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CHAPTER I

PRELIMINARIES ON INFORMATION

SOURCES AND CHANNELS

l.1 Introduction

Let X and Y be input and output random

variables taking the values xl,...,xn and yl,yz,...,ym,

respectively, such that

n
P(X=xk)=pk)o_<_pkfl, sz-l
k=l
m
= = i < < =
P(Y y,j) qJ’ 0 < QJ <.l .Equ 1
. J—-
P(xn,yj) = P(X=xk, X yj) =T 0 < T3 % 1,
n m
bX L e : ¢
k3l J=1 ™3

P(yj/xk) .P(Y=yj/X=xk)= qj/k’ j=1qj/k =

n
PAx/yy) = POEX/Y=94) = Byeygs (EoPyyy = 1
Let P = (pl,p2,...,pn) and Q = (ql,q2’°0',qm)

be the probability distributions of X and Y respectively.



The marginal, joint and conditional entropies are

defined as:

n ,
H(P) = H(X) = - kilpk log, p,
m
H(Q) = H(Y) = - Jiqu log, ay i o
n m
H(P,Q) = H(X,Y) = - k§1 lerki log, T 5
n m :
H(P/Q) = H(X/Y) = - kil le P(xy,¥5) log, P(x,/y4)
n m
= =RE B Ten By
_ n m '
H(Q/P) = H(Y/X) = - kzl 321 P(xk,yj) log, P(yj/xk)
n m

-The average amount of information conveyed by
the random variable X about the random variable Y and

conversely is defined as:
, n m P(Xk,yj)

I{P:Q) = I(X:X) = kil JElP(xk,yj) log, FTYEXK)'P(Y=yJ)

The quantity I(X:Y) is also called the

transinformation of the channel,



I(X:Y) = H(X) + H(Y) - H(X,Y)

H(X) - H(X/Y)

H(Y) - H(Y/X)
The above definitions and results can be
generalized to the case of random vectors and stochastic

processes.

1,2 Information Source

By a source, we shall understand any object
which gives us information. Hence the output of
the source or eqﬁivalently the source itself is similar
to the space of a random experiment, In other words, a
source 1is the assemblage of all possible events associated
with the sample space of a complete random experiment

(an experiment whose all events are observable),

Each outcome of.the experiment corresponds to
an elementary output of the source; and is called a symbol

-

or a character or a letter,

A finite sequence of characters may be called a
word or a message, i.e, we think of the source as
emitting a sequence of symbols from a fixed finite source,

- Given an alphabet S = {sl,s2,.;.,sn} successive letters from
S are: selected according to some fixed probability law.

A binary source is associated with the sample

space of a random binary experiment when the experiment



is repeated over and over.

‘The following three steps summarize the
information - theoretic performance of a binary source:
(i) Alphabet = {letters}
(ii) Probability matrix
[P1=[p,1-p]={p,a], a = 1-p
(iii) (1) Self-Information matrix
[11= [~ 10g,p, = 1og,(1-p)]
(2) Average Information per letter

H=1=-p log,p - (1-p) log,(1-p)

The communication entropy for such a binary source is
nothing but the average information per letter i.e.,

H(P) = = p log,p - (1-p) logz(l-p)

\

l1.2.1 The Complete Déscription of the Source

Let A be a finite source - alphabet., If the
source under consideration is stochastic, then .from the
theoretical point of view, its output can be regarded
as an aggregate of doubly infinite sequences of the form

X = (...x_l,xo,xl...), x;eA 1 = 0, #1, £2, 000

All the doubly infinite sequences having
specified letters at specified positions constitue a
cylinder with respect to those specified letters., Hence
to describe the stochastic source, it is sufficient to

know the probabilities u(Z) of all the cylinders Z.



'Let us consider the éet of all cylinders and

its Borel extension FA‘ Then if the probabilities u(Z)

of all cylinders Z are known, the corresponding

probabilities p(S) of all SeFA can be easily determined.

Thus a complete description of the source as a random
process is achived by specifying:
(1) An alphabet A

(2) A probability measure u(3) defined for all SeFA

{3} In particuiar, we also have u(AI) = 1 where

1

A” is the set of all elementary events of the given

space i.e., AI is the set of all doubly infinite sequences.

Therefore we can denote the source by the pair [A,Q].

l1.2.2 Stationary Source

- 1 1 1
Let Tx = (.oox!q,X5X]ees)
where

(1) x = (.{.x_l,xo,xl...)

) £ ioalas
(11)  xp = x5

(~o<c<o)
(iii) The operator T denotes the "shift" by one
time unit.
Clearly, if S is any set of elements x, then
TS = {Tx:xeS}

It is easy to see that if SeF

, then TSeF,, also the
A A

operator T maps the set AI onto itself i,e. ’I'AI = AI.



If u(TS) = u(S) for any set SeF,, then the source

A’

is called stationary.

1.3 Information Channel

1.3.1 Concept of Channel

The Mathematical elements which can be used to

characterize a given channel are:

(1) A finite input alphabet A which represents
the symbols or letters which the channel is capable of
tragsmitting.

(2) A finite output alphabet B which represents
the symbols or letters emerging from the channel. It is
not necessary that the number of letters.in B is the

same as the number of letters in A.

If, to every transmitted symbol ’a'; a letter
of input alphabet A , there is given at the output a
uniéue letter b = b(a) of the output alphabet B then
the channel is called a noiseless channel. But in general
the interference (noise) causes different letters beB
tq be obtained at the output in different cases when the

same letter aeA is transmitted.

Therefore we can speak of probabilities of
obtaining the letter beB at the channel output givén that
the letter aeA was transmitted and this probability

sometimes depends not only on 'a' but also on the



sequence of signals transmitted earlier than ‘'a'., If
it does not depend upon the letters transmitted earlier

than 'a', the channel is said to be without memory.

Thus a channel 1is complétely specified, if we
know the following three facts:
(1) The input alphabet A

(2) The output alphabet B~

(3) The probability vx(S) that (yj is received when

a given (x) is transmitted where SaFB for any xaAI,
Thus a channel can be represented by the triplet
[A,ux,B].

1.3.2 Stationary Channel

We shall call the channel [A,vX,B:Xstationary,

i

if, for all xeA™ and SeF

B

vTx(TS) = vx(S)

where T is the shift operator.

1.4 The Discrete Channel
The random nature of the channel may, in many
cases, be described by giving a probability distribution

over the set of possible outputs.

The distribution of the output will in general

depend on the particular input chosen for transmission



and in addition may depend on the internal structure of

the channel at the time the input is.applied.

This means that if we apply a sequence TysTpsesssl

at the input of a channel, then at the output, perhaps
after an appropriate delay, we will receive a sequence

tl,...,tn. It is reasonable to describe the action of

the channel by giving a probability distribution over

the output sequences tl’t2""’tn for each input

SEQUENCE Iy ,Ts,e0e,T ) e

The family of distributions should also reflect
the fact that the internal state of the channel at the
time the input is applied, will affect the transmission
of information,

Definition: Given two finite sets 1, t' to be

called the input and output alphabet respectively and

an arbitrary set S, called the set of states, a.discrete

channel is defined as a system of probability functions.
Pn(tl,t2,...,tn/rl,r2,...,rn;s)

where

PisThs0ee s ET

and

t t2,...,tn€T' and SseSy n = 1,254

l’

which satisfy:



(l) P tl’t2’000’tn/rl’r2!...’r °S) > 0

n( n? -

for all n; ri,r2,1,.,rn,
tl,tz,...;tn;s
(2) ZPn(tl,...,tn/rl,...;rn;s)'= i

-ty

for 'all nj rl,rz,..-,rn;

tl’tz,OOO,tn;s »

Physcially, we interpret Pn(tl,...,tn/rl,...,rn;s) as

the probability 'tﬁat the sequence tl,...,t will appear

n
at the output if the input sequence PysesesT is applied
and the initial state of the channel, that is, the state

just prior to t. » sequence of (ri) is (s).

1.4,1 The Discrete Memoryless Channel

The discrete channel is memoryless if

. 35) does

(1) The funection Pn(tl,...,tn/rl,...,rn

not depend on s, and therefore may be written as

P (tysesest /Ti5000,r),
(2) -B (Byseassb /B GasnsBl # Brltode ) Polt /is) one
Pl(tn/rn)

for all tl,...,tnet'; Plyees,l €T3 N = 2325000

n

1.4.2 Discrete Channel with Finite Memory

Let the input and output alphabets be A and B
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respectively. In memoryless channels, the noise structure
is generally specified by a conditional probability matrix

P{bj/ak} for all akeA and b,eB.,

J

When the channel has no memory the noise
probability matrix is independent of the life history of

the channel.,

When the channel has a finite memory the

noise probability depends on the life history of the
transmitted sequences up to the finite memory time prior
to the emission of the signal. For this purpose, consider
a member x of an input ensemble, and its corresponding
member y at the output that is, if x is transmitted,
then y is received.

Input Alphabet Output Alphabet

A B

X = (...x_2,x_l,xo,xl,...)‘ N (...y_l,yo,y_l...)

and let Al ana BT

be all possible source and received
sequences, respectively.

In AI, let us focus attention on a cylinder xu’l

which has a specific letter, say aj, at a specific
position, Say Xy, then

4,1
x ’ = ...X_l’xo,xl,x2,x3,al,x5,..?

Similarly for a moment, concentrate on a particular
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1,2

cylinder at the output y s which has a specified

letter, b2, at the position Yqs then

1,2

y oooy*l,yo,bz,yz,.oo’

To know the noise characteristic, we must know

the conditicnal probability of cylinder yl’2

8,1

being

received when x is transmitted, i.e.

1,2 4,1,

P{y 2% /x

More specifically, for all possible cylinders

SAeAI at the input, we must have the conditional probability

corresponding to any possible cylinder for messages at

the output S eBI. To sum up, the following requirements

B
are necessary in order to specify'a general channel:
(1) 1Input Alphabet A
(2) Output Alphabet B
I I

(3) P{Sy/8,} = v  for all S,eA” and Sy eB

Thus a discrete channel is specified by the triple [A,vx,B].

1.5 Connection of the Channel [A,vx)Bj]to the Source [A,u]
When the letters from some message x = coeX_15XgsXyseee

from the given source A are fed into the channel one
at a time, we obtain at the output the corresponding sequences

YT eee¥_15Y(geVqsees of letters from alphabet B.

Let us consider _he probability space in which
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the elementary events are a3ll possible pairs (x,y);

xeAI and yeBI.

Let C be the set of all pairs (a,b) where acA
and beB i.e., we can regard C as a new alphabet and we
denote by CI the set of pairs (x,y) of which we just

spoke 1i.e., specification of (x,y)eCI is equivalent

to specification of xeAI and yeBI .

We must now introduce probabilities into the
space CI. Let DC:AI and EC:BI i.e., let D be some set

of elements x and E be some set of elements y .

Let DeF EeF_ so that u(D) and p (E) have finite

A? B
values. Let S = {(x,y):xeD, yeE}; clearly SC:CI, we
shall write S = D®E and call it the direct product of

D and E,.

The probability W(S) of this set of the space
CI should naturally be understood to be the probability

of the joint event xeD and yeE.

But the distribution‘in the space of elementary
events KEAI is determined by the u-law, and for a given
X, the distribution in the space of elementary events

yeBI is determined by the vx—law.

Therefore:

W(S) = W(DEE) = /vx(E)du(X)
D
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1.5.1 Compound Source

Connecting the channel EA,vx,B] to the source

{Aﬂl] and driving it uniquely determines a new source

[C,wilwhich is called the compound source, where its

4

alphabet is the direct product A®3; the set C~ is the

elementary events (x,Y) and it is the direct product

A%@BI, and the probability measure is.

W(S) = W(Des) = ,D/v)gE) du (x) ... (1)

1.6 The Channel Output

Let us put D = AI in equation (1), while

leaving EeFB arbitrary, the quantity W(D®E) is then

the probability of the joint event xeAI and yeE,.

N\

Since the first of these two events is certain,
W(D®E) is simply the probability n(E) of obtaining a

sequence y belonging to the set EeF, at the channel output.

B
Thus we see that the distribution n(E) plays
the same rule for the space BI as u (D) does for the

space AI. Therefore, for D = AI, equation (1) becomes,

n(E) = W(AI@E) =/vx(E) gilx) ..o(2)

AI

Therefore we can speak of the source {B,nw as

the channel output. This source with the sequence
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Y = see¥_1sYga¥yecs pf letters “from the alphabet B as e

its output, is uniquely determined, by using equation (2) ,
by the data of our problém, i.e.} by the source A and

the channel [A,vx,Bl.

Theorem l.1: If"the source YA,u1 and the channel

[A,vx,B} are stationary, then the source [c,w] is also

stationary.

Proof: Suppose SC:CI and S = D@®E where

DE:FA and EeFB.

It is obvious that TS = TD®TE, therefore equation

(1) gives:

W(TS) = W(TD@TE) = v/" vx(TE) du (x)
xeTD

which is equivalent to

W(Ts) = .j/” Vip,, (TE) du (Tz)
TzeTD

Since the source YA,ﬁ}and the channel Xﬁ,vx,B]
are botﬁustationary, we have:

du (Tz) = au(z)

sz(TE) = vz(E) . —
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Thus

W(TS) = ‘/AVZ(E) du(z) = W(S)

'ZeD

i.e. W(TS) = W(S)

Therefore the compound source [c,w] is also stationary.

Theorem 1.2: If the source (A,u]and the channel

[A,vx,B] are stationary, then the output alphabet source
[B,q} is also stationary.

Prcof: We know that

n(E) = W(ABRE) = J/[;X(E) au (x)
i

Thus,
n(TE) = W(ARTE) = W(TATRTE).

It has been proved earlier that, the compound
source is stationary if both the source{jAgﬂ and the

channel (A,vx,B] are stationary.

Thus ,
n(TE) = W(TAI@TE) = w(AI®E) = n(E)

Therefore the sourceK;B,n‘Bis,also stationary.

Remark: The description of Entropy 1s given in
Reza {8\, Khinchin { 7], Ash (4)and Wolfowitz {107. The

descfiption of stationary source and channels are given
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in Kinchin {7, Adler { 2), Ash L4} and Wolfowitz ( 10].

The specification of discrete channel is given

in Abramson {17, Ash (47, Feinstein U67] and Wolfowitz [ 10].

The descriptions of compound sources and channels

are given in Kinchin {77} and Feinstein (67



CHAPTER II

ERGODIC SOURCES AND CHANNELS

2.1 Introduction

The state space of the experiment 1is the set
E of all possible outcomes; for example, E comprises

"the faces of the coin or the sides of the die.

Suppose the experiment.is performed once each
minute (say), and that has been going on forever and
will continue forever. We can regard the whole doubly
infinite sequence of experiments as one grand experiment.
An outcome is represented by a doubly infinite sequence

X = eeeX_35XgsXqeee of elements of E.

The probability structure of this‘grand experiment
is described by a probability measure pu in the space AI

of such sequences x.

We want to reflect mathematically the idea that
passage of time does not affect the set of joint

probability laws governing the experimentations.

Shifting the sequence x to the left, by one place,
prodgces 2 new sequence Xx' = ceeXnsXysX5e0n, where Xy

stands now in the Oth place.

17
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Thus x and x' are identical realizations of
the grand experiment, apart from a change in the origin

of the time scale.

If probability laws are to be constant in
~time, then u should assign the same probability to x'

as to xe.

Actually x and x' will genérally have probability
~'0', and what we must requife is that u  be preserved

by the transformation T, which carries x to x', in the
sense that

P(A) = P(TA) for all sets A

This leads us to study measure-preserving

transformation in Ergodic Theory.

2.2 Ergodic Source

An ergodic source is a source which, if observed
a véry long time, will with probability 1 emit a
sequence of source symbols which is typical, [by a typical
sequence, we mean a sequence, in which, each symbol

occurs approximately with its expected frequenCy].

The 'source {A,u] is called ergodic if the

probability u (M) of every invariant set MeF, is either

A
'0' or '1l', In other words TM=M=3u(M) = 0 or 1, T being

a measure preserving transformation., Let g (x) be

M
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the indicator function of the set MeF,, i.e,, g,(x) = 1

if xeM and gy(x) = 0 1f x¢M .

Birkhoff's ergodic theorem states that in the
case of an ergodic source we have
n-1

1im % 'z gM(TkX) = u (M)
n—3e 7 k=0

n-1
Where I gM(Tkx) is the number of terms of the
k=0
series x,Tx,T2x,...Tn—1x which belong to the set M.

The source |A,u}is said to reflect the set MeF

if almost everywhere (with probability s % 1
n-1

1im % 5 gM(Tkx) =100
n—>« k=0

i.e., The ergodic source reflects the set MEFA. Conversely;

if the stationary source (A,ﬁ}reflects any set MeFA then

the source is ergodic.

2.3 The Ergodic Channel

2.3.1 Notation

The brobability that y_ = b, that is y_ coincides
n ? n

with a given letter beB does not depend on all letters

of the transmitted sequence x = ceaX_q5XgsX ., but only

10.

on those with indices rather close to n.
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First, we shall always assume that the distribution
of is independent of the transmitted signals that
are transmitted after X 1.4, Y, is independent of

xk for k > n .

This means yn = b has the same value for all
transmitted messages x for which the signals ceeeXp 95Xy
are identical.

In this case we speak of a channel without

anticipation.
As regards the signals X 1sXponse s preceding

Xs in the majority of cases, only a limited number of

them, (e.g. Xn—l’xn-2’°"’xn—m) can influence the

distribution of y. This means that the probability that

¥ ™ b is the same for all x with identical Xoom? 2 ¥n_12%ne

In this case we speak of a channel with a finite
memory. The smallest number m for which the above holds,
is called the memory of the channel. In particular, the

distribution’of y  for a channel without memory (m = 0)
depends only on X

Lemma 2.1: Let u be a stationary probability

measure on AI, then a necessary and sufficlient condition
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for u to be ergodic with respect to the shift transformation
T, is that for all measurable sets E and DCZAI, we have
Qe AT |
lim = I w(T""EAD) =u(E) u(D) ...(2.1.1)
n-—® i=0

Proof: (i) Sufficiencyfﬂ

Suppose that E is invariant under T; evidently
7" ENE = E for all 1, then for E = D, the eguality
which is asserted to be sufficient for the ergodicity
of u.reduces to u(E) = u(E) : jiesg u(E) = 0 or 1, thus
U4 is ergodic.

(1i1) Necessity:

Let f and g be the indicator functions of
E and D respectively and assume u to be ergodic. Then

the Birkhoff ergodic theorem and its immediate corollaries

imply that:
n-1 T e
1im % $ £(Tix) = u (E)
n - o i=0
Then
Wt 0%}
1lim oz 17 %) glix) = a{E) g(x) a.e, u,

B ~5% i=0

Now £(T1x) g(x) is clearly the indicator function

of (T—iE{\D) and by using the following lemmas:

1) ,/} d = 1lim //nfi du

A 1-2s "}
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Where £ = 1lim f, and lfil < g, g i1s summable over A,.

1>
(=2
2) fdu= I fi Gu
A i=1 "A
Where £ = 1 fi and fi's are measurable and non-negative
i=1 _
on AO, A CAO.

Then we have

[u(E) g(x) v (dx)

u(E) u(D) =
A
p nol 1
= 1im - 5 £(T7x) g(x) u(dx)
n-—>w® i=0 AI
n-1
w(E) u(D) = 1im rll 5 u (T iEND)

n- o i=0

Lemma 2.2: Lemma 2.1 remains true if E and D

are restricted to be cylinder sets in AI.

Proof: Clearly, the sufficient assertian of
lemma 2.1 is the only part affected. We willl show that
the validity of equation.@.l.l)fbr all E and D implies its

validity for arbitrary measurable sets E and D.
Let D be a2 fixed cylinder set, and let mp be the
family of measurable sets for which LemD.

... where L = U L
J=1

Then for L. CL

b Rk s +
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[++)
or for L 231?... where L = (\ L

L.em
1 imy. B ATD
| {Bed o Ly
(L) p(d) = 1im R (T "L ND)
n - o i=0

Thus mp, is a monotonic class of measurable

sets which contain all finite disjoint unions of cylinder

sets and hence coincides with the family of measurable

sets in AT. In other words,

n
p (L) u(D) = 1im % (r~iLnp)y

-1
z

n e« = i=0
Where D is a c¢ylinder and L is measurable.

2.4 The Ergodic Compound Source

The compound source 1s ergodic, if the joint
measure W on (26B)T satisfies the condition that for
every palr E and D of cylinder sets in (A@Y)I,

n-1 '

1im % r Wt iEnD) = W(E) W(D).
n -« i=0

Let [A,vx,Bi}be a channel with finite memory m,

and suppose that u is an ergodic input to this channel.

s e

Now any cylinder set in (A@B)I is of the form
UeV where U and V are cylinders in AI and BI respectively,
both determined by conditions on the same components

t,...f+k of their respective product space.
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Let then E = Ufsvl and D = Ué$V2 be two

eylinder sets in (A@B)I, where E 1s determined by
conditions on components t,...t+k and D by 8;5...8%r,

" and denote by Ll’ L2 arbitrary cylinders in AI determined

by conditions on the components t-m,...t-1; s-m,...s-1,

respectively.

Now it 1s clear that there is a positive

integer io such that for 1 > 10 the cylinders
—~1 : ’
T (Ll,UiSand [Lz,UéI in AI gre separated and, therefore,

the cylinders T_iV and V2 in BI are separated by more

1
than m spaces.

Since we know from the definition of the channel

with a finite memory that, for any two cylinder
sets, yi,...,yj and yi,...,yﬁ such ?hat ¥ #m <k

where m is a fixed positive integer, we have

v[(yi, ce ¥ ) NGy, ,yrvl)/xm] =

paulie Byi,...,yj/x;]. v[?yg,...,yﬁ)/x;]
Thus.

y v(T'ivlﬂVé/T'i [Ll,Uﬂ AlL,,u,)) =

vty i, 000 vvy/ [L,,0.))
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= v(v;/(L;,0,1) v(v2/[L2,U2’J )
where 12 10..

Thus
w(rlENnp) = z [u (17 L, , 010, U,))
L2k
33ba
vV, /Ly, 07)) v(Vy/ [y, U,) )1

for all i > 0.

Therefore
n+io-l
L -1
lim = X W(T""END)
n-> o i=10
n+io—1
_ 1 -1
= 1un Lz r [, v nk,,u0) vov, /L, ,u)-
n—>w i—io Ll,L2

V(Vy/ [y, U )]

i zL [u ({Ll,ulj) u ([L2,U2]) v(vl/[Ll,Ul‘]) v(VZ/I(LZ,UZ'})}
1’

n
lim

'n'{>w %

St n

z

e R

W(T—iE(\D) = W(Uf@Vl) W(U2®V2) = W(E) W(D)

Therefore, the compound source is ergodic.

Remark: The description of Ergodicity, Ergodic
source, and ergodic channel are given in Khinchin[fﬂ,

Adler t2}, Feinistein tG].



.CHAPTER III
THE A -CAPACITY

3.1 Channel Capacity

Consider an information channel with input
alphabet A, output alphabet B and conditional probabilities

P<b3/ai)‘

In order to calculate the mutual information

I(A,B) = AZ,:B P(a,b) :I.Og2 ,g_%_zsbl): 3

it 1s necessary to know the input symbol

probabilities P(ai). Thus the mutual information,

depends not only upon the channel, but also upon how

we use the channel.

Definition: The capacity of the channel C is,

C = Max. I(A,B) = Max. [ H(A) - H(A|B)]
P(ay)

Note: (1) The capacity of an information
channel is a’ function only on the conditional probabiliés
defining that channel, 1i.e., 1t does not depend upon
the input prébabilities .

(2) The concepts of channel capacity has been

introduced by Shannon.

26
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(3) The maximization is with respect to all
possible sets of probabilites. that could be assignéd
to the source alphabet; that is, all discrete memoryless
sources.

(4) Sometimes we call the quantity C, the

ergodic capacity of the channel,(§ee, Khinchin[f7i].

3.2 The A-Capacity

Introduction

Let X = (X "’Xn) and ¥ = (Y Yn) denote

1’. l,--.,
the random vectors of input and output n-sequences
respectively.

A message of length N of n-sequences may be

written as K},...,gﬁ.

Then the probability that ith
sequence (X) will be incorrectly received is denoted
by A (x1).

Then the average probabiiitj of error of the

N
message is given by A = % z x(g}) and the probability
) 4

of error by max. X(&i).

Therefore we can define a code as a triple
(N,n,x), where N is the length of the code consisting
of sequences.of length n, and probability of error

max. x(z}).

Therefore, given any discrete channel and let



28

N(n,\ ) be the maximum possible number of code words in
a code that uses sequences of length n and that has
maximum probability of error, at most A. Therefore

the A -capacity of the given channel is defined by,

C(A) = 1im sup % log N(n,A), 0 <X <1,
B L :

If we used codes whose probability of error is
< A, then C(A) may be regarded as the least upper bound
of all permissible rates of transmission. We call R
a A-permissible rate of transmission if given any positive

nR

integer n,, there exist a code (.2 ,n,An) with n > n,

and an A wherefrom it follows that C(A) is the least
upper bound of all A-permissible transmission rates.

Shannon-Wolfowitz theorem (S-W for short) will
now be stated for a discrete channel with memory as follows.

For sufficiently large n and for any € > 0 there

n(C-¢)

exists a code (2 snA) A0 <) <1 and there does

n(C+g)

not exist a code (2 sNA)idf 0 <X < 1 where C, is

the channel capacity.

The first part of the theorem is due to Shannon
and is known as the fundamental theorem of information

theory, here we get a lower bound for N,

The second part of the theorem is due to Wolfowitz
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and is known as the strong converse which gives an
upper bound of N. The stroﬁg converse assures that
A-»l as n-*, when the rate of transmission exceeds the

capacity of the channel.

The bounds may be made rather accurate or

may be improved by deriving appropriate value of €.

It can be further shown that the strong
converse is equivalent to the fact that C is a constant,
independent of A . Consequently a channel capacity can

not be defined if C varies along with A.
Lemma 3.1: The channel capacity is given by

C= 1lim CO)

A 0
Proof: Let Cy = 1im C() if R < C, 0 <A <1,
A >0 ‘
then R < C(A). Hence R is A-permissible.
‘ - nR

Thus glven any n,, we can find a code (2 ,n,xn)

with n > n, and kn <A,

Since X may be chosen arbitrarily small it follows

that C >7C,..

If R > C, there is a Ae(o0,1) such that R > C(A).

0

Since R is not A—pefmissible for sufficiently large n,

nR

there does not exist a code ( 2 ,n,kn) such that A <.
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Therefore no number greater than C, can be a permissible

0

transmission rate, hence C < Cy3 then

C= 1lim C(Q),
A—->0

Lemma 3.2: The strong converse holds for a

discrete channel if and only if
C(A) = C for all re(0,1)

Proof: If strong converse holds, then given
any Ae(0,1) and R > C and for sufficiently large n;

no code ( gkt ,n,ln) can exist with A _ <.

Therefore R is not A-permissible for any A;
therefore:

cx)

IA

R for allyi
then

ciy)

IA

C for all A; for any R > C and
since C(A) is non-decreasing [lemma 3.3, therefore

C(x) = C for all A, Ae(0,1).

Conversely, suppose C(A) = C for all Ae(0,1),
and given R > C, then R > C(A), therefore R is not
A-permissible., Therefore, if we have any sequence of

nRk

codes ( 2 .,n,An), we must have An > A, in other words

Arra;.as n 3, and the strong converse holds.
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3.3.1 Formulation of the Main Theorem

Consider a unit square in a coordinate plane,
whose abscissa and'prdinate are denoted by A and Y
respectively. The sides of the square are given by

A=0,Y=0,A=1,Y=1.

Let this square be intersected by the set I
of straight lines. Next, we will consider two
different subsets of the above set L.

(1) Let I'ck be a "half-open" set of lines

which contain the line Y = %(1+A); not the line A\ = 1,
and 2ll the lines between them meet at the point (1,1).

(2) Let ACZI be a "half-open" set of lines which

contains the line Y = %(1—X) and not the line A = 1, and
all lines of the set A between them meet at the point (1,0).

Now, we will be in a position to state and prove
our main theorem showing the channels which do not
have capacity when the elements from the sets I' and A'
are taken as the arguements of the corresponding entropy

functions.

' Theorem 3.1: (1) For a given ygel, B_a Ao = Ap(yg)
such that

1im - €. AN) =1 kel
N ! Yo o
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.where CY \) >1- H(YO).'

0
(2) For a given SOEA,'B a AO = AO(GO)
such that
1inm G .t )i § €A
N Sy i
where

Cs A) £ 1 = H(Sg).

Proof: Part (1) and part (2) of our theorem
holds for any elements of ' and A respectively as is

proved below.

To prove the first part of the theorem we have:
(1) The Varsharmov-Gilbert-Sacks condition
which states, that if

5t=1

n-1
et O ( ) ihe3.1)
i=0 i

it is possible to construct a binary code with 2k

words of length n which will correct %-tuple and all

smaller errors.
_(2) Chernoff's exponential bounding technique -
which gives

an
Al

n
)< 2nH(a) 1
i=0

IEEE Gy < .
5 - 2

Now subsituting .a = (%t-l)/(n-l), we get
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5t-1 -1 1

z (  )< o(n-1) H(3t-1/n-1) (3 5

1=0 V1 /- |
where

0 < (%t¥1)/(n-1) < %

If (3.1) and (3.2) are such that, we get

-1 ,(n-1) H(5t-1/n-1)

In particular,

1t/n < % ssnsl3:3)

1
2n—k 2nH(-ét/n) Where 5

>

We can find a binary codes with 2K words of

length n which corrects all errors of weight %t or less.

If we put R = k/n and a = %t/n in equation (3.3), we get

R < l—H(OL) 9000(301‘),

which means that we can construct a code with 2nR words

of length n which corrects (2na)-tup1e and all smaller
errors.

Next, we use the above code in a given channel,
If P(e') is the probability of correct decoding and Z is

" the number of transmission errors, then

'sz'

Pfe')

1A

2no) P(e'/z

1A

2na) + P(z > 2no) P(e'/z > 2na)

v
1A

2no) P(e'/z

A

P(z 2nao)

v

T i
1

- 2no

n -1

+|+

2a

tv
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so that A = 1 = P(e') <1 - 2a,.

, Since N(n,A) is the length of the largest code of
words of length n and probability of error A, it follows
from using‘eduation (3.4) that:

N(n,1-2a) > 2"

where R may be chosen arbitrarily close to 1 - H(a).

Therefore,
C, (1-2a) > 1 = H(a) = 1 - H(1l-a), (a<%)
YO =
1.e.,C, (A) > 1 - H(Z(1#)), Ae(0,1)
YO o 2 4 ]

1
where ?(1+A) = Yoer.

Consequently,

1lim Cy (A) =1

A < AT o

Since Y = %(1+A) is an element of T and is choosen

arbitrarily, the first part of the theorem holds for

any element of T,

Note: For y_ = l(1+k), C. (A) depends on Ae(0,1).
pet et (o) Y 3
0

For vy, # yel, CY(A) depends on Ae(ko,l) such that A

moves among from 0 and y moves further from Yoo
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To prove the second part of the theorem:

We consider any code N(n,A) for a given channel.
Since each error pattern of weight i or n-i has

probability
=1

ln(?)]

which decreases as i varies from 0 to 503 it follows
that if r is the smallest integer such that,
%I‘/(I’H’l) Z l - )\ .0.-(3-5)

n-2 /s n
each decoding set of the code has at least 2+ I ( )

J=0 *J
sequences; therefore the Hamming upper bound on the

number of code words is given in:

2n 2n-1

N S o T sy oeei3.6).
2y ( ) b3 (n)
J=0 '3 j=0. \j

If we let N(n,A) to be the maximum number of code words
in a code that uses sequences of length n and that has

maximum probability of error at most A; we may write

.5

2n-l
N(nA) < smely w2
DX n

J=0 J
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Therefore,
k=2 »
log (n,l) f 10g2 21’1-1 l ol 10g2 Z (?)] -000(307)
. J:O

where k = 2(n+1)(1-A)
K=2
log (n,A) < n-1 = logz[ ¥
3 j=0

(?)].“(&8)
And by taking the limits on both sides of equation (3.8),

and by using Chernoff's exponential bounding technique,

we get
1im 2 log N(n,A) < 1 = H(2(1-)))
) sy 80
lim sup : log, N(n,A) < 1 = H(2(1-x)
n-—>e n .

Cg (A) <1 = H(S)

0
where 2(1-A) = GoeA.
Consequently,

lim Cg (A) =0 , &

A0 .

Since Y = 2(1-)) is an element of A and is chosen arbitrarily,

el,

the second part of the theorem holds for any element of A.
Note: For & = 2(1-)), CY(A) depends on.Ae(kO,l)

such that ASLO as 6 approaches the boundar& Y = %(l—k) of ‘A,
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Remark I: (i) It may be noted that the théoreﬁ
in Ash {3] is only a special case of our theorem 3.1.

(ii) Since the definiton of the capacity given
hére is independent of any specific chanﬁel, the Theorem
3.1 holds for the various channels described invChapter

(1) and (2).

Remark II: The description of mutual information
and channel capacity are given in Khinchin'[fj, Reza {81,
Ash-(#j, Abramson [;] and Wolfowitz [}01.

The specification of Shannon-Wolfowitz theorem
is given in Behara tS]. Leamma 3.1 and 3.2 are given in
Ash Cﬂ]. Our theorem is illustrated graphically in the

following two graphs.
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