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Abstract

An n-ary quasigroup is a set together with an n-ary
operation which is cancellative in every variable. To every
permutation on n + 1 elements there is associated g conjugate
quasigroup of the original‘quasiqroup. The elements of bkoth qua-
sigroups are.tﬂe same, but the conjugate n-ary operation is defined
as follows. It acts on a permuted set of elements to produce a
permutation of the result of the original operation on the unper-
muted elements.

Theée conjugate quasigroups need not be distinct. The
hhmbsr of distinct ;uch conjugateé is called the conjugacy class
number of the quasigroup. I£ has been shown that this number musé
always be a divisor of (n+l)!’

In the case of ordinary quasigroups, it is knownwthat for"
any order greater than or equal to four, thefe exists a quasigroup
of that order having a specified number of distinct conjugates.

An investigation of the conjugacy class number leads to a study of
quasigroup identities. The existence of gquasigroups satisfying
certain identities has been widely investigatéd for ordinary quasi—‘
groups, b&% for higher dimensional quasigroups, much less is known.

We investigate the existence of ternary gquasigroups having
a given class number. 1In all but two cases, the question is com-
pletely answered. Ternary quasigroups, having six of the possible
eight class numbers, are shown to exist of every order, except for
a small, finite number of low orders. 1In the remaining twé cases,

infinitely many quasigroups have been constructed yith these

iii



conjugacy class numbers.’ "

An investigation is begun of the existence af n-ary
quasigroups with prescribed conjugacy class numbers. The problem

‘is solved for twag sets of classes and for n-ary quasiqgroups having

sufficiently large orders.

LN
A combination of methods is uwsed throughout, varying from

exact constructions, to "ad hoc" constructions for low orders and '

“T.pdaptations of block designs. .
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INTRODUCTION

This thesis studies certain algebraic identities for
ternary and n-ary quasigroups, which in turn provide informa-
tion about the conjugates of the quasigroups. The central

question is: Given any divisor g of 4! , does there exist

F

a ternary quasigroup with exactly q distinct conjugates?

Briefly, a quasigroup (Q,¢) 1s a set Q together
with a binary, cancellative ¢peration * ; an n-ary gquasi-
group (Q,<>) 1is a set Q together with an n-ary operation,
<> , which is cancellative in every position. To every per-

mutation 7w € § , there is associated a conjugate quasi-

n+l

group (Q,<>.) , defined by <ag¢y)s..+s8n(n)>; = @u(n+1) Lif

and only if <al,...,an> = a in (Q,<>) , for every

n+1l

in Q. 1If (Q,<>°7r ) = (Q,<>, ) for two
1 2

different permutations T and Mo s the conjugates (and

correspondingly the permutations) are said to be in the same

Ayye..,4 a
1’ "n ' "n+l

{equivalence) class and the number of distinct conjugates of

(Q,<>) (or non-equivalent mFmbers of S }) is called the

n+l
conjugacy class number.

Conjugates have been studied by S.K. Stein [43] and
more recently by C.C. Lindner and D. Steedley [33]. Lindner
and Steedley completely answer the question of the existence
of ordinary quasigroups with a prescribed conjugacy class

number in [33], and there pose the same gquestions for ternary
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quasigroups.

Lindner and Steedley made significant use of the

~

singular direct product of quasigroups (see [27], [40]; see
also [34]). However, manf‘éttempts were made by the author
to extend this product in a natural way to three dimensions.
Some parts of the definition do extend in a straightforward
fashion, but it was discovered that a complete extension was
impossible. If a 7«77 cybe (the Cayley representation of a
ternary quasigroup) was filled in, in all the positions
covered by an obvious extension of the definition, then it
was impossible, in agy way, to complete the cube to represent
a ternary quasigroup. (The impossibility of an extension of

the singular direct product to the ternary case €an be

deduced, essentially, also from [12].)

This necessitated an entirely different approach to
the ternary case. A combination of algebraic and basic coﬂ-
struction methods are used. In particular, in the case of 2
and 8 conjugacy classes, an adaptation of Steiner gudadruple

systems (a 3-design with A =1, k = 4 ) is used.

The thesis consists of an introduction and five
chapters. Chapter 1 contains the basic definitions and
background information. Chapters 2, 3 and 4 discuss ternary
quasigroups exclusively and Chapter 5 deals with the general

n-ary quasigroup case.
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Chapter 2 sets out explicitly the relationship between
guasigroup identities, permuations in S4 . and ‘conjugacy
classes. Table 2.1.1 lists the identities and §2.2 arranges
these identities into the necessarys subsets, corresponding to

the different conjugacy class numbers.

In Chapter 3, it is proven that ternary quasigroups
of order n with 6, 12 or 24 conjugacy classes exist if
and only ig n >4 ., For 3 or 4 conjugacy classe§, it is
shown that the order n must be > 3 . And finally, there
always (n > 1) exists a ternSry gquasigroup with 1 conju-
gacy class. The existence problem for the class numbers of

Chapter 3 is thus completely solved. >

'

Chapter 4 deals with the remaining cases of 2 and 8

»

conjugacy classes. It is here that ad hoc constructions aﬁd
quadruple systemsﬁare used. A ternary gquasigroup of order n
having exactly 2 qr 8 conjugacy classes is shown‘to exist if
n 0 (mod 8) , n = 0 or ? (mod 10) - or n = 4, 8 or 10
(mod 12) , provided n > 5 . If n < 5 , there does not

exist any ternary quasigroup with 2 or 8 conjugacy classes.

In the process of obtaining these results, occassion-
ally‘alternate methods are given, depending on a different
choice of quasigroup identities. However, an attempt was not
made to construct quasigroups satisfying all the possible

combinations of identities arising from the subgroups of Syq ¢
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as this is not part of the basic existence problem.,

In passing, the generalized idempotent law,
<x,x,y>‘:= v , whose spectrum is not yet known, is discussed
and a construction made. (See §3.2.3 and referepc¢es [30] and
{31].) The generalized idempotent and commutative ternary

quasigroup (<x,y,z> = <x,z,y> = <y,x,2>) 1is shown to exist

for all orders n = 2 or 4 (mod 6) and only those n (53.4).

In §3.1.9, a simpler method to that given in [33], is used to

construct ordinayry quasigroups having six conjugacy classes.

Concluding remarks follow Chapters 3 and 4 and con-’
taining the main Theorems of these Chaptets, namely Theorems

& .
3.7.3 and 4.4.5respectively.

In Chapter 5, n-ary quasigroups are distﬁssed.’ This
is intended only as an introduction to the problem, as this
thesis' primary‘purpose is ta solve the problem of conjugacy
élasses for 3~quaéigroups. Remark 5.1. 2 further explalns
the problems encountered here and why the general case is
disclissed at the end of this the51s, rather than being con-
gidered.initially, allowing 3-quaéi§roups as a special case.

‘'The first result obtained in Chéptér 5, Section 5.1,

~

is that for sufficiently large orders m '(that_is, for.,

every order m > m. &here is a certain constant)

jn) * J(n)

. there exists an n-ary qua51group of order m. Wlth exactly

(n+l) :/j: distinct conjugates (where j =1,2,.,.,.0%1).



In particular, if 3 =1 , the constant mj(l) doe§ not
exceed 4(n--l)2 . It is also shown in §5.2 that for suffi-
ciently large m(n)-, there exist n—ary'qﬁasigroups of every
order m > m(n) with exactly n(n+l)/2 or

[(n+l)!]/’[(2§2)(% !)2],n even, conjugacy classes. Concluding
remarks are made following the completion of Chapter é.

This thesis was made more difficult by the fact that
;)ere did not already exist a wide variety of construction
methods for ternary quasigroups, as is the case for ordinary
quasigroups. Algebraic identities satisfied by ordinary quasi-

groups have been very well investigated. (See [81.)

Some wbrk has been done oﬁ special types of latin
cubes by J. Arkin [1], [2]; J. Arkin and fioggatt, Jr. [3], [4];
éné J. Arkin and E.G. Straus [5]. Similar work has been done
by J. Hendricks [17], [18], [191, [201; J: Meeus [37], and
P.D. Warrington [44]. However, any constructions used by
these authors.were of little help to tﬁe particular problem
of this thesis. Still looking at the representation as a
cube, one may consult A. Heppes and P. Révész in [21],
K. Brownlee and P. Loraine in [6], and A. Cruse in [7].
More closely resembling the approach of this thesis are the
papers by T. Evans [10], [11); L. Humbolt [22], C.C. Lindner
{291, [30], and F. Rado and"M.AHosszﬁ [39]." Some- of these

will be nentioned more explicitly in the ensuing test.
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In summary, this thesis‘solves the conjugacy problem
in the ternary case for all classes and orders,\with two
‘exceptions. ~In the casé of quasigroups having 2 or 8 distinct
conjugates, some infinite sets of'such quasigroups have been
obtained. It also beings an investigation of the conjugacy
classes of n-ary quasigroups. In93qme cases, the results

obtained show that an n~quasigroup with a given number of

conjugacy classes exists for every sufficiently large order.

4"



CHAPTER 1 |

‘This chapter contains known results and information
deduced from them, as well as definitions and explanations to
be use& later in the ;hesis. It is arranged in three main
parts, discussing quasigroups, conjugacy classes énd block
designs respectively.. ‘

<

§1.1 OQuasigroups and n~ary quasigroups.

Definition l1.1.1. A quasigroup {(Q,°) is a set Q , togeth-

er with a binary operation ¢ such that ae°b = ae.c implies

b=c and be¢a = cea implies b =c for all a,b,c e Q .

The cardinality of Q 1is called the order of the

quasigroup. We will consider finite sets Q only.

One would often like to consider quasigfoups satis-
fying a given set of algebraic identities. Such guasigroups

are given special names accordingly.

A Steiner quasigroup (£8]) is a quasigroup (Q,°)
in which the following identities hold:
(1) =xex = x,VYx € Q ; idempotent law
(2) xo(xoy) =¥ ,Vx,y € Q Sade's left "keys" law

!
(3) =xoy = yex ,¥X,y € Q ; commutative law.

-7 =



Definition 1.1.2. An n-ary quasigroup (Q,<>) 1is a set Q

together with an n-ary operation <> , such that if

= < !
<al""’aj-l'aj’aj+l"’"an) d and al""'aj-l'aj’aj+l’

...,an> = d , then one must have. aj = aj' , where all the

ai,aj' and d belong to Q . In other words, the operation

must be cancellative in every position.

-

If n=3, (Q,<,,>) is called a ternary qudsigfoup,

" 3-quasigroup or 3-skein ([101]).

A Steinef 3-skein ([29]) is a ternary quasigroup

(Q,<,,>) satisfying:

(1) <x,%X,y> vy , Yx,vy € 0 ; generglized idempotent law.
(2) <x,¥y,<x,y,2>> =2 , VX,y,z2 € Q ; Steiner’'s law.

(3) <x,y,z2> = <x,2,y> = <y,x,z> ,¥Yx,v,2 € Q ; generalized

cemmutative law.

Definition 1.1.3. Latin cubes, k-cubes, permuation cubes and
variational cubes:

A 3-dimensional latin cube of order m is an mxmxm

matrix [an n-dimensional latin cube is an [mXmxm...m]
. e e

N n times
matrix, respectivelyl, the elements of which are the integers
0,1,2,...,m-1 and such that every line of the matrix con-

tains a pérmutation of .0,1,2,...,m-1 .

.

* Remark. There is some lack of ccnsistency in the terminology

~e
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used. Denes and Keedwell ([81) would call a cube as defined

above a "permuation cube" and would define a latin cube as

follows: An mxmXxm three dimensional matrix comprising m
layers each having m rows and m columns, such that it has

m distinct e¢lements each repeated m?

times and so arranged
that in each layer parallel to each of the three pairs oﬁ
opposite faces*of the cube all the m distinct elements

-
appear and each is repeated exactly m tinmes in ‘that layer.
A 3-regular latin cube becomes a permutation cube and Zéé\

terms 2,1, O-regular are reserved for the possibilities of

'repeating elements within a column in 1, 2 or 3 directions.

Our definition of latin cube corresponds to the
Cayley table of n-ary quasigroups (although thé set of ele-
ments in the table may not be {0,1,...,m-1} , but any set
of m distinct elements) and hence corresponds to the usval
terminology when n = 2 . It is this definhition that will be

used throughout.

§1.1.4. quresehtations of an n-ary gquasigroup or latin
k-cube by diagramns. )

Diagrams 1 and 2 are the more usual methods of
representing a ternary quasigroup ([8]). Diagram 3 is a more

compact wversion.
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"A ternary quasigroup of order three"

(Q,<,,>» , 0= 1{(1,2,3}

Diagram 1

' 1 2 3 2 3 1 3 1 2
2 3 1 3 1 2 1 2 3
3 1 2 1 2 3 2 3 1

Here the faces are determined by fixing the third
element. That is, face 1 is really the Cayley table of the
ordinary quasigroup defiaed by xey = z 1f and only if
<x,y,1>+= z in the ternary quasigroup, and similarly for
faces 2 and 3. For example, <2,3,2> =3, <1,3,2> =1 and

<3,2,1> = 1 .



Diagram 2
12131
3 1 2
1 2 3
- FACE 2
1 2 3
2 3 1
311} 2] '
FACE 1
Diagram 3 ; ’

&

11.

o

e

Here, face 1 appears in the lower left-hand corner,

followed diagonally back,by faces 2 and 3.

.3 C 1 -2
/2 /3 /l
1 2 3
/1' /2 /3
/3 /1 /2
" 2 37 1
,2 .3 1
Bl 2 .3
3 1 2
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Defiﬁition 1.1.5. An n-ary quasigroup (P,<X,) 1s called a

subquasigroup of an n-ary quasigroup <Q,<>Q> if P < Q and

<al,a2,...,a > o= <al,a2,...,a > for <all a

n’p n o ce.sa_ € P

1

If a quasigroup (P,<>P) is a subquasigroup of
(Q,<>Q) , We say that (P,<>P) is contained in (Q,<>Q) or

that (P,<>P) has becn embedded in (Q,<>Q)

Definition 1.1.6. Two quasigroups (Qlio) and (Q2,x) are

said to be isotopic if there exists an ordered triple of one-
to-one maps (6,¢,V¥) of Q; «onto Q, such that
(6 (x))x(d(y)) = d(x°y) for all x,y € Q. If 6 =¢ =1V,

the quasigroups are said to be isomorphic (cf.[8], p. 23).

If (Ql,<>l) and (Q2,<>2) are two ?—ary quasi-
groups, they are said to be isomorphic if there exists a one-
to-one map 6 of Q1 onto Qs such that <8(al),...,0(an)>2=

8<al,...,an>l for all al,...,a € Ql

§1.2 Conjugatés.

Definition 1.2.1. Let (Q,°) be a finite quasigroup. On

the set Q define the six binary operations -(1,2,3) ,
0(11312) ’ 0(211:3) 7 °(2,3,l) ’ <5‘(3,.].,2) and 0(3,2,1) as

follows: -

aeb = c if and only if:
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a»(1,2,3)b = ¢,
a»(1,3,2)c = b ,
b-(2,1,3)a = ¢,
b-(2,3,1)c = a ,
co(3,1,2)a =b ,

ce(3,2,1)b = a . *

The six, not necessarily distinct, guasigroups

(Q,°(1,j,k)) are called conjugates or parastrophes of (Q,°)

(see, e.g. [33], [8]). The set c¢f conjugates of (Q,¢) 1is

denoted by C(Q,°).

To illustrate that the six ccnjugates of a given

quasigroup (Q,°) need not be distinct, consider the follow-

£
ing example:

° ] 2 3 °(2,1,3)] 1 2 3

1 1 2 3 1 1 3 2

2 3 1 2 2 2 1 3

3 2 3 1 l 3 3 2 1

(Q,°) (Ql°(21113))

0(1,3,2)] 1 2 3 ©(2,3,1)| 1 2 3
1 1 2 3 1 1 2 3

2 2 3 1 2 2 3 1

3 3 L 2 3 3 1 2

(Q,°(1,3,2)) (Q,°(2,3,1))

»
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°{3,1,2) 1 2 3 < (3,2, 1 2 3
1 1 2 3 1 1 2 3

2 2 3 1 2 3 1 2

3 3 1 2 3 |-2 3 1
(Ql°(31112)) (Qr“(31211))

C(Q,o)} has only three distinct membors. C(Q,°)
may also be thought of as a set of conjugacy classes of
(Q,°) , where here {(Q,°(2,3,3))} 7, {(Q,~) , (Q,~(3,2,1))} ,
and {(Q,°(1,3,2)) , (Q,~(3,1,2)) , (Q,°(3,1,2)})} are the
three classes. The permutations, =@ , may also be arranged
into (equivalence) classes according to n. - 7 if and

1 2
Only if (Q'oﬂ(l)) = (Q'oﬁ(Z))

|C(Q,°)] 1is called the conjugacy class number of

(Q,°) .

-

Definitior 1.2.2. Let (Q,<>) be an n-ary quasigroup where

<al,a2,...,aﬁ> = a1 (or Q) , ai,d €cQ, 1i=1,2,...,n+l

Let 7 be any member of Sn+l .  Then (Q,<>n) is defined

by <al,...,al> = a if and only if

1 n+l <an(1)"“’an(n)>w =

£

A1 (n+1)

The following theorem (and its proof) is an extension

of a result in [33], where the statement has been proven for

n=2
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Theorem 1.2.3. The conjujacy class number [C(Q,<>)| is

always a divisor of (n+l)! (that is _{n#l) . is an
1C(Q,~>) |

integer for all n > 2 ).

Proof: Let Sn+1 denote the symmetric group on

{1,2,...,n,n+tlt . Let, F be the sect of all a ¢ S,y Such

that <>a = <>, In other words, the new operation <>a

results i1n the same quasigroup as the original operation <>,

Then F 1s a subgroup of Sn+l . '

For let «,R ¢ F . Then <>a8 = (<>a)8 = (<>8) = <>,

Now <> = <>8 if and only if « and 8 belong to the same

(right) coset of F in 3 . For if <> = <>3 , then

n+l o

: : -1
= > ’ ~
<>a8'l ‘ < implies af ¢ F or F, Fg

number of distinct quasigroups in C(Q,<>) 1is precisely the

. Therefore, the

index of F in Sn+l , which must be a divisor of (n+l)! .

One way also obtain this result from the foilowing
considerations. If Q 1is a finite set, let E be the set
of all n-ary gquasigroup operations <> on Q . Then S

n+l
nay be considered to act on E according to T(<>) = <>

i

Then S = {m(<>) | neS§

un+l} for some fixed element <> of

E , forms a set of transitivity of E ([14], p. 55). Clearly

[s] = |Cc(Q,<>)] . Now the permutations of S 41 which fix
<> form a subgroup of Sp+1 + which is of index |s] in
Sp41 * DY Corollary 5.2.1 of (4],

v
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Theorem 1.2.4. If n = 3 , the coincidence of the conjugates

of (Q,") with (Q,°) 1itself is determined as follows:

(1) (Q,~(1,3,2)) = (Q,°) 1if and only if (Q,°)

satisfies x°(x°y)

I
L<

(11) (0,°(2,1,3)) = (Q,”) 1if and only if (Q,°) sat-

isfies x°y = y°x ,

(iri) - (Q,°(2,3,1)) = (Q,°) if and only if (Q,°)
kY

satisfies x°{ye°x)

1
~

kiv) (Q,°(3,1,2)) = (Q,~) 1if and only if (Q,°)

satisfies (xeoy)e°x

]
b<

’

(v) (0,°(3,2,1)) = (Q,°) 1if and only if (Q,°) sat-

isfies (y X)ex =y

Proof: For (i), suppose (Q,°) = (0,-(1,3,2)) . Then, for
any a,b ¢ Q , we have a-°b = C and a¢(1,3,2)b = ¢ . But

ao(1,3,2)b

il

c¢ if and only if a¢c = b . Therefore a°b = c
and acc = b , or a¢(a°b) =b , and the identity holds.

Conversely, if x-(xe°y) for all x,y € Q , a~(a*b) =b

il
e

for any a,b and if a°b =c¢ , acc =b . But a°c =b if

and only 1f a-(1,3,2)b

]

The proofs for (ii), (iii), (iv) and (v) are similar. (For

a proof of (v), sece also [33]}, Theorem 3.)

In {33], Lindner and Steedley have constructed quasi-

groups satisfying éubsets of these five identity classes and

¢ . Therefore {(Q,°) = (0,°(1,3,2)) .



o . L]

17.

were thus able to find quasigroups with varying specified
conj)ugacy class numbers. Their results are summarized by

the following theorem:

Theorem 1.2.5. For every mn > 4 and every x ¢ {1,2,3,6}

@
there exists a quasigroup (Q,°) of order m such that

’

IC(QIO)I = X . &

One can see that 1f (Q,°) 1s a Steiner guasigroup,
then all of the identities (i) to (v) are satisfied and hence
(Q,°) has only one conjugacy class. This would not be a
complete answer to this case however, as Steiner guasigroups

do not exist for all orders. (The requirement of idempotency

for Steiner quasigroups is too restrictive.)

’
.

From Theorem 1.2.4 and reference [33], it can be seen
that the conjugacy class number of a given quasiqrdup is a
direct result of the particular set of algebraic identities
satisfied by the gquasigroup. This will also be seen to be
the case for ternary and n-ary quasigroups in'ChapterS 2, and

5 respectively.

The identities of Theorem 1.2.4 remain unchanged by
an isomorphism of the quasigroup and thus isomorphic quasi-
groups have the same conjugacy class number. (Clearly €his’

applies to ternary and n-ary quasigroups as well.) There-

fore,if one wishes to show that no 3-quasigroup of order 3.

for example, exists with conjugacy class number 6, it is only
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necessary to investigate the class numbersof ail possible

non-isomorphic 3—qﬁasigroups.df order 3.

§1.3 Block Designs and Steiner Systems.

.

Definition 1.3.1. A balanced incomplete block desigﬁ is a

pair (S,B) , where S is a v-set and B is a collection
of k-subsets of S , called blocks, such that every 2-subset

of S occurs in exactly A blocks. ' ;

Such a design is denoted by BIBD(b,v,r,k,A) , where

each element occurs in exactly r , different blocks and B
has a total of b different blocks. It is well known that
bk = rv and r(k-l1) = A(v-1) are necessary conditions for
the'existence of such a design ([iB]), A design

(8,B) is therefore completely determined by the paramefers

v,k,A .

A triple system is a BIBD with k = 3 . The condi-

tions for existence then become 3b = rv , 2r = A(v-1) , and
if one also requires A =1, one obtaihs v £ 1 or 3 (mod 6) .

) o
In this latter case, a BIBD(v,b,r,3,1) 1is called-a

‘hteiner triple system. Again, it ’'is well-known, (see, e.g.
{13]) that the necessary conditions for existence are also
sufficient. And thus a Steiner triple system of order v

exists if and only if v £ 1 or 3 (mod 6) .
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Although the following theorem is well-known, we

include its proof for later convenience.:

Theorem 1.3.2. Every Steiner triple system’qf order v
uniquely determines a Steiner quasigroup of order v and

conversely.

i
1

Proof: If (S,B) denotes a Steiner triple system, then we
define an operation ° on S by xey = z if and only if
{x,y,2} occur together in a block of B . We also define

Xex = X , for all x .

Suppose x¢y = Xt = z , where y,t # x . Then we
must have "{x,y,z} and ({x,y,t} as two distinct blocks of

-B~¢ ~But then the pair _(x,y) occurs in more than one block,
a contradic¢tion. If xox = xey = 2 , we'have x = z or
{x,y.x} forms a block of B , which is impossible. Thus

(Q,°) 1is a guasigroup.

(Q,¢) + is clearly idempotent and commutative. Con-

sider xo(xoy) , where x ¥ y . Now xoy = z , where
{x,y+z} form a block of B . Therefore xoz =y . If
X =y , Xo(xex) = xex = x . Thus (Q,s) is a Steiner quasi-

group.

Conversely, given a Steiner quasigroup (S,Q)~, if .
we define {x,y,z} to be a block of B , whenever xoy = z ,
x,y,2 -distinct, then we clearly obtain a Steiner triple

system (S5,B) . For consider any pair of elements (x,y) .



200

s,
"
ey,
*o,
>,
v,

Could, (x,y) belong to more than.ghamplock? Suppose X°y =2

and thus {x,y,z}! is one block containin&”tng pair. If
",'..’.

{x,y,t} 1is also a triple, either xot =y or M?n§~= X .
But xXo(XeyY) =y and so t = z or yol(ysx) = x , whé?%gm
again 2z = t . T

We now consider a more general type of design.

Definition 1.3.3. A Steiner system S(t,k,v) is a pair

(S,B) , where S 1is a v-set and B ' is a collection of k -
subsets of S called blocks, such that a t-subset of S

occurs in exactly one*block of B .

Thus a Steiner triple system of order v 1is also a
Steiner system S(2,3,v) . An S(3,4,v) 1is called a Steiner

o
quadruple system or simply a quadruple system.

One may also speak of isomorphic Steiner systems.

Definition 1.3.3a. Let (Sl,Bl) and” (SZ’B2) be two

“Steiner systems S(t,k,v) . The system (Sl,Bl) is -said to

be isomorphic to (S,,B,) if there is a bijection « :'Sl-*sz,

which maps the blocks of B

1 onto the blocks of 82 .

Theorem 1.3.4. A gquadruple system of order v exists only

if v 22 or 4 (mod 6) .

Proof: (cf. also [361.) If an S(3,4,v) contains b

blocks, each elament appears in r blocks and every pair of
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elements (unordered) occurs in X blocks, then the relations
for the existence of a halanced incomplete block design imply

that 4b = rv and 3r = A(v-1)

In addition, every unordered pair of elements {x,y} ,
form part of wv-2 triples. That is, there are v-2 remain-
ing elements, that joined with {x,y}! , produce a triple.

Now every block containing {x,y} , contains 2 triples made
upwgﬁww{x,y} and a third element. Every triple occurs in
w;;actly one block. Thereféfe; évery pair of elements {x,y}l

occurs in ‘X%z blocks. From this we obtain:

(v-1) (v-2)"

r % and
_ v(v=1) (v=2)
_b = Ty and
_v=-2
A = 5 -

These three equations readily imply v 2 2 or 4 (mod 6)
. )

Remark 1.3.5. The more general necessary relations for the

existence ofany Steiner system S(t,k,v) are:

5
Y

(1) (X) / (i) = b , the number of blocks of S(t,k,v)

the number of blocks of S(t,k,Vv)

v-h k-h
(2) (z-h) / (R—h)
' which contain a fixed subset of size

h=0,1,...,t-1

(cf. also [15].) If k

Il
>
~
ct

i
w

. h =1, (2) begomes



equal to r and if k =4 , t =+3 , h = 2 , (2) becomes A

The expressions thus reduce to those given in Theorem 1.3.4.

Theorem 1.3.6. A guadruple system of order v exists if

and only if v % 2 or 4 (mod 6) .

Proof: See Hanani [15].

Theorem 1.3.7. Every quadruple system of order v determines

a Steiner ternary quasigroup of order v and conversely, .

Proof: Let (S,B) be a quadruéle system S(3,4,v) and let
{x,y,z,t} denote any block of B . On S define an opera-
tion <,,> as follows: <x,y,z> =t 1if and only if x,y,z
and ¢t belonggto the same block of B . Let <,,> also
satisfy the generalized iéempotent law. It is clear that
(Q,<,,>) will be a ternary quasigroup which satisfies the
generalized commutative law. Let {x,y,z} =t ,”where

X.Y,2,t are all distinct. Then {x,y,z,t} 1is a block of

B and <X,y,<X,y,z>> = <X,y,t> = z ; If one or more elements

are equal, <x,x,y> =y and <X,X,<X,X,y>> = <X,X,y> =y .

«

Conversely, if we defipe a set of'éuadruples from a
Steiner 3-quasigroup (Q,<,,>) by forming a block by
{x,y,z,t} if and only if <x,y,z> =t , we obfain a Steiner
quadruple system,'in a similérikgéhioh to that of a Steiner

triple system.
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Remark 1.3.8. We will see in Chapter 2 that the identities

given for a Steiner 3-quasigroup imply such a quasigroup has
only one conjugacy class. Aéain, the generalized idempotent
law is actually unnecessary. Thus the Stei;er 3-quasigroups
and ‘ordinary Steiner quasigroups play identical rgles concer-

.

ning conjugacy classes. ) - -

Definition 1.3.9. Derived quasigroups from quadruple systems

are defined as follows (cf. [31]).

If- (S,B) 1is any S(3,4,v) and we fix an element

z € S , define a quasigroup operation "¢" on S\{z} by

xoy = t if and only if {x,y,t,z} € B . Also define xox =
X , ¥ x . Then (s\{z},») will in fact be a Steiner gquasi-
group.

For consider xo(xoy) , where x # y . If xey =t ,
then {x,y,z,t} € B . Therefore =xot =y ., (S,°) 1is clearly

.commutative and idempotent.

In a similar fashion, ofdinary quasigroups may be
derived from ternary quasigroups. If (Q,<,,>) is-a ternary
qﬁasigroup and 2z 1is any fixed element of Q , define Xoy =
t, xy,t e Q if <x,y,2> = t . One may obtain other quasi- .
groups via <z,X,y> = t , <x,z,y>a= t -and <x,y,t>w= Zz . We
will‘see further uses of these quasigroups in Chapter 2, 3,

and 4. In every case, if (Q,<,,>) is a Steiner 3-quasi-

group, ‘(Q,O) will be a Steiner quasigroup. For, if we
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consider xe°(x°y) , where xey = t , we have <x,y,z> = t ,
say. Then xe°t 1is defined by <x,t,z> = <x,<x,y,2>,2”> =
<X,2,<X,¥,2>> = <x,2,<X,2,y>> =y . One obtains similar

résults, if the other definitions are used.

-~

A reverse process is sometimes possible. That is,

from a collection of n quasigroups of order n-1 , one can

construct a 3-quasigroup of order n provided certain con-

ditions are met,

Theorem 1.3.10. Suppose a set of idempotent quasigroups

B

(Ql,ol) cee (Qn,on) are defined on the sets {2,...,n}

14

{3, e/, 1} , ..o, {1,2,...,n-1} respectively, such that the

following condition holds. If for each (Qi'°i) , we derive
a set of ordered triples {(X:YIz)i} where xo.y = z ,
X,¥,2 € Q; a{g‘ali distinct, then (x,y,z)i # (z,m,n)j for
any 1 #3j , x,¥,2 ¢€ Qi . 2,m,n € Qj . ‘(That is, all the
triples of {(x,y,z)i , L =1,...,n} ‘are dist%pct.) Then
there exists a ternary quasigroup (Q,<,,>) having the

(Q;s°;) as derived quasigroups.

Proof: Define ‘(Q,<,,>) as follows on the set {l,2,...,n}:
Let <x,y,z> = t if and’ only if (x,y.,2z), is a triple
derived from (Qt’°€) . Further, require (Q,<,,>) to sat-
isfy the generalized idempo¢e5t<law,

Now suppose <x,y,z> = <x,y,%> = t , where 1z # &

b

and (x,y,z) and (x,y,%) are triples having all three
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elements different. Then (x,y,z)t and (x,y,ﬁ)“t are
formed from Qt , or X°,y = z and Xe.y = £ , a contradic-

tion. Suppose <x,z,y> = <x,%,y> = t . Then x¢,_,z =y and

t

XOtR =y implies 2z = £ also. ’

If <xX,y,¥y>=<X,y,%> =t , then x =t or <Q,y,2> =
X . Then Xe Yy = 2 . But x ¢ Qx and so this is impossible,
unless £ =y . If we have <x,y,y> = <x,%,y> , again x =
<xX,%,y> gives xox£ =y and x ¢ Qx . If <X, Yux> =
<xX,¥,%> , a similar contradiction is obtained. Thus <x,y,2%>
will have a unique value in every Ease and the operation is

defined for every possible set of triples. Therefore (Q,<,,>)

is a ternary quasigroup.

It is interesting to note that even if all of the
quasigroups (Qi’°i) are [Steiner quasigroups, the tfrnary
quasigroup (Q,<,,>) constructed from them need notlﬁe a
Steiner 3-quasigroup. (An‘example of this will be seen in
§2.3.) For consider <x,y,<x,y,z>> . If <x,y,z> =t ,
where Xo ¥ = 2 and <x,y,t> = r , where Xe Yy = t , there
is no quarantee that r = z . The operations ° and °¢
do not have to bear any relation to one another. If the
(Qi,oi) are defined in such a way that these connecting re-

lations are satisfied, then it is possible to make (Q,<,,>)

Steiner.
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There remain two theorems about subsystems of quad-

ruple systems, which will be needed later in Chapter 4.

Theorem 1.3.11. A quadruple ‘'system of order 8 may be

«

embedded in a gquadruple system of order v - 4 or 8 (mod 1l2).
Proof: See Rosa and Lindner in [38].

Theorem 1.3.12. A quadruple system of order v may be

embedded in a quadruple system of order 3v-2 .,

Proof: See Hanani [15].
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CHAPTER 2

§2.1 Permutation Classification.

As shown in [33] for ordinary gquasigroups, each con-

jugate quasigroup is identical to the original gquasigroup,
and only if a certain identity is satisfied by the original

quasigroup. The following list gives, for each @, ¢ S

i n+l
an identity L. such that <> = <>p  if and only if L,
i ’

holds in (Q,<>) . These identities correspond to Theorem

1.2.4 of Chapter 1.

Actually the choice of Li is not uniqﬁe. In the
case of L3 . one has <a,b,¢c> = d and <b,a,d> = ¢ in Q
These becomé <b,a,<a,b,c>»>> = ¢ or <a,b,<b,a,d>> =d ,
depending on whether a substitution is made for d or c .
These two equalities are clearly identical. However, for
L2 , one hqs either <<b,d,c>,b,c> =_d or <b,<a,b,c>,c> =
under similar substitutions. These two seemingly different
identities may be transformed from one into the other as
follows. Replace b by <b,a,c> 1in <b,<a,b,c>, ¢c> to
obtain <<b,a,c>,<a,<b,a,c>,c>,c> = <<b,a,c>,b,c> = a .
Similarly replace ‘b by <d,b,c> in <<b,d,c>,b,c> to

obtain <p,<d,b,c>,c> =4 .

if

4

a ,



Table 2,1.1

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

Permutation .

1243
2134
2143
1324
4231
4321
3214
3412
1432
2314
3124
2431
4132
3241
4213 b)
1423
1342
4123
4312
2341 -
+2413
3142
3421

1234

1

(+) (+)
(enee)
(veee)
(eoee)
(sa99)
(enee)
(voee)

the identity

}permutation

<a,b,<a,b,d>> =d
<a,b,¢c> = <b,a,c>
<a,b,<b,a,d>»> = d
<a,b,c> = <a,c,b>
<<d,b,c>,b,c> = d

<<d,¢c,b>,b,c> = d

<¢,b,a> = <a,b,c>
<a,<c,d,a>,c> = ad
<a,<a,d,c>,c> = d

<c,a,b> = <a,b,c>

i

<b,c,a> <a,b,c>
<a,<d,a,c>,c> =
<<b,d,c>,b,c> =
<a,b,<d,b,a>»> =
<¢,b,<d,b,c>> =
<a,<a,c,d>,c> =
<a,b,<a,d,b>> =
<<b,c,d>,b,c> =
<<¢c,d,b>,b,c> =
<a,b,<d,a,b>> =
<a,y<c,a,;d>,c> =

<a,b,<b,d,a>> =

1S T o T & N o o T o T o T o "R o PH o TR o " o

<a,<d,c,a>,c> =

28.

Corfespondinq Identity L.
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Again, as in the case of ordinary quasigroups, it is
the subgroups of Sy which determine the conjugacy class
number. However, now the number of subgroups of a given order
is larger than in the case of S3 , and any subgroup of a
given order

is sufficient to determine a ternary quasi-

group with conjugacy classes. This work is primarily

n
24
n
concerned with existence and hence the particular subgroup

used is picked for expediency only. However, a broader prob-
lem would be to construct quasigroups satisfying the sets of
identities corresponding to all the subgroups of S4 - In

some cases, an alternate construction is suggested, depending

on a different subgroup choice. But the complete problem has

not been considered.

§2.2. A Breakdown of Class Numbers by Subgroups.

(See [24] and [l14] for a confirmation of some of these

results,)

Case 1. Twenty-Four Classes.

- =

This is the trivial case when no identities are

satisfied.
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Case 2. Twelve Classes.

*
'

A ternary quasigroup (Q,<,,>) will have
|c(Q,<,,>)| = 12 if and only if exactly one of the identi-
ties Li with 1=1,2,3,4,5,6,7,8 or 9 are satisfied and

no other identities hold (except L of course).

24
Case 3. Eight Classes.

One has |C(Q,<,,>)[ = 8 if and only if exactly one
of the following sets of identities are satisfied and no
other identity is: {LlO'Lll'L24} ' {L12,Ll3,L24} ]
5L

{Ll4,L 24} or {LlG’Ll7'L24} . These correspond to pre-

1
cisely all the permutations of order three.

Case 4. Six Classes.

P = - T oz

One has C|Q,<,,>|= € if and only if exactly one of
the following sets of identities are satisfied and no other
identity is: {L3,L6,L8,L24} ' {LlS,L20,L8,L24} ’ {ng,L23,
or {L7,L8,L9,L24} . These correspond to precisely all the

subgroups of order 4.

One has |[C(Q,<,,>)| = 4 if and only if exactly one

‘of the following sets of identities are satisfied and no

other identity is: jLZ,L4,L7,L10,Lll,L24} ' {LZ'LS'LQ'LlZ'

Lygelogd » {LysLgiby Ly 4oLy goLyy)l v (L L, g Ly, LygiLy ) .
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These correspond to all the subgroups of order 6.

Case 6. Three Classes.

Oone has |C(Q,<,,>)| = 3 if and only if exactly one
of the following sets of identities are satisfied and no
other identity is. These correspond to all the subgroups‘
of order 8, which are in fact all isomorphic to the dihedral

group of order 2n = 8 , where n = 4 : {Ll’LZ'L3'L6’L8’Ll9'

L23,L24} corresponds to the dihedral group where A = Tig
B=mn,,2"=1,8° =1, ana BA=2a’B; (Ly,L,,L,, L Ly
L21’L22'L24} corresponds to A = May ¢ B =Ty {Lj'Lstg'
L9’L18'L20'L24} corresponds to A = Mo , B = W, .

Case 7. Two Classes.

Only one set of identities will give |C(Q,<,,>)| =
2 , if they are satisfied and no other identities hold. They
come from the alternating subgroup A4 , whose miembers are

the permutations: {“3'“6'"8'“10’“11’“12'"13’“14;“lS'HlG'w17'

LPYRER
Case 8. ' One Class.
One has |C(Q,<,,>)] =1 if and only if all the

identities are satisfied. Actually, identitied Lig and
L10 are sufficient to generate all the rest. In fact, one
can see that permutation Tio is an even permutation of

order three and LEY) is odd of order 4. As the odly sub~
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group of order 12 is the alternating subgroup, any Such pair

would generate all of 5, . _ -

-~

N

In conclusion, these eight'casés give all theoreti-
caliy possible classes gf quasigroup identities and have been
obtqihed by considering ‘all subgroups of S4 - In Chapter 3
aﬁd 4, it is shéwn, in moét cases, that different quasigroups
exist, satisfying sufficiently many identities (corresponding
to sufficiently many sﬁbgroups of S, ) to cover all possible

‘numbers of conjugates. ,

W

-

~

R



e g T

2
1

SEAPTER 3

The Existence of Ternary Quasigroups

with 1, 3, 4, 6, 12 or 24 Conjugacy Classes

§3.1 Twenpj;ﬁour Classes

t

Lemma 3.1.1. Let Q = {0,1,2,...,nql}. Suppose q,reQ , g # r

and g and r are relatively prime to h. Suppose furthermore that
g+rZ0 (mod n); and q,r#n-1 or 1, Define <a,b,c> = atbg+tcr for all
a,b,c € Q , where addition is modulo n . Then- C|{Q,<,,>) ]| =

24 for the\3-quasigfoup. (Q,<,¢>)

Proof: (1) To check that (Q,<,,>) 1is a guasigroup, con-

sider .<a,b,c> = <a',b,c> . Clearly a = a' . If

<a,b',c> = <a,b,c> , then b'g = bg (mod n) , which implies

g(b'-b) = 0 (mod n) . Tperefore n/(b'-b) , as nd prime

factor of n can divide q . Thgrefore'-b = b; (mod n) or

b=D>b'" as b,b' € Q . Simila;ly c = e', if <a,b,c'> =

<a,b,c> . . . | i
(2) Consider any single tranposition among the first

three‘positions of <é,b,p> =d . For example, <a,b,;> =

<a,é,b> implies c¢gqg + br = bq‘+ cx (moa n)'.: If c= 0

and b =1, then g =r , which is a contradiction. Similar

contradictions are obt@ined in the other two cases. Hence

7 are not satisfied.
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(3) A cyclic permutation of a,b and ¢ may be handled

as follows. If <a,b,c> = <b,c,a> Ya,b,c , choose b =c .
Then <a,b,b> = <b,b,a> , which implies, for b =0, a =1,

that 1 = r . Hence identities Llo and Lll are not satis-

fied.

{4) Suppose d is interchanged with either b or c¢ .

In particular if <a,b,¢> 2 d and <a,b,d>=zc , we have

d. If a=b=0,r’d=d. Bya

suitable choice of ¢ , d can be made = 1 . Hence r2 =1 .

1]

ap + bg + r(ap+bg+rd)

Therefore a + bgq + r ap + r bg-= 0 , or (r+l)(aptbg) = 0 .
If a=1, b=0, we must have r+l £ 0 , which contradicts -

r ¥ n-1 . Hence identities Ll' and L9 are nhot satisfied.

"{5) Suppose d is interchanged with a . - Then

-~

(d+bgtcr) + bg + cr 0 + If

i

d . Therefore 2kbq+cr)

c =11, Db

0-, then 2r = 0 , which contradicts‘ r- relatively
prime to n . (If n= 2, then r =1 , which is impossible.
If n = 2m , any prime factor of m must divide r,;5 Thus

identity Lg is not satisfied.

(6) Suppase d 1is interchanged ﬁith" b or ¢ and
the-remaining two letters are permuted, as.in (2143). Thus

<a,b/c> = d and <b,a,d>5¢.. If we let La=0, b=1, we

‘obtain q+r = 0 (mgd‘n).; a contradiction. ‘Hence identities

L, apd L, do not hold.

AN

8
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(7) If d 1is interchanged with a , and b and ¢

are permuted (4321) , we;obtain 4 + cq + br + bgq + ¢cr 2 4 .
Therefore c¢q + br + bg + cr = 0 (mod n) and (g+x) (b+c) =

0 (mod n) , from which g+r = 0 (mod n) , by a suitable
choice of b and ¢ . Identity Le is therefore not satis-

L3

fied.

(8) Now one may show by a considerationof subgroups

that identities 18-23 do not hold. If Lig holds,

L]
T8 will generate a subgroup of order 4 containing Tg
‘but L

8 does not hold. Similarly L is in the subgroup

{w3,n19,w23,n24} and m. - belong; to {ﬂs,n21,n22,ﬂ24} .

(9) The only remaining identities are Ll2‘Ll7 ’
‘ ‘ »
which correspond to permutations with:a fiked point and a

cyclic permutation of the remaining letters, with d never
fixed. Each of these cases may be reduced to case (4) as

follows: Identity L comes from = = (2431) . Let

12 12
b and we have' <a,a,c> = d and <a,d,c> = d . Thus

fi

a

a+(a+dg+cr)qg + cxr £ d . As before qzd' d (a=0) gives

0 2

q = 1 (mod n) » if ¢ is chosen to make d = 1 . As in
(4) , (a+cr) (g+l) E\O (mod n) means gtl = 0 (mod n) ,
contradicting the assumptions. Hence le and L13 do not

‘hold. ({“12'“13’“24}A is a subgroup) . For (3241), let

a=c. and for (1423} , let b =.¢ . Contradictions are

obtained identical to case (4). Therefore L12—L17 do not Hold.
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The proof is how complete.

Lemma 3.1.2. If

(1) n>7, n odd, or if

(ii) n > 14 , n even,

then there exist integers q,r ¢ {0,1,2,...,n-1} such that
g#r , g,r are relatively prime to n , gtr Z 0 (mod n) ,
and gq,r # n-1 or 1 . Moreover, q,r may be given explic-

itly.

Proof: Case (1), Suppose n is odd, n > 7 . Then q = 2,
r = [%} may be chosen.
I ’ Case (2). Let n = ZSm > 14 where s > 1 and m

—

i is odd. Then we may take g = m+2 and r = m+t4 . Now any

4 " prime different from 2 which divides 2°m , must divide m
‘ and thus will not divide r . If the prime is 2 and it
divides (2+m) or (4+m) , then it divides m , which con~-

tradicts m odd.

L4

. :
2 m-1 , then m(zs-l) = 3 . The only":

If m+2 = n-1

possibilities are s =1, m=3 , n=6 ,0or s=2,m=1,

n=4.

- If m+4 = n-1 , then 5 = m(2s—1) ;, whose only solu-

tion is m-=5 , s =1, n= 10 .’

Could we have (m+4f + (m+2) = 2°m ? Then (25_14L71n=
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3 , with solutions s =2 , m =3, n=12 and s = 3 ,
m=1,n=8. 1In all other cases, (m+4) + (m+2) are
relatively prime to n , do not sum to n , and are different

from n-1 .

"Lemma 3,1.3. There do not exist any 3-quasigroups with 24

conjugacy classes of order 1 , 2 or 3.
Proof: Recall the discussion following Definition 1.3.9.

In the case n = 3 , the only possible candidates for
24 conjugacy classes would arise from a permutation of the

following three ‘faces:

1 2 3 1 2 3 1 2 3

1 1 2 3 1 2 3 1 L+« 3 1 2

2 3 1 2 2 1 2 3 2 2 3 1

3 2 3 1 3 3 1 2 3 1 2 3
FACE 1 FACE 2 FACE 3

-

3
However, no matter how they are permuated, one complete

set of derived quasigroups will be commutative. For example,
if (Qi’°) is defined by bec = d if and only if
<i,b,¢> =4 for i =1,2,3,then all the (Q;,°) arfe commu-

tative. Therefore the ternary quasigroup, whose faces are
. R

shown above, satisfies L4 .
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Lemma 3.1.4. There exists a 3-quasigroup of order 4 with

24 conjugacy classes.

@

Proof: Consider the 3-quasigroup defined by the following

-

faces:
i 2 3 4 1 2 3 4
1 1]l 21314 1 |4 ]3] 1] 2
2 |31 4|12 2 {1} 21 4] 3
3 |4} 3211 3 (21 1] 3] 4
4.2 1] 4] 3 4 1314211
FACE 1 ‘ FACE 2
1 2 3 4 1 2 3 4
1 |3l 4] 2|1 1 {211 413
2 21113 ] 4 2 la | 3211
3 {1 )2]4]S3 3 |31 4112
4 |4 {3112 4 1121314
FACE 3 " FACE 4

RN

“
. Law 2 is clearly nét satisfied. Ll is contradicted
by <2,2,3> =1, and <2,2,1>=4 . If L; is hot satis-
fied with the first two positions equal (2), then Lj is
not satisfied. L6 i§ contradiéted by <3,2,1> =3 ,
<1,2,3> = 4 . This also means L4 doés.not hold. L9 is
contradicted by <1,§,2> =/}  <1,1,2> ='4 . L8 is contraf

dicted by <2,3,1> =T, <1,1,2> = 4, while for L, ,

3
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consider. <3,2,1> = 3 , <1,2,3> =4 . Now L does not

10
1 and therefore Lll

hold because <1,2,3> = 4 , <2,3,1>

does not hold either. For LlZ_Ll7 r we need oﬁly consider
L12 ' L14 and L16 . le is violated by <2,1,3> = 2 ,
<1,2,3> = 4 ; L14 by <«3,2,1> =3, <1,2,3> =4 ; and L16
by <2,1,3> =2, <2,2,1> = 4 . As in Lemma 3.1.1, L18—L23

cannot hold. .Therefore the faces represent a 3-quasigroup

with 24 conjugacy classes.

Remark 3.1.5. At this point, one would normally try to give

>

examples for.the remaining missing orders. However, the
example for n = 5 was found to generalize to produce an
alternate mefhod for coﬁstructing quasigroups of higher orders
with 24 conjugacy classes. As ‘this method arises Ffrom study-
ing the three dimensional cube, rather than from algebraic
considerations, it is included here to ind%cate the range of

possibilities in solving the general problem.

Definition 3.1.6. Define the front vertical faces of a ter-—

nary guasigroup (Q,<,,>) to be the faces of the cubic

representation obtained by fixing the third coordinate in the

. pperation <,,> . That is, the faces are the Cayley tables

of the quasigroups (QF (°) derived from- (Q,<,,>) by
. i
setting a<b = ¢ if and only if <a,b,i> = ¢ , VYa,b,c ¢

Q ,Vi= 1,...n where n is the order of (Q,<,,>).

>
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The side vertical faces argvobtained by fixirg the

second coordinate in <,,> . The faces are the Cayley tables

of the quasigroups (Qg ,°) derived from (Q,<,,>) Dby set-
i

ting aeb = ¢ if and only if <a,i,b> = c .

Finally, the horizontal faces are obtained by fixing

the first coordinate in <,,> . The faces are the Cayley

tables of the quasigroups (Q, ,¢) derived from (Q,<,,>)

H,
1

by setting acb = ¢ if and only if <i,a,b> = ¢ . The

illustration below shows the faces on a cube of order 2.

2 1 12
First horizontal face
2 1
,-2 N\
' 2 1
Second side vertical face
1 2
1 2 .
2‘ 1 ) ., L2
L First front vertical face
2 1

b ]

Lemma 3.1.7. There exists a ternary quasigroup of order n

’

-with 24 conjugacy classes for all n > 5 .-

L
Consider the-following construction of a 3-quasigroup.

3

Let the first front vertical face (or (Q

P ¢1°) ) Dbe defined
1 - S
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by ac°b = (atb-l)mod n ¥ a,b ¢ Q. Here Q = {1,2,...n}, n > 5.

Interchange the first two rows of (QF +°) . Construct the
1

remaining front vertical faces 2,...,n by adding 1 (mod n)
successively to each of the corresponding elements of face 1.
Clearly the resulting cube will be latin. Call the corres-

ponding 3-quasigroup (Q,<,,>) .

Perform the following operations,which will not

. destroy the quasigroup nature of (Q,<,,>) . Interchange the
first and second front vertical faces. Interchange the second

énd third 'side vertical faces (the first and second cannbt be

’ ) i .
chosen as commutativity is then restored to the original faces).

These manipulations result in the fellowing entries

in the first, second and third front vertical faces: -
//)f 2 4 3 e 3 5 4 '~'/ 4 0 S5 e
1 3 2 e 2 4 3 e 3 5 4 s
3 5 4 s e e 4 0 5 e e o 5 0 0 e e 0
4 L] L ] - * * L] . - L) [ 3 .
! L ] L ] - ‘. - . * L] o L 3 L] » R
. »n

FACE 1 FACE 2 FACE 3

The zeroed entries have values greater than 5 if n > 6 ,

l or 2 if n=5 and 1 and 6 if n =5 .

°

Now face 1 °'is non-commutative, so (Q,<,,>) does not

satisfy L, . Further, Ll is violated by <2,2,1> =3 ,
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and <2,2,3> =5 ., This also violates L3 . L4 is violated
by <2,3,1> =2, <2,1,3> = 3 . Lg doesn't hold because

<2,1,3> =3 , while <3,1,3> = 5 , L6 1s contradicted by

the example for L, . L, does not hold because <2,1,3> =
3, but <3,1,2> = 4 , L8 is contradicted by <1,1,1> = 2
and <1,2,1> = 4 , which also contradicts L9 . It remains
only to discuss Llo ) le , L14 and L16 . The fact that
<1,2,1> =4 , <2,1,1> = 1 contradicts Llo . For le ’
<i,1,1> = 2 should imply <1,2,1> =1, but <1,2,1> = 4 .
For L14 , <1,1,1> = 2 implies <1,1,2> = 1 , while we have

<1,1,2> = 3 .

For L16 , <1,1,1> = 2 implies <1,2,1> =1,

whereas here <1,2,1>.= 4 , ¢

The lemmas of §3.1 prove the following theorem.

Theorem 3.1.8. Ternary quasigroups with 24 conjugacy classes

exist for all orders n > 4 and do not exist for any n < 4 .

Remark 3.1.9. One may prove a similar theorem to Lemma

3.1.1 in the case of ordinary quasigroups; namel?, 1f xoy oOn

Q={1l,...,n-1}is defined to be x + py (mod n), where p # 1 or n-1 ar

p is relatively prime to n, then the multivlication defines a

quasigroup with exactly 6 conjugacy classes. If n > 5 and

odd, oné may choose p = E%l «.If n>8 and even, n =

2°m  (m odd) » then one may choose p = m+2 . This then
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provides a simple alternate construction to that given in

{33], where embedding theorems are needed.

3.2 Twelve Classes,

Lemma 3.2.1. There exists a ternary quasigroup of order n

with 12 conjugacy classes if

(1) n>5, if n odd , or

(ii) n 8 , if n even.

| v

a

Proof: (1) Let 9@ = {(0,1,2,...,n-1} . Define a ternary
operation <,,> on Q by <a,b,c> =4d E\(a+b+pc) (mod n)
where p #n-l or 1, pe Q, and p is rela%ivély prime to n.
Then (Q,<,,») 1is a 3~-quasigroup as in Lemma 3.1.1. Clearly
L2 holdé and if we can show no other identities hold,
[c(Q,<,,>)| will be equal to 12.

L .
(2) One sees that L4 and L7 do not hold, as in

Lemma 3.1.1. If 4 and ¢ are interchanged, whether or not
a and b are also interchandéd, one obtains a;b+p(a+b+pc)5

plc

il
lop
H
o

IRI

c (mod@ n) . If 4d=1,

<0,0,d> Z pd * ¢ or c = p gives p3 z p (mod n) . Thus

P (pz—l) 2 0 (mod n) . This leads to P2 z 1 (mod n) and

c (mod n} . If a

(p+1) (a+b) 0 (mod n) V¥V a,b € Q . This contradicts -p #

H

n-1 . Thus L and L3 are not satisfied. *

1
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(3) If d 1is interchanged with a or b , one obtains
<a,b,e* =d or <d,b,c> = a , say. Therefore (a+b+c) + b +

pc - a (mod n) . Then 2b + c(p+l) - 0 (mod n) . If b =20,

Y
¢ =1, we obtain p = n-1 , a contradiction. If b =c a

similar contradiction can be found. Therefore L. , L. , L

5

4 N
and L9 are VLplated.

(4) If identity L

10 holds, a + b + pc - b + ¢ + pa ,

J
implying a + pc 2 c +pa , or p=1 if a=0,c¢c=1.
Identity le implies b+(at+b+pc) + pc = a , or 2 = 0 if
b =1 , ¢ =0, Identity L implies c¢ + b + p(atb+cp) =

14
a. If b=c¢c=0,a=d and paZa. If a=d4d=1,

this gives p =1 . Identity L implies a+(a+b+pc) + pb

16
¢c. If a=Db=0, again we obtain ¢ =d and pc = c ,

which means p =1, if d =1 .
—

. (5) As in the earlier proofs, this is all that needs
to be shown. (Note that 7, does not belong to any of the

.)

subgroups of order 4 containing T8 to w

23
(6) Now if~ n > 5 , n odd, let p=2 . If n > 18,
n even, let p = m+2 , wheré n = 2°m (m odd) . As before,

m+2 is relatively prime to n and if 'nm+2 = 2°m-1 , or

3 = m(2°-1) , this has a solution only for n =4 or 6 .

.

Lemma 3.2.2. There exists a 3-quasigroup of order 6 with 12

conjugacy classes, and with the further property that it sat-

isfies the generalized idempotent law.



Proof:

Let @ = {1,2,3,4,5,6}

<a,b,c> # a,b

below.

generalized idempotent law.

or

c , where

@

a,b,c

Define

are distingt, hy the table

<a,b,c>

so that

Then the remaining products may be defined by the

do indeed define a 3-quasigroup.

Definition of triples with

3 distinct elements

<1,2,3>
<2,3,1>
<3,1,2>
<2,1,3>
<1,3,2>

<3,2,1>

<1,2,4>
<2,4,1>
<4,1,2>
<2,1,4>
<1,4,2>

<4,2,1>

<1,2,5>
<2,5,1>
<5,1,2>
<2,1,5>
<1,5,2>

<5,2,1>

i

i

il

<1,3,4>
<3,4,1>
<4,1,3>
<3,1,4>
<1l,4,3>

<4,3,1>

<1,3,5>
<3,5,1>
<5,1,3>
<3,1,5>
<l,5,3>

<5,3,1>

<1,3,6>

<3,6,1>

<6,1,3>
<3,1,6>
<1,6,3>

<6,3,1>

]

It

{1

i

<l1,4,6>
<4,6 ,1>
<6,1,4>
<4,1,6>
<l,5,§>

<614Il>

<1l,5,6>
<5,6,1>
<6,1,5>
<5,1,6>
<1,6,5>

<6,5,1>

<2,3,4>
<3,4,2>
;4,2,3>
<3,2,4>
<2,4,3>

<4,3,2>

i

i

1

45..

One may check that these products
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<1,2,6”
<2,6,1>

<6,1,2>

[ <2,l]6>

<1,6,2>
<6,2,1>

<2,3,6>
<3,6,2>
<6,2,3>
<3,2,6>

<2,6,3>

<6,3,2>

. <2,5,6>

<5,6,2>
<6,2,5>

<5,2,6>

§ <2,6,5>

<615)2>‘

i

<3\'5,6>'
<5,6,3>

<6,3,5>\

[}

li*

It

It

|

1 -

2 .
<3,6,5>

<1{f'$>
<4,5,1>
<5,1,4>
<4,1,5>
<1,5,4>
<5,4,1>

<2,4,5>
<4,5,2>
"
<5,2,4>
<4,2,5>

<2,5,4>

"<5,.4,2>

<3.,4,5>
<4,5,3>
<5,3,4>

<4,3,5>

<3,5,4>
<5,4,3>

<5,3,6>

:<61313>j

1

i

It
o

It
}_d

M
N - [*) (<) [ N

1t

<4,5,6>

" <6,4,5>

<2,3,5> = 6
<3,5,2>'= 4
<5,2,3> = 1
<3,2,5> = 1
<2,5,3> = 4
<5,3,2> = 6
<2,4,6> -3
<4,6,2> = 5
<6,2,4> = 1
<4,2,6> =1
<2,6,4> = 5
<6,4,2> = 3
<3,4,6> =1
<4,6,3> = 2
<6,3,4> =5
<4,3,6> =5
<3,6,4> = 2
<6,4,3> = 1‘

<5,4,6>

<4,6,5>

<6,5)4>

i

46.
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From the definition of (Q,<,,>) , one sees that L, 1is
satisfied. Suppose (Q,<,,>) had only 3 conjugacy classes.
4 Then there would be a subgroup of order 8 of S, such that

all the corresponding identities were satisfied. However,

o

! T, is in the subgroup {Wla,ﬂzo,W8,ﬂ7,ﬂ6,ﬂ3,ﬂg,ﬂé4} and
r ‘ no other subgroup of order 8. We have <1,<3,6,1>,3> =

r <1,2,3> = 4 # 6 , contradicting Lé . Therefore (é,<,,>)
‘ cannot have only 3 conjugacy classes. mq is an odd permuta-

|
8 - ~ - '3
E_ ' tion and thus cannot belong to the alternating subgroup A4.

But then (Q,<,,>) cannot have 2 conjugacy classes.

.The only subgroups of order 6 containing T, are
Iy oM Myr Mg Mgy e Tag} and Amg Ty my ™y 5Ty, l o As

(9,<,,>) 1is cleérly not commutative in the first 2 positions,

{ L, is not satisfied. Also <2,1,3> =6 , but <2,1,6> = 4
. # 3 , contradicting Ll . Therefore we do not have a sub-
group of order 6 of S4 with all the corresponding identi~

ties satisfied,

J
v L4

Finally, the only subgroup of order 4 containing m

is {ﬁ24,w7,w8,n9} . But this is itself a subgroup of the

subgroup of order 8 above. Therefore |[C(Q,<,,>)| = 12 ..

".

K

‘Remark 3.2.3. L. Humbolt in.[22j constructs idempotent 3-

quasigroups. In his paper, however, idempotent means only
<x,X,X> = X . The existence of 3-quasigroups satisfying the

generalized idempotent law has not been settled. It is known
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(9

from Chapter 1, that the 3-quasigroup derived from any quad-
ruple system’will satisfy this law. Therefore there exist
generalized idempotent 3-guasigroups of every order congruent
to 2 or 4 mod 6. If one uses the ordinary direct product of
3-quasigroups, then one may construct other generalized idem-
potent 3-quasigroups from the example of order 6 given here
and the ternary quasigroups derived from quadruple systems.
(Clearly the ordinary direct product preserves this law. If

“(Qqs<s.>y) and (Q,,<,,>,) are generalized idempotent quasi-

P

groups, then <(a1,a2){(al.a2),(bl,b2)> = (<a1,a1.bl>l,
i . <ay,a,,by>5) = (by,b,) .) Therefore, there exist generalized
s idempotent guasigroups having orders of the‘form 6" P

6(2+6n) or 6(4+6n) , n e N .

{ Further results concerning the generalized idempotent

law may be found in [30].

Theorem 3.2.4. There exists a ternary quasigroup of order

n with exactly 12 cohjugacy classes if and only if n > 4 .

Proof: In view of Lemmas 3.2.1 and 3.2.2, it remains only

to consider the cases n = 2,3 and 4 .

.If n =2 , any ternary. quasigroup of order 2 may be

sgen to have fewer than 12 conjugacy classes.

If n = 3, without loss of‘generalify (i.e. up to
isomorphism), the front vertiéal,fapes of a te:ﬁary quasi-

group are either:
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or:

cal faces and the horizontal faces are all commutative as

1 3 3
2 1
3 2
1A 22 3A
.. ~ -
order possibly reversed
1
1 2 1 2
1B 2B . 3B
S— —~ 4

order possibly reversed

49.

In the case we take 1A , 2A , 3A , the front verti-

quasigroups, implying that at least 2 identities are satis-

fied. (The firsp horizontal face is

»

2 <)

In the case 1A , 3A and 23 , the front vertical faces are,

commutative as guasigroups and L3 “can be seen to hold.

the case

as quasigroups, and again L, is satisfied. 1In the case

In

1B , 2B , 3B , the horizontal faces are cpmmutative

1B,

3B , 2B , the side vertical faces are commutative as quasi-

groups and Ly is satisfied.. Therefore, no ternary quasi-

group or oxrder 3 with 12 conjugacy classes exists.

L

-
*
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If n =4 , consider the following example:

4 1 2 3
4
2 3 4 1
® @ © ®
3 3 4 2
( [
‘ 3 1 2 4
g @ @ @ ©
; > 2 4 3 1
. 1y gl 2l [
; 4 2 ) 1 3
; ©) ) ® ® @
§ 3 2 1 4
’ N ‘ 4
1 4 3 2
@ ©) @ ®

I oo oy

The elements of éace 1 of the front vertical faces are circled
and‘those of Face 3 are squared to be seen more easily. wa
the fppnt bértieal faces are all commutative as quasigroups,
implying L, holds. L, does not hold because <l,2,<l,2,3>>b
=1#3 . L; does not hold because <1,2,<2,1,3>> =1 # 3 .,

For L, and L7 , one notes that the second horizontal face:




————
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is not commutative as a quasigroup, nor iss the second side

vertical face:

L5 is violated by <<3,1,2>,1,2> = <4,1,2> =1 # 3 ; L6

is violated by <<3,1,2>,1,2>=1# 3 ; L by <1,<3,2,1>,

8
3> = <1,1,3> = 3 # 2 and, finally, Ly by <2,<2,4,1>,1> =
<%,3,l> =1 3# 4 . Now , cannot belong Eg a subgroup of

Sy of order 12 (A4) as it is an odd permutation. It cannot
be part of a subgroup of order 8, as the only one containing
T aslo contains LETLEYLP and LI whose corrésponding
identities do not hold. The two subgroups of orae; 6 con-_

f
taining u, are {“2'ﬂ4’"7’ﬂ10'“11'ﬂ24} and {“2’"9’“5’
“12’“13’ﬂ24} , each of which contains at least one subscript
corresponding to an identity which does not hold. Finally,
the only subgroup of order 4 containing T, is {“1'“2’"3'

w24} . Therefore, L2. must hold alone and the ternary quasi-

group represented by the tables here has 12 conjlgacy classes.
| - A "
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§3.3 Six Classes.

Lemma 3.3.1. If n > 3 and odd, there exists a ternary *

quasigroup of order n with 6 conjugacy classes.

Proof: Let Q = {0,1,...,n-1} . Define <,,> on Q by
<a,b,c> = (2a+2b-c) (mod n) Ya,b,c e Q . It can be easily

shown that Ll R L2 and L3 are satisfied.

N Now the only subgroup larger than .{"1'“2’"3'"24}
and containing it is the subgroup of order 8 = {"1’"2'"3'“6'
ﬂ8,ﬂ9,ﬂ23,W24] . However, consider L@ : <<d,c,b>,b,c> =
{2d+2¢c~b) 2 + 2b - c = 4 . If b=0, c=1,d=1,

4 = 1 (mod n) , which is false.

Lemma 3.3.2. If n > 6 , n is even and n # 8 , 12 , or 24 ,

there exists a ternary quasigroup of order n .

®
Proof: Let Q = {0,1,...,n-1} . Define <,,> on Q by

<a,b,c> = (a(m+2) + b(m+2) - ¢) (mod n) where n = 2°m ,
m odd. We negd only show that L does not hold. Now
<<d,c,b>,b,c> = (d(m+2)+c(m+2}-b) (m+2) + b(m+2}) -c =
c((m+2)2-1) + d(m+2)2 = d(mod n). This implies (m+2)2 z
1 (mod n) , or m2 + 4m + 4 = 1 (mod n) , which gives

m2 + 4m + 3 2 0 (mod n) . ' As m/n , m/3 . Therefore m

3
=

or 3. If m=1,9z=1lmodn or 'n=4 or 8. 'If
m=3, 251 (mdn) and n=6 , 12 or 24 . 1In every

other case (m+2)2 Z 1 {(mod n)
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®:
Lemma 3.3.3. There exists a ternary quasigroup of order 4 and

erder 4. 1In the ¢as

of order 6 with 6 conjugacy classes. .

There does not exist any 3-quasigroup of order n

with 6 conjugacy classes for n < 3 .

Proof: (1) - For n =73 , consider the quasigroups given in

Theorem 3.2.4. In the case of choosing 1A , 2a , 3A , L,
-

and L4 are satisfied. These identities have corresponding

permutations which do not belong together to any subgroup of

AA , 3, 27A , Ly, and L, an? L,y

are satisfied. Howejer, so is L6 . In the case 1B , 2B ,

and L old, but T and U do not appear to-

3 4
gether in any

3B 7 L

bgroup of order 4. Finally, in the case 1B,

- -

3B , 2B , laws L7 and Ll hold, which again makes it impos-

sible to obtain 6 conjugacy classes.

(2) If n =4 , cohsider the following example:

11234 41123
T
\2\ a | 1] 3 , 1| 3|42
3 11| 4] 2 2 a3 |1
a 13211 32|14
FACE 1 FACE 2
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3 4 1 2 2 3 4 1
4 2 3 1 3 1 2 4
13| 214 i 4 2|11} 3
2 1 4 3 1 4 3 2
FACE 3 » FACE 4
L, is satisfied. Ll cdorresponds to = (1243) . Now

this means that everywhere thege is a 1 in the second front
vertical face, there should be a 2 in the first fron; verti-~
§ cql face épd sigglarly for the pairs (1 and 3) and (1 and 4)
in the third and fourth front vertical faces. &Everytime

: thefe is a 3 or 4 in the second front verticai face, there
should be a 2 in the corresponding place in faces 3 and 4

above. Finally, every position containing a 4 in face 3

o e

above, should contain a 3 in the fourth front vertical face.

iy .

One can check that these conditions do indeed hold aqd that
they are enough to guarantee Ly - Therefore Ly L, and

L3 are satisfied. However <<1,3,2>,2,3> = <2,2,3> = 2 # 1.

i i e

Hence L6 does not hold. Therefore, the 3-quasigroup defined

by the four faces above has 6 conjugacy classes.

(3) If n =6 , choose face 1 as follows:
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11 2|3|4]5]6
23|16 ]|4]s
31| 2]5]|6]4
s e | s | 1] 2] 3
s|a|s6 | 2|31
6 | 5] a3 1] 2

The remaining
1 as follows. Let ©

let ¢ be defined as

faces are chosen all isotopic to Face

by () = 2
v,(2) =1
V,(3) = 4
by(4) =5
V,(5) = 6
,(6) = 3
FACE 2 |

identity mappiﬁg.

=¢) =
below:
w3(2) =
¥3(3) =
w3(4) =
@3(5) =
w3(6) =
FACE 3
y(l) =5
y(2) = 3
v(3) = 6
Pp(4) = 2
v(s5) =1
V(6) = 4
FACE 5

w(li =
Pp(2) =
p(3) =
V(4) =
p(4) =
V(4) =

FACE 6

by (1) =
by (2) =
by (3) =
U, (4) =
b, (5) =
by (6)

FACE 4

i

t
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For each face
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For example, Face 2 becomes:

As in Lemma 3.3.3, (2), where there is a 1 in the
first vertical face, there is a 2 in the second, a 3 in the
third, etc. 1In fact, the faces have been constructed so
that Ll holds. The faces 1-6 are‘commutqtive as quasi-

groups. Therefore Ll ' L2 and L3 hold. However L

6

“would imply <2,4,5> = 4 if and only if <4,5,4> = 2 . But

<4/5,4> = 6 . Therefore the ternary quasigroup resulting

from these faces has exactly 6 conjugacy classes.

Thus we have:

-

-

Therorem 3.3,4. If n > 3 and n #¥ 8 , 12 or 24, there

exists a 3-quasigroup of order n with 6 conjugacy classes.

If n < 3 , there does not exist any 3-quasigroup of

order n with 6 conjugacy classes.

Remark 3.3.5. Ternary quasigroups with 6 conjugacy classes

of orders n = 8, 12, 24 will be constructed as a consequence
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4

of Theorem 3.7.1 where a general thecorem, providing many

alternate constructions methods, 1s given.

33.4 Four Classes.

Theorem 3.,4.1. There exists a ternary quasigroup of order n

with 4 conjugacy classes if and only if Tn >3 .

Proof: Let ¢Q = {0,1,2,...,n-1} . Define <a,b,c> - (atb+c)
(mod n) VYa,b,c e Q. Then (Q,<,,>) is a 3-quasigroup sat-
L

isfying Ly » Ly » L Along with Tog * the

7 * Mo ¢ M
corresponding permutations form a subgroup of order 6. How-
ever this subgroup is not itself a subgroup of the alternating
subgroup Ay Furthermore, for n > 2 , not all the identi-
ties hold. If <a,b,d> = ¢ , then (at+b+(a+b+c)) = ¢ or

2(at+b) Z 0 (mod n) for all n , which is false. Therefore

I does not hold.

1

Remark 3.4.2. 1In this case, it is easy to provide construc-

tions for 3-quasigroups satisfying the sets of laws corres-

ponding to the remaining subgroups of order 6 of Sy -

For the subgroup {"2'ﬂ5’"9'n12’"13'"24} , define

<a,b,c> = -a-b+c (mod n) on Q m,l,Z,..,n-i}. Clearly L2 is

satisfied. For L <d,b,¢c> ¥ -(-a-b+c)~b+c Z a ; for L

5 ¢ 9
<a,d,c> = ~a-(-a-b+c) 2 b ; and for le , <b,d,c> =

fb-(-afb+g)+c = a . Similarly the subgroup {“l’nS'"7’“14’

0
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“15'"24} is obtained by defining <a,b,c> - (-a+b-c) (mod n)

Aty ’ bdf <Il>
and the subgroup {nl n4 ﬁg an nl7,n24} y defining ai b,c
: (a=b=-c) {(mod n) .

-

Definition 3.4.3. Let (Q,<,,>) be a 3-quasigroup which sat-

isfies the generaiized idempotent and commutative laws, but

.does not satisfy Steiner's law: <x,y,<X,¥,2>> = z . Such a

3-quasigroup will be called a generalized idempotent and com-

mutative non-Steiner ternary quasigroup.

Such quasigroups have'beén considered by C.C. Lindner
[25], who observed that they will exist only if n = 2 or 4
mod 6. For, as observed in Chapter 1, given such a 3-quasi-
group (Q,<,,>) , we may define an ordinary quasigroup as

follows: on Qi

Q\<i> define an operation .. by
aoib = ¢ 1if and only if <a,b,c> = i . Then all these

(Qi'°i) will be Steiner gquasigroups.

.

The generalized idempotent and commutative non-Steiner
3-quasigroup has 4 conjugacy classes. It satisfies the iden-
tities corresponding to the subgroup {"2’ﬂ4’"7’"10'"11’ﬂ24}‘

The following theorem then provides yet another construction

of a 3-quasigroup with 4 conjugacy classes.

Theorem 3.4.4. A generalized idempotent and commutative non-

Steiner 3-quasigroup of order n exists if and-only if

n==2o0r 4mod 6, n > 2 .
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a

Proof: Necessity follows from the abové comments.

To show the sufficiency, we make the following con-

struction:

t

(1) Suppose (Q,<,,>) 1s a ternary quasigroup derived
from a Steiner quadruple system of order n as described in
Chapter 1. Furthermore, let (Ql’°) and (Q2,°) be defined
as above and consider the triples (of 3 distinct elements) of
(Ql,°) which contain the  element 1. Interchange these sets
of triples. Redefine all the remaining tr;ples (of three
distinct elements) of (Ql,o{ to have value 2, and the re-
maining triples of (Qz,o) to have value 1. If we call the
resulting idempotent sys£ems (Ql,x) and (Q2,x) , in )
(Ql,x) we will have thg triples of (Ql,o) ., which contained
the element 2 and all the triples of (Q2,°) , which did not

contain the element 1. - Similarly, in (Qz,x) , we will have

all the triples of (Q,,°) which contained 1. The remaining

-

(Q;,°) will be left unchanged. Call the resulting system
(Ql<ll>') b4

(2) Proof that (Q,<,,>') 1is a ternary qudasigroup:

Clearly all the triples of (Q,<,,>) are contained in

(Q,<,,>') and no new ones have been added. There is no con-

flict between (Ql,x) and (Qz,x) , because, if a triple

<l,e,£> belodged to (Qz'i) , then <2,e,f> must have been

’
in (Ql,o) . For if «<l,e,f> = 2 , then <<l,e,f>,e,f>=
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<2,e,f> =1 .

.One then obtaing (Q,<,,>') by requiring the gener-
alized idempotent iaw to hold and §efining <,,>' in térms
of the (Ql,X)or (Q,,x) and '(Qi:°) , i= 2,...n as described
in Chapter 1. ' e

(3) Proof that (Q,<L,>'5 is non-Steiner:

; Suppose' <x,y,z>' = 2 in (Q,<;,>') + Where x x y = 2
in (Qz,xY ‘and "X,¥y,2z are all diffe;ent from 1 or 2. Now
;Sg,yhz?*,y,£>ﬁ =g22,y4;>; = <2,y,z> . But <<%{y,é>,y,z> =
<l,‘y,z->/’= x-. Thgrefore <2,y,2> # x and (Q,<,,>') 4is non-

‘"Steiggr. o |
- Rémark_3.4a5. As ap‘example,\considef the Steiner Q;a&ruple ~

System described below of order 8 and, the derived .system

) ¥ .

(Q,<,,>') . =-(For the sake of brevity, braces and commas are

omitted.’) . -
A Quadruple, System of Oégéf 8 (
1234 2368 ”
1256 . 2357
1278 ‘2458
» . > v N ‘ . .
1358" " 2467 :
| 1367 , 3456
o ‘1457, 3478 N
LR 146 5678
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"Here

order.

aeb = ¢

<2,3,4>
<2,5,é>
<2,7,8>
<3,5,8>

<3,6,7~>

<4,5,7>

<4,6,8>

(Ql'O)

<1,2,6>
<1,3,8>
<1,4,7>
<2,4,8>
<2,3,7>

<3,4,6>

26,7,8>

(QSIO)

The Quasigroups

if and only if

\

<1,3,4>
il,$,6>
<1,7.8>
<3,6,8>
<3,5,7>
<4,5,8>

<4,6,7>

(Q2r°)

<1,4,8>
<1,3,7>
<1,2,5>
<2,3,8>
<2,4,7>
<3,4,5>
<5,7,8>

(Q6l O),

<a,b,c>

<1,2,4>
<1,5,8>
<1,6,7>
<2,6,8>
<2,5,7>
<4,§,6>

<4,7,8>

Sttt —

(“Q3lﬁ°)

<1,3,6>

<1,4,5>

<1,2,8>

<2,3,5>

<2,4,6>

<3,4,8>

<5,6,8>"

(Q?I 0)

(Qil o)

61.

form a triple in any

<1,2,3>
<1,5,7>
<1,6,8>
<3,5,6>
<3,7,8>
<2,5,8>

<2,6,7>

(Q4l°) .

<1,3,5>

<1,2,7>

<1,4,6>
<2,3,6>
<2,4,5>
<3,4,7>

<5,6,7>

(Q8(°)
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The Derived Quasigroups (Qi,x) for i =1,2

-

<2,3,4> <1,3,4>
<2,5,6> <1,5,6>
<2,7,8> <1,7,8>
<3,6,8> <3,5,8>
<3,5,7> <3,6,7>
<4,5,8> <4,5,7>
<4,6,7> <4,6,8>
(Q) %) (Qy,x)

§3.5 Three Classes.

Theorem 3.5.1. A ternary quasigroup of order n with *

exactly 3 conjugacy classes exists if and only if n > 3

Progf: on Q= {0,1,2,...,n-1} , define <a,b,c> = a-b+c ,
with*addition.{(mod n) . Consider 'L18 , <d,a,b> = ¢
implies (a-btc)-a+b = c . Thergfore Lig + I,y and Lg

X *
all hold. - Clearly L7 holds and so does as L and

8

Lg
Cc or b-a +

'L7 imply L9 . L3 states that <b,a,d> =
(a-btc) = ¢ . L. -gives <d,c,b> 2 a or (a-bic)-c +b = a.

. . B I ' ) 3
Therefd;e all the idgntitieé corresponding to the elements of
the subgroup. t“B’“G‘“T’ﬁ8'"9'“18’“20'“24} are s§tlsﬁred;

However, Ll would require a-b + (a-b+c) = ¢ , This implies

—_—
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2(a=b) = 0 (mod n) for all a,b € Q , which is false. There-

fore, |C(Q,°)| = 3 .

Remdrk 3.5.2. Again it is possible to construct 3-quasigroups

\ 13
which: satisfy sets of identities corresponding to the other

permutation subgroups of order 8. For the subgroup {ﬂl,nz,
w3,36,n8,n19,w23,w24} , define a ternary operation on Q by
<a,b,c> = (a+b-c) (mod n) and for the subgroup {n3,ﬂ4,n5,

} take <a,b,c> = (-atb+c) (mod n) .

A

"6'"8 2122 24

§3.6 One Class.

Theorem 3.6.1. For all n > 1 , there exists a ternary quasi-

group of order n with exactly one conjugacy class.

Proof: On Q = {0,1,2,...,n-1} define a ternary operation

<,,> by <4,b,c> = = (at+b+c) ¥ a,b,c e Q where addition is
“

modilo n . Then clearly L, 1is satisfied. L g requires

.that <<b,c,d>,b,c> = & and here <<b,c,d>,b,c> =

- (- (b+c+d)+b+c) = d . From §2.2, lc(Q,<,,»)| = 1.

§3.7 Conclusion.

The following generél theorém provides many useful .

alternate constructions to thpégléiven throughout Chapter 3

4
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and completes the construction of ternary quasigroups of all

orders greater than 3 with 6 conjugacy classes.

£
Theorem 3.7.1. If g/n is any factor of n and if there

exists a ternary quasigroup of order q with a specified
number of conjugacy classes, then there exists a ternary
quasigroup of order n with the same specified number of con-
jugates. .

Proof: Let (Q,<,,>) be the 3-quasigroup defined in Theorem

3:6.1. Suppose “n=pg ;q>1, p>1. Consider the g

elements {0,p,2p,...,(g-1)p} . We can denote them by {mp},

m = Oc...,q-l . Then <mlp,m2p,m3p> = -(ml+m2+m3)p z ¢p
{mod n) where m, € {mp} , 2 = rq - (ml+m2+m3) ’ *Rp >
{0,...,n-1} and  p = —(ml+m2+m3),+,rn . Therefore .(P,<,,>)

where P = {mp} , m=0,...,9-1 , forms a subguasigroup of

(QI<Il>) of order 9 .

™ On P define a new ternary quasigéoup (P,<,,>'f of
order q with a specified number ¢ of conjugacy classes.
Replace  (P,<,,>) by (P,<,,>') within the larger quési-
group (Q,<,,>) . Callnthe resulting quasigroup of order - n '
(Q,<,,>") . Op P, only 24/c identities wi;} be satisfied
and therefore (Q,<,,>') can have no fewer than ¢ conju=-
gaey classes. However, ;11 ﬁhose %é ideﬁtities are satis-

fied by (Q,<.,>") and -therefore (Q,<,,>') must have no

more than ¢ conjugacy classes.
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Corollary -3.7.2. There exists a ternary quasigroup of order

n = 8,12 and 24 with exactly 6 conjugacy classes.

Proof: This follows from Lemma 3.3.3, which gives the exis-
tence of a ternary quasigroup of order 4 with 6 conjugacy
classes.

/

In conclusion, we\EETTarize the results obtained in

this chapter:

Theorem 3.7.3.

(1) There exist 3-quasigroups of order n with 6 , 12

or 24 conjugacy classes if and only if n > 4

(2) There exist 3-quasigroups of order m with 3 or 4

conjugacy classes if and only if n > 3

(3) There exists a ternary quaéigroupdwith one conjugacy

>
N class for all o;ders‘ > 1

——



CHAPTER 4

The Existence of Ternary Quasigroups
with 2 or 8 Conjugacy Classes

§4.1. The Structure of Ternary Quasigroups having 2 or 8

Conjugacy Classes.

Recall from §2.2 that the sets of identities which must
be satisfied by a 3-quasigroup (and no others) to enable that

gquasigroup to have 8 conjugacy classes ares

(1) 1Identities 10 and l1; represented by Llo

<a,b,c>» = <c,a,b>

(2) dentities 12 and 13; represented by le :

> = d . /
(3) Identities 14 and 15; represented by L14 : Q\
<a,b,<d,b,a>> = d . ' T,

(4) Identities 16 and 17; represented by Lig

<a,<a,c,d>,c> = d .

Definition 4.1.1. If (Q,°) 1is an ordinary quasigroup and

aeb = ¢ implies beoc = a énd cea = b for-all a,b,c e Q,

then (Q,o) 1is called a cyclic quésigrodp. This corresponds

to requiring that ao(bea) = (aeb)ea = b for all é,b g Q
(see [231, [26], [28], [32].)

A

- 66 -
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Theorem 4.1.2. Let (Q,<,,>») be a ternary guasigroup which

satisfies the identities in identity set (i), 1.< 1 < 4
Then one may derive a set of cyclic guasigroups (Qij,o) '

j = 1"2"°'rlbl 4 from (Ql<ll>)

Proof: If i =1 , define (Qlj,o) as follows: aob = ¢ if
and only if <a,b,¢> =3 and a,b,c e Q. For i =2

(Qij’o) is defined to be (QFj,o) ; for i =3, (Qij,o) is

: @

defined to be (Qs ;o) ;3 for 1 =4 , (Qij’°) is defined to
3

beJ (Q . ,o) -

Hy

-

Remark 4.1.3. The following Theorems 4.1.4 and 4.1.5 are a

result of §2.2 and an investigation of the generators of Ay,

the alternating subgroup.

Theorem 4.1.4. CL(Q,<,,>)| = 2 if and only if at least two

of the identity sets (1) to (4) are satisfied by (Q,<,,>)

and at least one (Qij’9) ;s i=1,2,.0.,4 , 3 =1,2,..., 10| .

?s non-commutative.
. .i\

Theorem 4.1.5. ¢}(Q,<,,>)| = 8 if and only if:

£
(1) (Q,<,,>) satisfies at least one identity set (i),
(2) (Q,<,,>) does not satisfy at least one identity set

(x),

(3) at leasttbne (Qij,o) ;s J = 1,2,...,|Q| is non-commu-

tative.
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Proof: Here this follows from the fact that the identities
in sets (1) th;ough (4) and the identities which are equiva-
lent to commutativity in the derived cyclic quasigroups
correspond to permutationé, in each case, which belong to the

same subgroup of order 6.

-

Remark 4.1.6. The literature quoted in Definition 4.1.1 has

been investigated with the following conclusions. If one

trieé to undertake a construction similar to that described in
Theorem 1.3.10 of Ghapter,l, whereby a set of n cyclic
quasigroups of order n are used to form the n faces of

the graphical’represenéation of a ternary gquasigroup, then,

if the quasiéroups are isoﬁorphi;, they can contain at most
one idempotent. As only isomorphism, and not weaker isotopism *
preserves the cyclic structure of a quasigroup, the possibil-
ity of a construction, based on generating a set of n cyclic
quasigroups from a single one by isomorphism, necessitates the
restriction on the number of idempotents. This, however,

L] i -

eliminates the use of papers [35] and [32].

Another possible construction would be to make use of
the section of [33] discussing the case of exactly two conju-
gacy classes and its generalization in [28]. Many examples
were tried for use as fhehabove faces, not necessarily all

isomorphic, but no ternary examples could be constructed.

However, in the next section, some constructions were

found using quadruple systems and building infinite classes
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from lower order examples.

84.2. The Case of 2 or 8 Conjugacy Classes for Orders * 5.

Theorem 4.2.1. There does not exist any ternary quasigroup

or order 3 with 2 or 8 conjugacy classes.

Proof: By Theorem 3.2.4, every ternary quasigroup of order
3 satisfies at least one of L, Ly and L7 and thus can-

not have 2 or 8 conjugacy classes.

Theorem 4.,2.2. There does not exist any ternary quasigroup

.of order 4 with 2 or 8.conjugacy classes.

Proof: (1) At least one of identity sets (1) through (4)

of §4.1 must be satisfied, by Theorem 4.1.4 and 4.1.5. As any

two of the four identity sets imply the rest, (Q,<,,>) will

Qﬁyg 2 or 8 conjugacy classes only if there exists a (Qij’o)
which is cyclic and non-commutative. Without loss of gener-
ality, suppgse (Qij,o) » (1= 2,...!4 ;' jJ=1,...,4) 1s one
such quaéigroup. Furthermore, suppose 201 ¥ 102 , where
Q=1{1,2,3,4} . Then 21 cannot equal 1 or 2 and similarly
for 1¢2 . For suppose 1le¢2 = 1 . Then 2¢(1le2) = 201 =1

also. We obtain a similar contradiction in the other cases.

Therefore the only possibility for (Qiu,o) is:

3t
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and its transpose.

As these quasigroups are idempotent, not all the

{(Qij,o) 3 =1,2,3,4} can be non-commutative.

Suppose then that some of the (Qik,o) are commuta-
tive and .(Qij,oL as before,is not. Clearly if (Qik,o) is
commutative it cannot be idempotent, as it is not Steiner, if
the order is‘4. In fact, none of the (Qik’o) , except
(Qij,o) » can have any idempotents at all. If 1¢1 = 2 in

(Q;ps°) , then it follows that 1l-2 1 = 2¢1 and the only

possible quasigroups, when trying to minimize the number of

idempotents are:

\\
>l 1 2 3 4 > |1 2 3 4
1214} 1 j2]1|4}3
2| 1]|3|2|4] and 2 |14 3]2
3042731 3 a3 ]|2]1
a 3] 412 4 |3 |21 4

-

As both of these contain at least one idempotent element, we
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have a contradiction if identity sets (2) to (4) are the ones
: v

involved. -

(2) If identity set (1) 1is involved, then the (Qlj'o) '
j=1,2,3,4 are all cyclic., If some (Qlj,O) is idempotent,
the remaining quasigroups (Qlj,o) cannot have any idempo-
tents. For if <a,a,a> = jj, for all a ¢ Q , <a,a,a> cannot
be ji for another ji ¢ {1,2,3,4} . As at least one
(Qlj,o) must be non-commutative, our arguments in part (1)

of the proof show that identity set (1) cannot be satisfied.

Therefore (Q,<,,>) cannot have 2 or 8 conjugacy

classes.

Theorem 4.2.3. There exists a ternary quasigroup of order 5

with 8 conjugacy classes.

Proof: Let (Q,<,,>) be a ternary quasigroup defined on
- [

Q = {1,2,3,4,5} as follows:i

N

- )
<1,2,3> =1 N <2,1,3> = 2
E 3
<1,2,4> = 2 <2,1,4> = 3
<1,2,5> = 3 <2,1,5> = 1
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<1,1,1>
<1,2,2>
<1,3,3>
<1,4,4>

<1,5,5>

The definition is completed to make the cyclic laws 10 and 11

satisfied.
One sees that <1,2,<3,1,2>> = 5 and not 3.
£

qtfasigroup has exactly

<1l,3,4~>
<1,3,5>
<2,3,4>
<2,3,5>
<i,4,5>
<2,4,5>

<3,4,5>

<2,1,1> =

"<2,2,2> =

<2,3,3>
<2,4,4>

<2,5,5>

&

it

It

Clearly (Q,<,,>)

8

<3,1,1>
<3,2,2>
<3,3,3>
<3,4,4>

<3'S,5>

]

<3,1,4~
<3,1,5>
<3,2,4>
<3,2,5>
<4,1,5>
<ﬁ,2,5>

<4,3,5>

3 <4,1,1>

i

3 <2,2,4>

<4,3,3>"

<4,4,4>

' <4’5,5>

conjugacy classes.

-

i

1l

]

Therefore,

72.

<5,1,1>
<2,2,5>
<5,3,3>
<5,4,4>

(5]5,5>

is not totally commutative.

Theorem 4.2.4. There exists a ternary quasigroup of order 5
r

with exactly 2 conjugacy classes.

Proof:

group

idempotent law.

satisfied,

(Q,<, +>)

[

The cyclic laws

L

and L

11

of order 5, which satisfies the generalized

are also

]

]

this

Consider the following definition of a ternary quasi-
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<1,4,5>
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<1,2,3> = 2

<2,1,3> <4,1,5> = 3 )
<1,2,4> <2,3,4> =5

<2,1,4> <3,2,4> = 1

<1,2,5> ; <2,3,5> =1

<2,1,5> <3,2,5> = 4 ~

<1,3,4> <2,4,5> = 3

<3,1,4> £4,2,5> = 1

<1,3,5> <3,4,5> =1

<3,1,5> <4,3,5> = 2

Clearly L, is not satisfied. However le is. For sup-
pose‘ a=>b . Then <a,a,c> =d =c¢ implies <a,c,c> = a ,
by idempotency. If a # b , but ¢ =a or b, <a,b,a> =b

implies <b,b,a> =a . If ¢ =Db , <a,b,b> = a implieng

[N

<b,a,b> = a . Therefore, if any 2 elements are equal, law

12 is satisfied. Now suppose the 5 elements in Q are a ,

b‘h c ,d and e and that <c,a,b> =d or e . Suppose
in fact it is d . Then <a,<c,a,b>,b> = <a,d,b> . Suppose .

this equals e and not c¢c . Then <a,d,b> = ¢ . However

.

<a,b,c> = d by the cyclic law, and so <a,c,b> must be e ,

But <a,d,b> = e then gives ¢ =d and therefofe <a,<c,a,b>,

b> =.¢ . A similar contradiction is obtained if we had sup-

posed <c,a,b> = e . Therefore by Thedrem 4.1.4 of §4.1,

(Q,<,,>) has exactly 2 conjugacy classes.

L 4
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. §4.3 The Case of 2 or 8 Conjugacy CIASSes for Orders 8 and 10.

[ - r

~  Theorem 4.3.1. There éxists a ternary quasigroup of order 8

1 ' * i v ~

with exactlyigncénﬁugacy‘classes.

. v « ”

w Proof: ConSLder the Stelner quadruple sYstem glven followlng

Remark 3.4.5. Again let the derlved qua51group by °) '

N

. i=1,2,...,8, where asbh = ¢ - 1f and onty if <a,b,c> =i,

o R | =jl,2,,..,8., where (Q,<,,>) 1is the ternary quasigroup
> . N . ' . T . .
‘ corresponding to the quadruple systenm.
5" . - ' ] ) { LI
¥ . . . | . T ‘ . .
. 'We will construct a set of replacements for the (Qi,o)
. vwhich will be used”to récénsfiuct a new terhary~quasigroup

\ - X . .
W1th 8 conjugacy.classes.. The new quasigroups will be denoted

L by (Q %) and W111 be 1dempotent and cybllc, but not neces-

9 sarlly commutatlve. VRN ] v
E \ R . .L N < ‘. ' "- ) i . i
o s _ The eight quasigroups"ﬂiﬁ.,x) _are defined as follows:_
Y * - ¢ A . .
o (where it is assumed that '<a b, c> = <b,c,a> = <c,a b> =
§_¥ _ <b,a,c> = <a,c,b> = <c,b a>', if qnlytone trlple~appears;
‘ g‘- containxgg a, b and@ ¢ .} ™ | & ,
: . e . . - . .
| “’~,;j?-i.{ - J"‘<2 34> . 7<; %J4$t ,
;‘“'lc . 3 o :_: ;~‘.'<2‘5 6> ':<1~5.6$ £ . ‘t'l_ o
H . o i . . - .
D B X R N :
s O R T < S e .
AT TR 3,88 L <F38, .
i | “ . ‘\ ., ‘: ‘<3 5: 7> ’:‘,\ : <:6 .3‘ ‘i>
'{;' ;é;:: A ,;‘“J f.;1;§:1 {5~317$‘:\5::' <535’7> O
” N POl ‘ - LT oy T




<6 3 8> <3 6 8>

. <45 7> .. <5 4 7>

<5 4 8> <4 5 8>

<6 4 7> <4 6 T>

<4 6 8> <6 4 8>

‘ (@) /) (Q, /%)

The remaining (Qi,x) , i =3,...,8 remain as obtained from’
the quadruple system originally. Thus (Qq,x). = (Qi.°) , for

i=3’..0'8 A ]

One may verify by inspection that (Ql}x) and (Qz,x)

are indeed quasigroups and can see that one may form a new

ternary quasigroup (Q,<,,>')' by replacing the (Qi,O) by

(Qi,x) and requiring the genefalized idempotent law to hold.

Clearly (Ql,x) and (Qz,xf are not commﬁtatiye. To

see that L is not satisfied, note that '%3,<6,3,8%',8>' =

12

<3,1,8>' = 5 and not 6. Therefore by Theorem 4.1.5,
A4 ‘

(Q,<,,>') has exacfly 8 conjugacy classes.

Theorem 4.3.2. There exists a ternary qua§igroup of otder 8

+

with exactly 2 conjugacy classes.

7% * .
[

~ o

Proof: Beéeginning with the Shme quadruple system used in

'Theogem 4.3.1, the derived‘qﬁasigfoups (Qi,py ’ f =1,...,8,

are now replaced by the new qﬁqgigéoups '(Qi,x) e i e\l,.::,8,

as follows:. ~ ~

)
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<2 3 4>
<2 5 6>
<2 7 8>
<3 5 8>
<4 5 7>
<3 6 7>
<4 6 8>
<5 3 7>
<3 8 6>
<6 4 7>

<5 4 8>

(Ql.X)

<l 2 6>
<3 4 6>
<6 7 8>
<13 8>
45.2 8>
<2 4 8>
<41 8>

<i 4 7>

<31 7>

<273 7>,

<4 2 7>

<1 3 4~

<1 5 6>
<1 7 8>
<5 3 8>
<5 4 7>
<6 3 7>
<6 4 8>
<3 5 7>
<3 6 8>
<4 6 7>

<4 5 8>

(Q2‘¥)

<1 2 5>

<3 4 5>

<5 7 8>

<3 1 8>“

<2 3 8>

. <4 2 8>
‘<1 4 8>°

<4 1 7>.

<1 3 7>

<3 7>

K N

<2 4 7>

<1 2 47
<4 5 6>
<4 7 8>
<2 5 8>
<5 2 7>
<5 1 8>
<6 2 8>
<1 6 8>

<1 5 7>

<6 1 7>

<2 6 7>

(93.3)

<1l 2 &

<3 4 8>

gS 6 8>

fi 3 5>
<5 3 2>
<3 1 6>

<4 1 5>

<1 4 6>
44 2 6>~
.<2 3 6>

<2 4 5>

<1 2 3

<3 5 6>
<3 7 8>
<5 2 8>
<2 5 7>
<1 5 8>
<2 6 8>
<g 1 8>
<5 1 7>
<1 6 7>

<6 2 7°

(Q4 Ix)

<1 2 7>

<3 4 >

<5 6 7>
<3 1 5>
<3 5 2>
<1 3 6>
<1l 4 5>
<4 1 6>

<2" 4 6>

"3 2 6>

<42 5>

(Qgy %)

-

76.
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The basic method.of construction is the same as that
used in Theorem 4.3.1, however, here the triples belonging to
(Q3,o) have been split in pairs with those of (Q4,°) to
form (Q3,x) and (Q4,x) . The same type of splitting is
done between (Qs,o)n and (Q6,o) and also'bgtween (Q7,°) ’
(Qgrx)  to form (Qg,x) , (Qgrx) and  (Q4,x) , (Qg,%)
respectivély. This splitting has been done precisely to
ensure that le is s;tisfied by the new ternary quasigroup

(Q,<,,>'}) constructed from (Qi,x) s 1=1,...,8 as des-

cribed in Chapter 1.

For example, <5,<3,5,8>',8>' = <5,1,8>" = 5 R
<8,<5}8,§>',3>' = <8,l,3>'(;-5 ‘and <3,<8,3,5>',5>" =
<3,1,5>' = 8 .\ One may verify that L,, is satisfied in all
instances by inspection and therefore (Q,<,,>') , constructed

from these eight quasigroups, has 2 conjugacy classes by

Theorem -4.1.%.

Theorem 4.3.3. There exists a ternary quasigroup of order 10

+

with exactly 8 conjugacy classes.

Proof: Consider the following Steiner quadruple system of

order 10:
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1 2 4 5
2 3 5 6
3 4 6 7
4 5 7 8
5 6 81'9
6 7 9 19
7 8 10

8 9 1 2
9 10 2 3

10 1 3 4. 1

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

7 1
8 2
9 3

10 4
1 5
2 6
3 7
4 8
5 9
6 10

2

4

78.

As in Theorem 4.3.1, consider the derived quasigroups

(Qi,o) ;, Where now i = 1,...,10

have:

(Q:L

<4 7
(s2__4
<7 8
(<2778
<3 4
(<2__3
<5 6
<9.10
(R10272
T <3 5
<4 6

——

5>

—— ———

For i

—— v - o o —

—— . ——
- e ke - —

- e e — - —

B ]

——— - ——

<5 8 10>,

<4 7 10>

-’

1

and

2

we '
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As in Theorem 4.3.1, we split all the triples, except the

circled ones, to obtain

i

3,.

(Ql,x) and (Qz,x) ; leaving
..,10 unchanged.
<2 4 5> <1 4 5>
<2 8 9 <1 \E 9>‘
<23 > <1 3 7T
<2 6 10> <l 6 10>
<3 6 9> <6 3 S ’
<47 9> <7 4 .9
<7 5 \9> <5 7 9
<6 .4 PQ> <4 6 9
<7 4 10; <4 7 10>
<6 5 7> <5 6 7>
<3 5 6> <3 6 5>
<6 7 8> <7 6 8 .
<8 7 10> <7 8 10>
<4 6 8> <6 4 é> e
<3 4 8> <4 3 8>
<4 3 10> <3 4 10>
<10 3 9> <3 10 9>
<10 9 5> <9 10 5>
<5 8 10> <8. 5 10>
<5 3 8> <3 5 8>
el N
(Qq,x) . (Qy,x)
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It i% clear that (Ql,x) and (Qz,x) are quasigroups

and that le is not satisfied, if these replace (Ql,°)

rd

and (Q2,°) . For <3,<6,3,9>',9>' = <3,2,9>' = 10 and not

6. Therefore- (Q,<1n;') has exactly 8 conjugacy classes.

-

Theorem 4.3.4. There exists a ternary quasigroup of order 10

with exactly 2 conjugacy classes.

é?

Proof: (1) The Construction:

Let (Ql,x) and (Qz,x) be defined as in Theorem
4.3.3. For any m > 2 , m occurs in 6 of the split triples

listed in the definition of (Q;,%) and in 6 listed for

(Qz,x) . (For example, if m =3 , m occurs in <3,6,9> ,

ny

«

<3,5,6> , <3,~4,8> : <4,3,10> , <10,3,9> and <5,3,8> of Ql
and <6,3,9>» , <5,3,6> , <4,3,8> , <3,4,10> and <3,10,9>

of. Q, .) This then defines 12 triples (a,b,¢} such that

4

<a,b,c> = m by forcing L to be satisfied. That is, we

12
require <x,<m,x,y>',y>' = m , where <m,x,y>' =1 or 2.
\ o A

Now of the 6 triples coming from (Ql,x) , exactly 3 were in °
the original list for (Qlﬁo) and simildrly for (Qz,x)

(For n=3, <3,6,9> , <3,5,8> , and <3,4,10> were origi-

: nally’in (Ql,of .) Thus exactly.'6 of the 12 triples now

defined to be m occured originally in the definition of

v

%Qm}°) » We will define (Q. ,x) to ‘consist of the remaining

' 6 triples of (Qm,o) . taken in all G-permutatibns, along

with the 12 new triples as defined by <x,<m,x,y>',y>' = .
: . 4 | R
8 _2 N ' ) v
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The construction is given beclow, where the circled
triples are taken in all 6 orders and the *'d triples were

in the original (Q.,°) The {remaining 6 triples come from

e

—

MoV

1
the split triples of (Qi,x) ;1 ;2 whiCh were hot origi-
nally in- (Ql,o)
(L2°77)  (XIZ2°5» (<12 43 (X1 210%
(7.8_9>) (X9810% (781 (S5.8.°9%)
CETI) (B ED) (8793 (R73 1)
(46 7)) (55610 (<3479 (4.5 10%
(43785 (335799 (<4 & 10 (X3TE10)
CETI) (EETD (<37 3103 (227103
<6 1 9> <6 1 8> <6 7 1> <g 1 4>
<g 1 5> <71 9> <10.1 9> <9 1 3>
<10 2 9> 1<7 2 10> <10 2 8> <9 2 4>
<10 1 4> <3 1 10> <31 8> <51 7>
<.8 2 4> <32 8> <3 2 6> <5 2 3>
<2 5 6> <6 2 9> <7 2 9> <g 2 7>
<9 1 10> <9 1 6> <91 7> <41 9>
<41 8> <1 7 10> <6 1 3> <71 8>
<5 1 6> <g 1 3> <g 1 10> <31 5>
<4 2 10> <9 2 7> g 2 3> <3 2 9>
<52 8> <82 6 <9 2 10> <72 5
<2 6 €9> <102 3> <g 2 7> <4 2 g%
- ‘
(Q3,%) (Qyrx) (Qg,x) (Qg %)
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(L2 3y (29D €172782) (L2
CLETE) (CEIIE) (EEIS) (368
(<3 4_%67) (<3 6 10°) (<6 7_10°) (4576
(<69 10>) (<49 10) (<56 _38°) (Z48°97)
(<89 _37) (<569 (345 (X6 7 92
(<35 10%) (<45 _7) (8.3 (X3 5.7
<9 1 4> <7 1 10> <31 6> <g 1 7>
<6 1 5> <41 6> <4 1 7> <41 3>
<10 1 8> <5 1 3> <5 1 10> <9 1 5>
<9 2 5> <72 6> <5 2 7> <42 7>
<10 2 4> <4 2 3> <4 2 6> <9 2 3>
<6 2 8> <5 2 10> <3 2 107 <g 2 5>
<4 1 10> <61 7> <6 1 4> <71 4>
<g 1 6> <31 4> <10 1 3> <31 9>
<5 1 9> <10 1 5> <71 5> <5 1 8>
<4 2 . 9>’ <10 2 7° <62 3> <7 2 8>
<5 2 6> <6 2 4> <2 4 <3
<g 2 10> <3 2 5> <10 2 5> <5 2 9>
N
(Q7,X) (Q8,x) (Qg,x) (Qlo,x)

M

(2) Proof that . (Q,<,,>') 1is/a Qdasigroup=

]

4

o TwTe e

{a) One can see that (Ql,x). and %Qé,x) are guasi;

groups by inspection and that no triple appears in both- Q;
and - Q2 which

Also among the 6 triples of (Qi,x) 1 >3
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Ve

\

\
were in the original definition of (Qi,O) , there is clearly
\

\
no conflict. (These are the circled triples.) \

—
A
\

(b} Among the 6 triples of (Qi,x) coming fEQm applying

law 12 to (Ql,x) , there could not be any conflich, as there

was none in (Ql,x) . More precisely, if <l,y,z>'x= <1l,y,t>"!

=m , we had <z,<m,z,y>',y>' = m = <t,<m,t,y>',y> , where
<m,z,y>' = <m,t,y>' =1 1in (Ql,x) and so 2z = t . Simi-
larly, among the six triples containing 2 and coming from

(Qz,x) , there will be no conflict.

(c) Could there be any conflict between the 2 groups

discussed in (b)? That is, could <2,y,z>' = <1,y,2z>' = m ,
where y and 2z are different from 1 and 2? But then,

d -
<m,z,y>' = 1 and .<m,z,y>' = 2-, which is impossible.

o ¥

(d) Now the 6 circled triples of (Qi,x) , which were
originally in the definition of (Qi’°) , did not conflict
in any cyclic order with the other 6 triples of (Qi’o)
However, 6.of the 12 triples considered in (b) (the *'d tri-

.

ple%), are exactly those other 6 triples of (Q;,°), restricted to

cyclic¢ orders. Therefore, there can be no conflict between
8

these sets of triples. ' o,

(e) ~Suppose, however, that a conflict occurred between
the 6 triples which were ﬁqt obtainéd from triples original-
ly in »(Ql’°) or (Q2,°) (the unmarked triples) and the

circled triples. That is, suppose <m,x,y>' € (Q;,X) ,
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where <m,x,y> € (Qz,o) . Now we would have <m,x,y>' =1

and <m,y,x> = 2 , only in the 3 cyclic orders. Could

<X,1l,y>' .= <x,r,y>' =m , where x and y arec different
b

3
from 1 and 2? But <m,y,x> = 2 implies <y,2,x> = m in

(Qm,O) originally. Therefore <x,r,y> -and <x,2,y> were
both trip?ks of (Q..°) and so r = 2 . But then =<x,2,y>"

= <%X,1l,y>'" = m , which was ruled out in part (c).

Could <x,1l,y>' = <x,1,z>' =m ? If <x,l,z>' is a
circled triple and <x,1l,y>' is unmarked, then 2z must be
2. Thus <x,l,y>' = <x,1,2>' = m . But then in the original
quadruple system, <m,y,x> = 2 and so <y,2,x> = m and

<l,2,x> = m 1in (Qm,O) . Therefore y =1, a contradiction.

(f) Thus each (Qi,§) is a quasigroup, i =1,2,...,10 .
No triples of (Q,<,,>) .have been omitted in (Q,<,,>') and
no one triple appears in two different quasigroups (Qi,x) .
For suppose an unmarked triple <x,y,z>' appeared in (Qi,x)
and (Qj,x) » Where 1 # j , i,j > 3 . Without loss of gen-
erality, suppose y=l , x # z # 2 . Then (Q2,°) nmust have
contained the triples <ifz,y5 and <j,z;y> and so i = j .

Therefore (Q,<,,>') 1is a quasigroup.

(3) Prodf that L is satisfied:

12

-

Clearly .le is satisfied when triples involving ele-

ments from Ql to Qi , 1> 2, or Q2 to Qi . 1 > 2 are
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considered. Also, if only triples which were in the original

definition of (Q,<,,>) are involved, le must be satisfied.

Now the only interaction between Q and Q2 invol-

L
ving le concerns the triples of Ql and Q2 containing
a 1l or 2, which remain unchanged from their original defini-

tion.

Consider then Qx and Qr and an unmarked triple
~X,1,2>' = r where X,2,r > 3 where <r,x,z>' =1, and
originally <r,x,z> = 2° 1in (Qz,o) . Then <1,<x,l,2>',2>'
= ~1l,r,2z>' . Now <r,x,2>" =1 . Therefore <x,z,r>' =1

L4

and <z,<x,2,r>',r>' = <z,1,r>' = x . But <2z2,l,r>' =

<l,r,2>* and so <1,<x,l,2>',z>" X .

)

Finally suppose <1,2,g>' r in (Qr,x) , Where

r,q > 3 . Then we must show <2,<1,2,9>',q>' =1 or <2,r,q>'
% = 1 . Suppose to the contrary that <2,r,q>' = p . Then
g <p,q,r>' =2 in (Qp,x) . But if <1,2,9>' = r , then
' <l,2,g> was an original triple‘of Q and so <q,r,1>' = 2

r

i in all cyclic orders. Bué (Qz,x) is a quasigroup. There-
fore p=1.

L) , -
le is therefore satisfied and (Q,<,,>') has

exactly 2 conjugacy classes.
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§4.4 Conclusion,

From the proof of Theorems 4.3.3 and 4.3.4, one can
see that as long as the triples of some (Qi,o) and (Qj,o),
i # 3 , can be split to form ,(Qi,x) and (Qj,x) as disjoint
gquasigroups, then ternary quasigroups with 2 or 8 conjugacy
classes may be constructed. However, many attempts were made
to carry out a similar splitting process on quadruple systems
of order 14, with no success. For n =8 , 10 , there is
only one isomorphism class of quadruple systems, but for
n = 14 , there are 4 and every type was tried. At present,
no further attempt has been made to generalize this construc-

tion.

However, from the examples given so far, certain infa-

-

nite classes of 3-quasigroups with 2 or 8 conjugacy classes
3

may be obtained.

4.4.5 Main Theorem. There exists a ternary quasigroué of

order ‘'n having exactly 2 or 8 conjugacy classes for ‘every

n > 5 such that one of the following holds:

(1) n = 0 or 5 (mod 10)

. (2) n

i1

0 (mod. 8)

(3) n:z 4, 8 or 10 mod 12,

301

L

If n < 5 , ,there does not exist any ternary quasi-

-

group of order n with 2 or 8 conjugacy classes.
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Proof: From Theorem 3.7.1, one obtains (1) and (2). Using

a similar method of replacing a subsystem with one having the
required number of conjugates, onc obtains n = 4 or 8 (mod 12)
from Theorem 1.3.1l1. Using n = 4 (mod 1l2) 1in Theoreﬁ 1.3.12,
one obtains the case n = 10 (mod 12) . We remark in conclu-

sion that no further results can be obtained from Theorem

1.3.12.

L
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acts on {Ll,...,n+l} , then <a

CHAPTER 5 ~

-

The Existence of an n—aqi Qpa%igroﬂé“

»
o

: |
§5.1 Conjugacy Clasges of size iﬁg%L; / .
: !
where q = 1,2,..., n+l . »

-

Theorem 5.1.1. There exists an n-ary quasigroup with exact-

)

ly one conjugacy class for all orders m > 1.

\“

Proof: Let Q = {0,...,m-1} and define an n-ary operation

<> on Q by <al,...;ah>,= "(a1+a21"'+an)'5'd = a. -

(med m) where Coay i=1,...,neQ and 4 ¢ Q . Then
'clearly_ (Q,<>) 1is an n-ary quasigroup., Clearly .

<Sp =<7, if T(n+l) = n+l. where “~€‘Sn+l . However if

we consider some permutation @® where #(n+l) # n+tl and

(1) (3= 42 (g1
a7 Bay Yane) oo Foaggeny Y (Bpragteeeay)
--'i- a + ... +,1r(ah)) ='a“(j) .

m{j+l) .

Remark 5.1.2. 1In the following cases, it is very difficult

to determlne for whlch small orders the qua51groups exist and,

for the most part, no attempt has been made to do thls. For an

arbitrary n , an exact enumeratlon of the members of all the

subgroups of S +1 is not fea51ble, and S0 the types of

preofs used in Chapter 2 are no longer p0551b1e.

-:88-
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Although some of these theorems seems to include the
ternary case, at least for large enough orders, in’'fact n=3

proves to be an except}on in Theorem 5.2.1.

for these reasoﬁs, thisthapter is given at the end,
rather than at the beginﬁing of this thesis. An attempt to .
\gbtain "complete" results concerning these cases has not been
made as the .thesis emphasis is on the ternary case. Instead,
a number of "straightforward conjugacy classes" are discussed
in this section and a couple of variations in the next, in
order to indicate the possibilities for a more detailed inves-

(<]
tigation,

Lemma 5.1.3. Let ¢(n) be the Euler function, i.e. ¢{n)
is the number of integers relatively prime to n and not

exceeding n. Then ¢(n) > /n , except when n =2 or 6

Proof: From [16], we have the relationship
ofn) = T p* 1 (p-1) . wow p* lp-1) > p*? , if
p/n
(a=1) > o/2 , i.e. o > 2 . Therefore consider the case when

@ =1 . Then we need p-1 > pl/2 or Yp “(Vp-1) > 1 , which

is true if p > 3 . Thus the only difficulty occurs if n
has a unique factor of 2., That is n = 2plp2...pr and

$(n) = (pl-l)(pz—l)...(pr~l) . But. p-1 > 2p , or p2+l >

]

4p if p > 5 . Thus only if n=2 or n =6 1is ¢(n) < ¥n.

~Theorem 5.1.4. If m > 4(n—l)2 then there exists an n-ary

U
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quasigroup of order m with (n+l)! conjugacy classes.

Proof: Let (Q,<,,>) be an n-ary quasigroup of order. m

. = - . > = = .
with Q =40,1,...,m-1} ; where <ajsags...say d

ay +.a2p2 S a p. (mod m) ; where all the p; are

relatively prime to m ; and where p; *+ pj 7 0 (mod m) ,
bi 76 J) ' pl # p] ; and Pl # n_llv 1. Then (Q,<,,>) has
(n+l)! conjugacy classes.

-

To shaw this 'consider the following cases:

(1) Clearly any single transposition among the integers .1

to D alters the value of <a1,...,an> . (See Chapter 3.)

(2) Consider any permutation of {1,2,...,n+L],'nwpich

leaves n+l fixed. Then suppose T = (1y,37) (i,,35) ...

(

in-l’jn-l) , when written as a product of transposition.

Suppose that i, # j, . Let a.,  # a. # 0 and the remaining
1 1 1, 3

a; ,ajs all be 0. Then we have a contradiction from case 1 again.
k k '

L
b,

(3) Suppose 7(n+l) = s , s # 1 and 1{s) = n+l , where
every other element is left unchanged by n:.' Then we have

<al,...,an> = d and suppose <a .a ja_ > =

17" s-l'd’as+l"" n

: n ‘ n .
a, + )} p.a, +p_la, +) a.p.) =a_. If a, =0, Vi,
1 i#s i7i s'1 5 i1 s i
i>2
. 2. . . 2.
i # s , then Psag ¥ ag = p.° = l1(mod m), But then

* n

aj(l+p.) + ] a (l+p.) = Olmod m). If a, =0 Vi>2,

| i=2 ' B
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then '1+pS must be = 0(mod m), which is false. RSN

(4) Suppose 7w(n+l) = 1 and (1) = n+l , and every

other element is left fixed by’ w . Suppose <al,...,an> = d

n n
<d,ay,...,a > =a; . Then (a; + g p;a;) +'§ p;a; = a, i?d
n -

it

2 Z a.p. = 0(mod m). Letting a 1 and all other a, = 0.,
5 11 - 2 i

one obtains 2p2 =0 (mod m) , a contradiction. -~

—

(5) Suppose n+l and 1 are interchanged under 7©m and
. £ ey -
the remaining a;, are permuted by at least one transposition.

Then <a ..,an> = d and <4, a

1 () )’ T AL

n n
Thus a, + ] p.a. + |

a. (mod m) , where at
Logs 781 o «

P; 3n(i) - &1

least one ) # a; . Suppose in fact 1w(i) # i for some

an (i

fixed i . Then there exists a j such that w(j) =1 .
Let a, = 0 for all k#1 or i . We have (pi+pj) 0

(mod m) , a contradiction.

(6) Suppose n+l and 2 (or any i, i#l) are interchanged
L4 .
under 7 and the remaining elements are permuted by at least

LY

oné transposition. Then <al,...,an> = d and, say,

n
<an(l),d,...,an(n)> = ay . Thus ay * pz(al + g
n ]

Y a_,. P, = a, (mod m) . Flom this, we may conclude that
123 w(i) 71 2

a;p;) +

2 . .

[32 = 1 (mod m) , and al(p2+ps) + aﬂ(l)(l + Pzpﬂ(l)) +
n

] (1) Py Pyy) F Py) =0 (mod w)y, vhere w(s) = 1 for

o
v

some s # 1 . Choose a; = o, Vai except a;L and a, i
. -
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let a, =1 . Then Py + Pg = 0 (mod m) , a contradiction.

1
n
If, however, m(l) =1 , a;(ltp,) + é an(i)(pzpﬂ(i)+pi) 0

(mod m) . If all a; =0, 1>3, then 1 + P, 0, a

contradiction.

(7) Suppose a1(1) = d , but w(n+l) # %:"‘ Say S EEREY:

an> = d , but <d,aﬂ(2),...,a > =a _where

m(n+l) Tl
. n
an (n+l) 7 4 - Then a, + izz a;p; + i£2 Az (1)P1 T qm(n+l) -

If a; =1 and all the other a, =0, then al(l4-p"(j))

0 (mod m) , where ﬂ(j) = 1 , and this is impossible.

(8) Finally, suppose (i) = n+l for some i #¥ 1 (w.l.g.
i = 2) and #(n+l) # 2 . Then we make the following three

considerations.

Suppose w(n+l) = 1 . Then <al...an> = d and
n
<a'ﬂ(l)'d"”'a‘ﬂ(n)> = al or an(l) + p2al + p2 izz aipi +
n )
izé a )P = 8 (mod m) . But this implies p, =1, a
.contradiction.
. _ A
. ) n )
Suppose m{l) =1 .. Then a; + (a; + g aiPi)p2 +

we-s
1

ar(1)Pi ¥ 3n(n+l) (mod m) , which implies- 1 +.p, = 0

(mpd ' m) , a contradiction.
!.é'

Suppose 7(j) =1, j #1 . Then a1 +

n n-
pylay + ; a;p;) + Py3; + i£3 a:1)Pi T qm(n+l) ° But this
' i#3
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leads to p24-pj = 0 (mod m) , a contradiction.

To complete the proof of the theorem, we need only
show that one can choose n-1 numbers P; which are rela-

tively prime to m and not pairwise summable to m or equal

to m-1 ., Now if each P; is less thap % and is relatively
prime to m , this will be the case. Thus if we can make
Qigﬂ-> n-1 , n-1 such numbers can be found. By Lemma 5.1.3,

. 2
true if m > 4(n-1)2 , we are done. (As m >16 , if n>3,

Jif m#2 or 6, ¢(m) > v/m . So if M s -1 . which is

we.are not considering m = 2 or 6 .)

L4

9

Theoreﬁ 5.1.5. There exists an integer mj(n) such that for

every order m > mj(n) there exists an n-ary quasigroup of

order m with ﬁﬂ?%)!

conjugacy classes, Jj =1,...,n.

Proof: (1) We have just seen the case j = 1 . Consider
1}
every case other than j =1 or n . Define (Q,<,,>) ,

where Q = {0,1,...,m-1} Dby <@yre..sa > = agta +...+aj+

1 72

pj+laj+l + ... PL2y where addition is taken (mod m)

Here Pygpre--P

n integers relatively prime to m , are

not pairwise summable to ; .and are all different from m-~1
or 1 . Then every permutagion 7w on {1,...,n+l} , which
fixes theelements 1,...,3 , j < n , will leave the product
<a“(r),.t.,a“(n)> unchang?d and thus not introduce a new

iconjugacy class. We must show that any other type of permu-

tation ® on {l,...,n+l} results in a1yt (n)” #

aw(n+l) .
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€
Consider the case where @ fixes n+l and Ay
J
a, for some i >3 and % < j . Then we have |} a_,.
2 - (i)
: i=1
rf % ? 1 h
P. &,y = a, + p.a, - Let a, = and the
e P A = R T TS A ¢
rest of the a; be =0 . Then p; = 1 Suppose 1 (i) =
. .
1{)., where i and 2 > j Let a, = 1 . and the remain-
ing ai's all be zero. Then P;ay Peay implies P; = Py
a contradiction.
If a"(i) = d and aﬂ(n+l) = ai for any 1 <3,
and 1© fixes all the other i , we have:
c % : / N
a, +a, +...4a, ., ( a, + p.a,) +a,, ,...%a.+ ) p.a,
1 2 i-1 j=1 & i=3+1 i i+l j i=541 i1
a; If all a, = 0 except aj+l = 1 , we have 2pj+2 =0
(mod m) , a contradiction.
If an(n+l) = ai and an(i) =d , where 1 > j , and

m - fixes every other element, we obtain a contradiction simi--

_lar to that in (3) of Theorem 5.1.4.

If a = 3.

ﬂ(n+1) i

_ contradiction similar to Theorem 5.1.4,

If aﬂ(n+1) = aj and

we obtain a contradiction similar to Theorem 5.1.4,

1 <3,

a

a

w(3)

= d , we obtain a

m(i)

(5) .

=d , where 1 > j ,

(6).
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# a

Now if a =d , where i < j , but a

m(i) m(n+1) i’
we obtain: <an(l)""’d""’an(n)> = a“(n+l) , and so
b n

aryy toeee @ iany F (Y a. +—“ y p.a.) + a i41) T-oota (.)+

n(l) v(i=1) is i i=3+1 i1 T(i+1) m(j

)

: p, a_,., = a . If a = a_, where k < j, let

i=3+1 i 7w (i) ‘n(n+l) " (n+1) k

all the az's be zero except one a, and possibly Ay

where t < j , t # i . Then either él(l+ps) : 0 (mod m) for

0 (mod m) ; in either case we get a contra-

[$h]

some S or Zat

diction for m > 2 .

If a'ﬂ' (n+l) # ai r 1 ”' J but an(i) = d, then
J n ' ! ‘
izla" (i) pi(izlai ' i=§+1 Pifi) * s=§+1 Ps?u(s) T n(n+1)’ AF
. s#1i
< > = >

Then if a, #0 , VYV 2 except k , where a we

kK 2m(n+l)
obtain either pkzak T oay (mod m) or P;dy = ay (mod m) .

The latter case is impossible, and in the former, we cancel

pkzak and a from the equation. 1In the resulting equation,

let ¢a, = 1 and the remaining a,'s ‘be all zero. Then if
° Y
1l = n(k?  wvhere k < j , a, + p;a; = 0 or (l+pi) =0

(mod m) . If =w(k) > 3, P; @y + pk(al) Z 0 (mod m) implies

(pi+py) 2 0 (mod m) . Both these are impossible, and so the
theorem is proven for j < n . :
(2) If j =n , we define <al,...,an> = al+a2+...+an

Clearly there are n! members of one class. Consider the

two following possibilities: <4d,a

- > = a or
—~ m(2) m(n) 1
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\
<d’an(2)""’an(n)> = an(p+l) # a, , say an(n+l) ak In
n n n j
the first case | a;, + 1 a (i) © 2, and so 2(-§ a;) =0
i=] 1=2 n n 1=
a contradiction. In the second case, ) oa, + ) aiq) T2
i=1 » q=2 TH
n n 0 n -
- \ = -
or (izl a; + 122 an(i)) = and hence 2(i£l a;) 20, acon
i#k iZk

tradiction. Therefore, there are exactly n+l classes.

. (3) A@ in Theorem 5.1.4, Lemma 5.1.3 may be used to

determine mj(n) » depending on the number of relatively

"prime numbers required.

(n+1)!

§5.2 The Cases of Bi%;il and (n),(n+2 + n even, Conjuggky
3/ (5

Q Classes.

Theorem 5.2.1. There exists an integer m(n) > 3 such that

for every m > m(n) , there exists an n-ary quasigroup (n >3)

of order m with exactly Hiﬂ%ll conjugacy classes.

Progf: Define (Q,<,,>) , where Q = {0;1,...,m-1} , by

<al,...,an> =d = —ay + a2 + ... + an and addition is taken

(mod m) , a; i=1,...,n,deQ . If = is any permuta-

tion on {1,2,...,n+1} which fixes 1 and n+l , then

<an(lf""'aﬂ(n)> = aw(n+l) Therefore, the conjugate 3-

quasigroup (Q,<,,>") defined by <a“(l),...,a"(n)>" =
& (n+1) . 1f and only if <aj,...,ap> =d = a .y is identical

with (Q,<,,>) . There are (n-1)! such permutations and
\\
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(

"therefore at least (n-1)! members of one conjugacy class.

Suppose ™ is a permutation on {1,2,...,n+l} such

that an(l) = d and an(n+l) = ay - Then <d,an12),...,an(n)>
n n
= a; only if -(-a; + ‘g a;) + _Z ayyy ° a3 (mod m)
i=2 1=2 .
Therefore the 3-quasigroup (Q,<,,>_ ) = (Q,<,,>) . There are

n

another (n-1)! permutations of this type. Therefore, there
are at least 2(n-1)! members of the conjugdatry class identi-

cal with ¢ .

However, if <al,d,a“(3),...,an(n)> = a, . that is

n(2) = n+l , ®(n+l) = 2 , ©w(l) = 1 , then

H

-a +

o7}
+
1 ~13

1 an(i) a, (mod m) . This becomes

N
=)

i=3

-

-2a, + 2

jol)
[

- 0 (mod m) , a contradiction if m > 3 ,

v~ o3

[ R
W

Consider the case where <d'a“(2)"°"aﬂ6h)> =

n n
k #1 . Then a, - § a, + ]

a = a, . a . S a
#(nt+l) k 1 j=p 1L = m(i) k

(mod m) and o2(al-ak) = 0 (mod m) , again a contradiction.

If <an(l)’d’an(3)""’an(n)> = an(n+l) = a k # 2,
. n n
then -a. j)-a; + iZ2 a; + ) an(i).: a, (modm) . If n=3,

1=3

there is one case in which.this is indeed true. Namely, if
E 3

+ + a, + a

> = a 3

<a2,d,a 3 ¢ Taymay a, equals as . However,
n n
if n >3 and m(n) > 3 ,.then -w(aj)-a; + ] a; + ]

1420 1 i23

2 0 (mod m) , and there remains at least one variable, with a

1 1

qn (i)
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coefficient < 2 , that will not cancel out on the left hand
side. Hence the congruence will not always be identically

zZero.

Therefore, there are 2(n-1)! members of one conju-

gacy class and every other class contains exactly one conju-

gate 3-quasigroup. Therecfore (Q,<,;>) has 2?:??{. = n(n;l)

conjugacy classes.

Values of m which are close to n must be considered

separately to find the exact value of m(n) 1in every case.

Theorem 5.2.2. Therp exists an integer m(n) such that for

every m > m(n) , thege exists an n-ary quasigroup (n even) of

(n+1)!
n, , 2 n+?2
(—‘).] (—‘2'—)

order m with exactly conjugacy classes.

2

Proof: On the set {0,%,...,m-1} define (Q,<,,>) so that

<al,a2,...,an> =d  {ata.ta,-a +...~an)(mod m) . Clearly

-2 "3 74

any positive positions may be permuted amona themselves (and

similarly &or the negativ
]2

ones ) without altering d . This

gives rise to {(%)! members of one conjugacy class.
f

Suppose an(n+1) = QL where t 1is even and a

=d , where r 1is cven. Also suppose the remaining elements

m(r)

are permuted according to 7©(2i) = 23 and n(2i-1) = 2k-1 ,
that is, like signs are retained. Then an(l) - aﬂ(Z) + v

A (r-1) d + aerl) T T Ay T 3 (mod m), or

(1) T B2y Yt Aip-1y T8 TAy A T A A

- an) ta Loy - Ap(n) = ¥+ as all the other
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LY

terms cancel out i1n pairs. In other words, 1f d 1s 1in any
negative position, with any element from a negative position
replacing d , and provided the other elements arc permuted

in a si1gn preserving way, the identity arising from the permu-

tation holds.

Now d can appear in g places, and the clements 1n odd
' +

positions may be arranged among themselves 1n (%)! ways.
There are g choices for w(d) and the remaining elements
in even positions may be arranged in (%-l)! ways. Thus we

have a total of f(%)i]z(%) possibilities. Adding the

2 n+2
]2

g possibilities with n+l fixed, gives [('—2‘—)!1 (%)

members of the same conjugacy class.

We wish to show that no other identities can hold.

The remaining cases arc as follows: <d,an(2),...,aﬂ(n)> =
al,<d,an(2),...,aﬁ(n)> =a + k # 1, <aﬂ(1),...,an(s_l),d,
aﬂ(s+l)""'aﬂ(n)> = ag . t odd, s even and <aﬂ(l)"'f'
a‘(s_l),d,an(s+l),...,an(n)> = a, , teven, s eve?, where
some an(l) has the opposite sign under the operation from
2
a; {that is aﬂ(i) =a; , where 1 and 21 have a different
parity). A careful investigation will show that the terms

no longer cancel each other out in pairs, and hence the iden-

tities do not hold in general.

For example, in the second case we must consider a

number of possibilities. We have (al—a2+a3+...—an)—n(a2) +
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.K\: n(a ) a, (mod m) Tf a5y =4 where j is
.0 i-1
odd and k 1s odd, we¢ have 2ai + ) (-1 a; +
i=2
1#k -
¢ i-1
?(-1) a_,., = 0 (mod m) , a contradiction, if only- a.
1=2 (1) +
17] %
1s non-zero and m{(n) > 2 .
' ) ko '
If aﬂ(J) a; where j .1s odd and is even
. n n .
1-1 : i-1
we have -2a  + 2a, + 'z (-1) a; + .Z (-1) A (1) 0
i=2 i=2
izk i ]
(mod m) , a contradiction.
If an(j) = ay where j 1is even, k 1is odd,
2 i-1 L 1-1
Z (-1) al + } {(-1) aﬂ(‘) 2 0 (mod m) However, the
i=2 i=2 )
i#k i%j
first sum contains (% - 1) minus signs and (% - 1) p}ﬁ;
signs. The second sum has (% - 2) plus signs and %{
minus signs. Therefore, the terms cancel out in pairs.
Finally, if an(j) = a; . where 3j  is even, Kk 1s
3 i-1" A £
even, -2a, + b(-1) a_ + ) (-1) a;(yy - 0 (mod m)
1=2 Yoooi=2 ‘
ik i#]
a contradiction, choosing only a, ~non-zero.
Again m{n) must be chosen by checkingtthe indivf-
dual structures when m < n Here we also need m(n) > 2
If m(n) > n as well, the theorem will clearly hold.
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Remark 5.2.3. For a given n , the number of conjugacy classes

discussed in Theorem 5.2.2 is actually relatively small. If

(n¥1) !

(B 112 (22

number of conjugacy classes. If n = 6 , the number of conju-

n=4, = 10, while(4+1)! = 120 1is the total

gacy classes given is 35, compared with a possible 5040, and
if n = 10 , there are 462 classes compared to 1,628,800 pos-

sible classes.

§5.3 Conclusibn.

-

@a ~ There is still a great deal of work to be done to
answer the general question, "Given an order m , dées there
exist an n-ary quasigroup Q of order m with a specified
/ﬁumber “lC(Q)l of conjugacy classes?". One can generate
more examples by variations of the techniques used in this
Chapter. In particular, arranging negative signs and numbers
relatively prime to the order m in various orders in front
of the ai'Sr in the d?finition of the n-ary operation,will
produce alternate conjugacy class numbers, However, if
(Q,<,,>) must satisfy an identity corresponding to a permu-
tation conégining.a cycle - (ab ¢) , and yet simultaneously
not satisfy an identity corresponding to the tfanspositions
(ab) ,. (be) 6r (gc) . the algebraic'teéhniques used here
‘are fruitless. ' In Chapter 4, some succéss‘was obtaineq in

constructing ternary quasigroups which satisfied such identi-

ty requirements {as the cases«f 2 and 8 conjugacy classes do),

3
£

N
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but the constructions were "ad hoc" or adaptations of gquadru-

ple systems. Unfortunately for larger n , any similar attempt
Ve

becomecs extremely cumbersome, and instead one would hope to be

able to find a general technique, applying siﬁhltaneously to

many values of n .
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