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Abstract

Critical software requires formal and rigorous inspection to achieve the required
quality, and good documentation provides a solid basis for inspection. The Document
Driven Inspection approach takes advantage of precise and complete documentation
to serve as a mathematically rigorous and effective technique to review software in a
disciplined way. However, it is often the case that precise and complete documents
are not available to the inspectors. In these cases, the Document Driven Inspection
approach is still useful as illustrated by our case study. As far as we are aware, this
is the first application of this approach to an object-oriented critical software system.

In this thesis, we investigate several state-of-the-art techniques in software in-
spection, and also some new techniques that focus on inspection of object-oriented
design and code. The Document Driven Inspection approach proposed by Parnas is
introduced and further analyzed as applied to an object-oriented design, especially
those with incomplete documentation. We illustrate the application of this approach
as applied to an object-oriented case study, by producing the complete and rigorous
documents that can then act as a basis for further inspection. These documents also

illustrate how to document an object-oriented design using tabular expressions.
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Chapter 1

Introduction

1.1 Motivation

Computer systems are playing an increasing role in applications where a failure or
malfunction could lead to significant financial losses or even serious injury. Software in
such applications, e.g. banking transactions, aircraft control or nuclear power station
shutdown systems. is called Critical Software.

Safety-critical software is that subset of critical software in which safety is the key,
and an error in the safety-critical software system could result in loss of life. Mission-
critical software usually costs a large amount of money to build, and functions in a
critical role to fulfill the ultimate mission of a system. Any failure in that software
may cause a disaster, for instance, the crash of a banking system.

Unfortunately, we continue to hear about serious accidents caused by software
failure. As an example, in June 2004, Canada’s largest bank, Royal Bank of Canada
(RBC), had to cope with one of its worst computer nightmares. Ten Million RBC

customers were not sure of their account balances and had no proof of payroll deposits.
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Customers’ cash, in the form of electronic pulses, had been trapped for days in RBC’s
computer system, which was hit by a programming error and was late in allocating
transactions to individual accounts. As explained by RBC staff, fixing the error cost
a day of transaction processing time, which resulted in the incident [23)].

There is no doubt that the quality of critical software is extremely important.
Redundancy is a classical engineering solution used in the design of critical software
systems to safeguard the systems against random hardware faults. The use of formal
methods in software on the other hand, is a rigorous approach to building reliable
software applications. It is used all too rarely in practice. More work needs to be
done in this field.

Software inspection has been regarded as an efficient and effective way to control
the quality of software. For a critical software system, inspection serves as an essential
and formal tool to verify and validate the quality of software, and good documentation
provides a solid basis for inspection.

Based on the Divide and Conguer principle [40], and influenced by Harlan Mills’s
Program Function theory [27], a Document Driven Inspection (DDI) approach us-
ing tabular expressions [33][35](37] was proposed by Parnas to formally review the
software for defect detection and removal.

The Document Driven Inspection approach has been demonstrated to be effec-
tive in industry through the Darlington Shutdown System project [33][36](37][51] by
Ontario Hydro (currently Ontario Power Generation Inc. - OPG) for the inspection
of a safety-critical program for the Darlington Nuclear Power Generating Station in
Ontario, Canada. The Software Cost Reduction (SCR) project [3] by the U.S. Naval
Research Laboratory for the A-7E aircraft also gave birth to the idea of Active Design

Reviews [41], which is one of the core techniques in DDI. However, to the best of the

2
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author’s knowledge, there is no previous published application of Parnas’ Document

Driven Inspection to object-oriented (OO) designs.

OO is a commonly accepted paradigm and extensive applications and technology
have been developed using it. Compared to the procedural paradigm, the OO paradigm
promised many benefits, for instance, the increased reusability of code. Since Par-
nas’ approach originated before the appearance of the OO paradigm, and was based
on applications developed on older systems using procedural programming method-
ologies, new issues may arise when it is applied to OO systems. Modifications or
improvements of the specific application of our approach are always interesting, but
actually become necessary when we apply this approach to OO designs, as shown in

Section 3.2.

The Document Driven Inspection approach is a technique that relies a lot on rigor-
ous and systematic documentation. If the requirements and design documents from
the customer are complete and precise, the Document Driven Inspection approach
is a good way to perform an “active review” of those documents, and to compare
the design against its requirements to see if there is any discrepancy between them.
However, in cases where either the requirements document or the design document is
not complete or not even available, we can still use parts of this approach to examine
the actual code to produce a precise document that reflects the design of the appli-
cation. The document is complete in the sense that missing functions are explicitly
highlighted and placeholders are used in local descriptions of the behavior. We can
(often) also communicate with the customer to determine the actual requirements so
that, eventually, the code and the design documents can be compared against their
requirements. This approach provides a means of inspecting software in a system-

atic and mathematically rigorous way in cases in which the design and requirement

3
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documents are not sufficient. In this case we still do the best that we can within the
constraints imposed by not having complete information. Thus, the Document Driven
Inspection approach is useful both when we have access to adequate requirements and

design documents, and when we do not have access to such documents.

1.2 Scope

This thesis applies and illustrates a rigorous and effective approach for the inspection
of object-oriented critical software. The Document Driven Inspection approach is first
discussed and analyzed from an object-oriented aspect. The thesis further illustrates
the rigor and completeness of the documentation produced through the Document
Driven Inspection approach.

The case study described in this thesis was partially supported by Material and
Manufacturing Ontario (MMO), an organization devoted to building industry and
university partnerships, and MD Robotics (MDR), a company developing advanced
robotics systems for space and terrestrial applications. The case study was conducted
on code extracted from an existing MDR project.

Our initial objective was to perform an inspection on the case study code. How-
ever, the documents available were not complete and contained inaccuracies. They
were simply not yet an adequate basis for an inspection. We then changed the scope
of the case study, from simply performing an inspection, to producing the documen-
tation that would facilitate an inspection.

When we started to do the case study, we did not realize the many differences
between OO and non-OO systems from the inspector’s point of view. Since the case

study was performed on an extract from the code, and not the complete system, we

4
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could not produce a module guide that would have given the reader an overview of
the modular structure of the system. The numerous small methods and the compli-
cated invocation relations among them also posed difficulties to us when we tried to
document them. The uses relation [44] is messy, more like a network instead of a
hierarchy. The reader has to investigate dozens of methods to understand any single
method.

The major contribution of this work is that, it is the first time the Document
Driven Inspection (DDI) approach has been modified to apply to an object-oriented
software application, especially a system with lots of missing information. Given the
fact that OO design and programming techniques are having significant influence in
current software industry, it is of great practical value that we discuss our approach
through an OO application. As we discussed previously, since the Document Driven
Inspection was originated on a project written in a procedural language, complications
were discovered when performing the inspection task on OO software. The object-
oriented paradigm is generally perceived to provide several benefits, yet it also leads to
some problems when we try to understand and inspect OO code. Delocalization [49],
for instance, requires the inspector or maintainer to trace chains of method invocations
through many classes, traversing both up and down the inheritance hierarchy [53].
Such a situation could be improved through good documentation of design decisions.

Furthermore, this thesis provides a series of sample documents based on a case
study example, on how to precisely specify and document design decisions of OO
software through tabular erpressions. These include the Module Interface Specifica-
tion(MIS) and Module Internal Design(MID) documents, which can be found in the
appendix of this thesis. These examples can also serve as a starting point for gener-

ating an automated inspection system. Automation is important if we want to apply

5
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our approach to large applications, because it will greatly improve the efficiency and

at the same time preserve the correctness.

1.3 Overview

The remainder of this thesis is organized as follows:

Chapter 2 and Chapter 3 present a survey of contemporary research on critical
software inspection, and on object-oriented design and code inspection technologies,
respectively.

Chapter 4 introduces the basic concepts of tabular expressions and program func-
tion documentation, and then presents a Document Driven Inspection approach fo-
cusing on object-oriented aspects.

Chapter 5 and Chapter 6 illustrate our approach with a case study from MD
Robotics. Chapter 5 introduces the background information of the whole system and
its architecture and decomposition, then includes a more detailed discussion on the
code extracted for use as our case study. Chapter 6 first analyzes the issues that
arise in documenting the case study code, then presents the way in which we dealt
with those issues. There is also a discussion on problems we discovered in the MDR
documents.

Chapter 7 summarizes this thesis and makes suggestions for future work.

The appendices contain the example documents that can be used as a basis for
inspecting the case study code. They are the MIS and MID documents for the
ScriptGenerationManager class. As an illustration of the complicated uses relation
of our case study module, the uses graph of ScriptGenerationManager class is in

Appendix C.



Chapter 2

Survey of Inspection Techniques

for Critical Software

This chapter introduces related work in current academic and industrial fields for crit-
ical software inspection. Michael Fagan and Tom Gilb’s Inspection process, Harlan
Mills’s Cleanroon Technology, and Dave Parnas’s Document Driven Inspection ap-

proach as applied to the Darlington Shutdown System project are briefly described.

2.1 Introduction

Gerald Weinberg introduced the FEgoless Programming concept in 1971 in his first
book The Psychology of Computer Programming. The idea is, “no matter how smart a
programmer is, reviews will be beneficial” [25]. Now reviews have become an effective
and efficient method in software quality assurance. The relationship of criticality to
assurance is obvious: the more critical the software is, the more important the software

assurance efforts are.
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There are a variety of review techniques, among which inspections is a disci-
plined and powerful member. Software Inspection is defined to be a static analysis
technique that often relies on visual examination of development products to detect
defects, violations of development standards, and other problems [1]. Inspections on
requirements specifications, designs, source code, and other work products, have been
developed into a disciplined engineering practice for detecting defects and improving
the quality and maintainability of software artifacts.

The following sections present a brief introduction to some of the principal software

inspection techniques.

2.2 Fagan’s Inspection

McConnell [25] wrote that Fagan’s Inspection [11][12] is one of the 10 best influences
on Software Engineering. Fagan’s Inspection has now become almost synonymous
with the term “Inspection”. During his development career in IBM, early in the
1970s, Michael Fagan first described a software inspection process for the purpose
of both improving the software quality and shortening the delivery time and cost.
Interestingly enough, this idea was sparked by a method first employed in hardware
engineering to examine designs after exhaustive testing.

As a software development manager, in the circumstances when software devel-
opment was chaotic, Fagan’s biggest challenge was to reduce the budget and deliver
products on time [13]. Therefore, the key ideas of Fagan’s Inspection at its incep-
tion were to focus on the management of the verification process, as well as on the
definition of roles for inspection participants. A team consisting of the author of the

document, a moderator, a recorder and a number of inspectors proceed to inspect the
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document using a multi-stage process.

As industry accepted and began implementing his inspection process, Fagan ex-
tended and evolved his idea into the Fagan Defect-Free Process (FDP) [26], incorpo-
rating Formal Process Definition, and reinforcing the Continuous Process Improve-
ment aspect of the Inspection Process.

Below is the description of these three components excerpted from [26].

“ Formal Process Definition is a method of defining the work process in

terms that make it measurable and manageable by its users.

Fagan Inspection Process is a seven-step process used to inspect the de-
liverables that have been created at the end of each phase of development

to find defects.

Continuous Process Improvement involves removing systemic defects from
the work process as they are found by inspections or other operations in

”

the life-cycle.

Note that the Continuous Process Improvement stage is not defined to be removing
defects from the product; it is removing them from the process.
Fagan emphasized his inspection process and improved it from the original five-

step process to the current seven-step one, which comprises the following items:

Planning Choose participants and schedule meetings.

Overview Educate the inspection team by presenting the background and context

of the target software.

Preparation Read documents, including a checklist of questions to aid in finding

flaws.
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Inspection Hold inspection meeting to identify and document defects.

Process Improvement Review the previous steps for improving future inspection,

identify causes of defects and recommend process improvements.
Rework Correct all defects.
Follow-up Ensure all identified defects are corrected.

As we can see, the core idea of this new Fagan Defect-Free Process is still the
inspection process and its management. It promotes criticizing product instead of
people, and it defines erxit criteria so that within a certain time the inspection can
proceed to the next stage so that costs can be reduced and the development life-cycle
can be shortened.

Admittedly, Fagan’s inspection method helped improve and systematize the in-
spection process, and has been a great help in improving the quality of software since
its wide spread adoption. Fagan’s approach is satisfactory more from the manage-
ment point of view. However, software inspections are not only a management issue.

We would like to discuss this further in the following sections.

2.3 Gilb’s Software Inspection

Since Fagan, many people have worked on the inspection process and techniques.
Among these, Tom Gilb and Dorothy Graham provided probably the most compre-
hensive discussion of inspection available [17]. The book presents a detailed guideline
on how to introduce and refine software inspection in an organization with enriched

documents, including procedures and a variety of inspection forms. Experience data

10
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from various sources were also included in their discussion of the benefits and costs
of inspections, presenting people with a vivid picture of how important and effective
a technique it is.

Gilb also emphasizes that the following two points must be clear to better under-
stand Inspections [15]. First, inspection consists of two main processes: the Defect
Detection Process (DDP) and the Defect Prevention Process (DPP). Second, a major
defect is a defect that, if it is not dealt with at the requirements or design stage, will
probably have an order-of-magnitude or larger cost to find and fix when it reaches
the testing or operational stages.

Yet Gilb believes that [16], “it is more relevant to view Inspection as a way to
control the economic aspects of software engineering, rather than a way to get ‘quality’
by early defect removal”. He further states that inspections should be measuring
that the engineering process is sound and that the “product” document at hand is
consequently sound. He also says that management needs to establish a sound set of
Process Erit Conditions before any document is allowed to be used by others in the
organization. The approach Gilb advocates is to compute the number of the probably
remaining magor defects, where the level remaining is economically acceptable.

In spite of some different opinions between Fagan and Gilb on the specific steps
during an inspection, they both focus on the process of an inspection, and address
them more from the management point of view. This is probably one of the reasons
why Fagan’s and Gilb’s approaches are more popular than many others in industry. As
generally recognized, Fagan did a lot in helping develop a formal inspection process.
However, it is actually independent of the use of formal notation and other aspects
of “formal methods”. “Formalizing” a process and a process that involves formal

descriptions of programs are very different. A process that has not been formalized

11
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can use formal descriptions.

2.4 Mills’ Cleanroom Software Engineering

The theoretical foundations of Cleanroom [45] were established in the late 1970s and
early 1980s, when Dr. Harlan Mills, an accomplished mathematician and IBM Fellow,
related fundamental ideas in mathematics, statistics, and engineering to software.
Influenced by Dijkstra on structured programming [6], Wirth on stepwise refinement
54], and Parnas on modular design [38], Mills defined scientific foundations for an
engineering approach to software.

The name Cleanroom was taken from the electronics industry, where a physical
cleanroom exists to prevent introduction of defects during hardware fabrication. We
think that, one major difference of Cleanroom technology from other processes such
as Fagan’s inspection, is that Cleanroom is dedicated to defect prevention in the first
place rather than defect removal afterwards.

Three fundamental principles capture the core of Cleanroom software engineer-
ing. They are, incremental development under statistical process control; stepwise
refinement and verification; and statistical testing and software certification. Above
these, Cleanroom added two main points that are the developers did not test and the
testers used statistical methods of reliability prediction.

We regard stepwise refinement and verification, using boz-structured systems [28]
as the heart. As each step in a box structure design expands a previous box description
into the next one, an immediate verification of correctness follows and in case it fails,
it is easy to explore a new expansion. Mills proposed that the behavioral description

of these boxes should be a function. This forms the solid foundation of Parnas’s

12
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approach, which will be introduced in the next section.

The following presents some principle ideas of Mills.

Incremental Development

Incremental development is based on the engineering principle of controlled iteration
in product development. As described by Brooks [5], “Mills proposed that any soft-
ware system should be grown by incremental development. That is, the system should
be first be made to run, even if it does nothing useful except call the proper set of
dummy subprograms. Then bit by bit, it should be fleshed out, with the subprograms

in turn being developed - into actions or calls to empty stubs in the level below.”

The idea of incremental development is similar to that of Wirth’s stepwise re-
finement. Both these ideas were proposed as early as the 1970s. This development
procedure is very similar to one aspect of the OOP approaches. First, classes with
blank methods are built, with simple syntax to ensure the smooth compiling of the
code, and then the detailed implementation of the methods are filled in one by one,
and compiled one by one to make sure that each method is correct by itself. This

way the maintainability of the code is improved greatly.

The value of statistics for management and control is also appreciated in Clean-
room techniques. As stated in [45], incremental development as practised in Clean-
room software engineering also provides a basis for statistical quality control. Based
on user feedback, product quality can be measured at the end of each increment and

is compared with the team’s quality goals continuously.

13
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Box Structures

Mills defined three different forms of boxes. Specifications begin with an external
view called the black box. This is transformed into a state machine view called the

state boz, and then fully developed into a procedure view called the clear bor.

Figure 2.1 taken from [45] depicts the three box structures that represent identical
external behavior yet increasing internal visibility. A black boz specifies the external
behavior of a system or a system component. The refinement of a black box is
the state box, which also shows the state data required to achieve the black box
behavior. The clear boz is a further refinement of a state box, specifying algorithm
and procedure designs required to achieve the state box behavior. The beauty of
these box structures is that each refinement is verified against the previous step.
Hence, they are declared to be able to “separate three aspects of system development
(specification of behavior, data, and procedures) yet relate them in a coherent process

of refinement and verification” [45].

Boz Structures [28] embraces an important software engineering principle of data
encapsulation, and are developed in a stepwise refinement and verification process
that integrates both system control and data operations. Stepwise refinement and
verification in box structures, is built on the principles of data abstraction. We
think this is a strong link to one of the essential characteristics of object-oriented
programming. OOP also builds a system from sketch to the final design piece by
piece, and the verification of software quality can also be done accordingly such that
one can be confident about the quality of each level of the whole system hierarchy. If
we try to relate box structures to object-orientation, a black box view represents an

object’s external behavior described using items external to the object only. A state
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Black box: behavior view

SH

State box: data view

S H R
Tran: —

sition

Refinement Process
Verification Process

Clear box: procedure view

Legend: BB = black box, SH = stimulus history, S = stimulus, R = response

Figure 2.1: Box Structure Refinement and Verification, from [45]

box view represents an object’s behavior in terms of its interface and state data. A

clear box shows an object’s internal behavior.
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2.5 Darlington — Early Version of Document

Driven Inspection

Document Driven Inspection Approach

The Document Driven Inspection (DDI) approach [35] proposed by Parnas is a
systematic and rigorous approach to software verification based on precise, well-
organized, mathematical documentation. This approach is built upon Harlan Mills’s
program function {27] and the principle of dwide and congquer.

Tabular expressions (or tables) [20] is used as a basic notation in the documenta-
tion. Tables are a good, straightforward, yet systematic and formal way of presenting
and specifying the software, because Mills (and others) showed that a terminating
program can be represented as a function — so function tables (tabular expressions)
are an easy-to-read notation capable of describing functions and therefore programs.

Good documentation is one of the keys to assure software quality [34]. Documents
record requirements and design decisions throughout the software development life-
cycle; therefore, the quality of documents is essential to inspection and future main-
tenance.

Chapter 4 will further discuss tabular ezpressions as well as the Document Driwen

Inspection approach.

Darlington Project

The practicality of this “divide and conquer”, “document based” technique for per-
forming inspections has been demonstrated by several industry applications. One of

the early applications was the safety assessment of a shutdown system in the Darling-
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ton Nuclear Power Station of Ontario Hydro (currently Ontario Power Generation

Inc. -OPG) [32]33][37).

The Darlington Nuclear Power Generating Station is the first in which the safety
shutdown systems are computer controlled. Canadian Nuclear Safety rules mandate
that safety systems must be independent of the control system. There are actually
three control systems, with each of them capable of shutting down the reactor in case
of an accident. The major control system is responsible for power adjustments under
normal operating conditions. Another two are the shutdown systems, whose only job
is to shut down the station if anything abnormal happens. At Darlington, the two
shutdown systems are computerized, programmed by different teams of programmers
in different languages. This was intended to ensure design diversity so that even if
both the reactivity control system and one of the shutdown systems fail, the plant

will be shut down when necessary.

Therefore, when the Atomic Energy Control Board (AECB, currently Canadian
Nuclear Safety Commission, - CN SC) wanted to license these computerized systems
before its actual operation, they asked for a rigorous inspection for safety purposes.
The inspection was then conducted based on the preparation of precise mathematical
documentation for the code so that the complexity of the software system could be
restricted and simplified so that the assessment of it could be performed thoroughly

and correctly.

Two documents were used in the Darlington case. One is the Software Design
Specification written and reviewed by nuclear engineers. The other is a set of Program-
Function Tables derived from the code by software experts. Four groups of people

conducted the following different tasks during the inspection:
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produce tabular representation of the software requirements (actually a mixture

of software requirements and software design)

generate program-function tables from the code

compare the first two teams’ work and establish the equivalence between the

above two tables by showing step-by-step transformations from one to the other

e audit the above work

The first three groups were composed of staff and consultants from Ontario Hydro,
and the members of the fourth group were staff and consultants from the Government

of Canada.

Tripod Approach

Another important factor of this inspection approach is the certification of people.
During the inspection of the Darlington shutdown system, the above four groups of
people were selected from different sources, including domain experts and software
consultants, to ensure that the proper experts were involved. The certification of
people and processes, along with testing and systematic inspection, form the ba-
sic approach called the Tripod Approach [37] for the assessment of critical software
products.

As for the software inspections itself, we believe that it is also a “Tripod” such that
three aspects are of the same importance to a successful inspection. They are people,
management process, and technical process & notation, respectively. Neglecting any
of them would bring more trouble in an inspection practice and thus be less effective

or efficient.
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The result of the Darlington project was successful. The inspection was so formal
and rigorous that the CNSC was very confident that a precise assessment on this
safety-critical project had been achieved. From the customer side, it was also a
success because OPG finally got the licence from the CNSC certifying that its
system was safe and correct. All of these demonstrated the applicability and success
of the approach of Document Driven Inspection. Even now, the CNSC continues to

use similar approaches in its own research program.

19



MSec. Thesis - Hongying Shi McMaster - Computing and Software

20



Chapter 3

Related Work on Inspection of
Object-Oriented Software

This chapter introduces the related work in academia and industry for object-oriented
inspection. We also describe some of the issues that arise in the inspection of object-

oriented software.

3.1 Similarities and Differences Between OO Lan-

guages and Procedural Languages

Our case study software is written in an object-oriented (OO) language, namely,
Java, while the document driven inspection approach was previously applied more
on procedural based languages. It is therefore useful for us to discuss the similarities
and differences between the two classes of languages. In this thesis we focus on

OO languages with procedural languages that facilitate good modularization, such as
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Modula-2.

We can consider a class as a black boz where inputs go in and outputs come out,
since it does a good job of data encapsulation following the principle of Information
Hiding. That is, state data is hidden inside a class so that it can only be accessed
through an access program of the class. The program is decomposed into classes so
that all the communication between each other are through method calls only, not
by sharing data.

There is a key difference between an OO language like Java and a procedural lan-
guage like Modula-2 though. Classes are factories of objects, i.e., you can have several
instantiations of a class with the same behavior but each with its own encapsulated
data structure.

In addition to providing excellent encapsulation capability, object-oriented pro-
gramming (OOP) introduced inheritance and polymorphism. These are powerful and
useful capabilities, but introduce difficulties when we try to document and inspect
designs that use these features. Inheritance, in particular, has many problems in
practice since it can be used in a way that violates information hiding terribly. The
remainder of this chapter assumes that object-oriented design (OOD) means designs

that take full advantage of OO languages, including inheritance and polymorphism.

3.2 Issues When Applied to Object-Oriented In-
spection

Object-oriented design has developed into a popular technology since its inception

in the early 1980’s. Software inspection is also a mature and proven technology for
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detecting and removing defects. The strange thing is that there are few academic
papers that address software inspection of object-oriented software. Differences exist
between the non-OO and OO paradigms. The wide adoption of object-orientation

raises new problems regarding software quality assurance through inspections.

3.2.1 Inheritance and Polymorphism

The OO paradigm has been widely believed to provide a number of benefits in design-
ing a software system. OO shares some benefits with other programming paradigms,
namely, data encapsulation and information hiding, improved extensibility and main-
tainability. A major distinguishing feature of OO from other paradigms is the signif-
icant code reusability facilitated by inheritance and polymorphism.

Inheritance is a powerful feature of object-oriented programming. However, mis-
used inheritance, results in an increased complexity of a software hierarchy, thus
making it even harder for inspectors and maintainers to understand the behavior of
the software in sufficient detail. There is difficulty in understanding code with inheri-
tance due to the distribution of behavior over several classes. This happens for either
single inheritance or multiple inheritance [24].

A “good” use of inheritance is when it is designed for refinement; that is, to allow a
specification-implementation (refinement) relationship between the subclass and the
superclass [46]. There is not yet an inspection technique, as far as the author is
aware, to specifically check issues related to this aspect of inheritance. Some reading
techniques, as will be introduced in the next section, cover part of the problem. An
experiment using horizontal reading [48] made a set of questions to verify if the class

descriptions conform to the related class diagrams. One question was to check that
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all the class inheritance relationships were described. Reference [9] also advocates
the use of a checklist to examine features like inheritance. Neither of these questions
concerned the refinement of any inheritance case. More detailed inspection techniques
are needed to ensure that the refinement of subclass from superclass does not break

the existing code of superclass, thus preserving extensibility and reusability.

Polymorphism and dynamic binding are also powerful features of OO that come
with a price. The structure of an OO program at run-time is greatly different from
its static code structure. Since the implementation which is called at run time may
not be known at the time of writing or even inspecting, it may introduce subtle and
unanticipated bugs later on. That is a serious problem for inspectors since they must
find out which implementation is being used to determine the behavior of the program.
In this thesis, however, we will not cover the issues related to polymorphism and
dynamic binding. There are two reasons. First, we have not found an effective way of
coping with specifying the dynamic binding of a program through a static inspection
technique. Second, as we will explain in Chapter 5, the case study program is only
one class of a generic project. The implementation of this class could be different in
different specific project afterwards, and the documentation of the related class in a
specific project would do a better job of specifying the precise behavior. These topics

are definitely very interesting topics, and should be among any list of future work.

3.2.2 Method Size and Delocalization

A typical large object-oriented system consists of many small methods, each of which
provides only a little functionality. Together with inheritance, polymorphism and

dynamic binding, this can lead to the code required to complete a single task being
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dispersed widely throughout a program [8]. As a result, program understanding
for a fragment of software requires more than just that fragment. The inspectors
or maintainers need to trace up and down the invocation chain to find out what
exactly that little fragment does. Note that good information hiding practice requires
specifying the programs that access the hidden information, which helps inspectors

understand the program.

An early observation of this problem was made by Soloway et al. in [49] as
delocalized plans. Soloway described a delocalized plan as “where the code for one
conceptually united plan is distributed non-contiguously in a program”. Soloway
continued to point out that, “Such code is hard to understand. Since only fragments
of the plan are seen at a time by a reader, the reader makes inferences based only
on what is locally apparent-and these inferences are quite error prone”. Although
delocalization is not limited to object-oriented software, the object-oriented paradigm
exacerbates this through its huge library of small methods and the multi-interaction
among them.

Let us take a look at a simple example illustrating the problem of delocalization
(sometimes called method distribution). Figure 3.1 depicts an example of method
invocation. A lower rectangle represents an object that inherits or extends the object
of its higher rectangle. An arrow means a method call from the arrow beginning object
to the arrow end object. The arrow to the lower left object indicates an invocation of
one method inside this object. However, it turns out that this method again invokes
other methods, which in turn invoke yet other methods, and it keeps on and on. It is
often the case that there may be a lengthy chain of method invocations that must be
followed to understand the implementation of the very first method. This, not only

greatly increases the paths that must be followed, but also destroys the hierarchical
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structure. Therefore, the complexity of the system is transferred from method bodies
to the interactions between them [24]. It is not surprising that an inspector’s work
becomes harder, since all these interactions must be understood so as to confirm the
effect of a SINGLE method call. Such problem could be alleviated if there is “black

box” documentation.
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Figure 3.1: A Chain of Method Invocation in an Object

3.2.3 Other Issues in OO Code Inspection

A study from Dunsmore et al [10] also suggests that in addition to the delocakzation
described by Soloway, another two significant issues were identified that are arguably
crucial in order to make OO code inspections practical for large-scale systems. They
are, chunking, and reading strategy.

Chunking comes from the many undocumented and unspecified dependencies and

links between classes that make it very difficult to isolate even one or two classes for
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inspection, and delocalization complicates this further. How to partition and select a
piece of code for inspection determines what the inspection result will be. Program
slicing [52] is one of the solutions advocated by some researchers. Again, there are
some issues that need to be addressed [8]: (1) the identification of suitable chunks of
code to inspect, and (2) the decision of how to break the chunk free of the rest of the
system, minimizing the number of dependencies and the amount of delocalization.
Reading techniques addresses the method and the procedure in which the code is
read. How to read OO code more efficiently and effectively? How to make sure the
reading strategy used helps the inspectors find the most defects in the code? Is the
current reading strategy enough for all the issues applicable in OO inspection?

The next section will introduce current reading techniques advocated in the field.

3.3 Reading Techniques that Help Improve OO In-

spection

There are several groups of researchers dedicated to improving inspection methods,
and many of them suggest an approach called software reading techniques. In this
section we introduce some of the new reading techniques aimed at understanding and
inspecting high-level OO design document and code.

A reading technique can be defined as a series of steps for the individual analysis
of a software product to achieve the understanding needed for a particular task [48].
Experience has shown that documents play a central role in all the phases of software
development. Thus, understanding the documents is a key technical activity for

software development. There are a variety of reading techniques, and most of them
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fall under the following four categories:

Ad-Hoc Unstructured, absolutely no guidance for inspectors

Checklist-Based Reading (CBR) Checks for sources of common errors. This is
a commonly used reading technique and also deemed as the most effective one

by many.

Perspective-Based Reading (PBR) Inspectors are given a set of instructions on

how to read code from different perspectives (i.e. tester, designer, user).

Use-Based Reading (UBR) Inspectors manually execute use-cases, a new proimis-

ing approach to detecting usage-critical errors.

In addition to these, Shull et al. [48] defined a family of reading techniques for the
purpose of defect detection of high-level OO designs diagrams represented using the
Unified Modeling Language (UML). A high level design is a set of artifacts concerned
with the representation of real world concepts [50]. The objective of the inspections
using these techniques is to try to capture the static and dynamic views of the problem
using UML notation: class, sequence, and state diagrams.

The main idea is to define one reading technique for each group of the above
diagrams. For example, use cases need to be compared to interaction diagrams to
detect whether the functionality described by the use case is captured and all the
expected behaviors regarding this functionality are represented. The next step is to
use both horizontal and vertical readings to identify different aspects of defects in
all documents. While horizontal reading concentrates on comparisons of documents
within a single life cycle phase, vertical reading tries to compare documents between

phases. The idea of this approach could be traced back to Linger and Mills’ [22].
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The details of this approach and some empirical studies and experiments conducted
can be found in [47][48][50]. Based on their results, vertical techniques tend to find
more defects of omitted and incorrect functionality, while horizontal techniques tend
to find more defects of ambiguities and inconsistencies between design documents.
There are also some other reading techniques tailored for OO software. Dunsmore

et al. [10] developed three techniques to inspect practical object-oriented code.

Systematic Abstraction-Driven Strategy Aims to enforce an understanding of
the code by having the inspectors create abstract specifications for each method
as they read them. The ordering of code for inspection and the use of stepwise
abstraction to deal with delocalization are aspects of the technique that were

recommended by the author.

Use-Case Reading Strategy Attempts to support inspection from the dynamic
aspect of object-oriented systems. The procedure of this technique is to check
the response of each object in all the possible scenarios from the user’s point
of view. Therefore the benefit is obvious in that it checks the code explicitly

against the requirements.

Checklist Strategy Checklist as introduced above is a well-established reading sup-
port approach often adopted by inspectors during the preparation of the in-
spection. Gilb and Graham [15] recommend that checklists should be based
on historical information and should not be composed of general, and therefore

potentially irrelevant, questions obtained from elsewhere.

Note that the first technique, Systematic Abstraction-Driven Strategy, is essen-
tially what is done in the display method [40] of the DDI approach, which will be

introduced in the next chapter.
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According to the evaluation of these three techniques through an experiment done
at Strathclyde University, Dunsmore claimed in [10] that Checklist is the most effec-
tive approach but the other two also have potential strengths and so for the best

results in a practical situation a combination of techniques was recommended.
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Chapter 4

Document Driven Inspection of

Object-Oriented Software

This chapter briefly introduces the Document Driven Inspection approach proposed
by David Parnas, and further discusses the approach from the aspect of Object-
Oriented software. Readers interested in the Document Driven Inspection approach

and its previous applications may explore the following references: [19][32](33](37][51].

4.1 Tabular Expressions

4.1.1 What is a Table?

Tabular Ezpressions (or tables) [20][21][31] developed by Parnas et al. are an im-
portant concept in the Document Driven Inspection approach. We assume that the
readers already have basic knowledge of standard mathematical notations. This sec-

tion reviews the concept of tables.
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Tabular expressions are practical notations influenced by Mills’ Program Function
[27]. Tables can represent any functions or relations, especially those complex ones
to specify software behavior precisely, unambiguously, and completely.

Tables are essentially multi-dimensional expressions, represented by sets of cells
(headers and grids). The use of headers and grids logically separate the complex
conditions of a software system into many small cases. Two important characteristics
of computers [31] suggest describing functions in computer systems in the form of
tables. First, digital technology requires us to implement functions that have many
discontinuities, discontinuities that can occur at arbitrary points in the domain of
the function. Second, the range and domain of these functions are often tuples whose
elements are of distinct types and the values of the tuples cannot be described in
terms of a typical element.

Formally, as defined in [21],

® A header H is an indexed set of cells, H = {h)i € I}, where I = {1,2, ..., k}

(for some k) is an index set.

e A grid G indexed by headers Hy, ... ,H,, with Hy={hlliel},j=1,..n
is an indexed set of cells G, where G = {ga|a € I}, and I = I, (or I =

I' x ... x I"). The set I is the index set of G.

e A raw table skeleton is a tuple

T= (H].’ "'7Hn7 G)

where Hj, ..., H, are headers and G is the grid indexed by the headers. The
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elements of the set Components(T) = {Hi, ..., H,,G} are called table compo-

nents.

A variety of tables have been developed by SQRL researchers. Among them are
Normal Tables, Inverted Tables, and Vector Tables. The syntax and semantics of
those tables can be found in [31][39].

A Normal Function Table is a common table format that we used in our case
study documentation. An example of a Normal Function Table is given below [20].

Consider a function f:

0 ifz>0Ay=10

x ifzr<0Ay=10

o) = y? ifzr>0Ay>10 Al
, ﬁ—y2 ifzr>0Ay <10

r+y ifx<O0Ay>10

z—y ifz<0Ay<10
\
A conventional mathematical expression of function f, which is not very readable,
is:
(Vz, (Vy, (z 2 0 Ay = 10) — f(z,y) = 0) A ((z <0 Ay =10) — f(z,y) = 2)A
(x> 0Ay>10) = f(z,y) =¢*) A((z 2 0 Ay < 10) — f(z,y) = =y*)A
(z<0Ay>10) = fz,y) =z +y) A((z <0Ay < 10) = f(z,y) =z = y)))
(4.2)
The equivalent tabular expression of function f is:

33



MSc. Thesis - Hongying Shi McMaster - Computing and Software

H1
HINHZ y =10 y > 10 y < 10
x>0 0 y? —1?
z<0 z T+y zT—y

H2 G

Table 4.1: An Equivalent Table Defining f

4.1.2 Why Tables Help?

The experience on a variety of projects, for instance, the Darlington project we intro-
duced in Chapter 2, demonstrates that tabular ezpressions are of great help in both
documentation and inspection. As summarized in [20], tables help in thinking, and
thus in inspection, through a divide and conquer policy.

Software is becoming more and more complicated, and typically people cannot
understand it easily. When people try to inspect such software, the complexity often
overwhelms them and poses difficulties in correct understanding. Tables under such
circumstances act as a rigorous yet practical assistance to divide one complex condi-
tion into many small ones, so that each case covers a logically small unit precisely, and
all the cases together specify the whole program completely. In this way, we reduce
the complexity of the task of analyzing a big system as a whole. Further, fighting
only small cases one by one, fewer errors will escape from our eyes.

Most importantly, two properties of a table, completeness and disjointness, facili-
tate a mathematically rigorous and correct procedure, yet an easy-to-check approach
of specifying the software behavior exhaustively. With such properties, one can be
confident that the specification is complete and unambiguous. The definitions of these

properties will be introduced in Section 4.3.
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Tables also help us do a better job when documenting software. It is obvious
that natural language expressions are often vague and imprecise and thus misleading.
Conventional mathematics expressions, which are normally rigorous and precise, are
often too complex and hard to read and check. As the previous example shows, even
for a simple function, conventional logical expressions are not very readable. Tables,

instead, can easily provide much more readable documentation.

4.1.3 A “While” Table

One of the challenges we faced when producing the Module Internal Design Document
for our case study is that we need new notations to fully and precisely specify the
behavior of a program in a table. An example is the development of a so-called “while
table”.

It is well recognized that a digital computer can be viewed as a finite state ma-
chine that is always in one of a finite set of states, and whose operation consists of a
sequence of state changes, i.e., transitions from state to state. Further, every termi-
nating deterministic program can be described by a program function [40]. However,
difficulties arise when specifying behaviour in which the termination condition of a
loop depends on an external call to a program that has not been written or for which
there is no specification, or we may not want to (or cannot) include the behaviour of
the external call within the specification of the local behaviour.

Consider the example in Figure 4.1 that illustrates the case when behavior is
determined by the return value of an external call from within a loop.

Assume that outValue.show() is an external call that prints the number of invo-

cations of outValue on the screen; outValue.init() sets the current invocation number
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outValue.init;
while (!cond()) {

outValue.show () ;

Figure 4.1: A Non-Deterministic While Loop

of outValue to 0; and cond() is an external call that returns a boolean value.
We could describe the behavior by documenting output traces. Such documenta-

tion may not be very readable. For example,

NOT [cond()].NOT [cond()].cond() =

invoke outValue.show.invoke outValue.show

We suggest rather that we document such program through a while table. Table

4.2 shows the while table specifying the behavior of the example.

Loop
n=0.1,2,.. outValue.show<n> Terminates
cond() <n> False True
NOT [cond() <n>] True False

Table 4.2: Specification of the While Loop Program Example
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We introduce a tag < n >, indicating the value of the identifier at the n'" iteration
through the loop. Results from the loop may be tagged with < n+1 >. The outputs
and/or the termination condition of a while loop may be different for each iteration.
That is, their values are determined by other programs or sometimes by the end-user
input. In our example, the output is generated outside of the loop body, therefore
the different values of output for each loop iteration may or may not cause loop
termination. Since the value of the termination condition may also change, loop
termination must be explicitly described as a boolean value in the table.

The advantages of the while table are:
e They describe one iteration of the loop behavior in an understandable way;

e The total loop behavior is derivable from the table. For instance, in more
complex cases we could functionally compose n = 0 and n = 1 to obtain the
behavior after the first two iterations. We could then compose the result with
n = 2 and so on until Loop Terminates is True under all conditions. In cases
where there is no specification of the invoked programs in a loop, the effective

loop behavior can still be documented in a readable way using the while table.

4.2 Precise Documentation of Design Decisions

4.2.1 Software Design Principles

This section provides an overview of software design principles that we use to examine
and judge the case study design and documentation. These principles also act as our
philosophy in producing our documentation. More details about these principles can

be found in [3][19][29][38][41][42].
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Design Philosophy: Information Hiding Principle

The concept of information hiding comes from the seminal paper, “On the criteria to
be used in decomposing systems into modules” authored by Parnas in 1972 [29]. The
principle was induced from Dijkstra’s THE paper in 1968 [7] which described a nice
system with “a strict hierarchical structure”. The purpose of information hiding was
to obtain a modularization structure of a system that can minimize the number of
modules affected when an unexpected change is made.

Information hiding is the key to reuse. The core idea is to hide implementation
details of one module from its outside world, and keep its interface defined and not
changed while the implementation or secrets of this module can be changed without
affecting its interface, and thus the other modules which may use it. As defined
by Parnas [30], “secrets” are design decisions that are likely to change, and these
anticipated changes should not be revealed by the module interface. These concepts
are critical to system decomposition and the designing of modules.

As a software design principle, information hiding is widely accepted in both
academic circles and industrial practice, and many successful design ideas come from
it. For instance, one of the most important traits of object-orientation, encapsulation,
was inspired by information hiding.

Information hiding is the theoretical foundation of both functional documentation

[39] and the document driven inspection technologies.

Precise Specification of Requirements

A requirements document is a primary document and the basis of the entire software

development life cycle in that a software application is made to fulfill the requirements
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from the customer. A precise and complete requirements document is crucial to the
ultimate success of a system. A precise and complete specification of requirements can
be achieved through a formal and rigorous notation. Tabular expressions as discussed
previously, provides rigorous while readable and practical methodology that has been
illustrated in several projects. Tables are good for many circumstances, for example,
real-time systems as in our case study, but not for everything. For instance, in cases
that algorithms or Graphical User Interfaces (GUIs) must be described, tables would

not serve as the best documentation means.

Decomposition into Modules

Decomposing a large program into information hiding modules is the first step of
design. This should be done by identifying design decisions that are likely to change,
known as secrets, and then designing a hierarchical system of modules, so that each
secret is hidden inside a module. If this can be achieved, any one of these identified

design decisions could be changed by modifying a single module.

Interface Design

Based on [3], the interface between two programs consists of the set of assumptions
that each programmer needs to know about the other program in order to demonstrate
the correctness of his own program. The design decisions that are unlikely to change
facilitate an interface design so that all the assumptions that other programs can
make about this module can be found in its interface document. Therefore, a good
interface design document should include not only type information but the external

behavior of this module that the other modules can rely on.
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4.2.2 Precise Documents that We Need

As Parnas pointed out [34], documentation is the key to better design and thus better
software, and precisely documenting all the design decisions plays a crucial role in the
inspection. In this work, we are building on this by using the same document model
even if the inspectors themselves are forced to develop the documents as introduced
below.

According to the functional documentation approach [34][39], several documents

are required for the purpose of precisely specifying and documenting the software.

¢ A Requirements Document that tells the users exactly what they will get

and tells the programmers exactly what to build.

e A Module Guide that provides guidance on exactly how the program will be

affected by a proposed change, as well as a hierarchical structure of the system.

e A set of Module Interface Specifications (MIS) that tell programmers
what they must build and other programmers, what they can expect of a mod-

ule.

e A set of Module Internal Design Documents (MID) that record major
internal design decisions, guide the programmers in coding, and help maintain-

ers to understand the code.

In this work, two of the documents were produced, i.e. the Module Interface
Specification and the Module Internal Design Documents for the case study. The
MIS works as a “black box” description of the module, while the MID treats the
module like a “clear box”. Chapter 6 will discuss the issues on and the considerations

about producing these documents. As mentioned, although both the requirements
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documents and the module guide are very important to the design and inspection, we
are not going to discuss the application of documenting them from the point of view

of 00, simply because we did not have a chance to work on them in our case study.

4.3 Document Driven Inspection Techniques

Inspection must be performed in a disciplined way so that no cases are overlooked and
each case can be examined carefully. Document Driven Inspection (DDI), proposed by
Parnas [33][35][37], is a systematic and mathematically rigorous approach to perform
a formal and effective review on design and code. This approach depends heavily on
rigorous and systematic documentation.

The DDI can be outlined by the following characteristics [35]:

e Employs hierarchical decomposition rather than sequential reading for system-

atical inspection of a system.

e Uses mathematical notations to provide precise and rigorous specifications

rather than informal paraphrases.

e Produces useful precise documentation as a basis for inspection when it is not

available.

e Has the confidence that cases are not overlooked or overlapped based on the

properties of Program Function Tables.
e Applies mathematics to check for completeness and consistency of documents.

e Can take advantage of mathematics based tools such as theorem provers and

computer algebra systems.

41



MSc. Thesis - Hongying Shi McMaster - Computing and Software
4.3.1 Active Review on Design Documents

A number of techniques have been developed to perform the task of inspection, among
them, the actwe design reviews technique [41] introduced by Parnas and Weiss is an
effective review on design documents provided that the documents are complete before
the review. This technique makes good use of both the skills of the reviewers and
the design documentation. Rather than conducting a large inspection meeting, this
approach focuses on identifying distinct types of reviews for finding different types of
design errors. The reviewers are also classified based on their expertise. Therefore the
reviewers can concentrate on a clear responsibility to perform the task. Conducting
the active review is beyond the scope of this work. As we explained in Chapter 1, the
reason why we did not perform an inspection is we simply did not have enough time
to do both tasks of documentation (as the basis for the successive inspection) and
inspection on our case study. Interested readers on how to perform an active design

reviews may consult [41] for details.

4.3.2 Code Inspection through Documents

The goal of our inspection process is to develop confidence in the quality and correct-
ness of the code.

Code Inspection Process

Our code inspection process comprises the following steps:
1. Prepare a precise specification of what code should do based on the design.
2. Produce the descriptions of what code actually does using either Displays or
Program Function Tables.
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3. Compare the “top level” display or the major function table description with

the design specifications.

Why Choose MIS/MID Instead of Displays?

We decided to use the module interface specifications (MIS) and the module internal
design document (MID) through the Program Function Table (PFT) notation to

produce our documentation.

The display method approach [40] works best in the inspection of a long program
in that it systematically describes the invocation chain (data flow) of such a pro-
gram. However, we made the decision to choose MIS/MID instead of Displays for

the following reasons.

First, at the time that we did the documentation, we did not have access to
adequate documents that can provide the details for the complete data flow of the
examined module. Second, there are some new issues when documenting OO code
using Displays. Not only are there numerous invocations, but those invoked programs
are usually non-local to the invoking programs (methods or classes). This is called
delocalization as discussed in Chapter 3. This phenomenon limits the advantages of
displays from specifying behavior of programs and their subprograms (i.e.,the invoked
access programs) completely.

We then turned to the alternative method of MIS/MID. We still take advantage
of tabular expressions, but leave the details of the invocation chain to the original
programs themselves. That is, we do not specify the internal design decision of
invoked access programs of a program, instead, we only specify the origin of those

access programs so that readers may refer directly to their specifications.
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Disjointness and Completeness of PFT

The structure of the Program Function Table (PFT) used in our case study is derived

from that used in the Darlington project [51] as shown below in Table 4.3.

. Resur
name; ' nameg,
Condition
condition; resulty; result;y
condition, result,, result,
If condition, then { name; = result,;; ... ; name,, = result;y}
elseif ...
elseif condition, then {name, = result,;; ... ; namey, = resulty,}

Table 4.3: Program Function Table Template

Based on [51], two primary properties of PFT, disjointness and completeness, are

defined as,

e Disjointness

Condition, A Condition, <= FALSE,Vi,j = 1.n,i # j

e Completeness

Condition, V ... V Condition, <= TRUFE
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Disjointness holds if no conditions are overlapped, and completeness holds if the
conditions cover the complete input domain.
Thus, these two properties make the application of PFT precise and complete in

specifying the behavior of a program.

4.4 Dealing with the Complications Arising from
00,

In Chapter 3, we already discussed the issues raised when inspecting OO software.
They are equally important. However, due to the limited case study code, only some

of them have brought to our considerations during our documentation.

e Delocalization
Delocalization, as indicated in Chapter 3, is a common issue that is observed
in OO code. Although delocalization is not confined to OO software, the OO
paradigm exacerbate this through its large and powerful library of many small
methods and the multi-interactions among them. The use of displays was in-
tended to deal with the issue of delocalization. However, as discussed in the
previous section, we decided to use the approach of MIS/MID to produce the
design documents due to the delocalization problem. Delocalization is widely
observed in OO code in that many invocations from one method are distributed
across the whole system. It is not practical to give specifications of every single
method in each method that invokes it. A method may be invoked, say 10 times,
in different classes, so there would be unnecessary redundancy of information if

we have to document the same specification of this method 10 times in different
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classes. Another observation is, multiple invocation chains are typical in OO
code. To document one program correctly and completely, one may have to
trace a long way back to reach the last method in the invocation chain, i.e., a
method that does not invoke other methods. To cope with such situations, we
used MIS/MID as introduced previously for documentation. We treat the non-
local invocations as external, and then only indicate the origin of those invoked
programs, so that the reader can refer to the complete and precise specifications
of those programs. In this way, we will have the confidence that the specifica-
tion of one program is complete and correct, with the assumption that each of

its invocations has a correct interface specification.

Uses Relation

In [44] “uses” is a relation defined as: P, uses P if a working copy of P, is
needed in the system in order for P; to meet its specification.® Further, [30]
states that “by restricting the relation uses so that its graph is loop free we
can retain the primary advantages of having system parts use each other while
eliminating the problems”. The powerful library of Java langauge (in our case)
complicates the uses relation among the modules, probably because a program
can conveniently use the available methods from the library to implement its
own functionality. In OO code, it is quite usual to find that the uses relation
contains loops, that is, a program A may use methods of another program B
while at the same time B has to use methods of A for its implementation. This
causes problems especially when we try to develop a big system in a team.

Therefore, to design with uses hierarchy [42] among classes in mind is of great

1

P, and P, are program names.
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practical importance. We also found cases of uses loop in our case study. To
precisely document such program, the only thing to do is to regard all of the
programs in the loop as a single program that must either be included as a
whole or excluded, which seems impractical in practise due to the large body
of such a loop. Ideally, uses loops should be eliminated through a clear and

modular uses hierarchy of all the modules in a system.

e Inheritance
Inheritance is no doubt an important feature of the OO paradigm. To document
a program with OO design and language using a functional documentation ap-
proach is not a new topic. The program family concept [43] by Parnas already
brought forward the idea of module specification that is similar to inheritance,
vet focuses more on the essence in a different way. In [2], a solution was also
proposed to document class inheritance in module internal specifications via

the “foreign types lists”.

Java does not support true multiple inheritance. Besides the basic form of in-
heritance, Java decided to use a notion of interfaces instead of superclasses to
deal with the situation of requiring a class to reflect the behavior of two or more
parents. Note that “interface” in this context means Java’s specific definition of
an interface, i.e., a declaration of a type without an associated implementation.
Both kinds of inheritance are used in our case study systems. For the inheri-
tance of classes, our solution is to document the inheritance relationship of two
classes by first indicating the parent class as a source type in the MIS instead of
the MID of the child class. We then document the names of the methods that

inherit from the parent class in the MID of the child class, without the detailed
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implementation in cases where there is no overriding methods. The benefit of
such documentation is, the MIS would give the readers a whole picture of in-
heritance hierarchy from the parent class to its child class, while on the other
hand, the associated MID is clear and simple without duplicated information
and the readers can easily refer to its parent class for the detailed specifications
of any inherited method.

The second kind of inheritance, from interfaces, occurs in our case module.
Figure 4.2 shows an example of documenting a case of interface inheritance
in its MIS document. Figure 4.3 shows the same example in the associated
MID. As the example shows, two interfaces SystemModeChangeListener, and
CancellableProcess, are required to be implemented in the class of ScriptGen-
erationManager. Similar to the class inheritance, we document interface inher-
itance in both MIS and MID documents of the inheriting class, but with all
the implementation details since no implementation is required in an interface.
In the MIS (as shown in Figure 4.2), we first specify the name of the interface
(with the long class source, if any) in the overview, and then the detailed spec-
ifications of the methods of that interface in the access program section. We
also denote the interface name before the behavior specification of its associated

methods in the MID (as shown in Figure 4.3).

There are also some other issues that are important. One of them is dynamic
binding. It is commonly applied in our case study system. However, we did not have
the opportunity to document dynamic binding in the slice of code used for our case
study. Admittedly, it is not easy to document it using tabular notation due to the

static characteristics of tables. New notation might be needed. Future work on this
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ScriptGenerationManager (SGM) Module Interface Specification

1.1 INTRODUCTION

The ScriptGenerationManager module manages the transactions of the system in
script generation mode. The user first commands the virtual equipment
(manipulator) to define script elements, and then adds the defined script elements
to the current script body until composition of a whole script.

1.2 INTERFACE OVERVIEW

Inheritance

Implements the interfaces of

o ca.mdrobotics.gs.vdm.SystemModeChangeListener, CancellableProcess
o ca.mdroborics.gs.vdm.gui.CancellableProcess

Exports

Constants

None

Types

Name Definition

ScriptGenerationM ( genEmulator: GenerationEmulator® ,
fileManager: ScriptFileManager” ,
opConsole: OperatorConsole” )

Imports

Constants

Name Type Value/Origin
SCRIPT_GENERATION  |byte ca.mdrobotics.rtr.gs.vdm.SystemModes

Figure 4.2: An Example of Documenting Inheritance of Interfaces in MIS
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Access Program 2: cancel

* Implements CancellableProcess

Inputs

none

Updates

none

OQOutputs

Name Ext_Value Type Ongin

CP— | cancelPopup stop() boolean State
GS —2 gotoStandby() boolean this module
verificationCancelled t:- boolean State

Behaviour

Figure 4.3: An Example of Documenting Inheritance of Interfaces in MID
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topic is not only necessary but challenging.
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Chapter 5

Introduction to the Case Study

We have been working with industry to apply our approach in practice through a
project supported by Materials and Manufacturing Ontario (MMO) and MD Robotics
(MDR). This chapter gives a brief introduction to the background of the project, as

well as a brief description of the program that was used as our case study.

9.1 Project Objectives and Scope

5.1.1 Objectives

This project applies a sound procedure for the documentation and inspection of crit-
ical software, using extracts from a software application supplied by MD Robotics.
The project also provides sample software design documents for the MD Robotics
code, and suggests some improvements to the documentation and inspection tech-

niques used in the case study.
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5.1.2 Scope

We intended to do an inspection on the case study software. The class ScriptGenera-
tionManager in the Remote Teleoperation of Robotics (RTR) system was selected due
to its important role in the system, and because it is large enough to test our meth-
ods. However, it turned out that the relevant documents we had access to are vague
and incomplete and thus cannot be used as a solid basis for our inspection. There-
fore, after communicating with the customer, the scope of our task was changed from
inspection to documentation.

The appendix shows the sample documents we produced for MD Robotics:

e Module Interface Specification for the identified subset module, ScriptGenera-

tionManager

e Module Internal Design Document for the identified subset module, ScriptGen-

erationManager

These documents were produced based on the source code provided by the cus-

tomer.

5.2 System Overview

To help the readers better understand the complete system, this section will briefly
describe the Remote Tele-operation of Robotics (RTR) Operator Station, and its im-
plementation instance, the Remote Operation with Supervised Autonomy (ROSA)
Ground Station. The following description is extracted from the Software Architec-

ture Document from MD Robotics.
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“ Purpose

Operating robotic equipment at a distance requires a facility for generat-
ing the commands, relaying the commands to the robots and monitoring
the progress of the robots. Scripted control of robotics equipment is a
useful technique for overcoming communication latencies large enough to
preclude direct control. Scripts that enable autonomous behaviour of the

robots can reduce the communication bandwidth required.

RTR Operator Station

The RTR Operator Station (ROS) is a system for generating variable-
autonomy scripts, rehearsing the scripts and monitoring execution of the
script via telemetry received from the remote robotic equipment. A 3D
virtual representation of the remote worksite equipment is used to plan,

rehearse and monitor the execution of a script.

The ROS is not pro ject-specific and can be tailored to control any robotic

equipment.

The ROS system supports seven operational modes identified as relevant
during requirements analysis: Script Generation, Script Rehearsal, Ob-
servation, Script Execution, Import Worksite Data, Model Correction,

Direction Execution. ”

Our task is to examine one of the modes, that is, the Script Generation mode, as

described below in the MD Robotics documents.
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« Script Generation Mode

Seript Generation mode enables the user to create a new script. The
virtual manipulator can be driven using either the hand controllers or the
GUI, and keyframes can be created manually or automatically. High-level
script elements, if applicable, can be added to script and are verified in
the virtual environment.

No commands are sent to the remote worksite equipment in Script Gen-

eration mode. ”

ROSA Implementation

The Remote Operation with Supervised Autonomy (ROSA) is the current project
implemented by MD Robotics on the basis of the RTR framework. The objective of
this project is “to develop and demonstrate a variable autonomy architecture to sup-
port ground-based control of space-deployed robotics systems in dynamic workspace
environment” .

The ROSA Ground Station (RGS) is an implementation of the RTR Operator
Station (ROS). As introduced in the previous section, ROS is only a generic tool pro-
viding some capabilities to generate, rehearse, and monitor execution of scripts. Any
project that wishes to use these capabilities must customize ROS by implementing
several additional modules. In RGS, for instance, a variable-autonomy script is a list
of instructions to be executed by the remote worksite equipment and may contain
a mixture of low-to-high-level script elements. To implement that, the ROSA script
language defines one low-level controller (i.e., the manipulator), and five high-level

controllers: visual servo, vision system, behaviour executor, cognitive controller, and

56



McMaster - Computing and Software MSec. Thesis - Hongying Shi

hierarchical task network.

The ROSA project is discussed in more details in [18].

5.3 System Decomposition

5.3.1 System Architecture

At a high level, the ROS system contains the following classes:

e Visual Display Module (VDM)

User Input Devices

3D Model Files

Generation Emulator

Rehearsal Emulator

Contextual Display Module

Remote Worksite Equipment

The VDM possesses the core functionality of the operator station. This class
contains 3D virtual environment display and all of the graphical user interface tools. It
controls the flow of events through each of the system’s modes, provides the graphical
user interface, and controls the communication of the various external systems. The
VDM interacts with the other six ROS classes via abstracted class interfaces. The
VDM is common to all ROS implementations, however, the other six classes are

project-dependent.
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Figure 5.1 depicts the decomposition of the Visual Display Module, as described
in the MDR documentation.

An alternative view of the decomposition of VDM is shown in Figure 5.2. In this
view, VDM is treated as the software application and the classes are documented as
software modules, in the style of [4]. The target of this case study, ScriptGeneration-
Manager, is highlighted in the figure. As indicated by the legend in the figure, the

leaf modules represent classes containing code.

5.3.2 ScriptGenerationManager Module

As we mentioned above, the ROS system supports seven operational modes, and
different mode managers are used to coordinate activities during a single mode of
operation. We chose the ScriptGenerationManager class as our case study for docu-

mentation.

ScriptGenerationManager and Related Classes

The ScriptGenerationManager coordinates activities of the system in script gener-
ation mode. It follows commands from the user, given through the graphical user
interface (GUI), to move the virtual equipment (i.e., the manipulator) to define script
elements, and to add the defined script elements to the current script body until the
composition of a whole script is complete.

There are a number of classes which are used by the ScriptGenerationManager
during the process. The essential ones are described below.

The ScriptGenerationConsole is the GUI to invoke many of the ScriptGeneration-

Manager methods to move the manipulator, add script elements, etc.
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Mode Managers

Script Script Script
Generation Rehearsal Execution
Manager Manager Manager

Direct Model
Execution Correction

Manager | Manager

Observation
Manager

External System Interface

- Remote
G t § i
eneration Rehearsal Worksite

Emulator I/F Emulator I/F Equipment I/F

User Input 3D Model Contextual
Devices I/F Files /F Display I/F

Mode Telemetry Script File
Manager Manager Manager

Graphical User Interface

High-level Visual Display Module Decomposition

Figure 5.1: VDM Decomposition from MDR Documentation
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The GenerationEmulator is used to execute script elements during script genera-
tion mode.

The Script class represents a script in any ScriptLanguage. A script is essentially
an ordered sequence of script elements and script segments that are executed to
achieve a specific mission objective.

A script segment in the class of ScriptSegment is a sequence of script elements
and calls to other script segments that can be invoked by a script or script segment.

A script element in the class of ScriptElement is the actual script command, and
the smallest unit of a script or script segment. Script elements can be either high-level
commands, low-level manipulator commands or motion keyframes. An example of a
low-level script element is move to point (z1, yl, 21). An example of a high-level
script element is capture satellite.

Figure 5.3 gives an example of a script with both script elements and script seg-
ments inside.

The SeriptLanguage object defines the scriptable capabilities of the remote work-
site equipment. The ScriptLanguage defines the number of low-level controllers, high-
level controllers and each of their available script elements. A description of the script

elements defined in the RTR ScriptLanguage class follows.

Definition of Script Elements Type

Creating a single script language that supports every type of robotic equipment is
a difficult task. Instead, each project may specify its own script language by ex-
tending the ScriptLanguage class in ROS. As described in MDR documentation, the
SeriptLanguage class is designed following the singleton and factory patterns [14].

Methods are included for creating the basic elements of any supported script lan-
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Script
( Capture NextSat N\
GoToReadyForCapture
moveTo x1, y1, z1 Script
moveTo x2, y2, 22 Element

moveTo x2, y2, z2 .

l

PrepareForCapture

Script Segment

LGoToNextSatPreBenh—l)

e

Figure 5.3: A Script Example

guage: POR commands, joint commands, segment calls, high-level command and
manipulator commands.
Table 5.1 provides the definition of these basic elements. If an element type is not

supported, the UnsupportedScriptElementEzception exception should be thrown.

5.3.3 Script Generation Process

The following sequence walks the reader through the process of generating and saving

a script.

1. Selects Script Generation mode from the main GUI to display the script

generation console.

2. Presses the “New Script” button on the console and is prompted to enter the

name of the new script.

62



McMaster - Computing and Software MSc. Thesis - Hongying Shi

Element Type Definition

POR Commands Drive a manipulator by specifying a 6-DOF desti-
nation frame for the manipulator’s tip (absolute or

relative) within a specified command frame.

Joint Commands Drive each manipulator joint to a specific (absolute

or relative) value.

Segment Calls Script elements that call another script segment.
The script executor will execute the called segment,

and then return to this point.

High-level Commands |Script elements whose outcome depends on state
and sensor variables. High-level commands can be

configured using a custom user interface console.

Manipulator Commands|Miscellaneous commands supported by a manipu-
lator (e.g. latch end-effector). Manipulator com-

mands can be configured using a custom user inter-

face console.

Table 5.1: Definition of Script Elements Type from MDR Documentation

3. Defines the parameters of the first script element using the tabs of the script
generation console to assist in controlling the virtual manipulator during con-

figuration.

4. Adds the script element after being verified by the generation emulator. The

cancel method can be called during verification of the script element.
5. Repeats steps 3 and 4 until mission completion.

6. Save the whole script.
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Chapter 6

Application of Document Driven

Inspection Approach

This chapter presents the application of the Document Driven Inspection approach
in documenting a case study that is extracted from an object-oriented code. We start
from an analysis of the case study code, and further discuss our considerations when
we tried to produce the documentation using tabular ezpressions. We conclude this
chapter with the findings and our concerns revealed during the course of producing

the documentation.

6.1 Case Study Analysis

ScriptGenerationManager Code Analysis

The ScriptGenerationManager class is a public class extended from java.lang. Object
and implements two interfaces, SystemModeChangeListener and CancellableProcess.

As introduced in Chapter 5, this class is under the Visual Display Module (VDM) of
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Item Quantity
LOC (Line of Code)| 750
Fields 10
Constructors 1
Methods 28
Imported class 25
Invoked methods 98

Table 6.1: ScriptGenerationManager Code Summary

the ground station system of Remote Tele-operation of Robotics (RTR) project, and

is used to manage the generation of scripts during script generation mode.

Table 6.1 presents a summary of the code of the ScriptGenerationManager class.
As summarized, this class imports 25 other classes from other packages and invokes
nearly 100 methods from these classes. This does not include invoked methods from
the same package. Therefore, to understand this seems-not-so-big program, which is
Just an ordinary size program compared to thousands of others in the RTR/ROSA
system, the reader has to investigate 100 other programs scattered elsewhere. This

is a typical delocalization problem as we discussed in Chapter 3.

Moreover, since the RTR project is, as we explained in Chapter 5, a generic
project that may be tailored to any specific project in the future, there are many
abstract classes and abstract methods that do not contain solid code. The class
ScriptGenerationManager in the RTR ground station system is not an exception to
such a situation. We had to go to its implementation project, in this case ROSA,
to find out what the actual behavior is for any method. Such abstraction poses a

difficulty in documenting the actual behavior and outputs of this class. Although we
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can find the specific implementation in ROSA, other issues remained. We will discuss

it in the next section.

ScriptGenerationManager Uses Hierarchy

As Parnas [30] pointed out, “the design of the uses hierarchy should be one of the
major milestones in a design effort”, and “unless some restraint is exercised, one may
end up with a system in which nothing works until everything works.” Therefore, a
system should be designed by considering how to restrict the relation uses such that
its graph is “loop free” and each level of a uses hierarchy is a self-contained unit that
is testable and usable. Such systems are easy to extend or contract and thus easy to
maintain and inspect.

The uses relation of the “ScriptGenerationManager” is somewhat complicated and
is not hierarchical. Not only there are many uses relations between the classes, but
some of them contain loops. An example of such a loop is given in Figure 6.1. The
method “addScriptElement” of the class of ScriptGenerationManager calls several
programs including methods named “start”, “stop” and “gctionPerformed” in the
class of WaitOrCancelPopup, while at the same time, the class WaitOrCancelPopup
calls the “cancel” method in ScriptGenerationManager. Thus these invocations form
a loop in which the programs rely on each other.

In Figure 6.1, each line of text represents a method/access program. Indentation
is used to show a method call. Note that the order of invocations is not indicated.
Also note that the statements with dotted underlines in figure 6.1 represent methods
that do not have implementations. These include two cases, (1) an abstract method
that acts as a placeholder, while the subclasses must have concrete implementations

of those methods, and (2) an interface that cannot have concrete implementations
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Module Name: ScriptGenerationManager
Documentation: Uses Hierarchy Example

ScriptGenerationManager.addScriptElement

Timer setInitialDelay(duration)
Timer start()

CancellableProcess.cancel()

Timer stop()

“~* (Not Available)

WaitOrCancelPopupstart (int duration, String message, CancellableProcess process)
™ * RWaitOrCancelPopup.start(int duration, String message, CancellableProcess process)

RWaitOrCancelPopup.aclionPerformed(ActionEvent ae)
-~ ScriptGenerationManager cancel()
WaitOrCancelPopup stop()
"™ RWaitOrCancelPopup.stop()

ScriptGenerationManager gotoStandby()
GenerationEmulator gotoStandby()

Figure 6.1: An Example Uses Hierarchy

and serves to specify a set of methods that different classes can implement polymor-

phically.

The readers can refer to the appendix for a big picture of the uses relation of the

ScriptGenerationManager class. There are two graphs in Appendix C. The first graph

shows a single level of the uses relation for this class, and the second graph tries to

present the chain of uses relations for the class, terminating at a class with a detailed

implementation or a method call to a Java standard library class. It is apparent from

the graph that readers are likely to get lost in the face of such complicated uses.
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6.2 On Documenting the Case Study Module

The current available documentation of our case study code is similar to the stan-
dard Java code document, namely, its web-based API specification derived from the
comments in the source code using a tool named javadoc. This API document is
convenient and powerful when we want to browse it to search a method or a vari-
able, and ideally, it describes all aspects of the behavior of each method on which a
caller can rely. But in practice, it is very hard to make precise and complete com-
ments, and thus the document generated from the comments may not be formal and
correct as expected. Therefore, we decided to use a more rigorous and systematic

documentation that would be helpful for both design and inspection.

6.2.1 How Did We Produce Module Interface Specifications

Figure 6.2 shows a template for producing the Module Interface Specifications (MIS)
for object-oriented software.
We considered the following when we produced the MIS of our case study module

ScriptGenerationManager.

Definitions of the Template Headings

e We consider four parts of data in the MIS. Ezports, Imports, Class Data and

Instance Data.

e Basically, both Ezports and Imports have the categories of Constants, Types,
and Functions respectively. Constants shall be defined by name, type and value
(or origin). Types shall be specified by name and definition (or origin). Types

in Imports are actually classes, which are normally instantiated locally in the
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Module Iaterface Module name

Module name Module Interface Specification

1.0 LEXICON
1.1 INTRODUCTION
1.2 INTERFACE OVERVIEW

Exports
Name Type Value
Constants
Name Defimton
Types
Imports
Name Type Value/Origin
Constants
Name Definition
Types
Class Data
Name Type Value/Onigin Access Modifier
Constants
Name Type Defimion/Ongm  Access Modufier
Variables
Instance Data

Name Type Value/Ongn Access Modifier
Constants

Name T Defimtion/Ongin___ Access Modifier
Variables

1.3 ACCESS PROGRAMS

Access Program #: access program name

Parameters/Return
parameter name parameter type — IN/OUT
[Return return type]

Effects

[ Comments J(if any)

References

Events (1f any)

Undesired Events (:f any)

L

Condition E Undered Event —|]
1.4 UNDESIRED EVENT DICTIONARY
Name [ Defimuion 7
[ I ]
File name page #

Figure 6.2: Module Interface Specification Template
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related invoked methods. Functions in Ezports shall list the access programs of
the module and their specification. Since the imported functions are methods
of the imported classes, and once a class is imported, all its methods are then
also imported, the names of the imported classes should be listed here. For the

sake of simplicity, we do not list the invoked methods of these classes.

¢ Compared to the original MIS documents for procedural-oriented programming,
data is now divided into two categories, i.e., class data and instance data. Such
separation is due to a special concept, class, in object-oriented languages like

Java, where we can think of a class as a factory that can create objects.

Class Data is static and loaded when the class is loaded, describes the data
for the class itself, and has one value for all the instances (objects) of the

same class.

Instance Data on the other hand, is only instantiated when an instance of
the class is newly created. Hence, the value of instance data is different

for different instances.
Both class data and instance data may have constants and variables.

e Instance data should be declared private and other modules can only access the

data through the invocation of the public methods.

e The Access Program section specifies the program effects of the access programs.
Parameters/Return defines the parameters and/or return value of the program.
Program effects are specified through Program Function Table (PFT). If avail-
able, name of the relevant requirements document regarding to this program

effect shall be documented in the Reference.

71



MSec. Thesis - Hongying Shi McMaster - Computing and Software

o Undesired events are defined in the section of Undesired Events Dictionary.

Considerations On Documenting the Case Study Program

e Normally instance data should be declared private, in the case study class,
however, most of the instance data are objects, and they are declared public
here. This does not violate the principle of Information Hiding, instead, it
is powerful to do that. Objects encapsulate data (also known as properties
or fields) and export methods (or operations on themselves). The difference
between an object and a primitive data type, for instance, boolean, is that
an object can be public while still keeping its data hidden from outside. The
reason is, the data of an object is always private, only its methods can be
public. A public object only means that its public methods can be invoked in

other modules.

e Every class has a constructor, and every time when an object of the class is
created, it is created by calling the constructor. There is no de-constructor
in Java, since Java has an automatic garbage collection system to destroy an

object when it is no longer in use.

e In the access programs section, the effects of a method are specified in program

function tables.

e The event means during the execution of this program, the user may take some
actions to activate an event to change the effects. In our example, if the user
pushes the cancel button, verificationCancelled will be set to true, and an event
is triggered (message written on console) immediately prior to exiting the access

program.
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e One more condition is added to the effects table to reflect time-determined
functionality of access program addScriptElement. “WAIT_DURATION” is a
constant with the value of 2000 millisecond. If the execution of script element at
the Generation Emulator is lengthy, after 2000 milliseconds of delay, a popup
window will show up with a cancel button, providing the user the choice of

pressing the cancel button to stop the execution and exit the program directly.

6.2.2 How Did We Produce Module Internal Design Docu-

ments

Figure 6.3 shows a template for producing the MID for object-oriented software.

Definitions of the Template Headings

o We use the inputs, outputs, updates, and behavior to represent data flow of a

module.

o The inputs, outputs and updates have their own name, ext_value, type, and

source.

® The name field is the name of the data flow (parameter name, state data name,
or a parameter of another access program). In this field, := means the name on
its left is assigned the external value on its right; — denotes that the value of
the boolean variable on the left indicates whether or not the external program

in the ezt_value field is invoked. “True” means invoked.

o The ezt value field contains an external program name (if any) and its pa-

rameter name(s) in parentheses in the form “program_name(paraml_name,
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Module Internal Design Module name

Module name Module Internal Design Document
Lexicon/General Notation
Constructor: medule name

Inputs
| Name | Ext_Value [ Type I Ongin

Ll

Outputs
[ Name ] Ext_Value | Type | Ongin

L1

Behaviour
PFT

Access Program #: access program name

Inputs
[Name } Ext_Value { Type I Ongm
!

Locals
‘ Name | Ext_Value I Type I Ongin

Updates
ﬁlame l Ext_Value I Type | Ongin

Outputs
mme | Ext_Vaiue I Type I Ongmn
L !

L\_ N

Behaviour
PFT

File name page #

Figure 6.3: Module Internal Design Document Template
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param2_name, ...)”. The parameters are defined by their own value, type and

source if necessary.
e The source field shows the source/origin of the data flow:

1. If the data flow represents a global variable, the module name in which

the global variable is defined is entered.

2. If the data flow represents a program call from another access program,

then “Call” is entered.

3. If the data flow represents a parameter from another access program, the

module name in which the access program is defined is entered.

4. If the data flow represents a parameter (or return value) belonging to the

access program itself, then “Param” (or “Func”) is entered.

5. If the data flow represents a local value from (or to) another design block

of the access program, “Local” is entered.

e The effects of an access program are represented through a PFT in the Be-
haviour section. There are some alternative formats of program function ta-
bles. We use the Condition Table with the condition listing all the conditions.
and result listing values of all the output variables for each condition. A nor-
mal function table with the headers representing the conditions and the grids

showing the effects of an access program can also be used.

Considerations On Documenting the Case Study Program

e An Object-Oriented program consists of one or more objects that interact with

one another to solve a problem. Such interaction is implemented through calls
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to methods (or access programs). There are two choices for us to document
the effect of an access program: one is to trace down the invocation path and
describe the eventual change that will be made to this program. An alternative
choice is to just describe the calls to the external programs in terms of the
variables inside this access program itself.

In this case study we made the second choice. We treat the calls as ezternal,
and document the calls to the external programs directly using the variables in
the calling program. The reason lies in the particular traits of OOP languages.
Objects in object-oriented programming can be considered as variables and
constants in procedure-oriented programming, while classes correspond to types.
An object is different from a normal variable in that, it can be global through
method calls to its public methods. That is why we can regard the object
external and leave the actual effects of the method calls to the specification of
the type of the object(class). Since the effects of these invocations can be found
in their corresponding modules, we only document one thing in one place. The
other choice could land us in trouble in two ways: (1) the invocation chain can
get very long and the relations become horribly complex, and (2) because of

this, the reader has difficulty understanding the effect of that program.

e All the outputs are variables that have defined values. Therefore we define a call
using a boolean variable with the value of either True or False, which implies
the invocation of that call or not.

The name field is the name of the data flow (parameter name, state data
name, or a parameter of another access program). In this field, := means

the name on its left is assigned the external value on its right; — denotes
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that the boolean variable on the left determines whether or not the external
program in the external field is invoked. True means invoked. For example,
mes — messenger.display Error Message(msgTitle,msg) means the program

“messenger.displayErrorMessage(msgTitle, msg)” is invoked if “mes” is true.

e How to specify the intermediate states of a program execution, i.e., to document
what happens during the run time instead of write time, was a problem to us.
In most cases, function tables describe the complete behavior within a program
block. This includes loops within the block. In a few cases, it is important to
describe the loop itself. For example, if an output is generated within the loop
body and the output is different for each iteration of the loop. [2] presents a
way to document a while loop by creating separate displays for both the loop
body and the overall loop construction. In this work, we try to use one table
to specify the complete loop behavior. As we explained in Chapter 4, a while

table was used.

e Inside any particular access program, it is assumed that all get programs are
invoked before any processing is performed. The sequence of invocations is
not significant. Similarly, all set programs are invoked after all processing is
performed. Unless otherwise indicated, the sequence of invocations is not sig-
nificant. If the sequence is important, the order of invocations is indicated by
integers, 1, 2, 3, etc. A program labelled n is invoked before one labelled n + 1.
An indication of “FINAL” indicates that the program shall be the last one

invoked in the access program.
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Sample MID Documents for While Tables

In this section, we introduce in more detail how to document program behavior
through the MID. We show the documentation through the example of the while

loop table as discussed in Figure 4.1 in Chapter 4.

We explained in Chapter 4 that a while table was created to cope with the prob-
lem of documenting non-deterministic programs introduced by while loops. We also
suggested some new notation through an example in Figure 4.1, and provided the
specification of that example in Table 4.2. The question is, how to document such
behavior in the MID? When we looked at Table 4.2, the headers looked a little bit
complicated. This becomes worse when a table gets bigger and the number of its
columns increases, which is common in a real-world application. That is why we

made some changes inside the behavior table.

Table 6.2 illustrates the MID produced based on the above example. First, we
need to find out the data flow of that program. We have an input, cond(), which
returns a boolean value from a method call outside of this module. In fact, cond()
is only an input to the while loop, not to the whole program. Therefore we put
it into the category of local variables named “Locals”. We also have an output,
outValue.show(), which is also an invocation that will print some numbers on the
screen. To simplify the program behavior table, we specify both the input and the
output with boolean values, and use only those boolean variables inside the table.
Here, ¢ <> is a boolean variable with a tag, whose external value is cond(); and
ov <> is also a tagged boolean variable which implies the invocation of the method
outValue.show(). Since the loop termination condition may change according to the

values of the variables, we use another boolean variable, named “Loop Terminates”,
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name ext_value type source
Inputs:
Locals: c<n>: = cond() Boolean Call
Outputs: ov<n> — outValue.show() Boolean Call
Behaviour:
n=0,1,2,.. ov<n> Loop Terminates
c<n> False True
NOT (c<n>) True False

Table 6.2: Specifications of the While Loop Example in MID

to represent the value of the termination condition.
This way, we can specify the design of a program with detailed data flow and

program behavior through the use of MID, rigorously yet understandably.

6.3 Discussion on the Case Study Project

In this section we will discuss our findings and concerns discovered from the exam-
ination of the code and the documents of our case study during the preparation for

our documentation task.

6.3.1 Findings
Incomplete Documentation of Behavior

The documents we had access to from MDR include an API document describing the

functionalities of the classes in the RTR system. This API document, as the only
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interface specification available, turned out to be vague and incomplete in specitying
the program behavior of the module we examined.

As an example, let us look at a method called addScriptElement of the class
ScriptGenerationManager. From the code, we can see several program effects, but its
API document does not describe all of them. Such a lack of rigor is not trivial for a
critical software system. Table 6.3 lists the comparison of the coverage of program
behavior (effects) between the current API document from the customer and our

improved interface specification document (MIS) concerning this example.

Program Effects API Document|MIS Specification
add an element YES YES
execute the element to verify its actual ef- YES YES

fects against expected

specify the cases when the element is added NO YES

to the script main body or a segment

display script preview window after the NO YES
adding of the element

draw a graphical representation of the ele- NO YES

ment after the addition

Table 6.3: An Example of Comparison of Program Effects Specification Coverage

Vague Document

Another example from the method addScriptElement: As the API document specifies,
the function of this method is, “Adds an element to the script. If verify is true, the

element is executed by the generation emulator to verify it.” Our question was, what
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will happen if verify is not true? Does this parameter have to be set true? We
could not find the answers from this API document. What we can do is to check the
code and confirm that, the script element will be added no matter what the value
of verify is. So we had to communicate with the designer to confirm the actual and
complete functionality and behavior of this method. “Verify” is normally set to true
while a special case would have it set to false. Setting verify to false is used when
automatically adding scripts element by autosampling trajectories from the user input
devices.

A specification document should specify all the cases explicitly, strictly, and cor-
rectly. Our improved documentation avoids such confusion through the use of tables

to list all the cases. The reader can refer to the appendix for details of our documen-

tation.

Discrepancy

Several discrepancies between the API documents and the code were also found.
Discrepancies not only increase our work load, but also tend to cause confusion and
misunderstanding. We had to go into both the relevant documents and the codes to
confirm their conformance, while some of them require the reader to struggle through

a long invocation path to completely understand the code.

1. In the code there is a method named “isModeSupported(byte)”, but we could
not find this method in the API document. There is only a similar method
named “isModelCorrectionSupported” in the same class. But are they the same
methods that are just caused by a typo error, or not? Again we had to clarify
this with the original programmer. In fact, these are two different methods.

The “isModelCorrectionSupported” was already depreciated and replaced by
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the new method “isModeSupported”. The document was wrong since it did
not update this information. Now the related API document has been updated

based on our feedback.

2. According to the API, the method addScriptElement should “return TRUE
if the script element was added and verified”. but based on the actual code,
the method is not a boolean in the first place. This is another case in which
the programmer did some changes on the actual implementation, but forgot to
update the related documentation. The return value is actually replaced by two

exceptions since the exceptions can provide more information to the user.

3. Another kind of discrepancy concerns the behavior description between the code
and the relevant API document. That is, the actual code and the API docu-
ment may exhibit different effects on one program. For instance, the method
“cancel”. The document says that it only cancels the verification of script ele-
ment execution but does not cancel the addition of the element. But the actual
code does cancel the addition anyway. We certainly have to follow what the

code really does.

4. There are several unimplemented methods in the code. In contrast, the related
API documents still provide the description of their (intended) functionality.
Some of them might need to be implemented in the future but others might
not. For instance, the method “elementComplete” is actual an empty method.
It is again a case that the programmer did not clean up code after a design
change. These problems were automatically generated from the ROSA model
based on the original design from UML. Tools are generally powerful in helping

design, however, inspections are still needed to keep the documents compliant
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with the code.

Loose definition

There are several loose definitions of terminology in the documents. In a mission
critical system, all the definitions must be strict and precise. A loose definition may
impose a hidden risk to the execution of the whole system, and such risk might cause

unexpected danger.

o Definition of class ScriptSyntazEzception
The definition of this class from the API document is: “An exception thrown by
the recipient of a syntactically incorrect script, segment, or element”. But what
again is the definition of “syntactically incorrect”? We could not find any in the
documents on hand. Even after we tried to clarify those definitions with MDR,
we could not find the answer, since there is no strict definition but a loose one
for terms like “syntactically”. The reason is, the system is intended to support
an arbitrary script language and arbitrary robotics. The precise definition of
what is considered a script syntax exception is left to the discretion of the seript
language designer. It could include things such as a script that has an ‘else’
without an ‘if’, or a command that was issued with too few parameters, or a
command that was issued with a wrongly-typed parameter. The problem is, in
this case, we cannot specify the precise and complete behavior of such a class

and must wait for the documentation of other classes.

e Definition of class UnsupportedScriptElementException

Similar to the problem of the above class ScriptSyntazEzception.

e Completion code
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Based on the API, the method ezecuteScriptElement will return a “completion
code”, but there is no precise definition of “completion code” either. According
to the original designer, this is a concept not entirely “fleshed out”. Because
the system is meant to be extendable to any script language and executor,
the designer could not define what return codes were errors at the time of
the design. The intent was to check the completion code that is returned, but
what he actually did was to count on an exception, say, ScriptSyntaxException,
being thrown if an error occurs. We think the designer needs to denote this
background information, and gives the precise definition of “complete code”

later on so that the user would know what to expect for the return value.

o Concepts of keyframe and waypoint
Several terms like keyframe or waypoint are found in many places in the doc-
ument, but without any definition of these terms. Thus the reader may be
confused as to what they actually are. Are they the same as script element,
or only one type of script element? And what is the difference between them?
The fact is, this is a case of terminology migration. In a previous MDR project,
there was only one type of script element which was called keyframes. keyframes
were defined as positions of the arm defined by one set of joint angles. A way-
point is similarly a tip position in the script. The later project, i.e., the project
we are using, expanded the script language to contain non-position commands.
Therefore “script element” is now used as a general term. The reason why the
previous terms were not eliminated from documentation might be they are still
useful to some readers. However, mixed terms decreases the readability of the

documents and may introduce unnecessary misunderstandings.
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Misuse of the Terminology

The emulator.executeScriptElement(element) is one of the invoked methods, and its
functionality is documented as “to execute the script element for verification”. When
we looked at the word “verification”, a normal meaning that we can think of is,
to examine through some tools or based on some criteria to make sure that the
element would perform an intended behavior given a proper condition, and such kind
of examination should be quantitative. However, the actual verification implemented
is just a manual and qualitative task. Currently the only “verification” is a visual
inspection by the user to make sure the manipulator does as expected according to the
script element command. The other part of verification is to make sure the emulator
does not return a ScriptSyntazEzception or UnsupportedScriptElementException.

If such explanation does not come with this terminology, confusion may arise. So

our suggestion is to use another word here, say, visual ezamination.

Need-to-improve Capability

We had a question concerning the method  “GenerationEmula-
tor.executeScriptElement” on how does the user show his/her satisfaction for
the verification result of a script element during its execution. The problem is, there
is only a variable called verificationCancelled to stop the verification in case of a
lengthy wait. Otherwise, once the script element is sent to the emulator and no
exception or cancelling action found, the script is supposed to be correct and thus
added anyway. Our question is, can the user change the script element based on the
simulation result? Or, if the user is not happy with the result, does it allow the user

to remove or edit the script element? In the current version we got for the ROSA
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project, as we confirmed with the MDR, this capability is sadly not implemented.

We think this needs to be improved in the later version.

6.3.2 Concerns
Design and Documentation of Abstract Interfaces

We have introduced the concept of an interface of a module in previous chapters,
which can be treated as a black box for communications between this module and
others. Abstraction is one of the principles for designing a module interface, which is
also a difficult one to apply in practice.

Based on [3], an abstract interface is defined as an abstraction that represents
more than one interface, that is, it consists of the assumptions that are included in
all of the interfaces that it represents. A further idea from Parnas is, it might be
helpful to divide an interface into two parts, an upper face and a lower face. The
upper face contains only the information that the user of a module (class, package)
needs to know, while the lower face is made up of the assumptions that the programs
(methods) in that module make about the programs (methods) that they use. Ideally,
the upper face can be described without referring to the lower face. The user of the
module can predict its behavior without having to know anything about the programs
used in the implementation of that module.

As for our case study program, the class of ScriptGenerationManager, as described
previously in this chapter, lives under a generic system whose further implementation
can be tailored under different projects. This class contains many methods whose
definition can only be found outside of the class, that is, the only definition of what

happens on the upper face is a description of the lower face. This is because the pro-
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gram was written to work with a lot of different lower faces and the behavior is really
described in terms of the underlying mechanisms. For instance, what constitutes a
correct script will vary with the capabilities of the underlying robotics equipment.
Hence, the behavior of the upper face for, say, a generic script module, cannot be
defined completely without references to its lower face. This represents one of the
three cardinal principles of object-oriented programming, polymorphism. Polymor-
phism has a weighed beneficial factor of code reuse and program flexibility. However,

how to document programs with such features is still a challenge to us.

6.4 Case Study Conclusion

This case study provided sample documentation for a critical part of a critical software
system. Due to document unavailability, we could not produce a sample Module
Guide for the whole system. Only the Module Interface Specification and the Module
Internal Design Document for the example class “ScriptGenerationManager” were
produced. We use tabular expressions to represent the interface and behavior of the
example in a precise and complete way. These documents are able to serve as a basis
for the next step of the inspection through a document driven approach.

Our documentation successfully specifies the data flow and program effects
through a formal and strict notation which is, at the same time, readable and un-
derstandable by software practitioners. It also proposes an approach through the use
of tables to overcome difficulties and problems on documentation brought by some
special attributes of OO code, for example, delocalization. We are confident that
the behavior of the program is now documented precisely and thoroughly enough to

conduct a successive inspection.
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Chapter 7

Conclusions and Future Work

This chapter summarizes this thesis, draws conclusions, and makes suggestions for

future work.

7.1 Summary

In this thesis, we have discussed the Document Driven Inspection approach from
the aspect of object-orientation, investigated issues that may arise due to special
aspects of OO design and code during the documentation phase of an inspection, and
illustrated this approach through a real-world case study.

This is the first time (to the best of our knowledge) that the DDI approach has
been applied to an object-oriented software application from industry. The object-
orientation paradigm is now widely accepted in industry because of its many benefits.
However, the power and benefits may lead to difficulties and problems in the inspec-
tion. In this work, we developed an approach to deal with some of the difficulties, for

instance, delocalization and inheritance, which was discussed in Section 4.4.
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We explored and discussed the related work in both the traditional inspection field
and some new techniques focused on the inspection of OO design and code in Chapter
2 and Chapter 3. We then introduced the Document Driven Inspection approach and
further discussed the specific techniques and process for conducting an inspection as
well as a documentation in Chapter 4. We felt that MIS/MID did a better job than
Displays in documenting our case study program, since the displays can do a good job
on a long program but not a program with lots of “delocalized” references. Instead,
using MIS/MID, we can treat all the delocalization method calls as external, and

document the specific behavior of these programs in its own MID.

We also illustrated the applicability of our approach through the production of
a series of sample documents for the case study program as described in Chapter 6.
Software engineers in industry might have been hesitant to apply our approach to real-
world applications, partly because there are few real-world examples that they can
refer to. In this work, we provided the templates of both MIS and MID. With the MIS
and MIDs of a module, the complete program behavior and data flow can be specified
precisely. We use the notation of tabular expressions which is formal, rigorous, and at
the same time, readable and understandable by software practitioners. More examples
of how to document an OO code can be found in the appendix sample documents, i.e.,
the MIS and MIDs of the case study program. The considerations that we thought
about during the course of documentation were also given so that practitioners can
better understand why the documentation should be like this. As an example, the
idea of a while table was proposed to cope with the specification of the intermediate
states of a program execution in cases where the program is non-deterministic.

Some software design principles, including the principle of information hiding, were

used in both our documentation approach and the examination of the case study code
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and documents. We did the documentation assuming that the original design was
built on the information hiding principle. We then used these principles to judge
how good the current design of our case study system is. From the examination, we
have discovered problems and issues in the case study code and documents. To name
but a few, the incomplete documentation of program behavior, and the discrepancy
between the current API documents and the actual code. Such problems may not
have direct impact on the functionality of the whole system, but made the inspection

more difficult, hence would result in ineflicient maintenance.

7.2 Conclusions

This work can be concluded by the following observations:

® The Document Driven Inspection approach as well as the tabular ezpressions
are applicable and helpful to the inspection and/or the documentation of ob ject-
oriented critical systems. The tabular notation provides a formal and rigorous

means of specifying a program. as discussed in Chapter 4.

e From this work, we have learned that precise documentation should be in-
cluded in the design phase, instead of being an “afterthought”. The use of OO
techniques without precise specifications for the classes and methods leads to
obscurity and forces people to either reconstruct the abstractions by reverse

documentation or to try to read across the abstractions.

® The Document Driven Inspection approach is a technique that relies on rigorous
and systematic documentation. The DDI approach is useful both when we have

access to adequate requirements and design documents, and also when we do
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not have access to such documents. As shown by the application of the DDI
approach in our case study in Chapter 6, we illustrated the application of this
approach (the first step) through producing a precise and complete document
under the circumstance that the requirements and the design documents were
not available at the time of documentation. However, it is always better to do

the documentation as part of the design than to do it as part of the inspection.

e A series of documents are required for the purpose of precisely specifying and
documenting the software, including a Requirements Document, Module Guide,
Module Interface Specification and Module Internal Design Document. When
an inspection is performed on an existing software system, the Module Guide,
MIS and MID would serve well for the comparison of design against the original
requirements. The Module Guide is important because it not only shows the
hierarchical structure of the system, but also provides a guidance on what mod-
ules will be affected by anticipated changes. Since secrets of the modules are a
virtual aspect of the Module Guide, it would be preferable to have the Module
Guide prepared by the software designers. We did not prepare one for this case
study because we were working on one sample module (class) extracted from a
big system. In our case study, the sample MIS and MID produced illustrate the
effectiveness of our approach when it is applied to documenting the behavior of

an OO code.

e The while table introduced in Section 4.1.3 is pfoposed to document non-
deterministic programs, in cases that such non-determinism is introduced
through a while loop. The notation appears to document this type of behavior

more efficiently than an output sequence.
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7.3 Future Work

More work and improvements are always necessary in the future to continue this

work. Some of them are listed below.

1. A Module Guide sample. A Module Guide serves to give an overview of the
modular structure of the system. Trying to develop a module guide after the
fact almost never succeeds because the modules have no secrets. Producing the
module guide is a step in the design that is designed to assure that modules do
have secrets. We have explained why we did not not prepare one for this case
study in the previous section. However, it may still be useful to develop one
as part of the Inspection Documentation. Such a Module Guide can show the
structure of the design, and the services provided by each module. Inclusion
of “secrets” is more problematic, since without the original requirements, and
without the software designers’ understanding of what design decisions were
likely to change, all “hidden” entities are likely to be classified as secrets — even
if they were not. One of the goals of developing a Module Guide, after the
fact, would be to help Judge how well information hiding was applied during

the software design process.

2. A continuing inspection based on the documentation produced. As mentioned,
this work is only the first step in the inspection process. The inspection would

also help to evaluate the work of our documentation.

3. More examples that facilitate the documentation of programs with more OO
traits, for instance, polymorphism and dynamic binding, using the Document

Driven Inspection approach. Polymorphism and dynamic binding are very im-
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portant concepts in OOP, but due to the limitation of our case study, we did

not have an opportunity to deal with them using our approach.

4. Automation. Our documentation of this case study was done manually, how-
ever, automated tool support is desirable in that it can accomplish much of
the documentation that is lengthy and thus save human efforts that are te-
dious and error-prone. With the tool assistance, the inspection as well as the
documentation can be conducted in a more efficient way while preserving the

correctness.
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ScriptGenerationManager (SGM) Module Interface Specification

1.0 LEXICON

A. General Notation

(1) In section 1.2, the super script character (I) in the definition of Exported Types means
the type is imported.

(2) In seetion 1.3, the semicolon ™ ;7 in the effects table of an access program indicates
the sequence of actions. For instance, “a: b; o ... ” means action ¢ would execute first,
then b would execute. and then ¢, and so forth.

(3) In section 1.3, IN means the parameter is an input; OUT means the parameter is an
output; IN/OUT means the parameter is both an input and an output. i.e., an update.

(4) The dot notation follows Java convention, for instance,
“script.addScriptElement(element)” means the left hand side of the dot, i.c. “script™. is
the name of an object. and the right hand side of the dotis the method name of that
object.

(5) The “&” and “OR” in the condition statements of PET's in section 1.3 are used to
represent the logical relations of the conditions. We use them instead of “A” and V"
because they are found more familiar and thus preferable and understandable in practice.

B. JAVA Language Terminology

public _ a feature that is accessible by methods of all classes

private “’_ a feature that is accessible only by methods of this class

protected d , feature that is accessible only by methods of this class, its children, and
other classes in the same package

1.1 INTRODUCTION

The ScriptGenerationManager module manages the transactions of the system in
script generation mode. The user first commands the virtual equipment
(manipulator) to define script elements, and then adds the defined script elements

to the current script body until composition of a whole script.

1.2 INTERFACE OVERVIEW
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Inheritance

Implements the interfaces of
e ca.mdrobotics.rtr.gs.vdm.SystemModeChangeListener
e ca.mdrobotics.rtr.gs.vdm.gui.CancellableProcess

Exports

Constants
None

Types

Module Interface Specification

Name

Definition

ScriptGenerationManager

( genEmulator: GenerationEmulator® |
fileManager: ScriptFileManager®
opConsole: OperatorConsole®” )

Imports
Constants

Name Type Value/Origin
SCRIPT_GENERATION |byte ca.mdrobotics.rtr.gs.vdm.SystemModes
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Types

Name Definition/Origin
Autosampler ca.mdrobotics.rtr.gs.vdm.autosampler. Autosampler
CancellableProcess ca.mdrobotics.rtr.gs.vdm.gui.CancellableProcess
CommandFrameNode ca.mdrobotics.rir.gs.vdm.devices. CommandFrameNode

DeviceNameNotFoundException

ca.mdrobotics.rtr.gs. DeviceNameNotFoundException

ElementldGenerator

ca.mdrobotics.rtr.gs.script. ElementldGenerator

GenerationEmulator

ca.mdrobotics.rtr.gs.emulator.generation. GenerationEmulator

GraphicalScriptElement

ca.mdrobotics.rtr.gs.vdm.devices.GraphicalScriptElement

JointNumberOutOfRangeException

ca.mdrobotics.rir.gs.JointNumberOutOfRangeException

Manipulator

ca.mdrobotics.rir.gs.vdm.devices.Manipulator

MessagePopup

ca.mdrobotics.rtr.gs.vdm.gui.MessagePopup

ObjectNotFoundException

ca.mdrobotics.rtr.gs.vdm.devices.ObjectNotFoundException

OperatorConsole ca.mdrobotics.rtr.gs.vdm.gui.OperatorConsole
ProjectFactory ca.mdrobotics.rtr.gs.ProjectFactory
ReferenceFrame ca.mdrobotics.rtr.gs.vdm.devices.ReferenceFrame
Script ca.mdrobotics.rtr.gs.script.Script

ScriptElement ca.mdrobotics.rtr.gs.script.ScriptElement

ScriptGenerationConsole

ca.mdrobotics.rtr.gs.vdm.gui.ScriptGenerationConsole

ScriptLanguage ca.mdrobotics.rtr.gs.script.ScriptLanguage
ScriptSegment ca.mdrobotics.rtr.gs.script.ScriptSegment
ScriptSyntaxException ca.mdrobotics.rtr.gs.script.ScriptSyntaxException
SegmentCall ca.mdrobotics.rtr.gs.script.SegmentCall

UnsupportedOperationException

ca.mdrobotics.rtr.gs.script. UnspupportedScriptElementException

ValueOutOfRangeException

ca.mdrobotics.rtr.gs. ValueOutOfRangeException

VirtualWorld

ca.mdrobotics.rtr.gs.vdm.devices. VirtualWorld

WaitOrCancelPopup

ca.mdrobotics.rtr.gs.vdm.gui.WaitOrCancelPopup

Class Data

Constants
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S ) 7 Ry P
WAIT_DURATION | int 2000 |Delay in milliseconds used in
Variables

(13
None

addScriptElement”

Instance Data

“ Definition/Origin Access Modifier
— ca.mdrobotics.rtr. gs.script.ElementIdGenerator protected

Definition/Origin Access Modifier

ca.mdrobotics.rtr.gs.vdm.autosa protected

mpler.Autosampler

ca.mdrobotics.rtr.gs.vdm.gui. Wai protected
protected
protected
protected

protected

Constants

Variables

Autosampler

cancelPopup WaitOrCancelPopup

console

currentSegment

tOrCancelPopup

ScriptGenerationConsole ca.mdrobotics.rtr.gs.vdm. gui.Scri

ptGenerationConsole

ScriptSegment ca.mdrobotics.rtr. gs.script.Script

Segment

emulator GenerationEmulator ca.mdrobotics.rtr.gs.emulator. gen

eration.GenerationEmulator

messenger MessagePopup

OperatorConsole

ca.mdrobotics.rtr.gs.vdm.gui.Mes

sagePopup

selectedManipulator ca.mdrobotics.rtr.gs.vdm.devices.

Manipulator

theOpConsole ca.mdrobotics.rtr.gs.vdm. gui.Ope| protected

ratorConsole

theScriptFileManager ScriptFileManager

verificationCancelled | boolean

ca.mdrobotics.rtr. gs.vdm.ScriptFi| protected

leManager
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1.3 ACCESS PROGRAMS

Constructor:
ScriptGenerationManager(GenerationEmulator genEmulator, ScriptFileManager
fileManager, OperatorConsole opConsole)
Effects
scriptGenerationManager: ScriptGenerationManager
Comments:
{ Creates a new instance of ScriptGenerationManager, and also the instances of its state
data, including theScriptFileManager, theOpConsole, ~emulator, idGenerator,

aotosampler, messenger, cancelPopup. }

Access Program 0: initialise

Parameters/Return

none
Effects

Condition Effects

ProjectFactory. a new instance of state data
isModeSupported(SCRIPT_GENERATION) “console” is created
NOT (ProjectFactory. -
isModeSupported(SCRIPT_GENERATION))

Access Program 1: addScriptElement
Parameters/Return
element: ScriptElement — IN
The new script element to be added
verify: boolean — IN
Indicates that the element needs to be executed by the emulator

Local Variables

Value

theScriptFileManager. getScript()

element.createGraphicalScriptElement()

Reference: UC5.5, UCS.6, UCs.7.1.3
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Effects
H, & H, H, NOT(verify) Verify
G |;| ElemExecTime <= WAIT DURATION OR  |ElemExecTime >
H, l:l G NOT(verificationCancelled) WAIT_DURATION
&
verificationCancelled
currentSegment | graphicalElement script.addScriptElement(element): emulator.executeScriptElement(element); theOpConsole.write(*
= null = null theScriptFileManager.refreshScriptPreview() script.addScriptElement(element); Verification
theScriptFileManager.refreshScriptPreview() cancelled”)
graphicalElement script.addScriptElement(element): emulator.executeScriptElement(clement);
# null theScriptFileManager.refreshScriptPreview(); script.addScriptElement(element);
VirtualWorld.addGraphicalScriptElement(grap theScriptFileManager‘refreshScriptPreview();
hicalElement) VirtualWor]d.addGraphicalScriptElement(grap
hicalElement)
currentSegment | graphicalElement currentSegment.addScriptElement(element); emulator.executeScriptElement(element);
# null =null theScriptFileManager.refreshScriptPrevicw() currentSegment.addScriptElement(element);
theScriptFi leManager.refreshScriptPreview()
graphicalElement currentSegment.addScriptElement(element); emulator.executeScriptElement(element);
# null theScriptFileManager.refreshScriptPreview(); currentSegment.addScriptElement(element);
Virtua]World.addGraphicalScriptE]ement(grap theScriptF ileManager.refreshScriptPreview();
hicalElement) VirtualWorld.addGraphicalScriptElement(grap
hicalElement)

ElemExecTime = t,,, — to, where

thow = current time,

to=time when emulator.executeScriptElement(element) is invoked
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{ Comments:

Adds the element to the current non-null script segment or script main body. Before
adding, depending on the value of input verify, the element may be executed in a specified
emulator to see if the element is supported by the emulator. If the verification is lengthy,
a cancel button will appear so that the user may choose to skip out of the program
directly. Once a script element is added, a graphical representation of this element is
added to the virtual scene on the screen }

Events
@T(cancel) => verificationCancelled := True
{ @T(cancel) denotes the cancel button is pressed by the user during the execution of

“element” }

Undesired Events

Condition Undesired event

(script is null) OR (script is incorrect syntactically |ScriptSyntaxException
based on definition in ScriptLanguage class)

the device emulator does not support the UnsupportedScriptElementException

@:cution of element

Access Program 2: cancel
* Implements CancellableProcess

Parameters/Return
none
Effects
verificationCancelled := True;
ScriptGenerationManager.gotoStandby()
{ Comments:
Cancels the verification by setting the value of state data “verificationCancelled” to

“true”, and places the generation emulator in standby }
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Access Program 3: getCurrentManipulator
Parameters/Return

Return: Manipulator - QUT
Effects

getCurrentManipulator := selectedManipulator
Undesired Events

none

Access Program 4: setCurrentManipulator
Parameters/Return

manipulator: Manipulator - IN
Effects

selectedManipulator := manipulator
{ Comments:
Sets the virtual manipulator under control by the user }
Undesired Events

none

Access Program 5: setCurrentManipulatorJoints
Parameters/Return
JointVector: double[] - IN
Effects
emulator.setManipulatorJoints(selectedManipulator, jointVector)
Reference: UC5.3.2
{ Comments:
Commands the virtual manipulator to move immediately to the “jointVector” }
Undesired Events
I ointNumberOutOfRangeException
ValueOutOfRangeException

Access Program 6: moveCurrentManipulatorJointsTo
Parameters/Return

JointVector: double[] - IN
Effects

emulator.moveManipulatorJointsTo(selectedManipulator, jointVector)
Reference: UC5.3.2

{ Comments:
Moves the currentManipulator to the new “JointVector”. The manipulator is moved from

109



Appendix A Module Interface Specification
its current position to its new position following the motion planning algorithm supplied
by the Generation Emulator }
Undesired Events
JointNumberOutOfRangeException
ValueOutOfRangeException

Access Program 7: enableSJRM
Parameters/Return
joint: int - IN
enable: boolean - IN
Effects
emulator.enableSTRM(selectedManipulator, joint, enable)

{ Comments:
Enables single joint rate mode (SJRM) for the selected manipulator }

Undesired Events
none

Access Program 8: enableMAM
Parameters/Return
enable: boolean - IN
Effects
emulator.enableMAM(selectedManipulator, enable)

{ Comments:
Enables manual augmented mode (MAM) for the selected manipulator }

Undesired Events
none

Access Program 9: gotoStandby
Parameters/Return

none
Effects

emulator.gotoStandby()

{ Comments:
Cancels the movement of the generation emulator by putting it in standby }

Undesired Events
none

Access Program 10: newScript
Parameters/Return
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none

Module Interface Specification

Inputs from screen user input
goAhead: boolean — IN
name: String — IN

Effects

G

- I:l—> I:I g null null

H, & H, I;l H, | theScriptFileManager.getScript() =

theScriptFileManager.getScript() #

goAhead

NOT(goAhead)

validName theScriptFileManager.newScript(name);

theScriptFileManager.refreshScriptPreview()

NOT(validName) No action

No action

Reference: UC5.1.2

{ Comments:

Creates a new script with a valid name, prompting before erasing any existing script. A

valid name is determined by method “isScriptNameValid” in class ScriptLanguage }

Undesired Events
none

Access Program 11: newScriptSegment

Parameters/Return

Return: boolean — OQUT

Local Variables

Name Type Value

script Script

theScriptFileManager.getScript()

.

Inputs from screen user input

segmentName: String — IN

Effects

H, & H, H,
G
w ] e

script # null

script = null

segmentName # null

script.addScriptSegment(segmentName);
theScriptF ileManager.efreshScriptPreview();

return True

return False

segmentName =

null

theScriptFileManager.refreshScriptPreview();

return False
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{ Comments:

Creates a new script segment with name within the current script, and returns true if the
segment was created and added to the script. Return false message in case there is no
script open, i.e., the current script is null }

Undesired Events

none

Access Program 12: closeScriptSegment
Parameters/Return
none
Effects
currentSegment := null
Undesired Events
none

Access Program 13: setCurrentSegment
Parameters/Return

newCurrent: ScriptSegment - IN
Effects

currentSegment := newCurrent
{ Comments:
Sets the current script segment to the “newCurrent” if the newCurrent exists in the script
and otherwise the current script segment is null }

Undesired Events

none

Access Program 14: getAllScriptSegments
Parameters/Return
Return: ScriptSegment[] - OUT
Effects
getAllScriptSegments := theScriptFileManager.getScript().getScriptSegment()
Undesired Events
none

Access Program 15: getCurrentScriptSegment
Parameters/Return

Return: ScriptSegment - OUT
Effects

getCurrentScriptSegment := currentSegment
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Undesired Events

none

Access Program 16: getScriptName
Parameters/Return

Return: String - OUT
Effects

getScriptName := theScriptFileManager.getScript().getName()
{ Comments:
Returns the name of the current script or the default “null” if there is no current script
being set }
Undesired Events
none

Access Program 17: setCurrentManipulatorPOR
Parameters/Return

newPOR: ReferenceFrame - IN
Effects

emulator.setManipulatorPOR(selectedManipulator, newPOR)

Reference: UC5.3.1
{ Comments:

Commands the virtual manipulator to move immediately to the “newPOR” )
Undesired Events
ValueOutOfRangeException

Access Program 18: moveCurrentManipulatorPORTo
Parameters/Return

newPOR: ReferenceFrame - IN
Effects

emulator.moveManipu]atorPORTo(selectedManipulator, newPOR)

Reference: UC5.3.1
{ Comments:

Moves the currentManipulator to the “newPOR”. The manipulator is moved from its
current position to its new position following the motion planning algorithm supplied by
the Generation Emulator )
Undesired Events

ValueOutOfRangeException

Access Program 19: setCurrentManipulatorCommandFrame
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Parameters/Return
newCommandFrameNode: CommandFrameNode - IN
Effects
emulator.setManipulatorCommandFrame(selectedManipulator,

newCommandFrameNode)
{ Comments:

Displays the graphical representation of the command frame at the position and
orientation of “newCommandFrameNode” and instructs the emulator that the command
frame has changed for the selected manipulator }
Undesired Events

none

Access Program 20: getCurrentManipulatorCommandFrame

Parameters/Return
Return: CommandFrameNode - OUT
Effects
Condition Effects
selectedManipulator # null selectedManipulator.getCommandFrame()
selectedManipulator = null VirtualWorld.getBaseCommandFrame()

Undesired Events

none

Access Program 21: modeChanged
* Implements SystemModeChangeListener

Parameters/Return
newMode: byte - IN
Effects
Condition Effects
newMode = theOpConsole_write(“Script Generation Mode™);
SystemModes.(SCRIPT_GENEMTION) console.setVisible(True)
NOT(newMode = console.setVisible(False)
LSystemModes.(SCRIPT_GENERATION))

{ Comments:
Displays the script generation console if the input parameter is SCRIPT_GENERATION,
hides the script generation console otherwise }
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Undesired Events

none

Access Program 22: configueAutosampler
Parameters/Return

none
Effects

autosampler.configure(console)

Reference: UC5.7.1.8
{ Comments:
Launches the autosampler configuration dialog }

Undesired Events

none

Access Program 23: enableAutosampling
Parameters/Return
doEnable: boolean - IN
Return: boolean - OUT
Effects
autosampler.enable(doEnable)
enableAutosampling := doEnable
Reference: UC5.7.1.8

{ Comments:

Module Interface Specification

Enables or disables autosampling, return true if enabled }

Undesired Events
ScriptSyntaxException

115



Appendix A Module Interface Specification

1.4 UNDESIRED EVENT DICTIONARY

Name Definition
DeviceNameNotFoundException ca.mdrobotics.rtr.gs.DeviceNameNotFoundException
IllegalStateException (cannot find in the document)

Java.io.lOException Java API document

JointNumberOutOfRangeException |{ca.mdrobotics.rtr.gs.JointNumberOutOfRangeException

ObjectNotFoundException ca.mdrobotics.rtr.gs.vdm.devices.ObjectNotFoundException

ScriptSyntaxException ca.mdrobotics.rtr.gs.script.ScriptSyntaxException

UnsupportedScriptElementException | ca.mdrobotics.rtr.gs.script. UnspupportedScriptElementExce

ption

ValueOutOfRangeException ca.mdrobotics.rir.gs. ValueOutOfRangeException
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Appendix B Module Internal Design

ScriptGenerationManager(SGM) Module Internal Design

General Notation

1. The Module Internal Design (MID) describes the internal design decision of each access program of this
module. It is usually composed of four sections, namely, Inputs, Updates, Outputs, and Behaviour.

2. The Inputs, Updates, and Outputs are defined by the following fields: name, external value (denoted as
ext_value), type, and Source.

3. The name field is the name of the data flow (parameter name, state data name, or a parameter of another access
program). In this field, “:~” means the name on its left is assigned the external value on its right; “—” denotes
that the value of the boolean variable on the left indicates whether or not the external program in the external
field is invoked. “True” means invoked.

For example, “mes — messenger.displayErrorMessage(msgTitle, msg)” means the program
“messenger.displayErrorMessage(mngitle, msg)” is invoked if “mes” is true.

4. The ext value field contains an external program name (if any) and its parameter name(s) in parentheses in the
form “program_name(paraml_name, param2_name, ...)”. The parameters are defined by their own value, type
and Source if necessary.

5 The source field shows the source/origin of the data flow:

e If the data flow represents a global variable, the module name in which the global variable is defined is
entered.

o If the data flow represents a program call from another access program, then “Call” is entered.

e If the data flow represents a parameter from another access program, the module name in which the
access program is defined is entered.

e Ifthe data flow represents a parameter (or return value) belonging to the access program itself, then
“Param” (or “Func”) is entered.

e If the data flow represents a local value from (or to) another design block of the access program, “Local”
is entered.
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Appendix B Module Internal Design

10.
11.

12,

13.

14.

It is assumed that all “get” programs are invoked before any processing is performed. The sequence of
invocations is not significant. Similarly, all “set” programs are invoked after all processing is performed. Unless
otherwise indicated, the sequence of invocations is not significant. If the sequence is important, the order of
invocations is indicated by integers, 1, 2, 3, etc. A program labeled 7 is invoked before one labeled n+1. An
indication of "FINAL" indicates that the program shall be the last one invoked in the access program.

“-” means not applicable, or do not care. “NC” refers to state data that is not changed.

The constants (if any) local to an access program are defined in a section named Constants. Constants are
defined by name, type and value (or Source if it is imported).

The variables (if any) local to an access program which have effects on the program’s behaviour are defined in
the section named Locals. Locals are defined by the same fields as Inputs, Updates and Outputs.

The effects of an access program are represented through a Program Function Table in the Behaviour section.
There are some alternative formats of program function tables. One that we use is the Condition Table, with the
condition listing all the conditions, and result listing values of all the output variables for each condition.

We also use a normal function table with the headers representing the conditions, and the grids showing the
effects of an access program.

In most cases, function tables describe the complete behavior within a program block. This includes loops
within the block. In a few cases, it is important to describe the loop itself. For example, if an output is
generated within the loop body and the output is different for each iteration of the loop.

A while loop within a program block can be described by a single iteration in the function table. Identifiers
within the scope of the while loop are tagged with <n>, indicating the value of the identifier at the n™ iteration
through the loop. Results from the loop may be tagged with <n+1>. Loop termination must be explicitly
described as a boolean value in the table.

Simple repetition of tables with indexed identifiers is described by indexing the identifiers and including the
notation "{fori=1,2, ..., n}" as a comment in the left top cell of the table.
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Lexicon
1. @Acess program #1 addScriptElement: ElemExecTime = thow — to, Where tnow = current time, to= time when

emulator.executeScriptElement(element) is called.
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Appendix B

Constructor: ScriptGenerationManager

Module Internal Design

Inputs
Name Ext_Value Type Source

fileManager - ScriptFileManager Param

genEmulator - GenerationEmulator ~ |Param

opConsole - OperatorConsole Param

GUIF := ProjectFactory.getInstance().getGUIF actory() GUIFactory ca.mdrobotics.rtr.gs.vdm.gui. GUIFactory
Outputs

Name Ext Value Type Source

autosampler Autosampler State

cancelPopup WaitOrCancelPopup State

emulator GenerationEmulator State

idGenerator ElementIdGenerator State

messenger MessagePopup State

theOpConsole OperatorConsole State

theScriptFileManager ScriptFileManager State
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Behaviour

theScriptFileManager :— fileManager;

theOpConsole :— opConsole;

emulator := genEmulator;

idGenerator := new ElementIdGenerator();

autosampler :— new Autosampler(this, idGenerator),

messenger .= GUIF.createMessagePopup(opConsole);
cancelPopup = GUIF.createWaitOrCancelPopup(theOpConsole)
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Appendix B

Access Program 0: initialise

Module Internal Design

Inputs
Name Ext Value Type Source
SGC = ProjectFactory.getlnstance().getGUIFactory().cre | ScriptGenerationConsole |ca.mdrobotics.rtr.gs.ProjectFactory
ateScriptGenerationConsole(
theOpConsole theOpConsole, OperatorConsole State
idGenerator idGenerator, this) ElementldGenerator State
PF — ProjectFactory.getInstance().isModeSupported( |ProjectFactory Call
SystemModes.SCRIPT |SystemModes.SCRIPT _GENERATION) byte ca.mdrobotics.rtr.gs.vdm.SystemModes
_GENERATION
Updates
none
Outputs
Name Ext_Value Type Source
console - ScriptGenerationConsole |State
SMM —  |SystemModeManager.getInstance().addModeChange |SystemModeManager ca.mdrobotics.rtr.gs.vdm.SystemModeManager
Listener(this)
Behaviour Result
Condition console SMM
PF SGC True
NOT(PF) NC False
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Access Program 1: addScriptElement

Module Internal Design

Inputs
Name Ext Value Type Source
currentSegment - ScriptSegment State
element - ScriptElement Param
graphicalElement := |element.createGraphicalScriptElement() GraphicalScriptElement Call
script = theScriptFileManager.getScript() Script Call
verify - boolean Param
Updates
Name Ext Value Type Source
verificationCancelled |- boolean |State

124




Appendix B Module Internal Design

Outputs
Name Ext_Value Type Source

CP — cancelPopup.start( WAIT_DURATION, “Verifying script boolean State
element...”, this)

CS — currentSegment.addScriptElement(element) boolean State

EMU — emulator.executeScriptElement(element) boolean State

MES — messenger.displayErrorMessage( boolean State

msg msg) String Local

SCR — script.addScriptElement(element) boolean Call

SFM — theScriptFileManager.setScriptModificationTime(System.cur |boolean State
rentTimeMillis())

SFM2 —  |theScriptFileManager.refreshScriptPreview() ScriptFileManager State

TOC — theOpConsole.getSystemBulletinBoard. write( boolean State

msg2 msg2) String Local

TOC2 —  |theOpConsole.getSystemBulletinBoard.write (“Added script |boolean State
element”)

VW — VirtualWorld.addGraphicalScriptElement(graphicalElement) |boolean Call
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Appendix B Module Internal Design
Behaviour
Table 1.1 Result
Condition CP | verification |EMU | MES msg TOC msg2 CS | SCR | SFM |SFM2|TOC2| VW
Cancelled
NOT(verify) False NC False | False - False - see tbl 1.2 seethl 1.3
verify | NOT( ElemExecTime <= True False | True |False - True | “Verified see tb] 1.2 see tbl 1.3
Exception) | WAIT _DURATION Ok~
OR
NOT(verificationCan
celled)
ElemExecTime > True True True |False - True | “Verification | False | False | False | False | False | False
WAIT_DURATION cancelled”
&
verificationCancelled
Exception |I/O Exception False NC True | True | “Element |False - False | False | False | False | False | False
verification
failed”
script = null False NC True | True | “No script |False - False | False | False | False | False | False
open”
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Appendix B
Table 1.2
Result
Condition SCR CS SFM
currentSegment = null True False True
currentSegment # null False True False
Table 1.3
Result
Condition VW SFM2 TOC2
graphicalElement = null False True True
graphicalElement # null True True True
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Access Program 2: cancel

* Implements ca.mdrobotics.rtr.gs.vdm.gui.CancellableProcess

Inputs
none

Updates
none

Outputs

Module Internal Design

Name

Ext_Value

Type

Source

CP—-1

cancelPopup.stop()

boolean

State

GS—2

gotoStandby()

boolean

this module

verificationCancelled

boolean

State

Behaviour
CP .= true;
GS = true;

verificationCancelled := true
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Access Program 3: getCurrentManipulator

Module Internal Design

Inputs
Name Ext Value Type Source
selectedManipulator Manipulator State
Updates
none
Outputs
Name Ext Value Type Source
getCurrentManipulator Manipulator Func

Behaviour

getCurrentManipulator := selectedManipulator
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Appendix B Module Internal Design

Access Program 4: setCurrentManipulator

Inputs
Name Ext_Value Type Source
manipulator - Manipulator Param
Updates
none
Outputs
Name Ext Value Type Source

selectedManipulator Manipulator {State

SMF — setCurrentManipulatorCommandFrame(manipulator. [boolean this module
getCommandFrame())
Behaviour
Result
Condition selectedManipulator SMF
manipulator # null manipulator True
manipulator = null null False
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Access Program S: moveCurrentManipulatorJointsTo

Inputs
Name Ext Value Type Source
emulator - GenerationEmulator |State
jointVector - double[] Param
manipulatorName := |selectedManipulator.getIdentifier() String Call
Updates
none
Outputs
Name Ext_Value Type Source
EMU — |emulator.moveManipulatorJointsTo(manipulatorName, jointVector) boolean State
Behaviour
HAH | | |H.
G v
H,
Ij_. |:| 9 emulator.isConnected() = True NOT (emulator.isConnected() = True)
emulator # null EMU = True EMU = False
emulator = null EMU = False EMU = False
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Access Program 6: setCurrentManipulatorJoints

Inputs

Module Internal Design

Name

Ext Value

Type

Source

emulator

GenerationEmulator

State

jointVector

double[]

Param

manipulatorName :=

selectedManipulator.getldentifier()

String

Call

Updates

none

QOutputs

Name

Ext_Value

Type

Source

EMU — emulator.setManipulatorJoints(manipulatorName, jointVector)

boolean

State

Behaviour
H AH, H:
G
H, G emulator.isConnected() = True NOT (emulator.isConnected() = True)
emulator # null EMU = True EMU = False
emulator = null EMU = False EMU = False
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Access Program 7: enableMAM

Inputs

Module Internal Design

Name Ext Value

Type Source

emulator -

GenerationEmulator | State

enable -

boolean Param

manipulatorName := |selectedManipulator.getldentifier()

String Call

Updates

none

Outputs

Name Ext_Value

Type Source

EMU — |emulator.enableMAM(manipulatorName, enable)

boolean State

Behaviour
HAH | | |1,
G v
w |6
emulator.isConnected() = True NOT (emulator.isConnected() = True)
emulator # null EMU = True EMU = False
emulator = null EMU = False EMU = False
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Access Program 8: enableSJRM

Inputs

Module Internal Design

Name Ext Value

Type

Source

emulator

GenerationEmulator |State

enable

boolean

Param

joint

int

Param

manipulato

rName := |selectedManipulator.getldentifier()

String

Call

Updates

none

Outputs

Name

Ext_Value

Type

Source

EMU —

emulator.enableSTRM(manipulatorName, joint, enable)

boolean

State

Behaviour

H; AH,
G

[ J]e

n [

emulator.isConnected() = True

NOT (emulator.isConnected() = True)

EMU = True

emulator # null

EMU = False

emulator = null

EMU = False

EMU = False
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Access Program 9: gotoStandby

Inputs
none

Updates

none

Outputs

Name Ext Value Type Source

EMU —  |emulator.gotoStandby() boolean State

Behaviour
EMU = True
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Access Program 10: newScript

Block 1:

Inputs

Module Internal Design

Name

Ext Value Type

Source

console -

ScriptGenerationConsole | State

script =  |theScriptFileManager.getScript()

Script

Call

sname = |theScriptFileManager.getScript().getName() String

Call

Updates
none

Outputs

Name

Ext Value

Type

Source

goAhead

boolean Local

Behaviour

Condition

Result

goAhead

script # null

console.promptForConfirmation(“Replace” + sname + *“7”)

script =null

True
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Appendix B Module Internal Design
Block 2:
Inputs
Name Ext Value Type Source
goAhead - boolean output of Block 1
language := ProjectFactory.getInstance().getScriptLanguage() ScriptLanguage call
messenger - MessagePopup State
Updates
Name Ext Value Type Source
cancelled<> - boolean Local
name<> := console.promptForScriptName() String call
validName<> - boolean Local
Outputs
Name Ext Value Type Source
ERRMes — |messenger.displayErrorMessage( msgTitle, msg) boolean State
Locals
isValid<> := |language.isScriptNameValid(name<>) boolean Call
Initialisation

cancelled := false; validName := false
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Behaviour
Result
Condition n=0,1,2,. cancelled<n+1> | validName<n+1>| ERRMes | msgTitle msg Loop
Termination
goAhead | NOT(cancelled<n>) | name<n> True False False - - False
& =null
NOT(validName<n>)
name<n> False isValid<n> NOT “Invalid [language.getSc False
# null (isValid<n>)| Script |riptNameHint()
Name”
NOT(cancelled<n>) False True False - - True
& validName<n>
cancelled<n> & True False False - - True
NOT(validName<n>)
cancelled<n> & Impossible - - - - - -
validName<n>
NOT(goAhead) False False False - - -
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Appendix B Module Internal Design
Block 3:
Inputs
Name Ext_Value Type Source
goAhead - boolean output of Block 1
validName * - boolean output of Block 2
name * - String from Block 2
* The values of “validName” and “name” should be their final values at the end of the while loop
Updates
none
Outputs
Name Ext Value Type Source
SFM — 1 |theScriptFileManager.newScript(name) boolean State
SFM2 — 2 |theScriptFileManager.refreshScriptPreview() boolean State
FINAL console.refresh() ScriptGenerationConsole |State
Behaviour

goAhead & validName — SFM & SFM2




Appendix B Module Internal Design
Access Program 11: newScriptSegment
Inputs
Name Ext Value Type Source
script = theScriptFileManager.getScript() Script Call
segmentName := console . PromptForScriptSegmentName() String Call
Locals
Name Ext Value Type Source
newSegment = new ScriptSegment(segmentName) ScriptSegment Call
Updates
Name Ext Value Type Source
currentSegment - ScriptSegment State
Outputs
Name Ext_Value Type Source
MES — messenger.displayErrorMessage( boolean State
msgTitle msgTitle, String Local
msg msg) String Local
newScriptSegment |- boolean Func
SCR — script.addScriptSegment(newSegment) boolean ca.mdrobotics.rtr.gs.script.Script
SFM — theScriptFileManager.refresheScriptPreview()  |boolean State
FINAL console.refresh() ScriptGenerationConsole | State
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Behaviour
Result

Condition MES msgTitle msg currentSegment SCR SFM newScriptSegment
script # segmentName [ False - - newSegment True True True
null # null

segmentName False - - NC False True False

=null
script = True “No script” | “A script must NC False False False
null first be created”
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Access Program 12: closeScriptSegment

Inputs
none

Updates

none

Outputs

Name Ext Value Type Source

currentSegment - ScriptSegment State

FINAL console.refresh() ScriptGenerationConsole State

Behaviour
currentSegment = null
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Access Program 13: getAllScriptSegments

Inputs
Name Ext Value Type Source
i - int Local
numSegments := |script.getNumberOfScriptSegments() int Call
script := theScriptFileManager.getScript() Script Call
Locals
Name Ext Value Type Source
segmentList :=  |script.getScriptSegment(i) for all i in [0, numSegments-1 ] ScriptSegment[] |Call
Updates
none
Outputs
Name Ext Value Type Source
getAllScriptSegments - ScriptSegment[] Func
Behaviour

for i=0, 1, ..., numSegments -1

Result
Condition getAllScriptSegments
script # null segmentList[i]
script = null segmentList[0]
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Access Program 14: getCurrentScriptSegment

Inputs

Name Ext Value Type Source

currentSegment - ScriptSegment State

Updates
none

Outputs

Name Ext Value Type Source

getCurrentScriptSegment - ScriptSegment Func

Behaviour
getCurrentScriptSegment := currentSegment
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Access Program 15: getScriptName

Inputs

Name Ext_Value Type Source

script := theScriptFileManager.getScript() Script Call

sname := theScriptFileManager.getScript().getName() String Call

Updates
none

Outputs

Name Ext Value Type Source
getScriptName - String Func

Behaviour
Result
Condition getScriptName

script # null sname

script = null «“”
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Access Program 16: setCurrentSegment
Inputs
Name Ext_Value Type Source
i - int Local
newCurrent - ScriptSegment Param
numSegments := |script.getNumberOfScriptSegments() int Call
script := theScriptFileManager.getScript() Script Call
Locals
Name Ext Value Type Source
foundSegment := |script.getScriptSegment(i) fori=0, 1, ..., numSegments -1 ScriptSegment Call
Updates
Name Ext_Value Type Source
currentSegment |- ScriptSegment State
QOutputs
none
Behaviour
H, /é ]| JH. script # null script = null
H, G foundSegment = newCurrent NOT (foundSegment = newCurrent)
newCurrent # null currentSegment = newCurrent No action No action
newCurrent = null currentSegment = newCurrent
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Access Program17: moveCurrentManipulatorPORTo

Constants
Name Value Type Source
ReferenceFrame.PYR |0 byte ca.mdrobotics.math.EulerFrame
Inputs
Name Ext Value Type Source
emulator - GenerationEmulator | State
manipulatorName := |selectedManipulator.getldentifier() String Call
newPOR - ReferenceFrame Param
PX = newPOR.getX() double Call
PY = newPOR .getY() double Call
PZ = newPOR.getZ() double Call
PP = newPOR.getPitch(ReferenceFrame . PYR) double Call
Pya = newPOR.getYaw(ReferenceFrame.PYR) double Call
PR := newPOR.getRoll(ReferenceFrame . PYR) double Call
Updates none
Outputs
Name Ext_Value Type Source
EMU —  |emulator.moveManipulatorPORTo(manipulatorName, PX, PY, PZ, PP, Pya, PR) boolean State
Behaviour Hlé“’ H,
h D——’El ° emulator.isConnected() = True NOT (emulator.isConnected() = True)
emulator # null EMU = True EMU = False
emulator = null EMU = False EMU = False
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Access Program 18: setCurrentManipulatorPOR

Constants
Name Value Type Source
ReferenceFrame. PYR |0 byte ca.mdrobotics.math.FulerFrame
Inputs
Name Ext Value Type Source
emulator - GenerationEmulator | State
manipulatorName := |selectedManipulator.getldentifier() String Call
newPOR - ReferenceFrame Param
PX = newPOR.getX() double Call
PY = newPOR.getY() double Call
PZ = newPOR .getZ() double Call
PP = newPOR .getPitch(ReferenceFrame . PYR) double Call
Pya := newPOR getYaw(ReferenceFrame.PYR) double Call
PR := newPOR .getRoll(ReferenceFrame.PYR) double Call
Updates none
Outputs
Name Ext Value Type Source
EMU — |emulator.setManipulatorPOR(manipulatorName, PX, PY, PZ, PP, Pya, PR) boolean State
Behaviour H, (/}\H7 H,
L] G . — . —
emulator.isConnected() = True NOT (emulator.isConnected() = True)
emulator # null EMU = True EMU = False
emulator = null EMU = False EMU = False
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Access Program 19: getCurrentManipulatorCommandFrame

Inputs
Name Ext_Value Type Source

SM = |selectedManipulator.getCommandFrame() CommandFrameNode State

VW := |VirtualWorld.getInstance().getBaseCommandFrame() CommandFrameNode Call
Updates
none
Outputs

Name Ext Value Type Source

getCurrentManipulatorCommandFrame |- CommandFrameNode ca.mdrobotics.rtr.gs.vdm.devices. CommandFrameNode

Behaviour
Result

Condition getCurrentManipulatorCommandFrame
selectedManipulator # null SM
selectedManipulator = null VW
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Access Program 20: setCurrentManipulatorCommandFrame
Inputs
Name Ext Value Type Source
manipulatorName := selectedManipulator.getIdentifier() String Call
newCommandFrameNode |- CommandFrameNode |Param
selectedManipulator - Manipulator State
Updates
none
Outputs
Name Ext_Value Type Source
EMU — |emulator.setManipulatorCommandFrame(manipulatorName, boolean State
newCommandFrameNode)
SM — selectedManipulator.setCommandFrame(newCommandFrameNode) boolean State
VW — | VirtualWorld.setCommandFrame(newCommandFrameNode) boolean Call
Behaviour
Result
Condition EMU SM VW
selectedManipulator # null True True True
selectedManipulator = null False False False
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Access Program 21: modeChanged
* Implements ca.mdrobotics.rtr.gs.vdm.SystemModeChangeListener
Inputs
Name Ext_Value Type Source

newMode - byte Param

SystemModes.SCRIPT GENERATION - byte ca.mdrobotics.rtr.gs. vdm.SystemModes
Updates
none
Outputs

Name Ext_Value Type Source
EMU — emulator.setWorldState( boolean State
Virtua]World.recallWorldState(SystemModes.SCRIPT;GENERATION))

TOC — theOpConso]e.getSystemBulletinBoard.write(“* Script Generation Mode *”) boolean State

FINAL console.setVisible(activeMode) boolean State
Behaviour

Result

Condition TOC EMU
newMode = SystemModes.SCRIPT GENERATION True True
NOT(newMode = SystemModes.SCRIPT_GENERATION) False False
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Module Internal Design
Access Program 22: configureAutosampler
Inputs
Name Ext Value Type Source
console - ScriptGenerationConsole State
Updates
none
Outputs
Name Ext_Value Type Source
AUT — |autosampler.configure(console) boolean State
MES — |messenger.displayErrorMessage(“Cannot configure autosampler”) boolean State
Behaviour
Result
Condition AUT MES
NO Exception True False
Exception False True
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Module Internal Design
Access Program 23: enableAutosampling

Inputs
r Name ’ Ext Value J Type Source
doEnable - boolean Param
Updates
none
Outputs
Name o Ext_Value Type Source
AUT — autosampler.enable(doEnable) boolean State
enableAutosampling - boolean Func
MES — messenger.displayErrorMessage(“Cannot enable/disable MessagePopup State
autpsampler”)
Behaviour
Result
Condition AUT MES enableAutosampling
NO Exception True False doEnable
Exception - True False
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ScriptGenerationManager Class
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