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Abstract 

In this thesis, we reexamine the problems of computer-aided classification and pairing of 

human chromosomes. Traditionally researchers have dealt with the problem of classifica­

tion and pairing separately. In our work, we propose to jointly optimize the solutions of 

these two very closely related problems. The combined problem is formulated into one of 

optimal three-dimensional assignment with an objective function of maximum likelihood. 

This formulation poses two technical challenges: 1. estimation of the posterior probability 

that two chromosomes form a pair and the pair belongs to a class, and 2. good heuris­

tic algorithms to solve the three-dimensional assignment problem which is NP-hard. In 

our work, we present various techniques to solve these problems. We also generalize our 

algorithms to cases where the cell data are incomplete as often encountered in practice. 
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Chapter 1 

Introduction 

The past decade has seen a tremendous growth in the research and applications of Bioin­

formatics. Bioinformatics is a field involving the analysis and exploration of biological 

information using computer technology and statistical methods [IJ. It has many appli­

cations in life sciences, medicine, and pharmaceutical industry [2J. In particular, the 

recent explosion in the data generated by the research and experiments in the fields of 

genetics and molecular biology has created pressing needs for sophisticated computational 

methods to extract meaningful information. Bioinformatics has thus become an important 

interdisciplinary field of close interaction between biosciences and information technology. 

Chromosomes are genetic information carriers and human chromosome analysis con­

stitutes an important procedure in the clinical and cancer cytogenetics studies, especially 

in the prenatal screening and genetic syndrome diagnosis [3J. One of the aims of chro­

mosome analysis is the creation of a karyotype. Chromosome karyotyping refers to the 

classification and subsequently a formatted display of the chromosomes found in a cell. 

At certain stage of the life cycle of the cell, these chromosomes exist as separate bodies 

which, when appropriately stained by chemicals (e.g. giemsa, iodo-acetate) may be made 

visible under high resolution microscope. Figure 1.11 shows the image of a metaphase 

lCourtesy Dr Q. WU, Advanced Digital Imaging Research, Texas 
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stage cell spread in which the chromosomes have been stained by giemsa such that each 

exhibits a banding pattern (Giemsa-bands) along its length. Figure 1.2 shows the image 

of a karyotype of the chromosomes in Figure 1.1. Karyotype images are used in the clini­

cal diagnostic tests, such as in amniocentesis, to determine if all the chromosomes appear 

normal and are present in the correct numbers. Abnormal cells can have an excess or 

deficit of a chromosome and can have structural defects too. 

Figure 1.1: A Giemsa-stained metaphase cell spread 

1.1 Chromosome and Karyotyping 

There are generally 46 chromosomes in a normal human cell. Normal cells contain pairs 

or the homologues for chromosome classes 1 - 22, which are called the autosomes, and 

the gender chromosome pair X and X for a female or X and Y chromosomes for a male. 

The chromosomes are characterized by what we call as chromosome features. The use of 

features rather than the image itself makes the karyotyping procedure easier, faster and 
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Figure 1.2: A karyotype of the chromosomes in Fig. 1 

more accurate. The features are of two types: scalar like length, size, area, centromere 

index etc, and, vector like, banding patterns. The size can be measured either as the length 

or area of the chromosome, or the average of both, normalized by all the chromosomes in 

the cell. The banding patterns, on the other hand, are represented by the banding profiles, 

which are the projected profiles of chromosome image intensity averaged perpendicular 

to their medial axes. 

Visually, the chromosome pairs or homologues, appear similar, that is the features 

would be close. This implies that the features like length, etc would be closer in magnitude 

for the paired chromosomes. Also, the chromosomes belonging to the same class will have 

similar shaped banding patterns. Similarity in the features can be noticed in Figure 1.2. 

Hence, in summary, the problem of chromosome karyotyping is to assign an identity (1-22, 

X,Y) to a chromosome, given a vector containing its grey level or intensity measurements 

(banding profiles) or other measured features (length, area etc) and some training vectors 

with known identities. A helpful additional output would include the degree of certainty 

3 
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with which the chromosomes are identified and paired. 

In many cytogenetic laboratories, the chromosome analysis and karyotyping is done 

manually. This process is long, repetitive, time consuming and hence expensive. This 

is the main motivation for the development of automatic chromosome classification tech­

niques. Great efforts have been made to develop such automated karyopting techniques in 

the last 25 years. However, all of them have had a limited success and yield poor results 

compared to the trained cytotechnician [4]. One main reason for these relatively sub grade 

performance is the insufficient use of expert knowledge and experience. Another draw­

back of these methods is that the system always requires operator interaction to separate 

touching and/or overlapping chromosome and also to verify the classification results. 

The next section describes the motivation behind the strategy used in our work and 

a brief idea of our technique used for the chromosome analysis. 

1.2 Motivation and Methodology 

Over the past decade a number of attempts have been made to develop efficient methods 

for automated karyotyping of human chromosomes. These efforts range from simple fea­

ture matching [5], Bayesian analysis, Markov Networks [6] and Neural Networks [4, 7,8]' 

the details of which will be explained in the chapter 2 of the thesis. However, during 

recent years, most of the work on automated chromosome classification has been based 

on the Neural Networks (NN) approach [4]. It has been shown to have achieved one of 

the best results in the chromosome classification analysis. In our work, we start with 

the conjecture that the neural network approach cannot guarantee the globally optimal 

solution to the classification problem. It is essentially an iterative process of classify­

ing one chromosome or forming one homologue pair at a time. During this process the 

neural network method essentially disregards the interdependencies between the current 

classification decision and the past and future ones. Thus, the obvious weakness of such 
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approach is that it might only settle for a locally optimal solution. 

The technique based on the transportation formulation was reported by Tsao et al 

[9]. As opposed to the NN, this framework achieves optimal classification. However, this 

approach was only for the normal somatic cells, in which all the 46 chromosomes are 

extracted from the image of metaphase and are presented to the classification algorithm. 

The transportation algorithm can find the globally optimal solution with respect to the 

given cost of assigning an chromosome to a class. 

However, for incomplete cells (those with less than 46 chromosomes), the transporta­

tion algorithm cannot be applied directly. In chapter 3, we generalize the transportation 

algorithm based classification of human chromosomes for incomplete cells. However, we 

notice that this scheme does not use the fact that the features of the pairs are close, 

irrespective of the class they belong to. That is, there is a distinct correlation between 

the features of the paired chromosomes in a cell. Therefore, we look at the problem in a 

new perspective of pairing rather than classification. In chapter 3, we introduce the joint 

pairing and the classification framework based on the complete and the bi-partite graph 

matching. This approach aims at exploiting the similarity or the correlation between 

the actually paired chromosomes. It is essentially a two step process in which pairing 

is done in the first step using the maximum weight graph matching and then the pairs 

are classified according to their joint classification probability using the bi-partite graph 

matching. 

The outline of the remaining part of the thesis is as follows. Chapter 4 presents the 

main contribution of the work, in which we first identify two inherent drawbacks of chro­

mosome classification by the transportation based approach. The first drawback in this 

approach is the disregard of correlations between features of chromosomes in the objective 

function of the transportation algorithm, and the other is the fact that it do est not use the 

feature similarities within a cell. We then propose, as a natural cure to these weaknesses, 

the approach of three-dimensional assignment that optimizes chromosome classification 

5 
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and pairing simultaneously. The optimal solution to the above discrete optimization prob­

lem gives the pairing and classification simultaneously. This new approach can also make 

use of joint statistics which were neglected by previous methods. In chapter 4, we also 

deal with the problem of estimating posterior probabilities that are required by the 3D 

assignment algorithm. The 3D assignment problem is NP-hard in nature. Hence, we 

have to devise a heuristic strategy to approach the optimal solution of the problem. We 

propose two heuristic solutions to the problem, first based on the lagrangian relaxation 

algorithm and the other based on the intelligent search in the feasible solution set. The 

better performance of the proposed methods in practice is verified by experimental results 

that are presented in chapter 5. The results clearly demonstrate the strength of the new 

formulation. Chapter 6 of the thesis concludes the work with a discussion on the scope 

of the future work in classification and pairing of human chromosomes. 
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Chapter 2 

Background and Related Work 

Over the last three decades, there has been an extensive research on the automated 

chromosome analysis and karyotyping. The earliest attempt to develop algorithms for the 

task was reported in 1973 by Castleman and Wall [10]. In 1980, Ledley et. al. [11] set a 

requirement of 90% correct classification as a performance criterion for an algorithm to 

be of clinical value. They used the discriminant analysis technique for the classification 

of Giemsa banded preparations. The banded density profiles were subjected to fourier 

analysis, and the first 9 terms of the fourier sine and cosine series were used as features 

for a discriminant analysis training set. These authors were able to achieve a correct 

classification rate of 86.1 % on the training set. Other authors used the same method but 

used higher order harmonics, as high as 25 terms [10, 11]. This approach encountered 

the problems of differential contraction in the chromosomes and the resulting influence 

on the fundamental frequency and all higher order harmonics. Template matching was 

used by Neurath et. al. [5] to classify human G-banded chromosomes. This technique 

used preassigned templates to match the chromosomes and best match was used for the 

classification. Through this technique the researchers tried to replicate the cytogeneticist's 

method and performance. 

Other old approach to solve the classification problem includes the matching of a 

7 
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template banding profile with the given chromosome banding profile and estimating the 

correlations. [13]. It proved to be useful for the study of a small series of human chromo­

somes [5]. In 1980, Vanderheydt et. al. [14] developed an algorithm based on a split and 

merge procedure used to describe the chromosome profile in a tree structure. By defining 

supplementary branches between the tree nodes, i.e. nodes which correspond with the 

black and bright intervals of the profile, a graphical description of the chromosome was 

generated. Fuzzy set theory was used to interpret this graph. An operators aggregation 

structure was applied for the interpretation of chromosomes. This method also achieved 

limited success. 

The use of neural networks for chromosome classification was suggested in the early 

90's. The neural networks approach held the promise of overcoming most limitations of 

the older methods for chromosome classification. This is because NN's easily trainable 

and are capable of creating arbit partitions in the feature space. 

In 1993, Granum and Thomason in [6] used the Markov networks model for the clas­

sification of chromosomal banding pattern structure. In their paper, the chromosome 

banding pattern was treated like a symbol string and features were computed through 

string-network alignment computation of a similarity measure. Thus, a feature vector is 

formed using this similarity measure from different classes and is used for the pattern 

recognition. In the training phase, a Markov network is constructed from a set of learning 

strings for each pattern class using data driven interference. Subsequent classification of 

test strings is carried out by aligning the string with its candidate networks and using the 

resulting similarity measure as the input to the maximum-likelihood and nearest-neighbor 

classifiers. The above method has two limitations. First, Markov models are complex. 

There are many parameters which must be incorporated into the model, such as transi­

tion probabilities and substring probabilities to specific classes. These parameters detract 

from the direct comparison, which is made between chromosomes within the same cell. 

Second, the technique did not use scalar features, hence it was suboptimal. 

8 
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Sweeney et. al. proposed probabilistic neural network for chromosome classification 

in 1994 [17]. Lerner et. al. proposed Multilayer Percept ron based Neural Network model 

for the same task [4]. The authors argue that neural network can only give results as 

good as transportation algorithm if the cells are complete (that is each class has exactly 

two chromosomes). They propose a MLP neural network based scheme for the incom­

plete cells. All the approaches involving neural networks are inherently sub-optimal as 

the neural network approach cannot guarantee the globally optimal solution to the clas­

sification problem. It is essentially an iterative process of classifying one chromosome or 

forming one homologue pair at a time, disregarding the interplays between the current 

classification decision and the past and future ones. The weakness of such an approach is 

that it can only settle for a local optimum. 

In summary, all the previous approaches reviewed so far share two main characteristics 

1. All of them considered classification as the principle problem and regarded pairing 

decisions as the implicit by-product of classification. 

2. Very few of them used all the available features in one framework. All the neural net­

works approaches ignored the dependency of the classification and pairing decisions 

between two chromosomes and hence only attained a local optimal solution. 

In this thesis, we take care of both of the above issues. 

9 
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Chapter 3 

Optimal Classification and Pairing of 

Chromosomes: Graph-Matching and 

Transportation Approach 

In this chapter, we introduce the two approaches to find the globally optimal solution for 

the chromosome classification and the chromosome pairing problem. The first approach 

is based on the transportation problem. Tso et. al. [9] used the transportation algorithm 

to solve the problem. For normal somatic cells (all the 46 chromosomes are extracted 

from the image of metaphase spread and presented to the classification algorithm), the 

transportation algorithm can find the globally optimal solution in maximum likelihood 

sense, with respect to given estimated posterior probabilities of chromosomes being in 

different classes. 

In this chapter, we are interested in classification of chromosomes from either com­

plete or incomplete cells. The problem of incomplete data cell often occurs when two 

or more chromosomes are overlapped and therefore unsuitable for karyotyping analysis, 

or chromosomes are missing due to abnormalities or specimen preparation artifacts. In 

this case the original transportation algorithm does not apply, because the number of 

10 
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chromosomes in a given class is not a known prior. The focus of this chapter is on al­

gorithmic approach to finding the globally optimal solution of chromosome classification 

and pairing. We first show that chromosome classification with incomplete cell data can 

also be formulated as a transportation problem, just like in the case of complete cell data 

classification where each class has exactly two chromosomes. This allows the globally 

optimal chromosome classification to be computed in polynomial time. Then, we turn 

to the problem of homologue pairing. Although homologue pairing can be a by-product 

of chromosome classification, the pairing problem is worth investigating in its own right. 

Within a given cell homologue pairing can be performed using the feature measurements 

of the concerned cell, whereas chromosome classification relies on statistics drawn from 

a training set consisting of a large number of cells of different individuals. Considering 

that many features of a chromosome such as the length, area, centromeric ratios, have 

less variations within a cell than between different cells, it is possible to obtain more 

robust homologue pairing result from the features of a given cell than the pairing derived 

from the output of the transportation algorithm. To this end we develop a homologue 

pairing technique of maximum-weight graph matching. This technique forms all homo­

logue pairs simultaneously under a maximum likelihood criterion, hence offers a globally 

optimal solution to the problem, as opposed to the locally optimal solutions of greedy 

and neural network algorithms. Furthermore, upon completing homologue pairing, chro­

mosomes classification can be done by maximum-weight graph matching as well. This 

new approach may produce better classification results in some cases. The next section 

describes the classification using the transportation problem formulation. The second 

and the third section deals with the graph-matching based approach for the pairing and 

classification respectively. 

11 
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3.1 Globally Optimal Classification 

We abstract a cell as a set of objects Xi, 1 ::; i ::; N, N ::; 46. Each of the objects 

corresponds to a chromosome in the cell. Note that the subscripts i are just an arbitrary 

indexing of objects that do not necessarily relate to the class labels of the chromosomes. 

As mentioned before, an object (chromosome) Xi is characterized by a feature vector 

fi = (fl, 12, ... ,fn). The features ft, 1 ::; t ::; n, are of two types: scalar features such as 

chromosome size, length, intensity, centromeric ratios, the number of bands in the banding 

profile, and etc., and the vector feature that is the banding profile of the chromosome. 

The objects can be classified into K classes. The value of K is 23 for a male cell and 24 

for a female cell. Each object belongs to one class, Ck. For normal somatic cells (i.e., 

N = 46), each class Ck, 1 ::; k ::; 22, has exactly two objects. The gender class C23 has 

one or two objects for female or male respectively. Likewise, the class C24 has one object 

for female, or is empty for male. 

For the problem of chromosome classification from incomplete cell data, each cell has 

less than 46 objects. (i.e., N < 46). This calls for the relaxation in the constraint on 

the number of chromosomes in each class and thus allowing inequalities. Specifically, let 

us define an N x K binary matrix M whose elements are either 0 or 1. The rows of the 

matrix correspond to the objects and the columns to the classes. The matrix has following 

properties, 

L Mik = 1,1 :S i :S N; L Mik:S 2,1 :S k :S 22; 

{ 

::; 2 male 

l~N M i
,23 = ::; 1 female 

L Mi24= -
{ 

- 0 male 

l-::;i:SN' ::; 1 female 

(3.1) 

Each row of the matrix M has exactly one element being 1 and the rest being 0, 

12 
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because each chromosome belongs to only one class. Columns 1 through 22 of the matrix 

have at most two elements equal to 1, corresponding to the possibilities that a class has 

zero, one, or two chromosomes when some chromosomes are missing. Clearly, matrix M 

with the above properties corresponds to a possible classification of N chromosomes into 

K classes. 

Let P(Xi E Cklfi ) be the posterior probability that Xi E Ck given the feature vector 

f i . Then by the very nature of the chromosome classification, we formulate the problem 

of optimal classification of chromosomes as one of maximum likelihood estimation: 

N K 

Mopt = argmax IILMikP(Xi E Cklfi ), 
MES i=l k=l 

(3.2) 

where S is the set of all classification matrices M. By taking logarithm, (3.2) becomes 

equivalent to 

N K 

Mopt = argmax L log L MikP(Xi E Cklfi ) 

MES i=l k=l 

(3.3) 

subject to the constraints (A.I). Since for each given i only one Mik is non-zero, (3.3) is 

equivalent to 

N K 

Mopt = argmaxLLMiklogP(Xi E Cklfd 
MES i=l k=l 

which is clearly an integer programming problem. 

(3.4) 

In general, integer programming problem is NP-hard. However, by a second reflection, 

we can convert the problem (3.4) into one of transportation. Now let us introduce 46 - N 

dummy objects Xi and let P(Xi E Cklfi ) = l, for N + 1 :S i :S 46, 1 :S k :S K. The 

classification matrix for the complete set of objects is M obtained by augmenting M with 

46 - N rows. The optimal Mopt is obtained by solving the transportation problem 

46 K 

Mopt = ar~m_axLLMiklogP(Xi E Cklfi ) 

MES i=l k=l 

13 
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subject to 

L Mik = 1,1 :S i :S 46; L Mik = 2,1 :S k :S 22; 

male 

female 
(3.6) 

male 

female 

Note that if L;~l L~l Mik log P(Xi E Cklfi) is maximal, then Lf:,l L~=l Mik log P(Xi E 

Cklfd is maximal, too.This is because 

~ K N K 

LLMiklogP(Xi E Cklfi) = (46-N)logK-1 + LLMiklogP(Xi E Cklfi). 
i=l k=l i=l k=l 

Consequently, Mopt (Le. the globally optimal chromosome classification) can be found by 

solving the transportation problem (3.5), which can be done in O(N2 Klog(N)+N21og2 N) 

time. In our work, the transportation problem was solved by using Bertsekas's auction 

algorithm [24J. Detailed discussion of the above approach is presented in the appendix 

A of the thesis. The remaining challenge is how to estimate the posterior probability 

P(Xi E Cklfi). The details of the estimation of the above classification probabilities will 

be presented in the chapter 4 of the thesis. 

3.2 Homologue Pairing by Maximum-weight Graph 

Matching 

In this section, we investigate the problem of automated formation of homologue pairs 

of a cell. The chromosome pairing and classification are closely related. Indeed, the 

transportation algorithm for chromosome classification also implicitly solves the problem 

of homologue pairing. The accuracy of homologue pairing by the transportation algorithm 

14 
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depends on the discriminating power of the estimated posterior probability P(Xi E Cklfi ). 

Note that P(Xi E Cklfi ) needs to be estimated necessarily from a training set of a large 

number of different cells. The feature vector fi for a chromosome can vary significantly 

among different types and even among the same type of chromosomes from different cells 

of the same individual. In contrast such variations are of much lesser degree between two 

chromosomes of a given class within a cell (i.e. the homologues). Inter-cell variations 

are much greater than within-cell variations because practically different cells are imaged 

at somewhat different stages of mitosis. These observations lead us to a new and more 

robust paradigm for chromosome pairing and classification. 

From the perspective above more accurate homologue chromosome pairing can be 

obtained by exploiting the similarities between the two homologue chromosomes of a cell. 

This problem naturally induces a binary relation ~ such that Xi ~ Xj if and only if two 

chromosomes Xi and Xj form a homologue pair. This binary relation among chromosomes 

is exhibited by their feature vectors fi, 1 :::; i :::; N. Our task is to statistically infer the 

binary relation ~ among all chromosomes from all observable feature vectors. 

Any chromosome pairing can be identified with a permutation function r( i) of integers 

i E {I, 2,'" ,N}, where N is a positive even integer and r(i) = j if and only if the 

chromosomes Xi and Xj form a pair. Clearly, r(i) = j if and only if r(j) = i, moreover 

r(i) ::/= i, for all i and j. Let P(Xi ~ Xjlfifj) be the posterior probability that Xi ~ Xj 

given the features of Xi and X j . Then the problem of optimal pairing of chromosomes 

can be formulated as one of maximum likelihood estimation: 

N 

rapt = argmax II P(Xi ~ Xr(i)lfifr(i»), (3.7) 
r 

i=l 

over all pairings r. By taking logarithm of (4.1), we have equivalently, 

N 

rapt = argmax L log P(Xi ~ Xr(i)lfifr(i»)' (3.8) 
r 

i=l 

In order to solve the optimization problem of (3.8), let us construct a graph G with N 

15 
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nodes, one node for each chromosome Xi, and with (~) edges, one edge for each pair of 

Xi and Xj. The weight of such an edge is logP(Xi ~ Xjlfifj). It is easy to see that any 

pairing T corresponds to a set of N /2 edges which cover all N vertices once and only once. 

In other words, M represents a match of vertices of the graph G. Now the maximization 

problem of (3.8) becomes one of maximum-weight graph matching. 

This graph problem can be solved in O( N Z log N) time where N is the number of 

vertices [19] and Z is the number of edges in the graph. In our case Z = O(N2). However, 

we can reduce Z to O(N), and hence reduce the complexity to O(N2log N) without 

affecting the optimality of the solution by deleting edges whose weights are too small. 

We stress that given the posterior probability P(Xi ~ Xjlfifj) for pairing, the maximum­

weight graph matching can solve the maximum likelihood estimation problem of (3.8) ex­

actly over all possible pairings. The validity of the pairing results depends on the quality 

of the estimated posterior probability P(Xi ~ XjlfJj). 

3.3 Classification via Bipartite Graph Matching 

Once the chromosomes of a cell are paired by the maximum-weight graph matching al­

gorithm, we can proceed to classify homologue pairs. Consider two paired chromosomes 

at = (at, at) of features F t (the concatenation of the features of at and at). Denote by 

peat E CklFt) the probability that the pair at belongs to chromosome class Ck given 

Ft. We take the maximum likelihood approach to classify homologue pairs by solving the 

following optimization problem: max7r I1~1 P(at E C7r(t)IFt), which is equivalent to 

K 

m;uc I)ogP(at E C7r(t) 1Ft), (3.9) 
t=l 

where K is the number of homologue pairs and 1l"(i) denotes the permutation function of 

integers t E {I, 2,· .. ,K}. Consider the bipartite graph whose two vertex sets are A (the 

set of all homologue pairs of a given cell) and B (the set of all chromosome class labels). 

16 



M.A.Sc: Pravesh Biyani McMaster - Electrical and Computer Engineering 

The edges of the graph connect any node at E A to any node b E B. The weight of such 

an edge is log P(at E Cb\Ft). Then the optimization problem (3.9) is equivalent to finding 

the maximum-weight match in this graph. 

In order to estimate P(at E C7r(t)\Ft), we assume that the random events at E C7r(t) 

and at E C7r(t) are independent of each other for a given Ft, thus 

The complexity of weighted bipartite graph matching is O(N3). As mentioned in the 

previous section we can reduce the complexity to O( N 2 log N) by deleting edges of small 

weights. In contrast, the transportation algorithm has a complexity of O(N3 log N + 
N 2 log2 N), which is higher than the graph matching method. 
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Chapter 4 

Joint Classification-Matching of 

Chromosomes 

In the previous chapter, we described how transportation problem formulation can be 

used for the classification of chromosomes even for incomplete cells. We also described 

an application of a graph theoretical technique to solve the same problem. However, we 

realize that both of the above techniques address only a particular aspect of the problem 

and therefore do not achieve optimum performance in the true sense. In this chapter, we 

reformulate the classification problem and propose a new technique of joint classification 

and matching via optimal three dimensionsional (3D) assignment. This NP hard problem 

has two major aspects. First is the estimation of joint classification probabilities, that 

is the measure of the cost matrix and other is the algorithmic approach to the optimal 

solution. Two strategies to reach the optimal solution is presented in this chapter. We 

also devise a novel probability estimation framework that simultaneously uses all the 

dependent and correlated features. This probability measure can also be be directly 

used for the previously mentioned transportation and graph matching based classification 

algorithms too. 

The outline of this chapter is as follows. The first section describes the motivation for 
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the above problem formulation. The next section develops the objective function for the 

joint optimization formulation. In section three we describe the heuristics to approach 

the optimal solution. Finally, the fourth section describes the strategy for the estimation 

of the joint classification probabilities. 

4.1 Motivation 

The chromosome classification problem can be treated as one of transportation problem. 

This approach was shown to be optimal for the complete cells, given the posteriori prob­

abilities. We generalize the same scheme for the classification of even incomplete cells. 

In the transportation technique, the chromosomes were classified by assigning them to 

the classes in a maximum likelihood sense. The above task was modelled as an inte­

ger programming problem and the optimal solution was obtained by the transportation 

algorithm. 

The second approach used was based on the maximum-weight graph matching. It 

IS essentially a two step process. In the first step, it forms all the homologue pairs 

simultaneously under a maximum likelihood criterion of pairing. That is, it uses the cost 

or the distance between the two chromosomes and obtains the pairs which minimize the 

total sum of the pair-wise distances. After the optimal homologue pairing, chromosome 

classification is done using the maximum-weight bi-partite graph matching algorithm. 

This new approach to chromosome pairing and classification may be more robust than the 

transportation algorithm, because many attributes of a chromosome have less variations 

within a cell than between different cells. The strength of this algorithm is that it covers 

both the problems of pairing and classification. But its performance is limited as both 

the problems of classification and pairing are not tackled simultaneously. As we shall see 

further that the classification and pairing problem are interrelated. 

Chromosomes in a cell have two main characteristics. The first is that within the cell 
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the two chromosomes of a pair have similar features. The second is that the features fi 

of the individual chromosome Xi are within the expected range of variation for normal 

chromosomes of the class that Xi actually belongs to. The transportation algorithm based 

scheme utilizes the second property and ignores the first property. On the other hand, 

the graph matching based approach exploits the first property, but misses classification 

information given by the second property. Thus neither of the scheme is optimal because 

it does not exploit all the available information and pre-knowledge. 

To overcome the drawback of the previous two techniques for chromosome classifi­

cation and pairing, we propose a new scheme which combines both the transportation 

and the graph matching algorithms. The motivation is to use both the above mentioned 

properties and perform classification and pairing simultaneously. In the next section we 

will formulate the approach as an optimization problem. 

4.2 Problem Formulation 

Following the same convention as in the previous chapter, lets abstract a cell as a set of 

objects Xi, 1 :::; i :::; N, each of which corresponds to a chromosome in the cell. We also 

know from the previous discussion that the objects can be classified into K classes. An 

object (chromosome) Xi is characterized by a feature vector fi = Ud2 ... /n). 

We formulate the problem for the case where each class has exactly two objects. 

Latter, we will show that this formulation can be generalized for the cases when the cells 

are incomplete by adding dummy variables. The philosophy of adding dummy variables 

is the same as we did for the incomplete cell with regards to the transportation algorithm. 

Let P(Xi' Xj E Cklfi , fj) be the posteriori probability that Xi E Ck and Xj E Ck 

given the feature vectors fi and fj . As we did in the previous chapter, we again formulate 

the problem as one of the maximum likelihood estimation. Consider all possible three­

way assignments of two individual chromosomes and a class, denoted by the three-tuple 
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(Xi, Xj, Ck), such that chromosomes Xi and Xj are assigned as a homologue pair and 

the pair is assigned to the class Ck, and furthermore each of the K classes is assigned 

exactly two chromosomes. By introducing a binary assignment variable ai,j,k such that 

ai,j,k = 1 if (Xi,Xj,Ck) is selected and ai,j,k = 0 otherwise, we can cast joint chromosome 

classification and pairing as the following optimization problem: 

K N N 

Tax IILLai,j,kP(Xi,Xj E Cklfi,fj), 
,,),k k=l j=l i=l 

( 4.1) 

The objective function aims to maximize the likelihood that chromosomes Xi and Xj 

are a pair and the pair belongs to the class Ck over all possible assignments ai,j,k satisfying 

the constraints given below. By taking the negative logarithm of (4.1), we convert the 

problem into a minimization problem 

K N N 

~in L L L -log(P(Xi, Xj E Cklfi , fj)ai,j,k 
',),k k=l j=l i=l 

(4.2) 

subject to 

~"! ~N a .. = 2 L.."J=l L.."t=l t,J,k , k=1,2,oo.K 

j = 1,2,oo.N 

i = 1,2, ... N 

The above optimization problem is known as optimal 3D assignment in the discrete 

optimization literature [20]. The above formulation not only facilitates the joint optimiza­

tion of chromosome classification and homologue pairing, it also overcomes an inherent 

drawback of the transportation and other existing algorithms for chromosome classifi­

cation in their way of using sample statistics. Consider the event (Xi E Cklfi ) that 

chromosome Xi belongs to class Ck given fi . We notice that the two events (Xi E Cklfi ) 

and (Xj E Cklfj) are not independent. This dependency is attributed to the presence 
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of correlation between the features fi and fj of Xi and Xj in a given cell. In the trans­

portation algorithm for chromosome classification, however, the independence between 

(Xi E Cklfi ) and (Xj E Cklfj) is assumed, because P(Xi' Xj E Cklfi , fj) is written in the 

product form P(Xi E Cklfi ) . P(Xj E Cklfj) when formulating the maximum likelihood 

estimation problem as we recall from (3.2). The invalid assumption of statistical indepen­

dence between (Xi E Cklfi ) and (Xj E Cklfj) limits the classification performance of the 

transportation and other existing algorithms. This drawback is overcome by the approach 

of 3D assignment which uses the true joint probability P(Xi' Xj E Cklfi , fj ). The above 

formulation poses two challenges: the estimation of the probability (P(Xi' Xj E Cklfi, fj) 

and the algorithm to minimize the objective function. 

The above 3D assignment problem is NP hard [21]. Therefore, an optimal algorithm to 

solve the problem would take enormous CPU time and memory even for small Nand K. 

Thus, reaching the optimal solution in finite computational time is impractical. The next 

section illustrates the various heuristics we adopted in our work to solve the optimization 

problem. 

4.3 Solution to the 3D assignment Problem 

Since, the three dimensional minimization problem in equation 4.2 is NP hard, it is natural 

to think of suboptimal and heuristic approaches to the solution. Ideally, such approach 

should not take a huge CPU computation time, or in other words has a run time which 

is approximately bounded by a polynomial function of the number of objects Nand/or 

the number of classes K. 

There are several heuristic techniques reported in the literature to solve the 3D as­

signment problem [22]. These methods breaks the 3D assignment problem into a number 

of series of 2D problems and subsequently finds the optimal solution to those 2D assign­

ment problems. This approach has been used in various other fields ranging from target 
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tracking, image processing to the operations research [23]. There are a number of good 

techniques to solve the 2D assignment problem optimally, for e.g, auction algorithm [24] 

and bi-partite graph matching. In our work, we use the auction algorithm to solve the 

2D assignment problems. The detailed discussion of the 2D assignment problem and the 

auction algorithm is discussed in appendix A. 

To solve the 3D assignment problem, the authors in [22] used lagrangian relaxation 

techniques, by relaxing constraints one set a time and incorporating it into the cost 

function via lagrangian multipliers and minimized the cost of the relaxed 2D assignment 

problem. One nic.e feature of the lagrangian relaxation technique is that in addition to 

a good solution we can also have the measure of the quality of the solution. In [23], the 

randomized heuristic approach is developed, in which, in each step one of the possible 

solution is chosen randomly depending on the weight associated with it and the solution is 

iteratively improved. In our work, we also develop a new heuristic algorithm to solve the 

3D assignment problem. It finds a subset of the feasible solution set and an exhaustive 

search is performed on the subset. Hence, we call this method as the semi-exhaustive 

search for the solution. Next subsections illustrates the techniques. 

4.3.1 Lagrangian Relaxation Algorithm 

One way to solve the 3D assignment problem is by the use of the lagrangian relaxation 

technique. This method breaks the 3D problems as the series of 2D problems and succes­

sively solve them to attain a nearly optimal solution for the 3D problem. This technique 

was first reported to solve a similar assignment problem with a different set of constraints 

in [22]. We modify their approach to suit our requirements. The basic idea is to relax 

one set of constraints in equation 4.1 and incorporate it into the cost function with the 

lagrangian multiplier vector u = [uo, Ul,·· . ,UN]. Thus, the new objective function rep­

resents a 2D assignment problem with original constraints relaxed. Since, the constraints 

are relaxed, the dual solution would give a lower bound on the optimal cost. Hence, the 
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corresponding primal feasible cost will be an upper bound to the optimal cost. The algo­

rithm proceeds by updating the dual until the above duality gap decreases till a predefined 

level. Next we present the brief summary of steps in the relaxation algorithm. 

We first assign the unconstrained lagrangian multipliers, Ui, i = 1,2, ... , N to the third 

set of constraints. Therefore, the dual function L(u) is 

K N N N N N 

L(u) = ~in L L L -log(P(Xi, Xj E Cklfi,fj)aiJ,k + L ui(l- L L ai,j,k) (4.3) 
,,),k k=l j=l i=l i=l k=l j=l 

The above equation can be rewritten as, 

K N N N 

L(u) = ~in L L L( -log(P(Xi,Xj E Cklfi , fj) - ui)ai,j,k + LUi (4.4) 
,,),k k=l j=l i=l i=l 

subject to 

""K ""N a.. - 2 L..,k=l L..,i=l ~,J,k - , 

k=1,2, ... K 

j=1,2, ... N 

Let 2:~1 ai,j,k = Wjk· Then, the constraints in equation(4.4) are equivalent to 

2:}:lWjk=l, k=1,2, ... K 

2:~=lWjk = 2, j = 1,2, . .. N 

and the objective function equation ( 4.4) can be modified as 

K N N 

L(u) = ~i:: L L djkwjk + LUi 
) k=l j=l i=l 
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where, 

(4.6) 

This is a 2D assignment problem whose minimization is subject to the remaining 

constraints in equation 4.4. Therefore, for a given dual vector u, we can convert the 

3D assignment problem into an equivalent 2D problem. The rationale for relaxing the 

third set of constraints is as follows. Both the third and second sets of constraints en­

force pairing and are symmetric, hence the two are equivalent when included in the La­

grangian objective function. The first set of constraint enforces the structure that one 

class has two chromosomes. It is more important to impose the first set of constraints 

because P(Xi' Xj E Cklfi ,2, fj ,2) is more biased than P(Xi ~ Xjlfi , fj ). In other words, the 

statistics for classification has higher discriminating power than the statistics for pairing. 

Therefore, we choose to relax the third (or equivalently the second) set of constraints in 

the Lagrangian optimization. 

There are many optimal algorithms to solve the 2D assignment problem. For our 

experiments we choose the auction algorithm due to its low complexity and easier imple­

mentation as compared to the other algorithms [22J. Since, the constraints are relaxed 

the solution to the above dual optimization problem is not primal feasible. Nevertheless, 

it provides us with the lower bound on the optimal cost. Thus, the next step is to obtain 

the dual vector u which maximizes L(u). Or, 

maxL(u) 
u 

(4.7) 

To solve the above dual optimization problem, many methods have been suggested in 

the literature [22J. We chose accelerated subgradient algorithm for our experiments which 

produces a sequence of updated lagrange multipliers uD ---+ u l ---+ ..... ---+ u*. This 

update is constructed in the following manner. Define g as the N dimensional subgradient 
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vector given by the following equation: 

K N 

gi = 1 - (2:: 2:: ap,j,k) P = 1,2, ... N 
k=l j=l 

. u is updated as follows: 

(4.8) 

(4.9) 

Note that, gi is the measure of the constraint violation. It is zero if the partial feasible 

2D subproblem does not violate the constraint. The step-size adapt is used to improve 

convergence. It is computed using accelerated subgradient method. Other methods are 

available in literature [25, 26J. 

Once the dual vector is updated, a corresponding feasible solution is constructed. We 

define a relative approximate duality gap, dgap as Ifi.r:fdl , where fp is the primal feasible 

cost and fd is the dual cost. The process stops when dgap is less than the threshold. For 

our experiments, this threshold was set to 10-5 . 

4.3.2 Semi-Exhaustive Search 

The feasible solution set of the chromosome classification problem is extremely large. 

Hence, an exhaustive search for the optimal solution on this set is impractical. In the 

semi-exhaustive search method, we select a subset of the feasible solution set and search 

for the optimal solution in the context of the subset. The selection of the subset is done 

by eliminating those class-chromosome associations, which have a relatively lower proba­

bility of participating in the optimal solution. A heuristic association probability measure 

between the chromosome and the class is defined to facilitate the above elimination ap­

proach. Like the previous methods, the semi-exhaustive search for the solution of the 3D 

assignment problem also works on the principle of breaking the problem into a series of 

2D assignment problems. This 2D problem in our case is the chromosome pairing prob­

lem. Recall that the pairing problem is a symmetric assignment problem. Thus, the basic 
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philosophy of the semi-exhaustive search is to first obtain a subset of the feasible solution 

set, identify all the 2D assignment problems in the subset and solve them to get the best 

solution in the subset. 

Following are the basic steps in the semi-exhaustive search algorithm. It will be 

preceded by the detailed description. 

• Build the three level tree of the objects and the classes. 

• Assign heuristic association probabilities to the edges between level 1 (class) and 

the level 2 (chromosomes). 

• Obtain the subset by eliminating those class-object associations which do not satisfy 

the threshold criteria. 

• Perform all possible 2D assignments on this subset. 

• Select the assignment with lowest overall cost. 

The algorithm starts with building a three level tree. Figure 4.1 shows one example. 

N odes in the level 1 denotes the classes and nodes in the second and the third level 

represents the chromosomes. Each edge between levelland level 2 nodes represents a 

possible assignment of a class Ck to an object Xi, Vi. Each edge between level 2 and level 

3 nodes represents the pairing between the objects Xi and X j , i =1= j. Thus, a path from 

level 1 to level 3 denotes the joint pairing and classification of objects Xi, Xj with class 

Ck' Figure 4.1 shows a small instance of a tree for two classes and four chromosomes. 

The weight of the edge between the level 2 and level 3 nodes is the probability P(Xi' Xj E 

Cklfi , fj). This weight signifies the association of the node k of levell, which is nothing 

but class Ck, with nodes Xi and Xj of the levels 2 and 3. 

Having build the tree, the next step is to break the 3D assignment problem into a 

series of 2D assignment problems. It can be seen from the Figure 4.1 that, if we link 
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Figure 4.1: Tree for 2 objects and 4 classes with all possible connections 

each class (level 1 nodes) to exactly one chromosome (level 2 nodes), then the remaining 

problem is a 2D assignment problem. For N objects and K classes, there are (~) ways of 

linking classes to the objects, satisfying the constraints in equation 4.2. Therefore, this 

is the total number of 2D assignment problems. For N = 46 and K = 23, this number 

is of the order 1012 . Exhaustive search for all of such problems is therefore impractical. 

However, the inherent discriminative nature of the chromosome classification and pairing 

problem motivates us to look for only a subset of the total (~) 2D problems. We observe 

that there exists a large number of class-chromosome associations which have a very high 

probability of being absent in the potentially optimal solution. The presence of this 

discriminative property reduces our total number of 2D problems possible. Thus, we need 

to find an intelligent way of choosing the subset of those (~) possible permutations, which 

could be potentially close to the optimal solution. We propose a heuristic to identify the 

"potential" optimal associations and perform an exhaustive search on those to identify 

the solution which has the least cost or in other words, is closest to the optimal solution. 
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We start by defining the association set Y between the nodes in levelland level 2 as 

follows 

( 4.10) 

where, p( Ck, Xi) is called the heuristic association probability of the class Ck with the 

object Xi and is calculated in following manner 

(4.11 ) 

p(Ck,X
i
) = W(Ck,Xi).W(Ck,Xi) 

2::m w(Cm,Xd 2::n w(Cm,Xn) 
(4.12) 

Note that, in the previous equation, the weights are normalized with respect to the classes 

and the objects. 

Having build the association set Y, we divide the set Y into K sets h for k = 

1,2, ... ,K. This set registers all the possible associations between a class and all the 

chromosomes (objects). The set h is defined as follows: 

( 4.13) 

Next step is to eliminate the unwanted associations and reduce the total number of 

possible 2D problems. We define a threshold factor A, and delete all the chromosomes, 

Xi from the set h, for which the p(Ck, Xi) is less than A times the m~ p(Ck, Xi)' This 
2 

way we delete all the associations that we guess are not the part of the optimal solution. 

This process is repeated for all the classes. Tree in Figure 4.2 describes the previous step 

for a simple example of 2 classes and 4 objects. Having build the smaller association set, 

we now perform an exhaustive search over all the possible cases, and solve all the possible 

2D assignment problems. To obtain the best solution, we pick the solution with lowest 

overall cost according to equation 4.2. 

The semi-exhaustive search approach for the optimal solution has interesting proper­

ties. The threshold factor A can be changed according to the total number of problems we 
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Levell 

o Level 2 88 
80:j) Level3 80J 

Figure 4.2: Tree depicting the initial assignment of the classes with the object, - shows 

the infeasible assignment 

want to solve in our search for the lowest cost solution of the assignment problem. The 

reduction in the value of A implies inclusion of more associations without excluding the 

previous associations. In order words, the new solution will always have the an overall 

cost less than or equal to the previous solution. This proves the convergence properties 

of our heuristic method. 

4.4 Estimation of the probabilities using the features 

A cytogenetist classifies and pairs chromosomes using scale measurements like lengths, 

areas and intensities of segmented chromosomes, but he or she relies even more on 2D 

appearance features such as the 2D contour shape of a chromosome and particularly the 

banding pattern within the contour, which is scale invariant. For cluster analysis of 2D 

appearance patterns we factor out the scale measurements such that all chromosomes are 

mapped into a feature space of fixed rather than variable dimensions using a technique 
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proposed in [?]. Specifically, each of the segmented chromosomes is transformed into a 

10 x 100 template by cubic spline interpolation, and subsequently normalizing the resulting 

template image to have zero mean and unit variance. We call this 10 x 100 template image 

(see Fig.4.3) for some examples) canonical pattern and use it as a WOO-dimensional feature 

vector. The canonical pattern characterizes the contour shape and banding pattern of a 

chromosome irrespective of its size and intensity. In other words the canonical pattern is 

scale-invariant in terms of both geometry and signal strength. 

Figure 4.3: Canonical pattern of the chromosomes 

Besides the scale-invariant canonical pattern, the length, area, average intensity, and 

other scale-related features of a chromosome also provide useful information for classifi­

cation. We denote by fi,l the canonical pattern of chromosome Xi and by fi ,2 the vector 

of other scale-sensitive features of Xi' The combined feature vector of Xi is fi = (fi,l, fi,2). 

Directly estimating P(Xi' Xj E Cklfi , fj) is very difficult, if not impossible, because of 

the high dimensionality of the problem. In practice one has to resort to some approxima­

tion method. To simplify the problem we make the following two assumptions: 

1. P(Xi' Xj E Cklfi , fj) = P(Xi' Xj E Cklfi,l, fj,l)P(Xi , Xj E Cklfi ,2, fj ,2) 

2. P(Xi' Xj E Cklfi,l, fj,l) = P(Xi E Cklfi,l)P(Xj E Cklfj,d 

The first assumption is reasonable because the scale-invariant canonical chromosome pat­

tern fi,l, which characterizes the generic appearance of chromosome Xi, is independent of 
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the feature vector f i ,2 that consists of absolute measurements of Xi such as area, length, 

intensity, and etc. The second assumption is made for operational reasons. Based on the 

above assumptions, we have 

To estimate P(Xi E Cklfil ), we adopt a technique of appearance-based object classifi­

cation [18], because the feature vector fi ,! represents the normalized appearance of the 

chromosome Xi. However, the high dimensionality of f i ,! poses a difficulty. To make the 

problem feasible, we project the lOOO-dimensional feature vector fi ,! into a subspace via 

principal component analysis. Fig. 4.4 shows the images of the first 10 eigen vectors 

obtained from the PCA of the canonical pattern of the chromosome. 

Figure 4.4: Images of the first 10 eigen vectors of the Canonical pattern 

In the projected subspace the object features are observed to be approximately multi­

variate normal distributed. Hence, the posterior probability of the classes given canonical 

patterns is estimated by 

(4.15) 
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where J-tk is the mean vector and Ek is the Q x Q covariance matrix of class k, k -

1,2 ... ,K. 

The estimation of the probability of objects Xi and Xj belonging to class k given their 

correlated features, or P(Xi' Xj E Cklfi ,2, fj ,2), is the most critical step in the est imation 

of the overall probability P(Xi,Xj E Cklfi,fj). It is the posterior probability P(Xi,Xj E 

Cklfi ,2, fj ,2) that accounts for the joint statistics of correlated features of the homologue 

pairs, an aspect that was ignored by the previous chromosome classification methods. 

To estimate the probability or P(Xi' Xj E Cklfi ,2, fj ,2), we start with the assumption 

that the features f i ,2 and fj ,2 are joint normal distributed, for a given class k. Therefore, 

we define the probability in the following manner: 

(4.16) 

where N is the total number of features in consideration, F = (fi ,2, fj ,2)' is the concate­

nation of the two feature vectors, and Uk = (J-tk, J-tk)' is the concatenation of the mean 

vectors, where J-tk is the N-dimensional mean vector of the feature vectors f i ,2 in class k. 

Ek is the covariance matrix: 

E. = (~:: ~::) (4.17) 

Here, Elk is the N x N covariance matrix of the N features of the chromosomes belonging 

to class k, whereas E2k is the N x N covariance matrix for the features of homologue 

pairs in class k. Note that the correlation between the features of the homologue pairs is 

characterized by E2k . 
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Chapter 5 

Experimental Results and 

Discussions 

In this chapter, we present experimental results of various chromosome classification and 

pairing algorithms, and compare their performances. The outline of the chapter is as 

follows. The first section describes the main goal of our experiments. Section 2 describes 

the experimental set up and the various test scenarios. The third section lists detailed 

experimental results. Finally, the fourth section provides empirical evidence of the fast 

convergence of the Lagrangian relaxation algorithm when applied to the optimal 3D as­

signment problem. 

5.1 Purpose of Experiments 

Automated chromosome classification and analysis are carried out in several steps. They 

are pre-processing, object segmentation, feature selection and measurement, and lastly 

the classification stage [3]. 

The preprocessing stage aims to improve the quality of the cell image by the techniques 

of noise removal, edge enhancement and contrast improvement. Object segmentation is 
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to isolate the metaphase chromosomes from the cell image. In the next step the features 

are extracted from the segmented image of the chromosomes. Finally, classification is 

done based on optimized statistical inference, such as maximum likelihood estimation. 

The scope of this thesis is restricted to developing classification and pairing algorithms. 

Therefore, The main goal of our experiments is to evaluate the accuracy of different 

algorithms in classifying and pairing chromosomes, given the same data set and the same 

sample statistics. The next section explains the set up of the experiments. 

5.2 Experimental Setup 

5.2.1 Data Sets 

We used two data sets for our experiments. Both of the data sets are provided to us by 

Advanced Digital Imaging Research, Houston, Texas. The first data set is a complete set 

with 16094 chromosomes extracted from 350 cells. We chose this data set for two reasons. 

First, it is the largest one in size that we can find, providing sufficient sample data for 

the estimation of high-order joint statistics. Secondly, the data set contains cells captured 

by different imaging technologies and hence has significant variations in features. Also, 

some chromosome segmentation errors are present in this data set due to flaws in image 

processing. The large variances and imperfections of the data set make it a good test 

case to evaluate the performance and robustness of our algorithms. The second data set 

is the well-known Copenhagen data set and widely used in the literature as a benchmark 

[17, 3] . A unique aspect of the Copenhagen set is that more than 90% of the cells have 

fewer than 46 chromosomes, Le., incomplete. But on the other hand, the chromosome 

features of the Copenhagen set are well extracted with a much lower noise level than the 

first data set. 
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5.2.2 Performance Evaluation Method 

In the performance evaluation the common cross-validation method is adopted. The data 

set is split into two nearly equal subsets, A and B. The classification accuracy is measured 

by averaging the test results using subset A for training and subset B for testing, and vice 

versa. The chromosome features used in our experiments include length, area, density, 

centromere index, p- arm density, q-arm density, upper and lower density ratio which 

constitute the individual components of the feature vector f i ,2 , and as well as the scale­

invariant canonical pattern fi,I. The joint statistics of the features and class memberships 

of the chromosomes are estimated from the samples of the training set. The estimated 

posterior probabilities P(Xi E Ckjfi,l) and P(Xi' Xj E Ckjfi,2, fj ,2) from the training set 

are then used by the 3D assignment algorithm and the transportation algorithm to classify 

the chromosomes of the test sets. 

5.3 Empirical Results 

In this section, we present the comparisons of the correct classification and pairing rates 

of the three techniques based on transportation, graph-matching and the 3D assignment 

based algorithms. In our experiments, the cell data is divided into male and female 

categories, each of which is evaluated separately. This is because the female and the male 

chromosomes form 23 and 24 classes respectively. 

Tables 5.1 and 5.2 list the classification and pairing accuracy of the above mentioned 

techniques for the complete data set( each cell has 46 chromosomes) for male and female 

cases respectively. The performance of the three algorithms is compared for two feature 

sets. The first feature set is fi,II and the second set includes fi,2 and fi,I' It is evident from 

Tables 5.1 and 5.2 that , on using more features, the accuracies of classification and pairing 

increase for both transportation and graph matching methods. When scalar features are 

1fi ,2 and f i ,1 already defined in Chapter 4 Section 4.4 
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Algorithms Correct Classification Rate Correct Pairing Rate 

3-D Assignment(using fi,2, fi,d 94.25% 89.56% 

Transportation(using fi,2, fi,l) 94.05% 87.89% 

Graph-Matching(using fi,2, fi,l) 92.37% 86.52% 

Transportation( using fi,l) 91.08% 83.82% 

Graph-Matching(using fi,l) 89.34% 82.58% 

Table 5.1: Comparison of the classification and pairing algorithms for the male test set. 

Algorithms Correct Classification Rate Correct Pairing Rate 

3-D Assignment 94.10% 90.10% 

Transportation (using fi,2, fi,l) 93.9% 89.12% 

Graph-Matching (using fi,2, fi,l) 92.37% 86.52% 

Transportation( using fi,l) 92.3% 84.8% 

Graph-Matching (using fi,l) 89.34% 82.58% 

Table 5.2: Comparison of the classification and pairing algorithms for the female test set . 

added, the average error rate of classification decreases by 33% for the transportation 

method and by nearly 30% for the graph-matching method. Similar trends follow for the 

pairing accuracy also. Overall, the transportation method performs slightly better than 

the graph-matching technique with respect to the classification and pairing accuracy of 

chromosomes. On combining these two methods in the form of joint classification and 

pairing via the 3D assignment, the classification and pairing error rates decrease further. 

The classification error rate decreases by only 3% while the pairing rate decreases substan­

tially by around 10% when 3D assignment algorithm is compared with the transportation 

algorithm. Here again, similar trends follow for both male and female cases. 

We also measure the performance of the three algorithms in terms of 100% classifica-
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tion (correct classification of all the chromosomes in the cell). The 3D matching algorithm 

outperforms both transportation and graph-matching based methodologies in the above 

performance criteria. More than 40% of the cells are perfectly classified in the case of 3D 

matching algorithm. Table 5.3 shows the accuracy results. 

In our experiments, we applied two heuristics to solve the 3D assignment problem. 

Both the heuristics gave comparable classification and pairing performance. The lagrange 

relaxation method was executed with the stopping criterion of 100 iterations and for the 

semi-exhaustive search, the stopping criteria was the execution of a minimum of 1000 2D 

problems. Of the two methods, the average runtime for the lagrangian relaxation method 

was nearly 1.5 times of the semi-exhaustive search. Also, as expected, the computational 

complexity of the auction algorithm based transportation and graph-matching algorithm 

is much lower as compared to the above mentioned 3D assignment algorithms. 

Algorithms 1100% Classification Rate 1 
3-D Assignment 40.83% 

Transportation(feature set 2) 39.64% 

Graph-Matching(feature set 2) 34.32% 

Table 5.3: Comparison of the perfect classification rate for the three algorithms 

5.4 Incomplete Data set 

We also tested the technique of adding dummy chromosomes to incomplete cells which 

makes the discrete optimization approach for chromosome classification computationally 

feasible. In our experiment with incomplete cells, we chose the well-known Copenhagen 

data set in which more than 90% cells have fewer than 46 chromosomes. Table 5.4 

compares the performance of different algorithms in terms of the correct classification 
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Algorithms Correct Classification Rate 

Neural Network 95.6% 

Greedy 97.4% 

Transportation using dummy chromosomes 98.1% 

Table 5.4: Comparison of the classification algorithms for Copenhagen set that contains 

incomplete cells. 

rate. The proposed transportation algorithm for the classification of the incomplete cells 

outperforms neural network method [16, 17] and the greedy maximum likelihood method 

for this data set. 

5.5 Convergence Properties of Lagrange Relaxation 

Algorithm 

The 3D assignment problem is NP hard. Therefore, an optimal algorithm may take an 

exponential amount of CPU time in the input size. In our case the input size is the 

number of chromosomes in the concerned cell. Note that the problem is still intractable 

even the input size N = 46 appears to be modest. 

In the previous chapter, we discussed a near optimal 3D assignment algorithm that 

trades off computation time with accuracy. The algorithm iterates by updating the dual 

vector which is obtained after the constraints are incorporated into the cost function and 

the resulting 2D assignment problem is solved. We define a relative approximate duality 

gap dgap , as If~~fdl, where fp is the primal feasible cost and fd is the dual cost. The 

process stops when dgap is less than the threshold. For our experiments, this threshold 

was set to 10-5
. Plot(a) in Figure 5.1 shows the change in the relative gap with the dual 

vector update iterations. We see that the duality gap decreases as the algorithm proceeds. 
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Plot(b) in Figure 5.1 shows the increase in accuracy of classification as the duality gap 

decreases. In other words, the relaxation algorithm converges fast and achieves a near 

optimal solution. 

.. 

.. 
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Figure 5.1: (a) Plot of relative duality gap % showing the convergence of the relaxation al­

gorithm for a typical case (b) Plot of correct classification rate vs. the number of iterations 

as the algorithm proceeds. 
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Chapter 6 

Conel usions 

Human chromosome classification is a classical and yet challenging pattern recognition 

problem. Most of the prior work on this problem took either greedy or local optimization 

approach, notably the Neural Networks (NN) approach. Also, the closely related prob­

lems of chromosome classification and homologue pairing were treated separately in the 

past. These shortcomings have been rectified by this thesis. We proposed an algorith­

mic approach of optimal three-dimensional assignment to solving both the problems of 

chromosome classification and pairing simultaneously in a unified framework. The 3D as­

signment approach allows the utilization of two types of statistical correlations: between 

the features of chromosomes that belong to a given class but are drawn from different 

cells, and between the features of chromosomes of different classes but within a given cell. 

After the problem was cast into an optimal 3D assignment framework, the next chal­

lenge was the statistical estimation of the joint posterior probabilities used in the cost 

function of the optimization problem. In our work, we use all the scalar features and 

chromosome banding profile to estimate the above required joint classification and pair­

ing probabilities. The same estimates can also be used in the transportation algorithm 

for classification and in weighted graph matching algorithm for pairing. 

From the discrete optimization point of view, the 3D assignment approach combines 
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the transportation algorithm for classification and weighted graph matching for pairing. 

However, the combined problem becomes NP-hard. Algorithmically, we necessarily resort 

to heuristic approaches to finding good practical solutions. Two techniques were devel­

oped: the Lagrangian-type relaxation method and the semi-exhaustive search method. 

Experimental results demonstrated an appreciable increase in pairing and classification 

accuracy when additional statistics are used to estimate the required posterior probabil­

ities in the objective function of the 3D assignment problem formulation. For the same 

set of features, the 3D assignment approach marginally outperforms the transportation 

and the weighted graph matching methods in both pairing and classification accuracies. 

We also generalized the global optimization approaches of transportation for chro­

mosome classification and minimum-weight graph matching for homologue pairing from 

complete cells to incomplete cells. 
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Appendix A 

The Transportation Problem and the 

Auction Algorithm 

A.1 Transportation Problem 

The transportation problem is a special linear programming problem which has been 

encountered in many applications [27]. The mathematical formulation for the problem is 

following: 

n 

L Xij ::; ai i = 1, . . . ,m 
j=l 

m 

L Xij ::; bj j = 1, . " ,n 
i=l 

Xij ~ 0 i = 1,'" ,m, j = 1,'" ,n 
m n 

minimize L L CijXij 

i=l j=l 

under the hypothesis L ai ~ L bj ai ~ 0, bj ~ 0, Cij ~ O. 

The first two hypothesis are the necessary conditions for the existence of the program. 
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The economic interpretation of the transportation problem is as follows. Suppose we 

have at our disposal at each of the m origins i a quantity ai of a commodity which we 

wish to transport to n destinations j, in order to satisfy the demand bj there. The cost 

of transportation from i to j is Cij' We wish to minimize the overall transportation cost. 

We can always put the problem into a standard form in which the inequalities are 

replaced by equalities by adding slack variables. The chromosome classification problem 

can be modelled as the transportation problem too. The classes can be treated as the 

destination and each chromosome can be considered as an origin. Thus, bj = 2 and aj = 1 

in our case. The special structure of the constraints of the above transportation problem 

enables us to solve problem easily. In our work, we used the auction algorithm given 

by Bertsekas [24]. To understand how chromosome classification problem can be solved 

using the auction algorithm, it is necessary to understand the auction algorithm for a 

symmetric assignment problem. 

A.2 Assignment Problem and the Auction Algorithm 

The classical symmetric assignment problem is defined as follows. Suppose there are n 

persons and n objects, with aij as the cost of assigning the person i to the object j, the 

objective is to find a set S of person-object pair (i,j), such that each person i and each 

object j are assigned in at most one pair. That is the number of pairs in S should be 

exactly n. Auction algorithm was suggested by Bertsekas to solve the above assignment 

problem. 

Auction algorithm can be intuitively understood by considering an economic equilib­

rium problem. Consider the problem of matching n persons with n objects. Suppose, 

each object j has a price Pj and that the person has to pay Pi in order to receive the 

object j. Therefore, the net value of object j to the person i is aij - Pj and person i would 
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logically want to be assigned to ji such that, 

a·· - p'. = max (a ·· - p .. ) 
~J J. j=l,. .. ,n 'J J. 

(A.I) 

If the above condition holds for all the objects, the set of prices are at equilibrium. 

The auction algorithm is based on the above economic equilibrium problem. Starting 

with any set of prices, the process iterates till all the persons are satisfied according to 

(A.I). Otherwise, the persons who are not satisfied with the assignment are picked to 

change the assignment. Let this person i, finds an object ji which offers maximal value, 

that is 

ji = arg .max (aij - Pj) 
J=l,.· · ,n 

(A.2) 

then: 

1. Exchanges objects with the person assigned to ji at the beginning of the iteration 

2. Sets the price of the best object ji to the level such that he is indifferent between ji 

and the second best object. In order words: 

(A.3) 

where, 

(A.4) 

Vi is the best object value, 

V · = max (a·· - p.) 
, j=l,. .. ,n 'J J 

(A.5) 

and Wi is the second best object value 

V · = max(a·· - p.) , ihi 'J J 
(A.6) 

and € is the complimentary slackness variable > O. 
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This process is repeated until are persons are satisfied. 

Note that the above process is the same as the auction process, where at each person 

raises the price of his desired object by bidding the increment ai. This makes the bidders 

own preferred object less attractive to the other potential bidders. Here, E is called 

complementary slackness variable, which insures that in case when more than one object 

offers maximum value for the bidder i, the system does not block. Please refer [24] for 

specific example of above case. 

The transportation problem described in the section I can be easily converted into a 

symmetric assignment problem by replacing each source(sink) into a collection of "dupli­

cate" persons. In particular, a source node i with supply ai is replaced by ai persons, and 

a sink node j with demand aj is replaced by aj objects. FUrthermore, for each arc(i,j) 

we must create an arc of benefit aij connecting each person corresponding to i with each 

object corresponding to j. An example is given in Figure A.I. 

(a) (b) 

Figure A.I: Illustration of a conversion of chromosome classification based on a trans­

portation problem(a) into an equivalent symmetric assignment problem(b), note that the 

classes are duplicated in (b) 
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