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. CHAPTER I

PRELIMINARIES ON INFORMATION

SOURCES~ND CHANN~L~

1.1 Introduction

Let X and Y be input and output random

respectively, such that

m
~ q. = 1

j=l J

P(Xn'YJ.) = P(X=xk , Y=y
J
.) = r k·., 0 < P . < 1,

J kJ -

n m
E }:r

k
= 1

k-=l j=l j

m
p (y j /Xk ) = P(y=y/X=xk ) = q j Ik' j:1q j /k = 1

P(X=xk/Y=y.)
,. J

n

= Pk/j' k~lPk/j = 1

be the probability distributions of X and Y respectively.·
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The marginal, joint and conditional entropies are

defined as:

n
H(P) = H(X) = - E P log2 Pkk=l k

2

m
H(Q) = H(Y) - - E q. log2 qj

j =1 J.

n m
H(P,Q) = H(X,Y) = - E E r k . log2 rkjk=l j=1 J

n m
H(P/Q) = H(X/Y) = - E E P(xk,yj ) log2 P(xk/y j )·

k=l j=l

n m
= - E E r . log2 P 1 /.

k=l j=1 kJ K J

n m
H(Q/P) = H(Y/X) = - E E P(xk ' Yj ) log2 P(y./x )

k=l j=l J k

n m
= - E E r k . log2 q. /k

k=l j =1 J JI

-The average amount of information conveyed by

the random variable X about the random variable Y and

conversely is defined as:

The quantity I(X:Y) is also called the

transinformation of the channel.
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I(X:Y) = H(X) + H(Y) - H(X~Y)

"- H(X) H(X/Y)

= H(Y) H(Y/X)

The above definitions and results can be

generalized to the case of random vectors and stochastic

processes.

1.2 Information Source

By a source, we shall understand any object

which gives us information. Hence the output of

the source or equivalently the source itself is similar

to the space of a random experiment. In other words, a

source is the assembla~e of all possible events associated

with the sample space of a complete random experiment

(an experiment whose all events are observable).

Each outcome of the experiment corresponds to

an elementary output of the source; and is called a symbol

or a character or a letter. ~

A finite sequence of characters may be called a

word or a message, i~e. we think of the source as

emitting a sequence of symbol~ from a fixed finite source.

Given an ~lphabet s= {si,s2,.~.,sri}·successi~e letters from

S a~ef selected according to·"some" fixed p~obability law."

A binary source is associated with the sample

space of a random binary experiment when the experiment
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is repeated over and over.

The following three steps summarize the

information - theoretic performance of a binary source:

(i) Alphabet = {letters}

(ii) Probability matrix

[pJ=[p ,1-p] == (p~ q] , .q = 1-P

(iii) (1) Self-Information matrix

lI1= [- log2P , - log2(l-P)1

(2) Average Information per letter

H = I = - P log2P - (1 p) log2{1-p)

The communication entropy for such a binary source is

nothing b~t the average information per leiter i.e.,

H(P) = - p log2P - (l-p) .log2(l-p)

1.2.1 The Complete Description of the Source

Let A be a finite source - alphabet. If the

source under consideration is stochastic, then.from the

theoretical point of view, its output can be regarded

as an.aggre~ate of doubly infinite sequences of the form

x = (••• x_1,xO,x l ••• ), xis~ i == 0, ±l, ±2, •••

All the doubly infinite sequences having

specified letters at specified positions constitue a

cylinder with respect to those specified letters. Hence

to describe the stochastic source, it is sufficient to

know the probabilities ~(Z) of all the cylinders Z.
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Let us consider the set of all cylinders and

its Borel extension FA. Then if the probabilities ~(Z)

of all cylinders Z are known, the corresponding

probabilities ~(S) of all SsFA can be easily determined.

Thus a complete description of the source as a random

process is achived by specifying:

(1) An alphabet A

(2) A probability measure ~(S) defined for all S£F
A

(3) In particular, we'also have ~(AI) = 1 where

AI is the set of all elementary events of the given

space i.e., AI is the set of all doubly infinite sequences.

Therefore we can denote the source by the pair [A, ll] •

1.2.2 Stationary Source

where

(1) x = (••• x_1,xO'x l ••• )

(i1) xk == 'x
k
+

1
(_oo<k<~)

(iii) The operator T denotes the "shift" by one

time unit.

Clearly, if S is any set oj' elements x, then

'llS == {Tx:xsS}

It is easy to see that if SsFA, then TS£FA, also the

operator T maps the set AI onto itself i.e. TAl == AI.
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If 1-I(TS) = 1-1(8) for any set Se:FA, then the source

is called stationary.

Information Channel

Conc~t of Channel

The Mathematical elements which can be used to

characterize a given channel are:

(1) A finite input alphabet A which represents

the symbols or letters which the channel is capable of .

transmitting.

(2) A finite output alphabet B which represents

the symbols or letters emerging from the channel. It is

not necessary that the number of letters in B is the

same as the number of letters in A.

If, to every transmitted symbol 'a', a letter

of input alphabet A , there is given at the output a

unique letter b = b(a) of the output alphabet B then

the channel is called a noiseless channel. But in general

the interference (noise) causes different letters be:E

to be obtained at the· output in different cases when the

same letteraeA is transmitted.

Therefore we can speak of probabilities of

obtaining the letter beB at the channel output given that

the letter aeA was transmitted' and this probability

sometimes depends not only on 'a' but also on the
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sequence of signals transmitted earlier than tat. If

it does not depend upon the letters transmitted earlier

than tat, the channel is said to be without memory.

Thus a channel is compl~tely specified, if we

know the following three facts:

(1) The input alphabet A

(2) The output alphabet B

(3 ) The probability v (S) that (y) is received whenx

a given (x) is transmitted where S£FB for any xsAI

Thus a channel can be represented by the triplet

lA,Vx,B].

1.3.2 Stationary Channel

We shall call the channel [A, vx,B 1stationary,

if,. for all xsAI and SEFB

where T is the shift operator.

1.4 The Discrete Channel

The random nature of the channel may, in many

cases, be described by giving a probability distribution

. over the set of possible outputs.

The distribution of the output will in general

depend on the particular input chosen for transmission
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and in addition may depend on the ~nternal structure of

the channel at the. time the input is. applied•.

This means that if we apply a sequence r 1 ,r2 , ••• ,rn

at the input of a channel, then at the output, perhaps

after an appropriate delay, ~e will receive" a sequence

tl, ••• ,tn • It is reasonable to describe the action of

the channel by giving a probability distribution over

the output sequences t l ,t 2 , ••• ,tn for each input

The family of distributions should also reflect

the fact that the internal state of the channel at the

time the input is applied, will affect the transmission

of information.

Definition: Given two finite sets T, T t to be

called the input and output alphabet respectively and

an arbitrary set S, called the set of states, a discrete

channel is defined as a system of probability functions.

Pn(tl,t2,···,tn/rl,r2,···,rn;s)

where

and

which satisfy:

,



(1)

(2)

P (t 1 ,t 2 , ••• ,t /r1 ,r2 , ••• ,r .s) > 0n n, n'

t 1 ' t 2 ' • • • ., t n ; s

EP (t 1 , ••• ,t /rl, ••• ,r ;s) = 1n n n!,

9

Physcially, we interpret Pn(tl, ••• ,tn/rl, ••• ,rn;s) as

the probability that the sequence tl, ••• ,tn will appear

at the output if the input sequence r1, ••• ,r
n

is applied

and the initial state of the channel, that is, the state

just prior to t. ~ sequence of (r.)· is (s).
].

1.4.1 The Discr~te Memoryless Channel

The discrete channel is memoryless if

not depend on s, and therefore may be written as

(2) Pn(tl,· •• ,tn/rl, ••• ,rn) = Pl (t 1/r1 ) P1 (t 2/r2 ) •••

P1 (tn /rn)

for all t1, ••• ,t ET'; r 1 , ••• ,r ET; n = 1,2, •••, n n

1.4.2 Discrete Channel with Finite Mem0I2l.

Let the input and output alphabets be A andB
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respectively. In memoryless channels, the noise structure

is generally specified by a conditional probability matrix

When the channel has no memory the noise

probability matrix is independent of the life history of

the channel.

When the channel has a finite memory the

noise probability depends on the life history of the

transmitted sequences up to the finite memory time prior

to the emission of the signal. For this purpose, consider

a member x of an input ensemble, and its corresponding

member y at the output th~t is, if x is·t~an~fuitted,

then y is received.

Input Alphabet

A .

Output Alphabet

B

and let AI and B1 be all possible source and received

seq~ences, r~spectively.

In AI, let us focus attention on a cylinder x 4,1

which has a specific letter, say aI' at a spe6ific

position, say x 4, t~en

Similarly for a moment, concentrate on a particular
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cylinder, at the output yl,2, which has a specified

letter, b 2 , at-the position Yl , then

Yl,2 = Y Y b Y••• -1' 0' 2' 2'····

To know the noise characteristi~, we must know

the conditional probabili ty of cylinder yi:--2 being

received when x 4 ,1 is transmitted, i.e.

More specifically, for all possible cylinders

ISAsA at the input, we must have the conditional probability

corresponding to any possible cylinder for messages at

Ithe output SBsB To sum up, the following requirements

are necessary in order to specify a general channel:

(1 )

(2)

( 3)

Input Alphabet A

Output Alphabet B

Thus a discrete channel is specified by the triple [A,Vx,BJ.

When the letters from some message x = •• ~x_l,xO,xl' •••

from the given source A are fed into the channel one

at a time, we obtain at the output the corresponding sequences

- y = ••• Y-l'YO'Yl' ••• of letters from alphabet B.

Let uscconsider _he probability space in which
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the elementary events are ~ll possible pairs (x,y);

xe:AI and ye:B1

Let C be the set of all pairs (a,b) where aEA

and b€:B i. e. , we can regard C as a new alphabet and we

denote by C1 the set of pairs (x,y) of \t/hi ch \'le just

spoke i.e. , specification of I is equivalent(x,y)e:C

to specification of
'I

andYEB1xe:A

We must now introduce probabilities into the

space C1 • Let DC AI and Ec:. B1 i. e.; let D be some set

of elements x and E be some' set of elements y •

Let De:F
A

, Ee:FB so that 1.1 (D) and l.l (E) ,have finite

values.' Let S = {(x,y):x€:D, ye:E}; clearly secI, we

shall write S = D~E and call it the direct product of

D and E.

The probability W(S) of ,this set of the space

,C1 should naturally be' understood to be the probability

of the joint event x~D and yEE.

But the distribution in the space of elementary

events ,?C..~.AI is determfned by the 1.1-law, and for a'given

x, the distribution in the space of elementary events

YEB1 is det~rmined by the Vx-Iaw.

/

Therefore:

\"1 (S) = v,T( D@E) = Jv. (E)c!lJ (xl
D x



1.5.1 Compound Source

Connecting the channel (A,vx,B ] to the source.

[ A,ll 1 and dri ving it uniquely determines a new source

Lc,w1 which is. called the compound source, where its

alphabet is the direct product A0B; the set CI is the

elementary events (x,y) and it is the direct product

A1@B I , and the probability measure "is:

W( S) = W( DI2lE ) = jv (E) d)l (x) ••• (1)
. . D x

1.6' The Channel Output

Let us put D = AI in equation (1), while

leaving EEFB' arbitrary, the quantity W(6~E) is then

the probability of th~ joint event xEA1 and YEE.

Since the first of these two events is certain,

W(D@E) is simply the probability neE) of obtaining a

sequence y belonging to the set E£FB at the channel output.

, Thus we see that the distribution neE) plays

the same rule for the space BI as 11 (D) does for the

space AI. Therefore, .for D = AI, equation (1) becomes,

neE) = W(A~E)=[Vx(E) d)l(x)· ••• (2)

AI

Therefore we can speak of the source (B,nl as

the ehannel output. This source with the sequence
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its output, is uniquely determined, by using equation (2) ,

by· the data of our problem, i.e.) by the source A and

the channel [A,vx,Bl.

Theorem 1.1: If the source tA,~l and the channel

[A,Vx,B] are stationary, then the source (c,wj is also

stationary.

Proo'f: Suppose Sc cI and S = D0E where

It is obvious that TS = TD3TE, therefore equation

(1) gives:

W(TS) = W(TD6WE) = J. V x (TE) dll (x)

xETD

which is equivalent to

W(TS) = f VTz (TE) d\.t (Tz)

TZETD

Since the source LA,ll] and the channel lA,Vx,BJ

are both stationary, we have:

c4.t (Tz) = <t.t (z)

v (E)
z·
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Thus

i.e. WeTS) = W(S)

Therefore the compound source [c,wl is also stationary.

Theorem 1.2: If the ,source (A,1l1 and the channel

[A,vx,Bl are stationary, then the output alphabet source

lB,nl is alsQ stationary.

Proof: We know that

Thus,

It has been proved earlier that, the compound

source is stationary if both the source l A,lJ] and the

channel (A,Vx,BJ are stationary.

'l'hus,

n(TE) = W(TAI@TE) = W(AI®E) = neE)

Therefore th'e source LB, n j is, also stationary.

Remark: The description of Entropy is given in

Reza (8~, Khinchin (7J, Ash (4)and Wolfowitz (101. The
. "

description of stationary source and channels are given

/
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in Kinchin l7), Adler \.. iJ, Ash L 41 and Wo1fowitz (10] •

The specification of discrete channel is given

in Abramson lll, Ash \. 41, Feinstein \..6] and Wolfowitz [lOJ.

The descriptions of compound sources and channels

. are given in Kinch?n t 7jand Feinstein l6].



CHAPTER II

ERGODIC SOURCES AND CHANNELS

. 2.1 Introduction

The state space of the experiment is the set

E of all possible outcomes; for example, E comprises

. the faces of the coin or the sides of the die.

Suppose the experiment is performed once each

minute (say), and that has been going on forever and

will continue forever. We can regard the whole doubly

infinite sequence of experiments as one grand experiment.

An outcome is represented by a doubly infinite sequence

x = ••• x_1,xO'x l ••• of elements of E.

The probability structure of this grand experiment

1s described by a probability measure ~ in the space AI

of such sequences x.

We want to reflect mathematically the idea that

passage of time does riot affect the set of joint

probability laws governing the experimentations.

Shifting the sequence x to the left, by one place,

produces a new sequence x' = ••• xO,x l ,x2 ••• , where Xl

stands now in the Oth place.

17



18

Thus x and x I are identical realizations of

the grand experiment, apart from a change in the origin

of the time" scale.

If probability laws are to be constant in

. time, then ~ should assign the same probability to x'

as to x.

Actually x and x' will generally h~ve probability

'0', and what we must require is that ~ be preserved
.

by the transformation T, which carries x to x' ,"in the

sense that

peA) = P(TA) for all sets A

This leads us to study measure-preserving

transformation in ,Ergodic 'Theory.

2.2 ~rgodic Source

An ergodic source is a source which, if observed

a very long time, will with probability 1 emit a

sequence of'source symbols which is typical, [by a typical

sequence, we mean a sequence, in which, each symbol

occurs approximately with its expected frequency].

The 'source LA,~J is ~alled ergodic if the

probability ~(M) of every invariant set M£FA is either

, 0' or' I ' • In 0 the r wor'ds TI'vl = M~~ (M) = a 0 r 1, T bei ng

a measure preserving transformation. Let g (x) be"
"M "
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the indicator function of the set Me:FA' i. e~., gM (x) = 1

if xe:M and gM(X) = 0 if x¢M •

Birkhoff's ergodic theorem states that in the

case of an ergodic source we have

1 n-l k
1 im n. L gM (T x) = l-l (M)
n~oo k=O

n-l k
Where L gM(T x) is the number of terms of the

k=O

2 n-lseries x,Tx,T x, •.. T x which belong to the set M.

The source lA,~lis said to reflect the set Me:FA

if almost everywhere (with probability 1),

. 1 n-1 k
11m n L gM (T x) = l-l (f1)

n-7 oo k=O

i.e., The ergodic source ~eflects the set Me:Fke Conversely,

if the stationary source ~A,~Jref1ects any set Me:FA then

the source is ergodic.

2.3 The Ergodic Channel

2.3.1 Notation

The probability that Yn = b, that is Yn coincides

with a given letter be:B does not depend on all letters

of the transmitted sequence x = ••• x_l,xO'x l ... , but only

on those with indices rather close to n.
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__.'._.First, we shall always assume that the distribution

of Yn is -independent of the transmitted signals that

are transmitted after x
n

X
k

for k > n •

1. e. , Y 1s independent of
n

This means Yn = b has the same value for all

transmitted messages x for which the signals •... xn_l'xn

are identicalc-

In this case we speak of a channel without

anticipation.

As regards the signals x l'x 2' •.. precedingn- n-

Xn , in the majority of cases, only a limited number of

them, (e.g. Xn l,xn 2·' ••• 'x ) can influence the- - n-m

distribution of y. This means that the probability that

y = b is the same for all x with identical x , .•. ,x l'xn .
n· n-m n- .

In this case we speak of a channel with a finite

memory. The smallest number-m for which the above holds,

is called the memory of: the channel. In particular, the

distribution 'of Yn for a channel without memory (m = 0)

depends only on x •n

Lemma 2.1: Let U be a stationary probability

measure on AI, then ,a necessary and sufficient condition
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for ~ to be ergodic with r~spect to the shift transformation

T, is that for all measurable sets E and DCAl , we have

n-1 .
lim 1 L ~ (T-iEnD) = II (E) II (D) ••• (2.1.1)

n --? 00 n i=O

Proof: (i) Sufficiency: -,.- .

Suppose that E is invariant under T; evidently

T-iE nE = E for all i, then for E = D, the equali ty

which is asserted to be sufficient for the ergodicity

of II reduces to l.1 (E) = l.1 (E) 2 i.e., ~ (E) = 0 or 1, thus

~ is ergodic.

(ii) ·Necessity:

Let f andg be the indicator functions of

E and D respectively and assume l.1 to be ergodic. Then

the Birkhoff ergodic theorem and its immediate corollaries

imply that:

1 n-l i
lim - r. f(T x} = l.1 (E)

n -) 00 n i=O

Then

n-l
1 im 1 L f (T i x) g (x) = l.1 (E) g (x ) a . e. l.1.

n 0 00 n 1=0

Now f(Tix) g(x) is clearly the indicator function
i .

of (T:- ~ nD) and by. using the following lemmas:

1)
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Where f = lim f i and
Ifi '

~ g, g is summable over AO•
i ~oo

If ~ J2) ; dll = 1: f dlJ·
A '-=1 A i

00

Where f = E f
i

and fits are measurable and non-negative
i=l

Then we have

lJ(E) lJ(D) = ill (E) g(x) II (dx)
AI

n-l j
= lim ! E f(Tix) g(x) lJ(dx)

n -? 00 n 1=0 I
A

1 n-l
lJ(T-iEnD)lJ (E) 1.1 (D) = 1j.m En i=On--)oo

Lemma 2.2: Lemma 2.1 remains true if E and D

are restricted to be cylinder sets in AI.

Proof: Clearly, the sufficient assertian of

lemma 2.1 is the only part affected. We will show that

the validity of equation ~.l.~ for all E and D implies its

validity for,arbitrary measurable sets E and D.

Let D be a fixed cylinder set, and let roD be the

family of measurable sets for which LsmD.

00

•.• where L = U Lj ,Li e:mDj=l
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or for Ll~ L2 • •• where L

l.l (L) U (D) =
1 n-l

lim L
n -~ 00 n 1=0

Thus mD is a monotonic class of measurable

, -
sets which contain all finite disjoint unions of cylinder

sets and hence coincides with the family of measurable

sets in AI. In other words,

1 n-l
u (L) II (D) = lim L

n ~ 00 n i=O

vfuere D is a cylinder and L is measurable.

2.~ The Ergodic Compound Source

The co~pound source is ergodic, if the joint

measure W on (A~B)I satisfies the condition that for

every pair E and Dof cylinder sets in (A@y)I,

1 n-l
1 im L vI ( T- i E () D) :: W(E) \A[ ( D) .

n ~ 0) n i=O

Let [A, 'J x ' BJbe a channel ~Ti th fini te memory m,

and supp6se that ~ is an ergodic input to this channel.

Now any cylinder set in (A@B)I is of the form

U8V where U ~nd V are cylinders in AI and B1 respectively,

both de~ermined by ~onditions on the same components

t, ••• t+k'·of thei~ respective product space.
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Let then E = U10Vl and D = U2
0 V2 be two

cylinder sets in (A~B)I, where E is determined by

conditions on components t, ... t+k and D by s, ... s+r,

and denote by Ll , L2 arbitrary cylinders in AI determined

by conditions on the components t-m, •.. t-l; s-m, ... s-l;

respectively.

Now it is clear that there is a positive

integer i O such that for i ~ i O the cylinders

11-i(Ll,Ul1 and [L2~U21 in AI are, separated and, therefore,

the cylinders T-iV1 and V2 in BI are separated by more

than m spaces.

Since we know from the definition of the channel

with a finite memory that, for any two cylinder

where m .is a'fixed pos~tive integ~r, we have

"L(Yl' · .. y j) n (Yk' · · · ,Y~)/Xoo1 =

. " ~Yi'" .,y j/XOO1· " [(Yk~ ... ,Y~ )/xoo]

Thus

, v (rr-ivl n V2/T- i [Ll , u1l () (L2 , U;1) =

. v (T-:iVI/T-i[Ll ,uJ )" v (V2/ [L2 , 0.21)



. lim
n-=)oo
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Thus

for all i > O.

Therefore

n+i O-1

~. L WeT-IE nD)
1=1o

=
n+i O-1

lim 1 L
n ~ 00 n 1=1o

v(V2/lL2'U21 )J
= 1: [ll (tL

1 , U11) II ([L2 , U
21) v(V1/[L1,U{]) V(V2/fL2,U21)J

L1 ,L2

n-1
.".~ lim ~ L \Al(T-

i
E(\D) = \lJ(Ul 69V1 ) W(U2~V2) = \\l(E) \lJ(D)

n' -7 00 i=O

Therefore, the co~poun~ source is ergodic.

Remark: The description of Ergodicity, Ergodic

source, and ergodic channel are gtven in Khinchin ( 7],

Adler l2J, Feinistein [6).



CHAPTER III

THE A-CAPACITY

3~1 Channel Capacity

Consider an information channel with input

alphabet A, output alphabet B and conditional probabilities

In order to calculate the mutual information

PCa b)
I(A,B) = A;B P(a,b) log2 Pra~ PCb)

. :'; it is necessary to know the input symbol

probabilities P(a i ). Thus the mutual information,

depends not only upon the channel, but also upon how

we use the channel.

Definition: The capacity of the channel Cis,

C. = Max. I (A,B) = Max. [R(A) - R(A IB5)
P(ai)

Note: (1) The capacity of an information

channel ~s a' function only on the conditional probabilies

defining that channel, i.e., it does not depend upon
.

the input probabilities .

(2) The concepts of channel capacity has been

introduced by Shannon.

26
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(3) The maximi~at50n'is with respect to all

possible sets of pr6babilites,~ that could be assigned

to the source alphabet; that is, all discrete ~emoryless

sources.

(4) Sometimes we call the quantity C, 'the

ergodic capacity of the channel. [see, Khinchin [ 71l.-

3.2 The A-Capacity

Introduction

the random vectors of input and output n-sequences

respectively.

A message ,of length N of n-sequences may be

1 Nwritten as X· , ... ,X. Then the probability that ith

sequence (Xi) will be incorrectly received is denoted

by A(Xi) •

Then the average probability of error of the
, N

message is given by A = 1 L A(Xi) and the probability
N 1 -

Therefore we can define a code as a triple

(N,n,A), where N is the length of the code consisting

ot sequertces.of length n, and probability of error

max.

Therefore, given any_discrete channel and let
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N(n,A) be the maximum possible number of code words in

a code that uses sequences of length n and that has

maximum probability of error, at most A. Therefore

the A-capacity of the given channel is defined by,

C(A) = lim sup ~ log NCn,A), 0 < A < 1.
n -7 00 ,

If we used codes whose probabil~ty of error is

< A, then C(A) may be regarded as the least upper bound

of all permissible rates of transmission. We call R

a A-permissible rate of transmission if given any positive

integer nO' there exist a code ( 2nR ,~:An) with n ~ nO

and A < A wherefrom it follows that C(A) is the leastn-

upper bound of all A-permissible transmission rates.

Shannon-Wolfowitz theorem (S-W for short) will

now be stated for a discrete channel with memory as follows~

For sUfficiently large nand for any £ > 0 there

exist.s a code ( 2n (C - E:) ,n,A ) if a < A < I and there does-
not exist a code ( 2n (C+ E:) ,n ,A ) if 0 < A < 1 where C, is-
the channel capacity.

The £irst part of the theorem is due to Shannon

and is known as the fundamental theorem of information

theory, here we get a lower bound for N.

The second part of the theorem is due to Wolfowitz
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and is known as the strong converse which gives an

upper bound of N. The strong converse assures that

A -?l as n.-7 oo , when the rate of transmission exceeds the

capacity of the channel.

The bounds may be made rather accurate or

may be improved by deriving appropriate value of E~

It can be further shown that the strong

converse is equivalent to the fact that C is a constant,

independent of A. Consequently a channel capacity can

not be defined if C varies ~long with A.

Lemma 3.1: The channel capacity is given by

C = lim C(A )
A -7 0

Proof: Let Co = lim .C (A) if R < C , 0 < A < 1,
AO ~ 0 0 0

then R < C(A). Hence R is A-permissible.

Thus given any nO' we can find a code ( 2
nR ,n,A n )

wi th n :: nO and An ~ A.

Since A may be chosen arbitrarily small it follows

If R > Co there is a As(o,l) such that R > C(A)..
Since R 1s not A-permissible for sUfficiently large n,

there does not exist a code ( 2nR ,n ,A n) such that A < A•
n -
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Therefore no number greater than Co can be a permissible

transmission rate, .hence C ~ CO? then

C = lim C (A') ,
A --) 0

Lemma 3.2: The strong converse holds for a

discrete channel if and only if

C(A) = C for all A£(O,l)

Proof: If strong converse holds, then given

any A£(O,l) and R > C and for sufficiently large n;

no code ( 2nR ,n,A ) can exist with A < A.
n . n -

Therefore R is not A-permissible for any A;

therefore:

C(A) < R for all A

then

C(A) ~ C for all A; for any R > C and

since C(A) is non-decreasing [lemma 3.D, therefore

C(A) = C for all A, A£ (0,1) •

Conversely, suppose C(A) = C for all A£(O,l),

and given R > C, then R > C(A), therefore R is not

A-permissible. Th~refore, if we h~ve any sequence of

nRcodes (2 . ,n,A ), T,>,Te must have A > A, in other words
n· n

A -> I asn ~co, and the strong converse holds.n .
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3.3.1 Formulation Of the Main Theorem

Consider a unit square in a coordinate plane,

whose abscissa and ordinate are denoted by A and Y

respectively. The sides of_the square are given by

A = 0, Y = 0, A :::: 1, Y = 1.

Let this square be intersected by the set E

~f ~traight lines. Next, we will ccinsider two

different subsets of the above set E.

(1) Let r c E be a "half-open" set of lines

which contain the line Y
1 .

= ~(l+A); not the line A= 1,

and all the lihes between them meet at the point (1,1).

(2) Let fj c::. r. be a "hal f-open" set of lines vlhi ch

Icontains the line Y = 2(1-~) and not the line A = 1, and

all lines of the set ~ between them meet at the point (1,0).

Now, we will be in a position to state and prove

our main theorem showing the channels which do not

have capacity when the elements from the sets rand fj

are taken as the arguements of the cQrresponding entropy

functions.

such that

C (A )
YO



where C (A ) > 1 - H(yO)·
YO

(2) For a given °osLl,3 a A0 = AO(OO)

such that

lim Co (A ) = 0 °os~,
A~AO 0

where

Co (A) ~ 1 - H(OO).
0

Proof: Part (1) and part (2) of our theorem

holds for any elements of r and ~ respectively as is

proved below.

To prove the first part of the theorem we have:

(1) The'Varsharmov-Gilbert-Sacks condition

which states, that if

1

2n..k > ;?~-l ( n-l )

1=0 i
•••• (3.1)

it 1s possible to construct a binary code with 2 k

1words of length n which will correct 2-tuple and all

smaller errors •

....<.2) Chernoff's exponential bounding technique·

which gives

if 0 < a < 1
2 •

Now sUbsituting,a = (~t-l)/(n-l), we get
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1

2~-1(n-l)_< 2(n-l) H(~2t-l/n-l)
~ •••• (3.2)

1=0 i

where

1 . 1o < (2 t - 1 )/(n-l) < 2

If (3.1) and (3.2) are sUch that, we get

2n- 1 > 2(n-l) H(~t-l/rt-l)

In particular,

Where

We can find a binary codes with 2k words of
1 .length n which corrects all errors of weight 2t or less.

If we put R = kin and a = ~t/n in equation (3.3), we get

R < 1 - H(a) •••• (3.4),

which means that we can construct a code with 2 nR words

of length n which.corrects (2na)-tuple and all smaller

errors.

Next, we use the above code in a given channel.

If Pee') is the probability of correct decoding and Z is

the number of transmission errors, then

PCe') = 'P(z < 2na) P(e'/z.< 2na) + P(z > 2na) P(e'/z > 2na)

> P(z ~ 2na) P(e'/z < 2na)

>. 2na + 1
n + 1

> 2a



so that A = 1 ... P (e') < 1 - 2a •.

Since N(n,A) is the length of the largest code of

words of length n and probability of error A, it follows

from using 'equation (3.4) that:

) nRN(n,1-2cx ~ 2

where R may be chosen arbitrarily cloie to 1 - H(a).'

There for~e,

1C (1-2a) > 1 - H(a) = 1 - H(l-a), (a<2)
YO -

i.e.,C (A) > 1· H(~(l+A ») A£(O,l)
YO

i. e .) C (A) > 1 - H( YO)
YO

1where ~(l+A) = Yo£r.

Consequently,

lim Cy (A) = 1
. A9 ~ Atl 0

Sinc~ Y = ~(l+A) is an element of r and is choosen

arbitrarily, the first part of the theorem holds for

any e lernent. of r.

. Note:
1 .

For Yo = ~(l+A), C (A) depends on A£(O,l) •
YO

moves among from 0 and y moves further from yO.
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To prove the second part of ' the theorem:

We consider any code N(n,A} for a given channel.

Since each error pattern or weight i or n-i has

probability

which decreases as i varies from 0 to ~n; it follows

that if r is the smalle~t'integer such that,

~r/ (n+1) ;: 1 - A •••• ( 3. 5 )

. n-2 ( n )
each decoding set of the code has at least 2 '.E '.

J=O J

sequences; therefore the Hamming upper bound on the

number of code words is given in:

N < r-2 (n)2·E
. j=O j

< 2 (n+l) ( l-A )-i
E ( n)

j=O. j

•••• (3.6) I

If we let N(n,A) to be the maximum number of code words

in a code that uses sequences of length n and that has

maximum probability of error at most A; we may write

N (n,A )
2n - l

< 2 ( n +1 ) ( 1- >\) - 2

j:O (n
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Therefore,

2n.-1 r k-2 ( n)l
log (n,>..) ~ log2 1 - lOg2lj:o . j J .... <3.7)

where k = 2 (n+1) (I-A)

log (n,>..) .:: n-l - log2 [~~2 ( ~)J ... (3.8')
J=O J

And by taking the limits on both sides of equation (3.8).

and by using Chernoff's exponential bounding technique,

we get

lim 1 log N(n,>..) < 1 - H(2 (I-A»)
n~co n

1lim sup n log2 N(n,>") < 1 - H(2(1->")
n ~co

Consequently,

Since" Y = 2(1-A) is an ,element of ~ and is chosen arbitrarily,

the second part of the theorem holds for any element of ~.

Note: For 5 = 2(1-A), 'Cy(A) depends on~A~(>"O,l)

, . 1
such that >.. o~ 0 as 5 approaches the boundary, ~. = '2( I-A) of ~.
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Remark I: (i) It may be noted that the theorem

in Ash ~31 is only i special case of our theorem 3.1.

(ii) Since the definiton of the capacity given

here is independent of any specific channel, the Theorem

3.1 holds for the various channels described in Chapter

(1) and (2).

Remark II: The description of mutual information

and channel capacity are given in Khinchin'l7l, Reza ~8l,

AShol41, Abramson [11 and Wolfowitz LIOl.
The specification of Shannon-Wolfowitz theorem

1s given in Behara l5J. Leamma 3.1 and 3.2 are given in

Ash (4j. Our theorem is illustrated graphically in the

following two graphs."
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