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Abstract 

Magnetic Resonance Imaging (MRI) is an advanced tomographic technique 
that is able to produce high resolution cross-sectional images of an object or 
specimen by exploiting Radio Frequency (RF) pulses. A Variable Rate Selec­
tive Excitation (VERSE) pulse is a type of RF pulse that reduces the Specific 
Absorption Rate (SAR) of molecules in a specimen while preserving its dura­
tion and slice profile. SAR was designed to be minimized by the VERSE pulse 
as it leads to an increase in specimen temperature during MRI procedures. 

The nonlinear VERSE model was sequentially transformed into an op­
timal control problem that was efficiently solved by Sparse Optimal Control 
Software (§OC§). The Magnetic Resonance (MR) signal produced by numer­
ical simulations were then tested and analyzed by an MRI simulator. The 
VERSE model produced intriguing results and generated high-quality MR 
signals. The research and testing results produced by the VERSE pulse may 
influence further research in the area and have built an excellent foundation 
for more development of this RF pulse. 
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Preface 

The notion of applying mathematics to industrial, mechanical and other sim­
ilar physical problems has existed for centuries. Previously, this was typically 
an area for engineers and physicists, however, recently mathematicians have 
been indulging in this field. Their knowledge and understanding of the intri­
cate mathematical details behind these physical problems have allowed them 
to make many interesting discoveries and improvements in industry and sci­
ence. Magnetic Resonance Imaging (MRI) is one of such revolutionary pro­
cesses that produces internal images of specimens or objects without using 
any invasive diagnostic techniques. The impact of this imaging technique on 
the radiology community has been outstanding, primarily due to the systems 
ability to create high-quality images and uphold superior safety standards. In 
this thesis we present an optimized mathematical model that is designed to 
improve the signal generation stage of MRI. By attacking the problem using 
nonlinear optimization techniques we intend on upgrading the safety of the 
process while enhancing the image quality. 

This thesis was written for individuals with backgrounds in applied math­
ematics; hence, the basis of MRI and its principles will be detailed as the 
intended audience will probably have a weak understanding of this field. For 
more information, there exist many books on the subject, one can consult any 
of the various references listed in the bibliography [7], [17], [18]. The mathe­
matics behind the optimization model is covered in great detail. The model is 
primarily based on generating Magnetic Resonance (MR) signals through the 
use of Radio Frequency (RF) pulses. This is a very hot topic in MRI as there 
are many different types of RF pulses, each with specific characteristics. In 
fact, the characteristics of the RF pulse determine the contrast and resolution 
of the final image. The RF pulse we design is based on an idea from Conolly 
et al. [9] in 1987 that was never fully developed. We take this theory to the 
next level by modelling and implementing it in what is known as the Variable 
Rate Selective RF pulse. 
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Included in the thesis are seven chapters with three main topics, namely, 
the VERSE model, Nonlinear Optimization (NLO), and MR image recon­
struction. In Chapter 2, the nonlinear VERSE optimization problem is for­
mulated from an RF pulse idea. The NLO is then transformed into an optimal 
control problem that separates the models dimensions into state and control 
variables. The Sequential Quadratic Programming (SQP) optimization pro­
cedure for solving optimal control problems is detailed in Chapter 3. In addi­
tion, various methods of solving constrained and unconstrained optimization 
problems that progress to the SQP process are discussed. The implementa­
tion issuef! involved in computing the VERSE pulse are described in Chapter 
4. The ideas behind the initial solution and the functionality of the optimal 
control software, §OC§, used for solving the problem is also mentioned. In 
Chapter 5, the computational results for the VERSE pulse are shown for three 
different test cases. The results for 5 slices, 15 slices and 15 penalized slices 
are graphically illustrated and documented. The results are then tested by 
an MRI simulation in Chapter 6, where they are analyzed and examined with 
respect to the MR signals they generate. Our results and MRI simulations 
clearly show that mathematical optimization can have an unprecedented ef­
fect on improving RF pulses. We hope that the material is covered at an 
appropriate level and is useful in influencing future developments in the field. 
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Chapter 1 

Preliminaries 

Magnetic Resonance Imaging (MRI) has been given much attention in the 

past decade as it is a relatively new discipline in the realm of applied sciences. 

Paul C. Lauterbur and Peter Mansfield were awarded the 2003 Nobel Prize in 

Physiology or Medicine for their discoveries in MRI that lead to its beginnings 

in 1973. They proposed to introduce a spatially varying magnetic field to an 

object, and showed that the different frequency components of the signal 

could be separated to give spatial information about the object. This key 

innovation of spatially encoding MR data enabled scientists and engineers to 

develop what we know as MRI today. In this chapter we will outline the 

basics of MRI and focus on radio frequency pulses, but first we will discuss 

how important this tomographic procedure is to the medical community. 

1.1 Tomography 

Tomography, or visualizing the interior of the human body without surgical 

intervention, has existed for a little less than half a century and started with 

the development of X-ray tomography [20]. Tomographic imaging modali­

ties have progressed since then, a partial list includes, CAT (Computed Axial 

Tomography), PET (Positron Emission Tomography), SPECT (Single Pha-

3 
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ton Emission Computed Tomography), MRI, and various acoustic imaging 

systems such as Ultrasound. MRI, however, is the only tomographic imag­

ing technique that produces images of internal physical and chemical charac­

teristics of an object from externally measured Nuclear Magnetic Resonance 

(NMR) signals [18]. It is primarily based on the well known NMR phenomenon 

observed in bulk matter, independently described by Felix Bloch and Edward 

Purcell in 1946 [7]. Bloch continued extensive studies with the NMR of water, 

thereby laying the groundwork for later developments leading to MRI. He pro­

posed that the nucleus of atoms behave like small magnets and described this 

nuclear magnetism in what is now known as the Bloch equation. The Bloch 

equation explains that since an atom's nucleus spins on an imaginary axis 

and has an electric charge, it possesses a microscopic magnetic field called a 

magnetic moment. It is through the physical properties of magnetic moments 

that we are able to extrapolate a signal using spatially varying magnetic fields 

and create an MR image. 

The main thrust and reason MRI has been so well publicized is that it 

produces high resonance images without using radiation and thus, does not 

have the associated harmful effects. The lack of ionizing radiation has greatly 

influenced the medical community and is the reason MRI has presided any 

type of X-ray imaging. As shown in the electromagnetic spectrum in Figure 

1.1, MRI uses Radio Frequency (RF) electromagnetic radiation and magnetic 

fields, which do not cause ionizing radiation and allow vital areas, like the 

head, to be imaged. However, some known side effects, such as patient heat­

ing caused by high levels of SAR (Specific Absorption Rate), do occur, but, 

they do not lead to the malignant diseases emitted by radiation. Another 

reason MRI has received so much attention is due to its spatial and contrast 

resolution. Spatial resolution refers to the ability of a device or process to 

identify small, dense objects such as metal fragments or micro-calcifications. 

4 
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Figure 1.1: Electromagnetic spectrum. 

Contrast resolution allows visualizations of low-density objects with similar 

soft tissue characteristics, for instance, liver-spleen or white matter-gray mat­

ter [7]. MRI has superior contrast resolution that surpasses leading tomo­

graphic instruments in that area, namely Ultrasound and CAT tomography, 

as well as, equal or better spatial resolution. Also, the resolution coefficient 

is not dependent of the strength of the rays, rather it is a function of several 

intrinsic properties of the tissue being imaged. The three most important 

properties include spin density, spin lattice relaxation time and spin-spin re­

lation time, which will be discussed later. Finally, MRI has advantages over 

all other tomographic techniques in terms of the MR signals generated by 

the procedure. The MR signals used for image formation come directly from 

the object itself and are extremely rich in information content. In this sense, 

5 
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MRI is a form of emission tomography similar to PET and SPECT, yet, it 

does not involve the injection of radioactive isotopes. Also, using the MR sig­

nals, MRI processors can construct two-dimensional sectional images in any 

orientation, three-dimensional volumetric images, and even four-dimensional 

images representing spatial-spectral distributions [18]. In addition, no me­

chanical adjustments to the imaging machinery are necessary in generating 

these images. Thus, although MRI has some side effects, the procedure is 

safe and more advanced than any other tomographic modality, making it a 

superior imaging technique. 

1.2 MRI Basics 

In constructing an MRI image, three key components are necessary: A main 

magnet, which creates a strong uniform static magnetic field, an RF coil, 

which is responsible for altering the uniform magnetic field and generating a 

signal, and finally, a computer processor, which produces an image from the 

data in the signal [7]. An oversimplification of the MRI procedure would be 

as follows: First, a specimen or object is positioned in a large main magnet, 

which creates an uniform magnetic field in one axial direction, known as Bo. If 

we were able to look at the magnetic moments within the specimen or object, 

we would observe that they are all pointing in the same direction, Bo. Next, 

an RF coil produces an "RF pulse," which causes the magnetic moments to 

tip into an orthogonal direction of Bo, called the transverse plane [17]. The 

RF pulse is only aimed at a specific portion of the object or specimen that the 

user intends to image. When the magnetic moments tip into the transverse 

plane they generate a signal that is picked up by receiver coils, also part of 

the RF coil. In addition, the RF pulse is accompanied by a gradient sequence 

that is used to spatially modulate the signals orientation [7]. Finally, the data 

information generated by the signal is formulated into a final image with the 

6 
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assistance of a computer. This process is illustrated in Figure 1.2, where the 

first arrow represents the RF pulse generated by the RF coil and the accom­

panying gradient sequence. The second arrow represents the data processing 

of the signal into an image by a computer processor. Before going on, some 

Large Uniform Static 
Main Magnet 

Signal Generation 

Figure 1.2: The MR imaging process. 

important properties of the MRI hardware components should be discussed. 

The Main Magnet 

There are different types of main MRI magnets that can be utilized; however, 

generally super-conducting magnets are used as they produce high nlagnetic 

field strengths. Advantages of high field strengths include better signal-to­

noise ratio and spectral resolution. The signal-to-noise ratio accounts for 

the amount of "useable" signal data infonnation generated by the RF pulse. 

Spectral resolution describes the minimum frequency difference that can be 

detected in an MR spectrum, which relates to the resolution quality of the 

final image [17]. 

7 
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The RF System 

An RF coil consists of two components, the transmitter coil and the receiver 

coil. The transmitter coil is capable of generating a rotating magnetic field, 
---+ 

referred to as B rf, to excite the magnetic moments into the transverse plane. 

The receiver coil is responsible for signal detection, as it converts precessing 

magnetization into an electrical signal. A desirable feature of the RF coil is 
---+ 

that it provides a uniform B rf field and high detection sensitivity without 

exceeding specific limits of SAR [18]. There are many different types of RF 

coils, each with their own specific size and shape depending on their applica­

tion. 

The Gradient System 

The magnetic field gradient system consists of three orthogonal gradient coils 

that are integrated into the bore of the main magnet. Gradient coils are 

designed to produce time-varying magnetic fields of controlled spatial non­

uniformity, whose formal definition will be described in Chapter 2. The 

gradient system is a critical component of MRI as it is essential for signal 

localization. By producing microscope differences in the strength of Bo, the 

signal generated by the RF pulse has information on its spatial location with 

respect to the object or specimen being imaged. Important specifications for 

a gradient system include, the maximum gradient strength, and the rate at 

which a desired gradient strength can be obtained, known as the slew rate [18]. 

Signal Processing 

The signal produced by the RF pulse is amplified, digitized, transformed, 

and then combined together with other signals to form a final image. The 

computations involved in processing the signal data are well-known image 

reconstruction problems, common to many tomographic imaging modalities 

8 
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[11]. The signal processing stage of MRI has received much attention by soft­

ware developers, however, the essential computations of each software design 

are the same, which will be described in Chapter 6. 

1.3 MRI Pulse Concepts 

We have alluded to the underlying ideas involved in MRI, which are based 

on the interactions of nuclear spin and an external magnetic field. Actually, 

imaging a specimen or object rests on the MR systems ability to manipulate 

the hydrogen nucleus, particularly the hydrogen proton. The spinning motion 

of the hydrogen proton, caused by a microscopic magnetic field mentioned 

earlier, is described as precession. Precession is the "magnetic fingerprint" 

specific to the environment an atom resides in, as well as, the strength of 

the external magnetic field, Bo. The speed at which a proton spins, or pre­

cessional frequency, is defined in the Larmor equation, shown in Chapter 2. 

For example, given a general MRI external field strength, the hydrogen nu­

cleus precessional frequency is 85 200 Hz, just below the FM range of radio 

broadcasting [17]. When a pulse is applied to a volume of hydrogen protons 

at precisely the same radio frequency, they become excited. Hence, the name 

of the pulse was adopted to RF (radio frequency) pulse, since its strength 

is equivalent to that of radio waves. Further, when the hydrogen protons 

become excited their magnetic moments tip away from the external field di­

rection. The magnetic field produced by the aggregate proton spins yield a 

change in the flux of a nearby receiver coil [17]. In fact, this change in flux 

will be the greatest when the magnetic moments of the hydrogen atoms are 

directly perpendicular to the Bo axis. This is known as a 900 pulse, and if the 

original magnitude of the magnetic moment vectors in the Bo direction was 

Mo, then the resulting transverse magnetization (Le., magnetization in the x, 

y plane if Bo is parallel to the z-axis) has a magnitude of Mo. In addition, 

9 
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when a magnetic moment is excited into the transverse plane, the tipping 

motion exerted by the RF pulse is actually a rotation about the Bo axis, show 

in Figure 1.3. This is due to the properties of precession, and for this reason 

z 

Transverse Plane 

Figure 1.3: The effect of an RF pulse on an individual magnetic moment. 

many of the equations underlying MRI are described in the rotating frame of 

reference. A simple childhood carousel can explain the difference between a 

rotating frame of reference and a laboratory frame of reference. If you tried 

to locate the position of a child while you were "on" the carousel, or in the 

rotating frame of reference, it would be much easier than if you were "off" the 

carousel, in the laboratory frame of reference. 

After a number of RF pulses are given to a specimen or object, the sig­

nals they produce are mathematically combined to form the final MRI image. 

Within each RF pulse an accompanying gradient sequence is applied to the 

specimen or object being imaged. This enables the user, or computer pro­

cessor, to identify what part of the specimen or object the pulse was derived 

from. For example, if a gradient was applied in one axial direction, the pre­

cessional frequency of the magnetic moment vectors on one side of the object 

would be slightly higher than the other, with regards to that axis. Hence, 

10 
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depending on the precessional frequency of the signal, the user or computer 

processor would be able to identify what part of the object a signal comes 

from with respect to that axial direction. This can be expanded to account 

for gradients in three dimensions, as used with practical MRI machines. 

Although the concept of producing MR signals may seem fairly simple, 

reliable RF pulses and gradient sequences have not yet been perfected. The 

improvement of RF pulse time, image resolution, signal quality, and SAR 

reduction, are just a few areas within MRI pulse designs that need further 

development. In the next chapter we will introduce an RF pulse and gradient 

sequence called the Variable Rate Selective Excitation pulse that is designed 

to reduce SAR and improve signal quality. 

11 
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Chapter 2 

Variable Rate Selective 

Excitation (VERSE) 

In this chapter we describe the motivation and detail the intricate design 

involved in the Variable Rate Selective Excitation Radio Frequency pulse. 

The mathematical formulations governing MRl are introduced first so that 

the basis of the model and its underpinnings are appreciated. 

2.1 Background 

To understand the implications and effects of Variable Rate Selective Excita­

tion (VERSE) in Magnetic Resonance Imaging (MRI) we should begin with 

a short review of basic chemistry. It is known that any biological specimen or 

physical object can be broken down into molecules that are composed of many 

atoms. Further, each atom contains orbiting electrons and a nucleus that has 

a finite radius, mass and net electric charge. More specifically, nuclei with odd 

atomic weights and/or odd atomic numbers posses an angular momentum re­

ferred to as spin [18]. Due to nuclear spin and electric charge a microscopic 

magnetic field is generated within each nuclei. An ensemble of nuclei, such as 

one present in an object or specimen, produces a "spin system," illustrated 

13 
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in Figure 2.1. The microscopic magnetic field of each atom is represented by 

Figure 2.1: Magnetic moment vectors pointing in random directions. 

a vector quantity Ji(t), and it is known as the nuclear magnetic dipole mo­

ment or magnetic moment. The aggregate magnetic moment of all nuclei in a 

given unit volume is described as their magnetization, an intrinsic property of 

atoms that enables Magnetic Resonance Imaging (MRI). Consider a sufficient 
~ 

volume (V) of protons or nuclei known as a voxel, the magnetization, M(t), 

is 

~ 1 
M(t) = V L Jii(t), (2.1.1) 

Protons in V 

where Jii(t) is the magnetic moment of proton i in V at time t. Like the 
~ 

needle of a compass, when an external magnetic field, B (t), is applied to 

a specimen or object the magnetic moment vectors align in the direction of 

the field. However, instead of mimicking the external' field, the magnetic 

moment vectors behave like tiny spinning gyroscopes, a phenomenon known 

as precession, seen in Figure 2.2. Hence, the magnetic moment vectors precess 

in the direction of the external field and generate a net magnetization. The 

precessional frequency, wet), of a magnetization vector in the presence of an 

external magnetic field is represented by the fundamental Larmor relation 

~ 

wet) = 'Y B (t), 

where 'Y is the gyromagnetic constant. The precessional frequency is an es­

sential part of applying any type of Radio Frequency (RF) pulse used in MRI, 
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x 

Figure 2.2: Precession of nuclear spin about an external magnetic field in the 

z-axis direction, similar to the wobbling of a spinning top. 

as we will discuss later. Now, using the expression for torque on a magnetic 

moment due to an external magnetic field, we have 

Thus, a proton's magnetic moment with respect to time can be incorporated 

into (2.1.1) that results in, 

~ --+ 

dM(t) = .!. " d J-t i(t) = 1. "Jl.(t) x B (t) 
dt V L:-- dt V L:-- ' 

t t 

and therefore, 

~ 

dM(t) ~ --+ 
dt = 'YM(t) x B(t). (2.1.2) 

The relationship between proton interactions and an external magnetic field 

leads to additional terms in equation (2.1.2) that is described as the Bloch 

equation, an important stepping stone in the development of MRI. There 

are two types of proton interactions, spin-lattice interactions and spin-spin 

interactions. In spin-lattice interactions, a magnetic moment will tend to 

line up parallel to the external magnetic field, in its minimum energy state 
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[17]. As a result, the rate of change of longitudinal magnetization, mag­

netization in the z-axis direction, is proportional to the difference between 

initial magnetization and the z coordinate component of the magnetization 

vector. This proportionality relation becomes exact with the addition of an 

experimentally-determined parameter, Tl, which represents the inverse of the 

time scaled growth rate of longitudinal magnetization [17]. Thus, for the rate 

of change of longitudinal magnetization, dMz(t)/dt, we have 

dMz(t) _ ~(M - M ( )) 
dt - Tl 0 z t , 

where Mo is the initial magnetization in the z-axis direction, Mz(t) is the z 

coordinate component of the magnetization vector and Tl is the longitudinal 

magnetization parameter that has different values for various tissues. Also, 

the recovery of longitudinal magnetization is expressed by a relaxation rate 

parameter, Rb which is simply equivalent to the inverse of Tl [17]. Further­

more, this process is termed Longitudinal Relaxation, which is a consequence 

of spin-lattice proton interactions. Spin-spin interactions are slightly more in­

tricate since spins experience local fields that are combinations of the applied 

field and the fields of their neighbours [17]. Since variations in the local fields 

produce different local precessional frequencies, individual spins tend to "fan 

out" and de-phase. This ultimately leads to a decay of the magnetization 
---7 

vector in the x-y plane, described as transverse magnetization, M.l..(t). This 

process involves another experimentally-determined parameter, T2, which is 

known as the transverse magnetization parameter and also has various values 

for different tissues. Thus, for the rate of change of transverse magnetization, 
---7 

dM.l..(t)/dt, we have 

The decay or reduction rate of transverse magnetization is known as Trans­

verse Relaxation. This process requires a second relaxation rate parameter, 
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R2, where R2 = 1/72. Thus, by combining these two types of interactions and 

inducing an external magnetic field in the z-axis direction, the Bloch equation 

is as follows 
---+ 

dM (t) ---+ ---+ 1 .- 1 ---+ 
d = ,M(t) x B(t) + -(Mo - Mz(t))z - -MJ.(t), 
t ~ ~ 

where z is the z-axis unit vector, Mo is the initial magnetization in the z 
direction and 

are respectively the net and transverse magnetization vectors. Furthermore, 

we introduce the vector coordinates bx(t), by(t) and bz(t) of the external 
---+ 

magnetic field B (t), Le., 

2.2 The VERSE Model 

When processing an image, a number of precise Radio Frequency (RF) pulses 

are applied in combination with synchronized gradients in different directions 

[18]. Gradients are designed to produce time-altering magnetic fields of linear­

varying magnitude that ultimately allows our MRI processor to differentiate 

between specific sections of our specimen. An RF pulse at the Larmor fre­

quency excites the magnetization vectors of a voxel of protons into the trans­

verse (x, y) plane where an externally measurable signal is generated. This 

signal can then be amplified, digitized and Fourier Transformed (FT) into an 

17 



M.Sc. Thesis - Stephen J. Stoyan M cM aster - Mathematics and Statistics 

image. 

~ RFTnmsmit 
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f\ __ MR_S_ign",--al_ 

Figure 2.3: A generic NMR pulse imaging sequence. 

Based on the fundamental Larmor relation and the ideas proposed by 

Conolly et al. [9], we developed a new variant of the Variable Rate Selective 

Excitation (VERSE) pulse. VERSE pulses are designed to perform a trans­

verse excitation using only a fraction of the field strength in order to reduce 

patient heating caused by long, high energy pulses. The key innovation is 

to allow a "trade off" between time and amplitude. By lowering RF pulse 

amplitude the duration of the pulse may be extended [9]. As illustrated in 

Figure 2.3, RF pulses are generally very polarized (circled in the figure); our 

aim is to uniformly or more evenly distribute the signal. This flattened re­

distribution of the pulse causes a decrease in the Specific Absorption Rate 

(SAR) of our sample and hence, reduces the high signal amplitude found in 

other pulse sequences (i.e., spin echo) [9]. High levels of SAR constitute an in­

crease in specimen temperature during MRI procedures. Thus, by uniformly 

distributing the pulse amplitude over the excitation interval, the SAR of a 
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selective RF pulse is decreased. Mathematically, this equates to minimizing 

the external magnetic field generated by the RF pulse (Brf( t)), and therefore 

our objective is 

where T is the time at the end of RF pulse and 

Earlier we mentioned that MRI is based on the interaction of nuclear spin 
--+ 

with an external magnetic field; hence, Brf(t) is simply the vertical and hor-
--+ 

izontal components of B (t). Also, if low pulse amplitudes are produced by 

the VERSE pulse, the duration T of the pulse can be increased. 

Another part of MRI that we have not mentioned comes from the fact 

that since all our magnetization vectors are spinning, there exists a rotational 

frame of reference. However, if we set up our equations such that we are in 

the rotating frame of reference then we exclude the uniform magnetic field 

generated by the main super-conducting magnet, Bo. Instead we are left with 
--+ 

the magnetic field of our RF pulse, B rf( t), and our gradient 

G(t,s) = 0 --+ [0] 
sG(t) , 

where sG(t) is the gradient value at coordinate position s. Earlier we alluded 

to the function of gradients and their importance in producing time-altering 

magnetic fields. Hence, different parts of a specimen experience different 

gradient field strengths. Thus, by multiplying a constant gradient value by 

different coordinate positions s, we have potentially produced an equivalent 
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linear relationship to what is used in practice. Fundamentally, coordinate po­

sitions s have allowed us to split a specimen or object into "planes" or slices 

along the s direction, which for the purposes of this paper will be parallel 

to z, as depicted in Figure 2.4. Here, s corresponds to a specific coordinate 

Figure 2.4: Specimen separated into planes or slices about the z-axis. 

value depending on its respective position and further it has a precise and rep­

resentative gradient strength. As mentioned, an RF pulse excites particular 

voxels of protons into the transverse (x, y) plane where a signal is generated 

that is eventually processed into an image. Thus, we will use s to distinguish 

between voxels that have been stimulated into the transverse plane by an RF 

pulse and those that have not. Coordinate positions, s, of voxels that are 

stimulated into the transverse plane will be recorded and referred to as be­

ing "in the slice." Those voxels that are not tipped into the transverse plane 

will be referred to as being "outside of the slice," whose respective coordinate 

positions, s, will also be noted. Since any specimen or object we intend to 

image will have a fixed length, given s E S, we will restrict this semi-infinite 

constraint by choosing a finite set S c R S can then be further partitioned 

into the disjoint union of sets Sinl:JSout, where Sin represents the coordinate 

positions in the slice and Sout represents the voxels that we do not want to tip 

into the transverse plane, those which are outside of the slice. For each coordi-
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nate position, s E S, we add constraints corresponding to the Bloch equation 

however, boundary constraints correspond to different conditions depending 

on the position of the slice, as we will discuss later. Fundamentally, voxels in 

Sin, ensure uniform magnetic tipping into the transverse plane, whereas the 

s E Sout, certify external magnetization is preserved. 

---+ 
Thus, we now have B (t) with respect to coordinate positions s, whereby 

bx (t) and by (t) are independent of s, hence 

---+ 
B(t,s) = 

---+ ---+ 
Brf(t) + G(t, s) 

[ 
bx (t) 1 [ 0 1 [b

X 

( t ) 1 by(t) + 0 = by(t) . 

o sG(t) sG(t) 

---+ 
Also, since B (t, s) has divided the z component of our external magnetization 

into coordinate components, the same notation must be introduced into our 

net magnetization, hence 

---+ [ Mx(t,s) ] 
M(t, s) - My(t, s) , 

Mz(t, s) 

where s denotes the magnetization vector at specific coordinate position. Also, 

since VERSE pulses typically have short sampling times we will assume there 

is no proton interactions or relaxation, thus, from the Bloch equation we are 

left with 
---+ 

dM(t, s) 
dt 

---+ ---+ 
- ,M(t, s) x B (t, s) 

- ,M(t,s) X [bx(t),by(t),sG(t)]T. 
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Hence, we have 

~ - -M(t,s) x B(t,s) bx(t) 

Mx(t, s) 

[ .;(t) -

-by(t) 

and finally 

dM(t, s) _ ( ) 
dt - '"Y sG t 

_ [0 
-by(t) 

-sG(t) 

a 
bx(t) 

j k 

by(t) sG(t) 

My(t,s) Mz(t,s) 

-sG(t) b.(t) 1 [ lkf.(t,.) 1 
a -bx(t) My(t, s) , 

bx(t) a Mz(t,s) 

(2.2.1) 

When stimulating a specific segment of a specimen by an RF pulse, 

some of the magnetization vectors are fully tipped into the transverse plane, 

partially tipped, and those lying outside the slice are minimally affected. The 

magnetization vectors that are only partially tipped into the transverse plane 

are described as having off-resonance and tend to disrupt pulse sequences 

and distort the final MRI image [17]. In anticipation of removing such in­

homogeneities we introduce the angle Ct, at which net magnetization moves 

from the z direction to the transverse plane. By convention, Ct will be the 

greatest at the end of our RF pulse, at time T, and since we are in the 

rotating frame we can remove the y-axis from our equations. Thus, we can 

eliminate off-resonance s coordinates by bounding voxels affected by the pulse 
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and those not affected by the pulse, with a = 0, hence 

[ 

0 1 [ MAT,s) 1 o - My(T, s) 

Mo MAT,s) 

where C1, C2 2: O. Therefore, by comparing these two bounds we can determine 

the s coordinates from which we would like the signal to be generated and 

exclude off-resonance. 

Another factor we must integrate into our pulse is slew rate, W (t), also 

called gradient-echo rise time. This identifies how fast a magnetic gradient 

field can be ramped to different gradient field strengths [9]. As a result, higher 

slew rates enable shorter measurement times since, the signal generated by the 

RF pulse to be imaged is dependent on it. Thus, the slew rate and gradient 

field strength together determine an upper bound on the speed and ultimately 

minimum time needed to perform the pulse. Thus, there must be a bound on 

these two entities in our constraints, 

IG(t)1 < Gmw" 

W(t) = I d~~t) I < Wmax • 

Finally, we have the semi-infinite nonlinear optimization problem 

subject to, 

~ [0 dM(t, s) 
dt - 'Y sG(t) 

-by(t) 

-sG(t) 

o 
bx(t) 
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[ 

Mos~n(a) ]_ [ ~~~::~ ] 
Mocos( a) MAT, s) 

[ 
0] [ Mx(T,s) ] ° - My(T, s) 

Mo Mz(T, s) 

IG(t)1 :S Gmax , 

I
dG(t) 1< w. 

dt - max, 

Mx(O,s) = 0, 

My(O,s) = 0, 

Mz(O, s) = Mo, 

(2.2.5) 

(2.2.6) 

(2.2.78) 

(2.2.88) 

(2.2.98) 

where equations (2.2.2) - (2.2.98) apply V s E 8, t E [0, T]. Expanding the 

first constraint (2.2.38) produces the following equations, 

dM~~t, s) = ,[-sG(t)My(t, s) + by (t)Mz(t, s)], 

dM~~t, S) = ,[sG(t)Mx(t, S) - bx(t)Mz(t, S)], 

dM~~t, S) = ,[-by(t)Mx(t, S) + bx(t)My(t, S)]. 

(2.2.108) 

(2.2.118) 

(2.2.128) 

Thus, depending on our bound for the pulse, we will construct two sets of 

constraints, one for the voxels Bin E R. that will be stimulated by the RF 

pulse and one for those that will not, 80ut E R Which indices are affected 

will be determined by constraints (2.2.48in ) and (2.2.48out ). Thus, if we are 

given the voxels, (2.2.48in ) our pulse affects, then we can apply equations 

(2.2.108), (2.2.118) and (2.2.128) respectively. The same can be done for the 

other set of voxels minimally affected by the RF pulse, 8out . 
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2.3 Discretization 

By separating our specimen into coordinate positions we have ultimately cre­

ated two dimensional segments that are similar to records in a record box, 

whereby s E S represents the transverse plane at a particular position. Now 

we will discretize S into coordinate positions 81,82, ... , 8 n , where n is the 

total number of slices. Figure 2.5 represents what an MRI processor would 

interpret for a given object under a particular gradient where we have in­

corporated coordinate positions. Previously we defined Sin as the coordinate 

Figure 2.5: MRI processor separating partitions of an object into the trans­

verse plane by using different gradient strengths at each coordinate position 

positions whose voxels have been tipped into the transverse plane by an RF 

pulse. Now Sin will consists of a finite band of particular coordinate po­

sitions whose magnetization vectors have been excited into the transverse 

plane, hence, Sin = 8k, ... , 8kH, where 1 < k ~ k + 8 < n, 8 2 0 and k, 8 E Z. 

Subsequently Sout, which was defined as positions that were not stimulated 

in the transverse plane, will consist of all coordinate positions not in Sin, 

thus, Sout = 81,"" 8k-l, 8(kH)+1,"" 8n. Figure 2.6 represents how 8i E S for 

't = 1, ... , n would separate magnetization vectors into coordinate positions 
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that have been tipped into the transverse plane, and those that have not. One 

'C" ";'1' ,:\ ~ "::]' 
'\ r~~\ r 
I I I I =t= I 
Sl ",Sk_l Sk ",Sk+ Sk++l"'Sn 

Figure 2.6: Separating magnetization vectors into coordinate positions which 

are in the slice, Bin, and out, Bout. 

should also note that we have only discretized with respect to coordinate posi­

tions Si E B, not time t. Furthermore, we will define the coordinate position in 

Bin where RF pulse stimulation begins as §., and similarly, the position where 

it stops as s. Thus, we have §. = Sk and s = Sk+8, and we can now state the 

coordinate positions in the slice as Sin = [§., s). The first position where RF 

stimulation is a minimum, closest to §., but in Bout and towards the direction of 

SI, will be defined as §.z, As well, the same will be done for the position closest 

to B, which is in Sout and towards the direction of Sn, defined as Bu' Conse­

quently, §.z = Sk-l and Bu = S(kH)+1, and therefore the coordinate positions 

outside the slice can be represented as Sout = [SI,§.z)L:J[S'lLl sn). As depicted in 

Figure 2.6, Bin is located between the two subintervals of Bout, where Si E Bin 

is centered around 0, leaving Bout subintervals, [SI, §.z) < 0 and [su, sn] > O. 

As well, [SI, §.z] and [su, sn] are symmetric with respect to each other, hence, 

the length of these subintervals are equivalent, Sk-l - SI = Sn - S(k+8)+1' Fur­

thermore, the difference between respective coordinate positions within each 
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interval are equal to one another such that, 

(2.3.1) 

Sk-l - Sk-2 = S(kH)+2 - S(kH)+1' 

Also note that the discretization points, Si, within any interval [SI,~], [§., s] 

and [su, sn] do not necessarily have to be uniformly distributed and thus, 

more coordinate positions could be positioned closer to the boundaries of Sin 

and Souto The distance between coordinate positions (§.z, §.) and (s, su) will be 

much larger in comparison to other increments of Si' This is typically the area 

where voxels that have off-resonance characteristics are located. As mentioned 

earlier, magnetization vectors having off-resonance tend to disrupt pulse se­

quences and distort the MRI image. For this reason we will define the tol­

erance gaps of finite length where off-resonance prominently resides, between 

(§.z, §.) and (s, su), as So. Hence, S can now be partitioned into Sinl:JSoutl:JSo 

where a general sequence of the intervals would be Sout, So, Sin, SO, Souto 

2.4 VERSE Penalty 

An important component of the model now becomes evident, the nonlinear 

optimization problem defined in (2.2.2) - (2.2.9S) may be infeasible or difficult 

to solve when the number n of Si E S becomes large and the slices are close 

together. In particular, constraints (2.2.4Sin) and (2.2.4Sout ) potentially pose 

a threat to the feasibility of the problem as the number of variables increases. 

A penalty for the violation of these constraints can be imposed such that 

an optimal solution is located for problems with large numbers of variables 

and close Si coordinate positions. The basic idea in penalty methods is to 

essentially eliminate particular constraints and add a penalty term to the ob-
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jective function that prescribes high cost to infeasible points [1]. The penalty 

parameter determines the severity of the penalty and as a consequence, the ex­

tent to which the resulting unconstrained problem approximates the original 

constrained one. Thus, returning to the semi-infinite nonlinear optimization 

problem formulated in Section 2, we introduce penalty variables 6 and 6 to 

constraints (2.2.4Sin ) - (2.2.4Sout ), and the optimization problem becomes, 

subject to, 

IG(t)1 :::; Gmru" 

I
dG(t) 1< w, 

dt - max, 

Mx(O, Si) = 0, 

My(O, Si) = 0, 

Mz(O, Si) = Mo, 

=0, 

(2.4.1) 

(2.4.2S) 

(2.4.4) 

(2.4.5) 

(2.4.68) 

(2.4.7S) 

(2.4.88) 

where (1, (2 E lR are scalar penalty parameters and equations (2.4.1) - (2.4.88) 

apply V S E 8, t E [0, T]. One should note that the larger the value of (1 

and/or (2, the less violated constraints (2.4.38in ) and/or (2.4.3Sout ) become. 
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In addition, as it is written, the penalty variables are applied to each Si E 8 

for constraints (2.4.38in ) and (2.4.38out ). However, depending on computa­

tional results, it may be appropriate to only penalize coordinate positions in 

the neighbourhood of the bounds [.§,z,~] and [8,81£]. This would enhance the 

constraints on the optimization problem and only allow violations to occur 

at the most vulnerable points of the problem. Adding penalty variables and 

parameters to our optimization problem is an option that may not be nec­

essary and is dependent on the number n of coordinate positions applied to 

the model and how close we would like Si E 8 to be to one another. Hence, 

for the remainder of this paper we will omit writing out the penalty vari­

ables and parameters, however, the reader should note that they can easily 

be incorporated into the formulation. 

2.5 Optimal Control Problem 

The VERSE pulse formulation is a Nonlinear Optimization (NLO) problem 

that requires the objective function (2.2.2) to be minimized without violating 

the set of constraints (2.2.38) - (2.2.98). An NLO problem can be extended 

to an infinite number of variables where it can then be treated as an optimal 

control problem. Hence, an optimal control problem is an infinite-dimensional 

extension of an NLO problem, however, practical methods for solving optimal 

control problems require iterations with a finite set of variables and constraints 

[4]. Typically, optimal control problems are formulated as a collection of in­

dependent, state and control variables. By definition, state variables act col­

lectively as the trajectory of the system, whereas, control variables determine 

the course of the process [8]. For the VERSE pulse problem the independent 

variable is time t, while the state and control variables are defined within the 

dynamics of the system. Thus, for a problem with n slices, the state variable 
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is the 3n + 1 dimensional vector 

where O(t) E R3n+l. Similarly, the three dimensional control vector is 

with 4>(t) E R3. Subsequently, for any VERSE pulse problem we solve, the 

total number of state and control variables are 3n+4. Our system is governed 

by differential equations (2.2.108), (2.2.118), (2.2.12S) and slew rate, where 

for i = 1, ... ,n we have 

dMx(t, Si) 
dt 

dMy(t, Si) 
dt 

dMz(t, Si) 
dt 
dG(t) 

dt 

,[-siG(t)My(t, Si) + by (t)Mz(t, Si)], 

- ,[siG(t)Mx(t, Si) - bx(t)Mz(t, Si)], 

- ,[-by(t)Mx(t, Si) + bx(t)My(t, Si)], 

- W(t). 

This can then be represented as a function of state and control variables, 

namely 

f(O(t),4>(t)) = 

30 

dM.,(t,81) 
dt 

dM.,(t,8n) 
dt 

dM!I(t,Sn) 
dt 

dM.,(t,8n) 
dt 

dG(t) 
dt 

(2.5.1) 
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where f(O(t), ~(t)) is a 3n + 1 dimensional vector. In addition, the solution 

must also satisfy path constraints G(t) and W(t). For our problem bounds 

can be imposed on the state variable, 

(2.5.2) 

and the control variable, 

(2.5.3) 

which pertains to constraints (2.2.5) and (2.2.6), respectively. Therefore, we 

will define our path constraints by the vector 

which satisfies 

where 

W(O(t), ~(t)) = [ G(t) 1 ' 
W(t) 

-WL=WU= . [ 
Gmax 1 
Wmax 

(2.5.4) 

(2.5.5) 

In anticipation of finding an optimal solution, boundary conditions define the 

values of particular state variables at the start and end time of our evaluation. 

This allows the value of the dynamic variables at the beginning and end of our 

time interval to be pre-defined [4]. Thus, the initial conditions at the start of 

the time interval, t = 0, are 

My(O, Si) = 0, 

Mz(O, Si) = Mo, 

(2.5.6) 

(2.5.7) 

(2.5.8) 

again for i = 1, ... , n. Hence, the values from (2.5.6)-(2.5.8) are entered 

into 0(0) at the beginning of our evaluation. Terminal conditions that must 
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be satisfied at the end of the time interval are different for magnetization 

vectors in Sin, then for those in Souto As depicted in constraints (2.2.4Sin) and 

(2.2.4Sout ), at the end of our time interval, t = T, the terminal condition for 

the voxels Si E Sin are, 

(2.5.9) 

Whereas, for voxels Si E Sout, we have the following terminal condition, 

(2.5.10) 

Subsequently, the values for (2.5.9) and (2.5.10) are entered into n(T) at the 

end of the evaluation. Thus, the boundary conditions for the VERSE pulse 

problem will be expressed by 

(2.5.11) 

where 7/J Land 7/Ju contain the respective initial and terminal condition values 

found in (2.5.6)-(2.5.10). Penalty variables 6 and 6 would be incorporated 

into (2.5.9) and (2.5.10), respectively, if the problem required penalty terms. 

Also note that equality constraints can be imposed by using inequality ones 

by simply setting upper and lower bounds equal to one another, i.e., 7/JL = 7/Ju. 

Finally, our objective function to be minimized will be expressed as 

(2.5.12) 

where w( <I>(t)) is known as the quadrature function, which is commonly found 

in optimal control literature [5]. If penalty was part of our problem then 6(1 

and 6(2 would be added to the quadrature function in (2.5.12). Collectively, 
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we refer to the functions evaluated during the time interval as 

f(O(t), ~(t)) 

F(t) = w(O(t), ~(t)) 

w(~(t)) 

(2.5.13) 

the vector of continuous functions, however, boundary conditions evaluated 

at specific points are referred to as point functions [5]. Therefore, the solution 

to the optimal control problem requires 

J(t) = iT w(~(t)) dt (2.5.14) 

to be minimized. Notice that the objective function includes contributions 

evaluated at point functions and over the quadrature function [4]. 

Once the explicit details of our optimal control problem have been estab­

lished, it is then possible to discretize with respect to time. Thus, to solve the 

VERSE pulse problem, we take N discretization points on the time interval 

[0, T], including the end points, and hence 

The discretized time intervals have the step size, 

where £ = 1, ... , N - 1, ° < At < 1 and EAt = 1, is chosen such that the 

discretization points are located at fixed fractions of the total time duration 

[5]. We will define t to be composed of all the discretization points, hence 

and thus, the NLO variables can then be expressed as a function of our state 

and control variables 
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where x(O(.), q{), t) E ~2N. However, one should note that x(O(.), <P('), t) 
is composed of 2N sub-vectors that when expanded have the following form: 

x(O(.), <P('), t) = 

MAtI, Sl) 

My(t l ,8l) 

MzCtI, 81) 

Mx(tl,8n) 

My(tI, 8n ) 

MzCtI, 8n ) 

G(tl) 

O(tl ) bx(tl) 

<P(td by (tl ) 

W(tl ) 

Mx(tN,8l) 

O(tN) My(tN,8l) 

<P(tN) Mz (tN,8l) 

Mx(tN,8n ) 

My(tN,8n ) 

MzCtN,8n ) 

G(tN) 

bx(tN) 

by(tN) 

W(tN) 

which has the dimension N(3n + 4). For simplicity, we will let OJ _ O(tj), 
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thus 

OJ = 

[Mx(tj, 81)' My(tj, 81), Mz(tj, 81)"'" Mx(tj, sn), My(tj, 8n), Mz (tj , 8n), G(tj)f 

and similarly, 

for j = 1, ... ,N. Finally, we will set x = x(O(.),<p(.),t) and therefore, x 

now becomes 

(2.5.15) 

Also, the function from (2.5.1), which presently involves the discretized time 

intervals, tj, has the simplified notation 

(2.5.16) 

Using this notation, the ODEs defined in Ii are then approximated by setting 

finite differences equal to zero, hence 

(2.5.17) 

which will be a component of our NLO constraints [2]. In anticipation of 

writing each equation from l = 1, ... , N - 1 in a simplified matrix form, the 

nonlinear relationships are isolated in the vector 

p(x) = (2.5.18) 
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where p(x) is an N dimesional vector. In doing so, it is then possible to write 

the equations from (2.5.17) in the following matrix form 

0= Ax + Bp(x), (2.5.19) 

where the constant matrices A and B are given by 

-1 0 1 

-1 0 1 

A= -1 0 1 (2.5.20) 

-1 0 1 

and 

Al Al 
1 

B=--
2 

A2 A2 
(2.5.21) 

AN-I AN-I 

where A is an (N - 1) x 2N dimensional matrix and B has the dimension, 

(N - 1) x N [4]. Also note that, the scalar values in A are used to reproduce 

the first half of equation (2.5.17), however, take into account that ne, for 

example, actually represents a 3n + 1 dimensional vector, and hence, when we 

have ±1(ne) in Ax, ±1 would essentially be a vector of the same dimension. 

Using this construction, the constraints become 

[ 
Ax + Bp(x) 1 

CL ~ ~ Cu, 
x 

(2.5.22) 

where 

(2.5.23) 

and CL, Cu E R(N-I)+2N. Also note that x has the simple bounds from 

inequality (2.5.11), where x E ['1h, 'l/Ju], and as well, the objective function 
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(2.5.14) can now be expressed in terms of x. Finally, the NLO problem can 

be stated as follows: 

min J(x), 

[
Ax +xBP(x) 1 s. t. CL::; ::; cu, (2.5.24) 

A number of different NLO algorithms can be employed to solve (2.5.24), the 

VERSE optimal control problem, which we will discuss in the next chapter. 

However, regardless of the NLO method, this would find the optimal solu­

tion to the objective function (2.2.2) while satisfying constraints (2.2.38) -

(2.2.9S). 
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Chapter 3 

Nonlinear Optimization 

Among the various Nonlinear Optimization methods, Sequential Quadratic 

Programming is a powerful optimization technique utilized by many com­

petitive software systems. In this chapter we will begin with a background 

of certain unconstrained optimization methods leading to the development 

of Sequential Quadratic Optimization, implicated within many optimization 

software packages. 

3.1 Unconstrained Optimization 

Before attempting to solve the nonlinear, constrained, VERSE optimization 

problem, we will begin with an overview of unconstrained optimization. Con­

sider the following minimization problem, 

min J(x), 

where x E RN and J : RN --+ R. Many algorithms have been developed to 

solve unconstrained optimization problems that can be separated into two 

general categories, direct search methods or derivative-based methods. Direct 

search methods are composed of algorithms that are only based on function 

value comparison. Typically, these methods are costly and are used for prob-
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lems in which the function, J, is possibly neither smooth nor continuous. 

Frequently used direct search methods include the pattern search Nelder­

Mead simplex algorithm, the Hooke-Jeeves cyclic coordinate search and other 

Derivative Free Optimization (DFO) algorithms. Derivative-based methods, 

on the other hand, are used for problems in which J is smooth and thus, 

the derivatives are easy to calculate. For the VERSE optimization problem, 

a derivative-based method will be utilized. First we will begin by outlining 

derivative-based methods in unconstrained optimization. Two classical ap­

proaches to such an optimization problem are Line Search based methods 

and Trust Region methods. 

3.1.1 Line Search Method 

First, we will describe the general outline of Line Search Based Algorithms, 

then we will discuss its steps in more detail. A line search based algorithm 

can be outlined as follows: 

Input: c > 0, the accuracy parameter and xo, a given feasible starting point. 

Step 1 Initialization: Set x = xo and q = O. 

Step 2 Compute Search Direction: Determine a non-zero vector aq 

representing a descending feasible 

search direction from xq
; 

Step 3 Compute Line search: 

Step 4 Update: 

Step 5 Test for stoping criteria: 

If no such direction exists, Stop, xq 

is a local optimal solution. 

Find a positive step length P,q, such 

that P,q = minjl J(xq + p,aq). 

Let xq+1 = xq + p,qaq and q = q + 1. 

If the stopping criteria is satisfied 

Stop; 

Else return to Step 2. 
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An explanation of the important steps in the algorithm will now be given. 

For more information on stopping criteria, convergence and algorithms with 

regards to specific search directions, the reader can refer to [1], [12] or [13]. 

Search Direction 

Depending on the search direction method, a first-order and/or second-order 

partial derivative of the function J is evaluated during successive iterations to 

determine the search direction. Therefore, J has to be at least once contin­

uously differentiable and for higher order methods like the Newton method, 

it is necessary that J be twice continuously differentiable. Most models are 

based on a Taylor series approximation and for our purposes we will exploit 

two well known search directions, the Gradient Direction and the Newton Di­

rection. 

A. Gradient Direction 

The first-order Taylor expansion of the function J around xq gives 

(3.1.1) 

The Gradient method, which is also known as the Steepest Descent, utilizes 

the search direction aq
, such that j(~ + aq

) is minimized, while the length 

of aq is normalized to Ilaqll = 1 I"VJ(xq) 1 I· Therefore, we have 

min (aq)T"V J(xq) 
Ilooq II=IIV J(xq) II 

and hence, the search direction becomes [1] 

(3.1.2) 

B. Newton Direction 

The second-order Taylor expansion of J around xq gives 

- 1 J(xq + aq) = J(xq) + (aql"V J(xq) + 2 (aq)T"V2 J(xq)aq. (3.1.3) 
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The Newton method also searches for a direction uq that minimizes J(xq+uq). 

By taking the first derivative of the right hand side with respect to uq and 

setting the left hand side of (3.1.3) equal to zero, we have 

o - 'V J(xq) + 'V2 J(xq)uq 

_'V2J(xq)uq - 'VJ(xq). 

Thus, the search direction becomes [1] 

(3.1.4) 

It is obvious to see that in order to have a solution, the Hessian, 'V2J(xq), 

must be non-singular. In addition, the Hessian must also be positive definite, 

that will ensure we have a descent direction. 

Line Search 

After computing a search direction uq for a given iteration, a line search is 

then used to decide how far to move along this search direction. A line search 

is a subroutine in our algorithm that chooses a step size such that the new 

iterate has a better value with respect to the objective. The iteration is given 

by 

where the positive scalar value, j.lq, is known as the step length. Although it 

is not always possible, the ideal choice for j.lq is the minimizer of 

(3.1.5) 

where m(·) is a univariate function [12]. Also note that usually the optimal 

j.l is positive, otherwise we would be at an optimal solution. 
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A univariate function is unimodal in [J.Lmin , J.Lmax] if there exists a unique 

J.L* E [J.Lmin , J.Lmax] such that for any J.Lb J.L2 E [J.Lmin , J.Lmax] where J.Ll < J.L2, we 

have that: 

if J.L2 < J.L*, then J(J.Ll) > J(J.L2) (slope down); 

and if J.Ll > J.L*, then J(J.L2) > J(J.Ll) (slope up). 

This implies that the function is non-increasing on the interval [J.Lmin , J.L*] and 

non-decreasing on the interval [J.L*, J.Lmax] [12]. The Golden Section search 

and Quadratic Interpolation are two examples of many methods that find the 

minimum, J.L*, of a univariate function, granted it is unimodal. These methods, 

however, are expensive since they usually require many function evaluations 

to find J.L*, and also, functions are rarely unimodal. Thus, more practical 

strategies include inexact line searches. Such searches identify a step length 

that achieves adequate reduction of the function, J, at minimal cost. The 

Goldstein-Armijo principle is a well known rule that defines an acceptable step 

length range that is often used in inexact line searches [12]. When computing 

a step length J.Lq of J(xq + J.Lqaq) , the new point should decrease J proportional 

to the tangent line. Thus, we use the following bound, 

(3.1.6) 

where 0 < <PI ~ <P2 < 1, J.Lq > 0 and J'(xq)aq < o. The upper and lower 

bounds in the above Goldstein-Armijo principle ensure J.Lq is a good choice 

by specifying a sufficient decrease in the objective function while exploiting 

the maximal allowed step length [19]. Generally, <PI is quite small, however, 

typical value's of <P2 depend on the search direction that is used. 

3.1.2 Trust Region Method 

The Trust Region method is similar to Newton's method, however, the model 

is minimized without the line search, but under the restriction of some Trust 
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Region radius. Also, the algorithm does not require that the Hessian is in­

vertible nor positive definite, instead these properties are enforced with the 

addition of another matrix. As in Newton's method, the approximation is de­

rived from a second order Taylor expansion that we will define as h(xq + (Jq), 

and hence 

(3.1.7) 

Instead of the line search computed in Section 3.1.1, when the search direction, 

(Jq, is determined, the Trust Region method restricts the step size by, 

(3.1.8) 

where ~q > a and is known as the Trust Region radius [1]. This enables the 

step size to be finitely bounded, hence, the steps taken from xq to Xq+l, 

have a maximal length of ~q. To deal with the length of ~q between each 

iteration, its value is adjusted based on the relation between the approxima­

tion 

and the objective function J(xq + (Jq) values. If the relation is "strong", then 

the model can be "trusted" and further, ~q can be increased. However, if the 

relation is "weak", then ~q is decreased or it remains unchanged depending 

on the level of "weakness." Exactly how this entity is determined will be dis­

cussed when describing the algorithm. 

Thus, at each iteration, q, the minimizer of the approximation 

1 J(xq) + V J(xqf (Jq + -((Jqfv2 J(xq)(Jq 
2 
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must be established over the trust region. There are many approaches to find 

such minimizers, however, for the purposes of this paper, it will be sufficient 

to describe one of the strategies found in [12]. Thus, the problem becomes 

the minimization of 

(3.1.9) 

where I is the identity matrix and g E lR can be considered to be the the 

Lagrange multiplier for constraint (3.1.8) whose purpose is to ensure that 

(V'2 J(xq) + gI) is positive definite. Also, since g is the Lagrange multiplier for 

\\aq
\\ ~ iJ.q , we have 

and later, one can verify that the larger iJ.q becomes, the smaller g is, and 

visa versa. The search direction, aq
, of the Trust Region method is derived 

after solving the equation, 

(3.1.10) 

One should note that when we solve for the search direction, 

(3.1.11) 

it becomes apparent that as g -+ 00, then we approach some multiple of the 

Gradient step, however, if g = 0, then a Newton step is taken, as illustrated in 

Figure 3.1. This process is controlled by comparing the predicted decrease in 

the approximation, J(xq) -h(xq +aq), and the actual decrease in the objective 

function, J(xq) - J(xq + aq). Hence, the ratio 

J(xq) - J(xq + aq) Actual Decrease 
v = = ..._._------

J(xq) - h(xq + aq) Predicted Decrease' 

is calculated at each iteration and if v is large enough, then the trust region 

is expanded in the next iteration. However, if v is sufficiently small, then the 
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Figure 3.1: Depending on the values of e, the Thust Region method can take 

a Gradient step, -\lJ(xq) or Newton step,-(\l2J(~))-1\lJ(xq). 

trust region is reduced; otherwise, the trust region radius remains the same. 

Thust-Region Algorithm 

The Thust-Region algorithm can be controlled by using the Thust-Region ra­

dius, ~q, or using the Lagrange multiplier, e. Using a e update, the Thust­

Region method would be as follows: 

Input: The starting point xo, Lagrange multiplier e> 0, and the constants, 

o < rh < 172 < 1 and 0 < ,1 < 1 < ,2' 

For q = 0, 1, ... 

If x q satisfies the stopping criteria, Stop. 

Else, solve for aq 

and compute, 
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Then update g, 

If Vq < 111 then, x q+1 = xk and 

If 111 :::; Vq :::; 112 then, x
q+1 = x

q + a q 

If Vq > 112 then, x
q+1 = x

q + a q 

g = "t2g 

and g=g 

and g = "t1g 

(step failed); 

(step as predicted); 

(step is very good). 

The parameters, "t1 and "t2, decide the amount to increase or decrease the 

trust region. As mentioned, an increase in g leads to a decrease in !:l.q. Typical 

starting values for the variables you set are: 111 = ~, 112 = ~, "t1 = ~, and 

"t2 = 2 [12]. 

3.2 Equality-Constrained Optimization 

The preceding section has addressed unconstrained optimization problems, in 

this section, we complicate matters slightly by introducing constraints to our 

discussion. In particular, let J : }RN ---7 }R, Ci : }RN ---7 }R for i = 1, ... ,m :::; N, 

and consider how to find the N dimensional vector x T = (Xl, ... , XN) to 

minimize 

J(x) (3.2.1) 

subject to the m :::; N constraints 

(3.2.2) 

The classical approach is to define the Lagrangian 
m 

.c(x, (l) = J(x) - (IT c(x) = J(x) - L (liCi(x), (3.2.3) 
i=l 

where {IT = ({l1, ... , (lm) is the Lagrange multiplier. For the point x* to be 

a.n optimum, the derivatives of the Lagrangian with respect to both x and {l, 

must be zero, hence 

(3.2.4) 
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and 

V' g£(x*, g*) = o. (3.2.5) 

Here, the gradient of £ with respect to x is 

m 

V'x£ = V'xJ(x) - L{!iV'XC;(X). (3.2.6) 
i=l 

If we let g(x) = V' xJ(x) and define the Jacobian of the constraints by 

!lll !lll 
axl ax2 

G(x) = ae;;:) = 
~ ~ 
axl ax2 (3.2.7) 

then (3.2.6) can be simplified to 

V'x£ = g(x) - (G(x)f g. (3.2.8) 

The gradient of £ with respect to g is 

(3.2.9) 

Conditions (3.2.4) and (3.2.5), however, do not distinguish whether or not 

a point is a minimum or maximum, therefore, we require conditions on the 

curvature of the function. Let us define the second order derivative of the 

Lagrangian as 

m 

L = V'!c£ = V'!cJ(x) - L giV'!cC;(X). (3.2.10) 
i=l 

Then a sufficient condition for defining a minimum is that 

(3.2.11) 

for any vector y in the constraint tangent space. Hence, if G(x)y = 0, then 

the vector y is tangent to the constraints at x and further, is in the constraint 
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tangent space. 

Let us now apply Newton's method to find the values of (x, g) such 

that the necessary conditions (3.2.4) and (3.2.5) are satisfied. First we will 

simplify our notation by letting g = g(x) and G = G(x). As well, we will 

define H = H(x) as the Hessian of the constraints and a as a search direction 

for a step x = x + a. Taking a Taylor series expansion analogous to the one 

found in (3.1.3), the quadratic objective is the minimization of 

(3.2.12) 

subject to the constraints 

GO" = -c(x). (3.2.13) 

Thus, after constructing the Lagrangian, as in (3.2.3), and making the sub­

stitution a = x - x, the functions in (3.2.4) and (3.2.5) become 

Vx£'(x*, g*) = 0 = g - GT g + L(x - x) - GT(g - g), 

V g£'(x*, g*) = 0 = -c(x) - G(x - x), 

(3.2.14) 

(3.2.15) 

where (j is the vector of the Lagrange multipliers at the new point and the 

Hessian is approximated by the second order derivative of the Lagrangian [4]. 

Equation (3.2.14) can be simplified to 

(3.2.16) 

Here, (3.2.15) and (3.2.16) lead to a set of equations analogous to (3.2.13) 

called the Karush-Kuhn-Tucker (KKT) system, namely 

(3.2.17) 

It is important to note that the quadratic approximation is made to the La­

grangian (3.2.3), and it is not simply the objective function J(x). 
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3.3 Inequality-Constrained Optimization 

A NonLinear Optimization (NLO) problem can be stated as finding the vector 

x that minimizes the objective function 

J(x), (3.3.1) 

subject to the constraints 

CL :::; c(x) :::; cu, (3.3.2) 

and the simple bounds 

(3.3.3) 

Applications of NLO usually involve a large number of variables and con­

straints, as in the VERSE pulse problem. For a solution, x*, to satisfy the 

Karush-Kuhn-Tucker (KKT) conditions, the following conditions must be sat­

isfied. 

KKT Conditions: 

i. x* is feasible, hence (3.3.2) and (3.3.3) are satisfied; 

ii. There exists Lagrange multipliers r;l = (&11, ... ,&1m) and 

AT = (AI, ... ,Am) such that 

where g = V' xJ(x) is the gradient vector and G is the Jacobian 

matrix (3.2.7); 

iii. The Lagrange multipliers 

&Ii, Ai ~ 0 ViE A(CL' XL), 

&Ii, Ai :::; 0 ViE A(cu, xu), 
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where A(·) is the set of active constraints or variables [1]. 

Sequential Quadratic Programming (SQP) is one of the most powerful method 

of solving NLO problems. It is especially efficient in finding the solution to 

discretized optimal control problems. The algorithm finds a feasible objec­

tive value by solving a sequence of quadratic subproblems. The fundamental 

premise of the approach is to approximate the nonlinear constraint functions 

by a linear model, and the objective function by a quadratic model. First 

we will discuss the Quadratic Optimization (QO) subproblem, followed by a 

definition of the merit function, and then show how it is applied within the 

SQP algorithm. 

3.3.1 Quadratic Optimization 

A primary element of the SQP algorithm is our ability to solve quadratic 

subproblems efficiently. Solutions of the QO subproblem are used to define 

new estimates for the variables according to the formula 

X=X+J.J,(J, (3.3.5) 

where the vector u is the search direction and the scalar J.L determines the step 

length. The search direction u is found by minimizing the quadratic objective 

function 

(3.3.6) 

subject to the linear constraints 

(3.3.7) 

where H is a positive definite approximation of the constraint Hessian ma­

trix, which will be described later; for more details on can also consult [10]. 
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In addition, the constraints involve the Jacobian matrix G and the search 

direction, which are bounded by 

CL = [ CL - c(x) ] , 
XL-X 

_ [ Cu - c(x) ] and Cu = . 
Xu -x 

(3.3.8) 

We will now describe the merit function and Hessian approximation tech­

niques that are used to solve the quadratic optimization problem. In the 

next chapter we will explain how the vector g, and matrices, Hand G, are 

configured with respect to our VERSE pulse problem. 

Merit Function 

When a quadratic program is used to approximate a constrained nonlinear 

problem, it is necessary to adjust the step length, Il, using a merit function. 

The merit function combines the constraints and the objective function such 

that a relatively large step length is taken that produces sufficient reduction 

between iterates. The merit function is defined as 

M(x, (}, >., u, v) = J(x) - (}T(c - u) - AT(x - v) 

1 T I( T ( + "2(c - u) Q(c - u) + "2 x - v) R x - v) , (3.3.9) 

where c = c(x) for simplicity. In addition, the diagonal penalty matrices, Q 

and R, have diagonal elements denoted by Qii = qi and Rii = rio The target 

values, u and v, for the merit function are defined at the beginning of the 

step, such that we have 

and 

{ 

CLi 

lii := l; - (}dqi 

CUi 

if CLi > Ci - (}dqi' 

if CLi ~ l; - (}dqi ~ CUi, 

if l; - (}dqi > CUi, 

XLi if XLi> Xi - Ai/ri, 

Xi - Ai/ri if XLi ~ Xi - Ai/ri ~ XUi, 

XUi if Xi - Ai/ri > XUi, 
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where i = 1, ... , m [4]. In each step of the SQP algorithm, first (3.3.6) -

(3.3.8) are solved to get the search direction, a. Then the predicted constraint 

variables, U, are derived, where 

U = Ga+c. (3.3.12) 

Using this expression (3.3.12) we define the constraint vector displacement by 

~u = u - u = Ga + (c - u). (3.3.13) 

A similar technique defines the search direction for the v variables 

~v=v-v=a+(x-v). (3.3.14) 

An estimate of the Lagrange multiplier is necessary since, in general, equa­

tion (3.3.4) is not always satisfied. There are a number of different methods 

available to find Lagrange multiplier estimates, g and A, one of which, from 

[15], involves optimizing the following least-squares problem: 

It is then possible to define the displacements for the multipliers as, 

(3.3.15) 

and 

(3.3.16) 

Thus, the search direction is given by 

It is then necessary to update the penalty parameters Q and R to ensure 

the search direction is decreasing. In [4, 14], it is shown that the convergence 

of the method assumes that the penalty parameters are chosen such that 

, 1 T 
Mo ~ -'2a Ha, (3.3.17) 
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where M~ denotes the directional derivative of the merit function (3.3.9) with 

respect to the the step length fl evaluated at fl = o. To satisfy inequal­

ity (3.3.17), it is necessary to utilize the vector 3, whose elements have the 

following characteristics: 

~ {qj -~o if 1 < j ~ m, 

=-j = rj-m - ~o if m < j ~ (m + N), 
(3.3.18) 

where ~o > 0 is a strictly positive constant known as a "threshold." Since 

(3.3.17) provides a condition for the (m + N) penalty parameters, we make 

the choice unique by minimizing the norm 1131 b. This yields 

(3.3.19) 

where 

(Cj - Uj)2 if 1 < j ~ m, 

(Xj-m - Vj_m)2 if m < j ~ (m + N), 
(3.3.20) 

and 

(= - ~(TTH(T + gT Au + ~T Av - 2(Agf(c - u) 

- 2(A>.)T(X - v) - ~o(c - uf(c - u) - ~o(x - vf(x - v). (3.3.21) 

Typically, the threshold parameter ~o, is set to machine precision and in 

essence, the penalty parameters are chosen to be as small as possible with 

the descent condition (3.3.17). 

Using the Goldstein-Armijo principle in (3.1.6), a line search 71 that 

minimizes the merit function (3.3.9) is determined. Then a new point is 

derived according to 

x x (T 

g g Ag 

X - >. +71 A>' (3.3.22) 

u u Au 

v v Av 
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Thus, the SQP algorithm to solve the NLO given by (3.3.1) - (3.3.3) can be 

summarized in the following algorithm: 

Obtain u and v from (3.3.10) - (3.3.11), and fix (J, A. 

Step 1 Solve the QO subproblem (3.3.6) - (3.3.7) to obtain a. 

Step 2 Determine ii, v and find ~u, ~v using (3.3.13) - (3.3.14). 

Step 3 Update the displacements !:::..(J,!:::..A in (3.3.15) - (3.3.16) using g,). .. 
Step 4 Update Q and R to ensure the search direction 

[aT !:::..I1T !:::..AT !:::..uT !:::..VT]T is decreasing , ~, , , . 
Step 5 Compute the Goldstein-Armijo line search to minimize the merit 

function (3.3.9) that give the step length, 71. 
Step 6 Compute the new point [x, e, X, IT, vY using (3.3.22). 

Step 7 If the stopping criteria is satisfied Stop; 

Else return to Step 1. 

A stoping criteria would also include that if no descent search direction is 

found in Step 4, then a local optimal solution is found. 

The merit function is also used to update a fundamental parameter in 

developing a positive definite approximation of the Hessian, H in (3.3.6), 

which will be described later. We will outline the two quantities involved 

in such a process and their purpose will become apparent when describing 

the algorithm. For simplicity, we will set M(x, (J, A, u, v) = M, and for an 

iteration, the algorithms "actual reduction" is represented as 

(3.3.23) 

where M is the current value of the merit function and M is the value after 

one step of the algorithm. The algorithms "predicted reduction" of the step 

is 

-- , 1 T 
lI2 = M - M = -Mo - 2a Ha, (3.3.24) 
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---where M is the predicted value of the merit function made during the min-

imization process, described in the SQP algorithm on page 59. For different 

merit functions one can consult [21]. 

Hessian Approximation 

A positive definite Hessian ensures that the optimal solution of the QO prob­

lem is unique and allows Q and R to satisfy the descent condition (3.3.17). 

First we construct the second order derivative of the Lagrangian, 

L = V~J(x) - L (!i V~C;(x). (3.3.25) 

However, the problem is that L is generally not positive definite, consequently 

a modified matrix H is used, where 

(3.3.26) 

Here, /., is the Levenberg parameter that is chosen such that 0 :S /., :S 1 and is 

normalized using the Gerschgorin bound for the most negative eigenvalue of 

L, where 

HL = min {hii - ~ Ihi>l} 
I<i<N ~ J 
- - ifj 

(3.3.27) 

and hij is the nonzero elements of L, see [3]. The proper choice of the Leven­

berg parameter, /." may greatly effect the performance of the SQP algorithm. 

For instance, quadratic convergence can be obtained if /., = O. However, if 

/., = 1, in order to guarantee a positive definite Hessian, a gradient direction is 

used and subsequently, the algorithm converges linearly [13]. Thus, a strategy 

similar to that used in the Trust-Region method is employed to choose the 

Lavenberg parameter between successive iterations. By utilizing parameters 

VI and V2, such a strategy would maintain a positive definite Hessian while 

attempting to have strong convergence. In addition, the positive definiteness 
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of the projected Hessian is inferred by the inertia of the related KKT matrix, 

the abbreviated 2 x 2 matrix in (3.2.17). However, in order to describe the 

inertia of the KKT matrix and how it can be utilized, equations (3.3.6) -

(3.3.7) must be reformulated. 

3.3.2 Sequential Quadratic Programming 

The QO formulations can now be incorporated in an SQP (Sequential Quadratic 

Programming) framework. First it is necessary to state the QO subproblem 

in the following matrix form: 

Compute 0- to minimize 

(3.3.28) 

subject to the constraints 

Go-=c , (3.3.29) 

and simple bounds 

(3.3.30) 

Since this formulation involves only simple bounds (3.3.30) and equality con­

straints (3.3.29), the tilde notation was introduced to denote the transforma­

tion of the original variables in (3.3.6) - (3.3.7) to (3.3.28) - (3.3.30). This 

is accomplished by including slack variables in (3.3.29) and bound vectors in 

(3.3.30). The search direction can be computed by solving the KKT system 

similar to (3.2.17), which in this case is 

(3.3.31) 
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where we assume that the current iterate is feasible or starts at a feasible 

point, i.e., c = O. Thus, the KKT matrix in (3.3.31) is defined as 

= [H G
T 

1 K _ , 
G 0 

(3.3.32) 

and now we can show how the Levenberg parameter t is adjusted from iteration 

to iteration by using K. Inertia is defined as the number of positive, negative, 

and zero eigenvalues of a matrix [6]. The inertia of the KKT matrix can be 

used to infer the positive definiteness of the Hessian matrix, shown in [16]. 

The inertia of K is easily computed as a byproduct of the symmetric indefinite 

factorization by counting the number of positive and negative elements in the 

diagonal matrix. Using results from [16], the Hessian will be positive definite 

if the inertia of K is 

In(K) = (N, m, 0), (3.3.33) 

where N is the number of rows in Hand m is the number of rows in G. Basi­

cally the philosophy is to reduce the Levenberg parameter when the predicted 

reduction in the merit function agrees with the actual reduction, and increase 

the parameter when the agreement is poor. The process is accelerated by 

making the change in t proportional to the rate of change in the gradient of 

the Lagrangian. To be more precise, we compute VI and V2 at iteration q from 

(3.3.23) - (3.3.24). Then find the rate of change in the norm of the gradient 

of the Lagrangian 

(3.3.34) 

where the error in the gradient of the Lagrangian is 

'13 = g - G T 
(! - A. (3.3.35) 

Then, if VI ::; 0.25v2, the actual behavior is much worse than predicted, so 

the step will be towards the gradient by setting t q+1 = min(2tQ
, 1). On the 
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other hand, if VI 2: O.75v2, then the actual behavior is sufficiently close to 

predicted one, so the search direction will change towards a Newton direction 

by setting l,q+I = l,qmin(O.5, V3). It is important to note that this strategy, 

similar to the one employed by the NLO solver used for our VERSE problem, 

does not necessarily ensure that the Hessian is positive definite but makes an 

intelligent prediction. In fact, it may be necessary to increase l,q+1 whenever 

the inertia of the KKT matrix is incorrect, as will be done in the algorithm 

of the next section. 

The SQP Algorithm 

We can now summarize the steps in the algorithm. Thus, for any iteration q, 

at the point x, the minimization proceeds as follows: 

Step 1 Gradient Evaluation: 

(a) Evaluate the error in the gradient of the Lagrangian from (3.3.35); 

(b) Terminate if the KKT conditions are satisfied; 

(c) Compute L from (3.3.25); 

(d) If this is the first iteration go to Step 2; otherwise 

i. Compute the rate of change in the norm of the gradient of 

the Lagrangian from (3.3.34); 

ii. Complete the Levenberg modification using (3.3.23) - (3.3.24) 

and (3.3.34): 

If VI ::; O.25v2, then l,q+1 = min(21,q, 1); 

If VI 2: O.75v2, then l,q+1 = l,qmin(O.5, V3). 

Step 2 Search Direction: Construct the optimization search direction; 

(a) Compute H from (3.3.26); 

(b) Compute a by solving the QO subproblem (3.3.6) - (3.3.7); 

(c) Inertia Cont1'01: if the inertia of K is incorrect and 

i. If l, < 1, then increase l, and return to Step 2(a); 
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ii. If L = 1 and H 'I I, then set L = 0, H = I and return to 

Step 2(a); 

iii. If H = I, then the QO constraints are locally inconsistent, 

terminate the algorithm; 

(d) Compute ~u and ~v from (3.3.13) and (3.3.14); 

(e) Compute ~(} and ~A from (3.3.15) and (3.3.16); 

(f) Compute penalty parameters to satisfy (3.3.17); 

(g) Initialize 71 = 1. 

Step 3 Prediction: 

(a) Compute the predicted point for the variables, multipliers, and 

slacks from (3.3.22); 

(b) Evaluate the constraints at the predicted point, c = c(x). 

Step 4 Line Search: Evaluate the merit function M(x, g,~, IT, v) = M and 

(a) If the merit function value M is "sufficiently" less than M, then 

x is an improved point, terminate the line search and go to 

Step 5; 

(b) Else, decrease the step length, 71, to reduce M and return to 

Step 3. 

Step 5 Update: Update all quantities, set q = q + 1; 

(a) Compute the actual reduction from (3.3.23); 

(b) Compute the predicted reduction form (3.3.24); 

(c) Return to Step 1. 

Note that the algorithm consists of an outer loop, Steps 1 - 5, which po­

tentially finds the optimal solution, and an inner loop, Steps 3 - 4, which 

approves the sufficient reduction of the the merit function. 

The steps outlined describe the fundamental elements of the SQP opti­

mization process, however, several points deserve additional clarification. We 
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address some of them and for an even more detailed explanation the reader 

should consult [4]. First note that in Step 3(a) the algorithm requires a line 

search in the direction defined by (3.3.22) with the step length 71 adjusted 

to reduce the merit function. Adjusting the value of the step length 71, as 

required in Step 4(b), is accomplished by using a line search procedure that 

constructs a quadratic or cubic model of the merit function. The reduction is 

ensured to be "sufficient" by using the Goldstein-Armijo principle. 

In addition, in order to evaluate L from (3.3.25), an estimate of the 

Lagrangian multipliers is needed. The values obtained by solving the QO 

problem with H = I are used for the first iteration, and thereafter, the values 

g from (3.3.22) are used. Note that, at the very first iteration, two QO sub­

problems are solved, the first is to compute the first order multiplier estimates 

and the second is to compute the step. Furthermore, for the first iteration, 

the multipliers search directions are A(J = 0 and A). = 0, so that the mul­

tipliers will be initialized to the QO estimates g = (J = e and X = ). = '\. 

Also, the multipliers are reset in a similar fashion if the QO constraints are 

locally inconsistent, in Step 2(c)iii. Thus, the Lavenberg parameter, [" in 

(3.3.26) and the penalty parameters, qi and ri, in (3.3.9) are initialized to 

zero. Consequently, the merit function is initially simply the Lagrangian. 

Algorithm's Strategies 

The basic algorithm described above has been implemented in FORTRAN as 

a part of the §OC§ library and is documented in [5]. Sparse Optimal Con­

trol Software or §OC§, is the NLO package utilized for solving the VERSE 

optimization problem. In the software, the preceding approach is referred to 

as strategy M, since the iterates follow a path from the initial point to the 

solution. However, in practice it may be desirable and/or more efficient to 

first locate a feasible point. Consequently, the software provides three differ-
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ent algorithm strategies, namely: 

M Minimize. Starting with xo, solve a sequence of quadratic programs 

until a solution x* is found. 

lFM Find a lFeasible point and then Minimize. Starting with xo, solve a 

sequence of quadratic programs to locate a feasible point, xl, then 

starting from xl, solve a sequence of quadratic programs until a 

solution x* is found. 

lFMlE Find a lFeasible point and then Minimize subject to Equalities. 

Starting with xo, solve a sequence of quadratic programs to locate a 

feasible point, xl, then starting from xl, solve a sequence of quadratic 

programs while maintaining feasible equalities until a solution x* is 

found. 

Additional details on the lFM and lFMlE strategy can be found in [3]. The 

software employs the lFM strategy as a default since computational experi­

ence suggests that it is more robust and efficient than the other two strategies. 

In addition, as with many NLO solvers, a number of things can go wrong 

that will prevent the software from finding an optimal solution. To highlight 

a few problems one might encounter, the software may not find an optimum 

because: 

1. The linear constraints (3.3.7) are inconsistent (i.e., have no solution); 

2. The Jacobian matrix G is rank deficient; 

3. The linear constraints (3.3.7) are redundant or extraneous, which can 

correspond to Lagrange multipliers that are zero at the solution; 

4. The quadratic objective (3.3.6) is unbounded in the null space of the 

active constraints. 
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Unfortunately, because the QO is a subproblem within the overall NLO, it 

is not always obvious how to determine the cause of the difficulty. In par­

ticular, the QO subproblem may have problems locally simply because the 

quadratic/linear model does not approximate the nonlinear behavior accu­

rately. On the other hand, the QO subproblem may also have difficulties 

because the original NLO problem is inherently ill-posed. Regardless of the 

cause of the difficulties in the QO subproblem, the overall algorithm behav­

ior can be significantly impacted. Thus, much thought must be put into the 

model and how the NLO is constructed before implementation. 
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Chapter 4 

Implementation 

The implementation issues surrounding the VERSE model and algorithms 

involved in the SQP computation can now be addressed. The implementation 

was based on the formulations and equations that were detailed in Chapter 2. 

4.1 SQP Implementation 

Sparse Optimal Control Software (§~C§) from The Boeing Company was 

used to solve the nonlinear VERSE pulse problem. By utilizing an SQP al­

gorithm, §~C§ is currently one of the most competitive NLO solvers in the 

world. It was developed and is currently used at Boeing to tackle many nonlin­

ear optimization problems. A Thapezoidal method similar to the one outlined 

in Section 4 of Chapter 2 was implemented in our optimization algorithm us­

ing §~C§. 

From Chapter ·3, we are left to explain how the vector g, and matrices 

Hand G, are configured with respect to our VERSE NLO model. The reader 

should refer to Section 4 of Chapter 2 and notice that from (2.5.15) our state 

and control variables were isolated in the vector 
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where OJ = O(tj) and <Pj = <p(tj) for j = 1, ... ,N discretized time intervals. 

In order to define the gradient, it is necessary to create a subvector that 

separates x by its discretized time intervals, hence 

Thus, for j = 1, ... , Nand h = 1, ... , N, the gradient g becomes 

\lxJl \l x2!I \lxNiI 

aij \lx1h \lx2h 
(4.1.1) g=-= axh 

\lxJN \lxNiN 

where h is the simplified notation from (2.5.16) [4]. Using the Trapezoidal 

approximation defined in (2.5.17), the Jacobian matrix for the resulting NLO 

problem is defined by 

(4.1.2) 

where c is the abbreviated form of the constraints denoted in (3.3.2) of Chap­

ter 3 [4]. Furthermore, we will make the appropriate constraint substitution 

from (2.5.22) and therefore, we are left with 

G = aCj = A B apj 
- ax

h 
+ ax

h
' 

(4.1.3) 

where matrices A, B and vector p = p(x) correspond to (2.5.20), (2.5.21) 

and (2.5.18), respectively. One can observe from (2.5.18) that 

:~ =tNg, (4.1.4) 

and thus the Jacobian becomes 

(4.1.5) 
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Finally, the Hessian, H, is constructed by what was outlined in (3.3.25) -

(3.3.27) of Chapter 3. To start we derive an approximation of the Hessian, 

which is actually the second order derivative of the Lagrangian 

N 

L = V~J(x) - L{ljV~fj, (4.1.6) 
j=l 

where V~J(x) = g~:J:~, V~h = ::';!!x
h 

and (lj is the Lagrange multiplier 

for j = 1, ... , N. Then, by computing Step 1 and Step 2 within the SQP 

algorithm described on pages 59 - 60, the Levenberg parameter in equations 

(3.3.26) - (3.3.27) is updated and the Hessian is constructed. As detailed, the 

Hessian is first approximated by H ~ L, then in the subsequent iterations of 

the algorithm it is precisely calculated. 

An important aspect of this construction now becomes evident; notice 

that g, and consequently G and H, involve the partial derivatives of f with 

respect to the state and control variables, all evaluated at some time dis­

cretization. In particular, we have the following nonzero structure 

8h _(8h 8h ) 
Oxh - 80h ' 8iPh . 

(4.1.7) 

The nonzero pattern defined by (4.1.7) appears repeatedly in g and G at 

different time increments and is problem dependent since it is defined by the 

functional form of the state equations, see (2.5.1) of Chapter 2. There are a 

number of techniques imposed for specifying the nonzero structure in (4.1.7), 

however, the approach implemented in §OC§ involves numerically construct­

ing the matrix template using random perturbations about random nominal 

points. For additional information on alternative methods for designing ma­

trix templates one can consult [4]. 
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4.2 Slice Assignment 

In the VERSE model constructed in Chapter 2, B was discretized into co­

ordinate positions s}, S2, ... ,Sn and partitioned into the sets Bin and Bout. 

Furthermore, the coordinate positions in Bin were bounded by [§., B], and sim­

ilarly, Bout was composed of coordinate positions in [s}, fu] and [Btl, sn]. To 

investigate how coordinate values were assigned to magnetization vectors the 

reader should re-familiarize themselves with the variables formalized in Sec-

tion 3. More specifically, fu = Sk-}, §. = Sk, B = Sk+6 and Btl = Sk+H}' for 

1 < k ~ k + 6 < nand 6 2 o. Thus, for an application with n slices, each 

Si E B was given a scalar value defined by 

i ~ k -1, 

(4.2.1) 

/3 + P3(i) i 2 (k + 6) + 1, 

where f!.., /3, /3 ERIn order to include the off-resonance characteristics 

found between (fu,§.) and (B, Btl), the formula in (4.2.1) is designed such that 

!!.. + Pl(k - 1) < /3 ~ /3 + P2(k + 6) < /3. Also, Pl(i),P2(i),P3(i) are strictly 

monotonically increasing functions that can uniformly or randomly disperse 

increments of Si. As stated in Section 3 of Chapter 2, the subinterval [§., B] is 

intended to be centered around 0, and hence, /3 is chosen such that /3 + P2 (i) 

has the same features for k ::; i ::; k + 6. Also, the values, /3 < 0 and /3 > 0, 

are assigned such that the positions f!.. + PI (i) for i ~ k - 1 and /3 + P3(i) for 

i 2 (k + 6) + 1 are symmetric with respect to each other, as shown in (2.3.1) 

of Chapter 2. Therefore, using this construction, /3 + P2(i) will contain the 

values for the magnetization vectors in Sin, whereas f!..+Pl(i) and /3+p3(i) will 

control the Si E Bout values. The initial positions, f!.., /3, /3, for this piecewise 

step function will be chosen depending on how many slices, n, we have and 

how far we would like to disperse our RF pulse. For example, generally we 
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would assign values such that /!. ~ SI, j3 ~ Sk and 73 ~ S(k+6)+1. Also notice, 

we can set the distance between /!. + PI (k - 1) < j3 and j3 + P2 (k + <5) < 73 
as large as we like, thus, potentially controlling the negative imaging effects 

described in Section 2, which are experienced by off-resonance magnetization 

vectors found in these positions. 

To implement the function derived in (4.2.1), the values for k, <5, /!., j3 

and 73 were initialized and the functions PI, P2 and P3 were defined. The 

implementation for assigning values to various coordinate positions was as 

follows: 

For i = 1, ... ,n 

If i < k, then 

Si = /!. + PI(i)j 

Else if i ~ k and i ~ k + 8, then 

Si = j3 + P2(i)j 

Else 

Si = 73 + P3(i)j 

End 

End 

Using the values assigned to each coordinate position, Si, the magnetization 

vectors were then separated into their respective sets Sin and Sout, which would 

later be applied to constraints (2.2.4Sin) and (2.2.4Sout ). The algorithm for 

partitioning the positions Si into their appropriate sets was: 

For i = 1, ... ,n 

If Si ~ j3 + P2(k) and Si ~ j3 + P2(k + 8), then 

S(i) = Ij 

Else 

S(i) = OJ 

End 

End 

69 



M.Sc. Thesis - Stephen J. Stoyan M cM aster - Mathematics and Statistics 

The value S(i) = 1 corresponds to the coordinate positions in Sin, and other­

wise, S(i) = 0 was the value assigned to Si E Souto 

After our slices are separated into the sets Sin and Sout with appropriate 

values, they are ready to be evaluated within constraints (2.2.3S) - (2.2.9S). 

Thus, the dynamic variables from constraint (2.2.3S) of Chapter 2, where 

time has been discretized, was implemented in the following manner: 

For'j = 1, ... ,N 

n=O; 

End 

For i = 1, ... ,n 

n = n+ Ij 
f(t j , n) = ,( -siG(tj)My(tj, Si) + by(tj)Mz(tj , Si))j 

n = n+ Ij 
f(tj, n) = ,(SiG(tj)Mx(tj, Si) - bx(tj)Mz(tj, Si))j 

it = n+ Ij 
f(tj, n) = ,( -by (tj )Mx{tj , Si) + bx(tj)My(tj, Si))j 

End 

The counter variable it was introduced because §OC§ requires the array 

f(t j , n) to be 1 dimensional, hence, n was increased between each computa­

tion to account for this prerequisite. The array, f(t j , it), was then inserted as 

an equality constraint into a generic subroutine within §OC§ called ODERHS. 

Constraints (2.2.4Sin) and (2.2.4Sout) describe where the magnetization 

vectors should be at the end of our time interval, T = tN' Here, we have 

different constraints for variables in Sin and Sout, hence, the algorithm was as 

follows: 
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Fori=l, ... ,n 

If S(i) = 1, then 

'l/J(T, i) = [Mosin(a) - Mx(T, Si)]2 + [My(T, Si)]2 

+ [Mocos(a) - MAT, Si)]2j 

'l/J(T, i) = J'l/J(T, i); 

Else 

'l/J(T, i) = [Mx(T, Si)]2 + [My(T, Si)]2 + [Mo - Mz(T, Si)]2j 

'l/J(T, i) = J'l/J(T, i)j 

End 

End 

Using another subroutine defined within §OC§, ODEPTF, we bound 'l/J(T, i) 

by £1 if S(i) = 1, or £2 if S(i) = 0. Finally, at t1 = 0, the values of 

Mx(O, Si), My(O, Si) and Mz(O, Si) are easily initialized for i = 1, ... , n in 

an input routine, and in the next section we will show how a guess subroutine 

of the initial solution is efficiently used to estimate Mx (tj , Si), My(tj, Si) and 

M z (tj , Si) for tj E (tb tN). 

4.3 Initial Solution 

A softwares efficiency and robustness in solving a nonlinear problem can be 

improved by the addition of an intelligent initial guess to the solution of the 

problem. As mentioned in Chapter 3, even finding a feasible starting point 

can be difficult with NLO problems, re-emphasizing the importance of our 

initial solution implemented in §OC§ as a guess subroutine. In the VERSE 

problem, we understand how the magnetization vectors 

physically behave in vivo. Also, a generic RF pulse design can be utilized 

to hypothesize what the values of G(tj), bx(tj) and by(tj) could be. Thus, for 

these variables we supply a subroutine that defines the initial guess of the 
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solution to our optimal control problem. Essentially this subroutine evaluates 

an initial guess for the time dependent function x. We begin by detailing how 

the algorithm was coded for the n magnetic moment vectors and follow with 

the gradient and external magnetization components. 

The input for values of the n magnetic moment vectors, Mx(tj, Si), My(tj, Si) 

and Mz(tj , Si), were different depending on whether Si E Sin or Si E Souto For 

the vectors that were in Sin, our initial guess subroutine was required to tip 

[Mx (tj , Sin), My(tj, Sin), Mz(tj, Sin)]T into the transverse plane by an angle of 

Q. However, if Si E Sout, then these vectors were required to be in the di­

rection of the static external magnetic field, Bo, which as mentioned earlier 

is parallel to the z-axis. Therefore, the algorithm for the initial guess of the 

vectors Si E S, over the discretized time interval tI, .. . ,tN, was as follows: 

For j = 1, ... ,N 

For i = 1, ... ,n 

End 

End 

If S(i) = 1, then 

Mx(tj, Si) = Mosin(Q ~); 
My (tj , Si) = 0; 

MAt j , Si) = Mocos(Q;;;); 

Else 

Mx (tj , Si) = 0; 

My (tj , Si) = OJ 

Mz(tj , Si) = Mo; 

where Mo is the initial magnetization in the z direction. Using this imple­

mentation, the magnetic moment vectors in Sin would tip into the transverse 

plane by an angle of Q at the end of the time duration tN, as shown in Figure 

4.1. Magnetic moment vectors in Sout, however, would align in the z-axis 

direction with a height of Mo, which is illustrated in Figure 4.2. To produce 
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x 

Figure 4.1: The initial solution for magnetic moment vectors in Sin that have 

tipped into the transverse plane by an angle of a. 

the high quality final images discussed in Chapter 2, this is exactly what we 

would like to observe in terms of magnetic moment vectors. 

With regards to gradient and external magnetization, a generic RF pulse 

sequence similar to the one shown in Figure 2.3 of Chapter 2 was used to infer 

how our initial solution for these variables were modelled. In doing so, Figure 

4.3 illustrates how our gradient function, G(t), behaved. There are a few im­

portant characteristics of the gradient function worth mentioning. The most 

significant is that the two areas, highlighted by diagonal lines, are equivalent. 

Specifically, the area between points 91 to 93 is equal to that of 95 to 98, where 

93 is the midpoint of 92 and 94. Another important element of the gradient 

function is that the slope of the line from 91 to 92, 97 to 98, and the negative 

slope of 94 to 96, are all equal. The gradient function also requires that the 

absolute value of the slope of these lines be less than or equal to the maximum 

slew rate, Wmax . Finally, the absolute value of the hight of the lines, 92 to 94 

and 96 to 97, are required to be less than or equal to the maximum gradient, 

Gmax . To implement such a function, a simple program in Maple, symbolic 
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z 

x 

Figure 4.2: The initial solution for magnetic moment vectors in Souto 

o Time 

Figure 4.3: The initial solution for the gradient function G(t). 

mathematics software produced by Maplesoft, was created that would list the 

possible values for 91 to 98 that satisfy the above criteria. One can easily de­

duce from Figure 4.3 that the values for 91, ... ,98 will correspond to a specific 

time discretizations, t j , within the interval t1 to tN. Hence, when the time 

values of 91, ... ,98 have been determined, including the slope from 91 to 92, 

and the value of both lines, 92 to 94 and 96 to 97, the gradient function can 

then be implemented. Thus, given the value of the slope from 91 to 92, which 

will be noted as ml,2, the value of the line from 92 to 94, noted as m2,4, and 

96 to 97, noted as m6,7, the algorithm for our gradient function was: 
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Time 

Figure 4.4: The initial solution for the external magnetization by(t). 

For j = 1, ... ,N 

If j < g2. then 

G(tj) = (ml,2)j; 

Else if g2 ~ j < 94. then 

G(tj) = m2,4; 

Else if 94 ~ j < 96. then 

G(tj) = -(ml,2)j + (ml,2)94 + m2,4; 

Else if 96 ~ j < 97. then 

G(tj) = m6,7; 

Else 

G(tj) = (ml,2)j - (ml,2)97 + ffi6,7; 

End 

End 

For the values of the external magnetization variables a standard RF pulse 

is used. Generally, bx ( t) remains constant and is usually zero, however, by (t) 

behaves similar to Figure 4.4. In the illustration, the value of g2 and g4 

correspond to those which are determined in the gradient function. Thus, the 

implementation for by(t) was as follows: 
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For j = 1, ... ,N 

If j < g2, then 

by(tj ) = 0; 

Else if g2 :::; j :::; g4, then 

by(tj) = sin ((j - 92)(94:9J); 
Else 

End 

End 

by(tj ) = 0; 

Using this model for our guess function, we have created an intelligent ap­

proximation of how the variables defined in the vector x should behave. 

4.4 Sparse Optimal Control Software (§OC§) 

By applying the subroutines supplied by §OC§ that were designed to solve 

optimal control problems, the solution to our VERSE pulse problem was ef­

fectively computed. An outline of the important subroutines and functions 

that were used in finding the solution to our optimal control problem will be 

discussed, however, for a description of the defaults or built in functions that 

§OC§ performs, one can refer to [5]. 

HDSOCS 

The subroutine HDSOCS is a powerful optimal control routine provided by 

§OC§ that was called to determine the 3n + 4 dimensional control and state 

vectors to minimize 

J(x) ~ t. ([ w(<J>(t;) dt;) , (4.4.1) 

as shown in Chapter 2. HDSOCS was the central subroutine in the VERSE 

pulse program, all other routines were eventually passed to HDSOCS in find­

ing the optimal solution. 
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ODEINP 

An important subroutine that must be present in HDSOCS is one that se­

quentially defines the variables and parameters involved in the optimal control 

problem. The generic name for this routine, which can be found in the §OC§ 

manual [5], is ODEINP. This subroutine declares the VERSE pulse variables, 

the number of time discretizations, the number of continuous and discrete 

user defined functions, the transcription method used to solve the problem, 

and other such parameters important to locating the optimal solution. As 

mentioned, to solve the VERSE pulse problem we utilized a Trapezoidal tran­

scription method, which proved to provide the best results when compared 

to the other methods supplied by §OC§. Also, within this routine the user 

is required to assign certain values to particular functions defined within the 

software that ensures the problem is minimized. 

ODERHS 

HDSOCS also requires a subroutine known as ODERHS that supplies the 

quadrature function, w(<I>(tj )), and the dynamic variables implemented in the 

array f(t j , fl.), shown in Section 2. This subroutine was carefully implemented 

as it was called many times by §OC§ during computation. 

ODEPTF 

The last important subroutine is ODEPTF, which is responsible for the ter­

minal constraints outlined in the algorithm at the end of Section 2. This 

subroutine sets the appropriate terminal conditions for vectors in Bin and Bout 

to be relayed to HDSOCS. 

As with many NLO programs, a subroutine that initializes the data and 

one that provides the initial solution defined in the preceding section, was 
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also included in the implementation. The input subroutine that initializes 

the values for the variables ,,(, Gmax, Wmax , Mo, Q, T, Cl and C2, also 

contained the algorithm that assigns values for Si and separates them into Bin 

and Bout. Finally, with regards to the overall functionality of §OC§, although 

it is one of the most competitive NLO solvers, it is very difficult to use. 

For example, defining the state and control variables in ODEINP have to be 

precisely ordered and counted. As well, to set up the quadrature objective, 

values are given to specific functions in §OC§ that depend on how the model 

is formulated. Hence, careful planing on how to arrange the algorithms in 

your program is critical. For more detail on other routines and declarations 

necessary to the functionality of §OC§ one can consult the §OC§ manual [5]. 
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Chapter 5 

Results 

In this chapter we present the VERSE pulse computational results derived by 

soes. All numerical experiments were performed on an IBM RS/6000 44P 

Model 270 Workstation. 

5.1 Init ializat ions 

The VERSE pulse was precisely designed to improve RF pulse sequences by 

minimizing SAR and enhancing resolution in MRI. The complex mathemati­

cal requirements of the VERSE model may be difficult to satisfy, even simple 

NLO problems with large numbers of variables can be challenging to solve 

and threatens many software packages. Thus, when attempting to minimize 

the objective function in (2.2.2) under the constraints, (2.2.38) - (2.2.98), 

the number of variables implemented was especially important. Preliminary 

results were found by implementing the VERSE model using five coordinate 

positions. This kept the variable count to a minimum of 19, (3n + 4), ex­

cluding the independent time variable, t. The number of variables was sys­

tematically increased to 49, until software limitations on memory became a 

factor. Nonetheless, this was a remarkably larger number of variables than 

anticipated, as it accounted for 15 slices. After experimenting and consulting 

79 



M.Sc. Thesis - Stephen J. Stoyan McMaster - Mathematics and Statistics 

the literature, realistic MRI values for the constants were used during each 

computational simulation. Namely, 'Y = 42.58 Hz/mT, Gmax = 0.02 mT/mm 

and Wmax = 0.2 mT/mm/ms, where Hz is Hertz, mm is millimeters, ms is 

milliseconds, and mT is millitelsa, the units used to describe the strength of 

magnetization. The magnetization vectors in Sin were fully tipped into the 

transverse plane, hence, a = ~. The magnitude of the initial magnetiza­

tion vector for each coordinate position had an initial magnetization value of 

Mo = 1 spin density unit. Finally, we choose CI, C2 ~ 0.1, and as the number 

of variables increased for the problem, the larger the value of C1 and C2 had 

to be in order to find a feasible solution. 

5.2 Five Slice Results 

For the results of the five slice problem, penalty variables and parameters 

did not need to be introduced, as well, stricter bounds on C1 and C2 could 

be imposed. Given that there were only five slices, the middle magnetization 

vector was tipped into the transverse plane and the others remained in Souto 

Hence, coordinate position S3 was in Sin and positions Sl, S2, 84 and 85 resided 

in Bout, as shown in Figure 5.1. The exact values for the coordinate positions 

were as follows: 

-21 -20 0 20 21 

which were in mm. The results for the five coordinate simulation are illus­

trated in Figures 5.2 - 5.4. Specifically, information on the magnetic vector 

projection are shown in the graphs found in Figure 5.2. The resulting RF 

pulse procedure, represented by external magnetization components bAt) and 

by(t), and gradient sequence, G(t), is shown in Figures 5.3 - 5.4. 

One can observe the precession evident in the graphs of magnetization 
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Figure 5.l: The separation of coordinate positions Si into Sout and Sin for five 

magnetization vectors. 

vectors 81, 82, 84 and 85, those voxels that are in Souto These volexs initially 

precess with a wide radius, but eventually reduce the size of their orbit. The 

magnetization vector in Silll namely 83, tips into the transverse (x, y) plane 

very smoothly, without any cusps or peaks. The gradient sequence starts 

off negative and then ends up positive. It is not a smooth curve since it is 

composed of many local hills and valleys. Also, the gradient seems to be the 

opposite of what is used in practical MRI sequences, shown in Figure 4.3, 

which later proves to be a proficient sequence as we will investigate in the 

next chapter. The external magnetization components, bx(t) and bll (t), are 

constant and linear, precisely what we optimized for in the objective function. 

The value of bx(t) is approximately zero, while bll(t) has a constant value of 

0.0028. 

5.3 Fifteen slice Results 

The results of the 15 slice problem were more challenging to solve, especially 

as the distance from §. to s increased. Since there were 15 slices, the three 

middle magnetization vectors were tipped into the transverse plane to ensure 

that the symmetric structure of the problem was maintained. Thus, coordi­

nate positions 87, 88 and 89 were in Sin, while 81, 82, ... 86 and 810, 811, ... 815 
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Figure 5.2: From left to right, magnetization vectors corresponding to coor­

dinate positions 811 82, 83, 84 and 85· 
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Figure 5.5: The separation of coordinate positions Si into Sout and Sin for 15 

magnetization vectors. 

remained in Souto The arrangement of the coordinate positions is essentially 

the same as the five slice problem, however, with an increased number of 

variables incorporated between each slice, as shown in Figure 5.5. The exact 

values for the coordinate positions were as follows: 

- 30 - 28 - 26 - 24 - 22 - 20 - 0.2 0 0.2 20 22 24 26 28 30 

which again were in mm. The results for the 15 slice coordinate simulation 

is illustrated in Figures 5.6 - 5.10. Information on the magnetic vector pro­

jection is shown in the graphs found in Figures 5.6 - 5.8. Specifically, Figures 

5.6 and 5.8 correspond to magnetization vectors in Bout, and Figure 5.7 refers 

to the coordinate positions in Sin' The resulting RF pulse procedure, rep­

resented by external magnetization components bx(t) and by(t), and gradient 

sequence, G(t), is shown in Figures 5.9 - 5.lD. 

Again, the precession of the magnetization vectors in Sout is evident, this 

is shown in the graphs of Figures 5.6 and 5.8. The initial point is close to the 

voxels precession range and at most it takes one full rotation for them to orbit 

uniformly. The magnetization vectors in Figure 5.7, those Si that belong to 

Sin, smoothly tip into the transverse plane, again without any cusps or peaks. 
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There are small differences between S7, S8 and 89, however, 87 and 89 have more 

similarities and do not tip into the transverse plane as smoothly as 88. The 

gradient sequence is similar to that which was found in the five slice results, 

however, there are larger peaks and there is less of them. Also, the gradient 

is negative for the majority of the time duration except for the end when it 

steeply rises. Finally, the external magnetization components, bx(t) and by(t), 

are again constant and linear, although, the value of by(t) has increased to 

0.01925. Notice that the vertical axis of bx(t) was decreased for illustrative 

purposes, it is still equal to zero if the same number of significant digits was 

used as in the five slice results. 

5.4 Fifteen Slice Penalty Results 

To increase the distance between the coordinate positions that were tipped 

into the transverse plane and allow a smooth transition between magneti­

zation vectors in Sin and Bout, penalty variables and parameters were intro­

duced. Initially, penalty variables were only integrated into the constraints 

corresponding to coordinate positions that were close to the border of Bin 

and Sout, as described in Section 4 of Chapter 2. However, when the penalty 

variables 6 and 6 were only added to constraints pertaining to Si in a neigh­

bourhood of (~, §.) and ('8, '8tL ), no feasible solution was found. In fact, in 

order to increase the distance between 87 and 89 penalty variables had to be 

incorporated to each Si vector in constraints (2.4.3Sin ) and (2.4.3Sout ). The 

remaining variables, constants, and constraints were consistent with what was 

used in the other results. The exact values for the coordinate positions were 

as follows: 

-30 -28 -26 -24 -22 -20 -2 0 2 20 22 24 26 28 30 

81 82 83 84 85 86 87 88 89 810 811 812 813 814 815 

6 6 6 6 6 6 ~1 6 ~1 6 6 6 6 e2 ~2 
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where the positions that were penalized have their respective penalty variables 

listed below them. Notice that, with the addition of penalty variables and pa­

rameters the distance from 87 to 89 increased to 4 mm, compared to the 0.4 

mm difference in the 15 slice results on page 84. Also, in the implementation 

ofthe penalized optimization problem from (2.4.1) - (2.4.8B), the value of the 

penalty parameters could not exceed, (1 = 100 and (2 = 100. The results for 

the penalized 15 coordinate simulation is illustrated in Figures 5.11 - 5.15. 

Information on the magnetic vector projection is shown in the graphs found 

in Figures 5.11 - 5.13. Specifically, Figures 5.11 and 5.13 correspond to mag­

netization vectors in Bout, and 5.12 refers to the coordinate positions in Bin. 

The resulting RF pulse procedure, represented by external magnetization 

components bx(t) and by(t), and gradient sequence, G(t), is shown in Figures 

5.14 - 5.15. 

The precession of the magnetization vectors in Bout, Figures 5.11 and 

5.13, have a much larger radius than that of the 15 slice problem. In fact, 

these magnetization vectors have at most three successive orbits in the en­

tire time duration. The magnetization vectors in Figure 5.12, those 8i that 

belong to Bin, smoothly tip into the transverse plane and there is a greater 

similarity between 87 and 89 than in the preceding results. However, due to 

the penalty variables these vectors do not tip down as far into the transverse 

plane, to approximately a value of 0.2. Also, the y-axis is larger than the 15 

slice problem, this is because the My(t,·) component of these magnetization 

vectors is increasing as they are descending into the transverse plane. The 

gradient sequence is more linear than either of the last results. It contains 

two large peaks, the first is negative and it starts about one quarter into the 

time period. The second peak is positive and it starts approximately three 

quarters into the time period. Also, the gradient sequence has three linear 

segments. One that is zero at the start of the sequence and the other two 
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occur within the peaks, each having a value of exactly ±Gmax. For the ex­

ternal magnetization components, bx (t) is again constant and has a value of 

zero. However, by(t) is not as linear as the previous results and has increased 

to a value of approximately 0.10116. Nevertheless, this is still less than the 

amplitude for a conventional pulse, such as the one illustrated in Figure 4.4, 

which has a typical by(t) value of approximately 0.7500. In fact, if we look at 

the value of the objective function in (2.2.2), namely 

iT b;(t) + b;(t)dt , 

the 15 slice penalty results have an objective value of 0.1874, whereas the 

generic RF pulse produced a value of 0.5923. In addition, the penalty results 

had the largest objective for the VERSE pulse, the 15 slice results gave an 

objective value of 0.0385 and the 5 slice results were the lowest with a value 

of 0.0055. 

As mentioned in the preceding chapter, many different initial guess solu­

tions were attempted and alternative constants were tested, however, we have 

reported the best results derived using §OC§. In many cases §OC§ could 

not find an optimal solution due to software limitations on memory, which 

became a great factor as the number of variables increased. 
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Chapter 6 

Simulation 

A background on the image reconstruction process involved in MRI is now 

described such that the signal generated by the VERSE pulse can be inter­

preted and analyzed. Using the numerical results computed in Chapter 5, an 

MRI simulation was designed to replicate practical procedures. 

6.1 Image Reconstruction 

In Magnetic Resonance Imaging, the signal produced by the RF pulse is math­

ematically amplified, digitized, transformed, and then combined together with 

other signals to form a final image. There are several techniques that can be 

used to produce a final image, however, the core of the systematic procedure 

is the same for all methods. As mentioned, the signal or the raw data of mea­

surements is directly related to the distribution of transverse magnetization 

in the object or specimen. An RF coil is used to generate the RF pulse and 

detect the Magnetic Resonance (MR) signal at the end of the pulse. Thus, 

when an RF pulse, in conjunction with a gradient sequence is applied to an 

object or specimen, the signal is collected by the RF coil and then the data 

is relayed to an RF amplifier. The MR signal is considerably weaker than 

the input RF pulse, hence, an amplification of the MR signal that does not 
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distort the information is necessary. The signal is then digitized by an analog­

to-digital converter before it is Fourier Transformed (FT) [11]. The FT of the 

signal is then stored in a computer and this process, beginning with the RF 

pulse excitation, is repeated a number of times. Eventually, when a specific 

number of FT signals are collected, they are combined to form a final image. 

A schematic drawing of the imaging sequence, also known as MR signal pro­

cessing, is displayed in Figure 6.1 [11]. Actually, matters are hardly ever this 

simple as there are numerous possibilities for errors to occur while transfer­

ring the MR signal to the computer. A list of just a few of the problems that 

may arise are: a distorted final image due to the signal to noise ratio, aliasing 

or unwanted artifacts created by the signal transferring process, nonuniform 

sampling due to repetitive RF pulsing, image resolution problems and other 

imaging complications. 

(Po/ieml 
Sample r-;=====~ RF Pulse I I Amplifier ~rator 

Figure 6.1: A schematic drawing of a general MR Imaging sequence. 

6.2 Imaging the Signal 

There are three different classes in which an image can be constructed using 

an RF pulse. They are defined by the dimensions of the signals they collect, 

namely, 1 Dimension (ID), 2 Dimension (2D) and 3 Dimension (3D), hence, 
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1D signal coverage may produce a two or three dimensional image. They 

differ in the way they collect or cover data in K-Space. K-Space is the space 

of digital information produced by an MR Signal before it is FT into an 

image [18). As a general rule, the higher the class dimension, the faster 

K-Space is covered, which results in the quick production of a final image. 

However, higher dimensional classes involve an increase in the dynamics of 

the mathematical interpretation of the MR signal as well as demanding more 

gradient fields [20]. This essentially leads to additional factors that could pose 

a threat to image quality, hence, there is a "trade off" between image quality 

and speed in MR Imaging. As we are particularly interested in analyzing the 

performance of the VERSE pulse, lower dimensional coverage is more suitable 

for our investigation. 

6.2.1 1D Coverage and Data Collection 

As described in Chapter 2, gradients act.to setup a one-to-one correspondence 

between frequency and spatial position, known as frequency encoding. To cre­

ate an image we take a 1D FT of the amplified and digitized signal, as shown 

in an example illustrated in Figure 6.2. The pulse sequence to produce such 

an MR signal (Figure 6.2) is shown in Figure 6.3. Although Figure 6.3 is a 

simple example of what a 1D pulse sequence may look like, a few characteris­

tics of the MR signal in the example should be highlighted. The peaks in the 

sinc-like signal correspond to different matter or tissues encountered during 

the pulse and will be an important part of the final image. The smaller local 

humps could also be different matter, tissues, or most likely noise. Noise is 

unwanted data information that is collected during signal processing which 

complicates and distorts the final image. Deciphering whether the data infor­

mation is noise, or important information to creating an image, is interpreted 

by MRI software or manually by the user [20]. Thus, a signal that has clear 
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Figure 6.2: A varying gradient field in combination with an RF pulse is applied 

to an object that produces a signal that can be imaged in ID. 
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G(t) 

MR Signal <J4pM~lV. cro 

Figure 6.3: A varying gradient field and accompanying RF pulse producing a 

signal to be imaged in ID. 
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divisions on what is matter or tissue and what is not, would produce an op­

timal final image. 

The total received signal, which we will define as T(x), can be written by 

integrating over the entire excited line. Thus, ignoring the rela.xation terms, 

we have 

T(x) = J v(s)e-cp27rSXds, (6.2.1) 

where the imaginary unit c.p E C, v(s) represents the signal generated at 

position s and x relates to its position on the x-axis of the image. Equation 

(6.2.1) represents the FT of v(s), hence, 

T(x) = FT{v(s)} = J v{s)e-cp27rSXds, (6.2.2) 

which is the reason a FT is necessary in MR Imaging. Although, 1D cover­

age is a fairly elementary technique of collecting data in K-Space and would 

probably not be used in practice, it is an excellent tool to interpret RF pulse 

and gradient sequence design. 

6.2.2 2D and 3D Coverage 

Higher dimensional coverage utilizes the same methods as 1D coverage, how­

ever, instead of collecting data along a line of K -Space, information is collected 

about a plane (2D) or cube (3D). The additional information necessary for 

such coverage is supplied by adding extra gradients and introducing new vari­

ables into the received signal. In 2D coverage, we will use variables kx and ky 

to represent the K-Space x and y signal position, such that the total received 

signal becomes 

T(x, y) = FT{v(kx, ky)} = r r v(kx, ky)e-CP27r/tzxe-cp27rkvYdkxdky (6.2.3) 
ik", iky 

= r r v(kx, ky)e-cp27r(k",x+kYY)dkxdky, 
ik", iky 
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where x, y refer to their respective coordinate positions on the axes of the 

image. The introduction of the position variables x and y accounts for the 

additional orthogonal gradients necessary for 2D coverage [17]. 

Consider the extension of the 2D imaging equation (6.2.3) to all three 

spatial dimensions. With the addition of a third variable in K-Space, kz, 3D 

coverage would follow essentially the same criterion 

(6.2.4) 

where z accounts for the additional variable direction due to the three orthog­

onal gradients imperative to 3D coverage. As one can observe, 2D and 3D 

data collection provide more information to be FT'd into an image. Hence, 

more imaging information is collected per RF pulse and subsequently the time 

required to produce a final MRI image is decreased. However, the increased 

number of variables in the generated signal complicates the analysis of such 

data and makes the signal information difficult to interpret. 

6.3 VERSE Simulation 

A MRI simulation was implemented in Matlab to test the performance of the 

VERSE pulse sequence. Due to the excellent analytical signal produced by 

ID data collection, the pulse was set such that the signal would collect data 

for ID coverage. Using the Bloch equation we created an environment similar 

to that which is occurring in practical MRI. Thus, by providing the optimized 

VERSE pulse sequence, the gradient and RF pulse values were supplied to a 

voxel of protons that would eventually form a final image. Specifically, the 

VERSE values of G(t j ), bx(tj) and by(tj) for j = 1, ... , N were read into the 

Bloch equation (2.2.1) for magnetization vectors at different Sl, ... ,Sn posi-
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tiollS. Although we used a total of n coordinate positions in the optimization 

of our model, the RF pulse and gradient sequence can be applied to > n 

positions for imaging purposes. Thus, given n > n coordinate positions, N 

time discretizations, and an initial magnetization vector, 

(6.3.1) 

the VESRE pulse sequence, namely G(tj), bx(tj) and by(tj) , was inserted into 

the vector 

(6.3.2) 

for j = 1, ... , Nand i = 1, ... , n. The integral of equation (6.3.2) was then 

evaluated 

(6.3.3) 

for each Si value, note from Chapter 2 that t = [tl' t2, ... , tN]T. The values for 

the magnetization vectors were then converted into a signal by simulating the 

amplification and digitization used in MRI. For a complete description of how 

(6.3.3) was integrated and amplified, one can refer to the Appendix. At this 

step we would be able to investigate the signal produced by our simulation 

and examine its properties. As mentioned in the preceding section, a signal 

with distinctive peaks and minimal noise would produce a high-quality final 

image. Also, by changing the value of Mo in the initial magnetization vector, 
-+ 
M 0, we essentially replicate how an MRI processor would interpret different 
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Figure 6.4: The position of cerebrospinal fluid and gray matter to be imaged 

by our MRI simulation. 

tissues or matter. 

Using the VERSE 15 slice results for the gradient and RF pulse sequence, 

an MRI simulation was conducted over two tissues, namely, gray matter and 

cerebrospinal fluid. The tissues were aligned vertically in the order of gray 

matter, cerebrospinal fluid, then once again gray matter, illustrated in Fig­

ure 6.4. As the signal generated by the pulse has a direct relationship with 

that of the tissues spin density, each tissues spin density value was substi­

tuted into Mo at its respective position. Thus, a spin density value of 1.0 

for cerebrospinal fluid and 0.8 for gray matter was used when performing 

the MRI imaging simulation described earlier. Also note, the VERSE pulse 

was designed to tip only the magnetization vectors in Bin into the transverse 

plane. Thus, the coordinate positions Si E Bin would produce a peak in the 

signal when the VERSE pulse reaches the tissues for these Si E Bin voxels. As 
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Figure 6.5: The signal produced by the VERSE pulse MRI simulation over 

two vertically aligned tissues. 

detailed in the preceding chapters, voxels Si E Sin are located at the center 

coordinate positions, approximately -5 to 5 in Figure 6.4. After amplifica­

tion and digitization procedures were replicated, the signal produced by the 

VERSE pulse is shown in Figure 6.5. As it is evident in Figure 6.5, there is 

no evidence of noise and the peaks in the signal represent the position of the 

tissues that were imaged. Therefore, this would be a reliable signal for ID 

coverage that would produce a high-quality final image. 

Although the MRI simulation results seem promising in Figure 6.5, this 

was a fairly simple example to image since at each x position all the voxels, 

Si E S, were either in or out of the tissues. Now we complicate matters by 

placing the cerebrospinal fluid on an angle and removing the gray matter, as 

shown in Figure 6.6. As the vertical axis of Figure 6.6 represents the Si E S 

coordinate positions, only the voxels in Sin should tip into the transverse 
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Figure 6.6: The angular position of cerebrospinal fluid to be imaged by our 

second MRI simulation. 

plane, and hence, generate a signal. Again, voxels Si E Sin are located at the 

center coordinate positions, approximately -5 to 5 in the illustration. Thus, a 

signal should only be produced when the VERSE pulse reaches these voxels in 

the fluid. Figure 6.7 represents the signal generated after the 15 slice VERSE 

RF pulse and gradient sequence was used to stimulate particular voxels within 

the cerebrospinal fluid into the transverse plane. As it is shown in Figure 6.7, 

the large central peak in the signal represents when the VERSE pulse reaches 

the voxels in Sin of the fluid. The peak in the center of the figure is also very 

distinctive and the overall signal has minimal noise. Figure 6.8 represents the 

signal produced when a generic RF pulse and gradient sequence, described in 

Section 4.3, was used. In comparing Figure 6.7 to Figure 6.8, one can see that 

the signal produced by the VERSE pulse has less noise, a more distinctive 

peak, and a much clearer division with regards to what is tissue and what is 

not. In addition, the objective value, which defines the strength of the RF 
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Figure 6.7: The signal produced by the VERSE pulse MRI simulation over 

the diagonal cerebrospinal fluid. 

pulse necessary to produce such a signal, was 0.0385 for the VERSE pulse, 

substantially lower than that of the conventional pulse, which had an objective 

value of 0.5923. Thus, Figure 6.5 and Figure 6.7 lead us to conclude that the 

VERSE pulse generates a reliable signal for lD coverage in MR Imaging. 
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Figure 6.8: The signal produced when a generic RF pulse and gradient se­

quence is applied to the diagonal cerebrospinal fluid. 
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Chapter 7 

Conclusions and Future Work 

We designed the VERSE model to reduce the SAR of RF pulses by maintain-
-t 

ing a constant RF pulse strength (B rf value) and generating high quality MR 

signals. It was shown that the VERSE results produced strong MR signals 

with clear divisions of the location of the tissue being imaged. For this reason 

various MRI studies utilizing VERSE pulses could be developed in the near 

future. 

The observations noted in Sections 5.2, 5.3, and 5.4 of the Results Chap­

ter deserve some additional reasoning and explanation. To begin, the reader 

should understand that the symmetry displayed between coordinate position 

vectors in each of the result cases was precisely designed in (2.3.1) of the 

VERSE model. However, the precession illustrated by the magnetization vec­

tors was not directly part of the VERSE design, it was a consequence of the 

Bloch constraint (2.2.38). Nonetheless, the precession shown in our results 

validated our design since it occurs within the nucleus of atoms in physical 

MRI. Furthermore, investigating the precession of the magnetization vectors 

in the 5 slice results, it was shown that they tightened their orbit after a certain 

number of revolutions. This larger orbit was most probably due to the lack of 

variables in the 5 slice problem, as a tighter precessional orbit was shown in 
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the 15 slice results. The magnetization vectors in the 15 slice penalty results, 

however, had a much larger radial orbit than in either of the other cases. This 

was due to the fact that the penalty parameters allowed the feasible range of 

the constraints on these variables to be larger. With respect to precession, the 

15 slice penalty results were the most unrealistic, however, penalty variables 

and parameters allowed the span of the magnetization vectors in Sin to be 

fairly large, which also played a part in terms of practical MRI. In addition, 

investigating only the coordinate positions in Sin one should note that the 

S3 magnetization vector in the 5 slice results tips into the transverse plane 

with a constant y-axis value, hence, the 2D graph in Figure 5.2. This was 

another essential part of the VERSE pulse design, where the rotating frame 

of reference was utilized in our formulation. However, in both 15 slice results, 

motion in these coordinate positions was evident. Coordinate positions S7, S8 

and S9 in the 15 slice results seemed to resonate a fair bit in the y direction at 

the start of the time interval, as if they have not received enough energy to tip 

into the transverse plane. Similarly, the y-axis of the 15 slice penalty results 

increased by a small amount with time. The motion of these vectors is due 

to a combination of their nonzero Si position values and the increased dimen­

sions of the problem. In addition, penalty variables relaxed the constraints of 

the 15 slice penalty results, which did not induce the wave-like motion found 

in the vectors of the 15 slice results. One could conclude that in order to 

have improved transverse tipping and increase the length of magnetization 

vectors in Sin, larger C2 values are necessary, however, whether or not such 

a large precessional value is a realistic approximation would then become a 

factor. Finally, as evident in all three result cases, as the coordinate positions 

in Sout approach the border of Sin their precessional orbits were not as tight 

and their radius of precession increased. This is well illustrated in the graphs 

of the 15 slice results, namely Figures 5.6 and 5.B, which give a good example 

of the off resonance characteristics that occur in practical MRI. Although off 
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resonance was an attribute of MRI already considered in the formulation of 

the VERSE model, its minimal presence validates our results from a physical 

MR perspective. 

The aim of the VERSE pulse was to minimize SAR by maintaining a 

constant RF pulse (bx(t) and by(t) values), which was established in each of 

the results of Section 5.2, 5.3 and 5.4. Although the values of bx(t) were al­

most identical for each case, by(t) values increased with the number of slices. 

This was expected since an increase in the number of discretization points 

would require additional energy to tip the voxels into the transverse plane, 

yielding an increase in the strength of the RF pulse, or larger by(t) value. 

The by(t) value for the penalty results were the greatest and were not as con­

stant as the other two cases. This was again due to the penalty variables 

and parameters, however, the nonlinear portions of the by (t) graph only had 

small differences with respect to the other values. Also, when comparing the 

VERSE pulse to conventional pulses the VERSE objective value was lower for 

all three cases, and hence, did not require as much energy to tip the magneti­

zation vectors into the transverse plane. Finally, the most intricate part of the 

VERSE pulse results is the gradient sequence. Since we optimized for the RF 

pulse in our model, this process returned the gradient sequence that would 

allow such a pulse to occur. In other words, in order to use the bx (t) and 

by(t) pulse design, the accompanying gradient sequence, mainly derived from 

the Bloch constraint, would have to be imposed to acquire a useable signal. 

With regards to practical MR gradient sequences, the 15 slice penalty results 

produced the simplest and most reasonable gradient vales to implicate, par­

ticularly due to its large linear portions. However, if necessary, regardless of 

the difficulty, one of the other gradients could be implemented. In addition, as 

the number of slices increased between the result cases they caused the differ­

ence between the largest positive and negative peaks in the gradient graphs 
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to amplify. Finally, all three results had similar features in the sense that 

they each started off fairly negative and then ended up quite positive. This 

is a very interesting consequence of the VERSE pulse, as shown in Chapter 

4, conventional gradient sequences usually have the opposite characteristics. 

In terms of our MRI simulation, good signal results were produced for such 

unique gradient sequences, which would justify further research with VERSE 

pulses. In fact, the Results and Simulation Chapters demonstrated that the 

VERSE RF pulse and gradient sequence were viable and could be applied to 

practical MRI. 

Future Work 
The VERSE pulse proved to have encouraging MRI results and performed to 

be better than anticipated with respect to useable MR imaging signals. Due 

to limitations on time, there are still areas left for investigation and various 

elements of the VERSE model that can be improved. A few of the issues that 

should be taken into account for future developments are: 

• Add rotation into the equations; 

• Apply the VERSE model to more than 50 slices; 

• Add spin-lattice and spin-spin proton interactions into the VERSE for­

mulation; 

• Apply alternative optimization software to the problem; 

• Investigate other variations of VERSE pulses; 

• Test on an MRI machine. 

The first five issues could possibly improve the VERSE pulse model, or at 

least identify the items that are necessary for the potential advancements of 

this RF pulse. The issues are listed in sequential order, starting with what we 
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believe is the most important item to be addressed. As most are self explana­

tory, adding rotation into the equations was one of the factors that deemed' 

to be important after the results were examined. By integrating the rotating 

frame of reference into our equations we eliminated the y-axis. It is possible 

that this was a source of singularities when optimizing and therefore caused 

§OC§ to increase the size of its working array, potentially creating memory 

problems. Although this issue was taken into account, further investigation is 

warranted to intelligently integrate rotation into our model. Finally, the last 

item would be more or less of a final approval for such an RF pulse sequence. 

The r~-search and work done with the VERSE pulse has built an excellent 

foundation for future developments. This study illustrates that optimization 

can have a great effect on a highly dynamical processes such as RF pulses in 

Magnetic Resonance Imaging. 
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Appendix 

The MR Signal 

To produce the MR signals generated in Chapter 6, we integrated the Bloch 

equation (6.3.3) shown on page 103 by first taking the integral of the magne­

tization vector in the static external field Bo, then rotating it by the magnetic 

field generated by the VERSE RF pulse. In order to accomplish this, we first 

calculated the £2 norm of SiG(t) and by(t), 

where i = 1, ... , n. Then substituting the norm into the z component of the 

external magnetization matrix, the Bloch equation for a static magnetic field 

is equivalent to 

0 N(t,Si) 0 Mx(t, Si) -6-
---+ 

dM(t, Si) _ N(t,Si) 0 0 M,it , Si) (A.l) 
dt 

- 6 

0 0 0 MAt, Si) 

where 8 is an scaling parameter. Equation (A.l) produces three differential 

equations, 
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and after taking the derivative of each we are left with the following second 

order equations, 

"( ) N(t,Si)M () "() N(t,Si) () (A ) Mx t, Si + a x t, Si = 0, My t, Si + a My t, Si = O. .2 

Note, we excluded writing M~(t, Si) since it was equal to zero. Integrating 

the two equations in (A.2) and making the appropriate constant substitutions 

generates the following well-known solutions, 

() () (
N(t, Si) ) () . (N(t, Si) ) Mx t, Si = Mx 0, Si cos a t + My 0, Si sm a t (A.3) 

and 

() () (
N(t, Si) ) () . (N(t, Si) ) My t, Si = My 0, Si cos a t - Mx 0, Si sm at. (A.4) 

If we approximate the continuous controls bAt), by(t) and SiG(t) by piecewise 

constant functions, then on each constant interval we can exactly integrate 

the Bloch equation by making a coordinate transformation. Using (A.3) and 

(A.4), we constructed a matrix, R, representing the integration of the Bloch 

equation for an external magnetic field in the z direction, hence 

cos (N(iSi
) ) sin (N(iSd 

) 0 

R = -sin(N(~t)) cos (N(i S
')) 0 (A.5) 

o o 1 

In the special case bx(t) = 0, the matrix 

1 o o 

Q= 0 SiG(t) -~ (A.6) 
N(t,Si) N(t,s,) 

0 ..!3&L SiG(t) 
N(t,s,) N(t,Si) 
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transforms the vector [0, by(t), SiG(t)]T into [0,0, N(t, Si)]T, and 

1 0 0 

Q-1 = 0 s,G(t)N(t,s,} 
(SiG(t»2+b~(t) 

bl/(t)N(t,Si) 
(s,G(t)2+b~(t) (A.7) 

0 - bl/(t)N(t,s,} 
(s,G(t»2+b~(t) 

siG(t}N(t,Si} 
(SiG(t))2+b~(t) 

transforms it back. Multiplying these three matrices, (A.5) - (A.7), by the 
---+. ---+ 

magnetization vector Ml M(t, Si), we have 

and 

(
Ni(t})Mi + sin($)siG(t) Mi _ sin(~)bll(t) Mi 

cos 5 x N'(t) Y N'(t) Z 

- .G(t)e Mi + (SiG(t»2cos(3;)+b~(t) Mi + e Mi (A 8) 
Sl 1 x (SiG(t» +bll(t) y 2 z, . 

b (t)8 Mi + 8 Mi + b~(t)cos(.:;f=2)+(s.G(t»2 Mi 
y 1 x 2 Y (SiG(t»2+b~(t) z 

_ Ni(t)sin(N:V}) 
8 1 

- (SiG(t))2 + b~(t) , 

8 = siG(t)by(t) - siG(t)by(t)cos(~) 
2 (Si G(t))2 + b~(t) . 

Using matrix (A.8), we constructed a loop for the total number of time dis­

cretizations and input the VERSE pulse values for each Si coordinate position, 

which produced the signals shown in Chapter 6. 

This was just one of the many possible methods of integrating (6.3.3), 

other methods could be applied, however, they would involve similar ingredi­

ents to the ones illustrated. The main advantage of exactly integrating the 
---+ 

equations on each interval is that IM(t, si)1 is constant, as it should be. By 
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-+ 
including the norm in the integration M(t, Si) did not blow up, which may 

occur with other methods. Integrating techniques such as the Trapezoid rule, 

Simpson rule, Riemann integral and taking finite differences proved to be 

numerically unstable and were unable to integrate standard test cases accu­

rately. This was because such integrating methods do not take rotation into 

account, which was an important part of the signal information. Hence, meth­

ods that include rotation and consider some type of normalization between 

time increments would provide a strong integrating tool for generating MR 

signals. 
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