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ABSTRACT 

This repor t concerns the applicability of the Multi - Level 

iterative scheme to the neutron diffusion problem. In the process of 

this study the iterative scheme is analyzed in modal form. The 

results of this analysis are used to derive the Sinqle Mode 

Extrapolation scheme and qive mathematical support to the ~1ul ti - Level 

theor y . A program was written to test this theory and the results of 

test cases are discussed. 
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1.0 INTRODUCTION 

Since relaxation schemes were first used, different schemes to 

reduce the overall effort in reaching the final result have been 

developed. The most successful method for accelerating convergence 

rates in iterative eigenvalue prohlems has been the single mode 

extrapolation technique developed by M.R. Wagner(S). This scheme 

takes advantage of the modal characteristics of the solution process 

to subtract off the first error mode in the approximate solution 

during the iterative cycle. Extensions to more than single mode 

subtraction have been attempted but have yet to be proven more 

successful than the single mode approach. The possibility that 

multi-mode error subtraction may improve convergence rates 

significantly, if properly applied, has led to this investigation of a 

new method which we shall call the Multi - Level Iterative Scheme. 

Achi Brandt(2) has developed and analysed this method for matrix 

problems of the form: 

Ax b ( 1 ) 

and reports significant decreases in computational effort. An example 

given solving the Dirichlet problem for the Poisson equation on a 

rectangle was solved with ten times less computational effort on a six 

level structure than on the single level. Gauss-Seidel iterations 

where used on all levels in this example. You will note that the 
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merit of this system has been considered in terms of computational 

effort rather than in terms of converqence rates. The reason for this 

distinction will become obvious once we discuss the method itself. It 

will, however, be advantaqeous to first analyze the iterative process 

in modal form. 

... 



2.0 MODAL ANALYSIS OF THE ITERATIVE PROCESS 

To analyze the iterative process it is convenient to represent 

the partial solution of the problem as a sum of orthogonal vectors of 

increasinq frequency. It can then easily be shown that the zeroth 

mode (lowest frequency component) will dominate the solution as higher 

frequency components decay away with successive iterations. The 

approximate solution can be represented as a sum of Fourier 

components, Bessel functions or orthogonal eiqenvectors of the 

problem . The latter approach is most suitable for our purposes . 

Although this analysis is generally applicable our attention 

will be directed toward the neutron diffusion equation. The equation 

to be solved can then be written as 

o ( 2) 

Here R is the removal matrix and P the production matrix . 

~o is the zeroth order eiqenvector for which we are searchinq and 

ko is a constant related to the eiqenvalue of the problem which 

divides the production matrix such that a critical system is 
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obtained. In the process of iterations we search for this eiqenvalu e 

usinq the relationship 

k (n+l) 
(n+l) (n+l) 

<x ,x > 

(n+l) (n) 
<x , x > 

( 3) 

Thro uqhout this report a number of iterations will be 

indicated by a superscript in rounded brackets. qere the new value of 

k correspondinq to the (n+1 )th iteration is calculated using the (n)th 

value of k and the values of the vector x found at the (n) th and 

(n+1 )th iterations. The angular brackets ind icate an inner product 

which is defined as 

N 

<a,b> 2: 1 
i=l 

a , b, 
l l ( 4) 

the subscript indicating the ith value of the corresponding vector. 

Letting the vector x (n) be the solution of equation (2) 

found after n iterations, it can now be represented by a sum of the 

orthogonal eigenvectors of the problem such that 

(n) 
x 

co 

L: 
m=O 

A tIJ 
mm 

(5 ) 

pz 
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'."here ~ is the coefficient mul tipl y inq the mth eiqenvector. 

There are an infinite number of eiqenvectors associated with 

any real physical system but only N of these can be represented i n any 

numerical problem, where N is the number of equations to be solved. 

The modes neqlected determine the accurac y obtainable with our N point 

approximation. Equation (5 ) is then more appropriately written as 

(n) 
x 

N 

L 
m=O 

A ~ 
m m 

(n ) 

Assuming that after n iterations a value k q for the 

( 6) 

problem cr i ticality ha s been f o und , equation (2) can be written usi n q 

the approximate result ~ivinq: 

(n) 
x o ( 7) 

.. 
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The subscript q indicates that this value is a current quess 

value. f]s i nq siml?le matrix alqebra a relaxation scheme yield inq the 

next best set of x values can be defined as: 

(n+l) 
x 

-1 
R P 
k(n) 

g 

(n) 
x 

Substitutinq for x(n) with the modal expansion in 

equation (6) qives the following relationships: 

-1 
N 

(n+l) R P L x -- A ¢ i 
k(n) m= O 

m m 
g 

N 

L 
-1 

A ~¢ 
m=O 

m k (n) m ii 
g 

N 

L 
k 

A 
m -- q, iii 

m=O 
m k (n) m 

g 

where ~ (m = 0, 1, ••• N) are the criticality eiqenvalues 

correspondinq to each individual eiqenvector ¢ • m 

( 8) 

( 9) 
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Usinq these results similar relationships for the next 

iteration can be derived: 

(n+2) 
x 

R-lp 

k(n+l) 
g 

N 

L 
m=O 

N 

L 
m=O 

A 
m 

A 
m 

(n+l) 
x 

k R- lp m 

k(n) k(n+l) 
g g 

k(n+ l )k(n) 
g g 

i 

cjl ii 
( 10) 

m 

cjl iii 
m 

From these results one can deduce a qeneral expr ession for the 

iterative process: 

N kI 
(I) L A 

m 
cjl x 

I - l ( 1 1 ) 
m=O 

m 
k (j) 

m 
II 

j=O 
g 

the us ual choice of kq (0) b e inq uni tV . 

... 
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Since kg approaches ko as I qoes to infinity and 

k o ' beinq associated \vi th the zeroth mode eiqenvector, is the 

largest eiqenvalue, it can easily be shown that 

00 
k 

m 

k (00 ) 
g 

and 

o 

(00 ) 
x 

for m t- 0 

IT k(j) 
<Po 

j=O g 

A <D 
0·0 

i 

ii 

The important consequences of these two results are: 

( 1 2) 

1. The hiqher order modes constitutinq the error in x(n), havinq 

the smallest values of km, will decay quickly in the iterative 

cycle followed by slower decay of modes with values of km 
close to ko • 

2. The value kq(n) will approach the true value ko before 

x(n) converqes to <po . 

These results and the modal expansion method form the basis of 

the two methods to be discussed next. 

.... 



3.0 SINGLE MODE ERROR EXTRAPOLATION 

M.R. Waqner has taken advantaqe of the modal view of the 

iterative process to accelerate convergence of a problem by 

subtracting the first error mode in x(n). To do this he relies on 

the assumption that the first error mode predominates in the total 

error of the approximate solution at sometime in the iterative 

process . This assumption follows naturally from consequen ce number 

one since the first error mode has the second larqest eiqenvalue and 

would, therefore, decay away last. From the iterative cycle one 

notices that once the first error mode predominates in the solution, 

any chanqe in the vector x(n) is dictated by the k1/ko 

decay of this first mode . This reqion of unifor m chanqe is known as 

the asymptotic converqence reqion and re?resents very slow proqress 

toward a conver qed result . It is wi thin thi s re qion then tha t the 

extrapolation method become s effective . To see how the extrapolation 

method develops consider equations (9) iii and (10) iii as s uming 

domination in the asymptotic reqion. 

(n+1) 
x 

(n+2) 
x 

A k
2 

k 
_ l_ ¢ 
k(n) 1 

g 

__ 0=--0-,,-__ ¢ + 
k(n+l)k(o) 0 k(n+l)k(n) 

g g g g 
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No w subtracting (13) i from (13) ii, 

(n+2) (n+l ) 
x -x 

[ 

k2 

k ( n+~ )k(n) -

Assuming by consequence number two that 

kg (n+1)~ kg( n)~ ko a nd eliminatinq A1 <P 1 

with eq uation ( 13) ii gives 

A <P 
o 0 

g g 

( 14 ) 

( 1 5 ) 

This equation represents the extrapolating formula with 

extrapolation coefficient 

E 
1 - (J 

(J 
, where (J 

The value of k1 can be found by introducing a ~hird 

iteration: 

(n+3) 
x 

( 16) 

( 1 7) 
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Eliminatinq Ao~o and A1 ~ 1 usinq relationships (13) i 

and ( 13) ii qives. 

(n+3 ) 
x (n+l) 

x 

k~ [ (n+2) (n+l)] + - x - x 
k 

o 

x(n+l) ] 

(18) 

Rearranqinq the terms results in a quadratic equation in k1 of the 

form 

k
2 

a 1 + bk
l 

+ c 0 i 

1 [ (n+2) (n+l) ] a = 
k 

x x 
0 

ii 

b - ko [ 
(n+3) (n+ll ] x x iii 

k [(n+3) (n+2) ] c = x - x 
0 

(19) 

iv 

In this form, however, we would require the storaqe of three 

successive iterations of x values to evaluate k 1 • 



------------------------------------------------
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A further simplification is to assume that k o:::: 1 .0, which 

is true of most realistic reactor systems, for which the r e lationsh ip 

reduces to 

(n+3 ) 
x 

(n+2) 
x 

(n+2) 
- x 

(n+l) 
- x 

(20) 

Providing the first error mode is truly the only significant 

error mone, k1 can be calculated at any given point of the 

problem. A usu~l method is to calculate an average value over a set 

of points. with careful programming the storage requirements can then 

be reduced to essentially two vector lengths. 

The extension of this system of extrapolation to more than one 

mode requires additional storage of successive iterations, the minimum 

for t 'NO mode extrapolation being three consecutive iterations. This 

immediately points out a major disadvantage in extending this method 

to higher modes . The Multi - Level scheme to be discussed now is 

intrinsically a multi - mode method requiring, at its worst, storage in 

the neighbourhood of three solution vector lengths . The number of 

modes that can theoretically he subtracted by this method amount to 

N/2 - 1 modes . 

paz 
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4.0 THE MULTI-LEVEL SCHEME 

One of the most fundamental methods of savinq computational 

work in the iterative cycle has been to start off with an extremely 

good initial guess for ~o' thereby saving iterative steps outside 

of the asymptotic converqence region. One way in which this could be 

achieved was to iterate the problem on a mesh structure of much fewer 

points than the structure at which the solution is desireo, and 

interpolate the result to the finer mesh as an initial quess. The 

Multi-Level scheme also utilizes a fine mesh structure and several 

coarse mesh structures but for a different purpose . 

The Multi - Level algorithm proposed by Achi Brandt uses a 

hierarchy of coarser mesh levels to compute corrections to the 

solution found on the fine level. FAch level provides a cor~ection to 

the problem on the previous finer level. This system provides us with 

a number of advantaqes over normal iterative cycles . The first and 

most important of these is that calculation of the error vector on the 

coarser grid structure requires fewer computational steps since 

normally half as many points are employed . A second advantaqe is the 

possibility of increased diagonal dominance of the problem at the 

coarser level, furthei enhancing convergence rates . Other advantages 

include improved accuracy of the final solution and the ability to 

accurately predict beforehand the amount of computational work 

requi r ed to solve a pr oblem to desired accuracy . These aspects of the 

system are thorouqhly discussed in Brandt's paper and will not be 

developed here, the iterative scheme itself being our main concern. 

- 13 -

.... 



--------------------------------

- 14 -

In matrix notation we start with an initial problem of the 

form: 

A q, = b ( 21 ) 

After n iterations an approximation of q" x(n) is found such that 

Ax(n) f+b (22) 

where f is a residual vector ensuring equality of left and right hand 

sides. Subtracting equation (21) and (22) gives the result 

A(x-q,) f 

An error vector can now be defined as v = x - q, ''''hich upon 

substitution into (23) results in the relationship 

Av f 

(23) 

(24) 

To solve for the vector v on the fine grid would show none of 

the advantages previously mentioned. The problem is, ~herefore, 

rediscretized on a coarser level (half ~s many grid points) resulting 

in a new relationship 

(25 ) 

-
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the subscript 2 indicatinq the second grid level. Since the residuals 

are calculated at the fine level they will have to he interpolated to 

the coarse level. The interpolating formula should be of the same 

order as the differential equation beinq solved to maintain sufficient 

accuracy. The relationship between first and second level points for 

cell centred nodes are indicated in Fiqure 1.* 

One of the most important criteria for a level transition is 

that the siqnificant modes of the residual vector be representable on 

the coarse grid level. For example, if a fourth order mode of the 

residual has a wavelenqth of less than four mesh spacings on the fine 

grid level it could not be represented on the two equivalent mesh 

spacings of the coarse level without siqnificant loss in accuracy. By 

consequence number one of Section 2 these hiqher order modes would 

decay quickly in the iterative cycle and the asymptotic convergence 

reqion could be considered a suitable transition point. 

* for cell-edge meshpoints no interpolation would be required 

.. 
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Once v2 has converged at the coarse level it is 

interpolated back to the fine level at which point we solve for 

¢ = x Cn ) _ v1 = x Cn - 1 ). If the transition between levels 

has been executed accurately the new values of x Cn+1 ) will be 

significantly closer to the ideal solution ¢ than those obtainable 

after an equivalent amount of computational II/ork at the fine level. 

This cycle can be extended to more than two levels by simply 

treating the new coarse level as a fine level for the next coarser 

level. This procedur e further enhances computational work savings by 

in effect converging the problem on as coarse a level as accuracy 

between levels can be ma intained. 

The solution scheme outlined here does not take into account 

the peculiarities of ~~e neutron diffusion problem such as the 

eiqenvalue search process . To see how this fits into the Multi - Level 

scheme a modal view of the problem '.viII aqain be used. 

.... 



5.0 MODAL ANALYSIS OF THE MULTI-LEVEL NEUTRON DIFFUSION PROBLEM 

Rewriting equation (2) in the form 

M<p 
o 

o , where M 
(26) 

indicates that this problem is a special case of equation (21) ·with 

vector b = O. On this basis one can assume the Multi - Level scheme is 

applicable to our problem. The effects of the eiqenvalue search and 

criticality at each level of the problem still have to be determinea. 

After n iterations equation (7) can be more precisely written 

as 

(n) 
x f 

Substituting for x(n) in modal form qives 

[
R - - p ] t A <p 

k (n) m= O m m 
g 

f 

- 18 -
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(28) 
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Separatinq the zeroth mode from ~~e rest of the summation results in 

the relationship 

A <P 
o 0 

p ] N 
k(n) L 

g m=l 
A <P 

mm 
f (29) 

Subtractinq the exact relationship for the zeroth order equation and 

substituting 

v = x 
(n) 

A <P 
o 0 

as the error vector qives 

N 

L 
m=l 

[

R - _ P ] v = f - A [! 
k (n) 0 k 

g 0 

A ~ 
m m 

k~n) ] P<P 
o 

(30) 

( 31 ) 

Since ko is not known exactly and zero order components 

are undesirable in the residual a criteria for grid level transitions 

can be defined as 

k(n) _ k(n-l) 
g g (32) 

pt 
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implyinq for suitable ~ that kq(n)~ k o ' This criteria 

cannot be met for small enouqh ~ before the solution process enters 

the asymptotic convergence reqion. By consequence number two the 

maqnitude of the error in x(n) at this staqe would still be large 

enouqh to make a level transition worthwhile. The equation to be 

solved can now be \vritten as 

(33 ) 

f 

The ne x t step in the process is to refor~ulate the problem at 

the next coarser level 

(34) 

The residual f2 is interpolated to the new level as 

previous Iv described . The subscript v on the eiqenvector k indicates 

that the same criticality cannot be maintained between both levels . 

This is in .qeneral true between any two discretizations of G'1e same 

problem . 

ps 
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To understand how the residual vector is transformed in a 

level chanqe consider a linear interpolation of equation (28 ) with 
k (n) 

g ko to the coarser level. The equation can now be 

written as 

[
R" - ~,,] ~ 

o m=l 
A ¢" 

m m 

(35 ) 

A few exempla tory problems quickly show that R" and pOI in the above 

equation are indeed equivalent to R2 ann P2 Of equation (34) 

and the vectors have underqone the same interpolation as applied to 

the vector f. Considering the source-like nature of f it wouln 

necessarily have to be volume weiqhted in a level transition (see 

Appendix A). Substitutinq equation (35) for f2 in (34) qives the 

result 

N/2 

L 
m=l 

A [R _ P 2]qy " 
m 2 k 0 

o 
(36) 

The limit in the summation accounts for the fact that only 

half as many modes may be represented on the coarse grid structure. 

No contradiction or loss of accuracy results because of this since 

higher order modes are assumed to have decayed to insiqnificance. 

ps 
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Consider a first iteration of this equation: 

A second iteratio n will yield 

N/ 2 

+L: 
m=l 

(0) 
v 

N/ 2 

+L 
m=l 

[
R - P 2J ct> II 

2 k m 
o 

( 37) 

(38) 

Observinq the iterative process illustrated by these two 

equations and implementinq the usual error vector initialization. 
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v2 (o) = 0, a qeneral relationship for the iterative process 

can be written as 

N/ 2 

L 
m=l 

N/2 

+ L 
m=l 

P2J II - - cjl 
k m 

o 

[ 
R - ~J¢ II 

2 k m 
o 

Simplifyinq G~is result gives 

N/2 

Em [k;~~l) k
2 

(I) L m }" v
2 k(I-l) m=l k m 

v 0 

N/2 

[I -::}~ + L A 
m=l 

m 

(39 ) 

(40) 

where Bm is a coefficient containinq the accumulated effects of 

the criticality search at the coarser level. 

. ... 
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The ideal result of these iterations at level two is 

N/2 

L 
m=l 

A <P" 
m m 

This can only be true if kv = ko and Bm = Am at I = 00 • 

( 41 ) 

One can easily see that for problems with fixed values of ~ 

between levels and no criticality search that this indeed would be 

true. How our problem is affected by these variable parameters can 

only be determined throuqh numerical tests. 

ps 



6.0 THE PROGRAM 

A 1-D diffusion code written by the author and verified by 

Cheby(3) and Sorqhum(1) results was used as a basis for the 

application of a MUlti-Level subroutine. 

To test the scheme three iterative options were introduced 

into the code. 

Option 1. 

Option 2. 

Option 3. 

Gauss Seidel iterations were used at all levels of the 

problem. 

Successive Overrelaxation (SOR) was implemented at all 

levels. 

An extrapolated weiqhtinq factor was applied to the 

error vectors calculated at any level in conjunction 

with either of the above options. 

For Option 2 the optimum overrelaxation factor "w" for the 

fine level iterations was introduced as an input parameter. This 

factor would in general be larqer than the optimum value at coarser 

levels but the decrease in convergence rates due to this discrepancy 

would be partially offset by the increased diaqonal dominance of the 

problem at these levels. The reduced number of work steps required to 

converge the problem at these levels would also reduce the 

significance of this effect on the overall behaviour of the scheme. 

- 25 -
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Option 3 arose from previous investiqations of the behaviour 

of the r1ul ti-Level scheme which in!lica ted that the error vectors 

calculated would attain the expected shape but were qenerally smaller 

in amplitude. This is supported by the modal analysis which indicates 

that the coefficients Bm of the coarse level cannot be expected to 

equal the fine level coefficients Am. The one norm of the error on 

the fine level was estimated by summinq the absolute differences 

between two successive iterations and multiplyinq by ~vaqner's 

Extrapolation coefficient: 

V.c 
1. I 

1 

The one norm of G~e error vector at the coarse level 

N 

L 
i=l 

V. 
l 

(42 ) 

(43 ) 

could then be used to weight the resultant error vector such that 

v' 
c 

v 
c 

(44) 

the factor "2" arisinq since there are half as many points at the 

coarse level. 

pst 
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The MUlti-Level algorithm implemented follows closel y the 

scheme known as Cycle C in Brandt's paper. The finite difference 

coefficients for each level were calculated using the subroutine 

supplied by the original proqram and were recalculated at each level 

change. This added iterative work equivalent to t,vo iterations of the 

flux vector at the new level but reduced storage requirements by one 

half a flux vector lenqth and simplified proqram bookkeepinq. 

... 



7.0 RESULTS AND DISCUSSION 

The 1-0 infinite slab test problem usen, and its properties 

are illustraten in Figure 2. Each region of the problem was nivided 

into cells such that the number of cells could be evenly nivided by 

two at least twice to provide easy accessibility to three levels of 

grid structure. All levels of the problem were considered to have 

converged when 

~[.(~) - (0-1) r 
CPo 

1 

< EPS 

t,[ (n) r CPo 
1 

(45) 

for a value of EPS = 1.0 x 10-5 • 

The options run include Option 1, Option 2 and a combination 

of Option 1 and 3. Graphs plotting the relative execution time for 

each option versus the level change criteria values (from equation 32) 

are illustrated in Figures 3 through 5. The execution time required 

to converge the test problem at the fine level using Gauss Seidel 

iterations was used as the standard for comparison of the 

effectiveness of each option. Therefore the ordinates of the graphs 

represent the values 

- 28 -
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Execution Time of Option 
Execution Time of Standard 

The absicca values range from ~ = .1 x 10- 1 to 

( 46) 

~ = .1 x 10-10 with only fine level iterations occuring for the 

minimum value in all options. 

A first indication of the merit of an option is whether or not 

two level convergence rates improved upon fine level results. This 

was not found to be so for options 1 and 2. The extension to three 

levels of iteration then showed further deterioration in convergence 

times. The results for two and three level iterations were found to 

merge at some value of ~ at which three level excursions ceased to 

occur. The only option that showed any promise was the combined 

Option 1 and 3 result. 

The two level results for this third option improved upon 

single level results for ~ 2:..1 x 10- 4 • It is, therefore, expected 

that a three level test would show a further improvement . Since there 

was no significant improvement in convergence times, tests were run to 

ensure that consistency between levels, as required in the discussion 

of the Multi - Level scheme, had been maintained . These tests indicated 

that three levels of iteration were valid for our test problem and 

that the problem lay in the application of the extrapolation 

coefficient . 

p 
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Since Hagner's Extrapolation coefficient is not applicable 

until asymptotic convergence occurs the major component of the error 

i n our Multi-Level p roblem would be the first error mode. Tnis mode 

essentially becomes the fundamental mode at the . second iterative level 

a nd corrections from G~e third level enhance only minimally the 

overall convergence rate. The failure o f this system, therefore, lies 

i n the inability of Wagner's Extrapolation coefficient to accuratel y 

obtain an estimate for the "one norm" of the error vector before 

asymptotic convergence takes place. 

The application of an Option 2 and 3 combination did not show 

any improvement over Option results. This could again be attributed 

t o an inaccurate estimation of the Extrapolation Coefficient during 

SOR iterations. Figure 6 compares the two level results of each of 

the three options discussed showing optimum SOR i terations to excel. 

Wagner's Extrapolation method was also applied and matched or exceeded 

SOR results for the test cases run. 

ps 



8.0 CONCLUSIONS 

The mathematics of the Multi-Level scheme developed has proven 

the feasibility of the scheme as applied by Brandt. It has, however, 

also pointed out the problems associated with the application of this 

scheme to the iterative eiqenvalue search problem. These problems 

were partially overcome with the use of an extrapolated weiqhtinq 

function for the error vectors. The applicable range of this 

weiqhting function unfortunately reduced the basically mUlti-mode 

method to a single mode method, losinq any advantaqe over the sinqle 

mode extrapolation method. In all cases the Multi -Level scheme has 

shown no advantage over SOR or the already proven results of Waqner's 

extrapolation technique . Considerinq the increased proqramminq and 

storaqe requirements of the method it cannot be recommended for 

application to the Neutron Diffusion problem at this time. 
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TWO GROUP MATERIAL PROPERTIES 

Mat ~T(7) x 10'2 ~T (2) x 10'2 ~ (2 1)x 10'2 
S 

1 .856434 .418640 .768350 

2 .856434 .411440 .768350 

3 .856434 .404230 .768350 

4 7.07970 .854870 1.01970 

DIFFUSION CONSTANTS 1,2657 

,9329 

FIGURE 2 
Test Problem Configuration and 

Properties 
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APPENDIX A 

Residual Behaviour During Level Transitions 

With respect to the interpolation of the residual from a fine 

to coarse level, we \vish to show that 

1. The residual behaves as a source term in the matrix equation ann 

must be volume weighten in a level transition; and 

2. The eigenvectors constituting the error in the approximate 

solution at the fine level are interpolated in the same manner a s 

the residual. 

To do this a simple problem using the point neutron diffusio n 

equation has been devised: 

2 
-rJiJ ¢ + a ¢ 

R 
s (a 1 ) 

This equation can be approximately solved by using some 

numerical method. Re\~itinq the above equation in l-D slab central 

difference form gives 

~- ~ 

[

¢. l-2 ¢ . + 
- Di 2 

t:, x. 
~ 

V.a
R 

¢ . 
~ . ~ 

~ 
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where 

V· 1 
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neutron flux at meash point i 

diffusion coefficent 

macroscopic removal cross section 

= volume of each mesh spacinq 

the width of a mesh s pacing 

total volume source 

For simplicity, continuity of current boundary conditions 

leading to a linear result for <P have been chosen such that 

,,,here 

L.H.S . - <P o 

R.H.S. - N /:;,x ) + --
2 

i 

(a3) 

ii 

the extrapolation distance from the outer surface. 

pi 
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For a six point one dimensional problem with the followinq 

values 

D = .5 

!::. X 1.0 

V 1.0 for i = 1 , N (a4) 

z:: 
R = 1.0 

0 = .5 

The resultant matrix equation at the fine level becomes 

1.0 0 . 0 
<P 1 V 0 sl 

-0.5 2.0 - 0.5 
<P 2 V 52 

- 0 .5 2.0 - 0 .5 
<P 3 V s3 = S 

- 0 .5 2.0 - 0.5 
<P 4 V s4 (as) 

- 0.5 L . O - 0.5 
<P 5 V 55 

- 0.5 2.0 
<P 6 0 V s6 

pi 
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Since the solution ¢ [6 .0, 5.0, 4.0, 3.0, 2.0, 1.0jT 

gives the result S = ° for V = 1.0 the equation can be written in 

matrix notation as 

D<j> - V<j> ° 

Rearranging this equation gives the result 

V 
D<j> - - <j> 

2 
V 
-<j> 
2 

F [ 3. ° ,2.5 ,2 .0 ,1. 5 ,1.0, -0.5 ] 

(a6 ) 

(a 7) 

which is in a form equivalent to the residual equation. Recalling 

that the residual should contain no zero mode components we can treat 

the vector <j> as the error vector being sought in this derivation. 

The source like function of the residual is already obvious having 

been separated out of the original source term. 

Rediscretizing the problem on a three point mesh results in 

the equation 

F' 
2 (as) 

ps 
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'tlhere 

[ 2.0 0.0 0.0 

D2 = -0.125 2.25 -0.,25] i 

0.0 -0.125 2.2916 

(a9) 

[ 2.0 0.0 0.0 ] 
V

2 = 0.0 2.0 0.0 ii 

0.0 0.0 2.0 

Since we know the values of the error vector 1> ' at the fine 

level beforehand in this case I we can interpolate them to level two 

and solve for F' 2. 

F' 
2 

[

5.5] 
3.5 

1.5 

Interpolating F from level one to t wo using the same 

interpolation immediately shows that F2 is just the volume 

weighted equivalent . 

[

2 . 75 ] 
1. 75 

0.75 

(a 10) 

(a 11 ) 

pi 
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where 11~2 is the interpolating function from level 1 to 2. This 

simple problem illustrates points 1 and 2 clearly. These resul t s have 

been shown to be true for problems of varying complexi ty and can be 

considered valid. 



REFERENCES 

1. Bailey C. M. et ale, "The Sorghum Cone: Program Description and 

User's Guide", TDAI-133, AECL - Engineering Company. 

2. Brandt, Achi, "Multi-Level Adaptive Solutions to Boundary-Value 

Problems", Mathematics of Computation, Volu.rne 31, No. 138, 

April 1977 Pages 333-390. 

3. Private communication from Dr. Aziz Rehman: "Nuclear Studies and 

Safety Memorandum, July 30, 1975, File 91-41500-Cheby", Ontario 

Hydro, Tbronto, Ontario. 

4. Varga, R.S., "Matrix Iterative Analysis", Prentice-Hall, Englewood 

Cliffs, N.J., 1962. 

5. Wagner, M.R., "The Application of the Block Inversion Technique to 

Multi-Dimensional Reactor Calculations", "Proceedings of 

Conference on the Effective Use of Computers in the Nuclear 

Industry", Knoxville, Tennessee, April 21-23, 1969, 

Pages 211-246. 

- 43 -

.. 


