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Abstract

This thesis develops a marginalized particle filtering algorithm for the blind system

identification problem. The blind system identification problem arises in many fields,

including speech processing, communications, biomedical signal processing, sonar and

seismology. The state space model under consideration uses a time-varying autore­

gressive (AR) model for the sources, and a time-varying finite impulse response (FIR)

model for the channel. The multi-sensor measurements result from the convolution of

the sources with the channels in the presence of additive noise. A numerical approxi­

mation to the optimal Bayesian solution for the sequential state estimation problem is

implemented using the particle filter. Estimates of the sources are recovered directly

by marginalizing the AR and FIR coefficients out of the posterior distribution for the

unknown system parameters. The resulting marginalized particle filtering algorithm

allows efficient identification of the system. Simulation results are given to verify

the performance of the proposed method. The block sequential importance sampling

(BSIS) formulation of the particle filter is also introduced to exploit the structure

inherent in the convolution state space model.

iv



Acknowledgements

I would first like to thank Dr. Reilly for his tremendous support and enthusiasm. His

encouragement has been invaluable throughout my research. I also thank Dr. Reilly

for providing the opportunity to join him at Melbourne University while he was on

research sabbatical. The trip to Australia was both productive and enjoyable. I was

fortunate to have the opportunity to collaborate with Dr. Jonathon Manton and

Dr. Mark Morelande while visiting. I also learned a great deal about particle filters

from Mark during his visit to McMaster this summer. Dr. James Hopgood from

the University of Cambridge provided helpful suggestions early in the research while

visiting McMaster. I thank them all for their insightful comments and discussions on

my research.

The members of my research group Amin, Nazanin and Derek have created a

relaxed environment in which to work. I had the chance to collaborate most often

with Derek, and I have gained a lot from our many conversations on research. Around

the Department, Cheryl Gies deserves special mention for her extraordinary help.

I was also lucky enough to meet Cristina while at McMaster, and she has made

my time all the more enjoyable. Gracias mi querido. Finally, thanks to my parents

and sisters for all their love and support.

v



Notation and Acronyms

Symbol and Definition

x

x

IXI
diag(x)

E{·}

N(p" ~)

ZQ(v, 'Y)

IIxl12
®

6(·)

i.i.d.

In

On,m

Bayesian Filtering

N

J

Scalar

Vector

ith element of vector x

Matrix

Matrix transpose

Hermitian transpose

Determinant of X

Diagonal matrix formed from vector x

Expectation Operator

Normal distribution with mean p" covariance ~

Inverse Gamma distribution

Euclidean norm of vector x

Kronecker product

Dirac-delta function

identically and independently distributed

Identify matrix of dimension n

Matrix of zeros of dimension n x m

Number of sources

Number of sensors

vi



L

p

M

B

SL,k

:Ew

SNRs,n

SNR ."''11,3

Np

Acronyms

AIR

ASIC

Order of FIR channel

Order of source AR model

Memory of particle filter: max(P,L)

Block length for BSIS implementation

Source vector

Concatenation of most recent L source vectors

Measurement vector

FIR channel coefficients vector

FIR channel coefficients matrix

AR coefficients vector

AR coefficients matrix

Source noise vector

Noise variance of nth source

Source noise covariance

Measurement noise vector

Noise variance of lh sensor

Measurement noise covariance

nth source Signal-to-Noise ratio

lh sensor Signal-to-Noise ratio

Number of particles

Importance weight of ith particle

Approximate effective sample size

Threshold for dynamic resampling

Number of Monte Carlo trials

Acoustic Impulse Response

Application-Specific Integrated Circuit

vii



AR

ARMA

BIDS

BSIS

CRB

FIR

HOS

IS

KF

MAP

MMSE

MSE

MCMC

MH

MIMO

NVR

PCRB

PF

RBPF

SIS

SISO

SIMO

SMC

SNR

SOS

TVAR

VLSI

Autoregressive

Autoregressive Moving Average

Blind Identification via Decorrelating Subchannels

Block Sequential Importance Sampling

Cramer-Rao Bound

Finite Impulse Response

Higher-Order Statistics

Importance Sampling

Kalman Filter

Maximum A Posteriori

Minimum Mean Square Error

Mean Square Error

Markov Chain Monte Carlo

Metropolis Hastings

Multiple-Input1Multi-Output

Noise Variance Ratio

Posterior Cramer-Roo Bound

Particle Filter

Rao-Blackwellised Particle Filter

Sequential Importance Sampling

Single-Input Single-Output

Single-Input Multi-Output

Sequential Monte Carlo

Signal-to-Noise Ratio

Second-Order Statistics

Time-Varying Autoregressive

Very Large-Scale Integration

viii



Contents

Abstract

Acknowledgements

Notation and Acronyms

1 Introduction

1.1 Background . . . . . . . . . . . . . . . . . . . . . . .

1.2 Application to the Dereverberation of Speech Signals

1.3 Blind System Identification Literature Survey

1.4 Proposed Solution.

1.5 Outline of Thesis .

2 Bayesian Filtering Background

2.1 Bayesian Theory .

2.2 Bayesian Sequential State Estimation

2.3 Kalman Filtering

2.4 Particle Filtering

2.4.1 Monte Carlo Integration

2.4.2 Importance Sampling . .

2.4.3 Sequential Importance Sampling.

2.4.4 Resampling . . . . . . . . . . . .

be

iv

v

vi

1

1

2

5

6

8

10

10

11

13

14

14

15

16

18



2.4.5 Selection of the Importance Function 20

2.5 Posterior Cramer-Rao bound. . . . . . . . . 22

3 Marginalized Particle Filtering for Blind System Identification 25

3.1 Bayesian Formulation. . . 25

3.1.1 State Space Model 25

3.1.2 Joint Posterior Distribution 30

3.2 Marginalized Particle Filtering. . . 32

3.2.1 Introduction to the Rao-Blackwellisation Procedure 32

3.2.2 Application of Rao-Blackwellisation to the Blind System Iden-

tification Problem ......... 35

3.3 Particle Filtering for Source Estimation . 37

3.3.1 Generation of the Particles . . . . 41

3.3.2 Update of the Importance Weights 44

3.3.3 Source Estimation 45

3.3.4 Resampling .... 46

3.3.5 MCMC Diversity Step 46

3.4 Kalman Filtering for AR and FIR Coefficient Estimation 47

3.4.1 AR Coefficient Estimation . 48

3.4.2 FIR Coefficient Estimation . 48

3.5 MAP Estimation of Noise Variances. 49

3.5.1 Source Noise Variance Estimation 49

3.5.2 Measurement Noise Variance Estimation 50

3.6 Identifiability Conditions ............. 51

4 Performance Evaluation 53

4.1 PCRB for Blind System Identification . 53

4.2 Simulation Definitions 54

4.3 Simulation Results .. 57

x



5 Conclusions and Future Research 64

5.1 Conclusions . . . . . . . . . . . . 64

5.2 Contributions to the Scientific Literature 65

5.3 Future Research . . . . . . . . . . . . . . 66

5.3.1 Block Sequential Importance Sampling 66

5.3.2 Dereverberation of Speech . . . . . . . 69

A Derivation of the Marginalized Prior and Likelihood 72

B Gaussian Approximation to the Optimal Importance Funct'ion 76

C Derivation of the PCRB 78

xi



List of Tables

4.1 Average simulation parameter settings

4.2 MSE simulation results . . . . . . . . .

xii

59

60



List of Figures

1.1 Blind system identification problem . 1

1.2 Graphical depiction of reverberation. 3

1.3 Typical AIR in an audio enclosure. . 4

2.1 Graphical presentation of the resampling step 19

2.2 Particle Filtering Algorithm Structure .... 22

3.1 Blind system identification state space model. 26

3.2 Marginalized Particle Filtering Algorithm Structure 37

4.1 Example of dominant likelihood scenario 55

4.2 Time-varying AR coefficients. 58

4.3 Time-varying FIR coefficients 58

4.4 Particulate approximation to the marginalized posterior distribution. 59

4.5 SIMO source estimation 60

4.6 MSE learning curves . . 61

4.7 Comparison of MSE with PCRB over SNRy 63

4.8 Comparison of MSE with PCRB over time . 63

5.1 Comparison of the SIS and BSIS particle filters 68

5.2 Experimental setup for measuring acoustic impulse responses. 71

5.3 Three-element microphone array in KEMAR . . . . . . . . . . 71

xiii



Chapter 1

Introduction

1.1 Background

The blind system identification problem arises in many fields, including speech pro­

cessing, communications, biomedical signal processing, sonar and seismology. An

overview of the problem is shown in Figure 1.1, where the objective is to identify the

N-dimensional input signal x or the channel h given only the J-dimensional output

signal y.

N-dimensional
System h

J-dimensional
Input x Output y

Ie _Ie ~I
UnknownlUnobservable Observed

Figure 1.1: Blind system identification problem

The problem is described as blind since both the input and the system are un­

known. In communications systems design the classical approach to the problem is

to periodically transmit a known training sequence, and rely on non-blind methods

1
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to identify the channel. The channel estimate can then be used to equalize the re­

maining unknown signal outside of the training sequence. Blind signal processing

approaches to this problem are attractive since they can increase the available infor­

mation throughput of a channel by removing the need for training sequence transmis­

sion. A more critical problem with the training sequence approach is that in many

physical problems, including speech processing, it is not feasible to produce known

training signals from the source to perform non-blind methods.

Referring to the nth input signal as 5 m the lh output signal as Yj, and the finite

impulse response (FIR) channel from the nth input to lh output as hj,n, the blind

system identification problem is modelled as

N

Yj = L5n *hj,n + Wj,

n=1

(1.1)

where * denotes the convolution operation and Wj is the additive noise at the lh

output. Blind techniques are classified based on the system dimension and estimation

objective. Blind deconvolution deals with recovering a single input signal 51 from

either a single-input single-output (SISO) system or a single-input multiple-output

(SIMO) system. The recovery of the input signals 5n from a multiple-input multiple­

output (MIMO) system is addressed using blind source separation algorithms. In

blind channel identification methods the goal is to estimate the unknown channels

1.2 Application to the Dereverberation of Speech

Signals

An important application of blind signal processing techniques is the dereverberation

of speech signals in an audio environment. The reverberation of speech signals can
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Reverberant Room
Microphone 3

0 ...·
'.

"

Talker A

TV

Direct wave

Reflected wave

Figure 1.2: Graphical depiction of reverberation

cause significant degradation in the perceptual quality of speech for hands-free tele­

phony, digital hearing aids, music recording, teleconferencing and other audio applica­

tions, Reverberation is the effect caused by multiple reflections of sound off the walls,

floor and ceiling of the enclosure from the sound sources to the microphones. The

resulting annoying acoustical problem is the so-called barrel effect, since the speaker

sounds distant, like at the bottom of a barrel. The situation is further complicated by

the cocktail party phenomenon [12] when multiple speech sources are present simulta­

neously, along with other background noise such as moving fans, television and street

traffic. The undesired speech sources and background noise act as interference on

the desired speech signal. The reverberation problem is shown in Figure 1.2. Mathe­

matically, the received signal is the convolution of the actual speech sources with the

acoustic impulse response (AIR) of the room in additive noise as described in (1.1).

An informative introduction to the problem of reverberation cancellation in acoustic

environments is presented in [42].
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Figure 1.3: Typical AIR in an audio enclosure

As shown in Figure 1.3, typical AIR's have coefficients that decay smoothly to­

wards zero, making the blind channel identification problem ill-conditioned [92J. The

AIR of Figure 1.3 was measured using the method of maximal-length sequence identi­

fication [53J. The proposed marginalized particle filtering algorithm is developed with

an eye towards future application to the dereverberation problem, and as such has the

potential to directly recover the source. This approach offers a more computationally

stable method for recovery of the source signal. A filter bank implementation of the

proposed algorithm for application to the speech dereverberation problem is discussed

in Section 5.3. It is noted that the proposed marginalized particle filtering algorithm

is not limited to audio applications.
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1.3 Blind System Identification Literature Survey

A summary of methods for blind channel identification, deconvolution, and source

separation is now presented. An overview of applications and algorithms for the

blind system identification problem is available in the review paper [3J.

The approach taken by blind channel identification methods is to estimate the

unknown channel from the measured signals. The review paper [82J provides a sum­

mary of multichannel identification methods. For SISO systems, the use of high-order

statistics (HOS) is required to handle the case of a non-minimum phase channel [32J.

The use of HOS requires the assumptions that the input signal is non-Gaussian, and

that the channel statistics are stationary over the large sample size needed to com­

pute the high-order moments of the output signal [75J. The use of multiple sensors in

a SIMO system allows for channel identification, up to the inherent complex scaling

ambiguity, based on second-order statistics (SOS) [83J [84J by exploiting the diversity

in the channels [82J. SOS methods have the advantage that in general they require a

smaller sample size to converge compared to HOS, but may require stronger conditions

on the channel or source [75J. Subspace methods for the SIMO [11 and the MIMO

[37J cases perform channel identification based on subspace structure present in the

SOS of the output signals. An alternative approach using the SOS of oversampled

output signals is based on the method of linear prediction [2J [80J. The problem can

also be formulated using the maximum likelihood approach, including the two-step

maximum likelihood method appearing in [45J. If an estimate of the input source is

required using channel identification methods, an inverse of channel estimate can be

applied to the measured signals to recover an estimate of the original source. This is

a result of the Bezout identity described in [82J for the FIR inverse of a SIMO system

under the condition that the channels are coprime (do not share common zeros). A

well-known approach for the MIMO case is the blind identification via decorrelating

subchannels (BIDS) method [46][47J.

Blind deconvolution methods are constructed to directly recover an estimate of
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the source signal. Blind deconvolution algorithms for many communication systems

make use of the finite alphabet nature of the input signal [16][57]. Methods based on

subspace approaches also appear in [85][59]. For the general blind system identifica­

tion problem, for example in the case of continuous speech sources, the assumption

of finite alphabet no longer holds. A Bayesian approach for blind deconvolution of

SIMO [44] and MIMO [43] systems by Hopgood is applied to the audio reverberation

problem. The algorithm operates by exploiting the differences between the assumed

nonstationary AR sources and stationary all-pole channels.

Blind source separation methods address the case of estimating multiple input

signals from multiple outputs. A review of blind source separation methods is avail­

able in [14]. One of the earliest approaches to the problem for instantaneous mixing

models was the Independent Component Analysis (ICA) method presented in [20].

Algorithms based on information theory appear in [8]. A maximum likelihood for­

mulation can be implemented using joint diagonalization procedures [69]. Recent

work has focused on convolutive mixing models which arise in practice for mixtures

of speech signals in reverberant audio environments [68][74][70]. A source separation

approach based on particle filtering appeared in [34],[6].

1.4 Proposed Solution

The proposed algorithm uses Sequential Monte Carlo (SMC) methods (otherwise

known as particle filtering) to solve the blind system identification problem. Par­

ticle filters provide a numerical approximation to the optimal Bayesian solution for

the nonlinearInon-Gaussian sequential state estimation problem. Tutorials on SMC

methods are presented in [7] [24], while the state-of-the-art is available in [28][26][61].

The use of particle filters in signal processing was in large part prompted by the

introduction of the resampling step into the sequential importance sampling (SIS)

procedure [36]. Along with recent advances in computational power, active research



Michael Daly M.A.Sc thesis - Electrical & Computer Engineering, McMaster 7

in particle filtering methods for nonlinear/non-Gaussian problems has led to applica­

tion in a wide variety of technical fields, including communication systems [64J [40J [31J,

target tracking [65][9][13J and speech processing [30][88]'[6J. A particle filtering ap­

proach can result in significant computational complexity; however, particle filters

lend themselves well to a parallel implementation. A VLSI ASIC implementation

of a real-time particle filter architecture appeared recently in [19], and methods for

real-time implementation are discussed in [55J.

For the specific blind system identification problem presented in this thesis, the

state space model uses a time-varying autoregressive (AR) model for the sources, and

a time-varying finite impulse response (FIR) model for the channel. The multi-sensor

measurements result from the convolution of the sources with the channels in the

presence of additive noise. A Bayesian framework for solving the sequential state

estimation problem for the dynamical model is developed using the posterior distri­

bution of the unknown sources, AR coefficients, FIR coefficients and noise variances.

A particle filter approach is used to recursively update the posterior distribution

of the nonlinear state space model. The particle filter is efficiently implemented by

marginalizing out the AR and FIR coefficients from the posterior distribution using

the Rao-Blackwellisation procedure. This reduces the particle filter problem to that

of estimating the sources. The AR and FIR coefficients can then be estimated using

the optimal Kalman filter. Analytical expressions for maximum a posteriori (MAP)

estimates of the noise variances are also developed.

In addition to the proposed particle filtering approach that uses the classical SIS

method, a novel formulation called block sequential importance sampling (BSIS) is

introduced to exploit the structure of the convolution state space model.
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1.5 Outline of Thesis

• Chapter 1 introduces the blind system identification problem. The applica­

tion of the dereverberation of speech signals in an audio environment is then

presented highlighting the design challenges that must be addressed in a dere­

verberation algorithm. A brief literature survey of blind deconvolution, channel

identification, and source separation methods is also included. The key features

of the proposed approach are then outlined.

• Chapter 2 provides background material on Bayesian filtering methods. It out­

lines Bayesian theory, and its application to the sequential state estimation

problem. The fundamentals of the Kalman filter for linear-Gaussian state space

models, and the Monte Carlo-based particle filter for nonlinear/non-Gaussian

models are shown. The use of the Posterior Cramer-Rao bound (PCRB) as

a theoretical performance benchmark for nonlinear filtering problems is also

introduced.

• Chapter 3 describes the proposed marginalized particle filtering approach to

the blind system identification problem. The state space model and statistical

assumptions are first introduced. The structure of marginalized particle filter is

then developed. The remaining sections develop the particle filtering algorithm

for nonlinear estimation of the sources, the Kalman filtering algorithm for esti­

mation of the AR and FIR coefficients, and the MAP expressions for estimating

the noise variances.

• Chapter 4 illustrates the performance of the algorithm using simulation results.

This begins with the derivation of the PCRB based on the proposed state space

model. The definitions of the parameter settings and performance measures

used in the simulations follows. The proposed algorithm is tested to demonstrate

the performance. Comparison of the results to the PCRB is also included.
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• Chapter 5 summarizes with conclusions and contributions to the scientific lit­

erature. Suggestions for future research are also provided, including a detailed

introduction to the block sequential importance sampling formulation of the

particle filter.



Chapter 2

Bayesian Filtering Background

Relevant background material on Bayesian filtering is summarized in this chapter.

The sequential state estimation problem is introduced, and a Bayesian approach to the

problem is developed. The optimal Kalman filter for linear-Gaussian models, and the

Monte Carlo-based particle filter for nonlinear/non-Gaussian models are described.

The Posterior Cramer-Roo bound (PCRB) is introduced to provide a theoretical

performance benchmark for the Bayesian sequential state estimation problem.

2.1 Bayesian Theory

Bayes' theorem for the random parameter x and measurement y may be stated as

p(x,y) = p(xly)p(y) = p(ylx)p(x) , (2.1)

where p(x) and p(y) are prior distributions, p(ylx) is the likelihood, and p(xly) is

the posterior distribution. The posterior can also be written as

p(xly) = p(ylx)p(x) ,
p(y)

where the normalizing constant p(y) is

p(y) = Jp(ylx)p(x)dx.

10

(2.2)

(2.3)



Michael Daly M.A.Sc thesis - Electrical & Computer Engineering, McMaster 11

Using a Bayesian framework, the posterior distribution captures all statistical infor­

mation about the random parameter x from the measurements and prior knowledge.

As such, the posterior distribution can be used to generate estimates of the unknown

parameter. For example, the maximum a posteriori (MAP) estimate is the parameter

value that maximizes the posterior distribution:

XMAP = argmaxp(xly)· (2.4)

The minimum mean square error (MMSE) estimates of the parameter may be also

be computed:

~MMSE lU' {}
X = ~p(xly) x

=Jxp(xly)dx.
(2.5)

In addition, a measure of belief in the estimates can be determined from the posterior

distribution, for example in the form of confidence intervals.

An important advantage of using a Bayesian formulation is that parameters can

be marginalized out of the posterior distribution. This can lead to more efficient and

better performing estimation algorithms. The use of marginalization plays a key role

in the proposed blind identification approach.

A Bayesian approach requires the use of prior information for the parameters.

This need not be a restriction, in that non-informative priors may be used when

reasonable previous prior knowledge of the parameter values is not available [10].

2.2 Bayesian Sequential State Estimation

The sequential state estimation problem is to recursively determine the state sequence

Xk which is assumed to evolve according to the first-order Markov process equation

(2.6)
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where fk is the state transition function and Vk-l is the process noise sequence. The

state is estimated from the measurement (observation) sequence Yk given by

(2.7)

(2.8)

(2.9)

where gk is the measurement function and Wk is the measurement noise. The current

measurement Yk is assumed dependent on only the current state Xk and measurement

noise Wk at time k.

In a Bayesian approach to sequential state estimation, the filtered posterior dis­

tribution p(xkIY1:k) of the current state conditioned on all the measurements is re­

cursively computed from P(Xk-lIYl:k-l). First, the predicted posterior distribution

p(xkIY1:k-d is determined from the Chapman-Kolmogorov equation [7J:

p(xkIYl:k-l) = Jp(xklxk-dp(Xk-lIYl:k-l)dxk-l,

where the transition prior p(xklxk-l) is determined from the process equation (2.6)

and the statistics of Vk-l. The predicted distribution is then updated using the new

measurement Yk by applying Bayes' theorem:

( I ) P(Yk/Xk)P(XkIYl:k-l)
P Xk Yl:k = p(YkIYl:k-l) ,

where the likelihood distribution p(Yklxk) follows from the measurement model (2.7)

and the statistics of Wk. The normalizing constant is given by

(2.10)

An optimal Bayesian filter is one for which the required integrals for the prediction

and update steps can be computed exactly. In general, however, these integrations are

analytically intractable. The next section presents the Kalman filter, which is optimal

when the state space model is restricted to be linear with independent Gaussian noise

and initial state processes [4J. This is followed by the introduction of the particle filter,

a Monte Carlo-based approach to numerically approximate the optimal solution for

more general nonlinear and non-Gaussian state space models [26J.



Michael Daly M.A.8c thesis - Electrical & Computer Engineering, McMaster 13

2.3 Kalman Filtering

Under the conditions that the process noise Vk-l, measurement noise Wk and initial

state Xo are independent Gaussian variables, and the state transition fk ( " .) and

measurement gk (', .) functions are linear, the state space model is

FkXk-l +Vk-l,

GkXk +Wk,

(2.11)

(2.12)

where the matrices Fk, G k are known, along with the state noise covariance ~v,k-l

and measurement noise covariance ~wlk'

For this linear-Gaussian system, the optimal Bayesian solution for the sequential

state estimation problem can be computed analytically using the Kalman filter. The

resulting posterior distribution p(xkIYl:k) is Gaussian, and can therefore be repre­

sented completely by its mean and covariance. Starting with the filtered distribution

at time k - 1 with mean Xk-llk-l and covariance ~k-llk-l given by

(2.13)

the integral for the prediction step of the optimal Bayesian solution in (2.8) reduces

to computing the mean xklk-l and covariance CPklk-l of the predicted posterior dis­

tribution p(xkIY1:k-l) given by [58]

Xklk-l - F kXk-llk-ll

CPklk-l Fk~k-llk-lFI + Ev,k-l'

(2.14)

(2.15)

(2.16)

The update step in (2.9) produces the mean xklk and covariance CPklk of the filtered

posterior at time k:

p(XkIY1:k) = N(Xklk, CPklk), (2.17)

xklk = xklk-l +Wk(Yk - GkXklk-l), (2.18)

CPklk = CPklk-l - WkGk~klk-l' (2.19)
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where the Kalman gain is defined as

(2.20)

and, for the innovation defined as Yk - GkXklk-l, the innovation covariance is

(2.21)

(2.22)

2.4 Particle Filtering

We now consider the case when the prediction (2.8) and update (2.9) steps of the

optimal Bayesian filter cannot be computed analytically. For a nonlinear and/or non­

Gaussian state space model, as in the case of the blind system identification problem,

suboptimal approaches are required. We now introduce the particle filter which uses

a Monte-Carlo based approach to numerically approximate the posterior distribution.

2.4.1 Monte Carlo Integration

The approach to approximating the intractable integrations is based on the method

of Monte Carlo integration [77J. Consider the expectation of an arbitrary function

/0 with respect to the posterior distribution:

lEp (X1:kIYl:A:)(f) = J/(Xl:k)P(Xl:kIYl:k)dxl:k.

If Np identically and independently distributed (i. i. d.) samples xLk can be drawn from

the distribution P(Xl:kIYl:k) then a discrete approximation to the posterior distribution

is

(2.23)

Using this representation, the Monte Carlo method approximates the integral in (2.22)

with the summation

(2.24)
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Results presented in [25J show that this numerical approximation demonstrates almost

sure convergence to the true value as Np --+ 00.

2.4.2 Importance Sampling

The Monte Carlo sampling method cannot be used on its own to approximate the

optimal Bayesian filter integrals since, in general for nonstandard multidimensional

distributions, the posterior is not easy to draw i. i. d. samples from. An importance

function q(Xl:kIY1:k) that is easy to sample from is introduced into (2.22) as shown:

J P(Xl:kIYl:k)
lEp (X1:kIYl:k)(J) = !(Xl:k) ( I )q(Xl:kIYl:k)dxl:k. (2.25)

q Xl:k Yl:k

By selecting Np i.i.d. samples from q(Xl:k/Yl:k), the discrete weighted sum approxi­

mation to the posterior distribution is

Np

( I ) 1 ~ *(i) ~( i ) ( )P Xl:k Yl:k ~ N L.J wk U X1:k - x 1:k , 2.26
p i=l

where the set of samples {xLk,i = 1, ... ,Np } are referred to as particles. The asso­

ciated true importance weights {WZ(i), i = 1, ... ,Np } are defined as

*(i) P(XLk/Y1:k)

w
k

= q(XLkIYl:k) (2.27)
_ p(Y1:kIXLk)P(xLk)
- p(Y1:k)q(xLkIY1:k)'

In general, it is not possible to evaluate the true importance weights since the normal-

izing constant P(Yl:k) can be difficult to compute. Instead, the importance weights

are first evaluated as

(i) P(XLkIY1:k)
W

k ex q(xLkIYl:k)

P(Yl:klxLk)P(xLk)= -"----,"":""-=:=-:-';;""':"""'::'::=

q(xLkIY1:k)
and then normalized to ensure the posterior distribution integrates to one using the

following:

(2.29)
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As shown in [25], the resulting discrete representation of the posterior distribution in

terms of the normalized importance weights in (2.29) is

Np

p(X1:k/Y1:k) ~ ~W~O(Xl:k - xi,k),
i=l

(2.30)

where the true importance weights WZ(i) in (2.26) are replaced by Npw~. Using im­

portance sampling (IS), the Monte Carlo approximation to the integral in (2.25) is

then given by
Np

JEp(XUIYl:k)(J) = L f(Xtk)W~.
i=l

(2.31)

For example, the filtered MMSE estimate of the state Xk given the measurements Y1:k

can be approximated from (2.5) using the set of particles and importance weights:

X~MSE = lEp(xkIYu){Xk}

Np

~ LX~'w~,
i=l

(2.32)

In the ideal case the importance function is exactly equal to the posterior distri­

bution, which for the true importance weights in (2.27) results in

(2.33)

(2.34)

The variance of the importance weights can therefore be used as a measure of op­

timality of the importance sampling method, and in subsequent sections is used in

selecting the best choice of the importance function and for dynamic scheduling of

resampling steps.

2.4.3 Sequential Importance Sampling

For the sequential state estimation problem, the method of sequential importance

sampling (SIS) is used to recursively generate particles x~ and update the importance



(2.35)
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weights w1. First, a recursion for the posterior distribution is found by applying Bayes'

theorem:

( I ) - p(YkIX 1:k, Yl:k-t}P(x1:kIYl:k-t}
P X1:k Yl:k - (I)

P Yk Yl:k-l

p(Yklx l:k,Yl:k-t}P(XkIX1:k-l,Yl:k-l) ( I )
= (I) P Xl:k-l Yl:k-l

P Yk Yl:k-l

P(Yk/Xk)P(Xklxk-t} ( / )
= (/ ) P X1:k-l Yl:k-l .

P Yk Yl:k-l

The last line follows since the measurement Yk does not depend on the past states

X1:k-l or measurements Yl:k-l, and the state is first-order Markov depending on only

Xk-l·

Applying Bayes' theorem to the importance function results in

(2.36)

An importance function containing the factor q(x1:k-lIY1:k) implies that the particles

for the past states Xl:k-l are regenerated at time k based on the new measurement

Yk. This introduces a significant computational burden since it requires storage of the

entire particle history XLk-l for each particle. To avoid this problem, the importance

function is restricted to satisfy the form [25J

(2.37)

The approximation is that the smoothed importance distribution q(Xl:k-lIY1:k) for

the past states Xl:k-l incorporating the new measurement is replaced by the filtered

distribution q(Xl:k-lIYl:k-l)' As a result, the past particles xLk-l do not have to

be modified since they are only dependent on the measurements up to time k - 1.

The factorization also specifies that particles x~ are drawn from the distribution

q(xklxl:k-l, Yl:k). The new particles x1 are then appended to the history of particles

XLk-l to form the particle trajectories xLk = {xLk-l' xU. Typically, as is shown in

Section 2.4.5, the importance function q(xklxl:k-l,yl:k) is selected to be only depen­

dent on the most recent state Xk-ll and possibly the current measurement Yk. This
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simplifies the implementation by requiring only storage of Xk_1 instead of the complete

particle history. It is noted that the proposed block sequential importance sampling

method uses an alternative factorization property of the importance function.

Using the recursion for the posterior distribution in (2.35) and the factorization of

the importance distribution in (2.37), the recursive update for the importance weights

is

(2.38)

The importance weights {wb,i = 1,2, ... ,Np } are initialized to value 1. At each time

step, the importance weights are normalized using (2.29).

2.4.4 Resampling

SIS particle filtering algorithms suffer from the problem of importance weight de­

generacy, in which after a few iterations of the recursion only one particle has a

significant normalized importance weighting and the rest are close to zero. In [25J,

it is shown that the degeneracy problem cannot be avoided since the variance of the

importance weights can only increase over time. The introduction of the resampling

step in [36J made SIS methods practical by effectively reducing the weight degener­

acy problem. This is accomplished by performing a resampling step after the weight

update in which particles with large importance weights are duplicated while parti­

cles with small weights are removed. This leads to a more efficient particle filter since

computational resources are not wasted on updating particles that contribute little to

the numerical approximation of the posterior distribution. A graphical presentation

of the resampling step for a one-dimensional state Xk and Np = 10 particles is shown

in Figure 2.1, based partly on [22]. The resampling step removes the particles x~
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Before Resampling

After Resampling

Figure 2.1: Graphical presentation of the resampling step

(circles) associated with small importance weights wi (squares), and duplicates par­

ticles with large importance weights. The particle filter representation consisting of

the random measure {x~, w1, i = 1,2, ... , Np } is seen to be a discrete approximation

to the true continuous posterior distribution curve shown.

Resampling algorithms provide ways of drawing i. i. d. samples {xi:k' j = 1, 2, ... , Np }

from the discrete approximation to the posterior distribution in (2.30). As a result,

the new particles are selected with probability

(2.39)

The original particles are replaced with the resampled particles using

(2.40)
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and the importance weights are all set equal

(2.41)

A variety of resampling schemes are available in the literature, including multinomial

[36], residual [61J, and systematic resampling [54J. A comparison of the complexity

and performance of these resampling algorithms is presented in [18J.

A measure of the degeneracy of the SIS algorithm is the effective sample size Neff

[61J given by
Np

Neff = *(i) . (2.42)
1 + var(wk )

The variance of the importance weights is non-negative so that Neff ~ Np , and also

from (2.34) in the ideal case the variance is zero which means that small values of the

effective sample size indicate algorithm degeneracy. From the discussion in Section

2.4.2, in general the true importance weights W:(i) cannot be evaluated, and so the

following approximation to the effective sample size is used:

- 1
Neff = -~-;N"'""p-(-i)-2 .

L..ti=l W k

(2.43)

The use of the approximate effective sample size allows resampling to occur only when

the algorithm displays degeneracy. This is accomplished by resampling whenever Jii;;r
is below a fixed threshold Nthresh'

2.4.5 Selection of the Importance Function

The selection of the importance function is an important factor in determining the

performance and efficiency of the SIS particle filter. In practice, there are an unlimited

number of choices for the importance distribution. Three of the most common are

briefly introduced here. The first importance function presented is the transition

prior given by

(2.44)
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The resulting weight update equation simplifies to multiplication by the likelihood

(2.45)

A second popular choice is the optimal importance function. For the filtered

posterior distribution, it is defined as the function which minimizes the variance of

the true importance weights conditional upon X k- 1 and Yk. In [28], the optimal

importance function which results in a variance of zero is shown to be

q(xklxi:k_l' Y1:k) = p(xklxLl' Yk)

p(Yklxk)p(Xklx~_l)
=

p(YklxLl)

The corresponding weight update becomes

(2.46)

(2.47)

From the recursion for the posterior distribution in (2.35), it is noted that the op­

timal importance function is equal to the update factor on the previous posterior

distribution P(Xl:k-lIYl:k-l). It can be seen that the benefit of the optimal impor­

tance function is that it incorporates information from the current measurement Yk in

generating the particles. This is at the expense of additional computation compared

to the use of the transition prior as the importance function. In many cases, the

optimal importance function cannot be derived analytically or is difficult to sample

from, and instead approximations are used. For example, the method of locallineari­

sation can be used to approximate the optimal importance function with a Gaussian

distribution [25J.

The third approach is the auxilliary particle filter [71J which uses the transition

prior to generate particles, but also incorporates the current measurement Yk into the

resampling step at time k - 1. For more details see the description in [41J.

A pictorial overview of the particle filtering algorithm introduced in this section

is shown in Figure 2.2, based partly on [24J.
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Initialization

State Estimation

No

Resampling

Time Increment

Figure 2.2: Particle Filtering Algorithm Structure

2.5 Posterior Cramer-Rao bound

For analyzing the performance of estimation algorithms, lower bounds based on in­

formation limits are developed to indicate theoretical performance limitations. For

the estimation of a set of nonrandom parameters Xu given the set of measurements

Yl:k, the Cramer-Rao bound (CRB) provides the lower bound on the covariance of

an unbiased estimator Xl:k(Yl:k) [78J:

(2.48)

The matrix inequality implies that the matrix M - Jl:k must be positive semidefinite.

This also specifies that the mean square error (MSE) of the nth component of Xu is
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bounded by the nth diagonal element of lower bound:

The lower bound is given by the inverse of the Fisher information matrix J1:k' which

is determined from the likelihood P(Yl:klxl:k):

J l:k = -lE { ~~~;: logp(yl:k IXl:k) } . (2.49)

The expectation is taken over the measurements Yl:k. The first-order (\7) and second­

order (~) partial derivative operators are defined for the vector a of dimension no

as

[
0 0 O]T

oa[lJ' oa[2J ... , oa[noJ

\7,8\7~.

(2.50)

(2.51)

The Posterior Cramer-Roo bound (PCRB) introduced in [86J provides the lower

bound when the parameter X1:k is a random variable. In this case, the Fisher in­

formation matrix is determined with respect to the joint distribution P(Xl:k,y1:k):

J l:k = -lE {~~~;:10gp(Xl:k' Y1:k)} , (2.52)

and the expectation is taken over the measurements Yl:k and the random variable

Xl:k'

For the sequential state estimation problem it is of interest to recursively deter-

mine the Fisher information submatrix J k which determines the lower bound on the

estimation covariance of the N-dimensional state Xk given the measurements Y1:k' For

the discrete-time nonlinear filtering problem, [8lJ derives an efficient recursion for J k •

However, alternative methods are required to handle the case when the transition

prior p(xk+1lxk) is singular. This is the case for the proposed state space model, and

also frequently in tracking applications, in which the transition prior contains Dirac

delta measures. In [81], the approach to the singular case is dealt with by introducing
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regularization noise into the system. An alternative approach for the singular case

is also presented in [89J for nonlinear systems with unknown constant parameters.

The approach taken here follows from [9J (also summarized in Chapter 15 of [26]) in

which a recursion for the inverse of the Fisher information, denoted by P k = J;l, is

derived. This avoids the problem of requiring inversions of singular noise covariance

matrices from the transition prior. The recursion is provided for the one-step-ahead

predictor, that is, the estimation of the state Xk given the measurements Yl:k-l' This

method was found to provide the most straightforward derivation of the PCRB for

the proposed state space model, as compared to [81]'[89J.

In the following it is assumed the discrete-time nonlinear state space model is of

the form shown in (2.6) and (2.7). The lower bound for the one-step-ahead predictor

is:

(2.53)

The recursion for Pk, under the assumption that the prior distribution tends to zero

at infinity but with no requirement of the estimator being unbiased, is given by [26J

(2.54)

where the following matrices, all of dimension N x N, are defined as:

Fr = E{V'Xkfl(Xk, Vk)}, (2.55)

R-1 - E{-~~: 10gp(YkIXk)}, (2.56)k

Gr = E{V'Vk fl(xk, Vk)}, (2.57)

Q;l = E{-~~: logp(vk)}, (2.58)

p-1 = E{-~~~ logp(xo)}. (2.59)0

In practice, it may not be possible to evaluate the expectations analytically. Monte

Carlo techniques can be employed to produce numerical estimates to the expectations

by averaging i. i. d. statistical realizations of the system model [26J.



Chapter 3

Marginalized Particle Filtering for

Blind System Identification

The state space model and statistical assumptions used to develop the joint posterior

distribution for the blind system identification problem are introduced. An efficient

Bayesian solution to the sequential state estimation problem is then developed using a

marginalized particle filtering algorithm. The resulting nonlinear estimation problem

for the sources is implemented using a particle filter, the FIR and AR coefficients are

estimated using a Kalman filter after being marginalized out of the posterior distribu­

tion, and analytical MAP estimates for the unknown noise variances are developed.

A discussion of sufficient identifiability conditions is also provided.

3.1 Bayesian Formulation

3.1.1 State Space Model

The state space model under consideration for the blind system identification problem

is shown graphically in Figure 3.1. We now develop the dynamical equations and

variable descriptions for the state space model.

25
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N Inputs

Time-Varying AR
Source Model

P order N Sources

Time-Varying FIR
Channel Model

L order

Additive
Noise

J Outputs

f----,I--O+-+-+-- nIl]

Figure 3.1: Blind system identification state space model

The nth source Sk [n] is assumed to evolve according to the following P-order time­

varying autoregressive (TVAR) model:

(3.1)

The source noise Vk-l [n] E jR is assumed to be Gaussian distributed with mean zero

and unknown variance a;,n. The noise variances are assumed to be independent

between sources. The source vector SP,k-l,n E jRPXl is composed of the most recent

P samples at time k - 1 for the nth source:

(3.2)

The AR coefficient vector ak,n E jRPXl corresponding to the nth source is given by

(3.3)

A TVAR process equation is frequently used to model the dynamics of speech sources

[88][6], and is used here in view of potential applications to the dereverberation of
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speech signals. The following two matrix representations for the dynamics of the N

sources are used in the development of the algorithm:

(3.4)

(3.5)

The quantities in the above equation are defined in the following paragraphs. The N

sources are collected in the vector Sk E jRNX1, and similarly the noise variables are

collected in Vk-1 E jRNx1:

Sk = [sk[lj,sk[2],,,,,sk[N]]T,

Vk-1 = [vk-tfl], Vk-1[2], ... ,vk_tfN]]T.

(3.6)

(3.7)

The vector Vk-1 is assumed Gaussian distributed with mean zero and diagonal co­

variance E v given by

E v = diag([O"~ l' O"~ 2"'" O"~ Nj)·" , (3.8)

The operator diag(x) denotes the diagonal matrix formed from the elements of the

vector x. In (3.4), SP,k-1 E jRNPx1 is the concatenation of the most recent P source

vectors at time k - 1:

[ T T T jT
Sp,k-1 = sk_P, sk-P+1, ... ,sk-1 ,

and the AR coefficient matrix A k E jRNxNP is given by

where Ak,p E jRNXP, P = 0,1, ... , P - 1 is defined as

(3.9)

(3.10)

Ak,p = diag([ak,l[pj, ak,2[Pj, ... ,ak,N[pJ]). (3.11)

In (3.5), the matrix Sk-1 E jRNxNP is block diagonal as given by

ST 0 0 0P,k-1,l

0 sT 0 0
Sk-1 = P,k-1,2 (3.12)

0 0 0

0 0 0 STP,k-1,N
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and the vector ak E ~NPXl is the concatenation of the N vectors ak,n of length P

corresponding to each source:

(3.13)

The time-varying ak is itself assumed to evolve according to a first-order AR model

as follows:

(3.14)

with 0 < aa < 1 assumed known and the process noise vector Va,k-l Gaussian dis­

tributed with mean zero and known covariance ~a' In practice, the AR coefficients

are constrained to be stable with all poles inside the unit circle.

We now consider the measurement equation for the lh sensor which is assumed

to evolve according to the convolution of the sources with time-varying FIR channels

in the presence of additive noise as follows:

(3.15)

The measurement noise WkU] E ~ is assumed to be Gaussian distributed with mean

zero and unknown variance lT~,i' The noise variances are assumed to be independent

between sensors. The source vector SL k E ~NLxl is the concatenation of the most,

recent L source vectors at time k:

[ T T T]T
SL,k = sk-L+l' sk-L+2"'" sk . (3.16)

(3.17)

The channel vector hk,i E ~NLxl corresponding to the jth sensor is formed from the

FIR filters hk,i,n of length L from the nth source to the jth sensor:

hk,i = [hL,L-l,hI,i,L-2"" ,hL,oF,
hk,i,l = [hk,i,l[f], h k,i,2[f], ... , hk,i,N[fJJT

where f = 0,1, ... ,L - 1 is the lag from the current time. The two matrix represen­

tations used for the measurements at the J sensors are:

Yk = HksL,k + Wk

= Tkhk +Wk·

(3.18)

(3.19)
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The measurement vector Yk E jRJxl and the measurement noise vector Wk E jRJXl

are defined as

[Yk [1], Yk [2], ... ,Yk [JJJT ,

[Wk-l[l], wk-d2], ... ,wk_dJJJT.

(3.20)

(3.21)

The vector Wk is assumed Gaussian distributed with mean zero and diagonal covari­

ance :Ew given by

:Ew = diag([O"~ l' O"w
2

2" .. ,O"~ J])." ,

In (3.18), the channel matrix H k E jRJxNL is given by

where Hk,l E jRJXN, .e = 0,1, ... ,L - 1 is defined as

(3.22)

(3.23)

hT .
k,l,l

hT
k,2,l

hT
k,J,l

(3.24)

In (3.19), the matrix Tk E jRJxJNL is block diagonal with structure

T k = I J ® SI,k

T 0SL,k

0 T

=
SL,k

0 0

0 0

o 0

o 0

o
o

(3.25)

and the channel vector h k E jRJNLxl is the concatenation of the J hk,j

(3.26)

The time-varying hk is assumed to evolve according to a first-order AR model as

follows:

(3.27)
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with 0 < ah < 1 assumed known and the process noise vector vh,k-l Gaussian dis­

tributed with mean zero and known covariance Eh .

The scope of the thesis has been limited to consider only additive Gaussian source

and measurement noise. This is to allow for a clearer presentation of the particle

filter approach for the nonlinear aspects of the state space model for blind system

identification. It is also noted that in many practical applications the assumption of

Gaussian noise is reasonable. A particle filtering approach to the problem does allow

the current algorithm to be extended to the case of non-Gaussian noise [72].

The state space model shown in Figure 3.1 can also be interpreted as a time­

varying autoregressive moving average (ARMA) system operating on the source noise

inputs vk[n]' n = 1,2, ... ,N to produce the outputs Ykfj], j = 1,2, ... , J.

3.1.2 Joint Posterior Distribution

The unknown states are collected in the composite state (J from time 1 to time K:

(3.28)

Using Bayes' theorem and the dependencies in the state space model the posterior

distribution of the unknown parameters given the set of measurements is

P((Jl:KIYl:K) ex P(Yl:Klsl:K, h 1:K, :Ew )

X P(Sl:Klal:K, Ev)p(hl:K)p(al:K)p(Ev)p(:Ew).

The likelihood term follows from the measurement model in (3.19):

K

P(Yl:Klsl:K,h1:K,:Ew ) = IlN(Tkhk,Ew ).

k=l

(3.29)

(3.30)

The remaining terms in the posterior distribution are the assumed prior distributions

for the unknown system variables. From the source model in (3.5), the prior for the

source is
K

P(Sl:Klal:K' :Ev ) = IIN(Sk-lak, E v ).

k=l

(3.31)
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The priors for the AR coefficients and channel follow from the first-order AR models

in (3.14) and (3.27):

K

p(al:K) = IIN(aaak-r, :Ea),
k=l
K

p(h1:K) = IIN(ahhk-r, :Eh).
k=l

(3.32)

(3.33)

The AR model order P and convolution length L are assumed known. The case of

source- and channel-specific model orders Pn and Lnj , respectively, is not considered

here to simplify the presentation. In the case of unknown model orders, reversible

jump Markov Chain Monte Carlo (RJMCMC) methods could be investigated for

model order detection [38][5][87J.

Inverse Gamma distributions, the conjugate prior for the normal likelihood distri­

bution [10J, are assumed for the priors of the source and measurement noise variances:

N

p(:Ev) = ITzg (V;n ,';n) ,
n=l

J

p(:Ew ) = ITzg (V;,j ,';,j) ,
j=l

(3.34)

(3.35)

assuming the noise variances u;,n' n = 1,2, ... ,N and U~,j,j = 1,2, ... , J are inde­

pendent. The Inverse Gamma distribution for a random variable u 2 is of the form

(3.36)
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Using the above likelihood and prior distributions, the posterior distribution is then

(3.37)

3.2 Marginalized Particle Filtering

The estimation problem for the given state space model is nonlinear since both the

source vector SL,k and channel hk are unknown. As a result of the discussion in

Section 2.2, the optimal Bayesian recursion for the joint posterior distribution in

(3.37) cannot be evaluated analytically. An efficient marginalized particle filtering

algorithm [79], also commonly known as Rao-Blackwellised particle filters (RBPF)

[22J [27J or mixture Kalman filters [17J, is developed by exploiting the conditionally

linear-Gaussian substructure of the state space model.

3.2.1 Introduction to the Rao-Blackwellisation Procedure

The fundamentals of the marginalized particle filter technique are introduced first

with an illustrative example. The general strategy is then applied to the more com­

plicated state space model from Section 3.1.1. The example we now consider is a
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nonlinear state space model whose transition equations have the specific structure

xl = fk(xLl' VLl),

2 F 2 2
xk = kXk_l + V k _ 1 '

and the measurement equation is given by

(3.38)

(3.39)

(3.40)

The noise vectors VLl,vLll and Wk are all assumed to be Gaussian distributed.

The state variable xl enters the dynamics through the nonlinear process function

fk , while the other unknown state variable x~ evolves from the linear process func­

tion given by the known matrix Fk • The measurement equation is nonlinear in the

two variables, where G(xl) is a matrix function of the vector xl. For this nonlinear

state space model, it is possible to implement a Bayesian solution to the sequen­

tial state estimation problem using the particle filter for the composite state vector

Xk' = [(xl?, (x~?JT. However, the particle filtering algorithm performance can be

improved by considering the specific structure of (3.38)-(3.40).

We now examine how the Rao-Blackwellisation procedure [15J uses the inherent

linear-Gaussian substructure in the model to improve the performance of the esti­

mation algorithm. It is seen from the measurement equation that conditional on

xl (implying the quantity G(xl) is a constant matrix) the measurement equation is

linear-Gaussian in the variable x~. We observe that since the process equation for x~

is also linear-Gaussian, the problem of estimating x~ conditional on xl can be solved

using the optimal Kalman filter. This realization motivates the following factorization

of the joint posterior distribution using Bayes' rule:

(3.41)

This equation is pivotal in the Rao-Blackwellisation strategy. Each term in (3.41) is

developed is the subsequent sub-sections:



(3.42)

(3.43)
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The marginalized posterior distribution P(XLkIY1:k): Since this distribution

must be evaluated recursively, a particle filtering approach is used to estimate xl [22J.

From (2.35), the marginalized posterior distribution satisfies the recursion

(
1 I ) p(YklxLk' Yl:k-dp(xllxLk-l' Yl:k-d (l I )

P Xl:k Yl:k = (I) P Xl:k- l Yl:k-l .
P Yk Yl:k-l

This recursion is now in terms of a marginalized likelihood p(YklxLk' Yl:k-d and prior

p(xllxLk-l' Yl:k-l)' The marginalized likelihood is found using the Rao-Blackwellisation

strategy to marginalize the state xz out of the conditional likelihood p(YklxLk' X~:k):

p(YklxLk' Yl:k-l) = Jp(YklxLk' x~)p(x~lxLk' Yl:k-l)dx~

The conditional likelihood (which is independent of the measurement history Y1:k-d

follows directly from the measurement equation (3.40):

(3.44)

where it assumed that the Gaussian noise Wk is zero-mean with covariance Ew •

To implement the marginalization procedure, the distribution p(xzlxLk' Yl:k) in (3.43)

is also required. From the discussion above on the linear-Gaussian substructure of xz
conditioned on xl, this distribution can be recursively computed using the Kalman

filter. Since the particle filter for the state xl discussed above produces the set of

particles {x~~~, i = 1,2, ... ,Np }, a set of Kalman filters conditioned on each of the

particle values is required as shown:

(_-21 lei) ) N(A2(i) .;F,.2(i»)P Xi.: x l:k ,Yl:k = x k ' ~k , (3.45)

where X~(i) and ~~(i) are the mean and covariance of the ith Kalman filter which

follow the recursions described in Section 2.3. The integration in (3.43) can then be

computed using the distributions in (3.44) and (3.45). The details of this integration

procedure are presented in a later section for the specific state space model structure

introduced in Section 3.1.1. This completes the discussion on the evaluation of the

term p(YklxLk' Yl:k-l) in (3.42).
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We now look at the marginalized prior p(xllx~:k-l'Yl:k-l) in (3.42). Evaluation of this

distribution follows directly from the state equation in (3.38) and the noise statistics of

vl, which are both not dependent on xZ. From Section 2.4.3, it is seen that recursion

of the posterior distribution in (3.42) is the basis for the particle filter recursion.

The denominator in (3.42) is only a normalization term and need not be evaluated.

Neither does the term P(XLk-lIYl:k), since this is available from the previous time

instant. Thus, from the development of this section, all terms in (3.42) are available,

and the particle filter recursion for evaluating the nonlinear state xLk can proceed

independent of x~:k'

The linear-Gaussian distribution p(x~:klxtk'Yl:k): This distribution in (3.41)

has already been obtained from the Kalman filter as shown in (3.45). 0

The benefit of using the marginalized particle filter is that the dimension of the

state estimated using the particle filter is reduced. It is known that the performance

of the particle filter degrades as the dimension of the state variable increases [26].

The Rao-Blackwellisation strategy simplifies the particle filtering problem for the

composite state vector Xk to a problem in terms of only xl. This method is shown

in [29] to reduce the variance in the importance weights of the particle filter, which

translates into improved estimation performance. The intuition behind this result

is that the particle filter, a Monte Carlo approximation to the optimal Bayesian

filter, is now only used to estimate the truly nonlinear/non-Gaussian states, while

the remaining conditional linear-Gaussian states can be estimated analytically using

the optimal Kalman filter [79].

3.2.2 Application of Rao-Blackwellisation to the Blind Sys­

tem Identification Problem

We now apply the Rao-Blackwellisation strategy to the Bayesian formulation of the

proposed state space model in Section 3.1.1. It can be seen from the state space

model that conditional on the sources S1:k (which form T k ) and the measurement



Michael Daly M.A.Sc thesis - Electrical & Computer Engineering, McMaster 36

noise covariance Ew , equations (3.27) and (3.19) for the FIR coefficients h k form a

linear-Gaussian subsystem:

h k = ahhk - 1 + Vh,k-l

Yk = Tkhk+Wk

(3.46)

(3.47)

Similarly, the pair of equations (3.14) and (3.5) for the AR coefficients ak condi­

tioned on the sources and the source noise covariance E v also form a linear-Gaussian

subsystem:

ak = aaak-l + Va,k-l

Sk Sk-lak + Vk-l

(3.48)

(3.49)

The joint posterior distribution in (3.37) is then factorized using Bayes' rule to exploit

this conditionally linear-Gaussian substructure:

(3.50)

MAP estimates of the noise covariances E v and E w are developed separately, as shown

in Section 3.5, and the dependence on these terms is not shown explicitly in the sub­

sequent derivations of the particle and Kalman filter algorithms. In the proposed pro­

cedure, the marginalized posterior distribution p(s1:kIY1:k) is obtained using the Rao­

Blackwellisation strategy for marginalizing out the conditionally linear-Gaussian AR

and FIR coefficients. The sources Sl:k are then estimated numerically using the parti­

cle filter for the resulting nonlinear problem. The filtered distributions p(aklsl:k, Yl:k)

and p(hkIS1:k' Yl:k) are computed recursively for the conditionally linear-Gaussian

problems using the Kalman filter. It is noted that the two linear-Gaussian subsys­

tems for hk and ak are decoupled from each other after conditioning on the sources.

This allows the set of Kalman filters for the AR coefficients to operate in parallel with

the set of Kalman filters for the FIR coefficients.

The plan for the remaining portion of this chapter is as follows. Section 3.3

details the particle filter algorithm for nonlinear estimation of the sources, Section
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3.4 describes the Kalman filtering procedure for estimating the conditionally linear­

Gaussian FIR and AR coefficients, and the analytical expressions for the MAP noise

variance estimates are derived in Section 3.5. A pictorial overview of the marginalized

particle filtering algorithm structure is presented in Figure 3.2.

lnitialization

Generate Particles

Update Weights

PARTICLE
FILTERING

MCMC Diversity Step

,-------------------------------- ----------------------------.
I
I KALMAN :
: FILTERING AR Coefficient Estimation FIR Coefficient Estimation IL ~

:----~~;---------~~~~~~~-------------~e~~e~e::~~~-----------:

: ESTIMATION Variance Estimation Variance Estimation :L ~

TIme Increment

Figure 3.2: Marginalized Particle Filtering Algorithm Structure

3.3 Particle Filtering for Source Estimation

From the discussion of the Rao-Blackwellised particle filter in the previous section,

sequential Monte Carlo methods are used to recursively estimate the marginalized

posterior distribution P(S1:kIYl:k) of the sources in (3.50). In Section 2.4, the parti­

cle filter was introduced under the assumption that the state is first-order Markov.

It is seen from the state equation in (3.4) that the current source vector Sk for the
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AR model is dependent on the past P source vectors contained in the vector SP,k-l'

Therefore, the current formulation of the state space model is not suitable for im­

plementation of the SIS particle filter since the state is not first-order Markov. The

state space model for the sources is now reformulated in terms of a new state variable

that follows a first-order Markov process equation that considers the past P values

of the sources. This does not change any of the underlying statistical assumptions on

the dynamical model introduced in Section 3.1.1. The state variable SM,k E ~MNxl

is introduced, where M = max(P, L) is the maximum of the orders of the AR and

FIR models:

(3.51)
_ [T T T]T

SM,k - sk-M+l' sk-M+2"'" Sk

[ T T]T= SM-l,k-l,sk .

The state equation for SM,k is derived by considering the autoregressive property of

the sources. At time k, the first M - 1 blocks Sk-M+i of SM,k are a shifted version of

the blocks at time k-1 as reflected in the partitioning in (3.51). In combination with

(3.4), for the case of M = P as an example, we may write the source state update as

Sk-M+1 0 IN 0

Sk-M+2 0 0 IN

Sk-l 0 0 0

Sk Ak,p-l A k ,p-2

In general, this can be written compactly as

o

o

+

o

o

o
Vk-l

(3.52)

(3.54)

(3.53)

To describe the variables in this process equation, we first define the quantity Oa,b as

a matrix of zeros of dimension a x b if a, b > 0 and empty otherwise. The notation I a

denotes the a x a identity matrix. The variable definitions then follow as

[

[OCM-l)N,N,ICM-l)N] ]A.k =
[ON,CL-P)N, A k ]

Vk-l = [Ol,(M-l)N, VLl]T.
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The measurement equation in (3.18) is rewritten in terms of SM,k to produce

(3.55)

where

(3.56)

The second form of the measurement equation for SM,k remains unchanged from

(3.19). It is noted that in (3.55), the current measurement is only dependent on

the current state and noise vector which is also a required assumption from the

particle filter development in Section 2.4. This was previously not satisfied using the

formulation in (3.18).

The state space representation in (3.52) and (3.55) is now suitable for developing

a SIS particle filter implementation. From (2.35), the recursion for the marginalized

posterior distribution in terms of SM,k is

( I ) - p(YklsM,I:kl YI:k-I)P(SM,klsM,I:k-b YI:k-l) ( I ) (357)
P SM,I:k YI:k - (I) P SM,I:k-1 YI:k-1 . .

P Yk YI:k-1

The marginalized prior distribution P(SM,klsM,I:k-I,yI:k-l) and marginalized likeli­

hood distribution p(YklsM,1:kl YI:k-l) are now developed. It is first observed from the

partition of SM,k in (3.51) that the marginalized prior can be factorized as

(M-I)N

P(SM,k/SM,I:k-ll YI:k-l) = p(sklsM,k-b YI:k-l) II O(SM,k[i] -SM,k-l[i+ NJ). (3.58)
i=1

This equation follows from the fact that only block Sk of SM,k is a random variable, as

indicated by (3.5). The remaining blocks of SM,k are deterministic shifts of the blocks

from time k - 1. Thus, instead of the distribution P(SM,klsM,I:k-I,y1:k-I) in (3.57), it

suffices to consider only the distribution p(sklsM,k-b YI:k-I)' The marginalized prior

p(sklsM,I:k-I,yI:k-l) is now determined using the Rao-Blackwellisation strategy by

marginalizing the conditional prior p(sklakl Sp,k-I) over the AR coefficients ak:

(3.59)
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Similarly, the marginalized likelihood p(YklsM,I:k, YI:k-l) is found by marginalizing

the conditional likelihood p(Yklhk' SL,k) over the FIR coefficients h k :

p(YklsM,I:k, Y1:k-I) = / p(Yklhk' SL,k)P(hklsl :kl Y1:k-I)dhk. (3.60)

The predicted distributions for the AR and FIR coefficients are available from the

Kalman filter as described in Section 3.4:

p(akIS1:k-I,yI:k-d = N(aklk-l, eJla,klk-d,

p(hkIS1:k' YI:k-l) = N(hklk- b eJlh,klk-I)'

(3.61)

(3.62)

(3.63)

Recursions for the quantities ak,eJla,klk-bhk and eJlh,klk-1 are given in Section 3.4.

The prior for Sk conditional on the AR coefficients ak in (3.59) is obtained from

(3.5):

p(Sklak, SM,k-l) = p(sk!ak,sp,k-l)

= N(Sk-Iak, :Ev ),

using the fact that Sk is dependent on only the past P source vectors at time k - 1.

The likelihood conditional on the FIR coefficients hk in (3.60) follows from (3.19):

p(Yklhk' SM,k) = p(Yklhk' SL,k)

=N(Tkhk, :Ew ),

(3.64)

which uses the fact that Yk is dependent on only the past L source vectors at time k.

We now substitute (3.61),(3.62) and (3.63),(3.64) into (3.59) and (3.60) respec­

tively. The integrations of (3.59) and (3.60) may then performed. The results provided

in Appendix A are:

p(sklsM,I:k-l, YI:k-l) = N(Sk-Iaklk-l, R k),

p(YklsM,I:k, YI:k-l) = N(Tkhklk-b Qk),

where the following two definitions have been introduced

R k = Sk-l eJla,klk-ISLI + :Ev ,

Qk = Tk~h,klk-ITr + Ew ·

(3.65)

(3.66)

(3.67)

(3.68)
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Finally, (3.65) and (3.66) are substituted into the recursion for the marginalized

posterior distribution in (3.57). This facilitates the importance weight update process

which is described later.

Comparing the conditional prior (3.63) and likelihood (3.64) with the correspond­

ing marginalized expressions in (3.65) and (3.66), it can be seen that the Kalman

predicted means aklk-l and hklk- 1 are used as estimates of the true state variables

ak and hk , while the uncertainty in the Kalman filter estimates is reflected in the

particle filter through the inclusion of the covariance terms ~a,klk-l and ~h,klk-l'

For notational convenience, we now write the recursion for the marginalized pos­

terior distribution from (3.57) in the standard form shown in the last line of (2.35):

( I ) p(YklsM,k)P(SM,klsM,k-d ( I )
P SM,l:k Yl:k = (I ) P SM,l:k-l Yl:k-l .

P Yk Yl:k-l
(3.69)

This hides the dependence on the state SM,l:k-2 and measurement Yl:k-l histories that

were used in the marginalization procedure. In practice, these histories do not have to

be stored since they are captured by the sufficient statistics of the mean and covariance

of the Kalman filter recursions. The steps of the SIS particle filtering algorithm

for source estimation are now presented based on the state space formulation and

marginalized distributions developed in this section.

3.3.1 Generation of the Particles

From Section 2.4.5, the optimal importance function is

q(SM,klsM,l:k-l,yl:k) = P(SM,klsM,k-l' Yk)

p(YklsM,k)P(SM,klsM,k-l)
-

p(YklsM,k-l)

(3.70)

The optimal importance function is a function of SM,k which is of dimension MN.

From the form of the marginalized prior in (3.58), the quantities Sk-M+l:k-l in the

state vector SM,k are deterministic functions of the state at the previous time step.

Therefore, in the proposed particle filter algorithm, the particle values for Sk-M+l:k-l
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in SM,k are reused from previous time steps. This reduces the problem to generating

particles from the optimal importance function for the component Sk of dimension N

given by

( I ) - p(Ykl s L,k)P(Skl s p,k-l)
P Sk SM,I:k-l, Yl:k - (I )

P Yk SM,k-l

P(Yk ISL-l,k-l' Sk)P(Sk ISp,k-l)

p(YklsM,k-d

(3.71)

where a partition of the vector SL,k is applied in order to isolate the variable Sk.

To determine an expression for the marginalized likelihood in terms of Sk, rather

than (3.66) which is in terms of the matrix T k , the equivalence of the measurement

representations (3.18) and (3.19) is used along with the definitions for SL,k in (3.16)

and H k in (3.23):

Tkhklk-l = Hklk-lSL,k

L-l

= L H k lk - l ,£ Sk-£

£=0

= H k lk - l ,OSk + Y"klk-l,

(3.72)

where the matrices Hk1k- l ,£ are formed from the Kalman filter estimate hk lk- ll and

the predicted measurement is defined as

L-l

Y"klk-l = L H k1k- l ,l Sk-£'

£=1

(3.73)

Using this relation results in a marginalized likelihood equivalent to (3.66), but now

written explicitly in terms of Sk:

(3.74)

Even though the optimal importance function for Sk in (3.71) is proportional to the

product of the Gaussian distributions (3.65),(3.74), it is not Gaussian itself since the

covariance term Qk has a dependence on T k , and therefore on the variable of interest
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where

(3.85)

It is assumed in constructing sk k that the initial sources So, S-b S-2,' .. = O. Through,

comparison with (2.15) and (2.16), the approximation to the optimal importance

function can be interpreted as a Kalman filter update on the prediction sklk-l from

the transition prior. The current measurement is incorporated into the generation

of particles after multiplication by the Kalman gain factor Wk' The generation of

particles is reduced to a linear-Gaussian problem by conditioning on the predicted

estimates hklk- b 3.klk-b and approximating the marginalized measurement covariance

Qk using Qk'

3.3.2 Update of the Importance Weights

With use of the given approximation to the optimal importance function, the recursive

update for the importance weights reduces to

(3.86)

(3.87)

where p(Ykls1,k) is evaluated using (3.74), p(Ykls1,k) is evaluated using (3.79), and

p(Ykls~,k-l) = Jp(YklsLl,k_l'Sk)p(Skls~,k_l)dSk
A i i A i A i A i A • i A (i)T

= N(Hklk-l,OSk-lak/k-l + Yklk-l, Qk + Hklk-l,o(Rk)Hklk-l,o)'

The identity (B.24) in Appendix B has been used to rewrite the integrand as the

product of the Gaussian importance function for Sk and a Gaussian distribution for

Yk that is independent of Sk. Integrating over Sk integrates the importance function

for Sk to one, and results in the remaining Gaussian distribution. After the weight

update, the weights are normalized using (2.29).
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3.3.3 Source Estimation

Statistical inference on the sources can be determined from the set of particles SM-,k

and corresponding importance weights wt. Source estimation is performed before

the subsequent resampling step since resampling introduces random variation in the

current sample [61]. The filtered MMSE estimate of Sk given Yl:k is computed based

on the Monte Carlo approximation in (2.32):

Np

SAMMSE "" '" Si Wi
k "" 6 k· k·

i=l

(3.88)

Since the past M - 1 source vectors are also being stored in sk k' smoothed,

estimates of the past states Sk-l at a lag f = 1,2, ... , M -1 from the current time can

be computed using a fixed-lag Monte Carlo smoothing algorithm [25J. The smoothed

MMSE estimate of the source vector Sk-l given the measurements up to the current

time k is given by

(3.89)

Smoothing methods can improve performance by incorporating future measurements

into the state estimate. For real-time applications in which an estimate Sk must

be produced at time k, then the filtered estimate in (3.88) must be used. The

smoothing algorithm can only be considered when real-time estimates are not re­

quired. Other smoothing methods, including fixed-interval smoothing, could also be

considered [35],[54].

For comparison with the PCRB, the MMSE estimate of the one-step-ahead pre­

dicted sources is computed using

(3.90)

where sklk-l is defined in (3.75).
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3.3.4 Resampling

In order to prevent the problem of importance weight degeneracy as described in--Section 2.4.4, a resampling step is used. The approximate effective sample size Neff in

(2.43) is used as a measure of the degeneracy of the sampling scheme. A resampling

step occurs whenever~ is below a fixed threshold Nthresh.

The systematic resampling algorithm [54] is used for the simulations. This ap­

proach minimizes the Monte Carlo variation introduced into the resampling step. In

addition to resampling the particles for the state variable of the particle filter sk k',

the corresponding Kalman filter means and covariances, and noise variance MAP

estimates are also resampled according to the resampled indices.

3.3.5 MCMC Diversity Step

An undesired consequence of resampling is that the particles with high importance

weights can be selected numerous times. This is shown in Figure 2.1, in which parti­

cles with high importance weights are duplicated after resampling. The resulting loss

of statistical diversity in the particles is known as sample impoverishment [7J, and

can degrade the performance of the particle filter. It is instead preferable to have

distinct particles values that are clustered in the regions of high importance weight­

ing. One method of reintroducing diversity into the resampling procedure is the use

of a Markov Chain Monte Carlo (MCMC) step after the resampling step [26]. The

Metropolis-Hastings (MH) algorithm is used to implement the MCMC step by draw­

ing candidates from a proposal distribution q(.) and using an accept-reject method to

produce samples distributed from the desired invariant distribution 71"(') of the chain

[33]. The optimal importance function is used as the MH proposal distribution to

generate the candidates sZ:

q(s*) = p(YklsL-l,k-b sZ)p(SZISp,k-d
k p(YklsM,k-d .

(3.91)
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We are interested in creating diversity by producing samples for the current source

vector Sk from the posterior distribution. In this case the desired invariant distribution

is the update factor for Sk in (2.35), which is equivalent to the optimal importance

function as discussed in Section 2.4.5:

7r(Sk) = p(YklsL-l,k-l, sk)p(sklsp,k-d.
p(YklsM,k-d

The MH acceptance ratio r is then

(3.92)

(3.93)

7r(S*)q(S(i»)
r = k. k

7r(Sic)q(Sk)

_ p(Yklsl-l,k-l' Sk)P(Yklsl-l,k-l, sD

- p(Yklsl-l,k-l' si)p(Yklsl-l,k-ll Sk)'

The probability that the candidate is accepted, in which case st is replaced with the

candidate sk in the particle trajectory, is given by

a = min{l,r}. (3.94)

3.4 Kalman Filtering for AR and FIR Coefficient

Estimation

Kalman filtering is used to analytically compute the recursion for the Gaussian dis­

tributions p(Clklstk' Y1:k) and p(hklstk' Yl:k) appearing in (3.50) using the source par­

ticles stk from the particle filtering algorithm. The Kalman filter also produces

the predicted distributions p(ak IS1:k, Yl:k-l) and p(hkls1:k' Yl:k-l) used to develop the

marginalized likelihood and prior in Section 3.3. This allows the decoupled pair of

Kalman filters for each source particle to operate in parallel. MMSE estimates can
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be determined from the particle filter importance weights and the Kalman state esti­

mates, which are described in the next two subsections:

hAMMSE _
k -

Np

Lh~lk ·w~,
i=1

Np

= La~lk .w~.
i=1

3.4.1 AR Coefficient Estimation

(3.95)

(3.96)

The Kalman filter updates the mean and covariance of the filtered Gaussian distri­

bution for the AR coefficients ak:

(3.97)

and the predicted distribution

(3.98)

The Kalman filtering algorithm for AR coefficient estimation is [58]:

Updated state estimate: Ai
a~lk-l +W~(s~ - SLla~lk-l)' (3.99)aklk =

Updated state covariance: ~~.klk - ~~.klk-l +wlsLI ~~.klk-l' (3.100)

Innovation covariance: R i . . (i)T A .
(3.101)k = S1-1 CP~,klk-l Sk-l + :E~,

Kalman gain: Wi = ~i S(i)T (Ri )-1 (3.102)k a,k\k-l k-l k ,

Predicted state estimate: Ai = Ai (3.103)aklk- 1 aaak- 1\k-l'

Predicted state covariance: ~~,klk-l
2 .

(3.104)= aact>~.k-llk-l + Ea·

3.4.2 FIR Coefficient Estimation

Similarly, the filtered and predicted Gaussian distributions for the channel hk are

p(hklsl:k, Y1:k) = N(h~lk' ~~,klk)'

p(hklsl:k,yl:k-l) = N(hllk-l' ~~,klk-l)'

(3.105)

(3.106)
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The Kalman filtering algorithm for FIR coefficient estimation is:

Updated state estimate: h~lk h~lk-1 + W~(Yk - T~h~lk_1)' (3.107)

Updated state covariance: «P~,klk = ep~,klk-1 +W~T~ep~,klk-1' (3.108)

Innovation covariance: Q~
. (o)T A •

(3.109)= Tkeph,klk-1Tk + E~,

Kalman gain: W~ = epi T(i)T(Qi )-1 (3.110)h,klk-1 k k,

Predicted state estimate: h~lk-1 = ahhL1Ik-l> (3.111)

Predicted state covariance: «P~,klk-1
2 .

(3.112)= ah «Ph,k-1Ik-1 + Eh.

3.5 MAP Estimation of Noise Variances

MAP estimates of the noise covariance parameters Ev and E w are now developed.

For each particle, an estimate E~ of the source noise covariance is computed by

conditioning on SLk from the particle filter, and ai from the Kalman filter. In parallel,

the computation of the estimate t~ can be performed conditioned on sLk and hi.
The MAP estimates for each particle can be combined into a single MMSE estimate

of the variance terms using the importance weights from the particle filter:

( f72 )MMSE
k,v,n

( f72 .)MMSE =
k,w,J

n= 1,2, ... ,N,

j = 1,2, ... ,J.

(3.113)

(3.114)

The calculation of the terms f7~~~n and f7~~,j now follows.

3.5.1 Source Noise Variance Estimation

To calculate the MAP estimate of the diagonal source noise covariance E v , consider

only the terms dependent on the noise variance 0"; n of the nth source in the joint,



Michael Daly M.A.Sc thesis - Electrical & Computer Engineering, McMaster 50

posterior distribution (3.37):

p(01:kIY1:k) oc (a;,n)-~-l exp [- 2;~J

Ilk 1 exp [--l-(s-ln]- ST _ ak- )2]_ (2)! 2a2 k P,k-l,n ,n
k=l av,n v,n

OC (a2 )-(~+~+l) exp [__1_ (,n + ~ ~(skln] _ ST _ ak )2)] .
v,n (12 2 2 L...J P,k-l,n ,n

v,n k=l

(3.115)

It is seen through comparison with (3.36) that the last line is an Inverse Gamma

distribution IQ(u, I) with

u =

I =

(3.116)

(3.117)

It is readily verified that the mode of the Inverse Gamma distribution is uTI. There­

fore the MAP estimate corresponding to the i th particle is

1!!. + !,,~ (_ l Ji _ (i)T i)2
0-2(i) _ 2 2 Wk=l Sk n sP,k-l,nak,n

k,v,n - !£ + .!!n. + 1
2 2

Assuming a non-informative prior using Un = 0, In = 0, this reduces to

1 "k ( l]i (i)T i)2
A2(i) '2 wk=l Sk n - SP,k_l,nak,n
(1 - ------:----:...~=.:;.:..-=.:...-

k,v,n - !£ + 1
2

3.5.2 Measurement Noise Variance Estimation

(3.118)

(3.119)

The MAP estimation of the diagonal measurement noise covariance E w follows from

the method for the source covariance above, where assuming a non-informative prior

Uw,j = 0, IWJ = °for the lh sensor noise variance, the MAP estimate corresponding

to the i th particle is

(3.120)
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In implementation, both the source and measurement noise variances can also be

recursively updated using an exponential weighting factor 0 ~ A < 1 as shown for

only the source variance:

(3.122)

(3.121)

and {~vn = o., ,

variances.

. i i (i)T i 2
{1,v,n = A{k,v,n + (sk[n] - SP,k-1,nak,n) ,

1 i
A 2(i) 2{k,v,n
I7k ,v,n = l-,),k + 1 .

2(1-,),)

This allows the algorithm to follow small fluctuations in the noise

3.6 Identifiability Conditions

The discussion of identifiability conditions for the proposed Bayesian formulation is

based on [63]. It has been shown [48],[46] that sufficient conditions exist for blind

identification of time-invariant MIMO systems with FIR channels and coloured in­

puts using second-order statistics (SOS). The proposed state space model consists of

FIR channels and coloured inputs. Therefore we use the existing conditions in [46],

based on results from [48], to first justify identifiability of the sources, channels and

measurement noise variances. It is also noted that the posterior distribution using

a Bayesian approach captures all statistical information about the system, including

SOS of the outputs.

It is well-known that blind identification of the sources and/or channel for the

blind system identification problem is subject to an inherent permutation and scaling

ambiguity [14J. We now quote the sufficient identifiability conditions directly from

[46]:

A FIR MIMO system is identifiable (i.e. the power spectral matrix of

the outputs Syy(z) implies the channel matrix H(z) up to a column-wise

scaling and column-wise permutation) if we have the following:

A1) H(z) is irreducible.
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A2) The input power spectral matrix Sxx(z) is diagonal and of distinct

(polynomial or rational) functions.

A3) The noise power spectral matrix Sww(z) = p(z)p(z-l)I and J(sensors) >

N (sources) .

In the first condition, an irreducible polynomial matrix has full column rank for all

z except z = O. The second condition ensures the sources are mutually uncorrelated

with distinct power spectrum [48]. The third condition specifies that the measurement

noise variance can also be identified provided the noise elements are mutually uncor­

related with equal power spectra. The condition of more sensors than sources ensures

that the noise variance can be determined from the smallest real eigenvalue of Syy(z)

[46]. Refer to [50] for more detailed descriptions of irreducibility, and polynomial and

rational functions. These identifiability conditions were used in the development of

the existing BIDS algorithm referenced in Section 1.3.

Given that the source can be identified under these sufficient conditions, we can

also identify the AR coefficients and source noise variance using previous identifia­

bilty results for autoregressive time series [I1J. Therefore the source, channel, AR

coefficients and noise variances are jointly identifiable, assuming the system is time­

invariant. This implies that the joint posterior distribution P(Ol:KIYl:k) has a set

of unique maximum values which identify Ol:K up to the inherent permutation and

scaling ambiguity. Therefore, if the problem has a solution using e.g. BIDS, then it is

identifiable using our Bayesian approach. The case of a time-varying system is beyond

the scope of the current thesis. Whether these sufficient identifiability conditions can

be relaxed using the proposed algorithm is an open research question.



Chapter 4

Performance Evaluation

This chapter presents simulation results for the developed marginalized particle filter­

ing algorithm. First, the PCRB for the given state space model is derived. Definitions

of the parameter settings and performance measures used in the simulations are then

described. The simulation results demonstrate the performance of the algorithm in

estimating the unknown system.

4.1 PCRB for Blind System Identification

The Posterior Cramer-Roo bound for the discrete-time nonlinear filtering problem

was summarized in Section 2.5. The random parameter we are estimating for the

blind system identification problem is 8 1:K from (3.28). The derivation of the PCRB

is simplified by assuming the noise variances and AR coefficients are known. The

reduced state variable under consideration for this section is then

(4.1)

The dimension of 4Jk is denoted by r, which is equal to the sum of the dimension of

h k (JNL) and S M,k (NM):

r= JNL +MN.

53

(4.2)
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The state transition equation in terms of the state variable <Pk is written in the form

of (2.6) as

<PHI = fk(<Pk' Uk)

= Fk<Pk + Uk·

(4.3)

The definitions for the matrix Fk and the vector Uk follow from the state equations

for hk (3.27) and SM,k (3.52):

A -
= Fk<Pk + Uk

The corresponding measurement equation in the form of (2.7) follows from the equiv­

alent representations in (3.55) and (3.19):

gk(<Pk' Wk) = HksM,k + Wk

= Tkhk + Wk·

(4.5)

(4.6)

(4.7)

The PCRB is given as a lower bound for the covariance of the one-step-ahead

predictor in (2.53). MMSE one-step-ahead predicted estimates of <Pk given the mea­

surements YI:k-1 are obtained for the source Sk from (3.90), and for the channel hk

by substituting the predicted channel from the Kalman filter in (3.111) into (3.95).

The matrix expressions F k , R;I, G k , Qk and Po used in the recursion for P k+1

in (2.54) are derived in Appendix C.

4.2 Simulation Definitions

Definitions of parameter settings and performance measures used in the simulations

are now developed. First, the ratio of the source noise variance to the measurement

noise variance is defined as the Noise Variance Ratio (NVR):

NVR = 101oglO (:i) .
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Figure 4.1: Example of dominant likelihood scenario

The ratio of the two noise variance parameters indicates a measure of the dominance

of the prior over the likelihood. An example of a scenario with a dominant likelihood

(small NVR), is illustrated in Figure 4.2.

The signal-to-noise ratio for the nth source SNRs,n is defined from (3.1) by iden­

tifying aI,nSp,k-l,n as the signal component, and vk-dnJ as the noise component:

(
lE{aT

S ST a})
SNR - 10 I k,n P,k-I,n P,k-I,n k,n

s,n - OglO 2 .
O'v,n

For the case of a single source following a first-order AR model with time-invariant

AR coefficient ak = a, the expression can be evaluated as

SNRs,n = 10 10gIO (1 ~~a2 ) •

In general, SNRs,n is not tractable in closed-form since it requires the computation

of the covariance matrix for the AR process Sk,n [52J. The SNRs,n is computed nu-

merically based on the statistical realization in the simulation, except when it can

be computed using (4.9). The SNRs,n determines the predictability of the source
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equation, which influences the effectiveness of the prior in generating particles and

the performance of the Kalman filter in estimating ak,n'

The signal-to-noise ratio for the lh measurement SNRy,j is defined as

(
lE{hT

S ST h,})SNR . - 10 I k,j L,k L,k k,)
"'11» - oglO a 2 . '

W,)

(4.10)

where from (3.15) the term hLsL,k is identified as the signal component and Wk[j]

is the noise component. For a single source from a first-order AR model with time­

invariant AR coefficient ak = a and channel h kJ = h j , the expression simplifies to

(4.11)

(4.13)

The Toeplitz matrix R s is formed from the correlation function rs(T) [52]:

R s = lE{SL,kSI,k}

r(O) r(l) r(2) r(L - 1)

r(l) r(O) r(l) r(L - 2)

= r(2) r(l) r(O) r(L - 3) (4.12)

r(L - 1) r(L - 2) r(L - 3) r(O)
aT

r(T) = a;--2' T=O,I, ... ,L-lI-a
In the general case, SNRy,j is computed numerically. The SNRy,j influences the

contribution of the likelihood in generating particles, and the performance of the

Kalman filter in estimating hk,j'

The performance of the marginalized particle filtering algorithm in estimating the

general variable ak is measured using the mean square error (MSE)

MSE(&k) = 1OlogIO (~ f lIat - &tll~) ,
t t=1

where the squared error between the true variable at and the estimate &i at time

k is averaged over Monte Carlo simulations t = 1 to Nt. This general expression is
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used to evaluate the MSE of the state space variables by replacing Ok with each of

the vectors Sk, hk , ak, diag(Ew), diag(Ev ). The plot of the MSE over time is referred

to as the learning curve, and illustrates the convergence speed of the algorithm. The

average performance over time is computed by averaging over the time indices k = k88

to K:

MSE(o.kss:K) = 1Olog1o (K _~ 1 t (N,1 f lIo~ -o.~II~)) .
88 + k=kss t t=l

The effect of transient initialization error can be removed by selecting the steady-state

time index k88 > 1. The value k88 = 101 is used for the simulations.

In order to evaluate the above MSE, it is necessary to resolve the inherent scale

ambiguity in the blind estimation problem. Based on a least squares formulation, the

unknown scale factor (3n for the nth source is estimated as

(4.15)

The estimated source sn is first multiplied by (3n, and the corresponding estimated

source variance is multiplied by (3~, before computing the MSE. A least squares prob­

lem is also solved for the channel scaling factor by concatenating the channel coeffi­

cients into a single vector.

4.3 Simulation Results

Simulation results are now presented to support the proposed algorithm. A SIMO

system with N = 1 source and J = 2 sensors was run for Nt = 50 Monte Carlo trials.

The dynamical state space model was simulated for time steps k = 1 to K = 500.

The particle filter algorithm begins after the AR models for the state variables Sk,

hk , and ak are initiated for Kinit = 2000 time steps. This is to eliminate the starting

transients and produce steady state AR processes for these variables.
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Figure 4.2: Time-varying AR coefficients Figure 4.3: Time-varying FIR coefficients

The initial P = 4 order AR coefficient vector 80 is generated from a P-order

low-pass Butterworth filter with normalized cutoff frequency W n = 0.25. The time­

varying state ak is then generated from the first-order AR model in (3.14) using

aa = 0.9999 and :Ea = O.OOlIp . Figure 4.2 contains an example of the time-varying

AR coefficients. Stability of the source AR model is enforced by scaling the maximum

absolute value of the AR coefficient poles to just less than one whenever a pole passes

outside the unit circle.

The initial L = 6 order FIR channel vectors ho,j from the source to the lh sensor

are produced from independent draws from a zero-mean Gaussian distribution with

exponentially decaying covariance matrix given by

(

L-l L-2 0 ):Eh,o = diag [e- wr ,e-wr , ... ,e-wz;] . (4.16)

The decay factor W = 0.15 was used in the simulations. The time-varying channel

vector hk is generated from the first-order AR model in (3.27) using ah = 0.9999

and E h = (1 - a~):Eh,O' Figure 4.3 demonstrates typical FIR vectors from all time

steps superimposed on each other. The simulations assume that the FIR channel is

varying slowly compared to the AR coefficients to model a speech source vocal tract

that changes more rapidly than the audio channel [6].
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Figure 4.4: Particulate approximation to the marginalized posterior distribution

The source noise variance was set to u; = 0.01. The measurement noise variance

u~ was set equal for both sensors, and scaled relative to the source noise variance

and AR/FIR coefficients to achieve an average SNRy over the Monte Carlo runs of

approximately 15 dB. The numerical results of simulation parameters averaged over

the Monte Carlo runs are summarized in Table 4.1.

Parameter
Value

NVR SNRs SNRy
14.30 1.03 17.31

Table 4.1 : Average simulation parameter settings

The particle filter was run with Np = 50 particles, and the threshold Nthresh for

the approximate effective sample size was set to Np /3. Figure 4.4 plots an example of

the source particles and importance weights that form the particulate approximation

to the marginalized posterior distribution at an arbitrary time step. A single Monte

Carlo run of the algorithm implemented in Matlab took approximately 3 minutes

(0.18 seconds per time step) on a standard 2 GHz PC. The computational complexity

of a general marginalized particle filtering algorithm is studied in [51], including an

analysis of equivalent flop count, guidelines for optimal partitioning of the estimation

problem, and suggestions for algorithm modifications to reduce complexity.
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Figure 4.5: SIMO source estimation
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Figure 4.5 compares the MMSE estimate of the source with the true source up

to time index k = 150 from a typical Monte Carlo run. The learning curves of

MSE over time from (4.13) are presented in Figure 4.6 for the AR/FIR coefficients,

source and measurement noise variances, and source. The time-averaged MSE values

computed over the Monte Carlo trials using (4.14) are shown in Table 4.2 for all

the unknown state space variables. Normalizing the MSE of the multidimensional

variables ak E JRNPXl and hk E JRJNLxl by the state dimension results in values of

-12.09 and -15.83 dB, respectively.

-23.08 -5.03 -6.07

Table 4.2: MSE simulation results
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For comparison with the PCRB, the noise variances and AR coefficients are set

to their true values as described in Section 4.1. It is noted that the algorithm had

negligible performance loss when these parameters were estimated instead of assumed

known. With the noise variances known the inherent scaling ambiguity reduces to a

sign ambiguity, which is resolved before computing the MSE. The state space model

was simulated for K = 1000 time steps using a time-invariant P = 1 order source AR

model with coefficient value set to a = 0.9535, corresponding to SNRs = 10 dB. The

model order for the time-varying FIR channel was set to L = 3, while all other state

space parameters are as described above. The required expectations for the PCRB

matrices were evaluated by averaging 5000 i. i. d. realizations of the state space model.

The MSE of the MMSE one-step-ahead predicted estimates of the source and channel

were averaged over Nt = 50 Monte Carlo runs. One Monte Carlo run was discarded

since the particle filter momentarily tracked a scaled version of the source, rather

than to within a sign ambiguity. Figure 4.7 plots a range of numerical SNRy values

versus the PCRB and MSE both averaged over the last 100 time steps. The source

PCRB saturates at high SNRy to a value of -20 dB since the performance of the one­

step-ahead predictor for the source is limited by the source noise variance 0-; = 0.01.

Figure 4.8 compares the PCRB and MSE for the source and channel over time k = 1

to 1000 with measurement SNRy approximately 0 dB. The figures illustrate that

the source MSE compares well with the PCRB, falling within 1 dB of the lower

bound over the range of SNRy. The performance of the 6-dimensional channel vector

falls within 8 - 10 dB of the PCRB. For the application of speech dereverberation,

we are most interested in directly recovering the source, rather than in obtaining

a channel estimate. As such, the simulation results confirm that the Monte Carlo­

based particle filtering approach to the blind system identification problem achieves

an acceptable level of performance. It is also noted that this performance is achieved

using a moderate number of particles.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

A marginalized particle filtering algorithm has been proposed for the blind system

identification problem of estimating AR sources mixed by FIR channels in the pres­

ence of additive white noise. The sequential estimation of the dynamic state space

model was implemented using sequential Monte Carlo methods which handle the non­

linearity in the model. The conditionally linear-Gaussian structure in the model was

exploited using the Rao-Blackwellisation technique which resulted in a more efficient

particle filter. By marginalizing out the AR and FIR coefficients, the source is directly

recovered which makes the proposed algorithm suitable for the speech dereverberation

problem. The performance of the particle filter was also improved through the use

of a Gaussian approximation to the optimal importance function. Simulation results

have demonstrated the effectiveness of the method in estimating each of the state

space variables. Comparison of the results with the derived Posterior Cramer-Rao

bound has also provided theoretical validation on the performance.

64
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5.2 Contributions to the Scientific Literature

The research summarized in this thesis has also been published or submitted to a

number of conferences. A journal paper is under preparation. Conference paper (1) is

based on previous research not summarized here. Paper (5) is a result of collaborative

research and is also not included in the thesis.

• Journal Papers

1. Marginalized particle filtering for blind system identification. Under prepa­

ration.

• Conference Papers

1. M.J. Daly and J.P. Reilly, "Blind deconvolution using Bayesian methods

with application to the dereverberation of speech", IEEE Proc. Interna­

tional Conference on Acoustics, Speech and Signal Processing, Montreal,

Canada. May 17-21 2004.

2. M.J. Daly, J.P. Reilly and J.H. Manton, Invited Paper, "A Bayesian ap­

proach to blind source recovery", to appear Thirty-Eighth Annual Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA. Nov.

7-10,2004.

3. M.J. Daly, J.P. Reilly and J.H. Manton, "A Bayesian approach to blind

source recovery", to appear IMA Conference on Mathematics in Signal

Processing VI, Cirencester, England. Dec. 14-16 2004

4. M.J. Daly, J.P. Reilly and M.R. Morelande, "Rao-Blackwellised particle

filtering for blind system identification", submitted to IEEE ICASSP 2005.

5. D. Yee, M.J. Daly, J.P. Reilly and T. Kirubarajan, "Rao-Blackwellised

particle filters for mixture Gaussian processes". Under preparation.
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5.3 Future Research

Two directions for future research are provided. First, a novel extension to sequen­

tial importance sampling is developed in detail. The application of the proposed

marginalized particle filtering algorithm to the speech dereverberation problem using

a filter bank structure is then outlined.

5.3.1 Block Sequential Importance Sampling

The block sequential importance sampling (BSIS) formulation of the particle filter is

now introduced. We first revisit the proposed marginalized particle filter algorithm

based on the classical SIS approach. The algorithm is analyzed to determine how the

structure of the convolution state space model can be exploited to further improve

the efficiency of the particle filtering algorithm.

In Section 3.3, the particle filtering problem for nonlinear estimation of the sources

is formulated in terms of the state variable SM,k given by

_ [ T T T]T
SM,k - sk-M+ll Sk-M+2, ... ,Sk . (5.1)

The importance function for SM,k is shown to reuse the particle values for Sk-M+1:k-1

from the previous time steps. This was a result of the state update for SM,k illustrated

in (3.52). The particles for the remaining quantity Sk in SM,k are generated from the

Gaussian importance function in (3.82). This form of the importance function in the

SIS implementation leads to the following two observations:

1. The current measurement Yk is only incorporated into the particle generation

process for Sk in the form of a Kalman filter update. From the form of the

convolution model
£-1

Yk = ~Hk.lSk-l + Wk, (5.2)
l=O

the current measurement is directly related to the past source vectors Sk-l, f =

1,2, ... , L -1 as well. Our first goal is to use the information in Yk to generate
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new particle values for the quantities Sk-M+l:k-l appearing in SM,k'

2. Diversity is only introduced on Sk, which can lead to sample impoverishment

in the state vector SM,k' Since the particles for Sk-M+l:k-l are assumed known

at time k in the recursive implementation, only Metropolis-Hastings candidates

that are identical to these values are accepted which produces no diversity.

The second goal is then to reintroduce statistical diversity on the quantities

Sk-M+l:k-l·

The BSIS formulation of the particle filter is developed next to achieve the two spec­

ified goals.

The development of the SIS particle in Section 2.4.3 makes use of following fac­

torization property of the importance function:

(5.3)

This assumption is used to prevent having to modify the particles for the past history

Xl:k-l based on the new measurement Yk. The benefit of this approximation is to

reduce computational complexity since the particles for the state history X1:k-l do

not have to be redrawn.

The BSIS approach proposes to generate particles at time k for the block of B

most recent states Xk-B+l:k, denoted as XB,k' This offers a compromise to having to

redraw particles for the entire state history Xl:k-l' This is done at the expense of

increased computational complexity in the algorithm. This leads us to consider an

importance function with the following factorization property:

(5.4)

This specifies that the block of states XB,k are being jointly drawn from the importance

distribution q(XB,klx1:k-B, Yl:k), and that the current measurement Yk is incorporated

into the particle generation for past states xk-B+l:k-l' In addition, diversity can be

introduced on these past states as well since Xk-B+l:k-l are not assumed known at
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time k. By considering the state variable SM,k with the use of a block size B of

M states, it is seen that this formulation achieves the two desired goals specified in

the previous section. Figure 5.1 compares the basic principles of the SIS and BSIS

particle filters.

No Diversity
I

SIS:

BSIS:

Xk-B+l • • • Xk-l Xk

f
! ! ! !

Xk-B+l • • • Xk-l Xk

Yk

I
Diversity

Figure 5.1: Comparison of the SIS and BSIS particle filters

The corresponding recursion for the posterior distribution is developed by applying

Bayes' theorem to produce a likelihood for the block of measurements YB,k and a prior

for the block of states XB,k:

(5.5)

(5.6)

The recursive update for the importance weights using (5.4) and (5.5) then follows as

i P(YB,klxLk)P(xk,klxLB) P(xLk-BIYl:k-B)
Wk ex: q(Xk,klxLk-B' Yl:k) q(xLk_BIYl:k-B)

i p(YB,klxLk)P(xk,klxi-B)
ex: wk B (. I . )- q XB,k Xl,k-B' Yl:k
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The weight recursion implies that the previous weights Wk-B:k-l need to be stored.

Also, the importance function draws samples for XB,k rather than just Xk. These ob­

servations indicate that a reasonable rule of thumb for the increase in computational

complexity for the BSIS approach is a factor of O(B). The BSIS implementation is

designed to reduce the number of particles required to achieve a desired level of per­

formance by introducing additional measurement information and diversity into past

states. In a convolution model, these past states directly influence the performance

in estimating the current state. Therefore, the choice of a BSIS implementation is

only beneficial if it can outperform a SIS implementation which is allowed to use B

times as many particles. The choice of using SIS or BSIS would then be dependent on

the specific application and the tradeoffs between computational cost and algorithm

performance.

FUture research to incorporate the BSIS formulation into the proposed marginal­

ized particle filtering algorithm is required. It is also noted that the BSIS method may

have application beyond the specific blind system identification problem presented in

this thesis.

5.3.2 Dereverberation of Speech

For the problem of the dereverberation of speech, typical AIR can be in the order of

250ms, or 2000 samples at a sampling rate of 8kHz. The large computational cost

of dealing with such a long channel can be addressed by decomposing the problem

into smaller independent blind estimation problems using the complex subband de­

composition [76]. In previous work [21], which was an extension of [92], the complex

subband decomposition was used together with an MCMC algorithm that estimated

the source. The use of the proposed marginalized particle filtering algorithm allows

many of the previous assumptions to be relaxed, and to consider more realistic models

for the speech sources and acoustic channel. FUture work is required to implement

the proposed blind estimation algorithm using the complex subband decomposition.
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The use of the filter bank structure requires a prototype filter design that can

accurately implement the complex subbanding decomposition. An efficient method

for the design of oversampled near perfect reconstruction (NPR) generalized discrete

Fourier transform (GDFT) filter banks is presented in [91J. This approach can be

considered for the design of the prototype filter, in addition to previous methods

described in [76J.

It is then of interest to test the proposed blind estimation algorithm in addressing

the practical problem of the dereverberation of speech. Real audio data has been

collected in a reverberant room on campus in two experiments. In the first mea­

surement setup, the acoustic impulse responses of the room were measured using

a four-element array of omnidirectional microphones. The relative location of the

speaker producing the test signal was varied, along with the spacing and heights of

the array elements. In the second measurement setup shown in Figures 5.2,5.3, the

testing procedure described in [90J was followed. The collected measurements were

added to the R-HINT-E (Realistic Hearing In Noise Testing Environment) database.

The audio signals were measured using KEMAR, a head-torso model which includes

a three-element microphone array inserted in each ear. The data from these two ex­

periments can be considered for testing the complex subbanding implementation of

the proposed algorithm.
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Figure 5.2: Experimental setup for measuring acoustic impulse responses

Figure 5.3: Three-element microphone array in KEMAR



Appendix A

Derivation of the Marginalized

Prior and Likelihood

The marginalized likelihood p(YklsM,l:k,Y1:k-d and prior p(sklsM,l:k-b Yl:k-l) are de­

rived for the SIS marginalized particle filtering algorithm in Section 3.3. The deriva­

tion follows the proof presented in [79J, and only the key steps are shown here. In

addition to deriving the marginalized distributions, an identity is derived for use in

Appendix B to derive the Gaussian approximation to the optimal importance func­

tion.

The marginalized likelihood is derived from the measurement model by marginal­

izing over the channel hk:

where from Section 3.2

(A.2)

72
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and

(A.3)

The approach of the proof is to factorize the integrand in (A.I) into the product of

a Gaussian distribution for hk and a Gaussian distribution for Yk independent of hk •

Marginalizing over the channel then integrates the Gaussian distribution for hk to

one, and the remaining Gaussian distribution is identified as P(YkISL,k)' Defining

11k = hk - hk1k- 1,

Yk = Yk - Tkhklk- 1,

and grouping expressions results in

(A.4)

(A.5)

(A.6)

The exponent can be written as the quadratic form

[
11k] T [ cI»h,klk-l + TflJ;;;lTk -TflJ;;;l] [hY~kk] . (A.7)
h -E;;;lTf E;;;l

The matrix can be factored as

where the following terms are defined

(A.8)

= (cI»h,k'k-l + TfE;;;1T k ) TfE;;;I ,

cI»h,klk-l + TIE;;;lTk'

= E-1 _ E-1T (TTE-1T + ~-l )-lTTE-1
w w k k w k h,klk-l k w'

(A.9)

(A.lO)

(A.11)
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The repeated use of the matrix inversion lemma given by

results in the expressions

Wk = ~h,klk-1TrQkl,

~h,klk = ~h,klk-l - WkTk~h,klk-l,

Qk = Tk~h,klk-1Tr + ~w'

(A.I2)

(A.I3)

(A.I4)

(A.I5)

From the description of the Kalman filter in Section 2.3, it can be seen that these

are expressions for the Kalman gain Wk, updated Kalman covariance ~h,klk, and

innovation covariance Qk' Using properties of the determinant operator, it can also

be shown that

(A.I6)

Using this property and expanding the quadratic form for the exponent using the

factorized matrix allows the integrand in (A.6) to be factorized as

(A.I7)

By comparing the original integrand in (A.I) with the integrand in (A.I7), it is noted

that the following identity has been developed:

N(Yk; Tkhk, :Ew)N(hk;hklk- b ~h,klk-l)

=N(Yk; Tkhklk-l, Tk~h,klk-1Tr+ ~w) (A.I8)

N(hk;hklk- 1 + W k(Yk - Tkhk1k-d, ~h,klk-l + W kTk~h,klk-l)'
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The random variable in each Gaussian distribution has been noted for clarity, along

with the mean and covariance. This identity is also used in the development of the

Gaussian approximation to the optimal importance function in Appendix B. By inte­

grating over hk, the Gaussian distribution for h k integrates to one, and the Gaussian

distribution for Yk is constant with respect to h k and therefore

(A.19)

The same method can also be applied to determine the marginalized prior distribu­

tion, and the analogous result is

(A.20)

o



Appendix B

Gaussian Approximation to the

Optimal Importance Function

The expression for the approximation to the optimal importance function in (3.78)

specifies that it is proportional to the product of two Gaussian distributions:

where

p(YklsL-l,k-l, Sk) = N(Hklk-1,OSk + Yklk-lI Qk),

p(skISp,k-l) - N(Sk-l8.klk-l, R k).

(B.2I)

(B.22)

(B.23)

A modification of the identity (A.I8) developed in Appendix A is now used to rewrite

the product of Gaussian distributions as

N(Yk; Hk1k-1,OSk + Yklk-lI Qk)N(Sk; sklk-lI R k)

=N(Yk; Hklk-1,OSklk-l + Yklk-l' Hklk-l,oRkH~k-l,O+ Qk) (B.24)

N(Sk; sklk-l +Wk(Yk - Hk1k-1,OSklk-l - Yklk-d, Rk - WkHklk-l,oRk),

where now the Kalman gain is

(B.25)
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The presence of the term hlk-l is addressed in the proof of the identity in Appendix

A by defining

(B.26)

This does not change other aspects of the proof and results in the modification of the

identity used in this section.

The benefit of using this identity is that now the approximation to the optimal

importance function is the product of a Gaussian distribution for the variable of

interest Sk, and a Gaussian distribution for Yk which is independent of Sk, and is

therefore only a scaling term. The importance function can now be identified as

drawing samples from

q(skISM,k-l, Y1:k) =

N(Sklk-l +Wk(Yk - Hklk-1,OSklk-l- hlk-l),Rk - WkHklk-l,oRk).
(B.27)

o



Appendix C

Derivation of the PCRB

The recursion for the PCRB matrix P Hl shown in (2.54) is reproduced here:

(C.28)

The matrix expressions F k , R;l, Gk , Qk and Po defined in Section 2.5 are now

developed using the state space formulation for the state variable ¢k and noise variable

Uk in Section 4.1.' All expectations are evaluated numerically by averaging Monte

Carlo realizations of the state space model.

Derivation of G k :

(C.29)

Using the definition of fk(¢k' Uk) in (4.4) results in

(C.30)

Derivation of Fk :

(C.31)

78



Michael Daly M.A.Sc thesis - Electrical & Computer Engineering, McMaster 79

Derivation of Qk:

(C.32)

The noise vector Uk in (4.4) is defined in terms of the noise vector Vh,k from

Section 3.1.1, and Vk from Section 3.3. The distributions for these noise vectors

are summarized here:

Vh,k rv N(O, ~h),

Vk rv N(o, Ev ),

(C.33)

(C.34)

where from the definition of Vk in (3.54):

- [ O(M-1)N,(M-1)N
~v=

ON,(M-1)N

O(M-1)N,N ] .

~v

(C.35)

Assuming the noise vectors Vh,k and Vk are mutually independent, Uk is then

Gaussian distributed with mean zero and covariance given by

This results in

Qk = (E {~~=~uIQ;;,luk})-1

= Qu,k'

(C.36)

(C.37)

From (C.35), the diagonal matrix Ev contains zero elements on the main di­

agonal. Therefore, the diagonal matrix Qu,k is not invertible. However, since

only the term Qk appears in (C.28), the PCRB recursion handles the case of a

singular transition prior.

Derivation of R;1:

(C.38)
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Based on the structure of the state variable 4>k = [hI, S1,k]T, the matrix Rk" 1

is partitioned into submatrices as follows using the notation Pk = p(Ykl4>k):

R - 1 ­
k -

ill: { - t::.~~,k log Pk} ]

ill: {-t::.:~:: logpk}

(C.39)

The submatrices in the partitioned Rk"1 are now derived individually. We make

use of the two equivalent representations of the measurement equation in Section

4.1. The first form in (4.5) is convenient for differentiating with respect to SM,k,

and the second in (4.6) for differentiating with respect to h k. The submatrices

are now derived:

Rk,~h = ill: { t::.~:~(Yk - Tkhk)T~~I(Yk - Tkhk)}

= ill: {-V'hk(Yk - Tkhk)T~~ITk}

ill: {Tr~~ITk} ,

Rk,~s = ill: {t::.:~::~(Yk - HkSM,k)T:E~I(Yk - HkSM,k)}

{ - T 1-}ill: -V'SM,k(Yk - HksM,k) :E~ H k

{-T 1-}ill: Hk~~ H k .

(CAO)

(CAl)

Before continuing with the derivation of Rk,~h' we simplify the presentation by

observing that since the likelihood is only dependent on SL,k, the derivative with

respect to the previous quantities in SM,k is zero. This is reflected in:

Rk,~h = ill: {t::.~~'k~(Yk - Tkhk)T:E~I(Yk - Tkhk)}

= [ ill: {t::.:~'k[I:(M-L)NIHYk - T khk)T:E;;;I(Yk - Tkhk)} ]

ill: {t::.~Z'k HYk - Tkhk)T~;;;I(Yk - Tkhk)}

= [ O(M~~)IN,NL ] .
Rk,sh
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The matrix R;;h is now derived:,

R - 1
k sh,

(C.42)

(C.43)

To complete the derivation of Rk,;h' we first examine the term Yf~;;/Tk E

jR1xJNL using the definition of T k in (3.25):

Yf~;;;lTk = [Y~[l] sI,k' Y~[2] sI,k' ... , Yk2[J] sI,k] .
0"w,l 0"w,2 0"w,J

Differentiating with respect to SL,k results in:

(
T -1 ) [Yk[l] Yk[2] Yk[J]]

VSL,k Yk~w T k = -2-INL'-2-INL""'-2-INL
O"w,l O"w,2 O"w,J

= (Yf~;;;l) @ I NL .

(C.44)

(C.45)

We now examine the remaining term (HkSM,k)T~;;;lTk E jR1xJNL in (C.42)

using the definitions of Hk in (3.56) and H k in (3.23),(3.24):

(H- )T~-lT [hISL,k T hiSL,k T hJsL,k T ]
kSM,k LJw k = -2-SL,k' -2-SL,k' ... , -2-SL,k

O"w,l O"w,2 O"w,J

where the following definition has been introduced

o. = hJsL,k sT E jR1XNL
] 0"2. L,k .

W,]

For the vectors hj and SL,k E jRNLx1:

NL

hTsL,k = L hj[i]sL,k[i],
i=l

which allows the individual elements of OJ to written as

(C.46)

(C.47)

f=1,2, ... ,NL. (C.48)
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Differentiating aj[f] with respect to sL,k[m], m = 1,2, ... ,NL results in

{

h [lJSL kIll hTsL kaa .[f] , 2 1 ~J +~, f = m
_~J~ _ (Tw

"
(Tw

"

aSL,k[m] - h,[m~sL,k[ll, f -I m
uw,j

This can be written compactly in matrix format as

hJSL,k SL,khJ
'VSL,k(aj) = -2-INL + -2-'

(7w,j (7w,j

(C.4g)

(C. 50)

It is convenient to define the noise-free measurement vector Yk E jRJXI as

h[j] = hJSL,k' j = 1,2, ... , J.

Now differentiating the expression in (C.45) results in

(C.51)

(C.52)

= (yT~;;;l) ® I NL + SL,khn~;;;l ® I NL ).

Using both (C.44) and (C.52) in the expression for R;;h in (C.42) produces,

(C.53)

The difference between the noise-free measurement Yk and the true measure­

ment Yk is equal to the measurement noise vector Wk. Since the measurement

noise is assumed zero-mean, the following holds:

(C.54)

and therefore the final expression for R;,;h is

(C.55)

The derivation of the submatrices forming R;I is completed by noting that

R - I (R-I)T
k hs - k sh •, ,
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Derivation of Po:
(C.56)

The initial state 4>0 is assumed to be Gaussian distributed with mean zero and

covariance given by

This results in

QO,k = [Eh'O _0 ].
o ~v,o

Po = (lE {~:~~4>~QO,l4>o}) -1

= QO,k.

(C.57)

(C.58)

o
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