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Abstract

We show that the coupled-mode equations can be used for analysis of resonant inter­

action of Bloch waves in low-contrast cubic-lattice photonic crystals. Coupled-mode

equations are derived from Maxwell's equations using asymptotic methods.

We prove the existence and uniqueness theorem for a solution of the boundary

value problem for transmission of N resonant waves in small convex convex domain

(linear and non-linear cases).

The analytical solutions for linear boundary-value problem for the stationary

transmission of four counter-propagating and two oblique waves on the plane are

found by using separation of variables and generalized Fourier series. We give the

proof that the linear stationary boundary-value problem for four counter-propagating

and two oblique waves on the plane is well-posed for arbitrary size of the domain. For

applications in photonic optics, we compute integral invariants for the transmission,

reflection and diffraction of resonant waves.

We recast the problem for four counter-propagating waves on the plane in a multi­

symplectic Hamiltonian viewpoint, which gives further insights into the problem.
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Chapter 1

Introduction

Photonic crystals have attracted much attention in recent years. These crystals serve

as conducting media for electromagnetic waves. They are expected to exhibit proper­

ties similar to those of solid crystals as conducting media in the case of electromagnetic

and electronic waves.

It is well known from the quantum theory of solids that the energy spectrum of an

electron in a solid consists of bands separated by gaps (see for instance, [Ki]). This

band-gap structure arises due to periodicity of the underlying crystal, and is common

for many periodic differential operators (see the so-called Floquet-Bloch theory in

[E], [Kl], [RS]). The basic mathematical theory that describes how the band gaps

arise in periodic dielectric and acoustic media was essentially constructed in [FKl],

[FK2], [K2] using Floquet-Bloch theory. It was shown that high-contrast photonic

crystals may exhibit band gaps for some configuration of the refractive index n(x)

and no band gaps exist for low-contrast photonic crystals, however stop bands may

occur [Kl]' [K2].

The basic physical reason for the rise of gaps lies in the coherent multiple scattering

and interference of waves inside the crystal - the Bragg resonance of the waves with
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the crystal structure. The tremendous number of applications that are expected in

optics and electronics (including high-efficiency lasers, laser diodes, etc.) warrants

thorough investigation of this matter (see for instance, [JMW]). Thus, one is not

surprised by the persistent attention that this problem has attracted.

There is an obvious similarity between photonic crystal and non-homogeneous

acoustic media (acoustically modulated media) - both can be viewed as a continuous

periodic distribution of "reflectors" to the opposite of well-defined discrete planes of

the solid crystal, which makes the development of the theory of photonic crystals

even more important and ground it on the works on light scattering of Brillouin

(who followed up some work that had been begun earlier by Einstein) and Rayleigh

(an excellent book on acousto-optics with historical overview is [Ko]). In fact the

idea of a coupled-mode approach in modeling of photonic crystals seems to come

from acousto-optics (Raman-Nath equations in acousto-optics). One of the latest

cross-infiltrations uses Feynman diagram techniques, or path integrals in modeling

multi-scattered light ([Ko], [8]). The beauty of Feynman diagrams lies in the fact

that certain path integrals may be ignored because physical reasoning tells us that

their contribution is negligible.

The purpose of this thesis is to apply coupled-mode equations for analysis and

modeling of resonant interaction of Bloch waves in low-contrast cubic lattice pho­

tonic crystal. Modeling of time-dependent responses of photonic crystals in three

spatial dimensions can be computationally difficult in the framework of the Maxwell

equations, especially if the nonlinear and nonlocal dispersive terms are taken into

account. A more efficient method is based on reduction of Maxwell equations to the

coupled-mode equations [88]. For instance, shock wave singularities may occur in the
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nonlinear Maxwell equations but they do not occur in the nonlinear coupled-mode

equations [GWH]. Coupled-mode equations are typically derived in the first band

gap of the Bragg resonance between two counter-propagating waves in one spatial

dimension [SS1, SS2]. More complicated coupled-mode equations are recently consid­

ered for three-dimensional nonlinear photonic crystals [AJ1, AJ2, AS, BS]. Recent

reviews [BF1, BF2] include also classification of different resonances of Bloch waves

in photonic crystals with quadratic nonlinearities.

In the thesis

• We classify wave resonances and coupled-mode equations for low-contrast cubic­

lattice photonic crystals in three spatial dimensions. Since low-contrast crystals

do not support band gaps beyond one dimension [K1, K2], resonances are con­

sidered in stop bands of the linear spectrum [Ki]. Stop bands occur between

resonant counter-propagating waves, which could be coupled with other oblique

Bloch waves. The number of resonant Bloch waves depends on the geometric

configuration of the incident wave with respect to the cubic lattice.

• We derive coupled mode equations by using perturbation series expansions of

Maxwell's equations. We study coupled mode equations in bounded domains,

subject to radiation boundary conditions. Such boundary conditions describe

the transmission of incident Bloch waves, which generate resonantly reflected

and diffracted Bloch waves in the photonic crystals.

• We generalize the coupled-mode equations to include the weakly nonlinear (cu­

bic) terms and to extend the time-dependent problems to the nonlinear coupled­

mode equations [SGS, Sh].
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• We prove an existence and uniqueness theorem for a solution of N-wave coupled­

mode boundary value problem in small convex domain (linear and non-linear

cases) using a contraction mapping argument.

• We obtain the analytic solution for the linear coupled-mode equations for four

counter-propagating and two oblique Bloch waves on the plane. We give the

proof of well-posedness of the linear stationary problem. We prove the well­

posedness of the linear stationary problem by using separation of variables and

generalized Fourier series [St]. Eigenfunction expansions and convergence of

generalized Fourier series follow from the general theory [C1]. As a result, we

construct explicit analytical expressions for stationary transmission, reflection,

and diffraction of resonant Bloch waves, which are used in modeling of the

low-contrast photonic crystals.

• We recast the problem for four counter-propagating waves on the plane from

multi-symplectic Hamiltonian viewpoint, which gives further insights into the

problem.

The main contributions of the thesis to the subject are

• The existence and uniqueness theorems for a solution of N-wave coupled-mode

boundary value problem in small convex domain (linear and non-linear cases).

• Construction of analytical solutions for four counter-propagating and two oblique

Bloch waves on the plane.

This thesis is partly based on the work [AP] of Dmitry Pelinovsky and myself.

Everywhere in this thesis we are using Einstein's summation rule - summation over

repeating indexes.



Chapter 2

Resonances of electromagnetic
waves in photonic crystals

2.1 Maxwell equation for light propagation in pho­
tonic crystals

Propagation of electromagnetic waves in dielectrics is governed by Maxwell's equa-

tions [LL1], which

V·D=O

laB
VxE=--­

c at

, V·B=O,

laD
, v x H = Cat ;

where E and H are electric and magnetic field vectors respectively, and D and Bare

corresponding electric and magnetic flux densities, x = (x, y, z) is the physical space,

t is the time variable, V = (ax, ay , az ) is the gradient vector, and c is the speed of

light. This system isn't complete unless we specify the relation between D and E, as

well as Band H. The relation between D and E is given by the linear law [LL2]

where {Ek(X)} is the dielectric permittivity tensor. It is usually assumed that B =

j1.H = H (which is to say that polarization effects are much stronger then magnetic).

5
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If the medium is isotropic, then Ek = Ebk, where E - is a scalar and bk is a Kroneker

symbol, i.e in the simplest of cases the permittivity is determined by a single scalar.

In the general case the permittivity {En will be more complicated. We consider a

cubic crystal as the medium represented by the cubic lattice in ]R3 as depicted in

Figure 2.1.

h',.hU,h' hhUh.....hU.h.~.: ..
'.

-""

"'.....

Figure 2.1: Cubic lattice R in ]R3.

The crystal is assumed to be ideal with the lattice R that fills the whole space. It

is clear that the group of symmetry of this crystal S3(R) contains, in particular, the

following orthogonal transformations:

al = ( ~1 ~ ~); a2 = (~ ~ ~); a3 = (~ ~ ~),
o 0 1 -1 0 0 0 -1 0

I.e. al - is the rotation on ~ about the z-axis, a2 - is the rotation on ~ about the

y-axis,a3 - is the rotation on ~ about the x-axis.

Since these three rotations preserve the lattice R, the tensor {Ek} is invariant under

those symmetry operations. Writing it in analytical form, we denote {Ek} as the

matrix A; then A~ = aiAai1 = A for any i = 1,2,3. Computing the matrix A~ we
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have

A~ = (~:l ~;1 ~:J) = (:i :~ :;) = A.

E~ - Ef d d E~ E~

It follows that Ei = E~; in the same manner computing matrices A~ and A~, we get

E~ = E~ = d. The group S3(R) contains three more transformations:

I.e. /31 = Q~ - is the rotation on 7r about the z-axis, /32 = a~ - is the rotation on 7r

about the y-axis, /33 = Q5 - is the rotation on 7r about the x-axis. Again the lattice

is transformed into itself, that gives us it = /3iA/3;l = A,for 1 ~ i ~ 3. Computing

matrix Ai we get

It follows that d = E5 = Ef - E~ = 0; computing matrices A2 and ..43, we get

E~ = 0 for i =J j. Thus finally A = {En = E(~ ~ ~) ,i.e Ek = E6k, where E is a

001
scalar. We have shown the following: the permittivity of the cubic crystal is isotropic

(does not depend on the direction as for isotropic materials). This result is not

necessarily physically obvious since one might expect that for instance permittivity

in the direction of the crystal edge would differ from that in the diagonal direction.

Adding the empirical material equations

D=EE

B =IlH
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to the Maxwell system we obtain:

\J. EE = 0

\J x E = _ ~ 0JLH
c ot

, \J. JLH = 0,

\J x H = ~ OEE
, cOt

Usually JL = 1 which corresponds to nonmagnetic medium. Eliminating H from this

system, we have
1 0 1 oJLEE

\J x \J x E = - ~ ot JL\J x H = - c2~.

As \J x \J x E = \J(\J . E) - .0,E, we obtain the equation on E

\J2E _ n
2

0
2
E = \J(\J . E)

c2 ot2 '

where n = y/IE. Thus, the linear periodic properties of the isotropic photonic crystals

can be modelled with the Maxwell equations:

(2.1)

where n = n(x) is the periodic refractive index.

According to Floquet-Bloch theory the linear Maxwell equations (2.1) with peri­

odic n(x) can be reduced to a spectral problem for the vector function

E(x, t) = 'ljJ(x)e- iwt

where w is the eigenvalue and 'ljJ(x) is the eigenvector. When no(x) is a periodic

function in x, Y, z with periods xo, Yo, zo, respectively, the eigenvector 'ljJ(x) has the

form of a Bloch wave

where '1!(x) is periodic in x, Y, and z with periods xo, Yo, and zo, and w = w(kx , ky, kz ).

No band gaps exist in the linear spectrum for low-contrast photonic crystals. As a
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result, a bounded Bloch functions "p(x) will exist for any value of w E R Highly-

contrast photonic crystals may however exhibit band gaps for some configurations of

the linear refractive index n2(x) [K2].

2.2 Bragg resonance and the Brillouin construc­
tion

When the optical material is homogeneous, such that n(x) = no is constant, the linear

spectrum of the Maxwell equations (2.1) is defined by the free transverse waves,

(2.2) E(x t) = e ei(k.x-wt), k ,

where ek is the polarization vector, k = (kx , ky , kz ) is the wave vector, and w = w(k)

is the wave frequency. It follows from the system (2.1) that

(2.3) k· ek = 0,

For each wave vector k, there exist two independent polarizations e~1) and e~), such

that e~l) . e~2) = O. This degeneracy in the polarization vector is neglected here by

the assumption that the incident wave is linearly polarized.

When the optical material is periodic, such that n(x + xo) = n(xo), the linear

spectrum of the Maxwell equations (2.1) is defined by the Bloch waves:

(2.4) E(x, t) = 'l1(x)ei (k-x-wt),

where 'l1(x + xo) = 'l1(x) is the periodic envelope, k = (kx , ky, kz ) is the wave vector,

and w = w(k) is the wave frequency.

The geometric configuration of the photonic crystal is defined by the fundamental

(linearly independent) lattice vectors Xl,2,3 and fundamental reciprocal lattice vectors
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k 1,2,3, such that k i . Xj = 21f8i ,j, where 1 ~ i,} ~ 3 [Ki]. Therefore, the basis k1,2,3

is dual to the basis Xl,2,3 and the linear refractive index n(x) can be expanded into

triple Fourier series:

(2.5) n(x) = no L an,m,lei(nkl+mk2+1k3)'X = no L aGeiGx

(n,m,I)EZ3 G

where G is the vector in dual basis G = nk1 +mk2 +lk3 , (n, m, l) E Z3 and the factor

no is included for convenience. If no is the mean value of n(x), then ao,o,o = 1.

Let the wave vector k in the incident Bloch wave (2.4) be fixed k = kin' The

incident wave vector kin is expanded in terms of the lattice vectors:

where (p, q, r) E ]R3 and the factor ~ is introduced for convenience. The Bloch wave

(2.4) is represented by triple Fourier series for w(x), such that E(x, t) consists of an

infinite superposition of free transverse waves with the wave vectors k' = k~~tm,l):

(2.6) k' - k+G

(n, m, l) E Z3.

As the scattering of light is considered to be elastic, we introduce the following energy

and momentum constraint on the resonating waves

Definition 2.1 The wave vector k~~tm,l) with a non-empty triple (n, m, l) is said to be
resonant with the wave vector kin) iflk~~;,I)1 = Ikin !, such that Iw(k~~tm,I))1 = Iw(kin)l.

The resonance conditions are illustrated in Figure 2.2.

From our result L\k = G, the resonance condition is (k + G) 2 = k2 , or

(2.7) 2k· G + C2 = 0
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l)

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0
0 0

0 0 0
0 0

0 0 0
0 0

0 0 0
0 0 0

0 ?
0 0

0
0

Figure 2.2: The points on the right of the sphere are reciprocal lattice points of the
crystal. The vector k is drawn in the direction of the incident beam and it terminates
at any reciprocal lattice point. We draw a sphere of radius k about the origin of
k. A diffracted beam will be formed if this sphere intersects any other point in the
reciprocal lattice. The sphere as drawn intersects a point connected with the end of
k by reciprocal lattice vector G. The diffracted beam is in the direction k' = k + G.
This construction is due to P.P. Ewald. The figure is taken from [Ki]

This is the central result in the theory of elastic scattering in a periodic lattice. The

identical result occur in the theory of the electron energy band structure of crystals

[Ki]. Notice that if G is a reciprocal lattice vector, -G is also one; thus we can

equally well write (2.7) as 2k . G = G2 •

The Brillouin zone gives a vivid geometrical interpretation of the resonance con­

dition 2k . G = G2 or

(2.8)

See the Figure 2.3.
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We construct a plane normal to the vector G at the midpoint; any vector k from

the origin to the plane will satisfy the resonance condition. The plane thus described

forms a part of the zone boundary. An incident wave on the crystal will be diffracted if

it's wavevector has the magnitude and direction required by (2.8), and the diffracted

wave will be in the direction of the vector k - G.

The set of planes that are the perpendicular bisectors of the reciprocal lattice vectors

are of particular importance in the theory of the wave propagation in crystals, because

a wave whose wavevector drawn from the origin terminates on any of these planes will

satisfy the condition for diffraction. These planes divide the Fourier space of the crys-

tal into bits and pieces, as shown on the Figure 2.4. The central square is a primitive

cell of the reciprocal lattice. It is called the first Brillouin zone. The first Brillouin

zone of the cubic lattice in two dimensions is shown on the Figure 2.4. The Brillouin

construction exhibits all the incident wavevectors which can be Bragg-reflected by

the crystal. As can be seen from the picture there can be several resonances for one

wave.

We prove a simple lemma that we will need later.

Lemma 2.2 The number of waves resonant to the incident kin is less then the number
of nodes of the reciprocal lattice G lying inside the sphere of the radius 21kin l centered
at the origin.

Proof. The proof is obvious from the geometrical picture, as the longest vector G

that gives resonance is in the direction of kin' •
We consider here a simple cubic crystal, where the fundamental lattice vectors

and reciprocal lattice vectors are all orthogonal [Ki]:

X1,2,3 = ae1,2,3, k - k e1,2,3 - 0 1,2,3, k
_ 27f

0--,
a
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where el,2,3 are unit vectors in lR3 . The coordinate axes (x, y, z) are oriented along

the axes of the simple cubic crystal. The set of resonant Bloch waves is given by the

set of triples:

s = {(n, m, l) E Z3: (n + ~) 2 + (m + ~) 2 + (l + ~) 2 = (~) 2 + (~) 2 + (~) 2} ,

(2.9)

or

(2.10) S = {(n, m, l) E Z3: n(n + p) + m(m + q) + l(l + r) = O},

The set S always has a zero solution: (n, m, l) = (0,0,0). When (p, q, r) E Z3 and

Ipl+lql+lrl =J 0, the set S has at least one non-zero solution: (n, m, l) = (-p, -q, -r).

2.3 Classification of resonances

The classification of resonances can be based on geometric construction (Figure 2.4)

and algebraic equation (2.9). When (p, q, r) E Z3, resonant triples (n, m, l) can be

all classified analytically. However, when (p, q, r) tj. Z3, additional resonant triples

may also exist. Here we review particular resonant sets S for integer and non-integer

values of (p,q,r).

We introduce spherical angles (e, <p) such that the incident wave vector kin is

(2.11) kin = k (sin ecos <p, sin esin <p, cos e) , k E lR, 0 ::; e ::; 1r, 0 ::; <p ::; 21r,

where k = Ikinl. When e= 0, the wave vector kin is perpendicular to the (x, y) crystal

plane. Then

(2.12) 2k . e
p = k

o
sm cos <p,

2k . e .
q = k

o
sm sm<p,

2k
r = k

o
cose.
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2.3.1 One-dimensional resonances of counter-propagating waves

The one-dimensional Bragg resonance occurs when the incident wave is coupled with

the counter-propagating reflected wave, such that the set S has at least one non-zero

solution: (n, m, l) = (0,0, -r), where r E Z+. The values of p and q are not defined

for the Bragg resonance, when n = m = 0. As a result, the spherical angles (J and

'{J in the parametrization (2.11) are arbitrary, while the wave number k satisfies the

Bragg resonance condition [Ki]:

(2.13) rko = 2k cos (J,

such that rA = 2a cos (J, where A is the wavelength. The one-dimensional Bragg

resonance is generalized in three dimensions for p = q = °and r E Z+, when the

geometric configuration for the Bragg resonance (2.13) is fixed at the specific value

(J = 0, and

(2.14)
1f

kin = -(0,0, r),
a

k(O,O,-r) = ~ (0 °_)out , , r.
a

The incident wave is directed to the z-axis of the cubic lattice crystal and the wave-

length is A = 2a/r. The family of Bragg resonances with p = q = 0 and r 'E Z+,

may include not only the two counter-propagating waves (2.14) but also other Bloch

waves in three-dimensional photonic crystals. The lowest-order resonant sets S for

p = q =°and r E Z+ are listed below:

r = 1: S = {(O, 0, 0), (0,0, -1)}

r = 2: S = {(O, 0, 0), (1,0, -1), (-1,0, -1), (0, 1, -1), (0, -1, -1), (0,0, -2)}

r = 3: S = {(O, 0, 0), (1, 1, -1), (-1,1, -1), (1, -1, -1), (-1, -1, -1), (1, 1, -2), (-1,1, -2)}

{(1, -1, -2), (-1, -1, -2), (0,0, -3)}

The dimension of S depends on the total number of all possible integer solutions
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for (n, m, l).

2.3.2 Two-dimensional resonances of counter-propagating waves

Two-dimensional Bragg resonances occur when the incident wave vector kin is res­

onant to the counter-propagating reflected wave vector k~::,-q,O), as well as to two

other diffracted wave vectors k~~;q,O) and k~::'o,O), where (p, q) E Z~. The value

of r is not defined for the two-dimensional resonance, such that the angle () in the

parametrization (2.11) is arbitrary, while k and <p satisfy the resonance conditions:

(2.15) <p = arctan (~) ,

The two-dimensional Bragg resonances are generalized in three dimensions for (p, q) E

Z~ and r = 0, when the geometric configuration for the Bragg resonance (2.15) is

fixed at the specific value () = ~, and

(2.16) k(O,-q,O)
out

1r
- ;,(p, q, 0),

1r
-(p, -q, 0),
a

k(-p,-q,O) = ~(- - 0)out p, q, ,
a

(-p,O,O) _ 1r ( )
k out - - -p, q,°.

a

The incident wave kin is directed along the diagonal of the (px, qy)-cell of the cubic

lattice crystal and the wavelength is >. = 2a/vip2 + q2.

The families of Bragg resonances with (p, q) E Z~ and r = °may include not

only the four resonant waves (2.16) but also other Bloch waves in three-dimensional

photonic crystals. The lowest-order resonant sets S for (p, q) E Z~ and r = °are

listed below:

p= l,q= 1: S= {(O,O,O),(-I,O,O),(O,-I,O),(-I,-I,On

p = 2, q = 1: S = {(O, 0, 0), (0, -1,0), (-1,0,1), (-1,0, -1), (-1, -1, 1), (-1, -1, -In u

{(-2,0,0), (-2, -1, on
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p = 2, q = 2: S = {(O, 0, 0), (0, -1, 1), (0, -1, -1), (0, -2,0), (-1,0,1), (-1,0, -In u

{(-I, -2, 1), (-1, -2, -1), (-2,0,0), (-2, -1, 1), (-2, -1, -1), (-2, -2, on
2.3.3 Two-dimensional resonances of oblique waves

The resonant set S can be non-empty for (p, q, r) t/:. Z3, which corresponds to oblique

Bloch waves. For instance, two oblique waves are resonant on the (x, y)-plane if

(2.17)
1r

kin = -(p, q, 0),
a

k~~tm,O) = ~(p + 2n, q + 2m, 0).
a

where (n, m) E Z2 are arbitrary and (p, q) E JR2 are taken on the straight line:

(2.18)

Similarly, three oblique waves can be resonant on the (x, y)-plane if

1r
kin = -(p, q, 0),

a
(2.19)

where (nl' mI) E Z2 and (n2' m2) E Z2 are arbitrary subject to the constraint: mln2 =I=­

m2nl, while (p, q) take rational values:

(2.20)p = ml(n~ + m~) - m2(ni + mi),
m2nl - mln2

In general case, two oblique waves (2.17) or three oblique waves (2.19) may have

resonances with other Bloch waves in three-dimensional photonic crystals.

2.3.4 Three-dimensional resonances of counter-propagating
waves

When (p, q, r) E Z~, the resonant sets S include eight coupled waves for fully three-

dimensional Bragg resonance:

1r
kin = -(p, q, r),

a
k(-p,-q,-r) - ~(_ _ _)

out - p, q, r,
a



(2.21)

k( -p,O,O)
out

k(O,O,-r)
out

k(-p,O,-r)
out

1f
;;,(-p,q,r),

1f
-(p, q, -r),
a
1f
-( -p, q, -r),
a

(O,-q,O) 1f (k out = - p, -q, r),
a

k( -p,-q,O) = ~ (-p -q r)
out a'"

k (O,-q,-r) _ 1f ( )
out - - p, -q, -r .

a

17

The resonance condition for the three-dimensional Bragg resonance takes the form:

(2.22) 'P = arctan (~), e= arctan ( VP'r+ q,), yip' + q' + r'leo = 2k,

The incident wave kin is directed along the diagonal of the (px, qy, rz )-cell of the

cubic lattice crystal and the wavelength is A = 2ajJp2 + q2 + r2 . The eight waves

(2.21) can be coupled with some other resonant waves, such that dim(S) ~ 8 for

(p, q, r) E Z~. For instance, dim(S) = 8 for (p, q, r) = (1,1,1) and (p, q, r) = (2,1,1),

but dim(S) = 10 for (p, q, r) = (2,2,1) and dim(S) = 16 for (p, q, r) = (3,2,1).
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•

•

•

•
Figure 2.3: Reciprocal lattice points near the point 0 at the origin of the reciprocal
lattice. The reciprocal lattice vector G c connects points OC; and G D connects OD.
Two planes 1 and 2 are drawn which are perpendicular bisectors of G c and G D ,

respectively. Any vector from the origin to the plane 1, such as k 1 , satisfies the
diffraction condition k 1 . (~Gc) = (~GC)2. Any vector from the origin to the plane 2
, such as k2 , satisfies the diffraction condition k 2 • (~GD) = (~GD)2. Figure is taken
from [Ki].
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Figure 2.4: Square reciprocal lattice with reciprocal lattice vectors shown as black
lines. The dashed lines are perpendicular bisectors of the reciprocal lattice vectors.
The central square is the smallest volume about the origin which is bounded entirely
by dashed lines. The square is the Wigner-Seitz primitive cell of the reciprocal lattice.
It is called the first Brillouin zone. Figure is taken from [Ki].



Chapter 3

Derivation of coupled-mode
equations

The dispersion surface w = w(k) for the Bloch waves (2.4) in the periodic photonic

crystal is defined by the profile of the refractive index n(x). We shall consider the

asymptotic approximation of the dispersion surface w = w(k) in the limit when the

photonic crystal is low-contrast, such that the refractive index n(x) is given by

(3.1)

where no is a constant and E is small parameter. It is proved in [K1] that the

Bloch waves (2.4) are smooth functions of E, such that the asymptotic solution of

the Maxwell equations (2.1) as E ~ 0 takes the form of the perturbation series ex-

pansions:

(3.2)

The leading-order term Eo (x, t) consists of free transverse waves (2.2) with wave

vectors k~~tm,l), given by (2.6), such that the asymptotic form (3.2) represents the

Bloch wave (2.4) as E =J. O.

20
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Coupled-mode equations are derived by separating resonant free waves from non-

resonant free waves in the Bloch wave (2.4), where the resonant set S with N =

dim(S) < 00 is defined by (2.9). Let Eo(x, t) be a linear superposition of N resonant

(3.3)

waves with wave vectors k j at the same frequency w:

N

E (x t) = ~ A· (X T)e ei(kjx-wt)0, L..J J ,kj ,

j=l

X= EX

k'
T=Et ,

w

(3.4)

where wand k j are related by the same dispersion equation (2.3), Aj(X, T) is the

envelope amplitl}de of the jth resonant wave (2.2) and (X, T) are slow variables. The

slow variables represent a deformation of the dispersion surface w = w(kj ) for free

waves (2.3) due to the low-contrast periodic photonic crystal. The degeneracy in the

polarization vector is neglected by the assumption that the incident wave is linearly

polarized with the polarization vector ein = ekin • The triple Fourier series (2.5) for

the cubic-lattice crystal is simplified as follows:

n (x) = n ~ a eiko(nx+my+lz)
1 0 L..J n,m,l ,

(n,m,l)EZ3

where ao,o,o = O. The Fourier coefficients an,m,l satisfy the constraints:

an,m,l = a-n,-m,-l,

due to the reality of nl(x),

an,m,l = am,n,l = an,l,m = al,m,n,

due to the crystal isotropy in the directions of X,Y,z-a:xes, and

a-n,m,l = an,m,L, an,-m,l = an,m,l, an,m,-l = an,m,l,

due to the crystal symmetry with respect to the origin (0,0,0) (the latter property

can be achieved by a simple shift of (x, Y, z) ). It follows that all coefficients an,m,l for

(n, m, l) E Z3 are real-valued.
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It follows from (2.1), (3.1), and (3.2) that the first-order correction term E I (x, t)

solves the non-homogeneous linear problem:

where "Vx = (ax,f}Y, az) and the second equation (2.1) has been used. The right­

hand-side of the non-homogeneous equation (3.5) has resonant terms, which are par-

allel to the free-wave resonant solutions of the homogeneous problem. The resonant

terms lead to the secular growth of E I (x, t) in t, unless they are identically zero.

The latter conditions define the coupled-mode equations for amplitudes Aj (X, T),

j = 1, ... , N in the general form:

j = 1, ... , N,(3.6) . 2 (aA
j (kj

) A) " A °2'lk aT + k' "Vx j + {;; aj,k k = ,

where the elements {aj,k h::;j,k::;N are related to the Fourier coefficients {(}:n,m,l hn,m,I)EZ3

at the resonant terms (n, m, l) E S.

The explicit forms of the coupled-mode equations (3.6) are derived below for a

number of examples of Bloch waves resonances.

3.1 Coupled-mode equations for one-dimensional
resonance

The lowest-order Bragg resonance for two counter-propagating waves (2.14) occurs

for r = 1, when
1r 1r

(3.7) kl = -(0,0,1), k2 = -(0,0, -1).
a a

Let Al = A+(Z, T) and A2 = A_(Z, T) be the amplitudes of the right (forward) and

left (backward) propagating waves, respectively. The envelope amplitudes are not
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modulated across the (X, Y)-plane, since the coupled-mode equations for A± are es-

sentially one-dimensional. The polarization vectors are chosen in the x-direction, such

that ekl = ek2 = (1,0,0) and Eo = (Eo,x(z, Z, T)e- iwt , 0, 0). The non-homogeneous

equation (3.5) at the x-component of the solution E 1 at e-iwt takes the form:

2 2 . 2 a a2 2k2nl (x) 2 a2nl (x)
\7 E 1 x + k E1 x = -2zk fYrlEox - 2kaza Eox - Eox + - a 2 Eox'

, , U.L' Z' no ' no x '

By removing the resonant terms at e±ikz, the coupled-mode equations for amplitudes

A±(Z, T) take the form:

0,

= 0,(3.9)

(3.8) . (aA+ aA+)z aT + az +aA_

(
8A_ aA_) A

i aT - az +a +

where a = aO,O,1 = aO,O,-I' The coupled-mode equations (3.8)-(3.9) can be defined

on the interval 0 :S Z :S L z for T 2 0, where the end points at Z = 0 and Z = L z

are the left and right (x, y)-planes, which cut a slice of the photonic crystal. The

linear system (3.8)-(3.9) is reviewed in [SS]. The nonlinear coupled-mode equations

are derived in [BS, SSS] and analyzed recently in [GWH, PSBS, PS].

3.2 Coupled-mode equations for two-dimensional
resonance

3.2.1 Coupled-mode equations for four counter-propagating
waves

The lowest-order resonance for four counter-propagating waves (2.16) occurs for p =

q = 1, when

(3.10)
1r

k l = -(1,1,0),
a

1r
k3 = - ( -1, 1, 0),

a

1r
k2 = -(1, -1,0),

a
1r

k4 = -(-1, -1,0).
a
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Let A1 = A+(X, Y, T) and A4 = A_(X, Y, T) be the amplitudes of the counter­

propagating waves along the main diagonal of the (x, y) plane, while A2 = B+(X, Y, T)

and A3 = B_(X, Y, T) be the amplitudes of the counter-propagating waves along

the anti-diagonal of the (x, y)-plane. The envelope amplitudes are not modulated

in the Z-direction, since the coupled-mode equations for A± and B± are essentially

two-dimensional. The polarization vectors are chosen in the z-direction, such that

ekj = (0,0,1), 1 :::; j :::; 4, which corresponds to the TE mode of the photonic crystal,

such that Eo = (0,0, Eo,z(x, y, X, Y, T)e- iwt ). The non-homogeneous equation (3.5)

at the z-component of the solution E 1 at e- iwt takes the form:

(3.11)

By removing the resonant terms at e J2"(±kx±k
y

) , the coupled-mode equations for am-

plitudes A±(X, Y, T) and B±(X, Y, T) take the form:

(3.12) . (aA+ aA+ aA+) 0,z aT + ax + ay + aA_ + {3 (B+ + B_) -

(3.13) ( aA_ aA_ aA_ ) A {3 (B B) 0,i aT - ax - ay + a + + + + -

(3.14) o (aB+ aB+ aB+) 0,z aT + ax - ay + {3 (A+ + A_) + aB_

(3.15) ( aB_ aB_ aB_) {3 (A A) B 0,i aT - ax + ay + + + - + a +

where a = all 0 = a-1 -10 = a1 -10 = a-11 0 and {3 = ao 1 0 = a1 0 0 = ao -1 0 =, , " " , , '" , "

a-1,0,0. The coupled-mode equations (3.12)-(3.15) can be defined in the domain

(X, Y) E 'D and T ~ 0, where'D is a domain on the (x, y)-plane of the photonic

crystal. The system has not been previously studied in literature, to the best of our

knowledge.
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3.2.2 Second and higher order resonance for four counter­
propagating waves in two-dimensional cubic crystal

The coupled-mode equations (3.12)-(3.15) for four counter-propagating waves de-

rived in the first order Bragg resonance. We show here that the higher order Bragg

resonances it 2D crystal can give the same coupled-mode system of four counter-

propagating waves.

Consider second order Bragg resonance on the (x, y) plane with kin = 2: (1, 0), as

can be seen in Figure 2.4 there are three lattice vectors G that are in resonance with

kin = 2: (1,0)

= 27r (2,0)
a

27r
= -(1, -1)

a

= 27r (1,1)
a

Hence there are four resonant counter-propagating waves, that are given by wave-

vectors

k 27r (1,0)
a

27r
-(-1,0)
a

27r (0,1)
a

27r
-(0, -1)
a

It can be seen from the Figure 3.1 that another basis cell can be use for the same

crystal. We introduce new dual lattice k~, k'2 , which is rotated about the basis k 1 , k2
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Figure 3.1: The same two-dimensional cubic crystal can be obtained by translation
of two basis cells. The basis cell we the smallest volume is called primitive.

The triple Fourier series for n(x) is now

n(x) = L a~, eiG'x

G'

Where G' lies in the new dual lattice G' = nk~ + mk~ .

Now the derivation of coupled-mode equations for four counter-propagating waves

in the first Bragg resonance can be repeated to obtain the coupled-mode equations

for four counter-propagating waves in the second Bragg resonance in 2D crystals with

obvious change a ---+ a'.

Let A1 = A+(X, Y, T) and A2 = A_(X, Y, T) be the amplitudes of the counter­

propagating waves in x direction, while A3 = B+(X, Y, T) and A4 = B_(X, Y, T) be

the amplitudes of the counter-propagating waves in y direction. The envelope am­

plitudes are not modulated in the Z-direction, since the coupled-mode equations for

A± and B± are essentially two-dimensional. We obtain the coupled-mode equations
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for amplitudes A±(X, Y, T) and B±(X, Y, T):

(3.16)

(3.17)

(3.18)

(3.19)

0,

0,

0,

0,

h " , , , d{3" , ,w ere a = a 110 = a_I -1 0 = a 1 -10 = a-II 0 an = a o 1 0 = a 100 = a o -1 0 =, , " " , , , , , , "

a~l,OIO' The explicit formula for d in terms of a is

,
an,m = an-m,n+m

We conclude the treatment of two-dimensional photonic crystals with a simple

algebraic theorem which is almost obvious from geometric construction on Figure 2.4.

Theorem 3.1 All orthogonal counter propagating resonant waves in 2D cubic crystal
f. k - 211"(~~) h . toccur Jor in - a 2' 2 ,were p, S are zn egers.

Proof. It is clear that the only parallel resonant waves allowed in photonic crystal

are counter propagating waves. In order to find two orthogonal pairs of counter-

propagating waves we have to solve the system

Ikl - Ik+GI

k .1 (k + G)

Denote k = (k1 , k2 ), G = (n, m), the system transforms to
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Expressing m in terms of n from the second equation we get

(n + k1? = k~

k1(k1+ n) + k~
m = - -'----'----=-

k2

This gives us two sets of solutions

It is easy to see that this two sets describe two orthogonal vectors G1 and G2 . For

this vectors to lie on the reciprocal lattice we require

k
1

= P + s
2

p-s
k2 = -2-'

where p and s are integers. The theorem is now proven. •
The theorem gives us necessary and sufficient condition for existence of four orthog-

onal counter-propagating resonant waves.

It is not clear for what kin, in general, there are only four non-orthogonal counter

propagating waves in cubic crystal. The obvious necessary condition for that is

kin = 2:(p, s) where p, s E 'Z}.

3.3 Coupled-mode equations for two oblique waves

Two oblique resonant waves on the (x, y)-plane are defined by the resonant wave

vectors (2.17) under the constraint (2.18). Assuming that el = e2 = (0,0,1), the

Maxwell equations can be reduced to the same form (3.11), where the resonant terms
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are eliminated at the wave vectors k1 = kin and k2 = k~:tm,O). The coupled-mode

equations for amplitudes A1,2(X, Y, T) take the form:

(3.20)

(3.21)

. (BAI P BA1 q BAl) A'/, -+ -+ - +a 2
aT Jp2+ q2 BX J p2+ q2 BY

. (BA2 p+2n BA2 q+2m BA2) A'/, -+ -+ - +a 1
aT J p2 + q2 BX J p2 + q2 BY

0,

= o.

where a = an,m,O = a_n,-m,O' Coupled-mode equations (3.20)-(3.21) for two oblique

waves can not be reduced to the one-dimensional system (3.8)-(3.9), since the char­

acteristics in the system (3.20)-(3.21) are no longer parallel.

The coupled-mode equations for three oblique resonant waves (2.19) can be de­

rived similarly, subject to the resonance condition (2.20). Three characteristics along

th t k k k k(nI,mI,O) d k k(n2 ,m2 'O) bIt the wave vec ors 1 = in, 2 = out ,an 3 = out e ong 0 e same

(X, Y)-plane. The stationary transmission problem for the three oblique waves is

hence a boundary-value problem on the (X, Y)-plane with three (linearly dependent)

characteristic coordinates. Oblique interaction of three oblique resonant Bloch waves

in a hexagonal crystal was considered numerically in [SGS].

3.4 Coupled-mode equations for six counter-propagating
waves in 3D photonic crystal

The lowest-order resonance for six counter-propagating waves occurs for p = 2, q =

r = 0, when

211"
k1 - -(1,0,0)

a
211"

k2 -(-1,0,0)
a

k3 211" (0,1,0)
a
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k4 - 27r (0, -1,0)
a

27r
k5 -(0,0,1)

a
27r

k6 - -(0,0,-1)
a

Let A 1 = A+(X, Y, Z, T) and A2 = A_(X, Y, Z, T) be the amplitudes of the counter­

propagating waves in x direction, while A3 = B+(X, Y, Z, T) and A4 = B_ (X, Y, Z, T)

be the amplitudes of the counter-propagating waves in y direction, A5 = C+ (X, Y, Z, T)

and A6 = C_(X, Y, Z, T) be the amplitudes of the counter-propagating waves in z

direction. This resonance is fully three-dimensionaL

Substituting into the non-homogeneous equation (3.5) and removing resonant

terms for solution E 1 at ei±kx, ei±ky , ei±kz the coupled-mode equations for the am-

plitudes A±(X, Y, ZT), B±(X, Y, Z, T) and C±(X, Y, Z, T) take the form:

Due to the crystal symmetry we denote ° = 02,0,0 and f3 = 01,1,0 and rewrite the

system as

(3.22)
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(3.23) i C18~- - ~~ ) + aA+ + ,B(B+ + B_ + C+ + C_) = 0,

(3.24) (8B+ 8B+)'l 8T + 8Y + aB_ + ,B(A+ + A_ + C+ + C_) = 0,

(3.25) 'l (8:i - 88~ ) + aB+ + ,B(A+ + A_ + C+ + C_) = 0,

(3.26) (8C+ 8C+)'l 8T + 8Z + aC_ + ,B(A+ + A_ + B+ + B_) = 0,

(3.27) (8C_ 8C_ ) ( )i 8T - 8Z + aC+ + ,B A+ + A_ + B+ + B_ = 0.

The coupled-mode equations (3.22)-(3.27) can be defined in the domain (X, Y, Z) E V

and T 2:: 0, where V is a domain on the (x, y, z)-space of the photonic crystal. The

system has not been previously studied in literature, to the best of our knowledge.

The reduction of the system to the (x, y) plane gives the system (3.16)-(3.19).

3.5 Nonlinear coupled-mode equations with cubic
nonlinearities

Modeling of nonlinear photonic band-gap crystals with cubic (Kerr) nonlinearities is

based on the Maxwell equations, where the polarization vector depends nonlinearly

from the electric field vector E [K2]. When the nonlinearity terms are small, nonlocal

(dispersive) terms in the polarization vector can be neglected and the low-contrast

weakly-nonlinear photonic crystals can be modelled with the Maxwell equations (2.1),

where the refractive index n = n(x, IEI2 ) is decomposed into the linear and nonlinear

parts [88]:

(3.28)

where no is constant and E is small parameter. When the photonic crystal has cubic-

lattice structure, the periodic functions nl(x) and n2(x) are expanded into the triple
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Fourier series (3.4) and

n (x) = n ~ (3 eiko(nx+my+lz)
2 0 L..J n,m,l ,

(n,m,I)EZ3

where the factor no is included for convenience. The Fourier coefficients !3n,m,1 satisfy

the same symmetries as a under condition that n(x) is invariant with respect to crystal

symmetries. It follows that all coefficients !3n,m,1 for (n, m, l) E Z3 are real-valued.

Derivation of the nonlinear coupled-mode equations is based on rigorous methods

of Lyapunov-Schmidt reductions [SU]. Equivalently, the formal derivation can be

recovered with the perturbation series expansions [Sh], which follows to the formalism

(3.2) and (3.3). The first-order correction term E1(x, t) solves the non-homogeneous

problem (3.5) with additional nonlinear terms:

(3.30)

2n~w82Eo -2k(V.V)E 2nOnl(x) 8
2
Eo ~V(V .E)

c2 8T8t x 0 + c2 8t2 + no nl 0

+ 2nOn2(x) IE 1282Eo ~V (V IE 12 . E )
2 0 8t2 + n2 0 o·c no

The cubic nonlinear terms generates N3 terms from the leading-order solution (3.3),

which all give resonant terms by means of the triple series (3.29). By removing the

resonant terms, the nonlinear coupled-mode equations for Aj(X, T), j = 1, ... , N are

derived in the general form:

(3.31) . 2 (8Aj (kj )) ~21,k 8T + k' Vx A j + {;; aj,kAk

+ L bj ,kl,k2,k3 Akl Ak2 Ak3 = 0,
1::;kl,k2,k3::;N

where the elements {bj ,kl,k2,k3h::;j,kl,k2,k3::;N are related to the Fourier coefficients {!3n,m,lhn,m"

at the resonant terms (n, m, l) E S. The explicit forms of the nonlinear coupled-mode

equations are given below for two and four counter-propagating and two oblique res-

onant Bloch waves.
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The nonlinear coupled mode equations for two counter-propagating waves (3.7)
generalize the linear equations (3.8)-(3.9) as follows:

. (8A+ 8A+) +'1, 8T + az
+

i (aa~ _a:;) +

+

aA_ + {30,0,0 (IA+12+ 2IA_12) A+

( 2 2) 2 - - 2
{30,0,1 21A+1 + lA_I A_ + {30,0,-l A+A - + {30,0,2A+A_ = 0,

aA+ + {30,0,0 (2IA+12 + IA_12) A_

( 2 2) - 2 2 -
{30,0,-1 IA+I + 21A_1 A+ + {30,0,l A+A _ + {30,0,-2A+A- = O.

The system (3.32)-(3.32) is reviewed in [GWH, SS] for {30,0,1 = {JO,0,2 = 0 and

analyzed in [PSBS, PS] for {JO,O,l #- 0 and {JO,0,2 = O. When {JO,O,l' {JO,0,2 #- 0, the

system (3.8)-(3.9) is the most general coupled-mode system for Bragg resonance of

two counter-propagating waves [BS, SSS].

The nonlinear coupled-mode equations for four counter-propagating waves (3.10)

generalize the linear equations (3.12)-(3.15) as follows:

0,

0,

0,

0,

where the cubic nonlinear functions are given by

F+ {Jo,o,o ((IA+1 2 + 21A_1 2 + 21B+1 2 + 2IB_12)A+ + 2.-LB+B_) + {JO,-l,O (A~B+ + 2A+ILB_)

( 2 2 2 2 - ) (2- -)+ {Jl,l,O (2IA+1 + lA_I + 21B+1 + 21B_1 )A_ + 2A+B+B_ + {J-l,O,O A+B_ + 2A+A_B+

+ {JO,l,O ((2IA+12 + 21A_1 2 + IB+1 2 + 2I B _1 2)B+ + 2A+A_B_) + {J-l,l,O (2A+B+B_ + jLB~)

+ {Jl,O,O ((2I A+1 2+ 2/A_12+ 21B+1 2 + IB_1 2)B_ + 2A+A_B+) + {Jl,-l,O (2A+B+B_ + .-LB:)

+ {J2,O,O (A+B: + 2A_B+B_) + {J2,1,O (2A+A_B_ + A:'B+) + {Jl,2,O (A:'B_ + 2A+A_B+)

+ {JO,2,O (A+B~ + 2A_B+B_) + {J-l,-l,oA~A- + {J2,2,oA+A:' + {J2,-1,oB+B: + {J-l,2,oB~B_,
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+
+
+
+
+

G+ =

+
+
+
+
+

G_ =

+
+
+
+
+

130,0,0 ((2I A+\2 + IA_\2 + 21B+12 + 2JB_12)A_ + 2A+B+B_) + 13-2,-1,0 (A~iL + 2A+A_B+)

13-1,0,0 ((2\A+1 2+ 2\A_12+ IB+\2 + 2\B_1 2)B+ + 2A+A_B_) + 13-2,0,0 (2A+B+B_ +A_B~)

130,-1,0 ((2IA+\2 + 2\A_\2 + 2\B+\2 + \B_12)B_ + 2A+A_B+) + 130,-2,0 (2A+B+B_ + A_B~)

131,-1,0 (A+B:' + 2A_B+B_) + 131,0,0 (2A+A_B_ + A~B+) + 130,1,0 (A~B_ + 2A+A_B+)

13-1,1,0 (A+B~ + 2A_B+B_) + 13-2,-2,oA~A- + 131,1,oA+A~ + 131,-2,oB+B:' + 13-2,1,oB~B_,

( 2 2 2 2 - ) (2- -)130,-1,0 (IA+I + 2IA_\ + 21B+1 + 2IB_\ )A+ + 2A_B+B_ + 130,-2,0 A+B+ + 2A+A_B_

131,0,0 ((2IA+1 2+ IA_1 2 + 21B+1 2+ 2\B_12)A_ + 2A+B+B_) + 13-1,-1,0 (A~B_ + 2A+A_B+)

( 2 2 2 2 - ) ( - - 2)130,0,0 (2IA+1 + 21A_1 + IB+I + 2\B_1 )B+ + 2A+A_B_ + 13-1,0,0 2A+B+B_ + A_B+

131,-1,0 ((2IA+12 + 21A_1 2+ 2\B+\2 + IB_1 2)B_ + 2A+A_B+) + 131,-2,0 (2A+B+B_ + A_B~)

132,-1,0 (A+B~ + 2A_B+B_) + 132,0,0 (2A+A_B_ + A=-B+) + 131,1,0 (A=-B_ + 2A+A_B+)

130,1,0 (A+B~ + 2A_B+B_) + 13-1,-2,oA~A- + 132,1,oA+A~ + 132,-2,oB+B~ + 13-1,1,oB~B_,

( 2 2 2 2 - ) (2- -)13-1,0,0 (jA+1 + 21A-1 + 21B+1 + 21B_1 )A+ + 2A_B+B_ + 13-1,-1,0 A+B+ + 2A+A_B_

130,1,0 ((2IA+\2 + IA_\2 + 2/B+12+ 2IB_12)A_ + 2A+B+B_) + 13-2,0,0 (A~B_ + 2A+A_B+)

( 2 2 2 2 - ) ( - - 2)13-1,1,0 (2I A+1 + 2\A_1 + IB+I + 2\B_1 )B+ + 2A+A_B_ + 13-2,1,0 2A+B+B_ + A_B+

130,0,0 ((2IA+12 + 21A_1 2+ 21B+1 2+ IB_\2)B_ + 2A+A_B+) + 130,-1,0 (2A+B+B_ +A_B~)

131,0,0 (A+B:' + 2A_B+B_) + 131,1,0 (2A+A_B_ + A=-B+) + 130,2,0 (A~B_ + 2A+A_B+)

13-1,2,0 (A+B~ + 2A_B+B_) + 13-2,-1,oA~A- + 131,2,oA+A~ + 131,-1,oB+B:' + 13-2,2,oB~B_.

The nonlinear coupled-mode equations for two oblique waves (2.17) generalize the
linear equations (3.20)-(3.21) as follows:

. (8AI p 8AI q 8AI) (2 2)
z 8T + Jp2+ q2 8X + Jp2+ q2 8Y + aA2+ 130,0,0 IAII + 21A21 Al

(
2 2) 2 - - 2(3.32) +J3-n,-m,O 21AI I + IA2! A2 + .Bn,m,oAIA2+ .B-2n,-2m,oA1A2 = 0,

. ( 8A2 P+ 2n 8A2 q + 2m 8A2) A (.I (21 A 12 jA 12) A
Z 8T + Jp2+ q2 8X + Jp2+ q2 8Y + a I + /-'0,0,0 I + 2 I

(
2 2) - 2 2 -(3.33) +J3n,m,o IAII + 21A21 Al + J3-n,-m,oA1A2+ J32n,2m,oA1A2 = O.

The system (3.32)-(3.33) and its generalization to three oblique resonant waves are

reviewed in [SGS, Sh].



Chapter 4

Analysis of stationary transmission

The stationary transmission problem follows from the separation of variables in the

coupled-mode equations (3.6):

(4.1) j = 1, ... , N,

where n is the detuning frequency.

First, we prove the existence and uniqueness theorem for the solution of coupled-

mode equations for four counter propagating waves in small convex domain. We

start with a linear case, generalize the proof to include Lipschitz nonlinearities, and

conclude with the proof of existence and uniqueness of solution in the case of Kerr

nonlinearity under the condition of small domain. Finally the theorem is generalized

for N-wave resonance.

4.1 Existence and uniqueness of solutions for four
counter-propagating waves

We start with the example of stationary transmission of four counter-propagating

waves. The system (3.16)-(3.19) after separation of variables (4.1) is simplified as

follows:

35
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(4.2) i~: + Da+ + a:a_ + (3 (b+ + b_) - 0,

(4.3) -i
a
a
a
;; + a:a+ + Da_ + (3 (b+ + b_) 0,

(4.4) i
a:; + (3 (a+ + a_) + Db+ + a:b_ - 0,

(4.5) _i
a:; + (3 (a+ + a_) + a:b+ + Db_ 0.

Let us define the problem (4.2)-(4.5) on the rectangle,

v = {(x,y): 0::; x::; L, 0::; y::; H},

subject to the boundary conditions:

a+(O, y) = a+(y),

(4.6)

where a+(y), a_(y), b+(x), b_(x) are given amplitudes of the incident waves at the

left, right, bottom and top boundaries of the crystal. The geometry of the problem

is shown on the Figure 4.1.

To prove existence and uniqueness of the solution of the system (4.2)-(4.5) with

boundary condition (4.6) we use the following facts [KF]

• Let A be a continuous map of complete metric space R into itself such that A

is a contraction; then the equation Au = u has a unique solution.

• The space R of continuous vector functions v(x, y) on the compact domain with

the norm P(Vl' V2) = maxx,y,i Ivt(x, y) - v~(x, y)1 is complete.

Theorem 4.1 There exist a unique solution of the system (4.2)-(4.5) in the small
enough domain V that satisfy boundary condition (4.6).
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Figure 4.1: Four counter-propagating waves on the plane. The direction of the char­
acteristics is shown with the arrowed lines. The characteristics that are going through
points P and Q are shown with dashed lines. The wave a+ propagates along ~1, a_
along 6, b+ along 6 and b_ along ~4' The boundary data for this particular geometry
of domain D is shown. For this case we will find the explicit solution of linear problem
by separation of variables in the next chapter.

Proof. The system (4.2)-(4.5) with boundary condition (4.6) is equivalent to

a+(x, y) = a+(O, y) + lx

(Oa+ + o:a_ + j3(b+ + b_)) dx

a_(x, y) = a_(L, y) + l x

(o:a+ + Oa_ + j3(b+ + b_)) dx

b+(x, y) = a+(x, 0) + l Y

(j3(a+ + a_) + Ob+ + o:b_) dy

b_(x, y) = b_(x, H) +J: (j3(a+ + a_) + o:b+ + Ob_) dy
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Hence, each component of the vector field

VI a+(x,y)

V2 a_(x,y)
-

V3 b+(x,y)

V4 b_(x,y)

is expressed by a corresponding integral over the characteristic. To construct the

solution we view the the integral system as a fixed point of the iteration problem.

v~+1(x,y) = a+(O,y) + lx(ov~ +av~ +,B(v~ +v~))dx

V~+I (x, y) = a_(L, y) + l x
(av~ + Ov~ + ,B(v~ + v~)) dx

V~+I(X,y) = a+(x, 0) + lY(,B(V~ +v~) +Ov~ +av~)dy

V~+I(X, y) = b_(x, H) + J: (,B(v~ + v~) + av~ + Ov~) dy

or symbolically

where A is the integral operator

To apply the contraction mapping principle we want to show that some power of

the map A is a contraction map. Let VI and V2 be two continuous vector fields on

'D = {(x,y): 0:::; x:::; L, 0:::; y:::; H} ,define metrics

Hence, we use the maximum norm IIvll of a continuous vector field V, that is, the

largest value of V attained in the closed domain 'D for any component of V in 1). We

have

JoX(O(vi - v~) + a(v~ - v~) + ,B(vr - vJ) + ,B(vt - vi)) dx

J;(a(vi - v~) + O(v~ - v~) + ,B(vr - vJ) + ,B(vt - vi)) dx

J~(,B(vi - vD + ,B(v~ - v~) + O(vr - vJ) + a(vt - vi)) dy

J;(,B(vi - v~) + ,B(v~ - v~) + a(vr - v~) + O(vt - vi)) dy
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Taking the absolute value of each component we obtain

x

L-x

Y

H-y

Where M = Inl + lad + 12,81. Hence, if max(L, H) * M < 1 then A is a contraction

map and as A is a continuous map the solution of Av = v exists and unique. •

The previous result can be easily generalized to the nonlinear problem

8ul

(4.7) i 8x + pl(X, y, u) 0,

8u2
(4.8) -i 8x + p2(X, y, u) 0,

8u3
(4.9) i 8y + p3(x, y, u) - 0,

8u4
(4.10) -i 8y + p4(X, y, u) - O.

defined on the rectangle,

(4.11) 1) = {(x, y) : 0:::; x :::; L, 0 :::; y :::; H},

with the boundary conditions:

(4.12) ul(O, y) = ul(y), u2(L, y) = u2(y),

u3(x, 0) = u3(x), u4(x, H) = u4(x),

Theorem 4.2 Let ul(y), u2(y), u3(x), u4(x) be continuous and F(x, y, u) is continu­
ous and satisfy Lipschitz condition in it's "functional" argument

Then, there exists a unique solution of the the problem (4.7)-(4.12).
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Proof. The proof essentially repeats the one for the linear case. The nonlinear

system is equivalent to

ul(x, y) = UI(O, y) + l x

pl(X, y; U) dx

U
2(X, y) = u2(L, y) +l x

p2(X, y; U) dx

U
3(X, y) = U

3(X, 0) +l Y

p3(X, y; U) dy

U
4(X, y) = u4(x, H) +J: p4(X, y; u) dy

Setting w = (ul(O, y), u2(L, y), u3(x, 0), u4(x, H))T and defining the integral map A

as

we find that

Au=

WI + foX PI(X, y; u) dx

w2+ f; P2(X, y; u) dx

w3+ f~ P3(X, y; u) dy

w4+ f~ P4(X, y; u) dy

I foX (pI (x, y; UI) - PI(X, y; U2)) dxl

I f;(P2(X, y; UI) - p2(X, y; U2) dxl

If~ (P3(x, y; UI) - P3(x, y; U2) dyl

If~ P4(X, y; UI) - P4(X, y; U2)) dyl

<

x

L-x

Y

H-y

Hence,if max(L, H) *M < 1 then A is a contraction map and as A is a continuous

map the solution of Av = v exists and unique. •
It is clear that under inclusion of the cubic Kerr nonlinearities into the Maxwell

equations (2.1), i.e by decomposition of the refractive index n = n(x, IEI2 ) into the

linear and nonlinear parts [SS]:
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the vector function F(x, y; u) in the coupled-mode system is the sum of linear and

cubic terms of uk and uk. The set of admissible vector functions in the statements and

proofs of both theorems is the set of continuous vector functions on 1), and thus there

is no upper bound for Ilull and Kerr nonlinearity is not Lipschitz in its functional

argument. We can obtain the existence and uniqueness result by restricting the set

of admissible vector functions to bounded (in the maximum norm) by the doubled

norm of the boundary data 211wll and continuous on 1) and considering small enough

1) so that the map Au gives us again an admissible vector function.

Theorem 4.3 Let u 1(y), u2 (y), u 3(x), u4 (x) be continuous and F(u) be the sum of
linear and cubic terms of uk and uk representing cubic Kerr nonlinearity and

max(L, H)(2a + 8bllwll 2
) ::; 1

where constants a, b are the sums of absolute values of coefficients of F in linear and
cubic parts correspondingly. Then, there exists a unique solution of the the problem
(4.7)-(4.12).

Proof. We denote w = (ul(y), u2(y), u3(x), U4(X))T and restrict the set of admissible

vector functions u, such that u is continuous on 1) and II uII ::; 211 wII. Defining the

integral map A as

we find that

Au=

WI + foX F 1(u) dx

w2 + f; F 2(u) dx

w3 + f~ F3(U) dy

w4 + f; F 4(u) dy

IIAull ::; IIwll + a max(L, H) lIull + bmax(L, H) lIull 3
,

where a, b are the sums of absolute values of coefficients of F in linear and cubic parts

correspondingly. Under condition that

max(L, H)(2a + 8bllwl1 2
) ::; 1
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the set of admissible functions is mapped by A into itself. As vector function F(u)

is Lipschitz on the set of admissible functions and the equation u = Au has only one

solution. •
Thus, for the finite norm boundary data there is always a unique solution of the Kerr

nonlinear boundary-value problem given that domain is small enough.

4.2 Existence and uniqueness of solution for N waves

Let us consider now the case of N waves in resonance. The characteristic coordinates

are introduced from the set of resonant wave vectors

j = 1, ... ,N,

such that characteristic lines are taken in the direction of wave vectors kj's.

We will consider now two dimensional spatial space X = (X, Y) for simplicity. The

only parallel resonant waves allowed in crystal are counter propagating waves: vectors

(ki,x, ki,y) and (kj,x, kj,y) could be in the opposite directions but any other vector

(k1,x, k1,y) should be linearly independent of them. Hence, generally characteristics fill

the whole plane.

We consider now the general problem of N-wave resonant propagation in the

convex crystal. Due to convexity the characteristics for any point inside the domain

lie entirely in the domain. Clearly the same family of characteristics can intersect

more than one face of the crystal as shown on the Figures 4.2,4.3. As can be seen

from the Figure 4.1, we only needed one wave profile at each face.

We consider the following boundary conditions: on avery face of the crystal we

give a profile A,i(x, y) of the wave Ai whose characteristics incidents on the face, we

require the continuity of profile on the verges (edges for 3D).
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Figure 4.2: Modified boundary value problem for four counter-propagating waves on
the plane. The direction of the characteristics is shown with the arrowed lines. The
characteristics that are going through points P and Q are shown with dashed lines.
The wave a+ propagates along 6, a_ along e2, b+ along 6 and b_ along e4. The
boundary data for this particular geometry of domain V is shown.

The boundary-value problem for the stationary transmission can be written in the

form

i = 1,. ° o,N(4.13)
8ai .8e i + Ft(x, y; a) = 0,

in the given convex domain V, with the boundary conditions described above, such

that profiles a'i (x, y) are continuous (on the verges as well as on the faces) and

F(x, y, a) is continuous and satisfy Lipschitz condition in it's "functional" argument
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i~ 1, ....N,

Figure 4.3: The case of three non-parallel families of characteristics. The boundarydata for tbis Particular geometry of domain is sho

wu

.

Theorem 4.

4

The general transmission Prvhlern (4.13) in a 8rnall convex domain
has a unz'qUe Solution.

p

roo

£. The proof CSsentialJy repeats the one for the four counter-propagating wavcs.

For any poiut (:c, Y) in the domain D we find the N characteristics going through it,

We Parametrize all Characteristics 80 that (i ~ 0 on the boundary of the domain

from which the characteristic goes hlBide the domain. For the convex domain D thenonlinear sYstem is equivalent to

Where integrals are taken along characteristics. Setting hi ~ a'i(x, y) we define the
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integral map A as

Aa= ( b1(x(O),y(O)) + f:'F1(X(e),Y(e); a) cU;1 )

bN(x(O),y(O)) + Jo~ FN(x(~N),y(~N);a)dl"N

we find that

Hence, A is a contraction map for a small enough domain and the equation Aa = a

has a unique solution. •
The theorems proved can be used for numerical solutions of the coupled-mode

systems through iteration of the integral map Un+l = Aun . The analytical solutions

for linear case is obtained in the next chapter.

4.3 Multi-symplectic structure of the coupled-mode
equations

Following [Br], a multi-symplectic system on the plane in canonical form in real

coordinates is

Mux + Kuy = \7h(u),
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where M and K are any 2n x 2n skew-symmetric matrices.

An important part of the theory of conservative systems is the Noether theory

that relates symmetries and conservation laws. When a conservative system has

a Hamiltonian structure the symplectic operator gives a natural correspondence be­

tween symmetries and invariants or conserved densities ([0]). However in the classical

setting there is only one symplectic operator and therefore there is no relation be­

tween symplecticity and the fluxes of a conservation law. In the multi-symplectic

framework such a connection is possible and leads to a new and useful decomposition

of the Noether theory.

In its simplest setting, finite-dimensional Hamiltonian systems, the connection

between symmetry and conservation laws can be stated as follows. Suppose U E R2n

and

JUt = Vh(u)

with J the usual unit symplectic operator on R2n

Suppose there exists a one-parameter Lie group G(E) acting symplectically on R2n

which leaves the Hamiltonian functional invariant. Let

and suppose

(4.14) Jv = Vp(u)

for some functional p(u). Then OtP = O. A proof of this result is given in [0]. The

above result connects the action of the symmetry group with the conserved densities
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but in the case of classical Hamiltonian system it does not establish a connection

between the action of the symmetry and the fluxes. In the expression (4.14) it is

the action of the symplectic operator, on the infinitesimal action of the Lie group,

that generates the gradient of the conserved quantity. Therefore its generalization to

include fluxes is clear: act on V with each element in the family of skew-symmetric

operators in the multi-symplectic structure to obtain all the components of the con-

servation law. This leads to a new decomposition of the Noether theory.

Let u E ]R2n and consider the multi-symplectic Hamiltonian system

(4.15) M(u)ux + K(u)uy + L(u)uz = \7h(u)

We say that the system (4.15) is invariant with respect to the action of one parameter

Lie group G(E) if

(4.16) h(G(E) . u) = h(u)

DG(E)* M(G(E) . U)DG(E) = M(u)

DG(E)*K(G(E)' U)DG(E) = K(u)

DG(E)*L(G(E) . U)DG(E) = L(u)

where DG (E) is Jacobian with respect to Eand * indicates formal adjoint.

Theorem 4.5 (Bridges, 1997) Let the Hamiltonian system (4.15) be invariant with
respect to the action of a one-parameter Lie group G(E) with generator v. Suppose
there exist a solution u(x, y, z) and functionals p(u), q(u), r(u) such that

M(u)v = \7p(u), K(u)v = \7q(u), L(u)v = \7r(u).

Then p, q and r, evaluated at the solution u of (4.15), satisfy the conservation law
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Proof. The proof of this result is straightforward. Differentiating the first equation

of (4.16) with respect to E and setting to zero results in

0= :E h(G(E) . u) I€=o = (Vh(u), v)

= (M(u)ux + K(u)uy + L(u)uz , v)

= -(ux, M(u)v) - (uy, K(u)v) - (uz , L(u)v)

= -(ux, Vp) - (uy,Vq) - (uz , Vr)
8p 8q 8r-------
8x 8y 8z

proving the claim. •
We illustrate the multi-symplectic Noether theorem on the example of four counter

propagating waves in crystal (4.18)-(4.21).

The system for stationary transmission of four counter-propagating waves can be

rewritten in the bi-symplectic Hamiltonian form.

Denoting

(4.17)

The system becomes

(4.18)
8

=i
8h

-a+
00+8x

(4.19)
8

= -i
8h

8x a- 00_

(4.20)
8 8h
-b+ =1,

8b+8y

(4.21 )
8

= -i
8h

8yb- 8b_
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And corresponding complex conjugate system. Here a±, b± and a±, b± are treated as

independent variables. Note that first half of the system and it's complex conjugate

describes non-autonomous (for some fixed functions b±) x-spatial dynamics of (a+, a_)

with hamiltonian h and the second half of the system and it's complex conjugate

describes non-autonomous (for some fixed functions a±) y-spatial dynamics of (b+, b_)

with hamiltonian h.

This system has number of symmetries [PS]

• time inversion

(4.22)

(4.23)

• spatial reflection in x and in y

(4.24)

(4.25)

• gauge symmetry

(4.26)

Denoting

a+ ~ a_,a_ ~ a+,x ~-x

(4.27)

we transfer the system to canonical form

( JO0o)ux+(Oo 0) iJ uy = 2\7h(u)
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with J the usual symplectic matrix: J = (0 -12
) and h(u) given by (4.17). The

12 0
group (4.26) obviously conserve symplectic structure M, K, it is a simple rotation in

the u space, therefore, we immediately find the generator (corresponding real parts

in vector u change sign)

u1

-u2

-u3

V=
u4

uS

We have
u3

-u4

Mv=
u 1

_u2

which corresponds to p(u) = (U 1)2 - (u2)2 + (U3)2 - (u4? = la+ 12 -la_1 2 due to (4.27).

Similarly q = Ib+12 -lb_1 2 and we have conservation law

We conclude this part with the remark that multi-symplectic structure of the

system of four (2D) and six (3D) counter-propagating waves could be very useful

in developing numerical algorithms for integrations of such systems, as conservation

laws can be used to stabilize numerics (Marsden, Patrick, and Shkoller (1998) ?? ­

methods derived from descrite variational principle; Bridges and Reich (2001) ??­

methods preserve multi-symplectic conservation law ).



Chapter 5

Explicit analytical solution in the
linear case

In this chapter we give analytical solutions for some linear coupled-mode systems.

We also give the proof of the well-posedness of the boundary-value problem for four

counter-propagating waves using the method of separation of variables and generalized

Fourier series.

5.1 Transmission of two counter-propagating waves

After separation of variables (4.1), the linear coupled-mode equations (3.8)-(3.9) re­

duce to the following ODE system:

(5.1) .da+ n 0,~ dZ + a+ + aa_ -

(5.2)
da_

-i dZ + aa+ + na_ O.

The problem (5.1)-(5.2) is defined on the interval 0 ~ Z ~ Lz . When the incident

wave is illuminated to the photonic crystal from the left, the linear system (5.1)-(5.2)

is completed by the boundary conditions:

(5.3)

51
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where a+ is the given amplitude of the incident wave at the left (x, y)-plane of the

crystal. The general solution of the ODE system (5.1)-(5.2) is given explicitly as

follows:

(5.4)

where c± E C are arbitrary and /'i, E C is the root of the determinant equation:

(5.5)

When /'i, = iK, K E lR, the linear dispersion relation n = n(K) follows from the

quadratic equation:

(5.6)

The two branches of the dispersion relation (5.6) correspond to the two counter-

propagating resonant waves. Their resonance leads to the photonic stop band, which

is located in the interval: Inl < lal.

Let n = 0 for simplicity, Le. the detuning frequency is fixed in the middle of the stop

band. The unique solution of the boundary-value problem (5.1)-(5.3) follows from

the general solution (5.4):

(5.7)
(

a+ ) a+ (coSha(Lz - Z) )
a_ - coshaLz -isinha(Lz - Z) .

The transmittance T and reflectance R are defined from the other boundary values

of the solution (5.7):

such that the balance identity T + R = 1 is satisfied. The analytical solution (5.7)

for the two counter-propagating waves is well-known [88] and is reproduced here for



53

comparison with the case of four counter-propagating and two oblique waves on the

plane.

5.2 Transmission of four counter-propagating waves

The stationary transmission of four counter-propagating waves in the coupled-mode

equations (3.12)-(3.15) is studied in the characteristic coordinates (~, ",):

X-Y
",=-­

2

After the separation of variables (4.1), the linear coupled-mode equations (3.12)­

(3.15) reduce to the PDE system:

(5.8)
.8a+

0,~ 8~ + f2a+ + aa_ + {3 (b+ + b_) -

(5.9) _i8;~- + aa+ + f2a_ + {3 (b+ + b_) 0,

(5.10) i~; + {3 (a+ + a_) + f2b+ + ab_ - 0,

(5.11) 8b_ ( )-i 8", + {3 a+ + a_ + ab+ + f2b_ O.

The problem (5.8)-(5.11) is defined in a bounded domain on the plane (C ",). We

consider the rectangle,

(5.12) D = {(~, ",) : 0:::; ~ :::; L~, 0 :::; ", :::; LTJ}'

which corresponds to a rectangle in physical coordinates (X, Y), rotated at 45° in

characteristic coordinates (~, ",). When the incident wave is illuminated from the left

along the main diagonal in the (X, Y)-plane of the photonic crystal, the linear system

(5.8)-(5.11) is completed by the boundary conditions:
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where a+(1]) is the given amplitude of the incident wave at the left boundary of the

crystal. We give alternative proof of the balance equation for four counter-propagating

waves.

Theorem 5.1 The amplitudes a±, b± of the PDE system (5.8)-(5.11) satisfy the bal­
ance equation:

(5.14)

Proof. The system (5.8)-(5.11) can be rewritten as follows:

B 0 0 0 a+ n a f3 f3 a+
B~

0 B 0 0 a_ a n f3 f3 a_
z

-B~ + =0
0 0 B 0 b+ f3 f3 n a b+BTl

0 0 0 B b_ f3 f3 a n b_
- BTl

or

.( 1
8

2
8 )z 1 8~ +1 81] 'I/J + M'I/J = 0

where

1 0 0 0 0 0 0 0

1
1

=
0 -1 0 0

,12 =
0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 -1

n a f3 f3 a+

a n f3 f3 a_
M= ,'I/J=

f3 f3 n a b+

f3 f3 a n b_

To obtain the balance equation we multiply this system from the left by {JT, multiply

the complex conjugate system from the left by 'l/JT and subtract the results
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As ')'1 , ')'2 , M are symmetric we get

Using the degenerate structure of ')'1 , ')'2 we obtain the balance equation

or

•
The linear dispersion relation n = n(K~, K1))' where (K~, K1)) are Fourier wave

numbers, follows from the determinant equation of the linear PDE system (5.8)-

(5.11).

Lemma 5.2 The linear dispersion relation 0. = n(K~, K1)) is defined by roots of
D(n, Ke,K1))' where

(5.15) D(n, Kf,' K1)) = (0.2 - a? - Kl)(n2
- a2

- K~) - 4,82(0. - a?

There exists real-valued roots D(O, K~, K1)) = 0 for a 2 :S 4,82, while no roots exist for
a 2 > 4,82.

Proof. The determinant equation follows from the PDE system (5.8)-(5.11) for the

Fourier modes ei(K{~+K1)1)) in the explicit form:

n-Kf, a ,8 ,8

(5.16) D(n, Kf,' K1)) =
a n+Kf, ,8 ,8

,8 ,8 0. - K1) a

,8 ,8 a n+ K1)
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Although the straightforward computations of D(D., K~, KT/) are involved technically,

it is easy to compute that:

and

(5.18)

Integrating (5.17)-(5.18), we find that D(D., K~, KT/) is given by (5.15). When a 2 >

4/32 the function D(O, K~, KT/) is positive definite on (K~, K 71 ) E ]R2 such that no real­

valued roots (K~, KrJ) exist for D. = O. When a2 ~ 4/32, there exist two curves on the

(K~, KT/)-plane, which correspond to the real-valued roots of D(O, K~, KT/)' •

There are four surfaces of the dispersion relations D. = D.(K~, KT/), which corre­

spond to the four resonant counter-propagating Bloch waves. When a 2 > 4/32, the

interaction of four resonant waves leads to the stop band near the zero detuning fre­

quency D. = O. When a 2 ~ 4/32, no stop bands occur in the interaction of the four

resonant waves.

We consider solutions of the system (5.8)-(5.11) at D. = O. By separating variables

[StJ, we reduce the PDE problem to two ODE problems as follows:

(5.19)

(5.20)

where

a+(~, TJ) = u+(~)wa(TJ),

b+(~, TJ) = Wb(~)V+(TJ),

a_(~, TJ) = u-(~)wa(TJ)

b_(~, TJ) = Wb(~)V-(TJ),
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parameters (A, /-l) are arbitrary, and vectors (u+, u-f and (v+, v-f solve the two

uncoupled ODE systems:

(5.21)

(5.22)

and

(
i8T/ _~ ) ( v+ ) = /3r (1 1) (v+ ) ,
0: 1,8T/ v_ 1 1 v_

where r = AI/-l. The boundary conditions for (5.21)-(5.22) follow from (5.13) as

follows:

(5.23)

and

(5.24)

The homogeneous problem (5.22) and (5.24) defines the spectrum of r, while the

inhomogeneous problem (5.21) and (5.23) defines a unique particular solution (5.19)­

(5.20). The general solution of the problem (5.8)-(5.11) with the boundary values

(5.13) is thought to be a linear superposition of infinitely many particular solutions, if

the convergence and completeness of the decomposition formulas can be proved [Bt].

We first give solutions of the two problems above and then consider the orthogonality

and completeness of the generalized Fourier series.

Lemma 5.3 All eigenvalues r of the homogeneous problem (5.22) and (5.24) are
given by non-zero roots of the characteristic equation:

(5.25)

such that

(5.26)

R = {k E C G~:)' e-
2ikL

, = 1, Re(k) ~ 0, k i +
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n 2:: N.1r(4n+1) k 1r(4n+3) 0 I (k) C}
2L < < 2£ ' < m < ,

ij ij

Let 0: > O. Then, the roots kEn are all located in the first open quadrant of k E C.
Moreover, all roots are simple and there exists C > 0 and N E N such that only one
root kEn is located in each rectangle:

1)+ = {k ".... 1r(4n - 1) k 1r(4n + 1) 0 I (k) C}
nEil,... . 2L < < 2£ ' < m < ,

ij ij

and

1);; = {k E C :

Proof. The general solution of the ODE system (5.22) with the use of (5.26) is

found explicitly as follows:

(5.27)
(

v+ ) ( 0: - k) Ok ( 0: + k) _ok= Ck et
ij + C-k e t ij.

v_ 0: + k 0: - k

The coefficients Ck and C-k satisfy the relations due to the boundary conditions (5.24):

(5.28)
Ck k + 0: k - 0: -2ikL-=--=--e ,.,

C-k k - 0: k + 0: '

from which the characteristic equation (5.25) for roots k E C follows. The symmetric

roots k and (-k) correspond to the same rand v±(7]). The root k = 0 corresponds

to the zero solution for v±(7]). Therefore, the roots k = 0 and Re(k) ~ 0 are excluded

from the definition of n. The characteristic equation (5.25) is equivalent to the

modulus equation:

Ik - 0:I = I ikL,., I
!k+o:! e .

When 0: > 0, the left-hand-side equals to one at Re(k) = 0 and is smaller than one

for Re(k) > O. The right-hand-side equals to one at Im(k) = 0 and is larger than one

for Im(k) < O. Therefore, roots kEn may only occur in the first open quadrant of

k E C.

All roots kEn are simple, since

f'(k) = - 2i(k + 0:) [(k2 _ o:2)L + 2iO:] # 0
(k-o:) ij
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for f(k) = (k - 0:)2e-2ikL7J - (k + 0:)2 = 0, as the values of k2 - 0:2 for k E Rare

located in upper half-plane of the complex plane.

The characteristic equation (5.25) split into two sets of roots R+ and R_, such that

R+ U R_ = R, where

(5.29) R± = { k E C: ~ ~: e-ikL7J = ±1, Re(k) > o} .
We consider the set k E R+ and rewrite it in the form f(k) = g(k), where

f(k) = eikL7J
- 1,

The function f (k) has a zero at

k = k
n

= 21rn
L 'TJ

Let us consider the domain

20:
g(k) = --.

k+o:

n'?1.

""+ = {k tr'. 1r(4n - 1) k 1r(4n + 1) -C I (k) C}
L/nEIL- . 2L < < 2L ' < m < ,

TJ TJ

for some large C > 0 and N such that 71"(;~-1) > 0:, that surrounds a simple zero of
7J

f(k) at k = kn . It is clear that for sufficiently large C If(k)1 > Ig(k)1 on the boundary

of 15:};. By the Rouche's Theorem, the function f(k) + g(k) has the same number of

zeros inside 1):}; as f (k) does, i.e. only one zero. We can change 151; to 1)1; as all

k E R lie in the first open quadrant. The same analysis applies to the second set

k E R_ in the domain 1):;;. •
Roots k E Rand (-k) E R are shown on Figure 5.1 from the numerical solution

of the characteristic equation (5.25) for 0: = 1 and LTJ = 20. In agreement with

Lemma 5.3, all roots k E R are isolated points in the first open quadrant, which
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accumulate to the real axis of k at infinity. The standard analysis of analytic functions

at infinity leads to the asymptotic formula for distribution of large roots k in the

domain Ikl > ko» 1:

+ 21fn iO'. ( 1 )(5.30) kn = -L + - + 0 2" '
ry 1fn n

k- = 1f(1 + 2n) 2iO'. 0 (2-)
n Lry + 1f(1 + 2n) + n2 '

where n is large positive integer. The leading order of the asymptotic approximation

(5.30) is also shown on Figure 5.1 by dotted curves. The two sets in (5.30) correspond

to the splitting k E R± in (5.29).

Im(k)

*.
0.1

•

o

•

• .
•, ..

-0.1

-5 -2.5

•
•

••

•

o 2.5
Re(k)

5

Figure 5.1: Roots k E Rand (-k) E R of the characteristic equation (5.25) for 0'. = 1
and Lry = 20. Dark dots show roots of R+ and bright dots show roots of R_. The
dotted curves show the leading-order asymptotic approximation (5.30).

The eigenfunction V(17) = V+(17) + v-(17) is symmetric (anti-symmetric) with re­

spect to 17 = Lry/2 for k E R+ (k E R_). Moreover, explicit formulas for v(17) follow
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from (5.27) and (5.28):

k E R+: v (7)) = c+ cos k ( ~TJ - 7)) ,

k E R_ : v (7)) = c_ sin k ( ~TJ - 7)) ,

where (c+, c) are normalization constants. Asymptotic solutions (5.30) correspond

to two sets of eigenfunctions

(5.31) {
_ (1r(2n + 1)i]) }cos(1rn7)) , sin 2 '

_ 27)
7) = L -1,

TJ

which solve the homogeneous Neumann's problem on the normalized interval -1 :=:;

i]:=:;1.

Lemma 5.4 Let f be an eigenvalue of the problem (5.22) and (5.24). There exists
a unique solution of the non-homogeneous problem (5.21) and (5.23) for this f.

Proof. A general solution of the ODE system (5.21) is found explicitly as follows:

where

(5.33)

The relation (5.33) satisfies the determinant equation (5.15), such that D(O, aAk, k) =

O. Using the boundary conditions (5.23), coefficients dk and d_ k are found uniquely,

under the constraint:

(5.34)

(5.35)

We show that Uo =/:- o. The equation Uo = 0 can be rewritten in the form:

(Ak - 1)2 = e2io.>"k L{

(Ak + 1)2 .
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By analysis of Lemma 5.3, it is clear that non-zero roots of the characteristic equation

(5.35) may exist only in the first and in the third open quadrant of Ak E C for ° > O.

On the other hand the map k -+ Ak given by (5.33) maps first quadrant onto second

and third quadrant onto forth one. Thus there could not be a solution of (5.34)

except when k is mapped into A= 0: vio;i1:2 - 1 = O. In this case k E R must be

purely real or imaginary which is not the case. Therefore, the relation (5.33) leads to

contradiction, which proves that Uo =f O. •
Solutions of the non-homogeneous problem (5.21) and (5.23) with the normaliza­

tion u+ (0) = Uo I=- 0 can be written explicitly by eliminating dk and d_k from the

implicit form (5.32):

When the representation (5.19) is used for 0+(7]) = a+(O,7]).

The function 0+(7]) is expanded as series of scalar eigenfunctions v(7]) = v+(7])+v_(7]),

defined for roots k E R. This decomposition is only possible if the set of eigenfunctions

V(7]) is orthogonal and complete.

Lemma 5.5 There exists a set of normalized and orthogonal eigenfunctions Vj(7]) for
distinct roots k = kj E R, according to the inner product:

(5.37)

Proof. The set of adjoint eigenvectors to the problem (5.22) and (5.24) with respect

to the standard inner product in L2([0, L1]]) is given by the vectors (iL, V+)T. As a

result, the scalar eigenfunctions Vj(7]) for distinct roots k = kj satisfy the orthogo­

nality relations (5.37) with i I=- j. The scalar eigenfunction very) is found from (5.27)
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and (5.28) in the explicit form:

(5.38) v (7]) = Co (k cos k7] + ia sin k7]) ,

where Co is a normalization constant. Integrating v2 (7]) on 7] E [0, L l1 ], we confirm that

the eigenfunctions Vj(7]) can be normalized by the inner product (5.37) with i = j,

under the constraint:

(5.39)

Since the values of k2 - a 2 for k E R are located in upper half-plane of the complex

plane, the constraint (5.39) is met for a > 0 ( constraint (5.39) is the condition that

all roots k E R are simple). •
Proposition 5.6 Any continuously differentiable complex-valued function f(7]) on
o~ 7] ~ L l1 is uniquely represented by the series of eigenfunctions:

(5.40) f(7]) = L CjVj (7]) ,
all kjEn

and the series converges to f (7]) uniformly on 0 ~ 7] ~ L l1 •

Proof. It follows from (5.22) and (5.24) that the scalar eigenfunction v(7]) solves

the second-order boundary-value problem:

(5.41)

such that

(5.42) iv'(O) + av(O) = 0,

The Sommerfeld radiation boundary conditions (5.42) explain why the spectrum of

the formally self-adjoint operator (5.41) is complex-valued. The statement of Propo­

sition follows from Expansion Theorem [eL, p.303], since the theorem's condition is
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satisfied: A2,4 = 1, where A2,4 is the determinant of the second and fourth columns

of the matrix A, associated with the boundary conditions:

(

0: i 00)A= .
o 0 0: -i

The key idea here is that asymptotically the eigenvalue problem is the homogeneous

Neumann's problem. As a result, the Fourier series of asymptotic eigenfunctions

(5.31) approximates the series expansion (5.40) for large roots k = k!: uniformly on

"1 E [0, L1j]' The uniform convergence of (5.40) follows from that of the Fourier series

[St]. •
Using separation of variables and convergence of series of eigenfunctions, we sum-

marize the existence and uniqueness results on the generalized Fourier series solutions

of the linear boundary-value problem (5.8)-(5.11) and (5.13) with n = O.

Proposition 5.7 Let the set {Cj} be uniquely defined by the series (5·40) for f(rJ) =

0:+ (rJ). There exists a unique continuously differentiable solution of the boundary­
value problem (5.8)-(5.11) and (5.13) with n = 0 in the domain (5.12):

(5.43) a+(~, "1) L Cj ~+~~~~ (v+j(rJ) + V_j(rJ)) ,-
all kjE'R +3

(5.44) a_(~, rJ) - L Cj ~-~~~~ (V+j(rJ) +V-J(rJ)) ,
all kjE'R +3

(5.45) b+(~,rJ)
L U+j(e) + U_j(~) ()

- c· V+· rJ
all k'E'R J rjU+j(O) 3'

3

(5.46) b_(~,rJ) - - L Cj U+j(~) + U_j(~)V_j(rJ).
allk'E'R rjU+j(O)

3

We illustrate the generalized Fourier series solutions (5.43)-(5.46) with two ex­

amples: (i) a single term of the generalized Fourier series and (ii) a constant input

function O:+(rJ) = 0:+. For both examples, we compute the integral invariants for
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the incident (Tin), transmitted (Tout), reflected (Tref ) and diffracted (Tdid waves from

their definitions:

'Ln l L

T/ la+(O, 1']) I2d1'] ,

Tref = l L

T/ la_(O, 1'])1 2d1'],

Let the transmittance T, reflectance Rand diffractance D be defined from the rela-

tions:

The integral invariants satisfy the balance identity:

R+T+D = 1,

which follows from integration of the balance equation:

:~ (la+12
- la_12

) + :1'] (lb+12 -lb_12
) = 0.

First, we consider a single term of the Fourier series solutions (5.43)-(5.46). The

transmittance and reflectance for kEn are found from (5.36) in the explicit form:

Tk 1 Ak(a
2

+ k
2
) 1

2

Ak(a2 + k2) cos aAkLf, + 2ij32 sin aAkLf,

1

(a2 + k2 - 2,82) sin aAkLf, 1
2

Rk =
Ak(a2 + k2) cos aAkLf, + 2i,82 sin aAkLf, ,

while the diffractance is found from the balance identity as D k = 1 - Tk - Rk . These

integral invariants of the stationary transmission for a = 1 and Lf, = LTJ = 20 are

shown on Figure 5.2 for ,8 = 0.25 and on Figure 5.3 for ,8 = 0.75. In the first case,

when a 2 > 4,82, there is a stop band at n = 0, such that all modes are fully reflected,

except for small losses due to diffraction. In the second case, when a 2 < 4,82, there is

no stop band at n = 0, such that transmittance and diffractance are large for smaller

values of Ikl and become negligible for larger values of Ikl.
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Figure 5.2: Transmittance (Tk ) , reflectance (Rk ), and diffractance (Dk ) versus Re(k)
for the roots k E R, when Q = 1, j3 = 0.25, and L~ = L7/ = 20.



67

T

0.8

0.6

0.4

0.2

•
0 ~-lf-#~-$-.f~~~-'-"---..,L..____• ____•

0 2 3 4
Re(k)

... • ·lil

R

0.8

0.6

0.4

0.2

0
0

Re(k)

D •

0.8

0.6
•

0.4

0.2

0
".• * • «

0
Re(k)

Figure 5.3: Transmittance (Tk ) , reflectance (Rk ), and diffractance (Dk ) versus Re(k)
for the roots k E R, when a = 1, {3 = 0.75, and L(. = L 71 = 20.
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Next, we consider a constant input function:

(5.47)

when Cj can be found from (5.40):

Cj = kj[L(k; _ ( 2) + 2io] ,

and Cj = 0 for kj E R_. The solution surfaces la±(~, 7])1 2 and Ib±(~, 7])\2 in the domain

(5.12) are shown for 0 = 1, Le = LT} = 20, and 0+ = 1 on Figure 5.4 for (3 = 0.25

and on Figure 5.5 for (3 = 0.75. We can see from the figures that the boundary

conditions (5.13) and (5.47) are satisfied by the truncated generalized Fourier series

(5.43)-(5.46) with only 30 first terms.

Parseval's identity can not be applied to eigenfunctions Vj(7]), because the inner

product (5.37) is not the standard inner product in L 2 ([0, LT}])' As a result, the

energy spectrum of lout, lref' and ldif can not be decomposed into a superposition

of the squared amplitudes ICjI2. Nevertheless, the numerical values for T, R, and D

can be found from numerical integration of the solution surfaces (5.47)-(5.47). The

numerical values are

(3 = 0.25: T ~ 3 X 10-15
, R ~ 0.9853, D ~ 0.0147,

(3 = 0.75: T ~ 0.7394, R ~ 0.0133, D ~ 0.2473,

such that T + R + D ~ 1. When 0 2 > 4(32, there exists a stop band at n = 0 and the

incident wave is reflected from the photonic crystal with energy loss of 1.5% due to

diffraction. When 0 2 < 4(32, there is no stop band at n = 0 and the incident wave is

transmitted along the photonic crystal with energy loss of 26% due to reflection and

diffraction.
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Figure 5.4: Solution surfaces la±12(~, 1]) and Ib±12(~, 1]) on the domain (5.12) for
Q: = 1, (3 = 0.25, L( = L,., = 20, and Q:+ = 1. Symmetries: la+12(~, LTJ/2 - 1]) =

la+12(~,LTJ/2+1]) and la_12(~,LTJ/2-1])= la_12(~,LTJ/2+1]) (i.e la+1 2 la_1 2 are sym­
metric with respect to 1] = LTJ/2) and Ib+12(~, LTJ/2 -1]) = Ib_12(~, LTJ/2 + 1]) hold as
expected.
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Figure 5.5: Solution surfaces la±12(~,7]) and Ib±12(~,7]) on the domain (5.12) for
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la+12(~, L7)/2 + 7]) and la_12(~, L7)/2 -7]) = la_12(~, L7)/2 + 7]) (i.e la+1 2 la_12 are sym­
metric with respect to 7] = L7)/2) and Ib+12(~, L7)/2 - 7]) = Ib_12(~, L7)/2 + 7]) hold as
expected.
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5.3 Transmission of two oblique waves

The stationary transmission of two oblique waves in the coupled-mode equations

(3.20)-(3.21) becomes diagonal in the characteristic coordinates (~, 7]):

7] =

Vp2 + q2
2( ) ((q + 2m)X - (p + 2n)Y) ,

pm-nq

Vp2 + q2
2( ) (-qX + pY) .

pm-nq

After the separation of variables (4.1), the linear coupled-mode equations (3.20)­

(3.21) reduce to the PDE system:

(5.48) .8al n 0,'I, 8~ + al + aa2

(5.49)
.8a2 O.'I, 87] + aal + na2

The coordinate lines ~ = ~o are parallel to the wave vector k2 = k~~tm,O), while the

coordinate lines 7] = 7]0 are parallel to the wave vector k l = kin' The problem (5.48)­

(5.49) is defined in a bounded domain on the plane (~, 7]). We consider the same

rectangle D, defined by (5.12). When the incident wave is illuminated in the wave k l

but not in the wave k2 , the linear system (5.48)-(5.49) is completed by the boundary

conditions:

(5.50)

The boundary value problem of type (5.48)-(5.50) is referred to as Goursat problem

or characteristic Cauchy problem in the terminology of [CR]. The linear dispersion

relation n = n(K~, K'l)' where (K~, K"l) are Fourier wave numbers, is given explicitly

as

(5.51)
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Two surfaces of the dispersion relation (5.51) correspond to the two oblique resonant

waves. Although the stop band is not the band gap in the characteristic coordinates

(~, 7J) , there exist the reference frame on the plane (~, 7J) that moves with constant

velocity in time T, such that K€ + K€ = canst, where exists a stop band in the

dispersion relation (5.51). We set n = 0, and write the formal solution of the system

(5.48)-(5.49) as follows:

a1(~, 7J) - io: 1€ a2(~, 7J) d~ + a1(0, 7J)

a2(~,7J) - i0:1T/a1(~'7J)d7J

Interchanging integrals, we reduce the system to the Volterra type integral equation

Hence the solution a1(~' 7J), a2(~, 7J) exist and unique. We consider solutions of the

system (5.48)-(5.49) at n = 0 by using the Fourier transform:

(5.52)

(5.53)

a1(~,7J) - I: kc(k)eia(k-
1
€+kT/)dk,

a2(~, 7J) - I: c(k)eia(k-
1
€+kT/)dk.

It follows from the boundary conditions (5.50) that

(5.54)

and

(5.55)

Interchanging integrals, we reduce the constraint (5.55) to the form:

o= ~ 1£17 () (1 00

sino:(k7J - k-1~) dk) d
2 · 0:1 7J k 7J,

1['Z 0 -00
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The inner integral is zero for ~ > 0 and 7] > 0, due to the table integral 3.871 on p.

474 of [GR]. Therefore, the constraint (5.55) is satisfied and a unique solution of the

problem (5.48)-(5.50) exists in the form (5.52)-(5.54).

We illustrate the Fourier transform solution (5.52)-(5.53) with the constant input

function:

when c(k) can be found from (5.54):

kER

Evaluating Fourier integrals (5.52)-(5.53) with the help of the table integral 3.871 on

p. 474 of [GR], we find the explicit solution of the stationary problem:

(5.56)

(5.57)

where JO,l(Z) are Bessel functions [GR]. Figure 6 shows the solution surfaces lal(~' 7])1 2

and la2(~, 7])1 2 in the domain (5.12) for a = 1, Le = LTJ = 10, and al = 1. The inte-

gral invariants for the stationary transmission follow from integration of the balance

equation:

:~ lall
2+ :7] la21

2
= O.

We define the incident (:lin), transmitted (Tout), and diffracted (Ydic) intensities by

The transmittance (T) and diffractance (D) are defined by the same relations (5.2)

and the balance identity T + D = 1 follows from integration of the balance equation

(5.57). The numerical values for T and D are found from numerical integration of
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the solution surfaces (5.58) as follows:

T ~ 0.032, D ~ 0.968,

such that T + D ~ 1. These values show that the incident wave is diffracted to

the oblique resonance wave, such that only 3.2% of the wave energy remains in the

transmitted wave.
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Figure 5.6: Solution surfaces lalI2(~, 7]) and la212(~, 7]) on the domain (5.12) for Q = 1,
Lf. = LTJ = 10, and Ql = 1.



Chapter 6

Summary and open problems

We have shown that the coupled-mode equations can be used for analysis and model­

ing of resonant interaction of Bloch waves in low-contrast cubic-lattice three-dimensional

photonic crystals.

We have proved existence and uniqueness of solution for the N-wave coupled-mode

system boundary value problem in any small enough convex domain for a linear and

non-linear cases.

The analytical solutions for the linear stationary transmission problem are found

by using separation of variables and generalized Fourier series.

Non-stationary transmission problems are also of interest, and very few analytical

results are available on local and global well-posedness of the non-stationary nonlinear

coupled-mode equations.

Finally, numerical integration ofthe coupled-mode equations using multi-symplecticity

seems to be very promising.
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