), S, E) {P} strictly. 

Siv is the set of permitted index values. 

Release 1: If {V} release x {P} and V:::::::> Set."x":#0 

then {V} release x {P} strictly. 

Release 2: If {V} release x {P} 

then {V and Set."x" :#0J release xJPJ strictlY. fBab021 

Proof rules for partial correctness, 

Declaration 1: {P~:~''x''} declare (x, S, E) {P} completely, 

Declaration 2: If V:::::::> px,Set.''x'' 
E,S 

then {V} declare (x, S, E) {P}. 

Release: {B} release x {B}, if the value of B is not affected by the 
execution of release x. 

[Bab02] 

Table 4.6: Declaration and Release statements 

53 



MSc. Thesis - H. Duan McMaster - Computing and Software 

4.1.2 Control constructs 

• Sequential composition 

A program may consist of a sequence of statements which are executed one after 

another. We use 81; 82 to denote it here. 

Floyd VC (Vs, PSI, PS2; VSI, VS2, Ps) = (Vs=>VSJ) /\ (PSJ=>VS2) /\ (PS2=>PS) 

Floyd treated a sequence of statements or a group of statements in a 

certain construct as a compound statement. Vs and Ps are the pre and 

postcondition of this compound statement. VSJ, VS2 and PSI, PS2 are the 

preconditions and postconditions of 8 1 and 82 respectively. [Fl067] 

Hoare {V}81{PI}, {Pl}82 {P} 
{V} 81;82 {P} [HW73] 

Dijkstra wp ("81;82", P) = wp (81, wp (82, P)). [Dij76] 

wlp ("81 ;82", P) = wlp (81, wlp (82, P)). 

Baber A proof rule for total correctness: 

If {V} 8 1 {P I} strictly and 

{PI} 82 {P} strictly 

then {V} (81,82) {P} strictly. fBab021 

A proof rule for partial correctness, besides a similar rule to Hoare's, 

an additional rule about a sequence of assignment statements: 

If V => [[ ' .. [P ~ ] ... ] ~] ~ 
then {V} 

xl:=EI 
x2:=E2 
... 
xn:=En 
{P}. [Bab02] 

(continued on next page) 

54 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Mills The program function for sequential coniposition: 
[g; h] = {(X, Y)I Y = h 0 g(X)} , where X is the initial state, Y is the 

final state. [MiI75a, LMW79] 

Parnas RLsl;S2 = Rsl 0 RS2 

= {(x, y) I (3z) «x, z)e RSl) " «z, y)e Rs2)} 

The competence set is the same as the domain of the relation for 

deterministic programs, which are all that are being considered here. 
[Par83] 

Table 4.7: Sequential composition 

• Conditional composition 

The conditional composition we discussed here is the "if B then S 1 else S2 

endif" commonly used in structured programming. 

Floyd VC (Vs, PSI, PS2 ; VSI, VS2, Ps) = «Vs" B) => VSI) 

" «Vs" -,B) => VS2) " «PSI v PS2) => Ps) 
Vs and Ps are the pre and postcondition of this compound statement. 
VSI, VS2 and PSI, PS2 are the preconditions and postconditions of SI and 

S2 respectively. [Flo67] 

Hoare {V"B}SI{PL {V"...,B}S2 {Pi 
{V} ifB then SI else S2 {P} [HW73] 

Dijkstra wp (if, P) 

= D(B) " «B" wp (SI, P)) v (-,B " wp (S2, P))) [Dij76] 

wlp (if, P) 

= (D(B) => «B" wlp (SI, P)) v (-,B " wlp (S2, P)))) 
(continued on next page) 



MSc. Thesis - H. Duan McMaster - Computing and Software 

Baber Proof rules for total correctness: 

(F or both total correctness and partial correctness, the first rule is for 

verification and the second is for deriving a precondition) 

1. If V => BE {false, true} and 

{V and B} S 1 {P} strictly and 

{V and not B} S2 {P} strictly 

then {V} ifB then SI else S2 endif {P} strictly. 

2. If {VI} Sl {P} strictly and 

{V2} S2 {P} strictly 

then {VI and (B=true) or V2 and (B=false)} ifB then Sl else S2 

endif {P} strictly. [Bab02] 

Proof rules for partial correctness: 

1. If {V and B} Sl {P} and 

{V and not B} S2 {P} 
then {V} if B then S 1 else S2 endif {P} . 

This rule is the same as Hoare's. 

2. If {VI} Sl {P} and 

{V2} S2 {P} 

then {VI and B or V2 and not B} ifB then SI else S2 endif {P}. 

[Bab02] 

Mills The program function for conditional construct: 

[if b then g else h] 

Parnas 

= {(X, Y) I (b(X) ~ Y=g(X» /\ (-b(X) ~ Y=h(X»} , where X is the 

initial state, Y is the final state. [Mi17Sa, LMW79] 

RLif= RB~Sl U R-'B~S2 

= {(x, y) I (B(x) /\ (x, y)ERsI) v (-.B(x) /\ (x, y)ERs2»} 

CLif = Dom(RLif) [Par83] 

Table 4.8: Conditional composition 

56 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Example 4.1: Verify a program segment which uses IF statement. 

s: ifx<y 

then z:= x 

else z:= y 

endif 

~ In pre/postcondition approaches, a specification for S is given as: 

V: {x>O /\ y>O /\ Z>O} 
P: {x>O /\ y>O /\ z>O /\ Z = min(x, y)} 

and where min is a function that returns the minimum of two arguments. 

• In Floyd's approach, we need four more assertions along the execution path 

for the verification: 

ifx<y 

then 

z:=x 

else 

z:=y 

endif 

VSI: {x>O /\ y>O /\ z>O /\ x<y} 

PSI: {x>O /\ y>O /\ z>O /\ z=x} 

VS2: {x>O /\ y>O /\ Z>O /\ x~y} 

PS2: {x>O /\ y>O /\ z>O /\ z=y} 

According to his rule of conditional composition, we need to prove 

«Vs /\ B) ~ VSI) /\ «Vs /\ ....,B) ~ VS2) /\ «PSI v PS2) ~ Ps). 

57 



MSc. Thesis - H Duan McMaster - Computing and Software 

Proof: 

Vs /\ B 

= 

x>O /\ y>O /\ z>O /\ x<y 

== 

VSI· 

Vs /\-,B 

== 

x>O I\. y>O I\. z>O I\. x~ 

== 

VS2· 

PSI V PS2 

== 

(x>O I\. y>O I\. z>O I\. z==x) v (x>O I\. y>O I\. z>O I\. z=y) 

=> 
x>O I\. y>O I\. z>O I\. Z == min(x, y) 

Ps • 

Thus, «Vs /\ B) => VSI) /\ «Vs /\ -,B) => VS2) /\ «PSI v PS2) => Ps) holds. 

• In Hoare's and Baber's approaches, we need to prove {V I\.B}S 1 {P} and 

{V I\.-,B}S2 {P}. According to their rules, the correctness proposition {V}S{P} 

will be true if the following two correctness propositions are true: 

[1] {V I\. B} => P~ 

[2] {V I\. -,B} => P~ 

Proof of [1]: 

{V I\. B} 
= 

x>O I\. y>O I\. pO I\. x<y 

58 



McMaster - Computing and Software MSc. Thesis - H Duan 

X>O 1\ y>O 1\ z>O 1\ min(x, y)=x 

Proof of [2]: 

{V 1\ oB} 
= 

x>O 1\ y>O 1\ z>O 1\ xq 

x>O 1\ y>O 1\ z>O 1\ min( x, y)=y 

To prove the program's total correctness using Baber's approach, the 
following three correctness propositions need to be proved: 

[1] V=> (x<Y)E{false, true} 
[2] {V 1\ B} => P~ and xESet."z" 

[3] {V 1\ oB} => P~ and YESet."z" 

In order to prove them, sufficient information about the sets associated 

with x, y and z must be added to V. Note that in Baber's total correctness 

approach, one must explicitly specify the sets associated with variables, 

instead of leaving ambiguity to programmers. 

• In Dijkstra's approach, one starts the proof from the postcondition and works 

all the way backward to the precondition. 

wp (S, P) 
= 

D(B) /\ «B /\ wp ("z:=x", P» v (-..,B /\ wp ("z:=y", P») 
= 

D(B) /\ «x<y /\ wp("z:=x", P» v (x~y /\ wp ("z:=y", P») 

S9 



MSc. Thesis - H. Duan McMaster - Computing and Software 

D(B) 1\ «x<y 1\ x>O 1\ y>O 1\ z>O 1\ min(x, y)=x) 

v (x~y 1\ x>O 1\ y>O 1\ z>O 1\ min(x, y)=y» 
= 

x>O /\ y>O /\ pO 

= 

);> In relational approaches, the intended function computed by this program will be 

given. 

For a deterministic program, such as S, the verification strategies in Mills' and 

Pamas' approaches would be similar. Since Pamas does not require a specific 

format for verification, we will use Mills' to illustrate the approach. Concurrent 

assignments and conditional rules, which are defined in 3.1.1, will be used. The 

format of proof follows [LMW79, MBG87]. The intended function is given as: 

f= (x>O /\ y>O /\ pO ~ z:=min(x, y». 

By the definitions of assignment statements and conditional composition, we 

have program functions: b = (x<y), g = (z:=x) and h = (z:=y). 

proof 
iftest true prove (b ~ j) = (b ~ g) 

(x<y ~ z:=x) = (x<y ~ z:=min(x, y» 

pass 

if test false prove (-,b ~ j) = (-,b 4 h) 

pass 
result 

• Loop constructs 

(x~y 4 z:=y) = (x~y 4 z:=min(x, y» 

The loop construct we discussed here is the "while B do S endwhile" structure 

commonly used in structured programming. 

60 



McMaster - Computing and Software MSc. Thesis - H Duan 

Floyd 

Hoare 

Floyd provided the definition of the for loop [Flo67], which can be 

transformed for the while loop: 

VC = (1 /\ B => P r), where 1 represents loop invariant, £ represents the 

loop body and P r is the postcondition of I. 

{I/\B}8 {I} . . 
{I} while B do 8 endwhile {I/\ B} ,where I represents loop lllvariant. 

..., [HW73] 

Dijkstra Ho(P) = D(B) /\...,B 1\ P, is the set of states in which execution of the 

while loop terminates in 0 iterations with P true, as the guards are 

initially false; 

Baber 

For k>O, Hk(P) = D(B) /\ B /\ wp (8, Hk-I(P)); 

wp (while, P) = {3k: k~O I Hk(P)} , terminates after exactly k iterations 

of the body of the loop. [Dij76] 

Ho(P) = (D(B) /\ (...,B => P)); 

For k>O, Hk(P) = (D(B) /\ (B => wlp (8, Hk-I(P)))); 

wlp (while, P) = {3k: k~O I Hk(P)}. 

A proof rule for total correctness: 

If I => (B E {false, true}) and 

I => (B=> O<var) and 

{I and B and var = var'} 8 {I and var ~ var' - s} strictly 

then {I} while B do S endwhile {I and not B} strictly, where var is 

the loop variant4 function, var' is the initial value of this function, 

s is a positive constant. Each execution of 8 reduces the value of 

var by at least the fixed amount s. [Bab02] 

(continued on next page) 

4 A loop variant is an expression whose value 
a) is decreased (or increased) by at least a fixed amount by each execution of the body ofthe loop 
b) has a lower (or upper) bound. [Bab02] 

61 



---------

MSc. Thesis - H. Duan McMaster - Computing and Software 

Sometimes termination is not required. To handle such situations, a 

semi strict precondition is defined which does not guarantee that loops 

terminate but otherwise ensures that each statement in the program segment 

executes with a defined result: 

If I => (B E {false, true}) and 

{I and B} S {I} semistrictly 

then {I} while B do S endwhile {I and not B} semistrictly. 

[Bab02] 

The proof rule for partial correctness is the same as Hoare's: 
If {I and B} S {I} 

then {I} while B do S endwhile {I and not B}. [Bab02] 

The proof rule for the while loop with initialization - total correctness: 
If {V} init {I} strictly and 

I => (B E {false, true} ) and 
I => (B => O<var) and 
{I and Band var = var'} S {I and var:s var'-e} strictly and 
I and not B => P 

then {V} init; while B do S endwhile {P} strictly. 
[Bab02] 

The proof rule for the while loop with initialization - partial correctness: 
If {V} init {I} and 

{I and B} S {I} and 
I and not B => P 

then {V} init; while B do S endwhile {Pl. [Bab02] 

Mills The program function for a while loop: 
[while b do god] 

={(X, Y)I (b(X) ~ Y= fa g(X)) 1\ (-b(X) ~ Y=X)}, 

where X is the initial state, Y is the final state. [Mil75a, LMW79] 

(continued on next page) 

62 



McMaster - Computing and Software MSc. Thesis - H Duan 

Parnas 
Let Lo be the LD-relation when B is false, L' be the LD-relation for 

the program executed when B is true, 

Lwhile = Lo u (L' 0 Lwhile) 

RLO describes the relation when the starting states contain .. B. 

CLO contains a state in which B is false. 

RLwhde describes the possible starting and stopping states when there 

are at most i executions of loop body followed by an execution of -,B. 

CLwhlle is the set of states in which there can be at most i executions of 

loop body and then a state in which B is false selected. [Par83] 

Table 4.9: While loops 

Example 4.2: Verification for a loop program In pre/postcondition and 

function/relation approaches. In this example, a program segment Sum [Bab02] 

calculates the sum of the elements of an array x( 1 ... n), whenever it terminates. 

program Sum: sum:=O; i:=O 

While i<n do 

i:= i+ 1; 

sum:= sum+x(i) 

endwhile 

~ In pre/postcondition approaches, a correctness proposition to be verified is: 

{V}Sum{P}, where 

V: (a) nEZ 1\ O:Sn 

(b) the index bounds ofx are 1 and n 

P: sum = I:=lx(k) 

To give a complete specification, Baber uses an additional correctness 
proposition, as follows, to specify variables that are not allowed to change: 

F or every data environment d in the domain of Sum, 

Sum.d = d except for the values of sum and i. 

63 



MSc. Thesis - H Duan McMaster - Computing and Software 

Its proof is usually done informally through inspection. 

The loop invariant of this program segment is specified as the following: 

I: nEZ 1\ iEZ 1\ O~ i ~n 1\ sum= I~=lx(k) 

• Floyd's strategy is that one deals with loops by cutting loops, and then proves 

each loop-free execution path: 

1) Cut each loop into decision-decision paths with an intermediate point <1>, 

which is after the initialization and before reaching the loop condition; 

2) Associate an inductive assertion LOOP(n, i, sum) with <1>. This assertion 

can also serve as the loop invariant. 

What we need to prove is: 

Path 1 The assertion is true when <I> IS first reached after starting loop 

execution (i.e., verification condition LOOP(n, 0, 0) holds), 

Path2 The assertion remains true from <I> to <I> (i.e., verification condition 

LOOP(n, i, sum) 1\ i<n ~ LOOP(n,i+l,sum+x(i+l)) holds) and, 

Path3 The postcondition of the loop is true when the loop terminates (i.e., 

verification condition LOOP(n, i, sum) 1\ i2:n ~ sum= I:=lx(k) 

holds). 

LOOP(n, i, sum) is given as nEZ 1\ iEZ /\ O~ i ~n /\ sum= L~=lX(k), then 

Pathl LOOP(n, 0, 0) is nEZ 1\ iEZ /\ i=O 1\ sum=O. 

Path2 Assume LOOP(n, i, sum) and i<n, 

Le., nEZ 1\ iEZ /\ O~ i<n 1\ sum= I~=lx(k). 
LOOP(n,i+ 1 ,sum+x(i+ 1)) 

= 

nEZ 1\ iEZ 1\ O~i+ l~n /\ sum+x(i+ 1)= I~:~x(k) 
= 

nEZ 1\ iEZ 1\ -l~i~n-l 1\ sum+x(i+ 1)= I~:~x(k) 

<= 

64 



McMaster - Computing and Software MSc. Thesis - H. Duan 

neZ /\ ieZ /\ O~ i<n /\ sum= L~=lx(k) 
= 

LOOP(n, i, sum) /\ i<n. 

Thus, LOOP(n, i, sum) /\ i<n => LOOP(n,i+ 1 ,sum+x(i+ 1)) holds. 

Path3 Assume LOOP(n, i, sum) /\ i2:n, i.e., 

neZ /\ ieZ /\ O~i~n /\ sum= L~=lx(k) /\ i2:n 

= 

neZ /\ ieZ /\ i=n /\ sum= L~=lx(k) 

=> 
sum= L~=lx(k). 

Thus, LOOP(n, i, sum) /\ i2:n => sum= L ~=lx(k) holds. 

This approach can be illustrated by Figure 4.1. 

V: neZ /\ O~ 

-------------------- <1>: LOOP(n, i, sum) 

No 

i:= i+ 1; sum:= sum+x(i) 
---------- P: sum= L~lx(k) 

Figure 4.1: Verification using Floyd's approach 

65 



MSc. Thesis - H. Duan McMaster - Computing and Software 

• Hoare and Baber use similar rules, which are based on the loop invariant. 

Baber provides more intuitive and compact proof rules for decomposing the 

proof of the program. Here we use Baber's partial correctness rule of 
initialized loops. The propositions to be verified will be as follows: 

[1] {V} sum:=O; i:=O {I} 

[2] {I /\ i<n} i:=i+ 1; sum:=sum+x(i) {I} 
[3] I /\ -,(i<n) => P 

According to the rule of sequence of assignment statements, 
[1] will be true if [4] holds, 

[4] V=> [I~] ~um. 

[2] will be true if [5] holds, 

[5] 1/\ i<n => [I~:+x(i) ] :+1' 

Then the program can be verified by proving [3], [4] and [5]. 

Proof of [3]: 

1/\ -,(i<n) 

nEZ /\ iEZ /\ O:S i:Sn /\ sum= L~lx(k) /\ i2:n 

= 

nEZ /\ iEZ /\ i=n /\ sum= L~lx(k) 

= 
p. 

66 



McMaster - Computing and Software MSc. Thesis - H Duan 

Proof of [4]: 

= 

[[ nEl /\ iEl /\ O~ i ~n /\ sum= L~lx(k)]~num 
= 

nel /\ Oel /\ 0:::; O:::;n /\ 0= L~lx(k) 

= 
nel /\ O:::;n 

= 

v-

Proof of [5]: 

= 

[nEZ /\ iEZ /\ O:::;i:::;n /\ sum+x(i)= L~=lx(k)] :+1 
= 

nEZ /\ iEZ /\ O:::;i+l:::;n /\ sum+x(i+l)= L~:~x(k) 

= 
nEZ /\ iEZ /\ -l:::;i~n-l /\ sum+x(i+l)= L~:~x(k) 

<= 

neZ /\ iEl /\ O~ i<n /\ sum= L~=lx(k) 
= 

1/\ i<n -

When we use Baber's total correctness rule, the propositions to be 

verified are: 
[1] {V} sum:=O; i:=O {I}strictly 

[2] I =:> (B E {false, true}) 

67 



MSc. Thesis - H. Duan McMaster - Computing and Software 

[3] I ::::::> (B::::::> O<n-i) 

[4] {I A i<n A (n-i)=(n-i)'} i:=i+l; sum:=sum+x(i) {I A (n-i)~(n-i)'-l}strictly 

[5] I A -,(i<n) ::::::> P 

According to the total correctness rule of sequence of assignment statements, 

[1] will be true if [6] holds, 

[6] V::::::> [I~ ]tUlll A OESet."i" A o ESet."sum". 

[4] will be true if [7] holds, 

[7] I A i<n A (n-i)=(n-i)'::::::> [[IA (n-i):::(n-i)'-l)]::+x(i) ]:+1 

A i+1 ESet."i" A sum+x(i+1)ESet."sum". 

Then the program can be verified by proving [2], [3], [5], [6] and [7]. As 

we encountered in Example 4.1, these cannot all be proved based on given 

pre/postconditions. Sufficient information about the sets associated with both 

i and sum must be added to both V and 1. In fact, this indicates that i and sum 
could be global variables, which are contained in the commonly accessible 

data environment. 

• In Dijkstra's approach, one starts from the postcondition as follows. 

wp (Sum, P) 

wp ("sum:=O; i:=O", wp (''while'', P» 

Here, to compute wp ("while", P), i.e., verify the loop, we cannot use the 

recursive approach presented in Table 4.9, which will only generate a 

disjunction as follows: 

wp = Ho(P) v H 1(P) v ... v Hk(P), 

where Ho(P) = D(B) A -,B A P, 

H 1(P) = D(B) A B A wp (S, Ho(P», 

Hk(P) = D(B) A B A wp (S, Hk-l(P», 

and k is the times of iteration of the loop body. 

68 



McMaster - Computing and Software MSc. Thesis - H. Duan 

In order to verify the loop, we need the loop invariant I, i.e., wp ("while", P). 

Therefore, we need to prove: 

[1] {wp ("while", P) 1\ i<n} S {wp ("while", P)} 

[2] wp ("while", P) 1\ -,(i<n) => P 

We have proved them in HoarelBaber's approach, so we omit the proof 

process here. Thus, 

wp (Sum, P) 
= 

wp ("sum:=O; i:=O", wp ("while", P)) 
= 

wp ("sum:=O; i:=O", neZ 1\ ieZ 1\ O:S i:Sn 1\ sum= L~=lX(k)) 
= 

wp ("sum:=O", wp ("i:=O", neZ 1\ ieZ 1\ O:S i:Sn 1\ sum= L~=lx(k)) 

= 
wp ("sum:=O", neZ 1\ O:Sn 1\ sum=O) 

= 

ne21\ O:Sn 
= 

Note that, the proofs presented in Floyd's, HoarelBaber's and Dijkstra's 

approaches do not explicitly show that the index of x are within the bounds I and 

n. Hoare [Hoa71a] suggested that one can prove it by using the loop invariant. 

Alternatively, in Baber's total correctness approach, the set associated with i 

provides the base for the proof of the boundary values. 

~ In functionaVrelational approaches, the intended functions of the program and 

the program statements will be given as/, fleas we mentioned in Example 4.1, 

we use Mills' notations here): 

69 



MSc. Thesis - H Duan McMaster - Computing and Software 

Function for the program:f= (O~n ~ i, surn:= n, I:=lx(k)), 

Function for the loop:fl = (O~i~n ~ i, surn:= n, sum+ I:=i+lx(k)). 

By the definitions of assignment statements, sequential composition and 
while loops, we have program functions: 

init = (i, sum:= 0, 0), 
b = (i<n), and 
g = (i, sum:= i+ 1, sum+x(i+ 1 )). 

In Mills' approach, only those variables, whose values are changed, are 

specified. In Parnas' approach, unchanged variables are explicitly specified by 

using NC. NC is a predicate symbol which means "Not Changed". It is defined 

in [IMP93]. 

proof 

(1) Whiledo proof: 

a) Termination: 

Initially O~i~n and i is increased by 1 each iteration, so eventually 

whiletest i<n fails. 
b) whiletest true: prove (b ~ fl) = (b ~ fl 0 g), i.e., (b ~ ifl = fl 0 g)). 

b~/l 

= 
i<n ~ (O~i~n ~ i, sum:=n, sum+ I :=i+lx(k)) 

= 

i<n ~ i, sum:=n, sum+ I:=i+lx(k) 

b ~fl og 

i<n ~ 11 0 (i, sum:= i+ 1, sum+x(i+ 1)) 

= 
i<n ~ (O~i+l~n ~ i, sum:=n, sum+x(i+l)+ I:=i+2x(k)) 

= 

70 



McMaster - Computing and Software 

i<n ~ i, sum:=n, sum+ L~=i+lx(k) 

Thus, (b ~ 11) = (b ~ 11 0 g) holds. 

Pass 

MSc. Thesis - H Duan 

c) whiletest false: prove (-b ~ 11) = (-b ~ l), where 1 is an identity 

function. 

Case c1: i>n 

-b~/l 

= 

i>n ~ if} = undefined) 

= 

i>n ~ (1 = undefined) 

Thus, (-b ~ 11) = (-b ~ 1) holds in Case c 1. 

Case c2: i=n 

-b~/} 

= 

(i=n ~ (O:5i~ ~ i, sum:=n, sum+ L~=i+lx(k))) 

= 
(i=n ~ i, sum:= n, sum+ I:=nHx(k» 

= 

(i=n ~ i, sum ;= i, sum) 

= 
-b~I 

Thus, (-b ~ fJ) = (-b ~ l) holds in Case c2. 

pass 

71 



MSc. Thesis - H Duan McMaster - Computing and Software 

Note that in functional/relational approach, one does not need a loop 

invariant. Instead, a loop function will serve well in the verification. 

(2) Sequence proof: prove[= [I 0 init 

[10 init 

pass 

result 

Discussion 

= 
[I 0 (i, sum:=O, 0) 

= 
O:::;O:::;n ~ i, sum:=n, 0+ L ~=lx(k) 

= 
(O:::;n ~ i, sum:=n, L~=lx(k» 

= 
[ 

Thus, [= [I 0 init holds. 

• Floyd's approach, which preceded and influenced Hoare's approach and 

consequently Baber's and Dijkstra's, addresses the loop iteration by means of an 

invariant condition. A loop invariant is a condition that holds at the beginning 

and at the end of the loop. Dijkstra used loop invariants for verification as well 

although they are not presented in semantic definitions of loops in wp. Baber 

suggests that finding the loop invariant should be the first step to finding a 

correct loop and it is easy to write the program when you know the invariant. 

Mills gave a recursive definition for the meaning of an iteration statement 

[LMW79, MBG87]. This idea goes back to McCarthy [McC63]. In Mills' 

approach, instead of using a loop invariant, a loop function will be needed in 

verification (i.e. [I in the Example 4.2). Then, the function must be shown to be 

equivalent to the expanded version of the loop. 

72 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Formulating loop functions and formulating loop invariants are very similar 

tasks. In either approach, initialized loops are easier to handle because one can 

take advantage of the initialization information to simplifY the description. 

• They all use the same strategy to prove the termination. One first finds a loop 

variant or a monotonically decreasing quantity (MDQ), and then proves that it 

decreases along each execution and when it hits the bound the program will stop. 

Mills presented a more sophisticated version in [Mil75a]. Essentially he showed 

that in an iteration equation, i.e., / = while b do g endwhile, "the predicate b is 

fixed entirely by / alone". He called b the iteration derivative of f Baber 
formulated the strategy as part of the proof rule as shown in Table 4.9. His 

formulation makes the concept easier to follow during verification. 

Most methods require the loop variant to be an integer, but not in the Baber's 

method. Baber permits a non-integer variant for proving termination of loops. 
Allowing the variant to be any real number is advantageous for some loops, e.g. 
for finding an approximation to the zero of a function. 

• All the program constructs we discussed are deterministic. Non-determinism is 

also an important issue to consider. Both Dijkstra and Parnas introduce 

languages consisting non-deterministic constructs [Dij75, Par83], which can be 
used for modeling non-deterministic behaviours. Dijkstra used wp to define his 
guarded command language. Parnas defines his language using LD-relations. 

• Procedure call 

For practical applications, it is important to support procedure calls in verification. 

Procedure calls are complicated by things like various parameter passing 
mechanisms, side effects, and the order of evaluation of expressions and parameters. 

Floyd and Dijkstra did not consider procedure calls in their approaches. 

73 



MSc. Thesis - H. Duan McMaster - Computing and Software 

;.. A procedure call without formal parameters 

For a parameterless procedure call, Hoare, Baber, Mills and Parnas use similar 

manner to handle it: since the procedure call without parameters is semantically 
equivalent to the body of the procedure, the verification of the call will be equivalent 

to the verification of the body, which can be conducted through the verification of 

the statements constituting the body. This assumption is not necessary true in all 

languages but was valid in most commonly used languages. 

Baber provides some rules on it and those rules are basically notational variants 

of the rules applied for program statements [Bab02]. Hoare provides an inference 
p proc S, {V}S{P} 

rule: [Hoa71b], here "p proc S" represents that p has been 
{V} call p {P} 

declared as a parameter-free procedure. S is the procedure body. 

;.. A procedure call with formal parameters (Call by value, Call by name, Other) 

Hoare 

The rule of substitution below is used to handle parameterized procedure calls: 

{V} call p (c) (n) {P} 
[Hoa71 b) 

Here c and n represent the lists of formal parameters which change and do not 

change respectively. a and m represent the actual parameters. f is a list of all 
symbols which are free in V and P, must appear in actual parameters, and do not 

appear in formal parameters. Any of/that appears in V or P must be replaced with 

completely new symbolsf'. The substitution of/must be performed first. 

This rule can handle call-by-value and call-by-reference theoretically. However 

many assumptions must hold in order to prevent aliasing problems or naming 
conflicts [Hoa71b). In [Hoa71b], Hoare presented several rules for procedure calls 

to apply his axiomatic method to the procedure and parameter passing features of a 

74 



McMaster - Computing and Software MSc. Thesis - H. Duan 

programming language. The above one is more powerful than the others. He also 

proposed the rule for functions in [CH72] and [ACH76], in which he corrected 

inaccuracies of previous rules. Because of the restrictions and complexity, these 

rules are hard to be applied. 

For example, we use call-by-reference parameter passing mechanism, which is 

used in FORTRAN, C++ and Java, in the following program: 

void swap (int &a, int &b) { 

a:=a+b; 
b:=a-b; 
a:=a-b 

} 

maine ){ 

} 

int x=l, y=2; 

swap(x, x); 

Due to the limitation, Hoare's rule of substitution cannot handle the verification 

of the call to swap. Both the actual parameter lists a and m contain the same variable 

x. This situation is disallowed when applying his rule because the proof of the body 
of the subprogram is no longer valid. 

Baber 

Instead of using complicated rules to handle various procedure calls, Baber models 

it by equivalent combinations of the program statements. 

One can use declaration and release for proper variables to explicitly implement 

the semantics of a particular parameter passing mechanism. Then procedure calls 
with parameters may be replaced by the equivalent parameter-free procedure calls. 

By using rules of declaration and release, verification of parameter passing can be 
handled explicitly and be prevented from getting into too much complexity. 

75 



MSc. Thesis - H Duan McMaster - Computing and Software 

For call-by-value, new, local variables are declared whose initial values are the 

values of actual parameters and are released at the end of the procedure. For call-by­

value-result, it is much like dealing with the call-by-value, but in addition the values 

of formal value-result parameters have to be assigned back to actual value-result 

parameters. For call-by-name, since the names of formal parameters are changed 
throughout the procedure to the names of actual parameters and the resulting 
procedure will be executed, it can be solved through changing formal parameters' 

names to actual parameters' names in the original procedure [Bab8?, Bab02]. Call­

by-name mechanism plays a major role in ALGOL-60. However, due to its 

considerable execution overhead, it is not widely used [PZ01]. Baber's approach 

does not consider call-by-reference. 

Implementations of parameter passing mechanisms have many variants in actual 

systems. One must fully understand the mechanisms in the language being used in 

order to apply the method accurately. 

Suppose the above example of swap implemented using call-by-value-result and 

call-by-name mechanism respectively. By Baber's approach, we have 

1) call-by-value-result 
The call {x= 1} swap(x, x){ x= I} is equivalent to the call without parameters 
{x=l }swapx{x=l} where the subprogram swapx is 

76 



McMaster - Computing and Software MSc. Thesis - H Duan 

{x=l} 

declare (a, Z, x); declare (b, Z, x) 

{b=l/\ a=l} 

a:=a+b 

{b=l /\ a-b=l} 

b:=a-b 

{a-b=l 1\ b=l} 

a:=a-b 

{a=ll\b=l} 

x, x:=a, b 

{x=l} 

release a, b 

{x=l} 

By applying proof rules, which are shown on the right side, we know that swapx 

satisfies its pre/postcondition. Therefore the call swap(x, x) using call-by-value­

result will execute correctly. 

2) call-by-name 

The call {x=l } swap (x, x){x=l} is equivalent to the call without parameters 

{x=l}swapx{x=l} where the subprogram swapx is 

x:=x+x 

x:=x-x 

x:=x-x 

{x-x=l} contradiction 

{x=l} 

It is obvious that swapx does not satisfy the pre/postcondition required. The 

procedure call will fail to execute correctly. 

We know that different parameter passing mechanisms may affect the result of 

execution completely. This example is a typical aliasing problem. It happens easily 

with passing parameters, such as two parameters aliased or a parameter and a global 

77 



MSc. Thesis - H Duan McMaster - Computing and Software 

variable aliased. Baber's guidelines provide general ideas on passing parameters, but 

do not deal with aliasing problems explicitly. 

Mills, Parnas 

Neither Mills nor Parnas consider the invocation with parameters. Mills and Parnas 

assumed that one knows the program function of each invocation of a procedure. 

Discussion 

Even a subtle difference in parameter passing mechanism may affect the result of 

execution. Rules will not give much help for the verification or documentation of 

procedure calls. Many different inference rules for procedures calls have been 

proposed through the years correcting limitations and inaccuracies of previous rules 

[Apt81]. For these reasons, most people avoid the issue of parameter passing when 

talking about proof and specification mechanisms. 

• Recursive invocation of programs 

Floyd, Dijkstra ignored this issue. 

Hoare 

For the recursion in procedure call, Hoare provides a general recursive invocation 

rule: 

p(x)(v) proc S,{V} call p (x) (v) {P} r {V}S{P} 

{V} call p(x) (v) {P} 
[Hoa71b] 

It means that "if {V}S{P}can be deduced [romp (a procedure whose body is S) 

and {V}call p(x):(v){P} is assumed, then {V}call p(x):(v){P} holds". This rule 

actually presents a solution using induction. One first assumes that if the 

pre/postcondition of the recursive call holds, the pre/postcondition of the body can 

be verified. The base case of the induction is that the part of the body that does not 

78 



McMaster - Computing and Software MSc. Thesis - H. Duan 

contain the recursive call can be verified. Then the assumption and the base case 

together can prove the call of recursive procedure. 

Baber 

One uses the rules for the declare and release statement to handle the stacking and 

popping of the recursion. 

Mills 

Instead of using substitutions in ordinary procedure calls, one uses a technique 

similar to loops. Mills [MBG87] provided following verification rule for recursive 

invocation: 

A recursive procedure: 
procP 

begin 
ifB 

then SI 

else S2; call P; S3 

endproc 
where B is a boolean expression and S 1, S2 and S3 are statements that do not call P. 
Thenf = [P] if and only if: 
1) domain(f) = domain([PD 

2) f is a solution to the recurrence equation (a recurrence equation is an equation in 
which an unknown function occurs on both sides [MBG87]). 

Parnas 

Parnas' approach focuses more on documentation. A program, which is 
deterministic, computes the same function no matter it computes recursively or 
iteratively. Thus, when one is documenting a recursive computation, all s/he states is 
a black box function. 

79 



MSc. Thesis-H Duan McMaster - Computing and Software 

Discussion 

We have presented various rules proposed in each approach. It should be noted that 

these rules differ from language to language. All of the researchers did their work in 

terms of an idealized language that they believed was typical or indicative of how 

one does it with a real language. However, real languages differ in such things as 

the scope rules and parameter passing so the rules must be used carefully. 

4.2 How does the approach support verification of a 
program? 

While most of the approaches we compared support verification, they use different 
strategies and procedures as shown in Examples 4.1 and 4.2. 

In pre/postcondition approaches, 

1) The verification goal is to prove the truth of {V} S {P} which means that if V 

is true before S is executed, P must be true after the execution is completed. 

V and P are given as the specification of the program. 
2) Verifying the program by: a) applying proof rules iteratively to decompose 

the correctness proposition to be proven until primitive statements are 

reached; b) proving correctness propositions. Dijkstra's approach uses a 

backward strategy, (i.e., starting from the postcondition P). 
3) For each loop in the program, an invariant condition is given. By using a 

loop invariant, one can prove that a loop will always generate desired results. 

4) If termination is required, one uses a loop variant or a monotonically 

decreasing quantity to prove it. 

80 



McMaster - Computing and Software MSc. Thesis - H. Duan 

In relational approach, 

1) The verification goal is to show that the intended relation (i.e., specification) 

is equivalent to the relation that the program computes. 
2) The intended relations for program segments and major parts of the code, 

such as loops, should be given. One generates program relations that describe 

the program, then proves the equivalence of intended relations and program 
relations for each segment and the whole program. 

3) If termination is required, one uses a monotonically decreasing quantity to 

prove it. 

Floyd actually used different strategy than other pre/postcondition approaches as 

we illustrated in Example 4.1 and 4.2. He used the assertions and the program to 

formulate the theorems, then proved those theorems in the mathematical domain. 

This strategy is similar to Mills' approach. To verify a program, Mills derived 

theorems based on intended functions and the program, then prove the theorems 

without ever using the program. Other pre/postcondition approaches usually work 

between program domain and mathematics domain. They go through the program 
proving as they go. 

Pamas also proposed the Display Method for documenting the program [PMI94, 
BP95, Pet96] to assist verification and inspection. In display method, the programs 
and their specifications are organized into a set of displays, each containing: 

I) the specification for that program. 
2) the program text. 

3) the specifications for all of the other programs invoked within that program. 

Through checking individual displays, one uses the "divide and conquer" 
technique to examine each program in isolation. Display method can be used by 
other approaches as well. An example of displays in Baber's approach is presented 

in Appendix A. 

81 



MSc. Thesis - H Duan McMaster - Computing and Software 

4.3 Side effects handled? 

One of the semantically difficult features which appears early and often in software 

verification is handling expressions which have side effects. A side effect occurs 

when an expression has an effect - modifying the state of a system - from only 

producing a value. 

In pre/postcondition approaches, one associates assertions with the states before 

and after the execution of a program. Without caution and proper treatment, it is 

inevitable that the side effects associated with a statement will make the 

formulations of its initial or final states invalid. Historically there have been two 

general approaches to handling programming languages whose statements may have 

side effects [Hom95, Bla98]. One [Boe85] is by having separate inference rules -

"effect" rules for the effect of expressions on the state; "value" rules for the result 

value of expressions or statements. The other approach [CG76, Kow77] is to 

analyze the subexpressions which cause side effects separately from the original 

expression and uses unique variables which carry the result of side effects. Although 
the former was found to be easier to apply [Bla98], both approaches will increase 

the complexity of the formalization. In the approaches we compare, it is assumed 

that expressions are evaluated without side effects. They assume that execution of a 

statement may change only the variables indicated and the evaluation of an 

expression may change no variables. Floyd [Fl067] gave an example of a simple 

treatment for the side effects of the extended assignment statement which allows 

embedded assignments as subexpressions. 

Relational approaches have no problem with side effects. With knowing the 

function/relation of each individual component in an expression and the sequence of 

operations (i.e., how the expression is evaluated), the effects/results can be clearly 
expressed. Side effects are actually included in the relation. No special treatment is 

needed. 

82 



McMaster - Computing and Software MSc. Thesis - H. Duan 

4.4 How does the notation of an approach facilitate its use 
in documentation? 

Notations are critical for documentation throughout the whole process of software 

development. Documents should be written in a precise and accessible way. A 

carefully chosen notation can reduce the effort tremendously in the process of 

preparing and reviewing these documents [JPZ95]. We compare the proposed 

notations of each approach by following criteria: 

1) Accessibility: i.e. ease of learning. The documentation should avoid using many 

special notations or formats. The familiarity of the material can stimulate the 

learner and reduce much effort in learning. 

2) Readability: i.e. ease of comprehension, which is influenced by the size and the 

lucidity of formulae. Good notations will increase the clearness and compactness 

of formulae. They appeal to the mind and are easy to be understood. 
3) Checkability: A mechanism exists that can assist designers/programmers to 

assure the correctness of documents. 

Floyd, Hoare, Dijkstra 

Their approaches mostly use mathematical notations, first-order logic operators and 
imperative programming expressions with a few conventions. While they did not 
use many special symbols or notations, they do not provide any means to increase 
the accessibility and readability for the documentation. 

Baber 

Baber's notations are mainly from first-order logic and Hoare's conventions. These 
are not restricted to the traditional format in order to make the formulae more 

compact. Baber also substitutes words for mathematical symbols (e.g. "and", "or", 
etc.) to make the formulae more readable. 

Baber uses a decomposition process diagram. The decomposition process of 

verifying a program is usually complex. Verifiers have to pay extra caution to avoid 

83 



MSc. Thesis - H Duan McMaster - Computing and Software 

missing any steps. A decomposition process diagram makes it easier to check the 

whole process and clearly shows the correctness propositions that need to be proved. 

In the following diagram, the correctness propositions, located in the last node of 

each branch, need to be proved. 

Sum: sum=O; declare (i, Z, 0) 

While i<n do 

i:= i+l; 

sum:= sum+x(i) 

endwhile 

release i 

W2 - rule for the initialized while loop 

I andi~n~ P 

S2 - rule for sequence of assignment S2 - rule for sequence of 
statements assignment statements 

V --.. [IOi ]Osum I and i<n ---'0. [I sum ]i --.' --.' sum+x(i) i+l 

Figure 4.2 An example of decomposition process diagram in Baber's approach 

Mills 

Mills' functional expressions use conditional rules and concurrent assignments, 

which are simpler to write and easier to read than the conventional function 

84 



McMaster - Computing and Software MSc. Thesis - H. Duan 

expressions. Mills also used trace tables to systematically show the symbolic 

execution in the process of verification [LMW79, MBG87]. 

Parnas 

Parnas uses characteristic predicate expressions in tabular notations. He proposed 

tabular expressions for relational documentation. Tabular expressions have been 
shown to be an effective tool for presenting formal computer system documentation 

in a concise and readable manner. 

Documents written in conventional mathematical expressions are often lengthy 

and deeply nested. Great caution has to be taken during the process of 

documentation and review. The defmition of functions fix, y) [JPZ95] is written in 

two formats below. 

(Vx, (Vy, «(x~OAy=lO)-f(x, y)=O) A «x<OAy=10)-f(x, y)=x) A 
«X~OAY> 1 O)-f(x, y)=y2) A «x~OAy<1 O)-f(x, y)=_y2) A «X<OAY> 1 O)-f(x, 

y)=x+y) A «x<OAy<10)-f(x, y)=x-y)))) 

f(x, y) = y= 10 y> 10 y < 10 

x~O 

I I 0 l _y2 

x<O X x+y x-y 

Figure 4.3: An example of tabular notation 

The one using tabular notations is more readable. The expression can be 

understood intuitively because that intuition is consistent with its formal definition. 

One can use tables to "parse" formulae instead of parsing in his/her mind. Formal 

semantics of tabular notation is defined in [HKP78, Par92, Par94b, Par95, JKOl]. 

Even in this simple function, it is easy to overlook cases. Comparing to the 
expressions written in traditional format, tabular notations are much more suitable 

85 



MSc. Thesis - H Duan McMaster - Computing and Software 

for describing the functions, relations and conditions that frequently occur in 

program specifications and descriptions. Tables make it easy to detect missing cases. 

Another feature of tabular expressions is that they fully utilize the "divide and 

conquer" strategy. Inspector can review the problem one column or one row at a 

time without being distracted by other cases. 

In addition, tabular notations are suitable for both application· dependent and 
application· independent checking. For the application·dependent checking, one 

checks the content of cells in the main grid. For the application·independent 

checking, completeness is assured if the union of all the header expression is true 

and consistency is assured if the intersection of any pair of expression in header is 

false. More examples of tabular notations are presented in Appendix A and B. 

4.5 How does the approach handle program derivation/ 
design? 

Derivation means a mechanical process of producing the desired program. To derive 

a program means to have a formal specification first, and then apply transformation 

rules in order to obtain an executable program. The program you obtain is then 

correct by construction. Mathematical derivation has its advantages in that one just 
needs to do the calculation in a mechanical way by following some rules, which will 
be more efficient than guessing and then verifying. 

However, derivation also has its limitations. Because of the nature of software, 
human intuition, creativity or inventiveness are often useful or needed during the 

process of design. Besides, human decision is also involved to make optimal choice 

among the alternatives which all satisfy the given specification. A program 
produced by derivation may be less efficient in actual use than the one done more 

intuitively. 

Floyd did not consider this issue. Hoare gave some consideration on the design 

of large systems [Hoa8?], but did not provide approaches for program design. 

86 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Dijkstra 

Dijkstra proposed the formal derivation of programs from specifications [Dij75]. 

Programs are constructed by simultaneously deriving and verifying them from the 

postcondition. He also proposed a design approach - stepwise refinement [Dij72], 

which means that a problem is broken into a series of smaller steps, these steps are 

further refined until the problem can be solved by following all the small steps, from 

which an algorithm is constructed. 

Baber 

Baber provides design procedures and a series of guidelines that are intended to be 
applied informally and intuitively. 

When the need for program derivation arises, Baber takes a pragmatic strategy 

with formal and informal approaches combined. Programmers can follow rules for 

the derivation (some of the rules given in 4.1), instead of programming in an ad hoc 

manner [Bab02]. 

F or example, to design a loop, one starts by determining a suitable loop invariant 
1. This step is conducted informally by producing a generalization of V and P. Then 

one can derive three parts of the loop - the initialization, the loop condition and the 

loop body - more formally based on I. According to "{V} init {I}", the initialization 

can be derived. Then the loop condition can be found according to "I /\ -,B ~ P". 

F or the loop body, based on "{I /\ B} S {I}'\ one first considers the termination of 

the loop, then considers to reestablish the truth of I, which is the postcondition of the 
body S. 

Mills 

Mills presented the stepwise refinement approach [Mil7Sb]. One begins with the 

specification, which given as an intended function. The intended function is 

repeatedly divided into low-level intended functions (sub-specifications). This 

87 



MSc. Thesis-H Duan McMaster - Computing and Software 

decomposition process continues until intended functions are expanded into suitable 

program structures. Then, the equivalence between the designed program functions 
and the given functions needs to be verified. 

F or example, f is a given function. We assume an equivalent function will be 

produced by a while structure with function or predicate components b, u, v, hence 

we need to prove f = [while b do u; v endwhile]. 

Parnas 

Pamas did not discuss either formal derivation or stepwise refinement. He proposes 

general design methods for decomposing programs and module design [Par72], etc. 

In his view, "design is recognized as a very creative task in engineering fields, in 

which mathematics and science provide essential inputs, but the primary role of the 

mathematics comes in the documentation and validation of the design" [Par93b]. 

4.6 Programming languages limitation 

A generic classification of programming language is as follows [PZO 1]: 

• Imperative programming languages: Its basic concept is machine states, the set 

of all values for all memory locations in the computer. It is strongly tied to the 
concept of variables and memory locations. 

• Functional programming languages: Its view of the computation is to look at the 
function that the program represents rather than just the state changes as the 
program executes. In particular, functional programs do not use the concept of 

variables in the traditional sense, i.e. a memory location whose contents might be 

changed from time to time as a program executes. 

• Logic programming: Logic programming is based on first-order logic. Programs 
are collections of facts stated in logic, and programs are executed by an engine 

that performs proofs based on the stated facts. 

• Object-oriented programming languages: Complex data objects are built, then a 
limited set of functions are designed to operate on those data. They can be seen 

88 



McMaster - Computing and Software MSc. Thesis - H. Duan 

as imperative languages with additional features. While languages such as C++ 

and Java are commonly referred to as object-oriented programming languages, 

they are also imperative languages. 

All the methods we compare were developed for imperative languages. Because 

of the connection between imperative languages and object-oriented languages, all 
methods can be applied equally easily to those object-oriented languages. 

None of the methods apply to functional languages. All the methods assume that 
one is dealing with state changes and dealing with variables, while functional 

programs do not use the concept of variables in the traditional sense. None of the 

methods apply to logic languages either. 

4.7 Does the approach provide explicit descriptions on 
how to use the transformation/proof rules? 

Knowing the rules does not teach how to use the rules. Are the rules presented in a 
way that they can be followed by practitioners? It is important to show the 

programmer how to use a mathematical concept, not just to teach them the 
definitions and theorems [Par93b]. In order to do so, explicit explanations and 
illustrative examples are needed. 

Floyd's, Hoare's and Dijkstra's work were in the early stage of the development 
of pre/postcondition methods. While they elaborated on how to apply the 

approaches, increasing the accessibility of the approach had not gain much attention 

at the time. 

Baber's proof rules are similar but not limited to Hoare's. Baber extends each 

basic rule to provide a specific rule for a particular situation. For instance, Baber 

defines three rules for assignment statements - AI, A2 and S2. Rule Al is used to 
derive a precondition for a given postcondition and a given assignment statement. 

A2 and S2 act as auxiliary rules with A2 used for verifying a single assignment and 

89 



MSc. Thesis -H. Duan McMaster - Computing and Software 

S2 used for verifying a sequence of assignments. These auxiliary rules increase the 
applicability of the approach. 

Examples are one effective means to well describe the usage of rules. In 

[Bab87], Baber presents examples, which are extracted from productive commercial 

systems, to illustrate how his approach can be applied to real software of reasonable 

size. Mills introduced his approach along with elucidating a programming language 

- PASCAL [MBG87]. The verification rules and procedures were explained and 

illustrated by applying them to various mechanism of PASCAL. Parnas provides 

many documentation paradigms using relational approach and tabular expressions. 

Guidelines for documentation and inspection are also provided. 

4.8 Conclusion 

While all approaches provide certain rules for the most commonly used program 

constructs, Pamas' and Dijkstra's approaches consider non-deterministic constructs 
as well and further provide definitions. 

Some complicated programming issues are not fully dealt with in all approaches 
in terms of verification and specification. These issues include pointers, aliasing 

problems, parameter passing and scope rules. Baber's approach provides some 

consideration on scope issue, but not completely treated and defined. 

As for side effects, pre/postcondition approaches have to ignore this issue 

otherwise the complexity of the formulae will be increased considerably. Relational 
approaches do not have this problem. Side effects have been included during their 
formalization. 

Pamas, Baber and Mills give more consideration to the representation of 
documentation. Parnas' tabular expression is a powerful means for constructing and 
presenting program documents. 

90 



McMaster - Computing and Software MSc. Thesis - H. Duan 

Dijkstra and Mills provided the stepwise design techniques in their own 

methods. Dijkstra also proposed the program derivation. Baber's approach deals 
with program derivation and also provides many guidelines for program design. 

Floyd, Hoare and Dijkstra concerned themselves mostly with the theoretical 

soundness of the approaches. Accessibility did not gain much attention at their time. 

Baber, Mills and Parnas give great amount of consideration to advancing the 
accessibility of the approaches. Baber uses examples, informal descriptions, and 

diagrams to illustrate the method in a comprehensible manner. Mills gave detailed 
explanations and various examples of verification. Parnas focuses on the issues of 
program inspection and documenting programs in an efficient form by using tables. 

91 



MSc. Thesis - H Duan McMaster - Computing and Software 

92 



Chapter 5 

Conclusion and Future Work 

This chapter summarizes the advantages and limitations of each approach, draws 

conclusions, provides suggestions and proposes future work. 

5.1 Conclusions and suggestions 

We have elaborated and illustrated six approaches through comparing their 

mathematical models, specification and verification techniques as well as 

applicability and practicability. It was not our goal to find a perfect development 
method that can be applied equally well in various situations. We intend to find out 
their relative strengths or weaknesses in terms of practicability. In the long run, one 
would like to find methods that have the strengths of all and the weaknesses of none 

but that is beyond the scope of this thesis. The main conclusions of this work are as 

follows. Some suggestions regarding the application of the approaches are also 
given. 

• Among these approaches, Dijkstra's, Parnas' and Baber's methods have more 

powerful expressive ability than others' in terms of specifying termination of 
programs. As discussed in 3.1, there are generally three termination statuses that 
a program may encounter. Only Dijkstra's, Parnas' and Baber's approaches can 

specify all three statuses. 

93 



MSc. Thesis - H. Duan McMaster - Computing and Software 

• Mills and Pamas distinguish specifications and descriptions through constructing 

intended functions/relations and program functions/relations. Floyd, Hoare, 

Dijkstra and Baber's approach did not make such distinction. However, by 

following the guidance provided in Pamas' approach, one can also write 

program descriptions using pre/postconditions through inspecting programs and 

applying transformation rules. 

• Dijkstra's and Pamas' approaches explicitly consider non-determinism and can 

deal with both deterministic and non-deterministic programs, whereas other 

approaches chose not to stress this aspect. Baber also includes non-deterministic 

specifications into his model. In Section 3.3.1, we pointed out that non­

determinism are not intended in other approaches. 

• By defining a specific state representation and program variables, Baber's 

approach is able to deal with some practical problems, such as variable binding, 

variable scope, procedure calls and recursive invocations. Mills and Pamas do 

not introduce a state representation into their basic models and have no 

underlying assumptions on it, hence users can choose whatever representations, 

e.g., Baber's representation, that is suitable for the problem in hand. Floyd, 

Hoare and Dijkstra made simplifying assumptions on this issue, which are, 

however, invalid in real applications. 

• Through the discussion about various treatments of some common program 

statements and constructs in Section 4.1, we revealed a few differences and 

similarities between the two groups of approaches: 

1) The basic semantics of programs are defined differently in the two groups. 

As we have seen in Section 4.1.1, pre/postcondition approaches define basic 

semantics of programs as an inference system. Basic statement 

types/constructs are defined either as axioms, inference rules or as basic 

definitions, which are necessary for an inference system. Relational 

approaches are formulated in terms of mapping. They provide semantic 

definitions for basic statement types as mapping from a domain of states to a 

ranges of states. Programming constructs such as "if then else" are defined as 

94 



McMaster - Computing and Software MSc. Thesis - H. Duan 

mappmgs from a domain of mappings (the state-to-state mappings that 

describe the statements) to other such mappings. 

2) One of the important concepts in pre/postcondition approaches is the notion 

of loop invariants which should be maintained throughout the execution of 

loops and is essential to verifying loops. However, in some relational 

approaches, one does not need the loop invariant. Instead, one states the 

intended function/relation for the loop and the function/relation that describes 

the components (body, termination condition of the loop) and then checks an 

equation in mappings to see if it holds. 

3) All these approaches do not consider explicitly some detailed issues that are 

often encountered in programming, such as pointers, dynamic memory 

allocation, scope rules, etc. They are built on an idealized language in order 

to simplify formalization. However, to apply these techniques to real 

applications, these issues have to be tackled for practitioners following the 

methods. Some approaches already provide the basis to build on. For issues 

of pointers and dynamic memory allocation, pointers can be handled as 

indices to arrays and dynamic memory allocation can be handled by the 

declaration and release of array elements. Both Baber's and Mills' 

approaches already provide rules of dealing with arrays. Baber's approach 

also provides a basis for handling scope rules and parameter passing. More 

systematic techniques could be developed from it. 

• Through the discussion on side effects, we know that side effects will not affect 

relational approaches. Pre/postcondition approaches need special treatment to 
correctly handle side effects, which may increase complexity greatly, so they 

assume no side effects occurs. 

• Mills, Pamas and Baber put great consideration on helping people to use the 

approaches. Baber provides detailed guidelines for both design and verification. 

Parnas introduces an effective documentation technique - tabular expressions -

and proposes the Display method. In Appendix B, we present the specifications 

using both Parnas' and Baber's approaches for the same programs. The good 

95 



MSc. Thesis - H Duan McMaster - Computing and Software 

thing is that these techniques are not dependent to a specific method. They can 

be applied in other approaches as well. Baber's guidelines and diagrams can be 

used in other pre/postcondition approaches. Tabular expressions could be applied 

in all the other approaches to represent predicates. 

5.2 Future work 

In this comparative study, we illustrate the ideas with simple examples. More 

substantial examples, which may come from the requirement of a real world project, 

need to be developed to further acquire quantitative results in terms of applicability 

and efficiency of these approaches. 

Another area of future work is to integrate Parnas' and Baber's approaches to 
use practical advantages of each. They both have good abilities of constructing 
specifications, which are illustrated in Appendix B. They have the same concern on 

increasing practicability. In addition, they are complementary to each other in some 
areas. In Appendix A, we have attempted to use both techniques to solve the 

problem. A more systematic and compact approach could be discovered, especially 

with the notion of a postcondition characterizing the relation between the initial and 

final states. Moreover, empirical examples can be developed at the same time to 
illustrate the integration. 

We have discussed that Baber's and Parnas' methods can specify all three 
terminating behaviours. But we did not further formalize or prove the relationship 

between the two approaches, which could be one area of the future work. A 

connection between the two approaches could be established by formulating and 

proving a theorem about the relation between a pre/postcondition pair and a LD­

relation. 

96 



Bibliography 

[Abr96] J. R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge 
University Press, 1996. 

[ACH76] E. A. Ashcroft, M. Clint and C. A. R. Hoare, "Remarks on program 
proving: Jumps and functions", Acta Informatica, Vol. 6, 1976, pp. 317-318. 

[Air91] M. Mac an Airchinnigh. "Tutorial Lecture Notes on the Irish School of 
the VDM", Edited by S. Prehn and W. J. Toetenel, VDM'91, Formal Software 
Development Methods: Tutorials (Lecture Notes in Computer Science 552), 
Springer-Verlag, Berlin, 1991, pp. 141-237. 

[Apt81] K. R. Apt, "Ten years of Hoare's logic: A survey--part I", ACM 
Transactions on Programming Languages and Systems, Vol. 3, No.4, paidziemik, 
1981, pp. 431-483. 

[Ate02] Atelier-B, http://www.atelierb.societe.com. 2002. 

[Bab87] R. L. Baber, The Spine of Software: Designing Provably Correct 
Software - Theory and Practice, John Wiley & Sons, Chichester, 1987. 
http://baber.servehttp.comlBooks/Spine.pdf (December, 2004). 

[Bab91] R. L. Baber, Error Free Software: Know-How and Know-Why of 
Program Correctness, John Wiley & Sons, Chichester, 1991. German original: 
Fehlerfreie Programmierung fUr den Software-Zauberlehrling, R. Oldenbourg 
Verlag, Munchen, 1990. http://baber.servehttp.comlBookslErrorFreeSW . pdf 
(December, 2004). 

[Bab95] R. L. Baber, Praktische Anwendbarkeit mathematisch rigoroser 
Me tho den zum Sicherstellen der Programmkorrektheit, Walter de Gruyter, Berlin, 
1995. http://baber.servehttp.comIBookslPrakAnw.pdf(December, 2004). 

97 



MSc. Thesis - H Duan McMaster - Computing and Software 

[Bab97] R. L. Baber, "Comparison of electrical 'engineering' of He avis ide's times 
and software 'engineering' of our times", IEEE Annals of the History of Computing, 
Vol. 19, No.4, 1997, pp. 5-17. 

[Bab02] R. L. Baber, Mathematically Rigorous Software Design, Electronic 
textbook, July 2002. http://home.RLBaber.delProfessionallMcMaster/Courses/ 
46L03lMRSDLect.pdf (December, 2004). 

[Bco02] B-Core, URL http://www.b-core.com/aboutbcore.html (December, 2004). 

[Bj082] D. Bj0mer, "Stepwise Transformation of Software Architectures". Formal 
Specification and Software Development, Chapter 11, edited by D. Bj0rner and C. B. 
Jones, Prentice-Hall, 1982, pp. 353-378. 

[Bla98] P. E. Black, Axiomatic Semantics Verification of a Secure Web Server, 
Ph.D. dissertation, Brigham Young University, Utah, USA, February 1998. 

[Bli87] A. Blikle, "Denotational Engineering or From Denotations to Syntax", 
VDM'87, VDM-A Formal Method at Work, Lecture Notes in Computer Science, 
Vol. 252, edited by D. Bj0rner, et aI., Berlin, Springer-Verlag, 1987, pp. 151-209. 

[Bli88] A. Blikle, "Three-valued Predicates for Software Specification", 
VDM'88, VDM-The Way Ahead, Lecture Notes in Computer Science, Vol. 328, 
edited by R. Bloomfield, et aI., Springer-Verlag, 1988, pp. 243-66. 

[Bli90] A. Blikle, "On Conservative Extensions of Syntax in the Process of 
System Development", VDM'90, VDM and Z-Formal Methods in Software 
Development, Lecture Notes in Computer Science, Vol. 428, edited by D. Bj0rner, et 
aI., Berlin, Springer-Verlag, 1990, pp. 504-525. 

[Boe85] H. Boehm, "Side effects and aliasing can have simple axiomatic 
descriptions", ACM Transactions on Programming Languages and Systems, Vol. 7, 
No.4, October 1985, pp. 637-655. 

[BP95] B. Bauer, D.L. Parnas, "Applying Mathematical Software Documentation 
- An Experience Report", Proceedings of the Tenth Annual Conference on Computer 
Assurance, National Institute of Standards and Technology, Gaithersburg, Maryland, 
June 1995, pp. 273-285. 

98 



McMaster - Computing and Software MSc. Thesis - H Duan 

[CG76] R. J. Cunningham and M. E. J. Gilford, "A note on the semantic 
definition of side effects", Information Processing Letters, Vol. 4, No.5, February 
1976,pp.1l8-120. 

[CH72) M. Clint and C. A. R. Hoare, "Program proving: jumps and functions", 
Acta Informatica, 1972, pp. 214-224. 

[deB50] N. G. de Bruijn, "On some linear functional equations", Publicationes 
Mathematicae, Debrecen 1, 1950, pp. 129-134. 

[Dij68] E. W. Dijkstra, "Structure of THE-Multiprogramming System", 
Communications of ACM, Vol. 11, No.5, 1968, pp. 341-346. 

[Dij72] E. W. Dijkstra, ''Notes on structured programming", in Structured 
Programming, edited by O. Dahl, et aI., Academic Press, New York, 1972, pp. 1-82. 

[Dij75] E. W. Dijkstra, "Guarded commands, nondeterminacy and formal 
derivation of programs", Communications of the ACM, Vol. 18, No.8, August 1975, 
pp. 453-457. 

[Dij76] E. W. Dijkstra, A Discipline of Programming, Englewood Cliffs, NJ: 
Prentice-Hall, 1976. 

[Fl067] R. W. Floyd, "Assigning meanings to programs, Mathematical aspects of 
computer science", American Mathematical SOCiety, edited by J.T. Schwartz, 1967, 
pp. 19-32. Also in: Proceedings of a Symposia in Applied Mathematics, Vol. 19, 
1968. 

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, New York, N.Y., 
1981. 

[Gur84] Y. Gurevich, "Reconsidering Turing's Thesis: Toward More Realistic 
Semantics of Programs", Technical Report CRL-TR-38-84, EECS Department, 
University of Michigan, 1984. 

[Gur93] Y. Gurevich. "Evolving algebras: An attempt to discover semantics", 
Current Trends in Theoretical Computer Science, edited by G. Rozenberg and A. 
Salomaa, World Scientific, 1993, pp. 266-292. 

99 



MSc. Thesis-H Duan McMaster - Computing and Software 

[GurOO] Y. Gurevich, "Sequential Abstract State Machines Capture Sequential 
Algorithms", ACM Transactions on Computational Logic, Vol. 1, No.1, 2000, 
pp.77-111. 

[GY76] S. L. Gerhard and L. Yelowitz, "Observations of fallibility in applications of 
modern programming methodologies", IEEE Trans. Software Eng., Vol. SE-2, No.3, 
September 1976. 

[GY91] D. I. Good, W. D. Young, "Mathematical Methods for Digital Systems 
Development", Proceedings of 4th International Symposium of VDM Europe, 
Noordwijkerhout, The Netherlands, October 1991. 

[HHH87] C. A. R. Hoare, I. J. Hayes, J. He, et al. "Laws of Programming", 
Communications of the ACM, Vol. 30, No.8, August 1987, pp. 672-686. 

[HJN93] I. J. Hayes, C. B. Jones, J. E. Nicholls, "Understanding the differences 
between VDM and Z", Technical Report UMCX-93-8-1, University of Manchester, 
August 1993. 

[HKP78] K. L. Heninger, J. Kallander, D. L. Pamas, J. E. Shore, "Software 
Requirements for the A-7E Aircraft", NRL Memorandum Report 3876, U.S. Naval 
Research Lab, 1978. 

[Hoa69] C. A. R. Hoare, "An axiomatic basis for computer programming", 
Communications of the ACM, Vol. 12, No. 10, October 1969, pp. 576-580,583. 

[Hoa71a] C. A. R. Hoare, "Proof of a program: FIND", Communications of the 
ACM, Vol. 14, No.1, January 1971, pp. 39-45. 

[Hoa71 b] C. A. R. Hoare, "Procedures and parameters: An axiomatic approach", 
Symposium on Semantics of Algorithmic Languages, Lecture notes in mathematics 
Vol. 188, 1971, pp. 102-116. 

[Hoa74] C. A. R. Hoare, "Hints on programming language design", State of the 
Art Report 20: Computer Systems Reliability, edited by C. J. Bunyan, Pergamon! 
Infotech, 1974, pp. 505-534. 

[Hoa87] C. A. R. Hoare, "An overview of some formal methods for program 
design". IEEE Computer Journal, Vol. 20, No.9, September 1987, pp. 85-91. 

100 



McMaster - Computing and Software MSc. Thesis - H Duan 

[Hom95] P. V. Homeier, Trustworthy Tools for Trustworthy Programs: A 
Mechanically Verified Verification Condition Generator for the Total Correctness of 
Procedures, PhD thesis, Univeristy of California, LA, 1995. 

[HW73] C. A. R. Hoare, N. Wirth. "An axiomatic definition of the programming 
language PASCAL", Acta Informatica 2, 1973, pp. 335-355. 

[IMP93] M. Iglewski, J. Madey, D. L. Pamas, P. C. Kelly, "Documentation 
paradigms (A progress report)", CRL Report 270, Telecommunications Research 
Institute of Ontario (TRIO), McMaster University, July 1993. 

[Jac97] J. Jacky, The Way of Z: Practical Programming with Formal Methods, 
Cambridge University Press, 1997. 

[JinOO] M. Jing, "A Table Checking Tool", SERG Report, No. 384, McMaster 
University, March 2000. 

[JKOl] R. Janicki, R. Khedri, "On a Formal Semantics of Tabular Expressions", 
Science of Com puler Programming, Vol. 39,2001, pp. 189-213. 

[JM92] C. B. Jones, A. M. McCauley, "Formal methods - selected historical 
references", Technical Report UMCS-92-12-2, University of Manchester, 1992. 

[Jon80] C. B. Jones, Software Development: A Rigorous Approach, Prentice Hall 
International, 1980. 

[Jon86] C. B. Jones, Systematic Software Development Using VDM, Prentice Hall 
International, 1986. 

[JPZ95] R. Janicki, D.L. Pamas, J. Zucker, "Tabular Representations in Relational 
Documents", CRL Report 313, McMaster University, November 1995. Also in, 
Software Fundamentals - Collected Papers by David L. Pamas, edited by D. M. 
Hoffman and D. M. Weiss, Addison-Wesley, 2001, pp. 71-87. 

[Ka190] A. Kaldewaij, Programming: The Derivation of Algorithms, Prentice Hall 
International, 1990. 

[Kle98] T. Kleymann, "Hoare logic and auxiliary variables", Form Aspects of 
Computing, Vol. 11, 1999, pp. 541-566. 

101 



MSc. Thesis - H. Duan McMaster - Computing and Software 

[Kow77] T. Kowaltowski, "Axiomatic approach to side effects and general jumps", 
Acta Informatica, Vol. 7, 1977, pp. 357-360. 

[Ku102] G. Kulczycki, "Efficient Reusable Components with Value Semantics," 
Proceedings of the ICSR 2002 Young Researcher's Workshop, Austin TX, April 
2002. 

[Lig91] D. Lightfoot, Formal Specification using Z, Macmillan, 1991. 

[LMW79] R. C. Linger, H. D. Mills, B. 1. Witt, Structured Programming - Theory 
and Practice, Addison-Wesley publishing company, 1979. 

[Luc87] P. Lucas, "VDM: Origins, Hopes, and Achievements", Proceedings of 
VDM'87, VDM-Europe Symposium 1987, Brussels, Belgium, March 1987. 

[Mad75] R. A. Maddus, A Study of Computer Program Structure, PhD. dissertation, 
University of Waterloo, Canada, 1975. 

[Maj80] M. E. Majster-Cederbaum, "A simple relation between relational and 
predicate transformer semantics for nondeterministic program", Information 
Processing Letters, Vol. 11, 1980. 

[Man69] Z. Manna, "The correctness of program." Journal of Computer and 
Systems Sciences, 1969, pp. 119-127. 

[MBG87] H. D. Mills, V. R. Basili, J. D. Gannon and R. G. Hamlet, Principles of 
Computer Programming: A Mathematical Approach, William C. Brown, Dubuque, 
IA, 1987. 

[MBG89] H. D. Mills, V. R. Basili, J. D. Gannon, "Mathematical Principles for a 
First Course in Software Engineering", IEEE Trans. on Software Engineering, Vol. 
15, No.5, 1989, pp. 550-559. 

[McC62] J. McCarthy, "Towards a Mathematical Science of Computation", 
Information Processing, North-Holland, 1962, pp. 21-28 

[McC63] J. McCarthy, "A Basis for a Mathematical Theory of Computation", 
Computer Programming and Formal Systems, edited by P. Braffort and D. 
Hirschberg, North-Holland, Amsterdam, 1963, pp. 33-70. 

102 



McMaster - Computing and Software MSc. Thesis - H Duan 

[Mi175a] H. D. Mills, "The New Math of Computer Programming", 
Communications of the ACM, Vol. 18, No.1, January 1975, pp. 43-48. 

[Mil75b] H. D. Mills, "How to write correct programs and know it", Proceedings 
of the international conference on Reliable software, Los Angeles, California, April 
1975, pp. 363-370. 

[Mil88] H. D. Mills, "Stepwise Refinement and Verification in Box-Structured 
Systems", IEEE Computer, Vol. 21, No.6, June 1988, pp. 23-36. 

[MK75] C. L. McGowan, J. R. Kelly, Top-down Structured Programming 
Techniques, Petrocelli/Charter, New York, 1975. 

[Mor90] C. Morgan, Programming from Specifications, Prentice Hall International, 
1990. 

[MR67] A. R. Meyer and D. M. Ritchie, "The Complexity of Loop Programs", Proc. 
22nd National ACM Coni, Thompson, Washington, D.C., August 1967, pp. 465-470. 

[Nau66] P. Naur, "Proofs of algorithms by General Snapshots", BIT, Vol. 6, 1966, 
pp.310-316. 

[PAM91] D. L. Parnas, G. J. K. Asmis, J. Madey, "Assessment of Safety-Critical 
Software in Nuclear Power Plants", Nuclear Safety, Vol. 32, No.2, April-June 1991, 
pp. 189-198. 

[Par72] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into 
Modules", Communications of the ACM, Vol. 18, No. 12, 1972, pp. 1053-1058. 

[Par83] D. L. Pamas, "A Generalized Control Structure and Its Formal 
Definition", Communications of the ACM, Vol. 26, No.8, August 1983, pp. 572-581. 

[Par86] D. L. Parnas, P. C. Clements, "A Rational Design Process: How and Why 
to Fake it", IEEE Trans. On Software Engineering, Vol. SE-12, No.2, February 
1986. 

[par92] D. L. Parnas, "Tabular representation of relations", CRL Report 260, 
Telecommunications Research Institute of Ontario (TRIO), McMaster University, 
October 1992. 

103 



MSc. Thesis - H Duan McMaster - Computing and Software 

[Par93a] D. L. Parnas, "Some Theorems We Should Prove", Proceedings of 1993 
International Meeting on Higher Order Logic Theorem Proving and Its Applications, 
The University of British Columbia, Vancouver, BC, August 10 - 13, 1993, pp. 156 
- 163. 

[Par93b] D. L. Parnas, "Mathematics of Computation for (Software and Other) 
Engineers", Bulletin of the European Association for Theoretical Computer Science, 
No. 51, October 1993, pp. 249-259. 

Also in Proceedings of the Third International Conference on Algebraic 
Methodology and Software Technology, University of Twente, Netherlands, June 
21-25, 1993. 
Also in Proceedings of the First lMA Conference on Mathematics of Dependable 
Systems, University of London, England, September 1993. 
Also in Mathematics of Dependable Systems, edited by C. Mitchell and V. 
Stavridou, Claredon Press, Oxford, 1995, pp. 209-224 (small revisions). 

[Par94a] D. L. Parnas, "Mathematical Descriptions and Specification of Software", 
Proceedings ofIFIP World Congress 1994, Vol. I, August 1994, pp. 354 - 359. 

[Par94b] D. L. Pamas, "Inspection of Critical Software using Function Tables", 
Proceedings ofIFIP World Congress 1994, Vol. III, August 1994, pp. 270 - 277. 

[Par95] D.L. Pamas, "A Logic for Describing, not Verifying, Software", 
Erkenntnis (Kluwer), Vol. 43, No.3, November 1995, pp. 321-338. 

[Par96] D.L. Parnas, "Mathematical methods: what we need and don't need", 
IEEE Computer, Vol. 29, No.4, April, 1996, pp. 28-29. (In roundtable "An 
Invitation to Formal Methods"). 

[Par97] D. L. Pamas, "Precise description and specification of software", 
Mathematics of Dependable Systems II, edited by V. Stavridou, Clarendon Press, 
1997, pp. 1-14. 

[Par98] D. L. Pamas, " 'Formal Methods' technology transfer will fail", J. 
Systems Software, Vol. 40, 1998, pp. 195-198. 

[PBD85] J. S. Pedersen D. Bj0rner, T. Denvir, E. Meiling, "The RAISE Project 
Fundamental Issues and Requirements", Technical Report, Dansk Datamatik Center, 
Number RAISEIDDC/EMllN6, 1985. 

104 



McMaster - Computing and Software MSc. Thesis - H. Duan 

[Pet96] D. K. Peters, "Shortest Path Algorithm: Formal Program Documentation", 
CRL Report 280 (draft), Telecommunications Research Institute of Ontario (TRIO), 
McMaster University, February 1996. 

[PL98] D. L. Parnas, A. Lawton, "Precisely Annotated Hierarchical Pictures of 
Programs", CRL Report 359, 1998. 

[PL03) D. L. Parnas, M. Lawford, "The Role of Inspection in Software Quality 
Assurance", IEEE Trans. on Software Engineering, Vol. 29, No.8, August 2003, pp. 
674-676. 

[PMI94] D. L., Parnas, 1. Madey, M. Iglewski, "Precise Documentation of Well­
Structured Programs", IEEE Trans. on Software Engineering, Vol. 20, No.12, 
December 1994, pp. 948 - 976. 

[PST91] B. F. Potter, J. E. Sinclair, D. Till, An Introduction to Formal 
Specification and Z, Prentice-Hall, first edition, 1991. 

[PW85] D. L. Parnas, D. M. Weiss, "Active Design Reviews: Principles and 
Practices", Proceedings of Eighth International Conference on Software 
Engineering, August 1985, pp. 132-136. Also in, Software Fundamentals -
Collected Papers by David L. Parnas, edited by D. M. Hoffman and D. M. Weiss, 
Addison-Wesley, 2001, pp. 339-354. 

[PZOl] T. W. Pratt, M. V. Zelkowitz, Programming Languages Design and 
Implementation, Fourth Edition, Prentice Hall, 2001. 

[RTI02] Prepared by RTI for the National Institute of Standards and Technology 
(NIST), "The Economic Impacts of Inadequate Infrastructure for Software Testing". 
Planning Report 02-3, May 2002. 

[Sch99) G. Schellhorn, Verification of Abstract State Machine, Doctoral Thesis of 
computer science at the University ofUlm, 1999. 

[SchOll S. Schneider, The B-Method: An Introduction, Macmillan Publishers Ltd, 
Houndmills, Basingstoke, Hampshire, England, October 2001. 

[SERG97]McMaster University Software Engineering Research Group, "Table Tool 
System Developer's Guide", CRL Report 339, Telecommunications Research 
Institute of Ontario (TRIO), McMaster University, January 1997. 
http://www.cas.mcmaster.ca/serg/ crl_reports.html (December 2004). 

105 



MSc. Thesis - H. Duan McMaster - Computing and Software 

[Spi89] J. M. Spivey, The Z Notation: a reference manual, Prentice-Hall, Hemel 
Hempstead, 1989. 

[Tur49] A. M. Turing, "Checking a large routine", Report of a Conference on High 
Speed Automatic Calculating Machines, University Mathematical Laboratory, Cambridge, 
June 1949, pp. 67-69. 

[Wir73] N. Wirth, Systematic Programming - An Introduction, Prentice-Hall, 
Englewood Cliffs, N.J., 1973. 

106 



Appendix A 

Program Documentation - Specification, Design 
and Verification for the Partition Subprogram 

A.1 Introduction 

This appendix presents the documentation, design process and verification for a 

subprogram - Partition, which rearranges an array in a specific order. This example 

was taken from [Bab87]. The documentation structure uses Pamas' Display method 
[PMI94]. 

The documentation for each implementation is presented as a set of displays, 

supplemented by a lexicon and an index. Instead of using a relation in the display 
presented in [PMI94], the pre/postcondition pair is used in order to connect with the 
design and verification process which adopts Baber's approach. 

Each display consists of five parts: 

Part 1: 

Part 2: 
Part 3: 
Part 4: 

Part 5: 

a specification for the program presented in this display, 

the justification and illustration of some major design decisions, 
the program itself, 

specifications of all programs invoked in Part 3, 

the demonstration of the correctness of the program. This could be either 

an informal reasoning or a formal verification. For some simple programs, 
direct assertions can be used. 

107 



Appendix A Program Documentation/or the Partition Subprogram 

A.2 Documentation of Partition subprogram 

A.2.1 Informal description 

The program will re-arrange an array into three regions - the lower, middle and 

upper regions - such that the middle region may not be empty. These three regions 

will respectively contain array elements whose values are less than, equal to and 

greater than some initially selected value. 

Some conventions are used. We use different fonts to distinguish between 

programming language elements (e.g. "Partition"), and mathematical terms (e.g. 

"Perm"). 'X is a specification variable that represents the initial value ofX. 

A.2.2 Documentation 

DISPLAYl 

Part 1: Display 1 Specification 

Partition external variable: X, n, left, right 

Precondition nell /\ Il~Set."left" /\ Il~Set."right" /\ Isn /\f=lX[i]eR 

(V) /\~lX[i]='X[i] 

nell /\ leftEIl /\ rightEIl /\f=lX[i] ER /\ IsleftSrightSn 

Postcondition /\:~:-lX[i]<X[left] /\r~~tX[i]=X[left] /\~right+lX[i]>X[left] 
(P) 

/\(&~lX[i]) Perm (&f=l 'X[iD 

For every data environment (defined in 3.4,3.7) d satisfying the precondition V: 
Partition.d = d except for the values of left, right and X[iJ, i=l, ... n. 

108 



Program Documentation for the Partition Subprogram Appendix A 

Part 2: Display 1 Design 

1. Basic structure 

The permutation of the array involves the repetition of exchanging the values of 
the array, which suggests a loop as the basic structure for this program. 

2. Loop invariant I 

A loop invariant is the generalization of the initial and final status of the loop 
execution. 

Diagrams o/the Loop Execution Status: 

Initial status ' X~ nl 
? 

'" , 

Final status X 11 I left right I nl < > 

,,z, 
, , 

'GeneralizatiOn' " X 11 I left right I kl nl 
(1);, < - ? > 

, , 

Legend: 
• meaning equal to each other, 
• < meaning that each element is less than the elements in the "=" region, 
• > meaning that each element is greater than the elements in the "=" region. 
• A double line represents the "=" region, which may not be empty. In the initial state, 

"=" region could be anywhere in the array. 

I: neZ /\ lefteZ /\ righteZ /\ keZ /\~=lX[i]eR /\ I:5left:Sright~Sn 

/\:~:-lX[i]<X[left] /\~~~tX[i]=X[left] /\~=k+lX[i]>X[left] 

/\(&~=l X[i]) Perm (&f=l 'X[iD 

3. Initialization 

The initialization establishes the truth of I. Since the value of an element in "=" 
region can be arbitrarily, the initialization could be: 

109 



Appendix A Program Documentation/or the Partition Subprogram 

left = 1; 
right = left; 
int k = n; 

1* < region empty *1 
1* = region has one element *1 
1* > region empty *1 

Optionally, we may explicitly choose the value in "=" region by adding: 

swap(X[left], X[j]), where jell 1\ 1~:Sn 

4. Loop Condition B 

I and P differ only by the one term 

I: 1\ ~k!-I X[i] 

P: l\~right+IX[i] 

By I=> (-,B=>P) and assuming the truth of!, then we have (right=k)=> P. Hence, 
right:;tk is a suitable candidate for B. 

Given the truth of I, right:;tk is equivalent to the condition right<k, because the 
latter is stronger, we select it, although either condition is perfectly suitable. 

5. Loop Body S 

We design loop body S according to the guidelines: 

(1) maintains the truth of I, 
(2) makes progress toward fulfilling the postcondition, i.e. loop termination. 

According to the diagram of I, the? region must be reduced to meet (2). Then the 
state corresponding to I must be re-established to meet (l). One of the possible 
solutions is to start from X [right+ 1], evaluate it and then insert it to one of the 
three regions. Alternatively, one may start from X[k] instead. We will use the 
former solution here. 

110 



Program Documentation/or the Partition Subprogram 

Case analysis for S 

X[rigbt+J} <!C{leftJ " :'.",< \~¥l\~J 
,Red:uce 1. region swap( X[left], X[righHl]) Already in == region 

Re-eStablish the .. ' 
left := left + 1 ,~tho(l . 
right := right+ 1 

right := right+ 1 

The above analysis suggests the if statement for S. 

Part 3: Display 1 Program 

/* This program is implemented in C. * / 
void partition (void) 
{ 

left = 1; 
right = left; 
int k = n; 

while ( right < k ) 
{ 

if ( X[right+1] < X[left] ) 
{ 

} 

} 

swap( X[left], X[right+1]); 
left = left+ 1 ; 
right = right+1; 

else if ( X[right+1] == X[left] ) 
right = right+1; 

else 
{ 

} 

swap( X[right+1], X[k]); 
k = k·1; 

Appendix A 

: :xt~11:>~i{ ,,, ,> o.y, _ 

swap( X[right+ 1], X[k]) 

k:= k·l 

} 1* This last} implicitly includes the statement "release k". */ 

111 



Appendix A Program Documentation for the Partition Subprogram 

Part 4: Display 1 Specifications of Invoked Programs 

swap (a, b) External variables: none (on Display 2) 

Precondition 
(V) 

aER /\ bER /\ a = 'a /\ b = 'b 

Postcondition 
(P) 

a = 'b /\ b = 'a 

For all data environment d satisfying the precondition V: 
swap.d = d except for the values of the variables a and b. 

Part 5: Display 1 Program Correctness 

The theorem " ... Partition.d = d except for the values of left, right and X[i], i=l, ... n" can be 
verified informally by inspecting the program segment. The correctness proposition 
{V} S {P} will be first decomposed into the Boolean algebraic expressions. Then the 
proof will be presented. 

112 



Program Documentation for the Partition Subprogram Appendix A 

1. Decomposition of the correctness proposition 

(1) 

{I 1\ B 1\ var= 'var } S 
{I 1\ var::; 'var-&} 

1Ft 

(2) (3) 

{J 1\ B 1\ var= 'var 1\ -, IF ,B } 
IF,Sl {J 1\ var:S 'var- &} 

1Ft 

{J 1\ B 1\ var= 'var 1\ -, IFJB 1\ IF1B } 
IF2S] {I 1\ var:S 'var- &} 

{J 1\ B 1\ var= 'var 1\ -, IF ,B 1\ -, IFzB } 
IF1S1 {I 1\ var:S 'var- &} 

(5) (6) 

Legend: 
• IF;, i = 1,2, '" denotes the ith if statement encountered in the program, 
• 1FiB, i = 1,2, '" denotes the condition of the ith if statement encountered in the program, 
• Sj, j E {I, 2} denotes the body of (1) then part or (2) else part of an if statement, 
• var denotes the loop variant function, 
• 82 denotes the rule for a sequence of assignment statements, 
• W2 denotes the rule for the initialized while loop, 
• 1Ft denotes the rule for the if statement. 
• • contains the fmal decomposed Boolean expressions to be verified. 

113 



Appendix A Program Documentation/or the Partition Subprogram 

2. Proof' 

We choose k-right as var so that B=(O<var) (where B is right<k). Each execution of the 
loop body either increases right by 1 or decreases k by 1, and hence always decreases var 
by 1. Therefore we choose £ to be 1 so that the other part of the proof of termination can 
be completed. 

(1) is true: 

<= 

[[I k] right] left 
n left I 

nEZ /\ 1 EZ /\ 1 EZ /\ nEZ /\~=IX[i] ER /\ l.:Sn 

/\~=IX[i]<X[l] /\:=IX[i]=X[l] /\~=n+IX[i]>X[l] 

/\(&~=I X[i]) Perm (&~=I 'X[i]) 

nE Z /\ Z~ Set."left" /\ Z~Set."right" /\ l .:Sn /\~=IX[i] ER /\ ~=IX[i] ='X[i] 

v -

(2) is true: 

I => (B => o <var ) 

I => (right<k => O<k-right) 

I => true 

true -

, Note that semiformal versions of such proofs can be illustrated with diagrams like the one used for I. 
They are less formal and less rigorous, but can be constructed and reviewed much more quickly and easily. 
An example is on pages 290 and 291 of [Bab87]. Such a semiformal version of a proof is very much like 
the design steps we went through at the beginning of this section of the Appendix. 

114 



Program Documentation/or the Partition Subprogram 

(3) is true: 

= 

= 

1/\ -,B 

neZ /\ lefteZ /\ righteZ /\ keZ /\~IX[i] eR /\ l:::;left:::;right=k:::;n 

/\:~t-IX[i]<X[left] /\r~1~tX[i]=X[left] /\f=k+1X[i]>X[left] 

/\(&f=l X[i]) Perm (&f=l 'X[i]) 

nEZ /\ leftEZ /\ rightEZ /\f=IX[i]ER /\ l:::;left:::;rightSn 

/\l=:-IX[i]<X[left] /\r~~tX[i]=X[left] /\~right+lX[i]> X[left] 

/\(&f=l X[i]) Perm (&~=l 'X[i]) 

p. 

(4) is true: 

= 

[[[nEZ /\ leftEZ /\ righteZ /\ keZ /\f=IX[i] eR /\ lsleftSright:::;k:::;n 

/\:~t-lX[i]<X[left] /\r~~tX[i]=X[left] /\~k+IX[i]> X[left] 

/\(&f=l X[i]) Perm (&f=l 'X[i]) 

/\ k-rightS('k- 'right)-l] ~:~~+d ~:~ +tl ~~~~t+~~i~:;~l 

[[[neZ /\ lefteZ /\ righteZ /\ keZ /\f=IX[i] eR /\ lsleftsrightSkSn 

/\l=:-lX[i]<X[left] /\r~~tX[i]=X[left] /\~k+lX[i]>X[left] 

/\(&r~rt-l X[i] &X[right] &f=right+1 X[i]) 

Perm (&r~rt-l'X[i] &'X[right] &f=right+l 'X[i]) 

k . h ('k ' . h) 1] right ] left ] X[left), X[right+l) 
/\ -ng tS - ng t - right+1 left +1 X[right+l), X[left] 

115 

Appendix A 



Appendix A Program Documentation/or the Partition Subprogram 

= 

= 

= 

= 

[[nEZ 1\ leftEZ 1\ rightEZ 1\ kEZ 1\ ~=IX[i] ER 1\ 1:Sleft:Sright+ l :sk:Sn 

1\ ~~lt-IX[i]<X[left] 1\ r~~;t+ IX[i]=X[left] 1\ ~=k+ 1 X[i]> X[left] 

1\(&r~1htX[i] &X[right+l] &~=right+2 X[i]) 

Perm (&r~rt'X[i] &'X[right+l] &~=right+2' X[i]) 

k ( ° h 1) ('k ' ° h) 1] left ] X[left] , X[right+l] 
1\ - ng t+ :s - ng t - left +1 X[right+I] , X[left] 

[[nEZ 1\ leftEZ 1\ rightEZ 1\ kEZ 1\~=IX[i] ER 1\ 1:Sleft:Sright+ l:sk:Sn 

1\ ~~t-IX[i]<X[left] 1\ r~~;t+ IX[i]=X[left] 1\ ~k+1 X[i]> X[left] 

I\(&~=I X[i]) Perm (&~=I 'X[i]) 

k ( ° h 1) ('k ' ° h) 1] left ]X[left], X[right+l] 
1\ - ng t+ :s - ng t - left +1 X[right+l], X[left] 

[nE Z 1\ leftE Z 1\ rightEZ 1\ kEZ 1\~=I X[i] ER 1\ 1:Sleft+ l :Sright+ l :sk:Sn 

1\ ~~tX[i]<X[left+ 1] 

1\ ~~~:t:\X[i]=X[left+ 1] 

1\ ~=k+lX[i]> X[left+ 1] 

(& n X[O]) P (&n 'X[O]) k ° ht< 'k ' ° ht] X[left], X[right+l] 
1\ i=1 1 erm i=1 1 1\ -ng - - ng X[right+I], X[left] 

[n E Z 1\ left E Z 1\ right E Z 1\ k E Z 1\ ~l X[ i] E R 1\ 1 :Sleft+ 1 :Sright+ 1 :sk:Sn 

1\ ~~:X[i]<X[left+ 1] 

1\ ~~1~:t+IX[i]=X[left+ 1] 1\ X[right+ 1]=X[left+ 1] 

1\ ~=k+IX[i]> X[left+ 1] 

(& n X[O]) p (&n 'X[O]) k ° ht< 'k ' ° ht] X[left], X[right+l] 
1\ i=1 1 erm i=1 1 1\ -ng - - ng X[right+I], X[left] 

[nE Z 1\ leftE Z 1\ rightE Z 1\ kE Z 1\~=IX[i] ER 1\ 1:Sleft+ l :Sright+ l :sk:Sn 

1\ ~~:X[i]<X[right+ 1] 

116 



Program Documentation/or the Partition Subprogram Appendix A 

= 

= 

/\ ~~~t+lX[i]=X[right+1] /\ X[right+1]=X[left+1] 

/\ ~k+l X[ i]> X[ right+ 1 ] 

/\(&r=l XCi]) Perm (&~l 'XCi]) /\ k-right:s 'k- 'right] ~!~!~t+~~i~::~~ 

[neZ /\ lefteZ /\ righteZ /\ keZ /\r=lX[i] eR /\ 1~left+ 1~right+ 1:sk~n 

/\~~-:-IX[i]<X[right+ 1] /\ X[1eft]<X [righH 1] 

/\ r~~:t+lX[i]=X[right+ 1] 

/\ ~k+l XCi]> X[ right+ 1] 

/\(&r=l XCi]) Perm (&r=l 'XCi]) /\ k-right:s 'k- 'right] ~!~~t+~~i~::~~ 

[this substitution exchanges two elements of the array, so perm will not change] 

neZ /\ lefteZ /\ righteZ /\ keZ /\f=lX[i] eR /\ 1:Sleft+ lsright+l~ksn 

/\ :=:-IX[i]<X[left] /\ X[right+ 1 ] <X[left] 

/\ r~~t+ 1 X[i]= X[left] 

/\ ~k+l XCi]> X [left] 

/\(&f=l XCi]) Perm (&r=l 'XCi]) /\ k-rights 'k- 'right 

neZ /\ lefteZ /\ righteZ /\ keZ /\f=lX[i] eR /\ ls1eftsright<k~n 

/\:~t-IX[i]<X[left] /\ X[right+ 1]<X[left] 

/\ r~~tX[i]=X[left] 
/\ f=k+l XCi]> X[left] 

/\(&f=l XCi]) Perm (&f=l 'XCi]) /\ k-right= 'k- 'right 

1/\ right<k /\ k-right= 'k- 'right /\ X[righH l]<X[left] • 

117 



Appendix A Program Documentation/or the Partition Subprogram 

(5) is true: 

= 

= 

= 

= 

[I ' ] right 1\ var:::; var- e right+ I 

[nEZ 1\ leftEZ 1\ rightEZ 1\ kEZ 1\~=IX[i]ER 1\ l:::;left:::;right:::;k:::;n 

1\:~t-IX[i]<X[left] I\r~~tX[i]=X[left] 1\~=k+lX[i]> X[left] 

I\(&~=l X[iD Perm (&~=l 'X[i]) 

1\ k-right:::;( 'k- 'right)-l] ~:~~+l 

nEZ 1\ leftEZ 1\ rightEZ 1\ kEZ 1\~=IX[i] ER 1\ l:::;left:::;right+ l:::;k:::;n 

1\ :~t-IX[i]<X[left] 1\ r~~t+lX[i]=X[left] 1\ ~k+IX[i]> X[left] 

I\(&r=t X[iD Perm (&~=l 'X[iD 1\ k-(right+l):::;( 'k- 'right)-l 

nE:l: 1\ leftE:l: 1\ rightE:l: 1\ kEZ 1\~=IX[i] ER 1\ l::;left:::;right<k::;n 

1\:::tIX[i]<X[left] I\r~~tX[i]=X[left] 1\ X [right+ l]=X[left] 

1\ ~k+l X[ i]> X[left] 

I\(&f=l X[i]) Perm (&~l 'X[iJ) 1\ k-right= 'k- 'right 

11\ right<k 1\ k-right= 'k- 'right 1\ X[right+l]=X[left] 

11\ right<k 1\ k-right= 'k- 'right 1\ X[right+l]2::X[left] 1\ X[right+l]=X[left] -

(6) is true: 

= 

[[I ' ] k ] X[right+IJ, X[k] 
1\ var:::; var- E k-l X[k], X[right+l] 

[nE:l: 1\ leftE:l: 1\ rightEZ 1\ kEZ 1\~=IX[i]ER 1\ l::;left:::;right:::;k:::;n 

1\:~t-lX[i]<X[left] I\r~~tX[i]=X[left] l\~k+IX[i]> X[left] 

I\(&f=l X[i]) Perm (&f=l 'X[i]) 

k . ht«'k ' . ht) l]k ]X[right+t], X[k] 1\ -ng - - ng - k-l X[k], X[right+l] 

118 



Program Documentation for the Partition Subprogram Appendix A 

= 

<= 

= 

= 

<= 

= 

[neZ /\ lefteZ /\ righteZ /\ keZ /\?=lX[i] eR /\ l~leftsrightsk-lsn 

/\~=tlX[i]<X[left] /\r~~tX[i]=X[left] /\~k X[i]>X[left] 

/\(&~=l Xli]) Perm (&?=l 'Xli]) 

/\ k-right< 'k- 'right] X[right+l), X[k] - X[k], X[nght+l] 

[neZ /\ lefteZ /\ righteZ /\ keZ /\?=IX[i] ER /\ l~leftsrightsksn 

/\:=:-lX[i]<X[left] /\r~~tX[i]=X[left] /\~k X[i]>X[left] 

/\(&?=l Xli]) Perm (&r=l 'Xli]) 

/\ k-right< 'k- 'right] X[right+l,l, X[k] - X[k], X[nght+l] 

[neZ /\ lefteZ /\ righteZ /\ keZ /\~lX[i]ER /\ lsleftsrightsksn 

/\:=t1X[i]<X[left] /\r~1~tX[i]=X[left] 

/\?=k+lX[i]>X[left] /\ X[k]>X[left] 

/\(&?=1 Xli]) Perm (&f=l 'Xli]) 

/\ k-right< 'k- 'right] X[right+l), X[k] - X[k], X[nght+l] 

n e Z /\ left e Z /\ right e Z /\ k e Z /\ ?=I X[i] e R /\ 1 sleftsrightsksn 

/\ :=:-IX[i]<X[left] /\ r~~tX[i]=X[left] 

/\~k+l Xli]> X[left] /\ X[right+l]>X[left] 

/\(&~=1 Xli]) Perm (&?=l 'Xli]) /\ k-rights 'k- 'right 

1/\ right<k /\ k-right='k- 'right/\ X[right+l]>X[left] 

1/\ right<k /\ k-right='k- 'right/\ X[right+l]~X[left] /\ X[right+l];tX[left] -

119 



Appendix A 

DISPLAY 2 

Program Documentation/or the Partition Subprogram 

Part 1: Display 2 Specification 

swap (a, b) External variables: none 

Precondition 
aER /\ bER /\ a == 'a /\ b == 'b (V) 

Postcondition 
a = 'b /\ b = 'a 

(P) 

For all data environment d satisfying the precondition V: 
swap.d = d except for the values of the variables a and b. 

Part 2: Display 2 Design 

Basic structure 

Since the postcondition consists of subexpressions that build upon one another, a 
sequence of statements is appropriate. By using an intermediate "container" temp, 
the truth of the corresponding subexpression can be established by a sequence of 
assignment statements. 

void swap ( int a, int b ) 
{ 

} 

int temp; 
temp = a; 
a = b; 
b = temp; 

Part 3: Display 2 Program 

Part 4: Display 2 Specification 0/ Invoked Program 
Empty 

120 



Program Documentation for the Partition Subprogram Appendix A 

Part 5: Display 2 Program Correctness 

The theorem "swap.d = d except for the values of the variables a and b" can be verified 
informally by inspection of the program segment. The correctness proposition {V} S 

{P} will be true by rule of sequence of assignment statement if V ~ [[[P] ~empn] ~emp 
holds. 

Proof: 

= 

= 

= 

v ~ [[[P] ~emp] ~] ~emp is true: 

[[[a = 'b /\ b = 'a] ~emp]~] ~emp 

[[a = 'b /\ temp = 'a]~]~emp 

[b = 'b /\ temp = 'a]~emp 

b = 'b /\ a = 'a 
<= 

V-

LEXICON 

A. Auxiliary functions 

Perm: sequence x sequence ~ boolean 

'- , ,'~, , ",,' " -

-"':f£~~QJrDIS:t'L.{\Y l 
, ,- ~' , '"'-' , . 

(&~ A[i]) Perm (&~B[i]) 4t 3f: {A[P]. .. A[q]} ~ {B[P] ... B[q]}. Vi, p::Si:sq. A[i] = 

B[f(i)), where f: {A[P]. .. A[q]} ~ {B[P] ... B[q]}means fis a bijection from A[i] to B[i]. 

121 



Appendix A Program Documentation for the Partition Subprogram 

B. C external definitions and declarations 

# define n 1* n2:1 *1 
int X[n+I]; 
int left; 
int right; 

INDEX 

Legend: 

• 
• i=I,2", 

Name 

A 

B 

k 

key 

left 

n 

Perm 

right 

swap 

temp 

X 

Used in 

D23 

D23 

DI 2,3 

D12 

DI1,2,3 

011,2,3, LB 

DI 1,2, LA 

Dl 1,2,3 

D1 2, 3, 4, D21,3 

D23 

D 11,2,3,4 , LB 

• 
• 

DO 
Di, 
Dij , 

Dij,k, 
i=I,2 .. " jE {l, 2, 3, 4} 
i=1,2 .. " j, kE {I, 2, 3, 4} 

denotes the introduction, 
denotes Display i, 
denotes Display i, part Pj , 

denotes Display i, parts Pj and Pk, 
denotes the lexicon, part x, • Lx, x=A,B 

122 



Appendix B 

Program Specifications Written in Both 
Pre/postcondition and Relational Approaches 

B.I Introduction 

This appendix presents program specifications using both pre/postcondition and 
relational approaches to illustrate their differences. Two examples will be presented. 

Each example will include an informal description and two versions of 

specifications - one uses Baber's method, the other uses Pamas' method. Unlike 

Appendix A, the presentation of each specification will be in their original format 
used in each approach. 

Besides the conventions used in Appendix A, other conventions are used, which are 
specific to each approach: 

In Baber's approach, 

• the initial value of X is normally written X', not 'X, but that we use 'X here to be 
consistent in this appendix in order to avoid confusion, 

• d represents a data environment. We discussed it in Section 3.4,3.5 and 3.7. 

In Parnas' approach, 

• 'X and X' represent the initial and final values of X respectively. 
• NC is a predicate symbol which means ''Not Changed". It is defmed in [IMP93] 

df 
as follows: NC(VI, ... , vrn) = (VI' = 'Vi) /\ ... /\ (Vrn' = 'vrn), where 'Vi and VI' 

123 



Appendix B Program Spec in Pre/postcondition and Relational Approaches 

represent the initial and final values of Vi respectively. The values of variables 

mentioned nowhere in the specification are also not to be changed. 

B.2 Specifications of Partition subprogram 

B.2.! Informal description 

This is the same program as in Appendix A. 

B.2.2 Specifications 

• Specification in Baber's approach: 

{V} Partition {P} and for all d satisfying the precondition V: Partition.d = d except 
for the values ofleft, right and X[i], i=l, ... n, 
where V and P are defined to be 

V: nEZ 1\ Z~Set."left" 1\ Z~Set."right" 1\ l:Sn I\f=lX[i] ER 1\~=lX[i]='X[i] 

P: nEZ 1\ leftEZ 1\ righteZ I\r=lX[i] eR 1\ l:sleft:Sright:Sn 

1\ :~t-lX[i]<X[left] 1\ r~~tX[i]= X[left] 1\ ~right+l X[i]> X[left] 

1\(&f=lX[i]) Perm (&r=l 'X[i]) 

• Specification in Parnas' approach: 

Partition 

RPartition(,) = l:Sn 
:::} 

I external variable: X, n, left, right 

ThreeRegion(X', left', right') 1\ (& f=lX[i] ') Perm (& ~=l 'X[i]) 

124 



Program Spec in Pre/postcondition and Relational Approaches Appendix B 

LEXICON 

A. Auxiliary functions 

Perm: sequence x sequence ~ boolean 
(&~ A[iD Perm (&~B[i]) dJ 3f: {A[P] ... A[q]} ~ {B[p] ... B[q]}. Vi, p:s;i:S;q. A[i] = 

B[f(i)], where f: {A[P] ... A[q]} ~ {B[P] ... B[q]}means fis a bijection from A[i] to B[i]. 

ThreeRegion: array x integer x integer ~ boolean 

ThreeRegion(X, left, right) ~f l:S;left:::;right:::;n 1\ Vi(lg:S;n) [Ig<left => x[zl<X[left] 

1\ left:::;iSright =>X[i]=X[left] 

1\ right<i:S;n => X[i]>X[left] ] 

Note that this auxiliary mathematical function could also have been introduced and used 
in Appendix A. 

B. C external definitions and declarations 

# define n /* n2:: I * / 
int X[n+l]; 
int left; 
int right; 

B.3 Specifications of ExtractStr subprogram 

B.3.1 Informal description 

This example is taken from course materials of [Bab02]. Subprogram ExtractStr cuts 

a given string and returns the remaining string. Its input are the string variable S and 

two integer variables pI and p2. Its output is the value of the string variable 

RemnStr. pI is the position where the cut starts in S and p2 is the length of the 

remaining string. RemnStr is an external variable. 

125 



Appendix B Program Spec in Pre/postcondition and Relational Approaches 

B.3.2 Specifications 

• Specification in Baber's approach: 

{V} call ExtractStr {P} strictly and for all data environments d satisfYing the strict 

precondition V: ExtractStr.d = d except for the value of RemnStr, where V and Pare 

as follows: 

V: StrEstring 1\ pI EZ 1\ p2EZ 1\ string c Set."RemnStr" 

P: RemnStr = substring( Str, 
lim ( I, pI, length (Str)+ I ), 
lim (0, p2, length(Str)-lim(I, pI, length(Str)+I) + 1») 

) 

• Specification in Parnas' approach: 

: ExtractStr (Str, pI, p2) external variable: RemnStr : 

I RExtractStr(,) = NC(Str, pI, p2) 1\ RemnStr'= 

length('Str»O 
---------- ------------------------- ------------------------ length('Str) 

IS 'p2 S length('Str)-'pi + I =0 
'p2s0 

length('Str)-'pl + 1 <'p2 

'pI <1 null 
substring(Str', 1, substring(Str', 1, 

min(p2',length(Str'») min(p2', length(Str'») 

Is'pls 
null substring(Str', pI', p2') 

substring(Str', pI', null 
length(' Str) length(Str')-pl '+1) 

length(' Str) 
null null null 

< 'pI 

I , __ " ,--"'---,,--~ 

126 



Program Spec in Pre/postcondition and Relational Approaches AppendixB 

LEXICON 

Auxiliary functions 

length: string ~ integer 

length(S) M The length of the sequence (string) S. The length may be zero. 

substring: string x integer x integer ~ string 

substring(S, aI, a2) M The substring of the string S beginning in position al and a2 

elements long. The null string is allowed. The values of S, al and 

a2 must satisfy the following condition: 

al EZ 1\ a2EZ 1\ l~l 1\ O~2 1\ al+a2-1gength(S) 

lim: integer x integer x integer ~ integer 

lim(a, b, c) ~max(a, min(b, c)) 

127 



Appendix B Program Spec in Pre/postcondition and Relational Approaches 

128 



Index 

A 
Abort, 46 

rules, 49 
Abrial1. R., 13, 14 
Abstract machine, 14, 15 

example, 15 
Abstract Machine Notation, 14 
Abstract State Machine, 15 

example, 16 
Accessibility, 9, 83, 91 
Actual parameter, 74, 76 
ALGOL,40 
ALGOL-60, 76 
Aliasing, 36, 37, 74, 77, 90 
AMN,I4 
Applicability, 3,9 
Application-dependent checking, 86 
Application-independent checking, 86 
Array, 36, 41, 42, 52, 63, 95 
ASM,15 
Assertion, 41,81,82 

in the proof of a program, 6 
Inductive Assertion Method, 6 

Assignment rule, 8, 48 
Assignment statement, 7,21,34,38,39,41,46,82 

a sequence of assignment statement, 54 
array, 52 
rules, 50, 89 

Atelier-B, 14 
Auxiliary rule, 89, 90 
Auxiliary variable, 42 
Axiom, 48, 49,94 
Axiomatic semantics, 7 
Axiomatic system, 7 

B-Core,14 
Bj0rner D., 12 
Black box function, 79 
B-method, 2, 11, 14 
Box notation - [], 10 
B-toolkit, 14 

C++, 75,89 
Call by name, 46, 76 

B 

c 

129 

example, 76 
Call by reference, 74, 76 

example, 75 
Call by value, 46,74,76 
Call by value-result, 46, 76 

example, 76 
Checkability, 83 
Comparison criteria, 4 
Competence set, 10, 11,23,25 
Competence set (def.), 22 
Complete precondition, 9 
Completeness, 7 
Concurrent assignment, 60, 84 
Concurrent assignment (def.), 25 
Concurrent program, 32 
Conditional composition, 46 

rules, 55 
Conditional rule, 60, 84 
Conditional rule (def.), 25 
Consistency, 7 
Correctness proposition, 6, 58, 59,63, 80, 84 

D(), 51, 55, 59 
D( ) (def.), 21 

D 

Data environment, 36, 42, 63, 68 
Data environment (def.), 34 
Data reification, 12 
Data structure, 9, 36 
de Bruijn N. G., 2, 9 
Declaration statement, 9, 37, 46, 75, 79, 95 

rules, 52 
Decomposition process diagram, 83, 84 
Description (def.), 28 
Deterministic program, 10, 19,22,32,43,60,94 
Display Method, 81, 95 
Divide and conquer, 81, 86 
Domain of a program statement, 21 
Dummy variable, 42 
Dynamic memory allocation, 95 
Dynamic structure, 15 

Error, 1,2, 19,22 
Evolving algebras, 15 

E 



Index 

F 
Final data state, 10 
Final state, 10, II, 19, 22, 42, 82, 96 
First-order logic, 13, 83, 88 
Flow chart, 7,40 
Formal derivation of program, 87 
Formal parameter, 46, 74, 76 
FORTRAN,75 
Functional language, 88 
Functional semantics, 9 

General snapshots, 5 

G 

Generalized control structure, 32, 49 
Gerhard S. L., 41 
Global variable, 78 
Go-To statement, 40 
Guarded command language, 32, 73 
Gurevich Y., 15 

H 
Hidden variable, 36 

I 
Identity function, 71 
if statement, 7, 38, 39, 94 

Example of proofs, 57 
rules, 55 

Imperative language, 88 
Index, 52,53,63,69 
Inductive Assertion Method, 6, 18 
Inference rule, 8, 38, 48, 78,82,94 
Initial data state, 10 
Initial state, 8, 10, II, 19,21,22,23,24,26,29,42, 

82,96 
Initialized loop, 66, 73 
Intended function, 24, 29, 60,81,87 

domain, 29 
Intended relation, 39, 95 
Intended result, 19,21,24,43 
Invariant in B-method, 14 
Iteration derivative, 73 

Java,75,89 
Jones C. B., 12 

Kelley J. R., 6 

J 

K 

130 

L 
LABEL statement, 40 
LD-relation, 10, II, 18,25,28,30,33,39,43,49, 

73,96 
domain, 23 
interpretation, 23 
non-determinism, 31, 32 

LD-relation (def.), 22 
Limited Domain relation, 10 
Logic programming, 88 
Logic variable, 42 
Loop function, 72 
Loop invariant, 61, 64, 66, 69, 72,80,87,95 
Loop invariant (def.), 72 
Loop variant, 73, 80 
Loop variant (def.), 61 

M 
Mapping,21,25,34,42,94,95 
McCarthy 1., 5 
McGowan C. L., 6 
MDQ,73 
Meyer A. R., 2, 9 
Model, II, 16 
Module, 14 
Module design, 88 
Monotonically decreasing quantity, 73, 80, 81 

N 
NaurP.,5 
NC,70 
NIST, I 
Non-determinacy, 10 
Non-determinism, 18,30,73 
Non-deterministic construct, 73, 90 
Non-deterministic program, 8, 10, 18, 19,21,22, 

30,32,43,94 
example, 32 

Non-deterministic specification, 18,30,31,94 
Non-deterministic specification (def.), 30 
Notation, 47, 83 
Null,46 

rules, 50 

o 
Object-oriented language, 88 
Operation in B-method, 14 
Ordinary precondition, 9, 26 

p 

Parameter passing, 9,36,73,74,75,76,77,78,80, 
90 

Partial correctness, 6, 18, 28,43 



Baber, 9, 40 
Dijkstra, 8, 40 
Floyd, 7, 23, 40 
Hoare, 7, 23, 40 
Parnas,40 

Partial correctness rules, 40 
Partial1y correct, 7 
PASCAL, 40, 90 
Permutation, 41, 42 
PLlI,I2 
Pointer, 37, 52, 90, 95 
Predicate transformer, 6, 8, 48 
Primitive program statement, 46, 48, 49 
Procedure call, 94 

with formal parameters, 46, 53 
rules, 74 

without formal parameters, 46 
rules, 74 

Program construction, 5 
Program derivation, 47,86,91 
Program description, 30, 94 
Program function, 22, 25, 29, 39, 52, 78 

domain, 22, 29 
Program function (def:), 10 
Program invariant, 5 
Program LD-relation, 22 
Program relation, 39 
Program semantic modeling, 5 
Program state, 5, 9,10 
Program variable (def. in Baber's approach), 34 
Programming language, 47 

generic classit1cation, 88 
Proof rule, 37,38,47,49, 52, 80, 89 

R 
RAISE, 12, 13 
Readability, 11,83 
Recurrence equation (def.), 79 
Recursion, 9, 37, 53, 78, 79 
Recursion induction, 5 
Recursive function, 5 
Recursive invocation, 46, 94 

rules, 78 
Relational composition, 39 
Release statement, 9, 37, 46, 75, 79, 95 

rules, 52 
Rules for composition, 8 
Rules for consequence, 8 
Rules for iteration, 8 
Rules for program derivation, 87 
Run-time error, 9, 35 

s 
Scope rule, 52, 80, 90, 95 
Semi strict precondition, 9, 27 
Sequence of statements, 7 

131 

Sequential composition, 46 
rules, 54 

Sequential program, 4, 5, 6 
Set of starting states, 19,20,21,23 

T1 
Dijkstra, 21, 24, 26 
Floyd, Hoare, 20, 23 
Mills, 22, 24 
Pamas, 23, 27 

T1 (def.), 19 
T2 

Dijkstra, 21, 26 
Floyd, Hoare, 20, 23 
Pamas, 23, 27 

T2 (def.), 19 
T3 

Dijkstra, 21, 27 
Floyd, Hoare, 20, 23 
Pamas,23 

T3 (def.), 19 
T4 

Baber, 21, 24 
Mills, 22 

T4 (def.), 19 
Side effect, 47, 73, 82, 90, 95 
Skip, 46 

rules, 50 
Specification (def.), 28 
Specification function, 10 
Specification language, 11, 16 
Specification variable, 42 
Starting state, 19,30 
State representation, 35 
Stepwise refinement, 88 

Dijkstra, 87 
Mills, 87 

Strict precondition, 9, 24, 27 
Structured programming language, 7 
Subscript, 52 
Sub-specification, 87 
Substitution, 14,74, 75, 79 
Swap, 41, 42, 75,76 

T 
Tabular expression, 85, 90, 95, 96 
Tabular notation, 11,85,86 

example, 85 
Termination of program, 18, 19,93 
Testing, I 
Theorem, 7, 81, 96 
Total correctness, 6, 18,28,43,52 

Baber, 9, 40, 59, 69 
Dijkstra, 8, 40 
Floyd,7 
Mills, 40 
Parnas,40 

Trace table, 47, 85 

Index 



Index 

Transformation rule, 38, 94 
Turing, 15 
Turing A. M., 5. 15 

u 
Undefined expression, 21 
Undefined result, 21, 35 
Universes in ASM, 15 

Value, 11,51,52,53,61 
final, 30, 41 

v 

initial, 8,30, 41, 42, 61 
input, 8 

Variable binding, 94 
Variable scope, 94 
VDL,12 
VDM,2, 11, 12, 13 
Verifiability, 11 
Verification condition, 7,26,48 

Ve,7 
Verification process 

pre/postcondition approaches, 80 
relational approaches, 81 

w 
Weakest liberal precondition (def), 8 

132 

Weakest precondition (def), 8 
while loop, 7 

Example of proofs, 63 
rules, 60 

Wirth N., 6 
wlp, 8, 18, 43 

non-determinism, 31, 32. 33 
rules, 40 
termination, 21, 26, 27 

wp, 8, 18,43,73 
non-determinism, 32, 33 
rules, 40 
termination, 21, 24, 26 

Yelowitz L., 41 

Z, 2, 11, 13, 14 
declaration, 13 
predicate, 13 
schema, 13 
specification, 13 

y 

z 

Zemanek Heinz, 12 
Zermelo-Fraenkel set theory, 13 

8·127 50 


