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Abstract

This thesis develops a formalism of function tables, inspired by the work of D. Parnas.

It adapts that formalism so as to apply to topological partial algebras, involving

continuous partial functions on the reals. In particular, it studies semantics-preserving

transformations between two classes of tables: normal and inverted. This leads to

a 3-valued logic different from that used by Wei Lei (2007) who investigated the

application of function tables to “error algebras”.
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Chapter 1

Introduction

1.1 Background and objectives

In this thesis we present a semantics for function tables on reals. We primarily adopt

the method of tabular represenations developed by David Parnas and his collaborators

and further extend and modify it following [TZ00] and [WL07].

This thesis introduces a systematic method for handling undefined values in com-

putation over many-sorted algebras, by the use of extended algebras. In this thesis,

we will extend the work of [TZ00] and [WL07], to deal with partial functions, par-

ticularly as it applies to reals. In developing this method, two desirable attributes of

such algebras are of importance to us:

(1) monotonicity, which is a weaker condition than strictness, as will be discussed

1
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in Chapter 3 (§3.2), and

(2) continuity, which ensures reliability of outputs, as will also be discussed in

Chapter 3 (§3.3).

As a good framework for continuity, we will work mainly with tables based on topo-

logical partial algebra over the reals.

An important aspect of our work (as with [Zuc96, WL07]) is to consider transfor-

mations of function tables from one format to another (i.e. from normal to inverted,

and vice versa), and to compare the situation here (with divergent values) to that in

[TZ00] and [WL07] (with error values).

A significant issue here is the appropriate definition of properness of tables, which

is found to differ in all these cases. Another issue here is the use of 3-valued logic.

It is found that whereas in dealing with error values [WL07] strict versions of the

propositional operators (
∧

,
∨

) are needed, here, strong versions of these operators

are appropriate.

Our semantic theory will apply uniformly to proper and improper function tables.

1.2 Related work on partial functions

Partial functions and undefinedness have been areas of interest for a considerable

amount of time. Some background information can be found in [Far90, Far95, TZ00].
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Tabular representation play a very important role in the development of extended

algebras. The method of tabular representations, developed by David Parnas and

his collaborators, has been found to be very useful for the formal documentation and

inspection of software systems. This thesis extends these methods used by Parnas.

This technique was first applied in the documentation for the revised flight soft-

ware for the US Navy’s A-7 aircraft in the late seventies [Hen80, HKP78]. Another

large project which used tabular notation was the documentation of the shutdown

systems of the Darlington Nuclear Power Generating Station in Ontario, Canada, re-

quired by the Atomic Energy Control Board of Canada for that station’s licensing, in

the late eighties [Par93, PAM91]. These two projects served both as testing grounds

for the tabular method, and as incentives for its further development.

The tabular method is also useful in the documentation of simple programs, as

demonstrated in [PMI92]. Some examples of its use in system documentation are

given in [WT95]. A survey of the method is given in [JPZ96].

The method of tabular notations is, essentially, a useful and perspicuous method

for defining functions on many-sorted algebras. In the course of the projects described

above, many kinds of tables were developed, and were found to be useful. A systematic

exposition of ten kinds of tabular expressions was given in [Par92].

In [WL07], this method was extended, following [TZ00], to deal with error values.
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Here in this thesis we continue it further to deal with undefined values.

1.3 Overview

Chapter 2 discusses the basic concepts by giving the fundamental definitions of many-

sorted signatures Σ, and Σ-algebras.

In Chapter 3, we introduce extended algebras. We discuss two desirable attributes

of these algebras: monotonicity and continuity.

In Chapter 4, we develop a semantics of function tables using extended algebras

which

(1) like [WL07], extends the semantic theory of [Zuc96] by defining a uniform seman-

tics for proper and improper tables, and

(2) develops this further to deal with partial functions and divergent values unlike

[WL07], which dealt with total functions and error values. We consider two kinds of

tables: normal and inverted, and transformations between them, and point out the

differences from the treatment in [WL07].

Chapter 5 summarizes the main results, and considers possible future work.

In conclusion, let us consider what has been accomplished here.

The main motivation for this thesis was to develop a theory of tabular notations

applied to partial topological algebras (typically over the reals), with undefined values,
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semantics incorporating a suitable three-valued logic, and appropriate transformation

rules between normal and inverted tables. These turn out to be quite different from

the corresponding concepts and rules appropriate for (total) error algebras with error

values [WL07]. It should be noted that the practical applicability of this investigation

is not (as yet) clear. However it is, we feel, an interesting exercise in computation

theory. (We thank Dr. Wassyng for this observation.)



Chapter 2

Basic Concepts

In this Chapter, we introduce the basic concepts used in this thesis. The presentation

of the chapter makes use of [WL07] (Chapter 2) except that we work with partial

algebras instead of total algebras. We introduce many-sorted signatures Σ and Σ-

algebras. Most of the material can be found in [TZ99, TZ00, TZ04, WL07].

2.1 Basic algebraic concepts

Definition 2.1.1 (Many-sorted signature Σ). A many-sorted signature Σ is a

pair 〈Sort(Σ),Func(Σ)〉 where

(1) Sort(Σ) is a finite set of sorts or basic types, written s, s′, . . .

6
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(2) Func(Σ) is a finite set of primitive (or basic) function symbols

F : s1 × · · · × sm → s (m ≥ 0).

Each symbol F has a type s1 × · · · × sm → s, where s1, . . . , sm are the domain sorts

and s is the range sort of F . The arity of F is m ≥ 0. The case m = 0 corresponds

to constant symbols; we write c : → s in this case.

Definition 2.1.2 (Product types over Σ). A Σ-product type, or a product type

over Σ, has the form u = s1 × · · · × sm (m ≥ 0), for Σ-sorts s1, . . . , sm. We write

u, v, w, . . . for Σ-product types.

Definition 2.1.3 (Σ-algebras). A Σ-algebra A has:

(1) for each Σ-sort s, a non-empty set As, called the carrier set of sort s;

(2) for each Σ-function symbol F : u → s, a (partial, possibly total) function

FA : Au ⇀ As where u is the Σ-product type s1 × · · · × sm, s is a Σ-sort and

Au = As1 × · · · × Asm .

Note. For m = 0, the meaning of the constant symbol c : → s is an element cA ∈ As.
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Example 2.1.4. We can present signatures Σ as:

signature Σ

sorts s, . . .

functions F : s1 × · · · × sn → s

...

end

where Sort(Σ) = {s, . . . }

and Functions(Σ) = {F : s1 × · · · × sm → s, . . . }

We can then present a Σ-algebra A as:

algebra A

carriers As (s ∈ sort(Σ))

functions F : As1 × · · · × Asm → As

...

end

Remark 2.1.5. (Partial algebras). In general we assume that our algebras are partial,

i.e. the basic functions are partial. It may happen that a particular algebra is total

(i.e. all the basic functions are total).
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Example 2.1.6. The algebra B of booleans has signature

signature Σ(B)

sorts bool

functions true, false : → bool,

∧,∨ : bool2 → bool,

¬ : bool → bool

end

Then the algebra B is:

algebra B

carriers B

functions tt, ff : → B,

∧B,∨B : B2 → B,

¬B : B → B

end

where trueB = tt, falseB = ff, and the standard boolean operations have their

usual meaning.

In future, for a Σ-algebra A, we will display the algebra A itself from which its

signature Σ can be inferred.
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Example 2.1.7. The algebra Z0 of integers :

algebra Z0

carrier Z

functions 0, 1: → Z,

+, × : Z2 → Z,

- : Z2 → Z

...

end

where the signature Σ(Z) has sort int.

Example 2.1.8. The standard algebra Z of integers :

algebra Z

import Z0,B

functions eqZ : Z2 → B,

lessZ : Z2 → B

end

(“Standardness” is defined in §2.3.)

We will use infix ‘=’ and ‘<’ for the eqZ and lessZ functions.
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Example 2.1.9. The ring R0 of reals is

algebra R0

carrier R

functions 0, 1 : → R,

+,× : R2 → R

end

Example 2.1.10. The field R1 of reals is

algebra R1

import R0

functions inv : R → R

end

where for all x ∈ R

inv(x) '


1/x if x 6= 0

↑ otherwise

where “↑” denotes divergence .

Notes.

(1) Here ‘'’ is “Kleene equality” which means that the two sides both converge to

the same value , or both diverge.

(2) Since inv is a partial function, R1 is a partial algebra. The significance of this

(related to continuity), will be discussed later (Remark 2.5.2).



12 Sameena Hossain - Department of Computing and Software

2.2 Standard signatures and algebras

Definition 2.2.1 (Standard signatures). A signature Σ is standard if

(i) Σ(B) ⊆ Σ, and

(ii) the function symbols of Σ include a conditional

ifs : bool× s2 → s

for all sorts s of Σ other than bool, and an equality operator

eqs : s2 → bool

for certain sorts s.

Definition 2.2.2 (Standard algebras). Given a standard signature Σ, a Σ-algebra

A is a standard algebra if

(i) it is an expansion of B, and

(ii) the conditionals and equality operators have their standard interpretation in A;

i.e., for b ∈ B and x, y ∈ As,

ifs(b, x, y) '



x if b ↓ tt

y if b ↓ ff

↑ if b ↑

and eqs also has its standard interpretation.
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Remark 2.2.3. Any many-sorted signature Σ can be standardized to a standard sig-

nature ΣB by adjoining the sort bool together with the standard boolean operations;

and, correspondingly, any algebra A can be standardized to a standard algebra AB

by adjoining the algebra B and other boolean operators, e.g. the equality operator at

certain sorts.

Assumption 2.2.4 (Standardness). We will assume our signatures and algebras

are standard.

2.3 Continuous functions; Topological partial al-

gebras

Definition 2.3.1 (Continuous function). Given two topological spaces X and Y ,

a partial function f : X ⇀ Y is continuous iff, for every open V ⊆ Y ,

f−1[V ] =df {x ∈ X|x ∈ dom(f) and f(x) ∈ Y }

is open in X.

Definition 2.3.2 (Topological partial Σ-algebra). A topological partial Σ-algebra

is a partial Σ-algebra with topologies on the carriers such that each of the basic

functions is continuous. Further, if the carriers B and/or Z are present, they have

the discrete topology.
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2.4 The algebra R of reals

Example 2.4.1 (Real algebra). An important many-sorted standard topological

partial algebra for our purpose is the standard partial algebra of reals R, with signa-

ture Σ(R).

The algebra R is

algebra R

import R1,Z,B

functions eqR, lessR: R2 → B,

end

where eqR and lessR are partial functions defined by

eqR(x, y) '


↑ if x = y

ff if x 6= y

lessR(x, y) '



tt if x < y

ff if x > y

↑ if x = y

Again, we will use infix ‘=’ and ‘<’ for these operators.

Remark 2.4.2. The reason for the partial defnitions of the functions invR, eqR and

lessR is to ensure their continuity, since the total versions of these functions are not
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continuous [TZ99, TZ00]. This is discussed further in Chapter 3 (§3.3). This ensures

that R is a topological partial algebra.

Note that R also contains eqZ and lessZ which are total. These functions are contin-

uous since Z has the discrete topology.

Remark 2.4.3. The standard algebra R (or some expansion of it) will be the main

source of examples in this thesis.

2.5 Terms over Σ: syntax and semantics

Definition 2.5.1 (Variables).

(1) For each Σ-sort s, Vars is a countable set of variables of sort s : xs, ys, . . .

(2) Var(Σ) =
⋃

s∈Sort(Σ)

Vars

Definition 2.5.2 (Terms).

(1) The set Tms(Σ) of Σ-term of sort s is defined inductively by the clauses:

(a) Vars(Σ) ⊆ Tms(Σ).

(b) if c : → s is in Func(Σ) then c ∈ Tms(Σ).

(c) if F : s1 × · · · × sm → s is in Func(Σ) and ti ∈ Tmsi for i = 1, . . . ,m

then F (t1, . . . , tm) ∈ Tms(Σ)
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(2) Tm(Σ) =
⋃

s∈Sort(Σ)

Tms(Σ)

Note: In (1), clause (b) can be taken as a special case of clause (c), with m = 0.

Definition 2.5.3 (States over A). Let A be a Σ-algebra. A state over A is a family

σ = 〈σs | s ∈ Sort(Σ)〉

of functions

σs : Vars → As.

Definition 2.5.4 (Term evaluation). Each Σ-term t has a value [[t]]Aσ in A relative

to state σ. The function

[[t]]A : State(A)→ As

is defined by structural induction (or recursion) on t:

(a) [[xs]]
Aσ = σs(x

s).

(b) [[c]]Aσ = cA.

(c) [[F (t1, . . . , tm)]]Aσ ' FA([[t1]]Aσ, . . . , [[tm]]Aσ)

Note: if t : s then [[t]]Aσ ∈ As.

Notation 2.5.5. Var(t) is the set of variables occurring in t.

Notation 2.5.6. We write σ(xs) for σs(x
s).
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Definition 2.5.7. For any M ⊆ Var(Σ), and states σ and σ′:

σ ≈ σ′ (rel M) ⇐⇒ σ �M = σ′ �M

i.e. σ and σ′ agree on M .

Lemma 2.5.8 (Functionality Lemma for terms). For any Σ-term t:

σ ≈ σ′ (rel Var(t)) =⇒ [[t]]Aσ = [[t]]Aσ′

Proof. By structural induction on t.

Notation 2.5.9. CT(Σ) is the set of closed Σ-terms (where t is closed if Var(t) = ∅).

Corollary 2.5.10. If t is closed then [[t]]σ is independent of σ.

Proof. By the Functionality Lemma for terms.

So if t is closed we can write [[t]]A =df [[t]]Aσ for all σ.

Remarks 2.5.11.

(a) We write [[t]]Aσ ↓ to mean that evaluation of [[t]]Aσ halts, or converges, and

[[t]]Aσ ↓ a to mean that evaluation of [[t]]Aσ converges to a value a.

(b) We write [[t]]Aσ ↑ to mean that evaluation of [[t]]Aσ diverges.



Chapter 3

Extended Algebras and their

Semantics

In this chapter we will discuss extended algebras. We will also discuss two desirable at-

tributes of such algebras that are useful for the purpose of this thesis, monotonicity

and continuity . The second of these, continuity, was introduced in Chapter 2 (Def-

inition 2.3.1).

3.1 Extended algebras: the undefined value ‘↑’

In working with a partial Σ-algebra A, we must also consider what we will call “ex-

tended semantics”- that is, how the basic Σ-functions and Σ-terms will behave with

18
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divergent inputs. This is relevant when we want to compose partial functions.

It is convenient to think of the partial basic Σ-functions FA as being defined on

an extended Σ-algebra A↑ with carrier sets

A↑s =df As
⋃
{↑}

and with basic function semantics

FA↑ : A↑s1 × · · · × A
↑
sm ⇀ A↑s.

This is reminiscent of the construction of error algebras Aεε in [WL07], in which

the carriers As are extended to As
⋃
{εε}, where εε is an “error value” of sort s.

Definition 3.1.1 (Strict and consistent extensions). For each Σ-function symbol

F : u ⇀ s, we say:

(1) FA↑ is strict over A if for all ai ∈ Asi (i = 1, . . . ,m, i 6= k),

FA↑(a1, . . . , ↑, . . . , am) ↑

i.e. FA↑(a1, . . . , am) has divergent output if any argument is ↑; and

(2) FA↑ is consistent over A if it extends FA, i.e. FA↑ � A = FA.

Definition 3.1.2 (Basic extended signature and algebra). . Given a Σ-algebra

A = (As1 , . . . , Ask−1
,B, FA

1 , . . . , F
A
n ),
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let A↑ be the algebra

(A↑s1 , . . . , A
↑
sk−1

,B↑;FA↑

1 , . . . , FA↑

n , (↑s)s∈Sort(Σ))

of signature Σ↑ where

Sort(Σ↑) = Sort(Σ)

Func(Σ↑) = Func(Σ) ∪ {(↑s)s∈Sort(Σ)},

and for all sorts s : ↑As = ↑, and for i = 1, . . . , n, FA↑
i is the strict, consistent extension

of FA
i .

We call

(1) Σ↑ the basic extended signature over Σ;

(2) A↑ the basic extended algebra over A.

Example 3.1.3 (Basic extended algebra based on B). Consider the algebras:

B = (B; tt, ff, and, or, not)

B↑ = (B↑; tt, ff, ↑, and, or, not)

where B↑ = {tt, ff, ↑}. The logical operators and, or and not which extend the regular

boolean operators strictly and consistently, give rise to a weak 3-valued logic.

Example 3.1.4 (Other extended algebras on B). The strict 3-valued boolean

operators have the following truth tables:
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∧ tt ff ↑

tt tt ff ↑

ff ff ff ↑

↑ ↑ ↑ ↑

Table 1: Strict ‘and’ (∧)

∨ tt ff ↑

tt tt tt ↑

ff tt ff ↑

↑ ↑ ↑ ↑

Table 2: Strict ‘or’ (∨)

We can also define strong version of these:

4 tt ff ↑

tt tt ff ↑

ff ff ff ff

↑ ↑ ff ↑

Table 3: AND (Strong ‘and’, 4)
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5 tt ff ↑

tt tt tt tt

ff tt ff ↑

↑ tt ↑ ↑

Table 4: OR (Strong ‘or’, 5)

Note that all these operators are commutative.

Discussion 3.1.5 (Other non-strict boolean operators). Consider the state-

ments:

(1) x 6= 0 and (1 div x) > 0

(2) x = 0 or (1 div x) > 0

Suppose x = 0 (i.e. evaluated at σ with σ(x) = 0). We may very well want:

• statement (1) to evaluate to ff; and

• statement (2) to evaluate to tt.

But strict operators would (in both cases) evaluate to ↑.

A good solution is to use cand (“conditional and”) and cor (“conditional or”).

These operators evaluate conjunctions and disjunctions from the left :
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∧c tt ff ↑

tt tt ff ↑

ff ff ff ff

↑ ↑ ↑ ↑

Table 5: cand (conditional ‘and’,
∧c)

∨c tt ff ↑

tt tt tt tt

ff tt ff ↑

↑ ↑ ↑ ↑

Table 6: cor (conditional ‘or’,
∧c)

Remarks 3.1.6.

(1) Unlike strict and strong ‘and’, and ‘or’, cand and cor are not commutative.

Nevertheless these operators are computationally meaningful. In functional

programming languages, such as SML, they are called ‘andalso’ and ‘orelse’

respectively.

(2) We can also add operators cand and cor to the algebra

B = (B; tt, ff, and, or, not)
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which is then extended consistently but not strictly (cf. Definition 3.1.1) to the

extended algebra:

B↑ = (B↑; tt, ff, ↑, and, or, not, cand, cor)

Remarks 3.1.7. Consider the standardized data algebra

A = DB = (D,B; . . . , tt, ff,∧,∨,¬, eqD, ifD)

and the basic extended algebra over A

A↑ = DB↑ = (D↑,B↑; . . . , tt, ff,∧,∨,¬, eqD,↑, ifD,↑, ↑D)

Now, consider the interpretation of equality ‘eq’ and the conditional ‘if’ in A↑:

(1) Equality vs identity : The function eqA
↑

extends eqA by strictness (“weak

equality” on A↑) so

eqA
↑
(x, ↑) ' ↑

for all “values” of x, including ↑.

On the other hand, the identity function (“strong equality”) on A↑ has the form:

idA
↑

: (D↑)2 → B

where

idA
↑
(x, ↑) =


tt if x ' ↑

ff otherwise
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Note that idA
↑

is a non-strict extension of eqA. Also, eqA is more meaningful

computationally than idA
↑
.

(2) Conditional : Note that ifA
↑

extends ifA by strictness. But it is not a “condi-

tional operation” on D↑ (as usually understood), since e.g.:

ifA
↑
(tt, d, ↑) ' ↑ (not d)

This can be called a “weak conditional” on A↑.

We could also adjoin a non-strict (or “strong”) conditional to A↑:

ifns : B↑ × (D↑)2 ⇀ D↑

where

ifns(b, x, y) '



x if b ' tt

y if b ' ff

↑ if b ' ↑

This is a non-strict extension of if with the standard meaning for the conditional,

thus:

ifns(tt, d, ↑) ↓ d (not ↑).

Note that A↑ is not (strictly speaking) standard, according to our definition (2.2.2)

since it contains B↑ rather than B. However, for practical purposes, we can treat it

as a standard algebra.
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Remark 3.1.8. We will assume from now on, that our standard extended algebras

A↑ contain the nonstrict conditional ifns, rather than its strict counterpart.

Example 3.1.9. Consider

R = (R,Q,Z,B; . . . , eqQ, eqZ)

Equality would (or should) be available on Q, Z (and B) but not R, since equality on

the reals is not computable. (But see Remark 2.4.2 and §3.5.).

3.2 Non-strict semantics; Monotonicity

In general, the extended semantics for a Σ-function FA is determined simply by

strictness (see §3.1).

However, as we have seen above, there are some important exceptions in our

standard algebras: for example, the boolean operations cand, cor, AND, OR and the

conditional operator ifns.

The semantics for the above operations, although not strict, are all monotonic (in

the extended semantics), as we now explain.

Definition 3.2.1 (Monotonicity). A partial function

f : A↑ × B ⇀ C

is monotonic if, for any b ∈ B, if
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f(↑, b) ↓ c (say),

then also, for any a ∈ A,

f(a, b) ↓ c.

In other words, if for some divergent input ‘↑’, the output converges to c, then

replacing ‘↑’ by any element of A, will give the same convergent output.

Note that for functions, strictness trivially implies monotonicity. However as the

following lemma shows, monotonicity is a more useful property than strictness for

partial algebras.

Definition 3.2.2. An extended algebra is monotonic if all its basic functions are

monotonic.

Lemma 3.2.3. The boolean operations cand (
∧c), cor (

∨c), AND (4), OR (5), and

the conditional operator ifns, are all monotonic.

Proof. This is clear by checking their semantic definitions.

Remark 3.2.4. It follows from the above lemma that the standard algebras B↑, Z↑

and R↑ are also monotonic.

We introduce partial equality. Let A↑ = (A↑s, . . . ) be a Σ↑ algebra.
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Definition 3.2.5. (a) For a, b ∈ A↑s, a @
∼
b iff a = b or a = ↑.

(b) For M ⊆ Var(Σ↑),

σ @
∼
σ′ (rel M) (“σ is extended by σ′ relative to M”)

iff for all x ∈M , σ(x) @
∼
σ′(x)

Thus ↑s is the minimal element of A↑s, and the state σ↑, where σ↑(x) = ↑ for all

x, is the minimal element of State(A↑).

Proposition 3.2.6. σ ≈ σ′ (rel M) ⇐⇒ σ @
∼
σ′ (rel M) and σ′ @

∼
σ (rel M)

Proof. Clear from Definitions 2.5.7 and 3.2.5.

Remarks 3.2.7.

(1) The relation “@
∼

(rel M)” (for fixed M) is a pre-partial order on State(A↑), i.e.

it is transitive and reflexive (but not anti-symmetric).

(2) The relation “≈ (relM)” is the corresponding equivalence relation on State(A↑).

(3) The @
∼
−minimal states (rel M) are those which are totally unspecified on M .

Theorem 1 (Monotonicity for Tm(Σ)). Suppose A↑ is monotonic. Then for all

t ∈ Tm(Σ), and σ, σ′ ∈ State(A↑):

σ @
∼
σ′ (rel Var(t)) =⇒ [[t]]σ @

∼
[[t]]σ′

Proof. By structural induction on t.
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Remark 3.2.8. As a corollary we get: if A↑ is monotonic, then

σ ≈ σ′(rel Var) =⇒ [[t]]σ ' [[t]]σ′

but we know this already from the Functionality Lemma for terms (Lemma 2.5.8)

without the assumption of monotonicity.

3.3 Continuity; Its significance for computing func-

tions on R

In this section we will discuss the continuity of the operational semantics of partial

algebras. We will see the advantage of our “algebraic” approach, since these functions

are built up from simpler functions using composition, thus preserving continuity. We

begin with a standard result.

Lemma 3.3.1 (Basic lemma on continuity). The composition of continuous func-

tions is continuous.

Recalling Theorem 1 (in §3.2), we have:

Theorem 2 (Continuity of term functions). For t ∈ Tm(Σ), the function

[[t]]A : State(A) ⇀ A↑

is continuous.
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Proof. Using Definition 2.3.1, Lemma 3.3.1 and structural induction on t.

Discussion 3.3.2. The importance of continuity in relation to computation is that

it provides stability and reliability in connection with readings of input and output

values. This can be best seen by considering a “rudimentary” (1-dimensional) normal

table, which defines a (total) step function f : R→ R:

x ≤ 0

x > 0

H1

0

1

G

Table 7

(This is an example of a normal table. Normal tables will be defined in Chapter 4.)

Here the output of the table function f is 0 if the input x is ≤ 1, and 1 if x > 1.

Thus f is discontinuous at 0.

Further, the evaluation of f near 0 is unstable, for suppose the input x is read

as being (approximately) 0. Then the output is taken to be 0. However, if at a

later time, the input is read as being (even slightly) > 0, then the output could be

re-evaluated as 1. (Clearly this problem is not solved by redefining the table to have

output 1 at 0.)

Later still the output could be read again as 0, and so on. This problem is bound

up with the imperfections and variability of input measuring instruments.
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The solution is to define f as a partial step function, thus:

x < 0

x > 0

H1

0

1

G

Table 8

Now when the input value of x is read as being very close to 0 (and not clearly

either < 0 or > 0), the output will be given as ‘↑’ (undefined).

If and when further readings clearly confirm the input to be either < 0 or > 0,

then the output can be given accordingly (as 0 or 1 respectively).

Note that this “reassessment” of the input value will not contradict any previous

output values, by the monotonicity property of our extended algebra (see §3.2).

To summarize the above discussion:

Reliability of output readings (as a function of input readings) depends on the

continuity of the table functions: small changes in the input readings produce only

small changes in the output readings. Continuity of these functions depends, in turn,

on the partiality of (at least some of) the basic functions (such as equality and

division on the reals): diverging when necessary, rather than having to converge to

a (possibly unreliable) value. The “good behaviour” of divergence, and its replace-

ment by convergence as a result of further measurements, depends in turn on the
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monotonicity of the basic functions.

3.4 Basic algebraic results

From now on we assume that we are dealing with the topological partial algebra R

(Remark 2.4.3).

The following results can be found, with proofs, in standard texts on algebra

[Lan90, Wae64], real analysis [Roy66, Rud76], and constructive analysis [PER89,

Wei00].

Let E be the equational calculus in the language (0, 1,+,−, ∗), with the axioms

for rings (i.e. that (R, 0,+,−) is a commutative group, (R, 1, ∗) is a commutative

monoid, and ∗ is distributive over +). By “real term” we mean term of type real.

Definition 3.4.1 (Computational equivalence). Two real terms t1, t2 are compu-

tationally equivalent (written t1 ∼= t2) iff E ` t1 = t2.

Remarks 3.4.2. Any Σ(R) term t of type real can be rewritten as a polynomial,

which can be specified uniquely according to a prescribed ordering of variables, etc.

[XFZ13].

Note that here polynomial expressions in “standard form” have integer coeffi-

cients, although the signature Σ does not have a data type int. The point is that our
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“polynomial notation” does not involve integers essentially. For example, the polyno-

mial expression ‘2x2 − 3x + 4’ stands for the Σ-term x ∗x+x ∗x+ (−x) + 1 + 1 + 1

(suitably parenthesized) of type real.

Remark 3.4.3. Computational equivalence of real terms is decidable, by transform-

ing each term to its “canonical polynomial” and comparing them.

3.5 Modified semantics for equality of terms on R

In order to motivate our semantics, consider the pair of real terms

t1 ≡ x, t2 ≡ 0 (∗)

Suppose σ(x) = 0, i.e. [[t1]]σ = 0. Then we still define

[[t1 = t2]]σ ↑ (∗∗)

This follows from the definition of eqR in §2.5, which is motivated by reasons of

continuity (recall Remark 2.4.2, also see $ 3.3), since for σ(x) approximately but not

exactly equal to 0,

[[t1 = t2]]σ ↓ ff.

However for the pair of terms (say)

t1 ≡ x + 2, t2 ≡ 1 + x + 1 (∗ ∗ ∗)
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we have [[t1]]σ = [[t2]]σ, for all states σ, and to stipulate (**) here would be counterin-

tuitive! Moreover, unlike the case (*), discontinuity is not an issue here, since for all

σ, [[t1]]σ and [[t2]]σ are exactly equal. Note also that, here, unlike case (*), t1 ∼= t2.

Similar considerations apply to boolean expression of inequality of real term

t1 < t2.

In view of the above considerations, we revise the definitions (in Example 2.4.1)

of the partial functions eqR and lessR in R, as in [XFZ13], to obtain:

[[t1 = t2]]σ '


tt if t1

∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 � t2

ff if [[t1]]σ 6= [[t2]]σ.

[[t1 < t2]]σ '


tt if t1 < t2

ff if [[t1]]σ > [[t2]]σ or t1
∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 � t2.

Note that, with the above modified semantic definitions, term functions are still

continuous. The proof depends on the fact that the condition for the atomic formula

‘t1 = t2’ to have an output of tt instead of ↑ (i.e. that t1 ∼= t2) is independent of the

state (similarly for term ‘t1 < t2’). Hence the continuity proof still holds.



Chapter 4

Semantics of Function Tables

In this Chapter we will present semantics for different types of function tables .

We will discuss proper and improper tables ; normal and inverted tables ; and

finally transformations between normal and inverted tables.

4.1 Tables: Previous work and motivation

(a) Proper and improper tables

In [Zuc96] Zucker considered two kinds of tabular expressions: normal and

inverted. He provided a semantics for both kinds of tables, and defined trans-

formation between them which preserve the semantics. However, the semantics

apply only to the unproblematic case of “proper” tables. The extension of the

35
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semantics to “improper” tables was left as an open problem.

(b) Tables based on error algebras

The theory of tables based on “error algebras” [WL07] deals systematically

with an error value εε at all sorts and extends the semantic theory of [Zuc96]

by defining a uniform semantics for proper and improper tables in the context

of error algebras. (It will be seen that divergent values require a treatment

different from error values .)

The approach taken in [WL07] was not to divide tables into “proper” and

“improper” subclasses (as in [Zuc96]) but to consider, for any table T at any

particular state σ, whether T is proper or improper at σ. (The answer will

vary, in general, with σ). It was also found necessary to broaden the concept of

“properness” used in [Zuc96], to allow overlapping conditions where the output

value agrees on the overlap.

In this thesis, we will be constructing tables with “divergent values” (denoted ‘↑’),

mainly on the algebra R of reals. This leads to different table function semantics,

as will be discussed below. We will develop the work of [Zuc96] and [WL07] by

considering partial algebras, with divergent values, and how to deal with them.
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4.2 Normal Tables

We will define the class TabN(Σ) of normal (function) tables over Σ. Consider (for

convenience) a 2-dimensional normal table [Par92, Zuc96].

Example 4.2.1 (A two dimensional normal table).

C2
1 C2

2 . . . C2
l

H2

C1
1

C1
2

...

C1
k

H1

t11 t12 . . . t1l

t21 t22 . . . t2l

...
...

...
...

tk1 tk2 . . . tkl

G

Table 9

In Table 9, the headers H1 and H2 of table T contain conditions C1
i (1 ≤ i ≤ k) and

C2
j (1 ≤ j ≤ l) respectively. These are boolean-valued expressions over Σ, extended

e.g. by bounded quantifiers. The cells (i, j) of the grid G of T contain terms ti,j, all

of the same Σ-sort: the output sort of T .

The value of T (at a given state) is the value of the cell determined by the con-

ditions in the headers H1 and H2 which are evaluated to tt (at that state), assuming

T is “proper”; i.e. assuming (for now) there is a unique i such that [[C1
i ]]σ ↓ tt, and
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for all i′ 6= i, [[C1
i′ ]]σ ↓ ff; and there is a unique j such that [[C2

j ]]σ ↓ tt, and for all

j′ 6= j, [[C2
j′ ]]σ ↓ ff.

Later (Definition 4.3.2) we will give a different (more general, and more appropri-

ate) definition of “properness”, and we can call the above “strict properness”.

Remarks 4.2.2. We cannot exclude improper tables at the syntactic level since

(1) properness of T depends on the state;

(2) properness (at all states) is not decidable in general.

Remarks 4.2.3. Here is a possible strategy for evaluating improper tables at a given

state σ, assuming all headers have at least one condition which evaluates to tt: Take

the leftmost (or topmost) condition which evaluates to tt (like the “case” statement

in C). But this is unsatisfactory since

(1) the semantics is then dependent on the order of rows and columns, and hence

would not be preserved by table transformations (from normal to inverted, and

conversely; see below).

(2) The “leftmost” (or “topmost”) cell in the header may give a divergent output

and not allow evaluations of the other cells.
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4.3 Properness of normal tables

We are looking for a condition on tables which will make their semantics unproblem-

atic. Differing from the definition of properness in [Zuc96], we define “properness” as

in [WL07] by allowing overlapping conditions, where the values agree on the overlap.

There are also differences from the semantics in [WL07], as we will see below.

Definition 4.3.1 (Universality for headers over extended algebras). A tuple

of conditions (C1, . . . , Cn) is said to be universal at σ ∈ State(A↑) if, for some i,

[[Ci]]
A↑σ = tt

Note that this allows the case that [[Cj]]
A↑σ ↑, for some j 6= i.

Definition 4.3.2 (Proper normal table). T is proper at σ if

(i) all its headers are universal at σ, and

(ii) the value of a term tij at σ is the same for all (i, j) for which conditions C1
i in

header H1 and C2
j in header H2 are true or divergent at σ.

Remarks 4.3.3.

(1) Condition (ii) says that the values agree on overlapping conditions that either

evaluate to tt or diverge. This is different from the semantics in [WL07], where

the presence of the error value ‘εε’ in any header renders the table improper (at

that state).
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(2) If the output sort of T is real, we must remember that equality between real

terms is partial (cf. Remark 2.4.2 and §3.5), and so comparisons between such

terms are not always possible. Condition (ii) must be interpreted as: the terms

in cells associated with true or divergent conditions must be strongly equiv-

alent.

4.4 Semantics of normal tables

Definition 4.4.1. Let T be a normal table over Σ, and σ a state over T in A. Suppose

T is proper at σ. Choose indices i, j for which the entries C1
i and C2

j evaluate to tt at

σ. There is at least one such pair (i, j), since both headers are universal. Then the

meaning of T at σ is

[[T ]]Aσ = [[tij]]
Aσ.

Note that by the properness condition (Definition 4.3.2), the value of [[tij]]σ does not

depend on the choice of indices i, j for which [[Ci]]σ = [[Cj]]σ = tt or ↑.

Notation 4.4.2. For a boolean valued term C, at state σ, we write

σ � C (“σ satisfies C”) to mean : [[C]]σ ↓ tt

.

Next we will define table functions relative to a list of variables.
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Definition 4.4.3. A list x̄ of variables is said to cover T if it includes all of Var(T ),

i.e., if Var(T ) ⊆ x̄.

Definition 4.4.4 (Table function). Let x̄ ≡ (x1, . . . , xm) be any list of variables

which covers T , with xi : si for i = 1, . . . ,m. Then relative to x̄, T names or defines

a table function

fT,x̄ : s1 × · · · × sm → s

with interpretation on A

fAT,x̄ : As1 × · · · × Asm ⇀ As

as follows. For all a1 ∈ As1 , . . . , am ∈ Asm , let σ be the state over A defined by

σ(xi) = ai for i = 1, . . . ,m. Then

fAT,x(a1, . . . , am) ' [[T ]]Aσ.

Note that this definition is independent of the choice of the state σ, by the Function-

ality Lemma for terms (Lemma 2.5.8).

Remarks 4.4.5.

(1) A term tij in the grid of T may very well diverge (↑) at σ without causing T to

be improper. This is analogous to the (non-strict) semantics for the conditional

ifns(t
bool, ts1, t

s
2)
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(2) More interestingly, a condition in the header may evaluate to ↑ without causing

T to be improper! This is justified by the monotonicity property of tables. This

is unlike the definition of properness in [WL07], and points to a conceptual

difference between error outputs εε and undefined outputs ↑.

We now extend the definition (4.4.1) of [[T ]]Aσ to the case that T is improper at σ.

Definition 4.4.6 (Semantics of normal tables over Σ). Let T be a normal table

over Σ, and σ a state over T in A↑. We define [[T ]]A
↑
σ as follows:

Case 1: T is proper at σ. Then [[T ]]A
↑
σ is as in Definition 4.4.1.

Case 2: T is improper at σ. Then [[T ]]A
↑
σ ↑.

Theorem 3. Let A↑ be an extended topological algebra which is monotonic. Let T be

a normal table, with Var(T ) ⊆ x. Then fA
↑

T,x is

(1) monotonic, and

(2) continuous.

Proof.

(1) This follows easily from the monotonicity of term functions (Theorem 1), and

the definition of properness of tables (Definition 4.3.2).

(2) To prove continuity of fA
↑

T,x: Suppose a ∈ dom(fAT,x). Take σ s.t. σ[x] = a.

Then T is proper at σ, and

fA
↑

T,x(a) = [[T ]]A
↑
σ.
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Let a ′ be a tuple of inputs “near” a, and take σ′ s.t. σ′[x] = a ′. We consider

two cases:

(i) The output sort of T is nat or bool.

Then (since these are discrete spaces) for a ′ sufficiently near a, T ′ is also

proper at σ′, and the value of [[T ]]A
↑
σ′ is actually the same as [[T ]]A

↑
σ.

(ii) The output sort of T is real.

Then by the condition for properness of T in Remark 4.3.3(2), for a ′

sufficiently near a, T ′ is also proper at σ′, by strong equivalence of real

valued terms in cells with overlapping true conditions, and the value of

[[T ]]A
↑
σ′ is close to the value of [[T ]]A

↑
σ, by the continuity of term functions

(Theorem 2).

4.5 Inverted tables

In this section we consider the class TabI(Σ) of inverted (function) tables over Σ.

Such a table T differs from a normal table in the following way (see Table 12).

(1) One of its headers H1, is the value header. Instead of conditions, it contains

terms, all of the same Σ-sort, the output sort of T . The other header H2, the
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condition header, contains conditions as before.

(2) The cells of T contain conditions instead of terms.

The idea (or operational semantics) for T is as follows. For a given state σ over T ,

search the condition header H2 until you find a condition Cj which holds at σ. The

index j determines a column. Search along this column for a cell (i, j) whose entry

Cij has the value tt. The corresponding entry ti in H1 then gives the value of the

function.

The desirability of this search always producing a unique value, leads to the fol-

lowing definition of properness for inverted tables. Let T be an inverted table as

follows:

Example 4.5.1 (An inverted table).

C1 . . . Cj . . . Cl

H2

t1

...

ti

...

tk

H1

C11 . . . C1j . . . C1l

...
...

...
...

...

Ci1 . . . Cij . . . Cil

...
...

...
...

...

Ck1 . . . Ckj . . . Ckl

GTable 10
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Definition 4.5.2 (Proper inverted tables). T is proper at σ iff

(1) For some j, σ |= Cj

(2) For all j s.t. σ |= Cj, there exits i s.t. σ |= Cij.

(3) For all j s.t. σ |= Cj or [[Cj]]σ ↑, and all i s.t. σ |= Cij or [[Cij]]σ ↑, [[ti]]σ has the

same value a ∈ As (where s is the output sort).

Remarks 4.5.3. (Cf. Remark 4.3.3(2)) For the case that the terms in H1 are of sort

real, we need the stronger condition that the term [[ti]]σ in condition (3) above are

strongly equivalent.

Example 4.5.4 (A proper inverted table). According to the definition found in

[WL07], the table below is an example of a proper inverted table:

y ≥ 10 y < 10

H2

x + y

x− y

y− x

H1

x < 0 x < y

0 ≤ x < y y ≤ x < 0

x ≥ y x ≥ 0

G

Table 11

Definition 4.5.5 (Semantics of inverted tables). Let T be an inverted table over

Σ, and σ a state over T in A.
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(1) Suppose T is proper at σ. Choose indices j, i for which conditions (1), (2) and

(3) of Definition 4.5.2 hold. Then the meaning of T at σ is

[[T ]]Aσ = [[ti]]
Aσ

Note again that by the properness condition (Definition 4.5.2), the value of

[[ti]]
Aσ does not depend on the actual choice of indices j and i for which condi-

tions (1), (2) and (3) of Definition 4.5.2 hold.

(2) The extension of this defintion to improper tables is just as in Definition 4.4.6

for normal tables.

Definition 4.5.6 (Inverted table functions). This is defined exactly as for normal

table functions (Defintion 4.4.4).

4.6 Transformations of tables

We are interested in transforming tables from normal to inverted and from inverted

to normal, semantically equivalent tables which may be easier to work with. First we

define the notion of semantic equivalence of tables.

Definition 4.6.1 (Semantic equivalence of tables over A↑). Two tables, T1 and

T2 over A↑ are semantically equivalent on A↑ (written T1 ≈A↑ T2) iff for all states σ

over Var(T1, T2) in A↑, [[T1]]A
↑
σ ' [[T2]]A

↑
σ.
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Remark 4.6.2. Semantic equivalence is defined here not only as a relation between

proper tables (as in [Zuc96]) but also for improper tables.

We will define transformations

ϕ : τ → τ ′

of tables from one class τ to another class τ ′. These transformations must be effective

(in the syntax) and also satisfy the following properties:

(1) For all σ, T is proper at σ iff ϕ(T ) is proper at σ,

(2) ϕ is semantics preserving, i.e. ϕ(T ) ≈ T .

If ϕ(T ) = T ′, then T ′ is called the transform of T under ϕ.

4.7 Inverting a normal table

Following [Zuc96], we consider two methods for transforming a normal table to a

semantically equivalent inverted one.

In [WL07], the first inversion method is illustrated with a simple example as

follows: Consider the case of a 2-dimensional 3×3 normal table T , given in Table 14.

Example 4.7.1 (A normal table).
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C2
1 C2

2 C2
3

H2

C1
1

C1
2

C1
3

H1

t11 t12 t13

t21 t22 t23

t31 t32 t33

G

Table 12

T is “inverted along dimension 1” to produce an inverted table (Table 13) with

condition header H2 unchanged, and value header H1, much bigger than the original,

since the length of the value header in the new table has increased to the size of the

original table, i.e. the number of cells in its grid.

The second method for inversion is appropriate for a normal table T in which the

number of distinct terms (up to strong equivalence) in its grid is small. Suppose, e.g.,

the grid in Table 14 contains only 2 terms (up to strong equivalence), say t1 and t2,

as shown in Table 16. According to Method 2, we invert T , also along dimension 1,

to produce Table 17.
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Example 4.7.2 (Inversion of Table 12: Method 1).

C2
1 C2

2 C2
3

H2

t11

t21

t31

t11

t21

t31

t11

t21

t31

H1

C1
1 false false

C1
2 false false

C1
3 false false

false C1
1 false

false C1
2 false

false C1
3 false

false false C1
1

false false C1
2

false false C1
3

G

Table 13

Example 4.7.3 (A special case of Table 12).

C2
1 C2

2 C2
3

H2

C1
1

C1
2

C1
3

H1

t1 t1 t2

t2 t1 t2

t1 t2 t2

G
Table 14
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Example 4.7.4 (Inversion of Table 14: Method 2).

C2
1 C2

2 C2
3

H2

t1

t2

H̃1

C1
1 5 C1

3 C1
1 5 C1

2 false

C1
2 C1

3 C1
1 5 C1

2 5 C1
3

G̃
Table 15

Note that strong disjunction (5) is used here, in contrast to error algebras

[WL07] where strict disjunction is used. This points to the conceptual distinction

between error values and divergent values. Strict disjunction is used in [WL07], so as

to not to hide error values, but strong disjunction is used here so as to incorporate

divergent values in true conditions. (This difference is illustrated by Example 4.7.7

below.)

The following theorems holds for both inversion transformations considered in this

Section.

Lemma 4.7.5. Let T be a normal table, and T̃ the inverted table obtained from T by

Method 1 or 2. Then

T̃ is proper at σ ⇐⇒ T is proper at σ.

Proof. We show
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(1) T is proper at σ =⇒ T̃ is proper at σ;

(2) T is improper at σ =⇒ T̃ is improper at σ.

(1) T is proper at σ.

The proof is similar as for Theorem 3 (1) in [Zuc96]. Note that we need the

“strong” definition of disjunction to make this work in the case that some of the

conditions diverge, unlike the error case in the error algebras [WL07], as noted

above.

(2) T is improper at σ.

If H2 is not universal in T (at some state σ), then the same header H2 is not

universal in T̃ . If H1 is not universal in T, then all the columns in the grid of T̃

will also not be universal.

If H1 and H2 in T are both universal (at σ) but lead to different values on the

overlap, then these different values will also manifest themselves in the value

header of T̃ .

Remarks 4.7.6. Suppose the normal table T (Table 13) is proper but not strictly

proper, e.g. if σ |= C2
1 and σ |= C1

1 and also σ |= C1
3 . Then the inverted table

by Method 2 (Table 15) is still strictly proper. Hence Lemma ?? does not hold
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with “properness” replaced by “strict properness”. This explains our more liberal

definition of properness, following [WL07].

Theorem 4. Suppose T is a normal table, and T̃ is the inverted table obtained from

T by Method 1 or Method 2. Then

T̃ ≈A↑ T.

Proof. There are two cases.

(1) T is a proper at σ. Similar to Theorem 3 in [Zuc96, §8].

(2) T is improper at σ. Then by Lemma 4.7.5 the inverted table T̃ is also improper.

Thus we have,

[[T ]]A
↑
σ and [[T̃ ]]A

↑
σ both diverge.

Example 4.7.7 (Different forms of disjunction). (See Example 4.7.4)

Let T be the following table:

C2
1

H2

C1
1

C1
2

C1
3

H1

t1

t1

t2

G
Table 16: T
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Now by inverting T , we get T̃ as follows:

C2
1

H2

t1

t2

H1

C1
1 ∨ C1

2

C1
3

G

Table 17: T̃

In order to show the contrast, suppose, at a particular state,

C2
1 becomes tt, C1

1 becomes εε or ↑, C1
2 becomes tt and C1

3 becomes ff

First, working with error values [WL07], T becomes

tt

H2

εε

tt

ff

H1

t1

t1

t2

G

Table 18
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And by inverting with strict disjunction, we get T̃ which becomes

tt

H2

t1

t2

H1

tt ∨ εε → εε

ff

G
Table 19

Both tables are seen to be improper, as expected.

Alternatively, working (as in this thesis) with divergent values, we have T as

tt

H2

↑

tt

ff

H1

t1

t1

t2

G

Table 20
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And by inverting T now with strong disjunction , we get, T̃ which evaluates to

tt

H2

t1

t2

H1

tt 5 ↑ → tt

ff

G

Table 21

Both tables (20 and 21) are now proper, as we would expect from Lemma 4.7.5.

Hence, in both cases properness (or improperness) is preserved, as are the seman-

tics.

4.8 Normalizing an inverted Table

The transformation of an inverted table to a normal one produces a one-dimensional

table. The table presents a simpler view, with complex conditions inside the cells.

Adopting the example in [WL07], we consider the 2-dimensional 3 × 2 inverted

table shown as Table 22, with value header H1.
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Example 4.8.1 (Two-dimensional table).

C2
1 C2

2

H2

t1

t2

t3

H1

C11 C12

C21 C22

C31 C32

G

Table 22

This can be normalized to a 1-dimensional table, shown as Table 23.

Example 4.8.2 (Normalization of Table 22).

(C2
1 4 C11)5 (C2

2 4 C12)

(C2
1 4 C21)5 (C2

2 4 C22)

(C2
1 4 C31)5 (C2

2 4 C32)

Ĥ1

t1

t2

t3

Ĝ

Table 23

Note again that strong conjunction (4) and strong disjunction (5) are used

here, not strict conjunction and strict disjunction, as in [WL07], for error algebras.

While combining H2 conditions with the grid values, strong conjunction is used to

eliminate all ff conditions and to obtain only tt or ↑ conditions. Strong disjunction is
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used so that none of the convergent values are hidden, and so that ↑ values can be

incorporated in tt conditions, as discussed in Example 4.5.4.

Table 22 can also be normalized to Table 24, by “splitting strong disjunctions” in

the conditions.

Example 4.8.3. Another normalization of Table 22 is as follows (following [Zuc96]

and [WL07], but using strong disjunction):

C2
1 4 C11

C2
2 4 C12

C2
1 4 C21

C2
2 4 C22

C2
1 4 C31

C2
2 4 C32

H1

t1

t1

t2

t2

t3

t3

G

Table 24

Lemma 4.8.4. Let T̂ be the normal table obtained from T by the method of either

Table 19 or Table 20. Then

T̂ is proper at σ ⇐⇒ T is proper at σ.

Proof. By extending the method of Theorem 3(1) in [Zuc96] for proper tables, as in

Lemma ??(2).
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Theorem 5. Suppose T is an inverted table, and T̂ is the normal table obtained from

T as above. Then:

T̂ ≈A↑ T.

Proof. Similar to Theorem 4.

Remark 4.8.5. Here also, we see that properness and improperness are both

preserved, with our definition of properness (cf. Remark 4.7.6).



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have developed a systematic method for incorporating undefined

values in computation over many-sorted algebras. As we have shown, by the use

of extended algebras, undefined values can be handled effectively rather than being

ignored/omitted as was done in the case of error algebras.

The main difference between our partial algebras with undefined values, and total

algebras with error values [WL07] is the change of 3-valued logic, requiring strong,

instead of strict, disjunction and conjunction (see Examples 4.8.2 and 4.8.3).

In computing with undefined values, the most desirable attributes for the partial

functions are:

59
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(1) monotonicity, which is a weaker condition than strictness (see §3.2), and

(2) continuity, which ensures reliability of outputs (see the discussion in §3.3).

We have applied this theory to the semantics of (proper and improper) function

tables.

5.2 Future Work

There are many possible extensions of the work in this thesis; one of which is:

To develop a single, logically coherent, and not too complicated system, to incor-

porate both error values and undefined values.
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