
ASSEMBLY REPRESENTATION

IN A FUNCTIONAL PROGRAMMING LANGUAGE

ASSEMBLY LANGUAGE

REPRESENTATION AND GRAPH

GENERATION

IN A PURE FUNCTIONAL

PROGRAMMING LANGUAGE

By

KEVIN EVERETS, B.A.So.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Applied Science
Department of Computing and Software

McMaster University

© Copyright by Kevin Everets, January 13, 2005

ii

MASTER OF SCIENCE(2004)
(Computer)

McMaster University
Hamilton, Ontario

TITLE: Assembly Language Representation and Graph Generation
in a Pure Functional Programming Language

AUTHOR:

SUPERVISOR:

Kevin Everets, B.A.Sc.(Queen's University)

Dr. Wolfram Kahl

NUMBER OF PAGES: viii, 99

Abstract

In industry many legacy systems exist which run mission or safety critical code which

do not have adequate requirements documentation. This thesis demonstrates how the

use of a functional programming language eases a flexible and modular approach to

the construction of libraries and tool suites that allow the manipulation of assembly

language programs. The tools and libraries created with this method are used in a

larger project of reverse engineering requirements from legacy assembly programs.

The modules presented operate from the assembled ".lst" format, which is the

result of assembling the source files, and includes the calculated address in memory

and the binary version of the given instructions. Our libraries provide representations

of assembly programs in an abstract data type and as internal graph representations,

and conversions to a GXL graph format and to other special-purpose XML represen

tations.

The use of Haskell as an implementation language is explored in the context of

a software engineering project, and some of the benefits and disadvantages of such a

choice are discussed.

This work was funded by Ontario Power Generation and eITO (Communications

and Information Technology Ontario).

111

Contents

Abstract

Contents

List of Figures

1 Background

1.1 Legacy SystelllS

1.2 Ontario Power Generation

1.3 IBlvl 1800

1.4 Re-Engineering Project

1.4.1 Goals.......

1.1.1.2 Tool Suite Architecture. .

2 Introduction

2.1 Overvie"w .

2.2 Representing Different i\rchitcctures

2.~5 Tc)ol Interaction

2,4 Reusability

2.5 Infol"ll1ation Flow"

3 Assembly Representation

3.1 Rf'quirernents .

3.2 Design

3.2.1 Haskell.

3.2.2 GXL ..

IV

iii

iv

vii

1

1

2

4

5

5

6

8

8

9

9

10

11

12

12

13

14

16

CONTENTS

3.3 Irnpletnentation . .

3.3.1 Lst

;).3.2 Instruction.

3.4 Current Users ...

3.4.1 Ontario PO\\Ter Generation

3.4.2 c1'ro Project lvlernbers

4 Control Flow Aspects

4.1 Control Flo\v (;raph Generation Tools

4.1.1 NextIA

4.2 Graph Analysis "1'ools .

4.3 Visualization

4.4 Exarnple of Control Flnw Graph G·eneration

5 Other Tools

5.1 Statistics.

5.2 Subgl'aph

5.3 Early Function Identification.

5.4 Other Contributions

5.4.1 IB?vIl130.org

5.4.2 Infrastructure

6 Conclusion & Outlook

A Lst2Gxl

A.1 GxlGraph

/\.2 Lst2Gxl

B Lst2Xml

E.l Xlnl1800

B.2 Lst2Xnll

C General Gxl rrools

C.l GxIStats...

C.2 GxlSubGraph . .

v

17
17
21

31

31

31

33

33

37

42

42

43

47

47
48
48
50

51

52

53

55

56

63

68

68
71

73

73

77

vi

C.3 GxlToDot

D WASH - Password Changing

E Other Useful Functions (MyPrelude)

Bibliography

CONTENTS

83

90

94

98

List of Figures

1.1 OverviE'\v of Iteverse Engineering Projecr. 7

4.1 An exarnple of source code which uses the BSI instruction 36

4.2 Use of BSI instruction with two paralneters 36

4.3 Pipeline to generate visualization of Control Flow Graph 43

4.4 A. scunple of IBNI 1800 Assembly 44

4.5 A saInple of IBNI 1800 LST file j generated fr0111 the asselnbly . 45

4.6 A sarnple £r01n the GXL resulting from processing the LST file. 45

4.7 A sarnple of Dot, generated fr0111 the GXL 46

,1.8 A sarnple of IB1.!f 1800 LST file, generated frorn the assernbly. . 46

5.1 An cxalnple run of the GxlStats prograrn . . . 48

5.2 A graph frotn 'which a subgraph will be taken 49

5.3 A subgraph 50

5.4 Singlf' Entry Single Exit region with a node perspective 51

A.I Overview of Lst2Gxl, and its 1nodule dependencies

vii

55

viii LIST OF FIGURES

Chapter 1

Background

First, some background on the work is provided. This includes information on the

reverse engineering project which this work was created for, and the context in which

the project is operating. The changing role of legacy systems in industry is described,

as well as the particular instance of legacy systems at Ontario Power Generation, and

their needs for the work provided herein.

1.1 Legacy Systems

Several industries have computer systems which were conceived and implemented

many years ago. These systems are often running safety and/or mission critical

software which was written in a variety of assembly languages. This software was

written not with clarity, but with efficiency as the main goal, as computer time was

vastly more expensive than programmer time. As such, these programs were written

to take full advantage of the architecture of the legacy hardware systems they were

written for, and often had to work around the constraints of such architectures. This

makes for some convoluted code.

Over time documentation procedures and formats are changed and documenta

tion systems are replaced. These changes result in the documentation for legacy

systems and software becoming misplaced or destroyed. When the documentation is

for software which is not safety critical, less care is exhibited in both the creation and

the maintenance of the documentation as time goes on. The people who designed

1

2 1. Background

and wrote the software may be unavailable (working elsewhere, retired, or deceased).

Ultimately, companies can and do find themselves running legacy software for which

they no longer have (or occasionally never had) the original requirements or design

documents, and no personnel who could recreate them. As the hardware ages, it

becomes impossible or infeasible to replace failed components and so alternatives are

sought, such as emulating the hardware with newer more maintainable machines, or

possibly reimplementing the systems on current hardware.

Without proper requirements and design documentation, the temporary fix of

emulating the older hardware is frequently the first attempted. It is often easier

to validate the emulators than to determine the requirements which the software

itself must meet. This fix is rarely sufficient in the long run, however, as occasional

maintenance is still required on the software to conform to changes in its environment.

Any changes to the software become expensive and hazardous.

These systems have worked well for many years, and might continue to work well

for some time into the future, but it would be a very precarious position to depend

upon them in their current state. Industries, as a result, find themselves in a difficult

situation of having very old, difficult to maintain, poorly documented systems which

they are very reliant upon, and which they would like to re-engineer to create more

modern, maintainable systems.

1.2 Ontario Power Generation

One such industry is the nuclear industry. Ontario Power Generation (OPG) has

software which was originally written 30 years ago which is still in use today, 20 years

after the original developers have left. Some of this software was not safety critical,

and so it was either not rigorously documented during its design and implementation,

or its documentation has been difficult to locate and collate.

Additionally, patches were necessary to the code during its lifetime to deal with

changes in plant structure or the surrounding system. Some of these patches had

to work within extremely confined resources, and as such the source has become a

tangle of layers of patches which must be unwoven to gain full comprehension of the

implications of any modification. This leaves a system where making changes is a

dangerous and potentially very expensive process. Though it is good that extreme

1. Background 3

care is taken when updating the running system, it is unfortunate that such care is

critical and fear of failure is so high.

OPG is trying to rectify this situation by rigorously examining each piece of

software to determine the original requirements, with the view towards a reimple

mentation where the best current Software Engineering principles are applied to

generate functionally correct, robust, maintainable software which will continue to

operate without fail for another 30 years. To this end, they are funding (along with

CITO - Communications and Information Technology Ontario) a project of reverse

engineering of software requirements from assembly code at McMaster University.

The work presented in this thesis is part of that project.

Currently, there are two main machine types used which the Re-Engineering

project is examining the source code for: the IBM 1800 and the Varian V75. We

(the Reverse Engineering project group described in Section 1.4) were initially given

the Boiler Pressure Control code, which is one module of a larger piece of software

that runs on the IBM 1800. Later we were given what is thought to be all of the

assembly source listings for the complete piece of software, though there remain issues

in accurately determining which source files are used to generate a binary image as

there are two machines (DCC 1 and DCC 2) with four subunits (UNITS 1-4) and

each of these subunits runs a slightly different image than the rest. An attempt has

been made to generate a complete view of the code for one unit (DCCI Unit 1), and

more information relating to requirements could potentially be gleaned by compar

ing the slight differences between the different images for the different machines and

subunits.

OPG is no longer using actual IBM 1800 machines and is instead using emulators

as a stop-gap measure as mentioned earlier. This has allowed them to avoid issues

with maintaining very old computer hardware, at the cost of validating the emulator

as an accurate representation of the behaviour of an IBM 1800 machine. They still

have all of the software maintenance issues which make changing the code in any

way a costly procedure. Therefore it is hoped that the Re-Engineering efforts will

allow them to easily recover the requirements of their systems and thus be able to

re-implement them on modern systems and move away from the constraints of the

IBM 1800 and Varian V75 systems.

4 1. Background

1.3 IBM 1800

The IBM 1800 Data Acquisition and Control System was introduced in 1965 (AKO~J]

and is a variant of the IBM 1130 Computing System utilized for process con

trol [A f\Jl:J]. The IBM 1800 extended the IBM 1130 with additional instructions

and extra I/O capabilities. The benefit of using the 1800 is that it was designed for

real-time process input/output (both analog and digital). It was also relatively small

compared to other computers at the time (being about the size of a large wardrobe).

The instruction set for the IBM 1800 is what we would consider RISC, having

31 separate opcodes. These operate using 8 registers, mainly manipulating only the

program counter or Instruction Register (I), the Accumulator (A) and Accumulator

Extension (Q) registers. The I, A, and Q registers are all 16-bits in width. Ad

ditionally, there are three Index Registers which can be used to store pointers or

other information which will be combined with addresses given in the instructions to

generate an "Effective Address" .

The instructions themselves are one of two lengths, either a 16-bit short instruc

tion, or a 32-bit long instruction (specified by the Format bit at bit position 6 in both

formats). Due to the small register space, most operations operate on the memory

space directly (where both instructions and data exist simultaneously - there is no

separation between them which means that instructions can be, and are, manipulated

as though they were data).

Assembly programs are written to adhere to a strict format with well-defined

column number ranges for each field, as initial programs were written on punched

cards or forms. There are optional labels (up to 5 characters wide, starting with an

alphabetical character), opcodes are written using a 1-4 character mnemonic, and

the format of the instruction (short, long, indirect, or other) is specified in a single

character field. The tag field is used to indicate whether the address given in the

operand is to be added to, stored in, or loaded from the value of one of the three

index registers. There's also an "operand & comment" field (which allows operands to

be expressed up to the first white space, potentially including commas for delimiting

different parameters, and the rest is considered an inline comment). Block comments

are also allowed, denoted by a "*,, character in the first position of the label field.

In addition to the standard opcodes, the assembler includes some directives such as

1. Background 5

ABS to specify absolute addressing, DC for entering raw data into a memory location,

EQU for defining mnemonics for particular values to be used in the assembly, ORG

to denote where in memory the following instructions should be located, and even a

small macro language (which was not used in the OPG code), among others.

The assembly program is assembled into either a binary image which would be

loaded directly into the machine, or an assembly listing (LST) file. The LST file is very

similar to the original assembly file, but it includes the address which the assembler

has determined will hold the given instruction, as well as the object (hexadecimal)

representation of the instruction or data (given as either four or eight nibbles to

represent the 16 or 32 bit instructions, respectively). The LST also includes the line

number (ST.NO.) in the original assembly program where the instruction or data

was entered, and an indication (REL) of which 16-bit words use relative or absolute

addressing when being loaded into memory. It is this LST file which is manipulated

by the tools to generate control flow graphs and provide alternate representations of

the assembly programs. Initially the LST files were generated using an open source

assembler for the IBMl130 (with the additional instructions for the IBM1800 added).

Later OPG provided the LST files which they use, which was in a similar format but

generated by their own assembler.

1.4 Re-Engineering Project

The tools and libraries presented in this paper were required for a project of Reverse

Engineering at McMaster. The following is a brief overview of the projects goals, and

the Tool Suite which is being created to satisfy those goals.

1.4.1 Goals

The goal of the CITO project at McMaster, Reverse Engineering High-Level Require

ments from Assembly Code, "is to to create methods and tools to assist a developer in

reverse engineering a legacy assembly language program to a high level requirements

specification that is independent of arbitrary design decisions (but still captures the

rationales of those decisions in terms of non-functional requirements)." [CI:\h.-~-U.Lt]

The idea is to take the existing assembly language programs from industry (source

6 1. Background

with comments, when available), and while using as minimal human interaction as

possible, generate a Requirements Document which can then be used to Re-Engineer

the software for modern systems while meeting the same requirements as the original.

There have been previous efforts to deal with this situation by taking the legacy

code and translating it into a higher level language, such as C or languages designed

specifically for this task. These efforts tend to produce code which, though more

portable than the original, is not much more maintainable than the original. Deter

mining which requirements are part of the problem domain and which are due to the

chosen architecture is also not often considered with this method.

The project at McMaster is instead generating tools in a comprehensive tool suite

to aid in obtaining the higher level requirements.

1.4.2 Tool Suite Architecture

The Reverse Engineering project is generating both a Tool Suite and a Procedure

which will be used in its efforts to generate Requirements Documentation from the

(possibly annotated) assembly source code. Figure 1.1 (adapted from [CI{l(n'nU,J-hD

gives an overview of the interaction between the tools in the tool suite, where arrows

are "used by" relations.

The work presented in this thesis fits in the highlighted boxes at the bottom and

bottom-right portions of the graph, that is the "Assembly Representation Library &

Emulators" and "Graph Generation Tools & Library". This work is thus used by the

other main tools in order to generate Semantic Analysis, Graph Analysis, Function

ality Analysis & Design Recovery, Timing Analysis, and ultimately the Requirements

Validation & Verification (V&V) Tools.

The Assembly Representation Library allows tools to be created which can read in

one of several different representations of the assembly language programs. Emulators

have already been created using this library.

The Graph Generation Tools & Library creates the Control Flow Graph represen

tation of the assembly language program. It is used for visualization of the operation

of the code, as well as manipulation of the resulting graphs in order to perform ex

tended data mining and information retrieval from the patterns therein.

1. Background

Requirements V&V Tools
(Scenario Analysis, Testing, etc.)

Semantic Analysis Tools

Semantic Analysis Library

Requirements Repository

7

Figure 1.1: Overview of Reverse Engineering Project

Chapter 2

Introduction

Contained in this chapter is an overview of the thesis, as well as some of the main

goals of the tools and libraries presented (and how well those goals were achieved).

Haskell was used extensively to meet these goals, and the reason for such is described

in Section 3.2.1.

2.1 Overview

First, the goals which guided the generation of the tools and libraries used in the Re

verse Engineering project are presented. The success of these goals is discussed within

each section. Following that, the details of the assembly language representation are

shown from the given requirements, through some design and the implementation

(which is shown in its entirety as a literate program).

Once the assembly language representation is established, its use in the generation

of control flow graphs is explained. The tools which are used to generate and visualize

these graphs is also given as literate programs. An example is shown of the results of

the code on some assembly code.

Next, some of the auxiliary programs manipulating and interpreting the graph

which were created to aid in the reverse-engineering project are described. Addi

tionally, other contributions which were made during the creation of these tools and

libraries are described.

8

2. Introduction

2.2 Representing Different Architectures

9

When generating the initial modules of the Assembly Representation Libraries, a

main goal was to allow different architectures to be represented so that with minimal

changes the tools could be altered to perform their function on the assembly code for

those architectures. The architectures would have differing instruction sets, numbers

of registers, sizes and types of memory, and timing mechanisms.

Allowing for the representation of different architectures would thus allow the reuse

of the same code for Re-Engineering of IBM 1800 assembly, Varian V75 Assembly in

the near term (as those are the two architectures that OPG is most concerned with),

as well as MIPS and other architectures that are in more general use.

The use of a pure, lazy functional programming language is a novel means of

attaining this goal. The facilities available in such a language were explored and

utilized in an effective manner to modularize and abstract the code base in such a

way that changes to the internal structures were isolated and localized. The functions

operating on these structures and their associated access functions continue to work

without modification even though there were substantial changes required within a

few modules to support new architectures. The result of this work was that the code

was able to be ported to the Varian V75 architecture in relatively little time.

In retrospect, the goal of architecture independence was not fully attained as the

changes necessary to support the V75 were more invasive than originally thought,

and the source code that needed to be altered was spread across several modules. In

the future it would be advantageous to more fully isolate the platform specific code

wherever possible. As time did not permit the re-factoring of the code, this work was

not performed as part of this project.

2.3 Tool Interaction

Another main goal was to create tools which would work well together and with out

side tools. As there are several pre-existing Re-engineering tools, it was decided to

provide intermediate representations which would allow those tools to be leveraged

where possible. Many of these tools use a graph format called GXL [11.\ \"SOO] (an

acronym for Graph eXchange Language), which is discussed more thoroughly in Sec-

10 2. Introduction

tion :3.2.2. GXL is an XML sub-language, and it was hoped that the GXL would be

able to be used directly by the XML database work of Mark Pavlidis. Unfortunately,

the database chosen made working with GXL directly costly in terms of loading time,

so a new XML format was designed specifically for that purpose. A conversion pro

gram was then created to convert from the GXL representation to the new XML

format. This was eased by the conceptual clarity of the previous GXL format.

For internal representations of the assembly, a model of the machine and a data

type representation of the code and the control flow was generated in Haskell (the

discussion of the selection of Haskell is discussed in Section :3.2.1). This allowed other

in-house generated tools such as the emulators and GXL validation tools to share

internal representations and speed development.

The speed and accuracy with which additional tools were created is a testament to

the ability of a pure functional programming language to aid Software Engineering.

Using functions as a primary object (instead of the more traditional behaviour of

treating functions as ancillary to a data object) and following the small number of

guidelines created to develop tools allowed for new tools to be quickly developed and

interact well with each other.

2.4 Reusability

Reusability of representations and code was a primary concern in the creation of the

Graph Generation Tools and Assembly Representation Library. The use of Haskell

as a language for generating the representations and tools has allowed for other tools

to be quickly generated reusing the same functions in many cases, or overriding those

that need to be modified for a particular use. As an example, the code to read the LST

file and create initial control flow is used both by the emulators and the control flow

graph visualization programs, and the code to read and write GXL representations is

used by many of the tools to interact with each other. The reuse of existing modules

to provide quick and accurate development of succinct programs is demonstrated

through the creation of several such tools.

Generating interfaces such that these libraries could be used with other program

ming languages, though possible, has not yet been explored. Doing so would increase

the utility of the libraries and extend their reach.

2. Introduction

2.5 Information Flow

11

When representing the code and generating graphs from the code, a goal was to retain

as much information as possible (such that, for example, the entire LST file can be

reconstructed from the XML representations), and to provide as much additional

information as possible at the early stages with the view that unnecessary information

would later be filtered.

An example of this strategy in action is that the control flow generation results

in more paths than will actually be possible with the code due to the semantics of

the interaction of the instructions. Rather than attempt to detect and remove the

infeasible paths during the generation of the control flow, the extra paths are left in

place and it is then up to the operator (potentially assisted with additional tools) to

cull the extraneous flow. Tools have been created to aid in this process using the web

interface to the XML database to select and store human-decided infeasible paths,

and a tool to filter those edges from the given GXL representation before it is passed

on to other tools (such as the Symbolic Emulator).

Chapter 3

Assembly Representation

For the CITO project, there were the following utilities produced: a library of data

structures and functions to operate on assembly LST files and perform some initial

analysis on them, a library of data structures and functions to operate on GXL files,

command line tools to perform those operations and conversions between formats in

an automated way, and infrastructure to easily combine those tools into a coherent

package and allow for visualization of the results.

The following sections will discuss the requirements, design, and current users of

the libraries and tools.

3.1 Requirements

From the Requirements for Reverse Engineering Tools (Rev 0) [(~I\:l(+o.'la), the As

sembly Representation Library and Tools needed to provide:

• representations of assembly languages and machine languages,

• representations of assembly and machine programs,

• representations of machine models.

The representations were to be derived from the available documentation, and

all information had to be represented in a form that allowed easy inspection and

validation.

12

3. Assembly Representation 13

Emulators were to be used to evaluate code segments for the purpose of testing

and answering specific questions about the system's behaviour.

3.2 Design

It was decided to follow in the Unix tradition of creating many small tools that each

perform one function well and that can interact through pipes between programs

while using shared formats. This allows a person to tie different tools together in

order to meet their needs. In this way, tools were created which would read in a

given representation of an assembly language program and convert it into one of a

few common formats for manipulation. GXL was chosen as the primary common

format, for reasons outlined in Section :3.2.2.

Once in the GXL format, the graphs could be manipulated (by having subgraphs

taken from them, or portions highlighted or removed, or transformations performed

to aggregate pieces into a more abstract view of the graph, all performed by individual

programs on the GXL file). Once any desired manipulations had been performed, the

GXL files could then be converted to formats more suitable for visualization. A tool

for GXL to DOT conversion was thus created which would allow for such visualization

(as described in Section 4.3).

It was found that a unique XML schema would assist the development of the

XML database as a repository for the assembly code (thus allowing the operator to

manipulate the code and its structure using a web browser as the main interface). As

a result, an additional tool was created which reused the parsing and graph manipu

lation code of the original Lst2Gxl program combined with a module describing the

new datatype, to form a new Lst2Xml program.

Each of these tools needed to be able to read the Lst file, or read or write the

GXL. It was thus desirable to create common libraries for interactions with those

representation. Now when any tool is required to work with the representations it

can be created quickly using these libraries.

14 3. Assembly Representation

3.2.1 Haskell

Haskell was chosen as the implementation language for the representation and ma

nipulation of the IBM 1800 assembly code. Haskell is a pure functional programming

language that is suitable for general purpose use. There are freely available compilers

for almost any modern computer and operating system (the compiler used in this

project, the Glasgow Haskell Compiler, either generates C code as an intermediate

step, or on some architectures can generate native code directly).

One of the best features of Haskell is its great support for the creation and ma

nipulation of abstract data types. Initially the Lst2Gxl program was created without

using very much abstraction of the Gxl format. Upon consultation with Dr. Kahl and

Dr. Carrette, a new abstraction layer was placed on top of the Gxl representations

to generate a new abstract data type combined with generation, manipulation, and

access functions. Using this new abstract data type and associated functions resulted

in the Lst2Gxl program shrinking significantly in size while increasing the clarity and

improving execution times.

Pattern matching is a useful tool for function creation in Haskell. When used

judiciously, it allows for succinct representation of the alternate possible inputs (and

the functions which must be performed upon them). Over use of pattern matching

can, however, lead to very verbose and difficult to comprehend code compared to a

smaller, well formulated function.

With the strong typing of Haskell, typing problems are resolved at compile time.

This allows any type related problems to be caught and resolved quickly, without the

mess of stepping through code to determine what has gone wrong. Once the types of

the data and functions are determined, the construction of those functions becomes

much more straightforward and there is less chance for error. Though the programs

which are compiled thus tend to be error free, when an error does occur it can be

much more difficult to solve as it is generally the result of a misunderstanding in the

programmer about the nature of the problem.

As Haskell is a pure functional programming language, programs written in it are

described primarily by function composition. This turns out to be a very powerful and

expressive technique. Each operation on a set of data can be described by a succinct

function, and these functions can then be combined to create larger functions that

3. Assembly Representation 15

can thus perform quite complex operations, on the data. Functions are considered as

"first class citizens" and thus can be (and often are) passed as parameters to other

functions. Doing so allows one to create, for example, the generic "filter" function

that takes as its arguments a function which (given an element of a list) returns

a Boolean value, and a list of such elements. It will then apply whatever function

is given to each element of the list and return a new list which contain only those

elements for which the given function returned the value True. This allows one to

create arbitrary filters by creating specific functions to be applied. The result of this

method of software creation is that it lends itself to the natural modularization of

programs. Each function is itself a composition of other functions, and so there exists

a hierarchy whereby each piece can be examined in isolation as well as in the context of

the pieces which use it. Creating large monolithic functions is more difficult in Haskell

than creating several small functions and tying them together. It thus rewards the

software developer who prefers structured development to quick hacking.

Lazy evaluation is provided by Haskell. Performing evaluations in a lazy fashion

allows the generation and use of infinite types. For example, an infinite list of a

particular value is generated by creating function which returns a list concatenating

together the value and the result of evaluating the function. Thus, the infinite list of

the value "I" is represented by "ones = l:ones". Other functions can take this list

as a parameter, and operate upon it consuming only as many ones as necessary (as

the function itself will operate in a lazy fashion, it only needs to evaluate the ones

function enough to satisfy its own needs).

Literate Programming, as introduced by Knuth [I\:nn84] , is a methodology

whereby the documentation of the program and the program itself are combined

into a single document. Haskell has native support for the creation of Literate Pro

grams by combining Haskell programs with :0-1EX. The result is a single document

that describes the program as well as contains it, and can thus be compiled into

either a executable program, or interpreted as a Haskell program by an appropriate

interpreter, or typeset directly into a format for publication or distribution. This en

courages the programmer to document their code clearly and keep the documentation

in conformance with the implementation.

Difficulties did occur while using Haskell to manipulate large quantities of data.

Given all of the data available to graph, the stack size could quickly run out if the

16 3. Assembly Representation

functions manipulating them were not carefully written. The garbage collection facili

ties are often good, but in the case where a couple of operations were being performed

on each piece in a large set of data, it was sometimes difficult to keep the memory

usage reasonable. As a result, good performance (in terms of both memory utiliza

tion as well as execution speed) can be difficult to achieve if one writes naive function

implementations.

3.2.2 GXL

GXL [H\YSOO) is an acronym for Graph eXchange Language. It is a language which

was created to be a standard exchange format for graphs (based on GraX [EK\VOO],
TA, and the graph portions of the PROGRES graph rewriting systems, with ideas

taken from RSF, RPA and others [\YinOl)). GXL is an XML sub-language, and is

thus easy to manipulate and parse using standard text-based and XML specific tools.

The choice to use GXL was due to many factors. Though there are a plethora

of choices for formats of graph representation, one was required that wQuld allow

us to express as formally as possible the semantics of the graphs which were being

represented, and to be able to verify that transformations upon those graphs had

been performed in a safe, coherent manner. The work of formalization of GXL had

already begun by Dr. Kahl and Ms. Wu [\\,°nOJ). Additionally, a format which would

be human-readable was thought to have been very beneficial.

Among the benefits of GXL, one of the most pertinent is that there currently

exists re-engineering tools which utilize GXL for graph exchange. It is hoped that

some of those tools will prove useful in the Reverse Engineering project. As such, the

GXL generated by these tools must be valid and tested with a variety of other GXL

based tools.

GXL also allows flexibility in terms of the kinds of graphs it can represent. It

is possible to represent Control Flow Graphs and Data Flow Graphs using different

views of the graphs (as described in [\\~lln~l)).

3. Assembly Representation

3.3 Implementation

17

Given in this section is the core of the libraries used for the representation of the

Assembly Language Programs and the methods by which the control flow graphs

are generated. First, the representation of the LST file format and how it is parsed

is presented. Following that, the representation of the Instruction Architecture of

the IBM 1800 computer is given, with associated functions for accessing, translating,

and manipulating those instructions. Finally, the NextIA module is given where

the control flow is determined from the instructions, both in a purely static method

(whereby each instruction will be associated with the possible target destinations on

an instruction-by-instruction basis), as well as some dynamic interpretation (using the

properties of some of the instructions to determine their effect on other instructions,

given the control flow graph as a whole).

3.3.1 Lst

Ls t is the module which deals with interacting with a LST file directly. It relies on

the Instruction module (described in Section 3.3.2) to represent and manipulate

Instructions, the MyPreLude module (described in Section E) for text manipula

tion functions that are useful but not included in the standard Haskell Prelude, and

the Numeric module (provided by ghc) for functions to read and show hexadecimal

numbers.

module Lst where

import Instruction (Instruction, Address, Object, IndAdd,

binaryTolnstruction)

import MyPreLude (padString, substr, showsH, dropSuffixes,

dropPrefix, rights, readDec', readHex')

import Numeric (readHex, showHex)

A LST file contains three different types of lines: headers (usually page head

ers that are repeated at regular intervals), block comments (used to describe dif

ferent sections within the assembly source), and Instruction lines. Instruction

lines are the most interesting, so we create a datatype to describe that LstLine.

18 3. Assembly Representation

It will have an Address, a Re l field which describes whether the instruction ad

dress and displacement are relative or absolute, a binary version of the instruction,

an StNo (instruction/data line number in the 1st file), the interpreted version of the

Instruction (which we create), a label (possibly empty), an OpCode, an instruction

format (short or long), a Tag (used for index register references), an operand, and an

in-line Commen t.

A Lst internally is a list of these LstLines, and is thus defined as such. An

additional data type, Ls tFi l e, is created which has a name (that being the name of

the source file), as well as a list of entries which are either of type String (in the case

of a header or block comment), or a LstLine (in the case of a valid instruction line).

data LstLine = LstLine

{ add :: Address

, IRel :: String

, bin :: Object

IStno Int

, instr :: Instruction

, ILabel :: String

, IOpCode :: String

IFormat :: Char

, ITag :: Char

, IOperands :: String

, IComment :: String
}

type Lst = [LstLineJ

data LstFile = LstFile

{ lstname String

lstlines [Either String LstLineJ
}

Conditional operators were created to give the edges of the Gxl graphs an attribute

conditions which will be used by other programs to easily determine on what condition

the edges will be taken.

data CondOp = Eq I Lt I Gr I Tr I Fl deriving (Eq)

3. Assembly Representation

instance Show CondOp where

show Eq = It=="

show Lt = "<"

show Gr = 11>11

show Tr = II True It

show FL = "False ll

19

op

floc =

tloe =

f =

With the basic datatypes set, we now create a function to parse an instruction

line from the list. Each instruction line contains the address of memory in which the

instruction will be placed (as the first hex number readable on the line, after the first

superfluous character), then two characters which describe the relative addressing of

the instruction, then the actual Instruction (or data) in hex form. This instruction

will be no longer than 8 characters, has spaces which need removing, and is in hex.

So we use the readHex function (which returns a list containing a tuple of the value

of the hex digit read and a string representing the rest of the given string after the

hex digit). After grabbing these two pieces of information, we convert the binary

form of the Instruction to an internal representation of the Instruction, for later

processing. Similar processing is done for reading in the rest of the line.

We also set up a nice way to display a LstLine which mimics the way the line

was read in, by creating an instance of the Show class for LstLine.

parseLstLine :: String ~ LstLine

parseLstLine s

= LstLine a r bi stno (binaryTolnstruetion bi) Ibl op f t oprs e

where a = (readHex' . drop 1) s

r = (take 2 . drop 6) s

bi = CreadHex' . filter C* ' ') . take 8 . drop 9) s

stno = readDee' $ substr s 20 4

Ibl = takeWhile C* ' ') $ substr s 28 5

takeWhile (, . flip elem II \r") $ substr s 34 4

substr s 39 1

substr s 40 1

if (length floc > 0) then head floc else ' ,

20 3. Assembly Representation

t = if (length tloe > 0) then head tloe else ' ,

oprs = takeWhile (* ' ') $ substr s 42 11

e = substr s 53 40

instance Show LstLine where

showsPree n = showsLstLine

showsLstLine I

= (flip (++) (show i)

padString 20 ' ,

. showsH a

. (' ':) . showHex b)

where a = add I

b = bin I

i = instr I

Next, a function is created to determine whether a particular memory address was

intended to be used as an instruction or as data (though in reality it could be used

as either or both). It is necessary to do this determination at the Lst level, instead

of at the Instruction level, as it is only in the Ls t that we can determine what the

author intended that address to be used for. All data lines are read in as Ls t lines.

isData :: LstLine ~ BaaL

isData I = IOpCode 1 'elem' ["DC", "BSS", "DEC", "DECS"]

Now the functions are created which actually read in the Lst file. To do so, we

need to be able to identify lines that are comments, and handle them separately.

Comments are lines that don't start with a valid hex number in both the address

position (starting at byte 1, continuing for 5 bytes) and the object position (starting

at byte 9, and continuing for 8 bytes). The isCommentLine function identifies such

lines.

isCommentLine :: String ~ Baal

isCommentLine s = length (readHex addrString) * 1

3. Assembly Representation

V length (readHex objString) *1

where addrString = substr s 1 5

objString = substr s 9 8

21

So, we create a function which takes a String (the contents of a file) and returns

the list of Lst lines (represented internally as a variable of type Lst). To do that, we

turn the String read in from the file into a list of lines, remove the comments using

our isCommentLine function, then parse those lines into Lst lines.

parseLst :: String ~ Lst

parseLst = map parseLstLine . filter (, . isCommentLine) . lines

For those times when the comments are required as well, we can generate a

LstFi le which contains the module name and the list of comments and instructions

intermingled (a list of Ei ther the string or the instruction representing the line). We

can convert this LstFi le data type to a Lst datatype by taking just the LstLines

(not the lstname), and then returning all of the right field (where the comments

would be on the left of the Ei ther and the instructions themselves are on the right

of the Ei ther).

parseLstWithComments :: String ~ String ~ LstFile

parseLstWithComments modulename 1st

= LstFile n (map (Ax ~ if (isCommentLine x)

then Left x

else Right (parseLstLine x)) (lines 1st))

where n = dropSuffixes $ dropPrefix $ modu1ename

lstFileToLst :: LstFile ~ Lst

lstFileToLst = rights . lst1ines

3.3.2 Instruction

Now we describe the Instruction set of the IBM1800, and how it is interpreted.

module Instruction

where

22 3. Assembly Representation

To describe the instruction set, we need to make use of the operations and types

found in Bits (for bitwise operations for signed and unsigned ints), and the generic

In t functions and types.

import Bits (shiftR, shiftL, (.&.), testBit)

import Char (toUpper)

import Data.Word (Word8, Word16, Word32)

import Int (IntB)
import Numeric (showHex)

import MyPre~ude (padString)

An instruction for the IBM1800 can have one of two formats: Short (a 16-bit

instruction that contains the Operation, Tag, and Displacement), and Long (a

32-bit instruction that additionally contains the ability to do indirect addressing,

conditions, and information about branching out during an interrupt).

These can be seen as:

Short:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OP IDIIFI T I D1SP
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

D 5th Bit

F Format (0 = One-Word, 1 = Two-Word)

T = Tag (00: EA = 1 + Disp

01: EA XR1 + Disp

02: EA = XR2 + Disp

03: EA = XR3 + Disp)

Long:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

OP IDIFI T 111BI COND
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ADDRESS

3. Assembly Representation

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I = Indirect Addressing (0 = Direct, 1 Indirect)

B = Branch Out (0 = BSC, 1 = BOSC)

COND = Condition flags interrogated on a BSC or BSI instruction

F 1, IA = 0:

T = 00: EA = Address

T 01: EA Address + XR1

T 02: EA Address + XR2

T = 03: EA = Address + XR3

F = 1, IA = 1:

T 00: EA = Contents (Address)

T 01: EA Contents (Address + XR1)

T = 02: EA Contents (Address + XR2)

T = 03: EA = Contents (Address + XR3)

23

As the instruction has two main formats (a short or a long instruction), a new data

structure is made called Instruction which can be either a Short or a Long, with

record fields to contain the different information available in each type of instruction.

For the Long format of the instruction a redundant field, dspl was added which

includes the last 8 bits of the first word of the instruction. It is thus composed of the

indAdd, brOut and cond fields. For MDX instruction, it is used as the displacement

for the Long format instructions.

data Instruction = Short { op Op
dbit · . Bit

tag · . Tag

disp · . Disp
}

I Long { op .. Op
dbit Bit

tag Tag

indAdd IndAdd

24

}

brOut

cond

dspl

address ..

3. Assembly Representation

BrOut

Cond

Disp

Address

Now, we break down each piece of the Instruction, and give its type and mean

ing. First is the Op code, which tells us what type of instruction it is. The Op code is

normally five bits but the fifth bit is often used to select between two very similar op

erations (e.g., a single load vs a double load, or a "branch and skip" vs a "branch and

store instruction"). Because of this, we can combine these operations into categories.

data Op = LD -- Ld = Load Accum, Ldd = Double Load

I ST -- STO = Store Accumulator, Std = Double Store

I LSX -- Ldx = Load Index, Stx = Store Index

I SLS -- Sts = Store Status, LSs = Load Status

I ADD -- A = Add, Ad = Double Add

I SUB -- S = Subtract, Sd = Double Subtract

I MD -- M = Multiply, D = Divide

I AR -- And = Logical And, Or = Logical Or

I EOR -- Logical Exclusive Or

I SFT -- Sla = Shift Left Logical A,

-- SIt = Shift Left Logical A and Q,

-- SIca = Shift Left and Count A,

-- SIc = Shift Left and Count A and Q,

-- Sra = Shift Right Logical A,

-- Srt = Shift Right Logical A and Q

-- Rte = Rotate Right A and Qsearch bar google

BRANCH -- Bsc = Branch or Skip on Condition,

-- Bosc = Branch out of Interrupts (similar to Bsc)

-- Bsi = Branch and Store Instruction Register

MDX -- Modify Index and Skip

WAIT -- Wait

CMP -- Cmp = Compare, Dcm = Double Compare

3. Assembly Representation

XIO -- Execute I/O

BAD -- An invalid Op code

deriving (Show, Eq)

25

Next is the Tag, for which we create a new data type to specify which of the four

possible index registers (1, 2, 3, or none) are used in the instruction.

data Tag = I I XRO I XR1 I XR2 I XR3 -- Index Tag specifying base register

-- (XRO is used for a base

-- register whose value is

-- always zero)

deriving (Show,Eq)

The Displacement is an 8 bit signed 2's complement integer. It usually only exists

in the short instruction (though it can also be used by the long version of the MDX

instruction), and is most often added to the current program counter (I) to determine

branch vectors or loading offsets.

type Disp = IntB

There are a couple of different flags used. In the instruction itself, there is one for

indirect addressing (indAdd and one for interpreting a BSC instruction as a "branch

out" (BOSC) while in an interrupt routine. All of these are interpreted as True if they

have a bit value of 1 and FaLse if they have a bit value of o.

type IndAdd = Bit

type BrOut = Bit

The condition bits are present in the Long instruction, and are most often used to

modify branches. They, along with the IndAdd and BrOut flags, are also sometimes

used by the MDX instruction as an additional Disp field. This would be added to the

Address also present in the long instruction. The Address is a 16 bit word. The

object representing the full instruction is a 32 bit word.

type Cond = WordS

type Address = Word16

type Object = Word32

26 3. Assembly Representation

Here we define the Bi t type that is used to define some of the bit fields of the

instruction which is used instead of Boolean values as it is sometimes inconvenient

to think of Bi ts in terms of Bo 0 leans.

data Bit = Zero lOne deriving Eq

instance Show Bit where

show Zero = "0"

show One = "1"

boolToBit :: Bool ~ Bit

boolToBit True = One

boolToBit False = Zero

A mapping is now created from the upper four bits of the opcode to the instruc

tions. The Op code values are taken from the "IBM 1800 Functional Characteristics"

manual. Using the upper four bits allowed for easier grouping of the function of the

Op codes.

opCodelnstruction = [(OxCOOO, LD)

, (OxDOOO, ST)

, (Ox6000, LSX)

, (Ox2000, SLS)

,(Ox8000, ADD)

, (Ox9000, SUB)

,(OxAOOO, MD)

,(OxEOOO, AR)
, (OxFOOO, EOR)

, (Oxl000, SFT)

,(Ox4000, BRANGlO
, (Ox7000, MDX)

, (Ox3000, WAIT)

, (OxBOOO , GMP)

, (OxOOOO, XIO)

, (Ox5000, BAD)
]

3. Assembly Representation 27

Now, a function is created which will take a 16-bit word (a Short instruction, or

the upper 16-bits of a Long instruction), and return the operation which that instruc

tion represents. It does this by creating a list of values from the opCodelnstruction

list where the upper four bits of the word match. If there are more than one, the first

is returned. If there are no matches, a BAD (invalid) Op code is returned.

getOp Word16 -+ Op

getOp bs I length opList > 0 = head opList

I otherwise = BAD

where opList = [y I (x,y) E opCodelnstruction, (= 0) x]

o = bs .&. OxFOOO

To display the Instructions in a convenient manner, an instance of the Show class is

defined for the datatype Instruction. This allows us to say simply" show instruction" ,

and a String representation of the instruction will be created.

instance Show Instruction where

show (Short op db t d)

= (padString 5 ' , (map toUpper (show op)) ++) .

(show db ++) .

(show t ++) .

(" II ++) $

show d

show (Long op db t i bo c dp add)

= (padString 5 ' , (map toUpper (show op)) ++) .

(show db ++) .

((if i =Zero then "L" else "1") ++) .

(show t ++) .

(" II ++) .

(show bo ++) . (" II ++) .

(showHex add 1111 ++) $

show c

To get the 5th bit (getD) and the Format bit (getF), we just test the the bit

position of the appropriate word (upper or only) in the instruction.

28

getF .. Word16 ~ Bool

getF bs = testBit bs (15-5)

getD .. Word16 ~ Bool

getD bs = testBit bs (15-4)

3. Assembly Representation

To get the Tag, we take the instruction, 'AND' off the relavent two bits, shift the

result into place, and convert it to a Tag datatype. If a value other than 0, 1, 2, or

3 is found, an exception is thrown as this should never happen. Here for the value

0, we return either a register XRO whose value is always zero or I depending on the

Format bit. If it is a short instruction we have to add the instruction address (I)

with the displacement (Disp). If instead it is a long instruction, (that is, the format

bit is One) then we have to add nothing (XRO) to the address given in the instruction.

getTag :: Word16 ~ Tag

getTag bs = case (fromlntegral $ shiftR (bs .&. Ox0300) 8) of

OxO ~ if getF bs then XRO else I

Ox1 ~ XR1
Ox2 ~ XR2
Ox3 -+ XR3
_~ error "getTag"

We perform a similar operation for obtaining the displacement and the conditions,

except that we need not shift for the displacement as the Disp is the lower 8 bits.

getDisp Word16 -+ Disp

getDisp bs = fromlntegral $ bs .&. OxOOFF

getCond .. Word16 ~ Cond

getCond bs = fromlntegral $ shiftR (bs .&. OxOO3C) 2

These functions are used to determine whether a given instruction is a long or a

short format instruction, as well as to obtain the indirect bit and branch out bit.

3. Assembly Representation

isLong :: Instruction ~ Bool

isLong (Short) = False

isLong (Long _ _ _ _ _ _ _ _) = True

islnd .. Word16 ~ IndAdd

islnd bs = if testBit bs (15-8) then One else Zero

isBO Word16 ~ BrOut

isBO bs = if testBit bs (15-9) then One else Zero

29

We need to be able to take either a 16-bit value (in the case of a short instruc

tion) or a 32-bit value (in the case of a long instruction) and convert it into a valid

Instruction (if such a conversion exists). To do so, we define two functions, one of

which generates an Instruction from a 16-bit word for the Short format, and the

other from two 16-bit words for the Long format.

shortBinaryTolnstruction :: Word16 ~ Instruction

shortBinaryTolnstruction bs

= Short (getOp bs) (boolToBit (getD bs)) (getTag bs) (getDisp bs)

longBinaryTolnstruction :: Word16 ~ Word16 ~ Instruction

longBinaryTolnstruction u 1

= Long (getOp u) (boolToBit (getD u)) (getTag u)

(islnd u) (isBO u) (getCond u) (getDisp u) 1

When reading from a LST file a 32-bit word is is read in. If the instruction rep

resented by the 32-bit value is a short instruction, the upper 16 bits will be zero. In

that case, we can generate an Instruction by calling shortBinaryTolnstruction

with just the lower bits to generate a short Instruction. Otherwise, we call

longBinaryTolnstruction with both the upper and lower bits to generate a long

Instruction.

binaryTolnstruction Object ~ Instruction

binaryTolnstruction i

30 3. Assembly Representation

I i ~ OxFFFF = shortBinaryTolnstruction (lower i)

I otherwise = longBinaryTolnstruction (upper i) (lower i)

where upper = fromlntegral . (flip shiftR 16)

lower = fromlntegral

If we are given two 16 bit words (instead of a single 32 bit object), and need

to interpret them as an instruction, we can look at the F bit of the first word to

determine if it is a short or a long instruction. If the Fbit is one, then we can create a

long instruction from both words. Otherwise we create a short instruction from only

the first word.

wordsTolnstruction Word16 -+ Word16 -+ Instruction

wordsTolnstruction wi w2 getF wi = longBinaryTolnstruction w1 w2

otherwise = shortBinaryTolnstruction w1

Now, the reverse operation may need to be performed (given an instruction, gen

erate an object to represent it).

instructionToBinary Instruction -+ Object

instructionToBinary i

isLong i

= (shiftL (fromlntegral (opBits

.&. dBit

.&. tagBits

.&. iBit

.&. bBit

.&. cBits))

16)

.&. fromlntegral (address i)

otherwise = fromlntegral (opBits

.&. dBit

.&. tagBits

.&. fromlntegral (disp i))

where opBits = head [x I (x,y) E opCodelnstruction

3. Assembly Representation

, (== (op i)) y]

dBit = if (dbit i == One) ~hen Ox0800 else 0

tagBits = case tag i of

XR1 -+ OxOl00

XR2 -+ Ox0200

XR3 -+ Ox0300

-+ 0

iBit = if (indAdd i == One) then Ox0080 else 0

bBit = if (brOut i == One) ~hen Ox0040 else 0

cBits = fromlntegral (cond i)

3.4 Current Users

31

The library and tools described in this paper are currently being used by both Ontario

Power Generation as well as by other members of the CITO project at McMaster.

3.4.1 Ontario Power Generation

After the presentation of the state of the CITO project at McMaster on April 29,

2004, Ontario Power Generation requested that preliminary binaries be given for the

Lst2Gxl and gx12dot programs. They are currently using these programs to provide

visualizations of the code to be reviewed in their own efforts to fully understand and

re-engineer the IBM1800 and Varian code.

3.4.2 CITO Project Members

There are currently four main users of the library within the CITO project. First,

Jun Wu took the initial GXL representation which was a modified version of that

generated by HaXml and the initial versions of gx12dot to create her validation,

manipulation, and visualization tools.

Second, Dai Le took the Lst2Gxl code and was successful in porting it from

IBM1800 to the Varian architecture. The results of this porting effort are also cur

rently in use at Ontario Power Generation.

32 3. Assembly Representation

Pulak Chowdhury is using the Haskell LST representation code to generate dif

ferent Emulators of the IBM1800 (both a regular execution as well as a symbolic

emulator).

Mark Pavlidis is using the Lst2Xml translator to generate an XML database of the

code. This database is then having queries executed against it for further information

retrieval and storage (such as which portions of the code are functions, and comments

about those portions).

Chapter 4

Control Flow Aspects

In this chapter, the method of generating control flow graphs for the assembly code

is provided. The functions created for interpreting the assembly instructions and

determining the list of possible next instructions are discussed, along with the graph

analysis and visualization tools. A small example of using those tools is then given.

4.1 Control Flow Graph Generation Tools

Control Flow Graph Generation is performed by the Lst2Gxl program, which reads in

an assembly LST file, and converts that to an internal representation of a control flow

graph, then into a GXL representation of that graph. This is performed by evaluating

each instruction from the LST file, and determining the possible next instructions that

could be executed based on the instruction type and the operands of that instruction.

Currently this is done in a mostly-static fashion.

By mostly-static, what is meant is during the first pass, each instruction is exam

ined as given and for non-branching instructions flow is created to the next instruction

(the current instruction's address plus 1 in the case of a short instruction, or plus 2 in

the case of a long instruction). For branching instructions, there are additional flows

created based on the possible offsets due to the type of instruction (a normal branch

will either go to the next instruction, or to some offset, and a compare instruction will

go to one of the next three instructions). Indirect branches are marked as such at this

point (as there is insufficient information during the first pass to determine potential

33

34 4. Control Flow Aspects

next instruction addresses). The first pass gives a view of the control flow from the

perspective of each instruction in memory remaining as it was first listed, and in

isolation from the others. Later passes attempt to fill in more information (probable

control flow of indirect branches as a result of subroutine calls or indirect subroutine

calls) by examining each instruction in the context of other instructions in the previ

ously generated control flow. The limits to this method are that self-modifying code

is not accurately represented (as instructions will be changing as they are executed),

there is too much flow generated due to the way that many instructions will interact

(some branches will never happen due to the code that precedes and/or follows it),

and so there will often be more flow in some cases and less flow in others. In order

to represent these changes, a dynamic interpretation of the state of the code must be

taken to determine potential new control flow.

When completing the first pass interpretation of the assembly code, the list of

possible next instructions was generated by using the IBM 1130/1800 Assembler

Manual [TB\HifHl], the IBM 1800 Functional Characteristics manual [1l3:"1G[ih], and

the IBM 1130 emulator provided by ibml130.org. This list of next instructions was

then combined into an XML format that mimicked as closely as possible the result

of using Ontario Power Generations tools to find next instruction candidates. Those

were then compared with the generated output, and it was found that they matched

very closely, with the exception of three instructions.

In OPG's analysis code, the Nap instruction was not considered, so control flow

would break at that point, when in reality control flow would continue on and state

would otherwise not be altered by the instruction. The indirect version of the BSI

instruction would generate control flow to the address containing the data which

was to be used as a destination address, when in fact it should have created flow

to the address stored in that data address. Finally, the indirect version of the BSC

instruction would give a distance to between the current address and address 12

(which was the result of perl's interpretation of the "c" which was used to indicate

that it was not a final destination, but the contents of that field were to be used).

Other than these three differences, the output matched OPG's XML perfectly,

indicating that both their interpretation and our interpretations of the provided doc

umentation (over the provided code) matched.

After ensuring that our initial interpretation of the static code was correct, it

4. Control Flow Aspects 35

was found to be feasible to perform some further analysis to attempt to find a more

complete interpretation of the possible code paths. This was performed by evaluating

the BSI (Branch and Store Instruction Register) instruction. When evaluating each

line individually, one could previously only say that the next instruction executed

after an indirect branch would be based on the content of some memory location.

However, by understanding how the BSI instruction worked, and having access to

previous control flow, it was now possible to complete some of these branches.

The BSI instruction is used as a "CALL/RETURN" mechanism. It stands for

"Branch and Store Instruction". It works by storing the current value of the Instruc

tion register in the memory address that is referenced as the Effective Address of the

BSI instruction (the resulting destination). The instruction that immediately follows

that memory address is then executed.

For example, in Figure 4.1, after starting at STRT (Address 0100), a couple of

addresses to tables are loaded into the index registers 1 and 2, then a function call

is made to FUN2 (from address 0102 to address 0200). At 0200 there is a value of a
entered at load time, which is then overwritten when the BSI instruction is executed

with the value 0103 (the next address after the BSI call in 0102). The first instruction

that is executed in the called function FUN2 is the Load in address 0201, which adds

an offset (12) to the address stored in Index Register 1 (the address of Table 1)

and loads the value in that address. The result is then multiplied by 5, and then a

return is made by doing a normal indirect branch (BSC I) to the address stored in

FUN2 (Address 0200, containing the value 0103). The next instruction executed is a

subtraction of 3 from the value in the accumulator, and the program continues from

there. In that way, any time a multiple of five with the value from the 12th offset is

desired from the table indexed by Index Register 1, a simple "BSI FUN2" will do so

and return to continue execution.

In cases where more data must be passed to the function, the data for the param

eters will normally be entered into the memory addresses immediately following the

BSI call, as in Figure 4.2. In this case, function FUN3 is called with two parameters,

with values of 3 and 1. The address stored in memory location 0400 is thus going

to be the address of the first parameter. This is loaded, then the return address is

incremented by 1 using the MDX instruction, so that it contains the address of the

second parameter. The second parameter is then added to the first, and the return

36

ADDR
0100
0101
0102
0103

4. Control Flow Aspects

LABEL OPCD FT OPERANDS COMMENTS
STRT LDX Ll TBLl LOAD TABLE 1 ADDR INTO INDEX 1

LDX L2 TBL2 LOAD TABLE 2 ADDR INTO INDEX 2
BSI FUN2 CALL FUNCTION FUN2
S 3 SUBTRACT 3

0200 FUN2 DC
0201 LD
0202 M
0203 BSC

o
1 12

5
I FUN2

PLACEHOLDER FOR RETURN ADDRESS
LOAD VALUE 12 FROM TABLE 1
MULTIPLY BY 5
RETURN TO CALLING FUNCTION

Figure 4.1: An example of source code which uses the BSI instruction

address is incremented once again so it now points to the instruction immediately fol

lowing the parameters, which is the multiply instruction that will be executed upon

the return from the function call.

ADDR LABEL OPCD FT OPERANDS COMMENTS
0300 BSI FUN3 CALL FUNCTION FUN3
0301 DC 3 FIRST PARAMETER VALUE 3
0302 DC 1 SECOND PARAMETER VALUE 1
0304 M 7 ON RETURN MULTIPLY BY 7

0400
0401
0402
0403
0404
0405

FUN3 DC
LD I
MDX L
A I
MDX L
BSC I

o
FUN3
FUN3,1
FUN3
FUN3,1
FUN3

TO STORE RETURN ADDRESS
LOAD PARAMETER 1
INCREASE RETURN ADDRESS BY 1
ADD SECOND PARAMETER
INCREASE RETURN ADDRESS BY 1
RETURN TO JUST AFTER DATA

Figure 4.2: Use of BSI instruction with two parameters

When creating a control flow graph, previously there would be only the the flow

into the function down to the return using the "BSC I" instruction. This is because a

pure static analysis means that we do not have the information necessary to determine

what is in that memory address. However, once we have generated the initial control

flow graph we do have enough information to go through the graph and generate a

4. Control Flow Aspects 37

list of potential return edges (barring any modification of the return address, which

we can also check for).

To do this, we go through the entire graph looking for indirect edges, and for each

one we find, we look for all of the BSI instructions that reference the same memory

location. New edges are then generated to point to the next instruction immediately

following each BSI instruction. In this way we can complete most of the function

calls in the control flow graph.

4.1.1 NextIA

Here we define a module which generates the list of next possible instructions to

execute when given a list of instructions, thus creating the elements used to make a

Control Flow Graph.

module NextIA vhere

import Instruction

import Lst

import Numeric (showHex)

import Data.List (nub)

import MyPrelude (showsH, limit, fst3, thrd3)

Now we create a datatype to contain a relation between instructions, that being

which instruction(s) may be executed following a given instruction. This is repre

sented by a triple which contains the "From" address, the "To" address, and a set of

flags to describe whether that execution path is part of a subroutine call (a Bsi), is

a long instruction that is being executed, or is the result of an indirect reference.

A list of these tuples is brought together in the NextList data type.

type Next = (Address, Address, Flags)

type NextList = [Next]

data Flags = Flags

{bsi:: Bool

, long :: Bool

, indirect :: Bool

38

, condition :: CondOp

} deriving (Eq,Show)

4. Control Flow Aspects

The nextIA function uses an Address and an instruction (which is stored at

that address), and returns a list of possible addresses that could be executed next

(and whether or not those are indirect addresses). If the instruction is not a branch

(and not bad), then just return either address + 1 (if it is a short instruction), or

address + 2 (if it is a long instruction).

This code does not currently handle branches that are partially indexed by Tag

(ie, index registers). For now they are ignored as they are not used in the code from

OPG.

nextIA .. LstLine ~ [(Address,BooL,CondOp)]

nextIA 1

Cop i =BAD) V isData 1 = []

(op i =BRANCH A dbit i-One)

= if long

then if (cond i * 0)
then [(address i,ind,Tr),(curr+2,FaLse,FL)]

else [(address i,ind,Tr)]

else [(curr+l,FaLse,FL),(curr+2,FaLse,Tr)]

(op i =BRANCH A dbit i =Zero)

:::;; if long

then if (cand i * 0)
then [(curr+2,FaLse,FL),(1+address i,ind,Tr)]

else [((if ind then 0 else 1) + address i, ind,Tr)]

else [(2 + curr + (fromIntegral . disp) i, FaLse,Tr)]

I op i =MDX = if long

then if tag i =XRO
then [(curr+2,FaLse,FL),(curr+3,FaLse,Tr)]

else [(curr+2,FaLse,FL)]

else if tag i = I

then [(curr + (fromlntegral . disp) i + 1,

FaLse, Tr)]

4. Control Flow Aspects

else [(curr + 1, FaLse,Fl),

(curr + 2, False,Tr)]

op i-WAIT = []

op i - CMP = [(curr+l, Fatse,Gr)

, (curr+2, False,Lt)

,(curr+3, FaLse,Eq)

]

I otherwise = if long

then [(curr+2,False,Tr)]

else [(curr+l,False,Tr)]

vhere i = instr 1

curr = add 1

long = isLong i

ind = if (long A ,(indAdd i) - One)

then True

else False

39

Next we convert each line from the Lst file into a list of possible Next ad

dresses. This is done by calling the nextIA function given, pulling apart the

(Address, IndAdd, CondOp) tuples, and putting them back together but this time

with the current address at the beginning of each tuple, and flags on the end. This

results in a list of (Address, Address, FLags) tuples, where the first address is

where we came froID, and the second address is where we're going to.

lstLineToNextList :: LstLine ~ NextList

lstLineToNextList 1 = zip3 as nexts flags

vhere (nexts, inds, conds) = (unzip3 . nextIA) 1

as = (add l):as

flags = zipWith (Flags bsi long) inds conds

bsi = «(=BRANC1D . op . instr) 1)

A «(= Zero) . dbit . instr) 1)

long = (isLong . instr) 1

Now, the stuff that is less certain: how to deal with branches that may (or may

not) return, etc.

40 4. Control Flow Aspects

First, generate the initial NextList, then go through that to find additional po

tential edges.

generateNextList :: Lst ~ NextList

generateNextList = concatMap lstLineToNextList

The additional NextList is going to be that which gives us the additional assumed

edges. We can get these by filling in the return branches of subprocedure calls. The

reason we can do this is that the Bsi instruction works in such a way that we can

determine with a good deal of certainty all of the possible return branches. So, to get

this list we take the initial NextList, then find all of the indirect edges in that list

and find the Bs i instructions that would leave the current Program Counter in the

destination of that Next tuple.

additionalNextList NextList ~ NextList

additionalNextList [] = []
additionalNextList nextList

= concat $ [findBsi n nextList n E nextList, islnd n]

where islnd = indirect . thrd3

To actually find the Bsi instructions that we're looking for, we plough through the

graph of preceding next lists looking for Bsi instructions with a target of the location

that is the Next in our indirect Next + 1 (as it will be executing the instruction just

after the return location). We collect all of these into a list of Next tuples with the

source of our original Next tuple's destination, and a destination of the Bsi instruction

+1 (if it was a short instruction) or +2 (if it was a long instruction). This lands just

after the Bsi instruction in either case, to complete the return.

findBsi :: Next ~ NextList ~ NextList

findBsi n@(curr,next,_) ns = [(curr

, pc+(if long pf then 2 else 1)

,(FLags FaLse FaLse FaLse FL))

I (pc,pn,pf) E ns

, bsi pf

, (, . indirect) pf

4. Control Flow Aspects

]

pn - next + 1

41

To actually do our search, we take a NextList (which we'll search through), and

the node that we're searching from. We then return the list of all nodes that preceded

that node, then the list of all nodes that preceded those ones, and so on, and nub away

the duplicates at each step. We know we're done when we try to get more preceding

nodes, and we don't find any (we've found the limit where another application of the

function returns the value we started with).

breadthFirst NextList ~ Next ~ NextList

breadthFirst ns n = limit step start

where start = en]

step xs = nub (xs ++ concat [precNexts n ns I n E xs])

The precNexts are the list of Next tuples that have as their destination the source

of the given Next tuple.

precNexts :: Next ~ NextList ~ NextList

precNexts (c,_,_) ns = [n I n@(x,y,_) Ens, y =c]

Now we can remove the indirect links for which we have filled in the return.

removelndirect :: NextList ~ NextList ~ NextList

removelndirect orig addit = [0 0 E orig

, (, . islnd) 0

V (, • inAddit addit) 0]

where islnd = indirect . thrd3

inAddit as (from,_,_) = from 'elem' map fst3 as

Next is the function which can be used to add the necessary links for indirect

Bsi instructions for which we can make a pretty good guess at its final destination.

We take the full Lst (with data as well as instructions), and a given NextList. We

then return that NextLis t, concatenated with a list of filled in edges which are the

result of going through the given NextList and looking at all of the Bsi instructions

42 4. Control Flow Aspects

that are Indirect, and for which we have found at least one Data statement that is

referenced by the Bsi. If we have found such a Data instruction, then we generate

a new Next tuple with the source of the Bsi instruction, and a destination of that

Da t a instruction + 1 (as the return value will be stored in that Da t a instruction and

the following instruction executed).

fillIndirectBSI :: Lst ~ NextList ~ NextList

fillIndirectBSI Is ns

= ns ++ [(nc,1+head (indData Is nn),(Flags False False False Fl))

I (nc,nn,nf) Ens, bsi nf, indirect nf, foundData Is nn]

where indData Is a = [fromlntegral (bin 1) lIE Is, add 1 =a]

foundData Is a = length (indData Is a) > 0

4.2 Graph Analysis Tools

Once a control flow graph has been generated, some analysis can be done upon it

to gather useful information. To that end, tools were created which would allow the

gathering of statistics on the graphs, the generation of subgraphs (to more easily

manipulate smaller subsections of the entire graph), and perform some functions

relating to the early identification of candidates for functions.

4.3 Visualization

As we were able to generate control flow graphs in an abstract way, and there was

a preexisting tool to take a textual representation of a graph and convert it to a

graphical representation (performing the layout of nodes and edges, labelling, and

storing in various graphical formats), it seemed natural to tie these pieces together.

For that purpose, the gxl2dot program was created which took the GXL output from

the graph generation tools and generated a dot file which is used by the program "dot"

in the graphviz [G 1\:.:\02] package. There was an existing gxl2dot program included

with graphviz, but it had poor support for GXL (none of the examples given by the

GXL authors worked) and would experience a Segmentation Fault when dealing with

a graph it did not understand.

4. Control Flow Aspects 43

To remedy this, our own version of gxl2dot was created in Haskell, which allowed

us to reuse the GXL representation previously created, and simply translate from this

format to the Dot format (using a library created by Dr. Kahl). This then allowed us

to do special markup of the GXL to enhance visualization (adding features such as

displaying only pertinent attributes, colourising edges and nodes based on arbitrary

functions operating on those elements, and other possibilities not yet fully explored).

A Makefile was then created which would allow a user to simply call, for instance,

"make BPC-poster.ps", which would execute the pipeline of calling Lst2Gxl on the

BPC.lst and storing the resulting GXL as BPC.gxl, then calling gxl2dot to read in

the GXL file and store the result as BPC.dot, then calling dot to generate a postscript

file, following that, calling "poster" to scale and split the postscript up into pages

suitable for printing and recombining to form a poster. Finally, a graphical postscript

viewer would be called to display the poster on the screen (and allow for printing).

The time to perform all of these operations was approximately 2 minutes for the

Boiler Pressure Control code, with the pipeline running on an Athlon XP 2600+ with

1 GiB of RAM. The bulk of the processing time is spent by dot performing the layout

of the graph, with the LST to GXL interpretation taking on the order of 3 seconds.

4.4 Example of Control Flow Graph Generation

IASM H LST H GXL H DOT H PS I

Figure 4.3: Pipeline to generate visualization of Control Flow Graph

In Figure 4.3 the pipeline of formats through which data is transferred to go from

the base Assembly (ASM) format to the final PostScript (PS) format.

The sequence of instructions starts as an Assembly file (including comments, as

shown in Figure 4.4), and is then transformed into a LST file by the IBM 1800

44 4. Control Flow Aspects

*ASM SMALL REV01-1106 REVOl DATE 04-04-21 SMALL
ABS

COREA EQU /3400 START CORE ADDRESS
ORG COREA-l
LDX 3 0 SET COEF TABLE INDEX ZERO
CMP 1 28 IS U(L) MORE THAN 0.1
MDX OPT3 YES
NOP NO
MDX LSDV USE ZERO FOR INDEX

OPT3 CMP 1 30 U(L) MORE THAN 0.8
MDX OPT4 YES
NOP NO
LDX 3 4
MDX LSDV

OPT4 CMP 1 32 U(L) MORE THAN 0.9
MDX 3 4 YES, REQUIRE 12 FOR INDEX
NOP
MDX 3 8 NO, USE 8 FOR INDEX

LSDV LD 1 21
END EQU * THIS DC REQUIRED TO FORCE
* OBJECT OUTPUT

END END

Figure 4.4: A sample of IBM 1800 Assembly

assembler (which takes the source and translates each instruction and data line into

its equivalent hexadecimal representation, as well as its ultimate location in memory,

as shown in Figure 4.5).

The LST file is then translated by Lst2Gxl to a Graph eXchange Language (GXL)

representation which is generated by examining each instruction and determining the

possible next instructions which will be executed after the current instruction. This

forms a graph of possible control flow paths. The GXL representation if the code

sample is given in Figure 4.6.

The GXL graph is then translated into the dot language (as specified by the

graphviz dot documentation). Labelling of nodes and edges, and colourization is

done during this step, with hints placed in the GXL graph. The result of this can be

seen in Figure 4.7.

4. Control Flow Aspects 45

33ff 6300 6 LDX 3 0 SET COEF TABLE INDEX ZERO
3400 blle 7 CMP 1 28 IS U(L) MORE THAN 0.1
3401 7002 8 MDX OPT3 YES
3402 1000 9 NOP NO
3403 7009 10 MDX LSDV USE ZERO FOR INDEX
3404 bl1e 11 OPT3 CMP 1 30 U(L) MORE THAN 0.8
3405 7003 12 MDX OPT4 YES
3406 1000 13 NOP NO
3407 6304 14 LDX 3 4
3408 7004 15 MDX LSDV
3409 b120 16 OPT4 CMP 1 32 U(L) MORE THAN 0.9
340a 7304 17 MOX 3 4 YES, REQUIRE 12 FOR INDEX
340b 1000 18 NOP
340e 7308 19 MOX 3 8 NO, USE 8 FOR INDEX
340d el15 20 LSDV LD 1 21

Figure 4.5: A sample of IBM 1800 LST file, generated from the assembly

<gxl><graph id="CodeSequenee" >
<node id="e33ffll><attr name="opeode"><string>LDX</string></attr></node>
<edge from=l e33ff" to=l e3400"/>
<node id=" e3400"><attr name="opeode"><string>CMP</string></attr></node>
<edge from=" e3400" to=" e3401"/>
<edge from="e3400" to=" e3402"/>
<edge from=" e3400" to=l e3403"/>

<node id=" e3404"><attr name="label"><string>OPT3</string></attr>
<attr name="opcode"><string>CMP</string></attr></node>

</graph></gxl>

Figure 4.6: A sample from the GXL resulting from processing the LST file

The DOT file is then read by the dot package to generate a postscript file, which

is then either printed or displayed on the screen. This graphical representation can

be seen in Figure 4.8.

46 4. Control Flow Aspects

digraph cCodeSequence {
c33ff [label="33ff\nopcode = LDX"] ;
c33ff -> c3400 [label=""];
c3400 [label="3400\nopcode = CMP"] ;
c3400 -> c3401 [label=""];
c3400 -> c3402 [label=""];
c3400 -> c3403 [label=""];
c3401 [label="3401\nopcode = MDX"] ;
c3401 -> c3404 [label=""];

}

Figure 4.7: A sample of Dot, generated from the GXL

Figure 4.8: A sample of IBM 1800 LST file, generated from the assembly

Chapter 5

Other Tools

While creating the tools for interpreting and visualizing the assembly code, it was

found that some additional tools would also be useful. There was a request for some

statistics about the graphs, and so a small program was created which allows the

user to quickly obtain a summary of information about the graph (numbers of nodes,

edges, length of back edges, etc). The desire to be able to obtain a subgraph was also

expressed, and so a tool was created for that purpose. Due to having existing modules

to adequately describe the datatypes involved in these programs, the generation of

the programs themselves was very straightforward and resulted in compact code that

expressed the solutions well (the statistics functions being rather self explanatory,

and the subgraph functions reading as they were expressed mathematically and thus

easing verification).

5.1 Statistics

The GxlStats program (given in Appendix C.1) reads in a GXL file and generates

some statistics for that graph. Currently the list of statistics generated are: Number

of nodes, number of start nodes (those having no edges leading into them), number

of end nodes (those having no edges leaving them), number of backedges (where the

address of the current node is greater than the address of the next node), and the

average length of backedges (that is, how far on average a jump back in the code is

from the current instruction).

47

48

An example run of the GxlStats program is given in Figure 5.1.

\$ GxlStats bpc.gxl
Reading from bpc.gxl
Computing Statistics
Number of nodes: 1046
Number of start nodes: 60
Number of end nodes: 48
Number of back edges: 114
Average length of back edges: -2055.9736

5. Other Tools

Figure 5.1: An example run of the GxlStats program

5.2 Subgraph

The subgraph functions (Appendix C.2) take a GXL graph, a start node, and an end

node. The GXL graph is then converted to a Data.Graph (the format and use of

which is described in [l~ L95]) , and in doing so the edges leading into the start node

and out of the end node are removed. The vertices of the desired subgraph then

become the intersection of the reachable vertices from the start node in the graph,

with the reachable vertices from the end node in transpose of the graph (where each

edge is in the opposite direction from the original graph).

In this way, a graph such as that in Figure 5.2 can have the subgraph taken from

nodes 3405 to 340c to result in the subgraph in Figure 5.3.

5.3 Early Function Identification

Once we have the control flow graphs, it is useful to attempt automatic detection of

function blocks. This will aid the user of the Reverse Engineering tools in identifying

sections of the code which can be used to generate tables to describe functionality

or to generate higher level views of the code with the functions being represented by

5. Other Tools 49

Figure 5.2: A graph from which a subgraph will be taken

single blocks. These representations can be verified to be valid homomorphisms of

the code by the tools generated by Jun Wu [\\'n04].

An initial attempt at early identification of function blocks used the idea of iden

tifying Single Entry, Single Exit (SESE) regions of the code (based on the work of

Johnson et al. [JPP!H:]). The idea was to take a control flow graph with defined start

and end nodes and create from it a grouping of nodes based on each group containing

only one edge entering and one edge leaving the group. This idea can be modified to

instead consider the SESE regions based on nodes instead of edges, where the roles of

nodes and edges are reversed such that each region is denoted by its start node and

end node. This view is more natural and likely more useful when using SESE regions

in the search for functions as each function call will generate an edge to the first node

in the function, which itself might branch to several other nodes within the function.

The last node in a function will be the return node, with again many edges leaving

50

Figure 5.3: A subgraph

5. Other Tools

the return node and entering the nodes just after those calling the function. A SESE

region generated based on edges would not create a useful grouping for this function,

whereas an SESE region generated based on nodes would find the single start and

exit nodes. For instance, the graph in Figure SA is a grouping of the function from

4000 to 4004, based on a SESE region denoted by the start node 4000 and the end

node 4004, being called from 1000, 2000, and 3000 and returning to 1001, 2001, and

3001. Attempting a SESE grouping based on entry and exit edges would only allow

a small group around 4001 and 4002.

5.4 Other Contributions

Beyond the assembly representation and graph generation tools, other contributions

were made to the project relating to graph visualization and infrastructure, as well

as to outside projects such as the IBMl130.org assembler.

5. Other Tools 51

Figure 5.4: Single Entry Single Exit region with a node perspective

5.4.1 IBM1130.org

During the development of the assembly representation libraries and tools, it was quite

helpful to be able to use an emulator from a very similar machine, the IBM 1130.

There is a group of enthusiasts who maintain this emulator as well as some associated

software (Operating Systems, Disk Managers, etc.) for what appears to be nostalgia

reasons. The assembler and emulator are available from http://www . ibm1130. org.

As the IBM 1130 and the IBM 1800 were so similar, it was helpful to generate LST

files using the IBM 1130 assembler (before we had complete LST files as generated

by Ontario Power Generation), as well as observing how portions of the code would

work under their emulator. The 1130 was, however, missing a few of the instructions

that were present in the 1800. Namely, the CMP, DCM, and DECS instructions were

added. These have now been submitted back to ibml130.org for inclusion in future

releases.

52 5. Other Tools

5.4.2 Infrastructure

Additional contributions were made towards the project through source control orga

nization and build infrastructure. Within the source tree, there were a few revisions

of placement of source and binary files. These were relatively cheap to make as

we were using Subversion as opposed to CVS. As we are using Subversion, one can

move directory structures and still maintain history on the contents of the directories

automatically. Doing a similar operation in CVS would not have allowed this.

The current source organization for the tools has settled on a structure approx

imating the Filesystem Hierarchy Standard (FHS) [QH'104] with bin, man, and src

directories. Within the src directory, there is a directory for each program, as well as

a common directory which holds the source modules used by several programs.

The bin directory holds compiled binaries of the tools, and the man directory holds

man pages for each of the tools, written using the roff type-setting system so as to be

readable by the common man program found on most UNIX-like operating systems.

Other infrastructure which was contributed was the Makefile used by several com

ponents for generating binaries for the Haskell programs.

A program to change passwords was also generated using the Web Authoring

System Haskell (WASH) [ThlO:3). This allowed the generation of a small Common

Gateway Interface (CGI) program which does input verification and notification of

bad input. This CGI was placed on the server running apache and protected with the

same password file that was being modified (that used initially only for subversion

repository access). Doing so allows the program to read the username (which was

verified with a password) from the environment variable provided by Apache once it

has performed the authentication.

Chapter 6

Conclusion & Outlook

The use of a pure functional programming language has resulted in a suite of tools and

modules which are compact, succinct, and interact well with one another. The virtues

of Haskell in particular have aided in the development process in a way that other

programming paradigms would not have done. The code that has been generated is

comprehensible enough that an undergraduate student was able to, in a very limited

time, understand and port them to an additional architecture.

The appropriate use of abstraction resulted in smaller, more easily understood

code. Functional programming lends itself well to the benefits of abstraction, and the

mechanisms for both abstraction and function composition provided by Haskell are

powerful and easy to use.

The tools created interact well with each other as well as with tools developed

outside this project. They are flexible and as such, can be (and have been) improved,

modified, and portions incorporated into other tools quickly and easily.

Though the code written is in general easily understood, the nature of the terse

functions can result in convoluted and obtuse code that requires sufficient prose to

explain. Haskell's built-in use of Literate Programming gives the opportunity to

generate the documentation at the same time and in the same location as the im

plementation, but it is still the responsibility of the software designer to make use of

that facility. This capability was used in the literate code presented in Section 3.3.1,

Section 3.3.2, and others. This allowed the code produced to come close to the ideal

of "the design is the code", where the design document is itself directly executable.

53

54 6. Conclusion & Outlook

Though documented explanations of the code have been done, the clarity of the

code can also be improved by making more extended use of the abstraction capabilities

of the language. Refactoring the code to make use of more of the built-in functions

of the Prelude and libraries associated with the compiler would also result in code

which is more clear and understandable to the reader.

In summary, this work has explored the use of a pure functional programming

language in the context of a real-life Software Engineering project to create useful

data representations and tools that act upon those representations in a coherent

manner. The benefits and costs of using such a language were explored. As a result,

it is my opinion that such a language is an effective tool in good Software Engineering

practice.

Appendix A

Lst2Gxl

Lst2Gxl is an application which reads in a LST file which contains the original ASM

assembly file, plus the result of assembling (i.e., the calculated address in memory

as well as the instruction itself assembled into one or two 16-bit words). Lst2Gxl

is composed of five main modules, represented in Figure A.I. The following is a

description of each of those modules in detail.

Figure A.I: Overview of Lst2Gxl, and its module dependencies

55

56

A.I GxlGraph

A. Lst2Gxl

This is the abstraction of GXL Graphs, and access functions for those graphs.

Import & Export List

The following is the import and export list for the Gx LGraph abstraction layer.

module GrnLGraph (GxlGraph,

NodeId,

GrelNode,

GrelEdge,

GxlA ttr,

EdgePath,

NodePath,

GxlGxl,

makeGxl,

makeGraph ,

makeNodeld,

makeNode ,

makeEdge ,

makeBoolAttr,

makeStringAttr,

addNode,

addEdge,

addNodes,

addEdges,

addNodeAttrib,

addEdgeAttrib,

edgesFrom,

edgeStartNode,

edgeEndNode,

isFrom,

isTo

A. Lst2Gxl

)

vhere

import qualified Gxl

import Text.XML.HaXml.OneOfN (OneOf3(. .), OneOf10(. .))

import Text.XML.HaXml.Xml2Haskell (DefaultabLe(..))

import Char (isAlpha)

import List (find)

import MyPrelude (unEntity)

Exported Type Abstractions

57

Now, we generate the type abstractions to be exported. In this way, the programs

using this module will not know (or care) exactly what a GxlGraph or its constituent

parts are. They will only be given the functions necessary to generate and modify

these graphs.

Some of these abstractions will automatically have their instances generated for

the Equality (Eq) and Show classes. Others will have one ore both of these instances

created manually so as to provide additional control of the output or what is meant

by equality.

nevtype GxlGraph = Gx l Graph Gx t. Graph deriving (Eq, Show)

nevtype NodeId = NodeId String deriving (Eq)

nevtype GxlNode = GxlNode Gxl.Node deriving (Eq, Show)

nevtype GxlEdge = GxlEdge Gxt.Edge deriving (Eq)

nevtype GxtA ttr = GxlAttr Gxl.Attr deriving (Eq,Show)

type GxlGxt = Gxt.Gxl

type EdgePath = [GxlEdge]

type NodePath = [GxlNode]

type NER = OneOf3 Gxl.Node Gxl.Edge Gxl.Rel

58

Instances of Show

A. Lst2Gxl

Some better Show instances are now generated, so now one can do something like:

show $ makeEdge (makeNodeld "Test" "345d") CmakeNodeld "Test" "345e lt
)

and get back:

ItTest-345d -> Test-345e"

instead of the large mess that would have resulted had the derived Show instances

been used.

instance Show GxlEdge where

showsPrec _ e = (shows (edgeFrom e))

. (" -> " ++)

. (shows (edgeTo e))

instance Show Nodeld where

showsPrec _ (Nodeld s) = (s ++)

Generation Functions

The following functions are used to generate graphs, nodes, edges, and attributes.

First, a function to make a default graph with no nodes, edges, or rels. This

function will take the name of the graph (which will have a ValidldRef restriction

placed upon it) and generate an otherwise empty graph with some of the default

attributes (that edges have ids, that it is not a hypergraph, and that the edges are

directed) set.

makeGraph :: String ~ GxlGraph

makeGraph name

= Gx l Graph CGx l . Graph

(Gxl.Graph_Attrs

(mkValidldRef name)

Nothing

A. Lst2Gxl 59

(DefauLt GxL.Graph_edgeids_true)

(DefauLt Gxl.Graph_hypergraph_false)

(DefaUlt Gxl.Graph_edgemode_defaultdirected)
)

Nothing
[]
[]

)

Next are functions to generate a GxlNode using a Nodeld (which also must be

generated using the makeNodeId function), or a GxlEdge (which requires the Nodeld

of the start node and the end node).

makeNode :: Nodeld ~ GxlNode

makeNode (Nodeld nid) = GxtNode (Gxl.Node

(GxL.Node_Attrs nid)

Nothing
[]

[]

)

makeEdge :: Nodeld ~ Nodeld ~ GxtEdge

makeEdge (NodeId from) (Nodeld to) = GxLEdge (Gxt.Edge

(GxL.Edge_Attrs

Nothing

from

to

Nothing

Nothing

Nothing
)

Nothing
[]

[]

60

)

A. Lst2Gxl

The following is a function to take a graph name and a unique ID (we currently

don't check uniqueness), and from that generate a NodeId. A NodeId must be a valid

IDREF, so it must start with one of a letter, an ' _' or a ' : ' and then be followed by

zero or more letters, digits, combining characters, extenders, or elements of II • - _:"

(we currently only ensure that it begins with a letter).

makeNodeld :: String ~ String ~ NodeId

makeNodeld graphname id = NodeId (prefix ++ "_" ++ id)

where prefix = mkValidldRef graphname

Make a valid IdRef out of a string (make sure it IS prefixed by a letter, an

underscore or a colon).

mkValidldRef :: String ~ String

mkValidldRef n I length n > 0 = if (isAlpha hn V hn celemc ":_U)

then n

else ' ':n

I otherwise

where hn = head n

= " II

The following function takes a Gx LGraph and makes a full Gx L out of it (which

can then be passed to other functions which understand more about the composition

of a Gx L). The given graph is the only graph created in the Gx L.

makeGxl :: GxLGraph ~ GxlGxl

makeGxl (GxLGraph g) = GxL.Gxt CGxL.GxL_Attrs (DefauLt '"')) (g: [J)

Here are the functions which generate either a Boo lean attribute or a String at

tribute. These just contain the name and the value (in the case of string attribute, the

value has all of the <>& characters translated into their entity reference equivalents).

makeBoolAttr :: String ~ BaaL ~ GxLAttr

makeBoolAttr name value

= GxLAttr (Gxl.Attr CGxl.Attr_Attrs Nothing name Nothing)

A. Lst2Gxl

Nothing [] (TwoOfl0 (GxL.BooL (show value))))

makeStringAttr :: String ~ String ~ GxLAttr

makeStringAttr name value

= GxLAttr (GxL.Attr (GxL.Attr_Attrs Nothing name Nothing)

Nothing [] «FiveOfl0 . GxL.GxLString) v))

where v = unEntity value

Modification Functions

61

The following functions modify GxLGraphs by adding nodes and edges to them. They

also modify GxLNodes and GxLEdges by adding attributes to them.

addNode :: GxLGraph ~ GxlNode ~ GxlGraph

addNode (GxlGraph (Gxl.Graph abc ners)) (GxlNode n)

= GxlGraph (Gxl.Graph abc «OneOf3 n):ners))

addNodes :: [GxlNode] ~ GXlGraph -+ GxlGraph

addNodes nodes graph = foldl addNode graph nodes

addNodeAttrib :: GxlAttr ~ GxlNode -+ GxlNode

addNodeAttrib (GxLAttr a) (GxlNode (Gxl.Node nattr typ as graphs))

= GxlNode (Gxl.Node nattr typ (a:as) graphs)

addEdge :: GxlGraph ~ GxlEdge ~ GxlGraph

addEdge (GxlGraph (Gxl. Graph abc ners)) (GxlEdge e)

= GxlGraph (Gxt. Graph abc «TwoOf3 e) :ners))

addEdges :: [GxlEdge] ~ GxLGraph ~ GxlGraph

addEdges edges graph = foldl addEdge graph edges

addEdgeAttrib :: GxlAttr ~ GxlEdge -+ GXlEdge

addEdgeAttrib (GxlAttr a) (GxlEdge (Gxl.Edge eattr typ as graphs))

= GxlEdge (Gxl.Edge eattr typ (a:as) graphs)

62

Query Functions

A. Lst2Gxl

The following functions allow the user to make queries about the GxlGraphs that

they have. The kinds of queries that can be performed are:

• Given a graph and a node, return all edges that start at that node

• Return all of the nodes or all of the edges in a graph

• Determine if an Edge originates, or terminates at a Node

• Given a graph and an edge, return the node that is at the start or end of that

edge.

edgesFrom :: GXlGraph -+ GxlNode -+ [GxlEdge]

edgesFrom g n = [e leE edges g, e 'isFrom' n]

nodes :: GxtGraph -+ [GxlNode]

nodes (GxlGraph (Gxl.Graph ners)) = nodesFromNERS ners

edges :: GxlGraph -+ [GxlEdge]

edges (GxlGraph (Gxl.Graph ners)) = edgesFromNERS ners

edgesFromNERS :: [NER] -+ [GxlEdge]

edgesFromNERS [] = []
edgesFromNERS «TwoOj3 e):ners) = (GxlEdge e)

edgesFromNERS (_:ners) =

nodesFromNERS :: [NER] -+ [GxlNode]

nodesFromNERS [] = []
nodesFromNERS «OneOj3 n):ners) = (GxtNode n)

nodesFromNERS (_:ners) =

isFrom :: GxlEdge -+ GxlNode -+ Bool

isFrom e n = nodeld n =edgeFrom e

edgesFromNERS ners

edgesFromNERS ners

nodesFromNERS ners

nodesFromNERS ners

A. Lst2Gxl

isTo :: GxlEdge ~ GxlNode ~ Baal

isTo e n = nodeld n =edgeTo e

edgeStartNode :: GxlGraph ~ GxlEdge ~ Maybe GxlNode

edgeStartNode g e = find «=) (edgeFrom e) . nodeld) (nodes g)

edgeEndNode :: GxlGraph ~ GxlEdge ~ Maybe GxlNode

edgeEndNode g e = find «=) (edgeTo e) . nodeld) (nodes g)

63

nodeld · . GxlNode ~ Nodeld

nodeld (GxlNode (Gxl.Node att -)) = Nodeld (Gxl.nodeld att)

edgeFrom · . GxLEdge ~ Nodeld

edgeFrom (GxlEdge (Gxl.Edge att -)) = Nodeld (Gx L. edgeFrom att)

edgeTo · . GxlEdge ~ Nodeld· .
edgeTo (GxlEdge (Gxl.Edge att - - -)) = Nodeld (Gxl.edgeTo att)

A.2 Lst2Gxl

Tool to convert a Lst file to Gxl.

module Main where

import NextIA (lstLineToNextList, additionalNextList,

generateNextList, filllndirectBSI,

Next(..), NextList(..), FLags(indirect, condition))

import Lst (LstC ..), LstLine(..), LstFile(..), CondOp(..),

parseLstWithComments, isData, lstFileToLst)

import Instruction ClnstructionC ..), Op(..), isLong)

import GxlGraph

import Text.XML.HaXml.Xml2HaskeLl (fWriteXml, De!auttable(..))

import System (getArgs)

import Numeric CshowHex)

import Char CisAlpha)

import MyPrelude CshowH, replace)

64 A.L~2Grl

main:: IO ()

main = do [infile,outfile] E getArgs

lstFile E readFile infile

let gxl = lstToGxl $ parseLstWithComments infile 1stFile

fWriteXm1 outfile gxl

putStrLn "Done."

Now we convert the Lst to Gxl by converting the Lst to a single graph.

lstToGxl :: LstFile ~ GxlGxL

lstToGxl 1 = makeGxl ClstToGraph 1)

Converting a 1st to a graph file involves making a graph where the defaults are

edgeids, hypergraph, and edges are directed. Then, go through the 1st lines, convert

ing only those that are instructions (which translates to those that are not data) to

Nodes, Edges, and Rels (NERs).

lstToGraph :: LstFile ~ GxlGraph

1stToGraph 1 = (addEdges (newedges ++ edges)

. addNodes nodes

. makeGraph

) name

where name = 1stname 1

1st = lstFileToLst 1

onlylnstr = filter (, . isData) 1st

nodes = map (lstLineToNode name) onlylnstr

edges = concatMap (1stLineToEdges name 1st) onlylnstr

newedges = (nextListToEdges name

additiona1NextList

. generateNextList) 1st

Now we take the LstLine, and generate a node that will represent it. To do so, we

give the Node an id which is the calculated address of that instruction in memory. We

also add whatever attributes which can be determined by the list line and which we

deem necessary to the node by using the llToNodeAttrs function (defined below).

A. Lst2Gxl

IstLineToNode :: String ~ LstLine ~ GxlNode

IstLineToNode name 11

= (1lToNodeAttrs 11

· makeNode

· makeNodeld name

showH

· add) 11

65

The Lst line is converted to the the list of edges associated with that node by

first getting the NextList, and then converting that NextList to a list of Edges.

IstLineToEdges :: String ~ Lst ~ LstLine ~ [GxlEdge]

IstLineToEdges name 1 line = ((nextListToEdges name)

. fillIndirectBSI 1

. lstLineToNextList) line

To convert a NextList to a list of Edges, we just map the nextToEdge function

onto every Next tuple in the list.

nextListToEdges :: String ~ NextList ~ [GxlEdge]

nextListToEdges name = map (nextToEdge name)

The nextToEdge function takes a Next tuple (containing the current address, the

potential next address, and a flag to indicate whether this is a direct or an indirect

reference), and created an Edge from the current address to the next address. If this

is an indirect reference, then we create an attribute for that Edge with the name of

"indirect" and the value of "True". If this is a backedge (the next address is less than

the current address), then we add an attribute with the name of "backedge" and the

value of "True".

When generating an Edge, there's two different kinds of attributes as defined

by GXL, the predefined attributes of the edge itself (edgeId, edgeFrom, edgeTo,

edgeFromOrder, edgeToOrder, and edgeIsDirected), as well as our generated ad

ditional (generic) attributes that can be Strings, Boo ls, etc. In this case, we poten

tially add two of these Boo l attributes for" indirect" edges or "backedge" .

66

nextToEdge :: String ~ Next ~ GxlEdge

nextToEdge name (curr,next,flag)

= (addlnd . addBack . addCond) $ makeEdge

(makeNodeld name (showH curr»

(makeNodeld name (showH next»

where addlnd = if indirect flag

then (addEdgeAttrib

(makeBoolAttr II indirect" True»

else id

addBack = if next < curr

then (addEdgeAttrib

(makeBoolAttr "backedge" True»

else id

addCond = addEdgeAttrib (makeStringAttr

"condition"

(show $ condition flag)
)

A. Lst2Gxl

The current attributes we glean from the LstLine are the label, format, tag,

operands, and comments (if any of the above) that are associated with this address,

as well the opcode. We can colour the Node using the colourNode function to create

a "color" attribute.

llToNodeAttrs LstLine ~ GxlNode ~ GxlNode

IlToNodeAttrs 11 = nonEmpty "label" (lLabel 11) .

nonEmpty lI address" (showH (add 11» .

addSAttr "opcode ll (10pCode 11) .

addSAttr IIbinary" (showHex (bin 11) II") .

nonEmpty "relit (IRel 11) .

nonEmpty IIstno" (show (lStno 11» .

nonEmpty "format" ([lFormat 11]) .

nonEmpty "tag" ([lTag 11]) .

nonEmpty "operands" (lOperands 11) .

-- bsi "operands" (lOperands 11) .

A. Lst2Gxl

nonEmpty llcomment" (lComment 11) .

colourNode 11

where nonEmpty name value = (if (value == "It V value - II II)

then id

else (addSAttr name value)

67

)

addSAttr n v = addNodeAttrib (makeStringAttr n v)

bsi name value = (if (lOpCode 11 == "BSI")

then (nonEmpty lIoperandsll (lOperands 11))

else id)

To colour a node, we look at properties of that node, and if it matches our criteria,

then we assign a colour to it. Otherwise, we return an empty Attr list (meaning an

unspecified colour).

colourNode LstLine ~ GxtNode ~ GxtNode

colourNode 11 op instruction == MDX A isLong instruction

= addNodeAttrib (makeStringAttr llcolor" IIblue")

otherwise = id

vhere instruction = instr 11

Appendix B

Lst2Xml

Once the Lst2Gxl tool was completed, it was relatively straightforward to generate a

new tool to deal with the XML format required for importing into the project's XML

database. A new module, Xm11800, was created to hold the type definitions of the

XML format, and a Lst2Xml program was then written incorporating that module,

as well as the required modules shared with Lst2Gxl.

B.l Xml1800

module XmL1800 vhere

import MyPreLude(unEntity)

data LstXmL = LstXmL ModuLe

data ModuLe = ModuLe Name [Line]

type Name = String

data Line = Header String

BlockComment StNo String

AdditionaLComment StNo String String User Modified

Instruct Addr Rel Object StNo Label OpCd Format

Tag Operands Remark [From] [To]

type StNo = String

68

B. Lst2Xml

type User = String

type Modified = String

type Addr = String

type ReL = String

type Object = String

type Label = String

type OpCd = String

type Format = String

type Tag = String

type Operands = String

type Remark = String

type From = String

type To = String

instance Show LstXml where

showsPrec _ = showsLstXml

showsLstXml (LstXml m) = ("<?xml version=\"1.0\"?>\n" ++) .

(u<lst>" ++) .

showsModule m .

("</lst>" ++)

69

showsModule (Module name Is) = ("<module>\n" ++) .

showsElement "name" name· ('\n':) .

showsLines Is .

(u</module>" ++)

showsLine (Header str) = showsElement "header u str

showsLine (BlockComment stno str) = ("<blockComment>" ++) .

showsElement "stno" stno .

showsElement "string" str .

("</blockComment>" ++)

showsLine (AdditionalComment stno strl str2 u m) =
("<additionalComment>" ++) .

70

shoW'sElement Il s tno" stno .

shoW'sElement Il short" str1 .

shoW'sElement "long" str2 .

shoW'sElement "user" u .

shoW'sElement "modified ll m .

(1I</additionalComment>" ++)

shoW'sLine (Instruct a reI 0 sloe f t op r fs ts) =

("<instruction>1I ++) .

shoW'sElement "addr ll a .

shoW'sElement "rel ll reI·

shoW'sElement "object" 0 .

showsElement II s tno" s

shoW'sElement 1I1abel" 1 .

shoW'sElement lI opcd ll oc .

shoW'sElement "format ll f .

shoW'sElement "tag ll t .

shoW'sElement lIoperandsll op .

showsElement IIremark" r .

showsElements "from" fs .

showsElements "to" ts .

("</instruction>" ++)

showsLines [] = id

showsLines (1:15) = ("<line>" ++)

· shoW'sLine 1

· ("</line>\n ll ++)

· shoW'sLines Is

showsElement "" = id

showsElement name value = ('<' :) (name ++) (,>' :)

(unEntity value ++)

("<I" ++) (name ++) ('>':)

B. Lst2Xml

B. Lst2Xml

showsElements _ [] = id

showsElements n (e:es) = showsElement n e . showsElements n es

71

B.2 Lst2Xml

Tool to convert a Lst file to an Xml version of the list

module Main where

import NextIA (lstLineToNextList, additionalNextList,

generateNextList, removeIndirect,

Next(..), NextList(. .), FLags(indirect))

import Lst (Lst(. .), LstLine(. .), LstFiLe(..),

parseLstWithComments, lstFileToLst)

import XmL1800

import System (getArgs)

import Numeric (showHex)

import MyPreLude (showH,substr,readDec')

main :: IO ()

main = do [infile,outfile] E getArgs

myLstFile E readFile infile

let myLst = parseLstWithComments infile myLstFile

writeFile outfile . show . lstToXml $ myLst

putStrLn "Done."

lstToXml :: LstFiLe ~ LstXmL

lstToXml 1 = LstXml $ ModuLe (lstname 1) $ lstToLines 1

lstToLines :: LstFiLe ~ [Line]

lstToLines 1 = map (lstLineToXmlLine nextList) $ lstlines 1

where nextList = removeIndirect origNext additional ++ additional

additional = additionalNextList origNext

origNext = (generateNextList . lstFileToLst) 1

72 B. Lst2Xml

lstLineToXmlLine _ (Left comment)

isBC comment ; genBIockComment comment

I otherwise ; Header comment

where isBC s ; substr s 28 1 == "*"

genBlockComment s

; BtockComment (show $ readDec' $ substr s 20 4)

(substr s 28 100)

IstLineToXmILine nextList (Right line)

; Instruct a reI 0 sloe f t op r fs ts

where a ; (showH . add) line

reI ; IRel line

o ; (flip showHex 1111 • bin) line

s ; (show . lStno) line

I ; ILabel line

oc = IOpCode line

f ; [lFormat line]

t = [lTag line]

op = lOperands line

r = IComment line

fs = [showH x (x,y,_) E nextList, y - add line]

ts = [showH y (x,y,_) E nextList, x - add line]

Appendix C

General Gxl Tools

In this appendix, the literate Haskell source for the auxiliary GXL tools is provided.

The GxlStats and GxlSubGraph modules were mentioned in Section 4.2, and pre

sented here in detail.

C.l GxlStats

Provided here is the statistics program described in Section 5.1. This is some code

to generate a few useful statistics over a G:xl graph. It does this by first converting a

G:x l graph into an internal representation (that given by King & Launchbury [:K L05] ,

the implementation of which is given in the Data. Graph module).

module Main where

import System

import qualified Gxl

import Data.Graph

import Data.Array

import Te:xt .XML. HaXml.Xml2Haske II

import Text.XML.HaXml.OneOfN

import MyPrelude

The main thrust of the program is to read in a G:x l file (name given as an argument

on the command line), then say we're going to compute statistics, then compute the

statistics and show them.

73

74 C. General Gxl Tools

main :: 10 ()

main = do

[infile] E getArgs

putStrLn ("Reading from "++infile)

value E fReadXmI infile ;: 10 Gxt.Gxt

putStrLn ("Computing Statistics")

putStrLn $ getStats $ value

First, we need to convert the Gxt. Graph file into a Data. Graph. To do this, we

first take the Gxt. Graph apart enough to get at the Nodes, Edges, and Re ts. We

then create a Data. Graph from these, by going through and finding each Node, then

finding each Edge that goes from that node to another node. This list of edges is then

fed into the graphFromEdges graph constructing function from Data. Graph to give

us a Graph, and a conversion function that takes each vertex number, and gives us the

Gxt node that represents along with the Node1d, and the Node1ds of all subsequent

nodes in the Gx t . Graph.

type NER = OneOf3 Gxt.Node Gxt.Edge Gxt.Ret

gxlGraphToDataGraph :: Gxt. Graph

~ (Graph, Vertex ~ (Gxt.Node, String, [String]))

gxlGraphToDataGraph (Gxt.Graph gas ners)

= graphFromEdges $ nersToEdges ners ners

nersToEdges :: [NER] ~ [NER] ~ [(Gxt.Node, String, [String])]

nersToEdges all [] = []

nersToEdges all ((OneOf3 n@((Gxt.Node nas typ attrs gs))):ners)

= (n

, Gxt. nodeld nas

, nodeldsFromNode n all):nersToEdges all ners

nersToEdges all ((TwoOf3 _):ners) = nersToEdges all ners

nersToEdges all ((ThreeOf3 _):ners) = nersToEdges all ners

nodeldsFromNode Gxt.Node ~ [NER] ~ [String]

C. General Gxl Tools 75

nodeldsFromNode n ners = [edgeTo e

leE ners

, isEdge e

, edgeFromN n e]

where edgeFromN (Gxl.Node nas)

(TwoDf3 (Gxl.Edge eas))

= (Gxl.edgeFrom eas) = (Gxl.nodeld nas)

edgeTo (TwoDf3 (Gxl.Edge eas)) = Gxl.edgeTo eas

Now that we can move between Gxl. Graphs and Data. Graphs 1 we can now get

our set of statistics from the Gx l file by going through each graph in the gxl and

getting the statistics from that graph, and concat all these statistics together into

one string to output. In the normal case, there will be only a single graph in each

Gxl file.

getStats :: Gxl.Gxl ~ String

getStats (Gxl.Gxl _ gs) = concatMap getGraphStats gs

getGraphStats :: Gx l. Graph -+ String

getGraphStats g

= ((lI Number of nodes: " ++)

· ((show· length' vertices) graph ++)

(" \nNumber of start nodes: " ++)

· ((show . startNodes) graph ++)

· ("\nNumber of end nodes: " ++)

· ((show· endNodes) graph ++)

(lI\nNumber of back edges: II ++)

· ((show . length) be ++)

· (lI\nAverage length of back edges: " ++)

· ((show . avgLength) be ++)

· (lI\nBack Edges: II ++) . (unlines be ++)) U\n"

where (graph, f) = gxlGraphToDataGraph g

be = backEdges g

The functions we use to get the stats we want follow (these are currently hackish):

76

startNodes :: Graph -+ In t

startNodes g = length [x I x E indegrees, x - 0]

where indegrees = elems $ indegree g

endNodes :: Graph -+ In t

endNodes g = length [x I x E outdegrees, x - 0]

where outdegrees = elems $ outdegree g

backEdges :: GxL.Graph -+ [String]
backEdges (GxL.Graph ners)

= [Gxl.edgeFrom (eas be)
++ " _> II

c. General Gxl Tools

++ GxL.edgeTo (eas be)

I be E ners, isEdge be

, GxL.edgeTo (eas be) < GxL.edgeFrom (eas be)]

where eas (TwoOf3 (Grel.Edge attr)) = attr

avgLength

avgLength ss

[String] -+ FLoat

= average [fromlntegral (start s - end s) I s E ss]

where start s = readHex' s

end s = readHex' $ drop 8 s

Here's some functions which prove useful in the conversion

isNode .. NER -+ BooL

isNode (OneOf3 _) = True

isNode _ = False

isEdge (TwoO/3 _) = True

isEdge _ = False

Here's some old statistic functions which were used before the internal Data. Graph

representation was used. They may be easier to comprehend, but are generally much

less efficient.

c. General Gxl Tools

getNumberNodes :: [NER] ~ Int

getNumberNodes ners = length [n I n E ners, isNode n]

numberStartNodes :: [NER] ~ Int

numberStartNodes ners

= length [n n E ners, isNode n, noEdgesTo ners n]

numberEndNodes :: [NER] ~ In t

numberEndNodes ners

= length [n I n E ners, isNode n, noEdgesFrom ners n]

noEdgesTo :: [NER] ~ NER ~ Bool

noEdgesTo ners (OneOf3 node)

= length [e leE ners, isEdge e, isEdgeTo e node] - 0

where isEdgeTo (TwoOf3 (Gxl.Edge eas))

(Gxl.Node nas)

= (Gxl.edgeTo eas) =(Gxl.nodeld nas)

noEdgesFrom :: [NER] ~ NER ~ Boo l

noEdgesFrom ners (OneOf3 node)

= length [e leE ners, isEdge e, isEdgeFrom e node] - 0

where isEdgeFrom (TwoOf3 (Gxt.Edge eas))

(Gxt.Node nas)

= (Gxl.edgeFrom eas) =(Gxl.nodeld nas)

77

C.2 GxlSubGraph

Here is the program described in Section 5.2. This is a bit of code to try to grab

just a portion of a full Gx l graph. The user will give it two nodes, and if they are

indeed connected in a path then the portion of the graph between the two nodes will

be given.

module Main where

78 C. General Gxl Tools

import MyPreZude

import System(getArgs)

import Numeric

import Data.Graph

import List

import qualified GreZ

import Text. XML. HaXmZ. XmZ2Haske l Z

import Text.XML.HaXmZ.OneOjN
import ControZ.Monad.Error

The main function in this program takes four arguments: the file to read in, the

file to write to, and the start and end nodes of the subgraph that is desired. If

there is an error (usually due to bad command line arguments), then the usage of

the program is displayed. If there is is no error, then the GxZ file is read into value

by the fReadXml function of the HaXml source. The start and end values are then

interpreted, and the gxl of the subgraph of value from start to end is printed out

in the outfile file.

main:: IO ()

main = (do

[infile, outfile, start, end] E getArgs

putStrLn (IIReading from n++infile)

value E fReadXml infile :: IO GxZ.GxZ
fWriteXml outfile (gxlSubGraph value start end)

) 'catchError' usage

usage :: IOError -t IO ()

usage e = putStr $ unlines

["GxlSubGraph"
" 11

, "Usage: GxlSubGraph [input gxl] [output gxl] start end"
1111

, "For Example:"

" GxlSubGraph bpc.gxl bpc-sub.gxl 353d 38c9"

c. General Gxl Tools

, lito get the nodes between Ox353d and Ox38c9 11

]

79

So the function we want to implement takes a Gxl graph, a start vertex, and an

end vertex, and returns a Gx l. Graph that contains solely the part of the graph (if any

exists) between those two nodes. If there are edges that lead off from this subgraph,

then they are all pruned.

To do this, we first get the list of nodes that are actually in a path from start to

end, then filter out anything that doesn't have anything to do with those nodes.

type NER = OneOj3 Gxl.Node Gxl.Edge Gxl.Rel

gxlSubGraph gxl@(Gxl.Gxl gxlatt «Gxl.Graph gas gt ga ners):gs))

start

end

= Gxl.Gxl gxlatt [(Gxl.Graph gas gt ga goodNers)]

where goodNers = filter (goodNer f goodvs) ners

goodvs = if goodV dataStart A goodV dataEnd

then subGraph datagraph (v dataStart) (v dataEnd)

else []

v (Just x) = x

goodV (Just _) = True

goodV Nothing = False

dataStart = findVertex (datagraph,f) start

dataEnd = findVertex (datagraph,f) end

(datagraph, f) = gxlToDataGraph s~art end gxl

goodNer :: (Vertex -+ (Gxl. Node, String, [String]))

-+ [Vertex]

-+ NER

-+ Bool

goodNer f vs (OneOj3 node) = node 'elem' goodNodes

where goodNodes = map (fst3 . f) vs

goodNer f vs (TwoOj3 (Gxl.Edge eas))

80

= (Gxt.edgeFrom eas) Celem ' goodNodelds

A (Gxl.edgeTo eas) 'elem' goodNodelds

where goodNodelds = map (snd3 . f) vs

goodNer f vs (ThreeOj3 r) = False

C. General Gxl Tools

First, convert the first graph from a Gxl. Gxl to a Data. Graph. We pass along

the start and end nodes so that edges going to the start node and edges leading from

the end node can be severed so as to make generating a subgraph an easy operation

of finding the intersection of the vertices reachable from the start with the vertices in

the transposed graph which are reachable from the end.

We begin by converting a Gxl. Gxt to a Data. Graph. That is, we take the first

graph in a Gx l and return the result of that converted to a Data. Graph, along with

a function to go from a Vertex in the Data. Graph back to a triple of the node in the

Gxt, the node id of the vertex, and the node ids of the next vertices in the graph.

gxlToDataGraph :: String

-+ String

-+ Gxl. Gxl

-+ (Graph, Vertex -+ (Gxl.Node, String, [String]))

gxlToDataGraph s e (Gxt.Gxt _ (g:gs)) = gxlGraphToDataGraph' s e g

The gxlToDataGraph just calls gxlGraphToDataGraph once with the first graph

in the Gx l. gxlGraphToDataGraph does the actual conversion from the Gx t. Graph

to the Data. Graph by calling the graphFromEdges function from Data. Graph, with

a list of edges that we derive from the gxl in nersToEdges.

gxlGraphToDataGraph' :: String

-+ String

-+ Gxl. Graph

-+ (Graph, Vert ex

-+ (Gxl.Node, String, [String]))

gxlGraphToDataGraph' s e (Gxl. Graph gas __ ners)

= graphFromEdges $ nersToEdges s e ners

c. General Gxl Tools 81

nersToEdges is still taking the start and end node ids (represented by Strings),

along with the list of all Nodes, Edges, and Re ts, and returns a list of edges in

the format that graphFromEdges expects. That is, a list of triples of the form

(Node, NodeId, [NodeIds]) where the Node is the actual Gxt. Node, the first

NodeId is the NodeId from that Node, and the list of NodeIds are the next nodes in

the graph.

nersToEdges :: String ~ String ~ [NER]

~ [(Gxl.Node, String, [String])]

nersToEdges s e ners = nersToEdges' s e ners ners

nersToEdges actually calls nersToEdges' which does more of the heavy lifting

in the form of keeping around the whole list of NERs, as well as the ones that haven't

been processed yet. This list of unprocessed NERs is then pattern matched to find out

if it is a Node, an Edge, or a Rel. If it's a node, then the tuple is generated using the

nodeldsFromNode function, and then concatenated to the list of nersToEdges' of

the remaining NERs. If it's an Edge or aRe t, then just return the list from converting

all of the following NEBs.

nersToEdges' s e all [] = []
nersToEdges' s e all «OneOj3 n@«Gxl.Node nas typ attrs gs))):ners)

= (n, Gxt.nodeld nas, nodeldsFromNode sen all)

: nersToEdges' s e all ners

nersToEdges' s e all «TwoOj3 _):ners) = nersToEdges' s e all ners

nersToEdges' s e all «ThreeOj3 _):ners) = nersToEdges' s e all ners

nodeldsFromNode takes the start and end nodes, the Gx l. Node we're dealing

with, and the list of all NEBs to produce a list of next NodeIds. To do this, it returns

the edgeTo of an edge e, where e comes from the list of all NEBs, it is an edge, and

the edge is not going to the start node, or from the end node, hence severing the

graph so that our subgraph function will be happy. Auxiliary functions to determine

whether the edges looked at are from our node n, where the edge is going, and whether

it's going to the start, or coming from the end.

nodeldsFromNode :: String ~ String ~ Gxl.Node ~ [NER] ~ [String]

82

nodeldsFromNode start end n ners

c. General Gxl Tools

= [edgeTo e e E ners,

isEdge e,

edgeFromN n e,

(.., . toStart) e,

(.., . fromEnd) e]

where edgeFromN (GxL.Node nas)

(TwoOf3 (GxL.Edge eas))

= (GxL.edgeFrom eas) =(GxL.nodeld nas)

edgeTo e = (GxL.edgeTo . eAttr) e

toStart e = GxL.edgeTo (eAttr e) =start

fromEnd e = GXL.edgeFrom (eAttr e) =end

eAttr (TwoOf3 (GxL.Edge eas _)) = eas

isEdge (TwoOf3 _) = True

isEdge _ = FaLse

Idea of the first subgraph function, is to include all of the nodes that exist between

the start and the end, by finding all of the nodes in the graph that are reachable

from the start, and then all of the nodes that are reachable from the end (if all the

edges were flipped), and then take the intersection of those to get all of the nodes that

are inbetween. This doesn't work out well on its own, as there are many superfluous

nodes included.

So, the second subgraph function gets closer to what we want by doing a topolog

ical sort of the graph (an arrangement of the vertices into a linear sequence, [Vl ..Vn }

such that for all i, j where i < j there are no edges from Vj ----+ Vi). We then drop

everything up until the start node we are interested in, then take everything up

until the end node we are interested in. This method also includes some superfluous

nodes, but not nearly as many as in the first method.

subGraph :: Graph -+ Vertex -+ Vertex -+ [Vertex]

subGraph graph start end = (reachable graph start)
,n'

(reachable (transposeG graph) end)

c. General Gxl Tools

subGraph2 :: Graph -+ Vertex -+ Vertex -+ [Vertex]

subGraph2 graph start end
= (start:) . (end:)

$ (takeWhile (+ end) . dropWhile (+ start» vs

where vs = topSort graph

83

Given a Graph and a NodeId, find the vertex representing that Node in the Graph.

findVertex :: (Graph, Vertex -+ (Gxl.Node, String, [String]»

-+ String

-+ Maybe Vertex

findVertex (g,f) key = if length matches > 0

then Just (head matches)

else Nothing

where vs = vertices g

matches = [v I v E vs, (snd3 . f) v - key]

C.3 GxlToDot

A little gxl to dot converter so that a GXL file can be easily visualised.

This converter has been tested with almost all of the examples from the GXL web

page. They work quite well, except for the hierarchical graphs. I found out that their

visualisation of the" Complex Example" was inconsistent with the GXL. I'm curious

what tool they use to create those visualisations.

First, some preliminary stuff: name the module, import some System functions

as well as the XML specific functions to deal with the importing of the GXL file.

module Main where

import System (getArgs)

import IO

import Text.XML.HaXml.Wrappers (fix2Args)

84 C. General Gxl Tools

import Text.XML.HaXml.Xml2Haskell

import Gxl

import List

import qualified Dot

import Text.XML.HaXml.OneOfN

import Sys t em

import ControL.Monad.Error

When creating the dot file, we will keep only a few selected attributes to display

(to keep the overall graph small as including every attribute can lead to a physically

large graph).

attributesToKeep = [Illabel", "address", "opcode", "operands"]

The main function of the program is to take (possibly) two arguments: read the

first one in as a GXL file, and output the DOT to the second file.

main = (do

args E getArgs

let infile = args!!O

let outfile = args!!l

let hilight = drop 2 args

putStrLn ("Reading from "++infile)

value E fReadXml infile :: IO GxL

putStrLn ("Writing to "++outfile)

let dotGraph = gxlToDotGraph value hilight

if (outfile = "_")
then putStr $ show $ dotGraph

else do writeFile outfile $ show $ dotGraph

putStrLn "Done. 1I

) 'catchError' usage

usage

usage e

IOError ~ IO ()

C. General Gxl Tools

= do

putStrLn "Usage: gxltodot [gxl] [dot] [nodelist to hilight]"

85

Now, the meat of the conversion. We take a Gx1, data structure, and convert it

into a Dot data structure. To do this, we take only the first graph that we find in

a Gx1, file, and create a new DotGraph out of that graph by going through each of

the Nodes, Edges, and Re 1,s in the Gx 1, and converting them to the equivalent Do t

statements. For Nodes and Edges, this is normally a one-to-one translation (except

in the case of subgraphs), but Re 1,s (being hyperedges) get translated into a single

node and an edge for each tentacle. Thus, for each Node and Edge we return a single

Do tStmt, and for each Re 1, we return a list of Do tStmts.

gxlToDotGraph :: Gx1, ~ [String] ~ Dot.DotGraph

gxlToDotGraph (Gx1, _ (g:gs)) h = graphToDotGraph g h

graphToDotGraph :: Graph ~ [String] ~ Dot.DotGraph

graphToDotGraph (Graph gas __ ners) h

= Dot.DotGraph

«dotScrub . graphld) gas)

(concatMap (nerToStmts h) ners)

nerToStmts .. [String] ~ OneOf3 Node Edge Re 1, ~ [Dot .Stmt]. .
nerToStmts h (OneOf3 n) = nodeToDotStmts n h

nerToStmts (TwoOf3 e) = edgeToDotStmts e

nerToStmts (ThreeOf3 r) = relToDotStmts r

Here's where the conversion of each piece takes place.

nodeToDotStmts :: Node ~ [String] ~ [Dot.Stmt]

nodeToDotStmts n@(Node nas _ att gs) h

= (Dot.Node

(dotScrub nld)

«llabel",(concatMap attrToString att))

:hilightNode n h)

86

):map subGraphToDotStmt gs

where nId = nodeId nas

c. General Gxl Tools

hilightNode :: Node -+ [String] -+ [Dot. At tr]

hilightNode (Node nas _ _ _) h

I (nodeId nas) 'elem' h = [(lstylell,lIfilled"),(lIcolorl,"red")]

I otherwise = []

edgeToDotStmts :: Edge -+ [Dot.Stmt]

edgeToDotStmts e@(Edge eas _ att gs)

= (Dot.Edge

«dotScrub . edgeFrom) eas)

«dotScrub . edgeTo) eas)

«lIlabel", (concatMap attrToString att))

: (edgeOrdersToDotAttrs eas)++hilightEdge e)

):map sUbGraphToDotStmt gs

hilightEdge :: Edge -+ [Dot.Attr]

hilightEdge (Edge eas _ _ _)

I isBackedge eas = [(" style", "bold"), (ll col or", "red")]

I otherwise = []

where isBackedge eas = edgeFrom eas > edgeTo eas

relToDotStmts :: Rel -+ [Dot.Stmt]

relToDotStmts (Rel ras _ as gs res)

= (Dot.Node

rId

[(llabel",(concatMap attrToString as))

, (" shape", "diamond")]

):(map (relEndToStmt rId) res)

where rId = dotScrub $ unMaybe $ relId ras

relEndToStmt .. String -+ Relend -+ Dot.Stmt

else

where f = edgeFromorder eas

t = edgeToorder eas

isF = f ;/; Nothing

isT = t ;/; Nothing

C. General Gxl Tools 87

relEndToStmt relId (ReLend (Relend_Attrs trg role dir sOrd eOrd) as)

= Dot.Edge relId (dotScrub trg) [(lIdir",dirToStr dir) ,

(lIlabel",unMaybe role),

("taillabel", unMaybe sOrd) ,

(llheadlabel", unMaybe eOrd) J
"'here dirToStr (Just Relend_direction_in) = "back"

dirToStr (Just Relend_direction_out) = "forward"

dirToStr (Just Relend_direction_none) = "none"

dirToStr _ = "none"

sOrdToStr (Just s) = s

unMaybe :: Maybe String ~ String

unMaybe (Just x) = x

unMaybe (Nothing) = ""

edgeOrdersToDotAttrs :: Edge_Attrs ~ [Dot .AttrJ

edgeOrdersToDotAttrs eas = (if isF then «"taillabel",unMaybe f):)

else id) .

(if isT then « "headlabel" ,unMaybe t):)

id) $ []

attrToDotAttr :: Attr ~ Dot.Attr

attrToDotAttr (Attr (Attr_Attrs name _) __ v)

= (name,showsOneOfl0 v "It)

sUbGraphToDotStmt :: Graph ~ Dot.Stmt

sUbGraphToDotStmt (Graph gas ners)

= Dot.Subgraph

«dotScrub . graphId) gas)

88

(concatMap (nerToStmts []) ners)

where

C. General Gxl Tools

Node and Edge names in dot can't include the following characters:

maybe more), so these have to be scrubbed.

dotScrub = filter (, . ('elem' "._11»

" " (and

attrToString (Attr (Attr_Attrs _ name _) __ 00f10)

I name 'elem' attributesToKeep = (name ++) .

(" = " ++) .

(showsOneOf10 00fl0) $ "\n"

I otherwise = 1111

The following is my horrible hack to display possible attribute values in a nice form.

I should probably just change the Gxl.hs file to have more sensible Show instances

than the crappy derived ones. On the plus side, I got to play with intersperse,

which I didn't know about before.

showsOneOf10 :: OneOf10

Locator

GxL.BooL

GxL. Int

GxL .Ftoat

GxtString

GxL.Enum

Seq

Set

Bag

Tup

-+ ShowS

showsOneOf10 (TwoOf10 (Gxt.Boot b» = (b ++)

showsOneOf10 (ThreeOf10 (Gxt.Int i» = (i ++)

showsOneOfl0 (FourOf10 (Gxt.FLoat f» = (f ++)

c. General Gxl Tools

showsOneOfl0 (FiveOf10 gStr) = (gx1StringToStr gStr ++)

showsOneOfl0 (SixOf10 (Gxl.Enum e)) = (e ++)

showsOneOfl0 (SevenOf10 (Seq ss))

= ('{':)

· «concat . intersperse "," $ map seq_ToStr ss) ++)

· ('}':)

showsOneOfl0 (EightOf10 (Set S5)) = (show SS ++)

show50neOfl0 (NineOf10 (Bag bs)) = (show bs ++)

5howsOneOfl0 (TenDf10 (Tup ts))

= ('(':)

· «concat . intersperse ",11 $ map tup_ToStr ts) ++)

· (')':)

seq_ToStr (Seq_Locator 1) = show 1

seq_ToStr (Seq_Baal b) = show b

seq_ToStr (Seq_Int i) = show i

seq_ToStr (Seq_String s) = gx1StringToStr s

tup_ToStr (Tup_Locator 1) = show 1

tup_ToStr (Tup_Bool b) = show b

tup_ToStr (Tup_Int (Int i)) = i

gx1StringToStr (GxlString s) = s

89

Appendix D

WASH - Password Changing

This is a little CGI program to change passwords in an htpasswd file. It uses WASH

(Web Authoring System Haskell) to handle most of the nastiness about writing a

CGI.

Compile it (after installing WASH) with:

ghc -package WASH-CGI -make -0 pwchange pwchange.lhs

module Main where

import Prelude hiding (head, span, diY, map)

import HTMLMonad

import CGI

import System

import Data.List (intersperse)

First, I setup some constants to be used (where the actual htpasswd file lives, which

command is used to manipulate it, and what flags are needed for that command).

passfile = "/etc/svn/reveng/svn-auth-file"

htpasswd = "/usr/bin/htpasswd"

htflags = "-mb"

chkhtpass = "true"

The main portion of the program just does a "run" of the mainCGI.

90

D. WASH - Password Changing

main = run mainCGI

91

The mainCGI will execute a standardQuery from WASH which creates a page

that will pose the question (titled Password Change), and provide prompts for the

username, the old password (to verify), and the new password (typed twice so that

they're sure they got it right). All of this is done in a table, so auxiliary functions

quenstions and pwprompt were created to generate the rows of the table with columns

for the prompt and the indputField or passwordlnputField. The final row has a

submit button which passes the values from the four fields to the changepass function.

UPDATE: I removed the "Username" and "Old Password" stuff, as this is just

going to be an htaccess protected cgi-bin with "require valid-user" (which will provide

the username and have checked the password before they can execute the cgi).

mainCGI

= (standardQuery "Password Change"

(table

(do newF E pwprompt "New Password: " (fieldSIZE 20)

nw2F E pwprompt "New Password (again): " (fieldSIZE 20)

tr (td (submit (F2 newF nw2F) changepass

(fieldVALUE "Change"»»»

The changepass functions takes one argument, which is the four fields from the

query page combined (which are then converted from a special type which forces them

to be nonEmpty to a standard string). A "same" value is also generated which is true

when the new password was typed the same twice.

changepass (F2 n_f n2_f) =
let newpasswd = unNonEmpty (value n_f)

newpassd2 = unNonEmpty (value n2_f)

same = newpasswd =newpassd2

First, we ensure that the old password is valid for the user. This is done using

an external program specified by chkhtpass. That's given the password file, the

username, and the old password. If it returns with a success, then validpw is True,

otherwise it is Fa lse.

92 D. WASH - Password Changing

in do username E io $ getEnv "REMOTE_USER"

validpw E if same A username :;. II"

then systemSuccess [chkhtpass,passfile,username]

else io (do return False)

Then, if the old password is valid, an attempt is made to update the password

using the htpasswd program. If the exit status indicates a Success, then success will

be True. If the old password was invalid or the update failed, then success is False.

success E if validpw

then systemSuccess [htpasswd,

htflags,

passfile,

username,

newpasswd]

else io (do return False)

Finally, we create a standard page that tells the user whether the result of their

attempt at a password change was successful or failed. In the future, this should

probably tell them why it failed, but for this quick & dirty hack, they can just ask

and administrator if necessary.

htell $ standardPage

(if success then "Success" else "Failed!")

(text (IIChanging password for II)

text (username)

if success then (text (" successful! "))

else (text (" failed!")))

Here are the auxiliary functions for posing the questions and password prompts,

as well as the function which performs a system call and returns whether or not the

result indicates Success.

question prompt attrs =

tr_T (do td_S (text prompt)

D. WASH - Password Changing

td_S (inputField attrs))

pwprompt prompt attrs =
tr_T (do td_S (text prompt)

td_S (passwordlnputField attrs))

systemSuccess xs = io (do result E system $ unwords xs

return $ result =ExitSuccess)

93

Appendix E

Other Useful Functions

(MyPrelude)

Some extras that I find useful

module MyPre lude where

import Numeri c

import Data.Word

padString will pad out a String, s, until it is at least 1 characters long, using

padchar to fill it out from the beginning.

padString :: Int ~ Char ~ String ~ String

padString 1 padchar s

I length s < 1 = padString 1 padchar (padchar:s)

I otherwise = s

A revised readHex to just get the first hex number read (if any), or return 0 if no

hex numbers were found.

readHex' :: (Num a) => String ~ a

readHex' s length r > 0 = fst $ head $ r

I otherwise = 0

where r = readHex s

94

E. Other Useful Functions (MyPrelude)

readDec' :: String ~ Int

readDec' s I length r > 0 = fst $ head $ r

I otherwise = 0

where r = reads s

An average function, from" A Gentle Introduction to Haskell".

average (Fractiona~ a) => [aJ ~ a

average xs = sum xs / fromlntegral (length xs)

95

A quick function to check if a string contains a space at the location specified by

n (I-based, hence the n - 1).

isSpace String ~ Int ~ BaaL

isSpace cs n = cs!!(n-1) =' ,

Substring acts similarly to perl's substr command, where given a list s, an

offset, and a length, returns a list of that length starting at after the offset.

So, for example,

substr "fred" 1 3

will return "red" .

substr s start length = (take length . drop start) s

Some auxiliary functions for cleaning up the hex display of addresses. They are

to be displayed in hex (without any prefix denoting such, hence the dropping of the

"Ox"), and 'O'-padded out to 4 nibbles.

showsH :: Ward16 ~ String ~ String

showsH w = (padString 4 '0') . showHex w

showH w = showsH W 1111

Definition of functions to get the first, second, or third item in a triple.

96

fst3 :: (a,b,c) ~ a

fst3 (x,_,_) = x

snd3 :: (a,b,c) ~ b

snd3 (_,y,_) = y

thrd3 :: (a,b,c) ~ c

thrd3 (_,_,z) = z

E. Other Useful Functions (MyPrelude)

The following function gets the limit of a function. That is, it repeatedly applies

a function until the result is the same as the last application.

limit :: Eq a => (a ~ a) ~ a ~ a

limit f x

I x - next = x

I otherwise = limit f next

where

next = f x

Now, a function to replace all occurances of one character in a string with another

string. This is useful for doing things such as replacing all instances of the character

"<" with the string" &It;'' .

replace :: Char ~ String ~ String ~ String

replace x ys = concatMap (Ac ~ if (c =x) then ys else [c])

Functions to drop the prefix (everything up to the last ' j'), the suffix (everything

after and including the last '. '), and every suffix (everything after and including the

first '.') of a string.

dropPrefix = reverse· takeWhile ('/' *) . reverse

dropSuffix = reverse· tail· dropWhile ('.' *) . reverse

dropSuffixes = takeWhile ('.' *)

Now a function is defined which, from a list of Ei ther a or b, will return a list of

all of the bs.

E. Other Useful Functions (MyPrelude)

rights :: [Either a b] ~ [b]

rights = foldr (either (flip const) (:» []

97

Often it is necessary to escape entity references so that, for example, all occurances

of the character 'i' are replaced with ''&It;''. The unEnt i ty function handles this by

proceeding through each character of the string, and if it encounters a character

that needs escaping, it then returns a function that concatenates the escaped version

(usually multiple characters), otherwise it returns a function that performs a cons (:)

using only the character itself. This is applied recursively to itself until it gets to an

empty list.

unEntity [] = []

unEntity (c:cs) = (if c 'elem' u<>&\f\r"

then (entify c++)

else (c:» $ unEntity cs

entify '< ' = "&It;"

entify ,> ' = n> n

entify '& ' = "& n

entify '\f' = 1111

entify '\r' = ""

Bibliography

[AK03] Norm Aleks and Brian Knittel. All about the IBM 1130 Computing

System. http://www.ibml130.org/, 2003. 4

(CKK+04a] J. Carette, W. Kahl, R. Khedri, M. Lawford, K. Sartipi, J. Sun, and

A. Wassyng. Requirements for reverse engineering tools. preprint, avail

able through SQRL, 2004. 5, 12

[CKK+04b] J. Carette, W. Kahl, R. Khedri, M. Lawford, K. Sartipi, and A. Wassyng.

Procedure for reverse engineering of high-level requirements from assem

bly code. preprint, available through SQRL, 2004. G

[EKWOO] J. Ebert, B. Kullbach, and A. Winter. GraX: Graph eXchange Format.

Technical report, 2000. 16

[GKN02] Emden Gansner, Eleftherios Koutsofios, and Stephen C. North. Drawing

graphs with dot. Murray Hill, NJ, 2002. 42

[HWSOO] Richard C. Holt, Andreas Winter, and Andy Schurr. GXL: Towards

a Standard Exchange Format. Technical Report 1-2000, Universitat

Koblenz-Landau, Institut fur Informatik, Rheinau 1, D-56075 Koblenz,

2000. 9, 16

[IBM65a] IBM. IBM 1130/1800 Assembler Manual, 1965. 34

[IBM65b] IBM, Murray Hill, NJ. IBM 1800 Functional Characteristics, 1965. 34

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program

structure tree: computing control regions in linear time. In Proceedings

98

BIBLIOGRAPHY 99

[KL95]

[Knu84]

[QRY04]

[Thi03J

[Win01]

[Wu04]

of the ACM SIGPLAN 1994 conference on Programming language design

and implementation, pages 171-185. ACM Press, 1994. 49

David J. King and John Launchbury. Structuring depth-first search

algorithms in haskell. In Conference Record of POPL '95: 22nd An

nual ACM SIGPLAN-SIGACT Symposium on Principles of Program

ming Languages, San Francisco, Calij., pages 344-354, New York, NY,

1995. <.18, 73

Donald E. Knuth. Literate programming. The Computer Journal,

27(2):97-111, 1984. 15

Daniel Quinlin, Paul 'Rusty' Russell, and Christopher Yeoh. Filesys

tern Hierarchy Standard. electronically available via: http://www .

pathname.com/fhs/,2004. 52

Peter Thiemann. An embedded domain-specific language for type-safe

server-side web-scripting. electronically available via: http://www .

informatik.uni-freiburg.de/-thiemann/haskell/WASH/draft.pdf,

2003. 52

Andreas Winter. Exchanging Graphs with GXL. Technical Report 9

2001, Universitat Koblenz-Landau, Institut fur Informatik, Rheinau 1,

D-56075 Koblenz, 2001. 16

Jun Wu. Formalization of GXL in Z notation. Master's thesis, McMaster

University, Department of Computing and Software, 2004. 16, 49

