Metabolomic Studies by Capillary Electrophoresis-Electrospray lonization-Mass
Spectrometry



Comprehensive Metabolomics by Capillary Electrophoresis-Electrospray

Ionization-Mass Spectrometry: Integrative Strategies for Biomarker Discovery

By

Richard Lee, MSc

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfillment of the Requirements
for the Degree

Doctorate of Philosophy

McMaster University

©Copyright by Richard Lee, Sept 2009



il

DOCTORATE OF PHILOSOLPHY (2009) McMaster University

(Chemistry) Hamilton, ON

TITLE : Comprehensive Metabolomics by Capillary Electrophoresis-Electrospray
Ionization-Mass Spectrometry: Integrative Strategies for Biomarker
Discovery

AUTHOR : Richard Lee, MSc (McMaster University)

SUPERVISOR : Dr. Philip Britz-McKibbin

NUMBER OF PAGES : xxvii, 250



Acknowledgments

As I reflect on my journey through graduate school, I realize I could not
have completed this part of my life without the support of several people. First I
would like to thank my supervisor Dr. Philip Britz-McKibbin. Without his
scientific direction and unwavering faith in our vision, this story may not have
been possible. I would also like to thank the members of my committee, Dr. Jack
Rosenfeld and Dr. John Brennan, for their guidance and advice. I would also like
to thank past and present members of the Britz-McKibbin group for their support

and entertainment on long days.

Graduate school can be a stressful environment but friends and family
have always been there to encourage me through the tough times. Though the list
is long and I cannot list everyone that had an impact I would specifically like to
thank the “boys” - they have endured my struggles and supported me throughout
my undergraduate and graduate years. To my family, and especially my sister
Jackie I would not be here without you. Most of all, I would like to thank my
wife Karin. For years she has been supported and encouraged me through the
tough times of research, and reminded me on a number of occasions - when I
wanted to wave the white flag, how much I wanted this and love research.

Without her this would not have possible. Thank you.



1ii

Abstract

Metabolomics is a rapidly emerging area of post-genomic research aimed at the
comprehensive analysis of all low molecular weight metabolites in a cell or
biofluid, which heralds new advances in drug development, disease prognosis and
nutritional intervention. The major goals of this thesis are aimed at addressing
several key obstacles hampering the development of metabolomics in biological
research that is presented in four major chapters in this thesis. Chapter II
introduces an integrative strategy for the identification of unknown low
abundance metabolites when wusing capillary electrophoresis-electrospray
ionization-mass spectrometry (CE-ESI-MS) in conjunction with computer
simulations when chemical standards are unavailable. The second project in
Chapter III develops and validates an artifact-free method for analysis of labile
metabolites in filtered red blood cell lysates by CE-ESI-MS that allows for
accurate assessment of cellular redox status and antioxidant capacity based on the
differential rates of glutathione oxidation. Chapter IV of the thesis introduces a
differential metabolomics strategy for quantitative assessment of cellular
oxidative stress and antioxidant efficacy with strenuous exercise. CE-ESI-MS
together with univariate and multivariate data analysis was used to identify
putative early- and late-stage biomarkers of oxidative stress in erythrocytes,
which was applied to assess the attenuation of oxidative stress following high-
dose oral N-acetyl-L-cysteine administration. The final project in Chapter V

investigates the impact of low-dose y-irradiation on intra-cellular metabolism and
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cell membrane viability of leukocytes when using CE-ESI-MS and fluorescence-
based flow cytometry, respectively. A distinct non-linear cellular response was
measured for irradiated-leukocytes as reflected by a significant upregulation of
metabolites and slower progression of late-stage apoptosis when exposed to a
minimum-threshold dose of radiation Metabolomics by CE-ESI-MS provides a
novel and hypothesis-generating approach for investigating complex biological
phenomena, which can improve our fundamental understanding of the underlying
mechanisms of oxidative stress that is relevant to human health, aging and disease

pathogenesis.
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IS represents HQSA). Note that NAC-NAC and GS-NAC disulfide levels rapidly
increase at early stages of metal-catalyzed oxidation (not detectable at t= 0 min), but do
not significantly change from 60 min to 180 min unlike GSH, GSSG and NAC. (b) ESI-
MS spectra confirming the identification of disulfide adducts formed during metal-
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during the exhaustive exercise regime. GSH and GSSG undergo significant changes
during the exercise protocol as demonstrated by the over 20 fold increase of GSSG and
the concomitant decrease of GSH in the control trial. GSH depletion and GSSG
formation is modulated during the oral NAC trial. The inset displays the reduction of total
RBC oxidation by 14% by oral supplementation of NAC. (b) Illustrates the half cell
reduction potential of GSH, (Egssgsi). Both trials initially start with highly reduced
state then undergo oxidation during the exhaustive exercise regime. This highly
reversible process is attenuated by the consumption of NAC as shown by the more
reduced state at the peak oxidation levels and the significantly shorter recovery time....176

Figure 4.4. (a) Base peak electropherogram of RBC lysate during T=0 min of control
trial.  Inset illustrates the extracted ion electropherograms of putative unknown
biomarkers of oxidative stress. A large dynamic range is observed for the metabolites in
RBC lysate with GSH in excess with the putative biomarkers in low abundance. (b)
Multistage MS" spectra were acquired for the unknown biomarkers and compared against
available database spectra. Identification of metabolites were (i) 3Me-His, (i1) CO, (iii)
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Figure 4.5. Time-dependent concentration profiles of six lead biomarkers of oxidative
stress in control (blue) and oral NAC trials (red). (a) GSH and (b) GSSG profile depicts
the enormous change during the oxidative stress event but returns to baseline levels during
the recovery period for both control and oral NAC trials. (¢) C2, (d) CO, and (e) Cre
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Figure 4.6. Univariate analysis comparing the fold change of oral NAC trial at rest (blue)
and 5 days after NAC trial (purple) relative to control trial at rest. Identified metabolites
are labeled above their corresponding (m/z:RMT) values. Metabolites exhibited an
overall significant down regulation with oral NAC..........cccoevieviriieiieneecieciesee e 187
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Figure 4.7. A summary of four major metabolic reactions associated with oxidative stress
biomarkers identified in this study, namely GSH, GSSG, C0, C2, Cre and 3-MeHis. The
efficacy of NAC pretreatment in attenuating oxidative stress while delaying the onset of
fatigue during strenuous exercise is associated with inhibition of key cellular energy
metabolic pathways involving skeletal muscle tissue, such as fatty acid catabolism
involving acylcarnitine transport and creatine kinase activity for ATP regulation. Reduced
energy demands at rest and during prolonged cycling with NAC pretreatment generates
lower levels of RONS corresponding to a decrease in the extent of glutathione oxidation
(GSSG) and a slower rate of proteolysis in muscle tissue as indicated by lower amounts of
3-MeHis uptaken by RBCS. ......ccoieeuiiiiinieierieseeie e seeeeseteeeesreeveesee e ene e sbeeeeennees 196

Figure 5.1. Average flow cytometry histogram for differentiating sub-populations of
irradiated-leukocytes following a 44 hr incubation period that were exposed to a) 0 Gy, b)
2 Gy, ¢) 4 Gy, and d) 8 Gy. Lower left quadrant represents the double-negative staining
region representing viable cells, lower right quadrant reflects the Annexin V-FITC
positive-staining region corresponding to early-stage apoptosis, and the upper right
quadrant represents the double-positive staining region of both AnxV and 7-AAD
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Figure 5.2. A series of extracted ion electropherograms (EIE-offset) for four major
unknown metabolites and other identified isobaric ions derived from filtered WBC lysates
exposed to increasing levels of y-irradiation. Arrows qualitatively highlight the net
depletion or upregulation of metabolites relative to control at increasing radiation dosages
when using CE-ESI-MS. (a) unknown X1, m/z 104, (b) unknown X3, m/z 116 with isobar
Pro (c) unknown XS5, m/z 131 (d) unknown X8, m/z 132 with isobars Cre and Leu,
whereas (€) depicts the non-linear dose-response relationship of eight known metabolites
identified from irradiated-leukoytes that exhibited significant upregulation at the 4 Gy
level in terms of their relative concentration levels in comparison to the control.......... 226

Figure 5.3. Histogram illustrating the impact of irradiation dosage on intra-cellular
cellular metabolism that shows the non-linear changes in identified and unknown
metabolite levels derived from human leukocytes relative to the control at 0 Gy. Blue,
red, and green bar graphs represent fold-change in average normalized ion responses
measured for metabolites at 2, 4, and 8 Gy radiation relative to the control, where error
bars represent £10o (triplicate measurements from two sets of cell batches, »=6). A major
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depletion in metabolites was consistently measured for most metabolites at the 2 and 8 Gy
doses, whereas a significant upregulation or recovery to control levels were detected for
the majority of metabolites at the intermediate 4 Gy dose level, notably for Gln, Arg, Pro,
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Figure 6.1. Reaction of maleimide with thiol moiety to form the stable thiol-maleimide
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Figure 6.2. Extracted ion electropharograms of free thiol (black) and thiol-MM conjugate
(red). (a) Standard 20 uM solutions of both NAC and NAC-MM conjugate under
alkaline conditions and negative ESI conditions. Approximately 20% increase in signal
for NAC-MM compared to NAC. The inset illustrates the mass spectrum of the NAC-MM
conjugate with [M-H] at m/z 273 (b) Standard 20 uM solution of hCys-MM and Cys-MM
both display a dramatic increase in ionization efficiency with maleimide conjugation.
Enhancement of 40 and 19 fold increase is exhibited by hCys-MM and Cys-MM,
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I. Introduction to Metabolomics and Capillary-Electrophoresis-Electrospray-
Mass Spectrometry

1.1. Metabolomics
1.1.1. The Greatest omics of them all?

In a post-genomic era, several “omics” technologies have been developed to
assess the complex dynamics associated with gene expression that impact the
phenotype of an organism. Despite the sequencing of the human genome (and an
increasing number of other organisms) using high-throughput multiplexed
capillary array gel electrophoresis,' a functional understanding of gene activity on
human health, development and disease is still lacking. In this context,
complementary approaches for quantitative assessment of the downstream
biochemical products of gene transcription in relation to the phenotype of an
organism are urgently needed.  Transcriptomics is a well developed area of
functional genomics aimed at studying gene expression using DNA microarray
hybridization technology for the quantification of messenger RNA (mRNA)
levels in a cell. However, the major limitation of transcriptomics is that it is
dependent on a priori knowledge of a gene sequence, while suffering from high
background levels and limited dynamic range due to non-selective hybridization.?
Moreover, both hybridization and sequencing based transcriptomic techniques are
not applicable to the assessment of gene activity involving combinations of
known and/or unknown spliced gene regions within a polyploid genome. The
advent of proteomics promises a more complete functional understanding of gene

expression in an organism since biological activity is strongly associated with
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Figure 1.1. Schematic representing the major “omic” levels of functional genomics research in systems
biology.

protein expression encoded by the genome. Despite breakthroughs in high
resolution analytical technologies for comprehensive protein analysis based on 2D
gel electrophoresis, liquid chromatography and/or mass spectrometry, functional
understanding is elusive due to the large number, wide dynamic range and sheer
complexity of protein states, including post-translational covalent modifications
and various forms of non-covalent interactions involving protein-protein, protein-
ligand and/or protein-membrane complexes that modulate activity in-vivo.?
Metabolomics is an emerging yet complementary field of post-genomic research,
which is aimed at the comprehensive analysis of metabolites in a cell, tissue or
biological fluid. Indeed, metabolomics now represents a viable component of
systems biology research® and an important counterpart to transcriptomic and
proteomic research as highlighted in Figure 1.1. Since metabolites represent
dynamic molecular endpoints of gene, transcript, protein expression and/or
environment, metabolomics offers an insightful way to assess real-world changes
in biological activity closely associated with the phenotype of an organism. This

thesis is aimed at developing new strategies for comprehensive analysis of
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metabolites in biological samples that addresses major analytical challenges
associated with sample pretreatment, unknown metabolite
identification/quantification and multivariate data analysis for biomarker

discovery.

1.1.2. History of Metabolomics

The term “metabolome” was first introduced by Fiehn as representing the full
complement of small molecules in an organism analogous to the genome or
proteome.s‘ % Metabolomics was later defined as the comprehensive analysis of
all low molecular weight molecules (< 1000 Da) which can be detected, identified
and quantified. In contrast, metabolite fingerprinting offers a qualitative strategy
for distinguishing changes in metabolite levels associated with different states or
external conditions, but it does not identify nor quantify detectable metabolites
that is critical for deeper insight into the underlying mechanism(s) of biological
activity.” Metabolite profiling of specific metabolite classes or targeted metabolic
pathways has long been the cornerstone of biological research. In this context,
metabolomics introduces the paradigm of unbiased global metabolite analyses,
which provides a “hypothesis-free” or “hypothesis-generating” approach for
investigating complex biological phenomena, ranging from the discovery of
biomarkers for early detection of disease to the elucidation of genes/proteins of
unknown function.*'°

Early confusion arose with the parallel introduction of “metabonomics”

coined by Nicholson and co-workers, which is defined as the ability to
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Figure 1.1. Schematic representing the major “omic” levels of functional genomics research in systems
biology.

protein expression encoded by the genome. Despite breakthroughs in high
resolution analytical technologies for comprehensive protein analysis based on 2D
gel electrophoresis, liquid chromatography and/or mass spectrometry, functional
understanding is elusive due to the large number, wide dynamic range and sheer
complexity of protein states, including post-translational covalent modifications
and various forms of non-covalent interactions involving protein-protein, protein-
ligand and/or protein-membrane complexes that modulate activity in-vivo.’
Metabolomics is an emerging yet complementary field of post-genomic research,
which is aimed at the comprehensive analysis of metabolites in a cell, tissue or
biological fluid. Indeed, metabolomics now represents a viable component of
systems biology research® and an important counterpart to transcriptomic and
proteomic research as highlighted in Figure 1.1. Since metabolites represent
dynamic molecular endpoints of gene, transcript, protein expression and/or
environment, metabolomics offers an insightful way to assess real-world changes
in biological activity closely associated with the phenotype of an organism. This

thesis is aimed at developing new strategies for comprehensive analysis of
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metabolites in biological samples that addresses major analytical challenges
associated with sample pretreatment, unknown metabolite
identification/quantification and multivariate data analysis for biomarker

discovery.

1.1.2. History of Metabolomics
The term “metabolome” was first introduced by Fiehn as representing the full

complement of small molecules in an organism analogous to the genome or
proteome.> ¢ Metabolomics was later defined as the comprehensive analysis of
all low molecular weight molecules (< 1000 Da) which can be detected, identified
and quantified. In contrast, metabolite fingerprinting offers a qualitative strategy
for distinguishing changes in metabolite levels associated with different states or
external conditions, but it does not identify nor quantify detectable metabolites
that is critical for deeper insight into the underlying mechanism(s) of biological
activity.” Metabolite profiling of specific metabolite classes or targeted metabolic
pathways has long been the cornerstone of biological research. In this context,
metabolomics introduces the paradigm of unbiased global metabolite analyses,
which provides a “hypothesis-free” or “hypothesis-generating” approach for
investigating complex biological phenomena, ranging from the discovery of
biomarkers for early detection of disease to the elucidation of genes/proteins of
unknown function.®*°

Early confusion arose with the parallel introduction of “metabonomics”

coined by Nicholson and co-workers, which is defined as the ability to
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differentiate time-related metabolic changes in an organism due to an external

L, 12 . .
Indeed, metabolomics and metabonomics

stimuli or genetic modifications.
have been used interchangeably in the literature, but essentially relate to the same
area of research although the experimental design and instrumental method/data
processing used for conducting untargeted metabolite profiling may be different.
In general, depending on the discretion of the research group, most nuclear
magnetic resonance (NMR)l 113 based studies have used the term metabonomics,

whereas researchers involved with mass spectrometry (MS)M‘ &

have adopted
metabolomics. Due to the wider availability of bench-top MS instrumentation for
laboratory research, the majority of reports in the literature use metabolomics as
the primary term of choice, which will be used throughout this thesis. The
discrepancies in terminology in reporting scientific data during the early
development of metabolomics highlights that it is still a quite a nascent field of
post-genomic research. With the growing interest in metabolomic applications
across various fields of science, an international metabolomics standards initiative
has recently been organized to develop a broad consensus on accepted
syntax/semantics used in published reports, as well as ensure an adequate
description of experimental protocols involving chemical analysis, data mining
and biological context.'®

Unlike DNA, RNA or protein biopolymers, metabolites represent

chemically diverse set of small molecules that vary significantly in terms of their

physicochemical properties, such as polarity, solubility, electric charge and
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Figure 1.2. Illustrates the classification of detected metabolites from E. Coli extracts by CE-MS.
(a) Comprehensive list of 727 known metabolites in E. Coli classified according to their metabolic
pathway from the Kyoto Encyclopedia of Genes and Genome. Class: I, primary metabolism; II,
degradation of primary metabolites; III, Degradation of environmental compounds; IV, secondary
or unconventional metabolism; V, pathway unknown; VI, intermediates in putative in vitro
reaction. Further cataloging of metabolites in class I and II into (b) polar and non-polar
metabolites, which are then further reduced into those which can be detected by CE-TOF-MS
analysis for (c) hydrophilic metabolites.

volatility. The disparity in the chemical properties (including stability) of
metabolites represents a significant analytical challenge for their comprehensive
separation and detection under a single instrumental platform and/or sample
preparation method. Moreover, the metabolome represents a large number of
small molecules that are expressed over a wide dynamic range, notably secondary

metabolites found within sessile organisms, such as plants. Indeed, it has been

estimated that over 200 000 different metabolites may exist within the plant
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Table 1.1. Major classes of primary metabolites, representative structure of each class of

metabolite major pathways, and electric charge state. Metabolites classified as polar can be
amendable for CE-MS analysis.

Intrinsic  Representative structure Metabolite class Polarity Major
Charge metabolomic
pathway
Cationic TN NE Amines Polar Urea Cycle
HN NH3 . )
(ie. cadaverine)
Anionic _ Organic Acids Polar Krebs Cycle
HO 2 Nucleotides/cofactors
0 (ie. lactate)
Zwitter- *NH, Amino acids Polar Glutathione
ionic )\ o peptides/acylcarnitines Metabolism
HN N /Y (ie. Creatine)
I &
Neutral* H OH Sugars, steroids Non- Glycolysis
H.o (ie. glucose) polar
HO
HO H
OH
H OH

*Neutral metabolites normally are not separated by CE-ESI-MS unless additives are used in the
background electrolyte that are compatible with the ion source.

kingdom alone, which poses considerable obstacles for attaining truly global

17" Although the metabolome of animals or microbes are

metabolomic coverage.
considerably less complex than plants, significant hurdles still remain due to the
large fraction of unknown metabolites detected and the corresponding lack of
purified commercial standards available, which limits unambiguous identification
and quantification to only a few hundred metabolites by current analytical
methodologies.'® A recent survey performed by Ohashi et al. revealed about 727
known metabolites present in E. coli with a majority (> 62%) comprising primary

metabolites and their degradation products (class I/II) as shown in Figure 127

The authors highlighted that instrumental methods amenable to the separation and
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detection of complex mixtures of polar/charged metabolites present in biological
samples are preferred given their predominance within the metabolome, such as
liquid chromatography or capillary electrophoresis-electrospray ionization-mass
spectrometry (CE/LC-ESI-MS). Table 1.1 illustrates the classification of primary
metabolites based on their intrinsic charge and associated metabolic pathways. In
general, polar metabolites are amenable to CE-ESI-MS analysis provided they
have an intrinsic charge state that permits their migration under an external
electric field (i.e., electrophoretic mobility) at a given buffer pH condition, which

will be discussed in greater detail later in the introduction of this thesis.

1.2. Analytical Platforms for Metabolomic Studies

A rigorous optimization and validation of analytical strategies used in
metabolomics studies is essential for realizing truly unbiased metabolite coverage
in biological samples, including sample pretreatment (pre-analysis), chemical
analysis (choice of instrumental platform) and data exploration (post-analysis).
The selectivity of the analyical method is one of the most important criteria to
consider for metabolomic applications given the complexity of most biological
samples that can result in significant interferences, such as the resolution of
isobaric and/or isomeric metabolites. Indeed, the performance of an analytical
technique is often compromised by background matrix effects unless sample
pretreatment is performed accordingly prior to analysis. In addition, method

sensitivity and its compatibility for the detection of a variety of different
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Figure 1.3. Bar graph showing the rapid increase in total metabolomics publications from 1989 to 2008
according to Web of Knowledge using a query search of "metabolomics and metabonomics™ performed
on June 21, 2009 relative to other major milestones in genomic and post-genomic research.

metabolite classes over a wide dynamic range is also a major feature to consider
when selecting an analytical technique. For instance, the detection of low
abundance metabolites (sub-micromolar) can provide insightful information
regarding biological active hormones, xenobiotics or biomarkers of disease that
would remain undetected by conventional methods with inadequate sensitivity.
Figure 1.3 highlights the rapid rise in NMR and MS based metabolomics research
reported in the scientific literature since 2000. However, one of the most
daunting obstacles in metabolomic research remains the identification of a large
fraction of unknown metabolites.”® Several public databases have been
established to assist in the identification of metabolites using a number of

different query searches (e.g., accurate mass, MS/MS erc.), such as KEGG,”
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Metlin,** and Human Metabolome Project,” however unambiguous identification
remains elusive when authentic chemical standards are lacking. An in silico
strategy for improved identification of unknown metabolites based on simulation
of their electromigration behavior from their fundamental physicochemical
properties is introduced in Chapter II of this thesis when using CE-ESI-MS in
conjunction with computer modeling. Thus, quantitative analytical techniques
that can also provide qualitative characterization of unknown yet biologically
relevant metabolites are highly desirable.

Several analytical platforms have been adopted for metabolomic studies,
the majority involving nuclear magnetic resonance (NMR)* and increasingly
chromatographic separation hyphenated to mass spectrometry (MS). NMR is a
non-destructive method that can provide a wealth of information for structural
elucidation of unknown metabolites with minimal sample preparation, however
sensitivity is still limited to micromolar levels when using high magnetic fields
(800 MHz) in conjunction with cryogenic probe technology.25 NMR also suffers
from high infrastructure/operating costs, complex data processing and slow
acquisition times when detecting minor metabolites in biological fluids, which
limits its suitability for high-throughput metabolomic studies. Gas
chromatography coupled to mass spectrometry (GC-MS) provides a highly robust
format for the separation of complex sample mixtures together with superior
sensitivity for the detection of sub-micromolar levels of metabolites.”® >’ Unlike

electrospray ionization-mass spectrometry (ESI-MS), electron impact (EI) is the
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primary ionization source used in GC-MS, which is less susceptible to matrix
effects while generating equivalent responses for metabolites. Despite being
considered the gold standard for chemical analyses due to its long history of
validated use in the laboratory, GC-MS requires complicated sample handling
(e.g., desalting, chemical derivatization etc.) when analyzing polar/charged
metabolites derived from biological samples that is time-consuming while
contributing to increased assay bias and poorer precision. In addition, GC-MS is
not applicable to the analysis of thermally unstable or chemically labile polar
metabolites. Chemical derivatization of polar metabolites can also result in
incomplete or multiply-labeled derivatives, which convolutes chromatographic
separation and subsequent data interpretation.’®  However,  metabolite
identification is facilitated when using GC-MS by access to the National Institute
of Standards and Technology (NIST) reference library, which comprises mass
spectra of over 190 000 organic compounds and 45 000 GC retention indices.”®
Recenty, Oliver Fiehn privatized their in-lab developed mass spectral and GC
indices database of over 800 metabolites into a commercially available software

package in collaboration with Agilent Technologies.29

Increasingly, liquid
chromatography coupled to mass spectrometry (LC-MS) represents an
increasingly viable separation format for metabolomics since it reduces the extent
of sample preparation required for polar metabolite analysis that is endemic to

GC. Since LC selectivity is constrained by the choice of stationary phase used for

metabolite separation, reverse-phase, hydrophilic interaction and other types of
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columns are required to be tested to ensure adequate coverage of the metabolome

*® Analysis times can vary

encompassing both polar and non-polar metabolites.
for LC-MS depending on the complexity of the sample, although with the advent
of ultra-high performance liquid chromatography (UPLC), separation times can
be reduced down to a few minutes due to high flow rates with greater separation
efficiency.’! Nevertheless, multiple ionization sources (ESI, APCI) and polarity
settings (positive/negative ion mode) are needed to attain global metabolomic
coverage when using LC-MS since ion responses are highly variable and
dependent on the physicochemical properties of different classes of metabolites.*

An alternative to GC/LC-MS is capillary electrophoresis-mass
spectrometry (CE-MS). CE is a highly efficient microseparation technique ideal
for polar metabolite analyses that requires minimal off-line sample preparation,
small sample volumes and short total analysis times when using low cost aqueous
buffer systems and open tubular fused silica capillaries. Recently, Willams et al.
conducted an inter-laboratory comparison of the performance of GC-MS versus
CE-MS for the analysis amino acids from Medicago truncatula root cell
extracts.”® The authors reported several distinct advantages of CE-MS relative to
GC-MS for amino acid profiling from plant extracts, which included less complex
sample pretreatment steps and faster total analysis times that resulted in about a
three-fold higher throughput for analysis. In addition, CE-MS provided similar
reproducibility and lower cost per sample since no chemical reagents, expensive

consumables and chromatographic columns are needed.
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To date, there is no single analytical platform amenable for comprehensive
metabolomic analysis, which has prompted some research groups to integrate data
generated across multiple yet complementary platforms, such as LC-MS and
NMR.*  Recently, Zamboni et al. reported a cross-platform investigation for
quantitative metabolomics by comparing the performance between GC-MS, LC-
MS, and CE-MS using 91 metabolite standards of primary metabolism and Eg
labeled yeast extracts.>* The authors criteria for comparing the performance of
the three different analytical platforms were based on the extent of metabolite
coverage, time required for sample preparation as well as overall reproducibility.
Based on these criteria, LC-MS was concluded as the preferred platform due to its
convenient sample pretreatment protocol and robustness of methodology.
Although LC-MS and CE-MS were comparable with respect to the total number
of metabolites resolved and detected, Zamboni et al. reported that the robustness
for anionic metabolite analysis by CE-MS was poor relative to LC-MS when

adopting the method introduced by Soga et. al>*

which requires a complicated
dynamic coating procedure to modulate the electroosmotic flow (EOF).
However, this cross-platform instrumental evaluation did not consider the long-
term cost of performing analyses, as well as recent advances in CE-MS
methodologies for the detection, identification and quantification of unknown low

abundance metabolites without complicated sample pretreatment,”” * 37 which

will constitute one of the major contributions of this thesis.
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1.3. Capillary Electrophoresis Based Separation
1.3.1. Capillary Electrophoresis
Capillary electrophoresis (CE) represents one of the most versatile

separation techniques due to its ability to generate highly efficient separations,
where selectivity can be readily tuned by modifications in the properties of the
electrolyte solution. High separation efficiency (number of theoretical plates, N >
100,000) is attributed to the physical and chemical properties of the capillary, the
high voltages applied and the unique separation mechanisms operative in CE.
The use of narrow bore fused-silica capillaries allows for the generation of the
electroosmotic flow (EOF), which minimizes the extent of solute axial diffusion
when compared to pump-driven LC formats undergoing parabolic flow due to its
unique flat profile (i.e., laminar flow). In addition, the use of fused-silica
capillaries with narrow internal diameters (= 50 pm) leads to efficient heat
dissipation that reduces the extent of Joule heating when applying high voltages
(up to 30 kV) due to its high surface area to volume ratio. These features have
allowed for the development of an array of CE separation modes to resolve
diverse classes of solutes within complex sample mixtures, ranging from metals to

small molecules to biopolymers and intact cells.

1.3.2. Electrokinetic Phenomena in CE

Separations in CE are dictated by two discrete electrokinetic processes,
namely the electrophoretic mobility of the solute (u.,) and the electroosmotic

mobility (u.,) of the bulk solution. x., represents the ion migration velocity under



PhD Thesis — Richard Lee McMaster University - Chemistry

15

an electric field, which is dependent on the intrinsic physiochemical properties of
a solute and its local environment. The EOF is a natural electrokinetic pumping
mechanism generated by the interaction of the capillary surface with the
electrolyte solution under an external voltage. The vector sum of both these
parameters constitutes the apparent mobility of an analyte (u, 1), which

influences its overall migration time in CE.

1.3.3. Electrophoretic Mobility (uep)
Uep 1s defined as the ion velocity (v) per unit of electric field strength (E).

Since the size of a small molecule can be approximately described as a sphere, 4.,
is dependent on the ratio of the effective charge (Q.p) to hydrodynamic radius
(Rp) of an ion, as well the viscosity of the surrounding electrolyte solution (1) at a

specific temperature, which is defined by the Hiickel equation:** *

A4 Qeﬁr

= 1
E 6-7-n-Ry M

/u ep

As indicated in eq. (1), the direction and magnitude of u., is dependent on the
effective charge density of an ion which controls the selectivity in CE. Separation
optimization is most often performed by altering the composition of the
electrolyte solution, such as buffer type, pH, ionic strength and organic solvent
content. Buffer pH is one of the most important parameters for improving
resolution as it effectively controls u,, for weakly ionic analytes, as well as the
magnitude of the EOF. Indeed, CE is particularly well suited for metabolomics

studies since the majority of metabolites are hydrophilic/polar species* that are
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intrinsically charged in aqueous solutions.*’ In addition, the selectivity of CE
separations can be extended to include neutral and enantiomeric solutes through
the use of specific additives in the electrolyte solution, such as surfactants* and
cyclodextrin macrocyles.*” *  Terabe et al first introduced micellular
electrokinetic chromatography (MEKC) as a novel separation mode in CE for the
separation of neutral analytes based on their dynamic partitioning with charged
micelles that migrate through the capillary during voltage application.*
Similarly, high-throughput sequencing of DNA can be realized by CE via the use
of dilute solutions of neutral entangled polymers that function as size-dependent
sieves to differentially retard DNA fragments during electromigration.*® Thus,
unlike conventional LC columns that require covalent binding of a stationary
phase to a solid support matrix, CE allows for unlimited ways to alter selectivity
since single or multiple additives can be used in free solution with unmodified
capillaries. Noteworthy, separations in CE are influenced by two complementary
mechanisms, namely differential electrokinetic (i.e., mobility) and
thermodynamic (i.e., equilibrium) processes unlike conventional chromatography.
Since u., is an intrinsic physicochemical parameter of a solute that can measured
with excellent precision when using commercial thermostated instruments, CE is
increasingly being used as a unique biophysical tool for studying the
thermodynamics and kinetics of biomolecular interactions, such as protein-ligand

47,48

binding.
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1.3.4. Electroosmotic Flow (EOF)

The EOF is an electrokinetically-driven bulk flow of solution that is generated
by the application of an external voltage across a narrow bore capillary. The
surface of a fused-silica capillary is comprised of weakly acidic silanol functional

groups (pK, = 6.5) when in contact with an aqueous electrolyte solution.”® The

Debye-Hiickle-Stern model describes the formation an electric double layer due to
the ionization of the capillary surface, which comprises a rigid layer of adsorbed