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Abstract

" A\ d

In this thesis, we consider the relationship between ordered

topological spaces and topological semilattices.

We study the structures of ordered topological spaces and
give some characterizations of these spaces, one of which is an answer
to a question raised in [5]. Ve also\construct two equivalent Wallman

. /

tvpe order compactifications.
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In addition, we describe epireflective subcategories of
%

. categories of ordered topological spaces, and in particular compacti-

fications.
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in constructing order compactifications of completely regular ordered

INTRODUCTION | '

*

Ordered topological spaces, namely, topological spaces on which

- a partial order has been defined, were first systematically studied. by

. Nachbin [27] and Ward Jr. [3%].

A S

In recent years, various structures of ordered topological spaces
were introduc”ed and investigated by many mathematicians ([4], [5], [12],

. 2 ,
[23], [29], [31], etc). In particular, there has been a growing interest

spaces ([5], {12], [31]), which are clean generalizations of Stone-Cech

“~ —

M - -4 . . . .
compactifications,that is, reduéi to the Stone-Cech compactifications in

-

the case of discrete order. -

Qur purpose in writing: this work is to ‘construct Wallman type

order compactifications, and investigate structures of ordered topological

spaces and relationships betwen ordered topological spaces and topological

semilattices. A brief synopsis of the material presented here is given .

below:

Chapteﬁég contains the basic definitions and theorems which we

utilize in the ensuing'chapters.
In Chapter I, we introduces topologies on the families of all
closed decreasing (resp. increasing) subsets of an ordered topological
. C-
space, and observe that if X is an ordered topologicalispace with
‘continuous order, then the set of all decreasing (resp. increasing) sets
gene%ated by'fdngifons, is iseomorphic to X. This‘reduces‘to the

Michael theorem [25] (see 0.15). Moreover, if X is also regularly ordered,

. e
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then it can embedded into a bounded topological semilattice. . 3
In [30], Priestley has introduced the concepts of I, <, I, - and
I-spaces (see also [12], [24]) and in [33], Ulmer has introduced the
concept of relative adjointness. ‘Using these concepfs, we obtain
relative adjointness betw;en the category of compact zero-dimensional
semilattices. with least (resp.sgregtest) element and the category of
compact zero-dimensior;allId (resp. Ii)—spaces with continuous‘order,
which generalizes the Hofmann, Mislove and Stralka result [16] (see 0.2u4).
By observing that‘there existe enough characters on a compact
zero-dimensionalIIa—space (regp. Ii—space) with ‘continuous order, we
~show that such a space is a projective limit of finite discrete
topological ordered spaces. ( . ¢
In Chapter II, we give some characterizations of completely ¢
regular ordered spaces. In {5], Choe and Hong have raised the following
‘open problem: What are the characterizations of~$L:S?mpact ordered
space and R -compact topological lattice? Here we answer this problem 4
by giving a few ckaracterizations for those spaces.

In [31] and [17], Rodriguez and Hommel have constructed the 1
order compactification B1X for a completely regular ordered space X, k

which generalizes Stonc-Cech compactification. Moreover, in {5}, Choe

o A e

and Hong have also constructed another -wme order compactification BgX.
It is shown in this chpaéer that the two order compactifications 8;X

and BgX are equivalent, i.e., they are iseomorphic. The main concerns
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of this ghapter are to construct an order compactification for a convex
ordered topological space with semicontinuous order which generalizes
the well known Wallman compactification of a Ty space. In order to do
this, we introduce the concept of bi-filters on an ordered topological
space, and obtain that for any convex ordered topological space X with
semicontinuous order, there exists a T; compact ordered space Wy(X),
into which X is densely embedded, and Wy(X) satisfies the following
property: for any cémpact ordered space Y with continuous order and for
any continuous increasing map f: X + Y, there exi;?s a unique continuous
increasing map F: wp(X) + Y such that f|X = f.

We consider the families of all nodbgative increasing (resgp.
decreasing) lower semicontinuous functions on an ordered, topological
space. By using the concept of.bi—ideals (see 2.4.6), we obtain another

-

order compactification T j(X) for a convex ordered topological space X
with semicontinu;us éﬁder., This generalizes the Nielsen and Sloyer
theorem [28] (see 0.19). In addition, we also observe that the above
‘two order compactifications Wg(X) and hio(xl are equivalent. This
reduces to the Brummer theorem [3] (see 0.20) in the case of discrete

order.

R,

Finally, in. Chapter III, we study sepakgtion properties of

L oA

ordered topological spaces, and generalizes the Hommel result [17].‘

b

. We introduce the classes of E-completely regular ordered spaces

—

and E-compact ordered spaces. It is shown that the category ECRO

Y

-
«
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(resp. ECOS) of all E-completely regular ordered (resp. E-compact

ordered) spaces is an epi-reflective subcategory of category PTOP of .

all ordered topological spaces. Moreover, ECOS is also an epi-reflectdive

subcategory of ECRO. Finally, we observe that if, in particular,

. =4
E =X (or R ), the above facts reduce to the Rodriguez results [31].

\




CHAPTER 0 .

PRELIMINARIES

In this chapter we will give the basic definitions and some
known results which will be needed in later chapters.
0.1 Definition: A partially ordered set is a set in which a binary

13

relation x s y is defined, which satisfies for all x, y, z the following

conditions: (;) for ald™x, x s x
(2) if xsyandy < x, then.x = y
(3) if x £ y*and & <z, then x € z. .
A partially ordered set (X, s) is called discrete i% x € y only when
Xx = y. Amap f from a partially ordered Set X to a éartially ordered
set‘'Y .is said to be }hcreésing (resp. decreasing) if x s y in X implies
f(x) s f(y) (resp. £f(x) 2 f(y) in Y.

0.2 Notation and Definition: Let (X, <) be a partially ordered set and

A a subset of X, then we write .

d(A) = {yeX: y < x for some xcA},
i(a) = {ycX:¢§ < y for some xeAJ, and
c(A) = d(A) n i(A).

In particular, if A is a singleton, say {x}, then we write d(x) (resp. i(x))

instead of d({x}) (resp. i({x})). . )
A subset A of X is said to bé/g;creasing (resp. increasing, resp. convex)

if A = 4(A) (resp. A = i(A), resp. A = c(A)).

-

By an gerréd topological'space (or topolog;gél ordered space) we mead a

set efdpwed with both a topology and a partial ,order. . . .

‘ /!
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0.3 Definition: (Ward Jr. [35]). Let (X, I, <) be an ordered
topological space, then s is called

(1) lower semicontinuous if, whenever a £ b im X, thepe exists an

open neighbourhood U of a, such that, if xeU, then x { b.

(2) upper semicontinuous if for a § b, there exists an open

-
1

neighbourhood V of b, such that xeV implies a § x.
~
(3) semicontinuous if it is both upper and lower semicontinuous.

(4) continuous if, whenever a £ b, there exists U open neighbourhood

of a and V open neighbourhcod of b, such that if x is in U and y is in

V, X *'yo
0& Theorem: (McCartan [23]). 1. Let (X, 77, <) be an ordered \

topological space, then the following conditions are equivalent:

(1) X is Yower (upper) semicontinuous.

(2) 1f a £ b in X, there exists an increasing (decreasiné)
neighbourhood N of a(b) such that b¢N (a¢N).

{3) For each xeX, d(x) (i(x)) is closed.

2. Every ordered topological space with sémicontinuous order is
a T3 space. ,
0.5 Lemma: (Ward Jr. [35]). 1. Let (X, TJ, s) be an ordered
topological space, then the following conditions are equivalent:

(1) s is continuous. ’

(23 The graph of thé ﬁartial order < is a closed set in XxX.

(3) 1f a.‘ : b. in X, thexi there are neighbourhoods N and N' of a
and b respectivély, such that N is increasing, N' is(decreasing and
NnN'.=¢. . K : ' )

-

-



.2. Every ordered“?opoiogical space with continuous order is a
Hattsdorff space.

"0.6 Notation and Definition: Let (X, 7 , <) be an ordered topological

space and let | - . . -
U
Z

then U and L are evidently topologies for X, which are called the

{UVeJ: U

(v},

{UeT7: U = a(U)}, ¢

upper, lower topologies respectively.

Furthermore, (X, L) is said to be an upper topological space and

(X, X ) a lower topological space.

We‘§ay that an ordered topological space X is convex if the set
consist%ng of the sets in X and 4 is a subbase of the topology of X.
0.7 Proposition: (Nachbin [27]). Let X be a topological space
'equipped with a.continuous order. If K c X designates a compact subset
of X, then the decreasing subset d(K) and the increasing subset i(K)
are closed. )

0.8 Definition:. Let X be an ordered topqlogical space and Y a subspace

of X. Th is called an (order) subspace of X, if it has the induced
| 4 > .

order. .
. g ] .
Let xa be ordered topological spaces and gxa the product space of Xa'

Then gxa is called an (order) product of Xu, if it has the cartesian

order (i.e. for (xa), (yu) in gxu (xa) < (ya) if and only if X, <Y,
for each a).
0.9 Notation: KT = [0, 1] (resp. R ) is the unit interval (resp. the

set of real numbers) equipped with the usual topoleogy and the usual order.



0.10 Definition: (Nachbin [27]). An ordered topological space

(X, U , <) is completely regular ordered 'space if and only if < is a

continuous order, and

(1). whenever x § y in X, £here exists a continuous increasing
function f: X + [0, 1] such that £f(x) > f(y).

(2) for any xeX and any open neighbourhood V of x, there exists
a continuous increasing function f: X » [0, 1] and a continuous
decreasing function g: X + [0, 1] such that f(x) = 1 = g(x) and
X-v & £10) v g }0).
0.11 Proposition: The following statements hold:

(1) Any completely regular ordered space is completely regular as

a topological space.

[}
e

(2) Any order subspace of a completely regular ordered space/}s‘a“/
completely regular ordered space.

(3) Any compact space equipped with a continuous order is a

- completely regular ordered space.

(4) An order product of completely regular ordered spaces is a
completely regular ordered space.

0.12 Construction of 8;X: (Rodriguez [31], Hommel [17]). Let (X, TJ , <)

be a completely regular ordered space and let C;X be the family of all

continuous increasing maps of X into {0, 1]. Define j: X » [0, l]|C1X|
by j(x)(f) = f(x) for all feC;X and all xeX. Then j is an iseomorphism
i(i.e. order isomorphism and topological homeomorphism) from X into

IC XI‘ 3% we devofe F'X;,W\, whene the clersune — W taben Go Lo,l:]‘c'x\7
1 /den B1X satisfies the following universal property: for

(o, 1]

every compact space Y equipped with a continuous order and for every



o~

continuous increasing map f: X + Y, there exists a unique continuous
increasing map F: B1X + Y such that £ o j = f. We call X the

Stone-Cech order compactification.

0.13 The BEmbedding Theorem; (Mr&Swka [26]). Let F = {fa: ael'} be a
cl§é$ of continuous fupctions with fa: X Xé, where X and Xa’ ael, are
topological spaces. Let h be the parametric map corresponding to the
class F (i.e. h is a map of X into ag

~

for each peX). We have

I,Xm such that h(p) = (fu(p))uer

4
(1) h is continuous if and only if each fu is continuous.

(2) h is one-to-one if and only if for every ﬁ, q in X with p'* q,
there is an £ eF with f (p) $ fa(q). °

(3) h is a homeomorphism if and only if h is continuous, one-to-one,
and for every closed subset A ¢ X and for every peX - A, there exists a
finite system f&,’ oo £ of F such that (fal(p),-..., f&n(p)) ¢
cl {Sfal(a), veey f&n(a)): acA}, where the closure is taken in the
product space X.oll X,.. X Xan.

(4) Assume that the spaces Xa are all Hausdorff and assume thgt
h is a homeomorphism. Then h(x)-is closed in agrxﬁ if and only if £he
clasé F satisfies the following condition: there is no proper extension
X of X such that every function fueF admits a cont%nuous extension
f:X -+ Xu.
0.14 Definition: ESQMichael [25]). Let X be a topological space. Let 2X

denote the set of all non-empty closed subsets of X. For a subset A

X, FC A}, We generate a topology on 2% by taking

all sets of the form 2G and all sets of the form 2X - 2X—G; for G open

<

of X, we let 2A = {Fe2

e N L N T TS A U S Ay
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in X, as a subbasis. This topology on 2X is called the finite topology

(or exponential topology) and 2X, endowed with this topology, is called

the hyperspace of X.
0.15 Theorem: (Michael {25]). 1If X is Hausdorff, the set of singleton

sets in 2X is a closed subset of 2X homeotorphic to X (see also
Ginsberg [11]).

0.16 Definition: Let X be a topological space. A real valued function

f: X » R is said to be lower semicontinuous, if for each acR, £ 1((a, =))

is an open set in X.
0.17 Theorem: Let X be a topological space, and let L(X) denote the
set of all lower semicontinuous functions on X. Then the following hold:
(1) 1If feLkX) and ; is a nonnegative real number, then afeL(X).
' (2) If £, gel(X), then min (£, gleL(X). |
(3) If D is a nonvoid subset of L(X), theﬁ sup {f: feD} is a
function in L(X). .
(W) If £, geL(X), then f %4+ geL(X).
0.18 Definiti¢n: (Nielsen and Sloyer [28]). Let X be a T; space and
consider the semi-ring L+(X) of all nonnegative lower semicontinuous
functions on X with the usual pointwise operations. By an ideal in
L+(X) we mean a proper subset I satisfying the following conditions:
(1) £, gel imply £ + gel.
(2) fel and gst(X) imply gfel. «
" (3) fel implies that there exists an idémpotent g, g + 1, such

that g-f = f.
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0.19 Theorem: (Nielsen and Sloyer [28]). Let X be a T; space and
YL(X) the family of all maximal ideals in L+(X). Then WL (X) is a
compactification of X under the Stone topology in which a subbase for
the closed sets consists of the sets f = {Ie YU(X): feI} with feL+(X).
0.20 Theorem: (Brtmmer [3]). The above YU (X) is equivalent to the
Wallman compactification of X.

0.21 Definitfon: A topological semilattice€ is a commutative,

(RS

idempotent topological semigroup. Equivalently, it is a Hausdorff
topological space endowed with a partial order for which every two
elements have a greatest lower bound and the -function (x, y) -+ glb{x, y}

is continuous. °

' L
0.R2 Definition: Let A and B be categories. An adjunction from

B {fo A is a triple (F, G, ¢), ‘where F and G are functors

F

B &—— -2 a,
G

while ¢ is a function which assigns to each pair of objects BeB and
AeA a bijection o5 a° A(FB, A) T B(B, GA) which is natural in B and A.
b

In this case, the funotor F is said to be a left adjoint for G, while

»

G #s called a right adjoint for F.

0.23 Definition: A subcategory A of B is said to be reflective in B

when the inclusion functor K: A + B has a left adjoint F: B -+ A. T?is

functoiQF may be called a reflector and the adjunction (F, K, ¢): B > A
a reflection of B in its subcategory A. Equivalently, for each BeB,
there is an object .RB of the subcategory A and a morphism ng* B ~» ﬁB
" such that every morphism g: B - AcA has the form g = fonB‘for a unique

morphism f: RB + A of A. If g is an epimorphism (resp. monomorphism)

i
'



~

for each BeB, then é_is\called epi (fesp. mono) reflective in B.

0.24 Proposition: (Hofmann, Mislove and Stralka (16]). Let ZC be the

category of zero-dimensional compact Hausdorff spaces, and Z the category

L4

f.
let T(X) = 2% be the space of closed subsets of X in the exponential

of compact zero-dimensional semilat*c%g with identity. For XeZC,
topology and with union as operation. Then T(X)eZ and T: 2C +~ Z is the
left adjoint of the forgetful:functor | |: 2 » ZC. The front adjunction

{x}, while the back adjunction

n: X + |T(X)] is given by n(x)

e: T(|S|) + s is given by €(A) = A A (g.1.b.A) for each Ael(]|S]), for
each SeZ.
0.25 Definition: (Priestley [30]). An ordered topological space

(X,7T, <) is'said to be a C-space if, whenever é*subset F of X is closed,

d(F) and i(F) are closed.



CHAPTER I

RELATIONSHIPS BETWEEN ORDERED TOPOLCGICAL SPACES

AND TOPOLOGICAL SEMILATTICES

Section 1. Embedding a regularly ordered space into a topological
semilattice.

In this section, we shall discuss the relationship between an
ordered topological space and a topological semilattice. Also, we
generalize Michael's theorem (see 0.1K).

Let (X, 77 , <) be an ordered topological space. Let-{J(X)

denote the set of all closed decreasing subsets of X. For a subset

-

A of X, we lét

-

A = (FeBI(X): F € A}.
Consequently & (X) - 2){"A = {Fe-O(X): F n A$ ).

< * .
Let 7J be the smallest topology on o&'(X) generated by the family
U, U an open decreasing subset of X} v {Z(X) - 2%V, y an open
» . ¢
increasing subset of X}. We shall use the following notational

{2

convention. For subsets Ag, A1y ...y Apn of X, we let

B(A3 Als --vs Ap) = 270 0 10, B - o%XALy

™

{FeD(X): F € Ag and

=1, 2, ..+, n}.

[TH

FonA; 3¢ for all
Using this notation, we see that the sets B(Up; Uy, ..., Uy), where
Up is open descreasing, and Uy, ..., U, are open increasing in X, form
an open base of »8) (X). Thus (& (X), %) is a topol&gical space.
The empty set is an isolated element of this space. h
1.1.1 Remark: The following stategents follow immediately:

(1) If A is a closed decreasing subset of X, then 2 s closed

9

ke s Vom b g o "
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in (& (X)), g%). )
(2) If A is a closed increasing subset of X, then X (X) - 2X"A

is closed in (& (X), TR .

1.1.2 Remark: Dually, we define the following: Let S(X) denote the

set of all closed increasing subsets of X. Let 17% be the smallest .,

topology on L0 generated by the family {QU: U an open increasing

subset of X} v {‘9(¥) - 2%V U oan open decreasing subset of X}. Then

(9, f]?) is a topological space.

1.1.3 Remark: We obtained two. topological spaces (< (X), <y %) and

(S, f]%) from the given ordered topological space X. But if the

given order on X is discrete, then (& (X), “IJ%*) and (9(X), 17%)

coincide. These are equal to the hyfij}pace of X (see)O.%?).

1.1.4 Theorem: Let (X, 7 , <) be an ordered topologicali;pace with

continuous order. Then X can be embedded into (£ (X), T *, € ), where

€ is the set inclusion relation.

Dually, the same statement holds for (SG(X), TEr2).

Proof: Let us define a map d: X > U (X) by x ~v d(x), where

d(x) = {yeX: y < x}. Then we shall show that d is an iseomorphism

from X into -© (X). 1Indeed, it is easy to see that d is increasing and

injective. Now, we show that d is continuous: let xeX and

. amcRe -

B(Up; Uy, -+., Up) be a basic open neighbourhood of d(x). Then

d(x) € Ugand d(x) n U, § ¢ for all i =1, 2, ..., n. Let -
Py € d(x) n Ui’ then p; § x. Hence xeU; for all i = 1, 2, ..., n.
Let U= @ Ui’ then it is easy.to see that U iIs an open neighbourhood

T i=0

of % and d(U) € B(U4; Uy, ..., U,), and so the continuity follows

*
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immediately. Finally, we show that d is relatively closed: ‘let V be a
closed subset of X. Let Fed(V) n d(X); then Fed(V) and F = d(x) for
some xeX. Suppose that d(x) ¢ d(V), then x4d(V), and hence xeX - d(V).
Since X - d(V) is an open increasing set,

{F'le D (X): F' n (X-d(Vv)) $ ¢} is open in <& (X)

and contains d(x) = F. Futhermore, we have d(V) n {F'e & (X):

F' n (X-d(V)) # ¢} #.¢. This contradicts the fact that Fed(V). Therefore,

S

d(x)ed(V), i.e., Fed(V). It follows that dlV) n d(X) = d&(V) n d(X).

-
This completes proof.

1.1.5 Remark: In particular, if the given order on X is discrete,

3

then Theorem 1.l.4 coincides with Michael's result (see 0.1%).
fv
1.1.6 Theorem: Let (X, %7, <) be an ordered topelogical space and Y

a topological space. Let F: Y =+ o) (X) be a mapping.
Then F is continuous if and only ifF'1(2U) is open whenever U is open
decreasing in X and F""(QK) is closed whenever K is closed decreasing /"

- ’ ‘/
in X. d

Proof L Assume that F is continuous. Then F3(G) is open whenever G is

open in & (X) andr~1(H) is closed whenever H is closed in ol (X). Now

replacing G by 2U with U open decreasing, and H by 2K with K closed

decreasing, the required result follows immediately from Remark 1.1.1.

Conversely, let G be a subbasic open set in o« (X). Then we may assume
X~V

that either G = 2U or 6 = L'(X) - 2 , where U is open decreasing and

V is open incrcasing in X. By assumption, F'1(2U) is obviously open in X.

In order toshow F-Y.& (x)—2x"v) =Int X (x)—zx'v),let yeF-1( & (x)—2x_

then F(y) € & (X) - 2% Vor yéi“l(2x-v).‘ Now, since X-V is closed

decreasingin X, F'1(2x"v) is closed in Y. HenceyeY - F-1(2X"V) =

v

)5

© oy,
PR

B N N L

s
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It (Y-F-125Y)) = It (FU(B(0) - XYY
= Int [FH( D) - 25X V),
therefore F is continuous. This completes the proof.
1.1.7 Corollary: Let (X, 7J , <) be an ordered topological space and

Y a topological space. Let Fj: Y-*\&D(X) be ; mapping for § = 0, 1.
Then the union of the two continuous fynctions F = Fyp v F; is continuous,
where (FguF))(y) = Fo(y) v Fi(y) for each yeY. .

Proof: Since 2%y = (rp v r)712% = F512Y) o F512Y), the result

>

follows from Theorem 1.1.6.

1.1.8 Definition: An ordered topological space (X, z;/,,f) is said to

be lower (upper) regularly ordered if andonly if for edch decreasing

(increasing) closed set F & X and each element a ¢ T, there exist disjoint
open neighbourhoods U of a and V of F such that U is increasing
(decreasing) and V is:decreasing (increasing) in X. (X, 97 , <) is said

—

to be regularly ordered if and only if X is both lower and upper

regularly ordered.
1.1.9 Lemma: (McCartan [23]), Let (X, ¥, <) be an ordered topological
space, then the following conditions are equivalent:

(1) X is lower (uppér) regularly ordered,

(2) For each xeX and each increasing (decreasing) open neighbourhoad
U of x, there exists an increasing (decreasing) open nei;hbourhood V of x
such that V < U.
1.1.10 Proposition: Let (X, 7 , <) be a regularly ordered space. Then
(B (X), “7*, u) is a topological semilatticewith its operation as the

set union u.

PR
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Proof: In order to show ~T (X) is Hausdorff, let K, I be in L (X)
and xeK-F. Since X is a regularly ordered space, there exist open
increasing neighbourhood U of x and open decreasing neighbourhood

V of F such that U n V = §. Hence it is easy to show that Fe?v,
KeZ(X) - 2%V ana 2Y s (‘QT(X)-QX_U) = §. Hence & (X) is a Hausdorff
space. It is immediate from Corollary 1.1.7 that v is continuous.
Thus (<& (X), 7%, u) is a topological semilattice.

1.1.11 Theorem: Any regularly orderedig;ace with a semicontinuous
order, can be embedded into a bounded topological semilattice.

Proof: This is immediate from Theorem l.l.4 and Proposition 1.1.10.
1.1.12 Remark: Let (X,”7 , v) be a topological semilattice. It is
well known that (X, 77, 5) has a continuous order, where X < y if and
only if x vy ='y for each %, y in X. Moreover, the same statement

holds for a topological semilattice (X, 7 , A).

Section 2. Relative adjointness of the category of compact zero-
dimensional semilattices.

1.2.1 Definition: (Priestley [30]). An ordered toﬁlogical space
(X,"7 , <) is said to be an I4- space (resp. Ii—spdce) if, whenever a
subset U of X is open, d(U) (resp. i(U)) is open.
{(X,7J , ) is said to be an I-space if it is both Id-and IiJSpace. We
note that the concept of I—séace coincides with the concepts of *-space
and continuous space, of Green [12] and McCartan [24] respectively.
1.2, Proposition: The following -statements hold:

(1) Let (X, 774 54) be Iy-spaces. Then the order product

nX is an I,- .
space IIX 1 q-8pace

PR

- LR -
D A i Y i
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(2) Let (X, 7, s) be an Id-space and let A be an open subset of
X. Then the order subspace A is an I4- space.
Proof: (1) Let U be an opeé set in HXG. Then U = gUa, where U0 is
basic open in X . It is easy to show that d(U) = d(gUa) = gd(Ua).

n *
Since U_is basic open, U =N V_x T X ., 1If follows that d(U ) =
a R e j4i 94 a

n ™~
O dqv ’)x.nixu_. Hence d(Ua) is open for each a. Therefore d(U) is
open 1in nx“.-

(2) Let U be an open set in A. Then U is an open set in X. We
can easily show that dA(U) = d(U) n A, where d,(U) is a decregSing sat

in A. Hence A is an Id-space. )

¢

1.2.3 Remarks: (1) Dually, the above proposition holds for I.-spaces.
(2) The category of all I,-spaces (resp. Ii—spaces) and continuous

increasing maps} is open hereditary and productive category. -

1.2.4 Proposition: Let (X,*s , V) (resp. (X,'J , A)) be a topological

semilattice. Then (X, , <) is an I,-space (resp. Ii—space).

Proof: Let A be an open subset of X. Let (xa) be a net in X - d(A)

with x; + x in X. Supebse that x¢X - d(A), that is, xed(A), then

X s a for some acA. Hence xva = acA. Since X#T X and v is continqous,

xava + ®; hence there exists Xy such that X, v aeA. It follows that

X, € d(A), which contradicts that x, X~ d(A); hence xeX - a(a).

Therefore d(A) is open.

1.?.5_ Remark: A compact zero-dimensional space equipped with a

continuous order need not be an I;-space (resp. Ii-spaéé):

Example: Let 2% be the cantor cube with the cartesian order, where

2 = {0, 1} is a discrete topological space with 0 < 1. Let Y = {yqa} v 2“,

-

N
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where y, ¢ 2% and {yo} is an isolated point. Define Yo > (0, «v.y 0, ...
(i.e. the leask element of 2%) and Yo is incomparable to all members
of 2% except 0. Then Y is obviously a compact zer;po-dimensional space

equipped with a\‘continuous order, but it is not an I, -space. TFor,

d
d(yo) = {yo, 0} m Y and d(yo) is not open in Y. Dually, one can easily
const‘ruct a smllir counter ¢xample for I, i~Space.

1.2.6 Theorem: Let X, 7 \;\ <) be a compact zero-dimensional I-space
with continuous ordert. \\

Then (& (X), wy *, u) is a compact zero-dimensional semilattice.

Proof: Since X is a compact space witlf a continuous order, X is clearly
regularly ordered space.- Hence, by Propesition 1.1.10, (L (X), 7%, v)
is a topological semilattice. Firstly? we show that (U (X), 7 %) is
compact. Let {Wa: ael'} be a subbasic open covering of -8(X). Then

Ua

we may assume that either W = 2% or W, = QO (X) - 2%"Y% for some open

decreasing Uu or for some open increasing Ua’ respectively. Hence, it

follows immediately that {Ua: acT'} is an open co‘:jif of X, Since X is

compact, there exist a finite subcovering {Uq:: i1, 2, ..., n} of ¥ (X).
i .

Hence, it follows that {Hai: i=1, 2, ..., b} is a finite subcovering
of {X). Therefore L (X) is a compact space. Finally, we show that
(L (X), -7%) is a zero-dimensional space: let B(Ug; *Uy, ..., Upn) be an
open neighbourhood of F in &} (X). Then F ¢ Up and F n Uy $ ¢ for each
j =1, 2, «v., N, Sinqe X is a compact ieré;-dimensional Haus;lorff space,
therie exist clopen sets Vg, and Vj such that F € Vg < Up, and

V]. < Uj’ Foa Vj # ¢ for each j = 1, 2, ..., n. Hence, &{Vvy) and

i(Vj) are clopen sets in X, since X is an I-space. Hence, we can easily

Q.
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show that B(d(Vgy); i(Vy), ..., i(Vy)) is a clopen neighbourhood of F

in O (X) and B(d(Vg); i(Vy), ..., i(vy) G; B(Ug; Uy, ..., Up). Hence,
o (X) is a zero-dimensional space. This completes.the Proof.

1.2.7. Definition: {(Ulmer [33]). Let M', M and N be categories,
pwﬁMynmﬁﬁmm,mdmthgf+&G:§+Hmd&ﬁ'%ﬂm

functors. F is called left adjoint to G relative to J if for each

pair NeN, M'eM' tbereiii given a (adjunction) bijection

@ (M', N): [FM', N] T [JM', GN], natural in N and M'. We may
also say that F is J-left adjoint to G or that G has a J-left adjeint
(namely F), or that F is the J-left adjoint' of G.
If J is the identity functor of M, then relative adjoints and adjoints
coincide.
Ulmer [33] also showed that F is J-left adjoint to G if aﬂd only if
there exists‘a natural transformation §: J -+ GF (the front adjunction)
such that for each pair M'eM', NeN the compesed map

t ? ’
JE&EE—l—Ela-[GFM', GN] [un'), GHl;[JM', GN] is a bijective.

(ru', N]

We note that this is equivalent to the following: For each M'eM' there
exists M-morphism wM,: JM' > GFM' such that for‘any NeN and any

M-morphism f: JM' + GN, there exists a unique N- morphism F: FM' + N
. o .
M

such that Gf o Uy = £ die. IM' M!

. T (unique)

F
]

{

i

1

Vv
N

.| *

Let CZI& = the category of all compact zero-dimensional Id-spaces with

1

continuous orders and continuous increaging maps.

I
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CZI = the category of all compact zero—dimensionng;—spaces with
continuous orders and continuous increasing maps.
CZJS = the category of all compact zero-dimensional join semilattices

with the least elements and continuous semilattice
homoflorphisms preserving the least elements to the
corresponding ones.

Let J: CZI + CZId be the inclusion functor, and

—

let G: CZJS —+ CZId

]

be the forgetful functor.
Define D: CZI + CZJS by the following:

X ~mawD(X) = (T (X), 7%, u) for any Xeob(CZI), and f: X » Y

e

~~» D(f): D(X) N D(Y) defined by F ~~»d{(£f(F)) for any Fe. & (X) = D(X)
and for any CZI-morphism f: X + Y. ‘

1.2.8 Lemma: D is a functor: CZI -+ CZJS.

Proof: sBy Theorem 1.2.6, D(X)eob(CZJS).

Firstly, we shaw that D(f) is a semilattice homomorphism preserving the

least element. Let F, H be elements of O (X), then D(F)(FuH) =

d[f(FuH)] = A[Ff(F) v £f(H)] = A(£f(F)) u A(f(H))

D(£)(F) u D(£)(H).

Secondly, we show that D(f) is continuous: let Fe o (X) and

B(Ug; Uy, ..., Up) basic open neighbourhood of D(f)(F), then

d(f(F)) & Ug and a(£(F)) n U; # ¢ for each i = 1, 2, ..., n. Since f
is continuous increasing map, it ié immediate that B(f~l(uy); £ (uy),
...,f‘l(pn)) is an open set in 7 (X). Since A(£(F)) & Up, clearly

F € £71(Ug).. Furthermore, Fn £ }(U;) ¥ ¢ for all i = 1, 2, ..., n.

Henceq:EB(fhl(Uo); £F iy, ..., f"l(Un)). Also it is easy Aowsee that
3

| v
A

i



D(f) [B(£f71(Uug); £71(Uy), ..., £73(UL))] € B(Ug; Uy, ..., Uy). Hence
D(f) is continuous. Therefore D(f) is well defined. In order to show
D is a functor, let X L5y 8,7 be continuous increasing maps, and
let FeD(X). Then (D(gf))(F) = d[g(£(F))], and (D(g)D(£)) (F) =

D(g) [(D(£))I(F)] = dlg(d(£(F)))]. Let zed[g&f(l‘)))]. Then z < g(k)
for some ked(£(F)). Since k < £(1) for some ZeF, z' < (gf)(1), that is,
zed[(gf)(F)]. Therefore, d[g(£(F))] = d[g(d(f({)))]. Hence, .

D(gf) = D(g) D(f). Clearly, D(lx) = 1 thus D is a functor.

D(X)’
1.2.9. Remark: Let COPS be the category of all compact spaces equipped
with continuous orders and continuous increasing maps, and let CS be

the category of all compact join semilattices with least élements and
continuous join semilattice homomorphisms preserving the least element.
By the same argument as in the above lemma, we can show that D is also

a functor: COPS —+ CS.

1.2.10. Lemma: (Lawson [21]): If S is a locally compact, totally
diconnected topological semilattice, then S has small semilattices

(i.e. every seS has a neighbourhood basis consisting of subsemilattices).

1.2.11. Lemma: Let G: CZJS =+ CZId be the forgetful functor, and SeCZJS

Then sup: ) (G{(S)) + S is continuous.

Proof: Let Fe.)(G(S)) and let x = sup(F) (= vF). Let U be an open
neighbourhood of x in S. Since S is .a compact semilattice, there exist
an open decreasing set V and an open increasing set W such thgt

xXeV n W < U; we shéw"that there exists an open subsemilattice L of §
such that xeL ¢ L ¢ V. For, let O be a clopen set with xe0 ¢ V. By

Lemma 1.2.10, S has small ‘semilattices. Hence, there exists an open
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subsemilattice L of S such that xeL < 0. Hence it follows that
xeL € L € V, where L is also a subsemilattice. Let K be a clopen set

with xeK € L and let V' = d(K). By Propositions 0.7 and 1.2.4, V' is

.clopen decreasing set and xeV' ¢ d(L) < V. If follows that

Fezv'(= {Be B3(G(S)): B ¢ V'}). Let Be O(G(S)) with B ¢ V', then
B < &T). Since vd(L) = vL, vB < vL. Now since vL € Lyt lows
that vB ¢ V. Since W is an open decreasing neighbourhood of x,

Fe {Be #7(G(S)): B a W $ ¢}. Let Be=D (G(S)) with B n W § ¢. Take
beB A W. Since b < vB, vB € W. Hence, we have shown that B(V'; W)

is an open neighbourhood of F and sup[B(V')y W)] ¢ V n W < U. Hence,

sup is continuous.

1.2.12 Theorem: Let J: CZI -+ CZI, be the inclusion functor,

d
the forgetful functor, and let D: CZI -+ CZJS be the

G: CZJS ~» CZId

functor defined in Lemma 1.2.8.

Then D is a left adjoint to G relative to J.
Proof: Let XeCZI and let Ny J(X) = X + 6(D(X)) defined by nk(x) = d(x)

for each xeX. Then by Theorem 1l.1.4, n_, is an embedding. For any

X
$eCZJS and any continuous increasing map f: J(X) =+ G(S), define
F: . D(X) » S by F(F) = v(d(£(F))) for any FeD(X). Since S is compact

semilattice, f is well defined and f is CZJS-morphism: F(FuH) =

vI{d(£(F)) v d(£(H))]

v[d(f(FuH?)]

(Vd(f(F?)) v (vd(£f(H))) for F, H in D(X).

In order to show continuity of f, we note that F = supoD(f), where
D(£): D(X) » D(G(S)) and sup: D(G(S)) =+ s.

By Lemmas 1.2.8 and 1.2.11, D(f) and sup are continuous. Hence, it

follows immediately that f is continuous. We shall show that

[+



G(?)onx = £, that is, ?bnx = f. For, let xeX, then it is easy to show
that 4[f(d(x))] = d(f(x)). Hence (?bnx)(x) = F(A(x)) = v(d[£d(x))]) =
v(d(£(x))) = £(x). .

Now to see the uniqueness of F, suppose that there exists f': D(X) + S

with 6(f')on, = f, that is, f'on, = f. Then ?bnx = f'ony. Let FeD(X).

Then F = u d(x). Hence £f(F) = £( v d(x)) = u F(d(x)) = v fknx(x))
xeF xeF xeF xeF
= U f'(n(x)) = u f'(d(x)) = £'( v d(x)) = £'(F),
X
xeF geF xeF
Therefore £ = £', This completes the Proof.

1.2.13 Remark: Let CZMS denote the category of all compact zero-dimensional
meet-semilattices with greatest elements and continuous semilattice
homomorphisms preserving the greatest elements.
Let E: C2I -+ CZMS be defined by the following:
X ~»E(X) = (S(X), ‘7;, u) for each XeCZI, and
£: X > Y~ E(f): YJ(X)+ G(Y) defined by F ~»i(f(F)) for

Fe _S(X) and any CZI-morphism £. J
Then by ammlogy of Lemma 1.2.8, E is functor. Let G': CZMS - CZIi be

- the forgetful functor, where CZIi is the category of all compact

zero-dimensional I. spaces with continuous orders and continuous
increasing maps. By a similar argument as that of the above theorem,
we can dually show that E is‘; left adjoint to G' relative to J.
1.2.14% Remark: If the given order of all objects in the categories

CZId, CZIi and C2I, id in particular, discrete, then all these

categories are the same as CZ, and J is the identity functor. Hence,

D is left adjoint of G and E is left adjoint of G'. Hence, in this
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case these results reduce to the Hofmann, Mislove and Stralka's

result (see 0.23). ®

Section 3. Existence of characters for compact zero~dimensional Ig-space.

.3.1. Definition: For XeZCId, by a character of X we mean an element

of ZCId(X,Q), where 2 is the two element discrete topological space

{0,1} with the order 0 < 1.

1.3,2 Theorem: Let (X, 7 , <) be a compact zero-dimensional I .-space

4
with continuous order. Then there exists enough characters to separate
the points of X.

Proof: Let x ¥ y in X. Then we may assume that x ¥ y. Since < is a
continuous order, there exist an open neighbourhood U of x and an

open neighbourhood V of y such that k ¢ 2 foflany'keU and any fLeV.
Since X is zero-~dimensional, there is a cloben neighbourhood UL of x
such that U'¢ U and a clopen neighbourhood V' of y such that V!¢ V.

It is easy to show that k £ & for any keU' and ény 2eV'. Since X is

compact I,-space, d(V') is a clopen set and does not contain x.

0 if xed(V')

Define f: X + 2 by f(x) = {_1 otherwise

-

Then £ is clearly continuous and f is increasing. For, let a < b in X.
Suppose that f(a) = 1, f(b) = 0. Then bed(V'), and hence S < z for some
zeV'.’ Since a < b, a S z; hence acd(V'). Therefore f(a) = 0, which
contradicts the assumption. If follows that f separates the p&ints

x and y.

1.3.3. Corollary: Let (X, s, <) be a compact zero-dimensional I-space
with continuous order. Then there exists enough characters to sSeparate

the points of X.

3
%
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1.3.4 Corolla;x: Let X be a compact zero~dimensional semilattice.

Then there exist enough characters to separate the points of X,

1.3.5 Theorem: Let (X,7J, <) be a compact zero-dimensional Id—space with
continuous order. Then X is a projectiyge limit of finite discrete
topological ordered spaces.

Proof: Let Fi= {Ra = Ker(fa) | faf X > ¥, is a continuous increasing
surjective mapping and Ya is a finite discrete topological ordered space},
where Ker(fa) = {(x,y) € XxX: fa(x) = fa(Y)}' Then “fi is a family of
equiYalence relaéions'pn X. Firstly, we show that R, = Ker(fa) is closed
and apén for each fa’ For, Ra is-obviously closed., We show that ROL is
alsa open in XxX. Let (XB’yB) be a net in XxX - Ra with (xB,yB) + (X,y).
Suppose that (x,y) ¢ XxX - R, Then fa(x) = fa(y). It is easy to show that
there exists an y such that fa(xY) = fa(x) and fa(yy) = fa(y). Hence,
fa(xy)“= fa(yy), th;é.is, ‘xY,yY) € Ra; this'és a contradiction. Therefore
XxX - R 1is closed. Since X is compagt Hdusdorff, it follows immediately
that X/Rq is a finite discrete space under the quotient topology. Define
[x] <y [y] if and only if,fa(x) < fa(v) for all [x] and [y] in X/Ra' Then
it is easy to see thaf Sa is well defined and is a parti#l order. Hence
(X/Ra’ Sa) is a finite discrete topological ordered space for all a.
Secondly, let Eﬁ' be the family of characters of X which separate the’points
of X. Then {Ra = Ker(fa)a‘fa € ‘jdi is a sub-family of 4. In order to )

show oo, Ra = A, let (x,y)_& 0.,
Fed - ) f4€F

X + y.u Hence there exists an fae-}' ?uch that fa(x) + fa(y). It follows

ﬁa. ' Suppose that (x,y) ¢ 4, then

that (x,y) % Ker(f ) =R, that is, (x,y) ¢ o , R,» which is a contradiction.
) ) f eR o
Ca
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Hence it follows immediately that n {R_ | Rasgp} = A. Finally, we show

-

that ((R) c) is a down directed set. For, let Ra’RB € k. Then
o <

a€|1%|’
X/RanRB is a finite discrete space. Define [x] < [v] if and onlv if

[x] Sa [vy] and [x] SS [y] for all [x] and [y] in X/RanRB' Then < is well
defined and X/RanRB is clearly finite discrete topological space equipped

with the partial order <. Hence the natural map f from X ogto‘X/RaﬂR8 is

an inereasing map and RanR8 = Kerff). Therefore ((Ru)ae|3ﬂ’ ¢) is a

down directed set. Let Xd denote (X/Ra’ Sq). Then it is easy to see that
X is a projective limit of {Xa: ae| 5|}, ’
1.3.6J Remark: Dually, we can show that Theorems 1.3.2 and 1.3.5 hold

!
for compact zero-dimensional Ii—soace with continuous order.

L



CHAPTER II

WALLMAN TYPE ORDER COMPACTIFICATIONS

Section 1. Completely regular ordered spaces.

We recall that an ordered topological space (X, 7J , <) is
completely regular‘ordered if and only if < is a continuous order and
the following two conditions are satisfied:

1. whenever p ¥ q in X, there exists a continuous increasing
function f: X =+ [0,1] such that f(p) > f(d).
2. for every peX and any open neighbourhood V of p, there exists

a continuous increasing function f: X + [0,1] and a continuous decreasing ,

function g: X - [0,1] such that f(p) = 1 = g(p) and X-V S £%0) v él(o)-

»

2.1.1 Proposition: Let (X, 7J , <) be an ordered topological space
with continuous order such that for every p, q in X with p { q, there
exists a continuous incpeasing map f: X+ I Gsuch that £(p) > f(q).
Then the following statements are equivalent:

1. (X, T, s) i a completely regular ordered space.

2. For every clgsed subset A C X and peX-A, there exists a
positive integer n and a continuous increasing function f: X =+ I n

with £f(p) ¢ F(A) where the closure is taken in X n,

3. (X, 7 , £) is an J -regular ordered space, i.e. it is

iseomorphic to an (order) subspace of a power of T .

Proof: (1) + (2): Let A be a closed subset of X and peX-A. Since
X is completely regular ordered, there exist a continuous increasing

function £: X + I and a continuous decreasing function g: X + I

24
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such that f(p) = 1 = g(p) and A < th(O) ] g—l(o). Let f' = 1 - g,
then f' is a continuous increasing function: X =+ I such that f'(p) = 0.
Define h: X + T2 by h(x) = (f(x), f'(x)) for each xeX. Then clearly

h is a continuous increasing function. It is also easy to show that

h(p) ¢ h(A).

(2) » (3): Let F =CiX,I) denote the set of all continuous increasing
functions from X into X . Let A be a closed subset of X with PeX-A.
By assumption, there exists a positive integer n and a continuous
increasing function f: X » X " such that f(p) ¢ F(A). We set

f, = Py of, where 1 < k £ n and Py is the projection of I” onto its

k

kth coordinate space I . Hence, kaF for each k =1, 2, ..., n.

Furthermore, it is easy to see that {f;, ..., fy} satisfies the

following: (£f1(p), +.., fu(p)) #{(fl(a), ...y fpa)): aeA}, where
the closure is taken in the product ]'_n.

- - ICI(X, I)] -
Define o: X + [ by o(x)(f) = f(x) for all feF and each xeX.
Theh it follows immediately that ¢ is an injective, increasing and
continuous function. By theorem 0.12, (X, 7 , <) is an J -regular
ordered space.

(3) + (1): Immediate from Proposition 0.10.

[+
2.1.2 Proposition: Let (X, J , <) be an ordered topological space

with continuous order such that for every p, q in X with p ¢ q, there
exists a continuous increasing function f: X -~ X with £(p) > f(q),

then the following statements are equivalent:
e*s'

1. (X, 7 , £) is a completely regular ordered space.

2. For every net {xa: aeD} in X, we have Xo T X if and only if

e e
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f(xa) + £f(x) for every feCy(X,L).

3. (X, 7 , s) is an T -regular ordered space.

Proof: From the previous groposition, it is sufficient to show that
(2) and (3) are equivalent:

(2) » (3): Let h be the parametric map corresponding to the family
C1(X,X). Then it is easy to show t&@ h is a continuous, one to one
and increasing map. In order to show relative closedness of h, let A
be a closed subset of X. Let yéE?KS n h(X), then y = h(x) ¢ h(A)
for some xgX. Hence, there exists a net {yu} in h(A) such that ‘
Yo > ¥. Sincey = h(xa) for some X €A, h(xa) + h(x); hence it is

easy to see that f(xu) + f(x) for every feCy(X,IL). By hypothesis,

we have X, ~ X. Since A is closed in X, x belongs to A. Therefore,
h(x) ¢ h{A) A h(X). Hence, h is relatively closed. Consequently, h

is an iseomorphism, and hence X is [ ~regular ordered.

(3) » (2): Let (X, 7 , <) be an Y -regular ordered space. Then it
i§ sufficient to show that for some net {xaé,usD} in X, xa+*-x if and
only if f(x )+ f(x) for some feCy(X,IJL). If x > x then there exists

a neighbourhood U of x such that for any uoeD, there exists a 8 2 @
such that x, ¢ U. Let E be the set of all BeD such that xB¢U.

Then it is easy to see that E is a cofinal subset of D; hence {xB: BeE}
is a submet of {x }. Therefore x&TEET'in X. Since (X, <7 , <) is

I -regular ordered, by the previous proposition, there exists a

s . . . . . n
positlive integer n and a continuous increasing function f: X + X

such that f(x) ¢ {f(xs)}. Hence f(xB)4+ f(x). Therefore, there exists

/

[

Bt e e A o
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a ?,su;h that 1 < k s n and (pkof)(xB)%+ (pkof)(x), where Py is the

projection on the kth coordinate space. But pkof € Cy(x ,I» This

¥

completes the proof.

2.1.3 Corollary: Let (X, < , s) be ?n ordered topological space with
continuous order. Then under the same assumptions of the previous
Proposition on X, the following statements are equivalent:

1. (X, 77 , <) is a completely regular ordered space.

2.  For every closed subset A ¢ X and peX-A, there exists a
positive integer n and a continuous increasing function f: X -+ In
with f(p) ¢ £(A).

3. TFor every net {x,: aeD} of points of X, we have x, > x if and
only if f(xa) + f(x) for every feCy(X, X ).

y, (X, 7, s) is an Y -regular ordered space.

5. (X, 7, s) is an R -regular ordered spacg, i.e. it is
iseomorphic to a subspace of a power of R . <i—

6. For any point p of X and any open neimphbourhood V of x,
there exist finitely many continuous increasing maps fj, f2, +.., fn:
X + [9,1] such that fi(p) =0 foreachi=1, 2, ..., n and
X-V<u f?(ﬁl,l}), where [<1,1] is endowed with the usual order and the

usual topology.

7. {fi(o): for all continuous increasing maps f from (X, 7, <

into R } forms a subbase of the closed sets of 7J.

Proof: (1) > (2) «> (3) «> (4) is obvious from the previous two

Propositions. - (4) «> (5) «> (6) «> (7) > (1) are from Hong ([18}).
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Section 2. R -compact ordered spaces.

In [5], Choe and Hong raised the following problem: What
are the characterizations of [R -compact ordered spacesand R -compact
topological lattice® In this section, we answer this question by
obtaining a few characterizations. Threughout this section, all
ordered topological spaces wh‘:i\dh we consider are assumed to have a

continuous order.

2.2.1 Definition: (Rodriquez [31], Choe and Hong [5]). An ordered

topo Cical space (X, 7, <) is said to be an R -compact ordered space,
)%

if it is iseomorphic with a closed subspace of a power of R .

2.2.2 Theorem: Let (X, 7, <) be a completely regular ordered space.
an
Then X isAR -compact ordered space if and only if there does not

exist a completely regular ordered space (X', ', <') satisfying

the following two conditions: -

1. There exists an iseomorphism e: X + e(X) ¢ X' such that

e(x) $ e(X) = X' ‘

2. For every continuous increasing map f: X + R , there exists

a continuous increasing map f: X' -+ R such that foe = f.

Proof: («): Since (X, 7 , s) is a completely regular ordered space,
by Corollary 2.1.3, there exists an iseomorphism h of X into a subspace
of a power of [ , that ié, h: X = Rm, where m = |C;(X, R)| and

Q(X,R) is the set of all continuous increasing maps from X into R .
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Hence by hypothesis, we can easily show that h(X) = h(X).
(=*): Since X is an R -compact ordered space, we assume that X is a

closed subspace of a product 1 Rk of Rk’ where [ X = R for all
‘ keK ‘

keK. Let el X + X')denote embedding X into a completely regular ordered
space X' which satisfies the condition (2). We may assume without loss
of generality that e(X) = X'. Hence, for every keK, there exists

a continuous increasing map Pé: X' » R such that Pioe = Pk’ where

P is the kth projection of X. Let F: X'+ TI Flk be tge parametric
2 «  keK

mapping determined by the family {Pi: keK}. Then F is obviously 'a

continuous and increasing function.

Since (Foe)(x) = F(e(x))

(Pf((e(x)))keK

(Proe(x))y y = (BLOxR o = %,

(Foe)(X) = X. Hence F(X') = F(e(X)) ¢ F(e(X)) = X = X, so that F is

1"

a function from X' into X. Hence, it is easy to show that eof: X' + X'
is equal to the identity on e(X). Since e(X) is dense in X', by the

principle of the extension of identitites (Bourbaki [2]), eoF = idx,.
Since F(X') < X, (eoF)(X') € e(X); therefore X'<c e(X), and hence

+

e(X) = X'. Thus no completely regular ordered space X' satisfying the

condition (2) satisfies the condition {1). This completes the proof.

2.2.3 Definition: Let (X, 7 , <) be an ordered topological space,
and let A be a (order) subspace of X. Then a continuous increasing

map f: A > R is said to be orderly extended over X (or order extendable

-

on X), if there exists a continuous increasing map f: X » R such that

fla = f.
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over X.
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2.2.4 Lemma: Let (X, 7 , <) be an ordered topological space and let

A

A be a subspace of (X, U, <). If every continuous increasing map
g: A > R such that either g{x) 2 1 for all xeA or g(x) <-1 for all
xeA, is orderly extended over X, then every continuous increasing map

f: A > R can be orderly extended over X.

Proof: Let f: A+ R be an arbitrary continuous increasing function.

f
1 + max (f(x), 0) and

Let g1(x)

1 - min (£(x), 0).

gz(X)
Then g; is a continuous increasing and g, is a continuocus decreasing

map from A into R . Moreover, gi(x) 21 for i =1, 2 and for all

N

xeA. Hence -g, is a continuous increasing map and -g,(x) s -1. By

hypothesis, there existe continuous increasing maps E} and E;: X+ R

|13

gl(x) - gz(X)
P
for every xeA, let us define f: X -+ R by f£(x) g,(x) + g,(x) for

each xgX, then F is a continuous increasing map and f|A = f. Hence f .

such that g)fA = g and g,|A = -g,. Since £(x)

1}

is the required extension of f.

3

2.2.5 Remark: Let (X, 7 , <) be an ordered topological space, and
let A be a subspage of X. If every continuous increasing map of A

into R can be orderly extended over X, then we have that every

continuous decreasing map of A into R can also be orderly extended

~

2.2.6 Lemma: Let (X, 77 , <) be an ordered topological space, and let
A be a subspace of (X, 7 , =). If every continuous increasing map .

f: A > R 1is order extendable over X, then every continuous increasing '
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map f: A+ 1 R)» where Rk = R for all keK, is also orderly
kekK
extended over X.

Moreover, if A = X, then every continuous’ increasing map f: A > B = B
c I Rk into a closed subspace of this product is also orderly

keK
extended over X.

Proof: Let f: A+ 1 Rk be an arbitrary continuous increasing function.
keK
Then obviously Pkof: A~ Rk is a continuous increasing map, where P

k
is the projection of I Rk. By hypothesis, there exists a continuous
kek .
9increasing map fiir X Ry such that -i?klA = Pkof. Let £: X + I Rk
keK

be pa;r'ame'tric map deter;nined by the family {?k: keK}. Then F is
olv‘)vion.\sly a continuous increasing function and F|A = f.

If A=Xand f(A) cB=Bc 1 Rk, then there e‘;xists a continuous
increasing map f: X + 1 Rkkzich that f|A

keK
—— —— - Y e — —

f(X) = £f(A) < £(A) = f(A) < B = B, so that f: X + B is the required

f. Hence, we have

function.
Let B Xbe the Stone-Cech order compactification (see 0.11) and let

Bi: X =+ £1X be a dense embedding. Then we have the following theorem:

2.2.7 Theorem: Let (X, T , S) be a completely regular ordered space.
Then X is an R -compact ordered space if and only if for e\}ery
’FOEB;X - 81()()., there exists a continuous decréasi,ng map' h: BXr B,1]
such that either h(x_) = o0 and h(J’c)' > 0 for all xe;BI(X) or h(xo) = ¢
and h(x) < 0 for all xeB;(X), where [I,1] ~:'Ls an ordered topological

space equipped with the usual topology and the usual order.

&
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Proof: (—>): Suppose that X is an [R -compact ordered space. Take
an arbitrary point x eBiX - B1(X). Since X' = B;(X) U {xo} C B1X is
a completely regular ordered space satisfying condition (1) in
Theorem 2.2.2, there exists.a continuous increasing map f: B;(X) + R
which is not orderly extended over X'. By Lemma 2.2.4, we may assume
that either f(x) 2 1 for all xeBj(X) or £(x) <-1 for all xeBj(X).
Hence, we consider the following two cases: ;

Lase 1: f(x) 2 1 for all xeB(X). Let ho: B1(X) ; (-1,1] be the
function determined by ho(x) = [f(x)ja. Then ho is a continuous
decrfasing map. Hence, by Remark 2.2.5, ho is.orderly extended over
B1X. Lef h: 81X + F1,1] be its extension. Assume that h(xo) # C.
Then the continuous increasing map f: B8;(X) - B would be orderly
extended to the function £': X' - R defined by means of the formula
f'(x) = [h(x)fl, which is a contradiction. Hence, h(xo) = o.
Moreover, h(x) > o for all xef;(X).

Case 2. f(x) s-1 for all xeB;(X). By a similar method to that of‘
case 1, we can obtain & continuous decreasing map h: B;X +.Lial] such
that h(xo) = o and h(x) < o for all xeB;(X).

(é;): Assume that X is not an R -compact ordered sbace. Then by
Theorem 2.2.2, there exists a completely regular.ordered space X! ‘
containing i as a dense proper ordered subset and such that every
continuous incre;sing map'g' X > ﬂZ cén bé orderiy extended over X'.
We may assume wxfhout loss of generallty that X' - X = {x! }«-EZ—£be/

[CI(X I)I

constructlon of" le (see 0 ll) B]X @ T < I R,, where

. keK
k = R For every keKnand f k| = }cl(x ]L)] Thus by Lemma 2.2.6, thére \\-J//




33

exists an extension Bj: X' + 81X (i.e. B is cont inuous increasing and
Bi_IX = By) of the continuous increasing map 8;: X-; B1X, {fmd it is easy
to show that Bi(x') € 81X - B3(X). Let x denote Bi‘(x')’, then we shall
show that for any continé\:s decreasing map H: BiX + [1,1] such that
either h(::c) > o for all xeB;(X) or h(x) < o for all xeBj(X), then

h(xo) $ 0. We consider the following two cases:

Case 1. h(x) > o for all xeBj(X): For every continuous decreasing map
h: 8;(X) + [1,1] which satisfies h(x) > o for all xeBl(\X), the formula
g(x) = [hoBl(x)]“1 defines a continuous increasing map g: X > R

Since g(x) 2 1 for,xeX, we have g'(x) 2 1 for the extension g': X' - R .
But the continuous decreasing maps (g' )-1 and hoB} are identical on @
space X. Hence h(xo) = h(Bj(x')) * [.g'(x')].l > o,

Case 2. h(x) < o for all xeB;(X): By the same arguments as in case 1,
we can obtain h(xo) < o. In either case, h(xo) % 0. Thus X is an

R -compact ordered space.

2.2.8 Remarkl: In [5], Choe and Hong constmctea a compact ordered space
BOX for any completely regular ordered space X, as follows: BOX is the—"
set <;f all maximal o-completely Pégular f.ilte]:*s1 on X, endow ed with the
topology generated by {U%*: U* = {meGoX: Ue m}., U is an open set of X}

and a relation < defined by: ¥ s YU in BOX if and only if

- 1limt £(M) < 1im £( V) for all feCo(X), where CO(X) is the family of all

1

Let X be a completely regular ordered space. A filter Thon X is said to
_be o-completely regular if % has an open base ®» with the property that

for each Ue B, there exists a Ve®, with V € U and there exist finitely
many continuous increasing maps f1, ...y fp: X + FL,1]} such that £.{V) = o
for each i = 1, 2, ..., n and X-U is contained in u £;'({1,1}).

By a maximal o-completely regular filter on X is meant an o-completely
regular filter not contained in. any other o-completely regular filter.

%
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continuog+Increasing maps from X into [[1,1]. They showed that ByX

2
is a FJ,l1)-extendable compactification of X. ’/

2.2.9 Proposition: The two constructionsB;X and BgX are order

equivalent in the following sense: given By
X ——>BX

d
s
Bo l g -
«  Bo
BoX
where B8p, B) are dense embeddings, there exists an iseomorphism

Bo: B1X + BpX such that BgoB; = Bg.

Proof: 6Given X-jﬁ;ﬁ>81X, by (0.11) there exists a unique continuous
- \

Bo l )
BoX

increésing map §b: B1X + BpX such that §b081 = By. Since B1X is a compact
ordered space, B;X is iseomorphic to a closed subspace of a power of F .
Since [ and F],1] are obviously isemorphic, B1X is iseomorphic to a
closed subspace of a power of Ei,l]lcl(ng)l, where CG(B)X) is the family
of all continuous increasing maps from 8;X into [-I,1]. Since l

is the fth

f

projection) and BOX is H,l]-extendable, there exists a unique continuous

Pfoelz X + F,b1] is a continuous increasing map (where P

increasing map F}: BoX > F1,1] for each feG(B;X) such that f}{x,= ProBy

and Bgoff = PfoBi. Let E}: BpX -+ fﬂ,l]lq&BIX)l be the parametric map

determined by the family {Pg: feg(B1(X))}.

-

2 N

Let A be a category and C an object of\é: An A-morphism f: A > B is
said to be C-extendable if for any é;T%rphiSm g: A+ C, there is an
A-morphism §: B +~ C with g = gof.

q
A

g W N

B e e P SR
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Let B] denote ?‘?}, that is, 83(x) = (‘F'ﬁf)(x) = (?é(x))fecl(slx)

]

for each xgX. Hence we have rg(PfoBl)

n g .
£ (PfIX). Since

B1(Bo(X)) « B1(Bp(X)) = ( ?‘Ff)(ﬁo(X))

P (PL080(X))

lprosl(x) = B (X) = BiX,

it follows that By: BoX » B;X is a continuous increasing function.

Since (B10Bg)(X) = (T P.)(Bo(X)

= ‘Zr.‘((pfosl)(x)

we have (B10Bg)|X = lle

that B8pX and B)X are iseomorphic.

|X. similarly, (BooBy)|X =

F) ((PpoBg) (X))

B](X) = 181X(X)§

1 X. It follows
BoXl

-

2.2.10 Definition: A topological lattice is a lattice which is a

.Hausdorff topological space in such a way that the binarysoperations

sup, v, and inf, A, are continuous.

1 4

The following definitions are due to Choe and Hong [5].

2.2.11 Definition: A topological lattice L is said to be completely

regular, if for any point x of L and an open neighbourhood U of x,

there exist finitely many continuous homomorphisms fy, f2, ..., fp:

L » [1,1] such that fi(x) = o ‘for each i =1, 2, ..., n and

X-U ¢ u {f';({-z,l}): 1<is<nl.

2.2.12 Definition: Let L be a topological lattice. Then a topological

lattice is said to be L-regular (resp. L-compact), if it is iseomorphic

with a (resp. closed) sublattice of a power of L.

]

2.2.13 Lemma: (Choe and Hong [5]. For a topological lattice L, these

are equivalent:
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1. L is a cémpletely regular topological lattice.

2. {f-l(o): feHom (L, R )} forms a subbase for closed sets,

RSN A

where Hom (L, R ) is the set of all continuous lattice homomorphisms '
of L into R .
3. % is an R -regular tépological lattice

4, L-is an I -regular topological lattice.

\\_)V/’/,pﬁi

2.2.14% Theorem: Let (X, Vys Ays 'jx) be a completely regular topological

lattice. Then X is an R -compact topological lattice if and o;xly if .

there does not exist a completely regular topological lattice

(x+, vx' . AX' . ']x') which satisfies the following two condi‘tions:‘
1. There exists an iseomorphism e: X + e(X) © X' such that

e(x) + e{X) = Xx'.

2. For every continuous homomorphism f: X + R , there e?sts a

continuous homomorphism F: X' + R such that foe = f.

N s
hid .

Proof: By using the same arguments as those in Theorem 2.2.2, we can

prove the theorem.

A

Section 3. Wallman type order compactifications.

Let (X, 7 , ) be an ordered topological space. Let ﬂi;ané‘zj
be the upper and lower topologies on X, namely, AL = {UeJ: U = i(U)}
and L = {UeT: U = d(U)} (see 0.6). |
We recall that a filter ¥ in a topological space (X, 77) is an’open %h‘

(resp. closed) filter if J has a filter base consisting only of ppen

(resp. closed) sets.
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2.3.1 Definition: Let (X, 7, $) be an ordered topologiéal- space.
Let ' be a\closed filter in the upper topological space (X,4L) and oF
a closed filter in the lower topological space (X, ). A pair (&, f)
of filters % and O} is said to be a bi-filter on X, if F n G $ ¢

for any Fe 7% and any Ge <} .

For given two bi—filt-ers (5,5 9,) and ( %,,%2), we define a relation
(Fy,%h) «( #2 ,92) if and only if Fy € %, and Sy & F5.

By a maximal bi-filter on X we mean a bi-filter not contained in any

other bi-filter under the above relation.

.2.3.2 Remark: It is easy to see, by Zorn's lemma, that every

bh-filter is contained in a maximal bi-filter.
F¢r an ordered topological space (X, 7 , &), We write
Ty X = {A ¢ X: A is a closed decreasing set}, and

{A <€ X: A is a closed increasing set}.

n

Ie X

2.3.3 Lemma: Let (%, ¢f) be a maximal bi-filter, and Ael, X.
Then Ae # if and only if givenFe #, Ge%, we have An F n G 3 0. A

dual statement holds .for 0} .

Proof: (—): Trivial

(«): Let B.,. be a filter base of %, which consists only of decreasing
closed sets. By the hypothesis, A n B $ ¢ for all Be ¥4. Let 7' be
the filter generated by a family {A n B: Be By }. Then -3' is evidently
a closed filter on (X, U ) and ‘1 & ', Since (-, ©}) is clearly a

bi-filter and (%', ¢jJ) 2 (%, 9 ), it Follows that (%, ¢} ) = (F', %)
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by the maximality of ( 4,9 ). Hence A= "h', this is AeF.

r

2.3.4 Lemma: Let (%, ¢} ) be a maximal bi-filter. Then the following
statements hold: .
1. Let Ay and A; be in I, X and Ay v Az € “& .
Then either Ay € "% or Az € H.
A dual statement holds for % .
2, Let Aely X, Bel, X and A u B = X.

Then either Ae F1 or Be Y.

Proof: (1): Assume that A ¢ % and A, ¢ 3 . By Lemma 2.3.3, there
exist Fy, Fp €  and Gy, Gy € o} such that A; n F; n Gy = ¢ and

A2 0 F, 0 Gy = §. Hence (AjuAz) n (F1nFa) n (GynGy) = ¢. It follows
that (AjuAy) ¢ F .

(2): Suppose that A ¢ F and B ¢ c. Then A n F) n Gy = § and
BnF,nGy = ¢ for some Fj, Fp in % and for some Gy, Gz inY% . Since
(F, c3 ) is a bi-filter, (FnFy) n (GynGy) $ ¢. It is then easy to

see that A u B ¥ X.

2.3.5 Remark: Let (X, 77, <) be an ordered topological space with
semicontinuous order. For each xeX, we write
$(d(x))
$Yi(x))

{A is a subset of X: d(x) ¢ Al, and

{Aris a subset of X: i(x) ¢ A}.

Then every ¢(d(x)) is clearly a closed filter, but it need not be a

maximal closed filter in (X, ‘WL ) under the inclusion relation. See the

example below. 'Moreover, a dual statement holds for {(i(x)).

Example: Let N = {0, 1, 2} be an ordered topological space equipped
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with the usual order and discrete topology, i.e. 7 = {¢, {0}, {1},
{2}, {o0,1}, {0,2}, {1,2}, {0,1,2}}. Then 4w = {4, {2}, (1,2}, {0,1,2}},
and ¥ = {4, {0}, {0,1}, {0,1,2}}.
Since sa(dfo))= y({0}) = {{o}, {o,1}, (0,2}, {0,1,2}},

(1) = 4({o,1}) = {{o0,1}, {0,1,2}}, and

$(d(2) = $({0,1,2}) = {{0,1,2}}, it follows that $(d(2)) ¢ $(d(1))
¢ $(d(0)). Hence (d(2)) and §(d(1)) are not maximal closed filters

in (N, 4L). We note that, if the given order on N is discrete, then

|
3

$(d(x)) is a maximal closed filter.
!

2,3.6 Lemma: Let (X, 7 , <)} be dn ordered topological space with
semicontinuous order. Then for each xeX, (4(d(x)), ¥(i(x)))is a maximal

Proof: Let Aey(d(x)) and Bey(i(x)). Then d(x)< A and i(x) ¢ B.

Hence A n B # §. Therefore (¥(d(x)), v(i(x))) is a bi-filter. Suppc;se
that there exists a bi-filter (#, 9 ) such that (¥(d(x)), ¥(i(x))) &
(%, ¢F). It follows that either @(d(x)) & For Y(i(x))gcf .

Suppose that Y(d(x))& F , then there exists an F ¢ 3 Msuch that

F ¢ w(d(x)); hence d(x) & F. Since % is a closed filter in (X, avL ),
there exists a decreasing closed set A such A € 4 and A ¢ F. Hence
a(x) ¢ A or x ¢ A. Therefore i(x) < X-A or (X-A) e ¥(i(x)). It follows
that (X~A) € , and thus A n (X-A) = ¢. This is a contradiction,

since (4, ©} ) is a bi-filter. Also in the case that Y(i(x)) ¢ ¢} , we

obtain a contradiction by a similar argument as the above. Therefore

(¥€d(x)), Y(i(x))) is a maximal bi-filter.
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In what follows, we assume that (X, 7 , S) is a convex ordered
topological space with semicontinuous order.
Let wo(X) denote the collection of all maximal bi-filters (% ,C} ) om X.

For a given closed decreasing set A and a given increasing closed set

1]

B in X, define Ad {(F,c4) e wg(X): Ae}, and

B1

{(CH,05) e»Wo(X): Beo}},

then the family {Ad: AeTy X} forms a closed base for a topology on
wo(X), since (A;qu)d = A? u Ag holds for any A} and Ap; in Ty X.
Similarly, the family {Bi: Bel, X} forms a closed base for a topology
on wg(X).

Let 4, and "W, be the topologies on wg(X) which have the above
families as their closed bases, respectively.

Let‘ﬂcfbe the smallest topology on wo(X)‘containing W, and W ,
then every basic open set in (wp(X),W ) can be written in the for;
wo(X) - (Adusi) for some Ael,, X and for some Bel, X. We also note

40 ad and (By0By)t = BY o BI, where A;, A, in T, X

that (AlnAz)d = A
By, By in T, X.
Let us define an order relation < on wo(X3 as follows:

(“Fyy C3y) s (H5, “J2) if and only if by 2 P, and T}y < S, for any
(3, *},) and (F3, o) in wg(X). Then S is obviously a partial

order on wg(X). Hence (wg(X),*'W, S) is an ordered topological space.

2.3.7 Remark: Let (wg(X),4J, <) be the ordered topological space
given in the above, and let Ael,, X and BeT, X. Then Ad is a closed

i, . . .
decreasing set and B” is a closed increasing set in wp(X).
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Moreover, wg(X) is a convex ordered topological space. For, in order
to show that A% is decreasing, let (Fy, ;) ¢ ad and (%o, F2) s
(Fy, 1) for (Ao, % 5) in wo(X), then “hy & Ap. - Since A € “H,

A € fi;. Hence (o, ‘}z)eAd. Therefore A% is a decreasing set.

i, . .
Dually, B" is an increasing set,

2.3.8 Lemma: Let (X, "7 , <) be a convex ordered topological space
with semicontinuous order. Let us define a map ¢: X -+ wg(X) by
o(x) = @A(x)), w(i(x))) for each xeX. -

Then ¢ is a dense embedding from X into wg(X).

Proof: Firstly, we show that ¢ is an isomorphism. To show that ¢

is one to one, let x $ y in X. Then x § yory § x. If x ¥y, then

y ¢ i(x) or i(y). ¢ i(x). It follows that i(x) é(_g(i(y)) 61*

$(i(x)) $$(i(y)). Hence (4(d(x)), @i(x))) $ (4d(y)), wi(y))),
i.e., ®(x) £ ¢(y). similarly, if y $ x, then we have &(x) ¥ ¢(y);
therefore ¢ is one to one. Let x €y in X. Then y € i(x) and x e d(y).
It is easy to see that Y(d(y)) & $(d(x)) and 9(i(x)) ¢ W(i(y)). Hence
(4(d(x)), (i (x))) s (wd(y)), (i(y))), that is, ¢(x) < ¢(y). Therefore
¢ is an increasing map. It is also immediate that if e(x) < ¥(y),

then x £ y. This proves that ¢ is an isomorphism from (;(, <) into
(wo(X), $). Secondly, we show that ¢ is a dense homeomorphism from

(X, 7 ) into (wp(X),w). We observe the following: for given closed

d

decreasing set A, A" n ¢(X) = {(Pd(x)), P(i(x))): Aey(d(x))}

{(4(a(x)), 9i(x))): A(x) & A}

{®(x): xeA} = ¢(A).

]



Similarly, for a given closed increasing set B, Bi n &(X) = ¥(B).

Since X is a convex ordered topological space, it is easy to see that

¢ is a homeomorphism from X onto ¢(X).

To show that 0(%) is a dense subset of wp(X), let wg(X) - (AduBi) be a
non-empty basic open set, where A is a closed decreasing set and B is

a closed increasing set. Take a maximal bi-filter (F5F ) e wolX) -
(AdVBiJ. Then (F, <} ) ¢ Ad and (%, 9 ) ¢ Bi. Hence A ¢ F and
B¢<. By Lemma 2.3.4, A u B $ X. Hence (X-A) n (X-B) # §. Pick a
ye(X-A) o (X-B), then ¢(y) = (y(d(y)), $(i(y))) e #(X). As5ume that gj
o(y) ¢ wo(x) - (A%Bl).. Then o(y) € &% or o(y) € BY. If o(y) e a9,
fee., (9(a(y)), $(iyIN e AY, then A € Y(d(y)). Hence d(y) < A.
Therefore yeA, which contradicts the fact that yeX-A. If ¢(y) ¢ Bi,
then we again have a contradiction. Hence ®(y) ¢ wo(X) - (AduBi).
Therefore %(X) n (wo(X) - (AduBi)) $ ¢, that is, ¢(X) is a dense subset
of wy(X). Hence, we have proved that, ¢ is a dense embedding from

[
(X, 7 , <) into (wp(X), W, <).

2.3.9 Lemma: (wg(X),4W, <) is a T} compact orderedrspace.

N
Froof: To show that wo(X) is a Ty space, let Py, 40 3 (hyy S9)

in wg(X). Tirst we assume that Ay ¢ #,. T;ﬁg I'y € /4, such that

Iy ¢ F,. Since “#q is a closed filter in (X, W ), there exists a
clos?d_decreasing set A; such that A ¢ 'ﬁ; and A} < Fj, and hence

Ay ¢ ha. It follows that (F,, ;) ¢ A(li and (Fp, F2) ¢ Acll. Therefore,

wo(i)-A? is an open neighbourhood of (3, - 2) in wg(X) such that

(Fy, G ¢ wo(x)—Ag. Next, if ‘A, ¢ F,;, then by a similar argument

4
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as that in the case 'df F1 & Fp, there exists an open neighbourhood

AN

of (hy, ¢¥1), which does not contain (F,, F,). If i, ¢ F), then
32 ¢ 3y, because (Fy, F;) and (Fy, F) are distinct maximal
KL bt

bi-filters. Hence, there exists a closed increasing set B, such that
B> ¢ ) and By ¢ 41. Therefore (“hy, % 5) ¢ Bé and (%, F1) ¢ B%.
It follows that wo(x)—B; is an open neighbourhood of ('#;, ¢4;) which

does not contain (“Ay, Clz). This proves that wo(X) is a T space.

»

i
B

be a family of subbasic closed sets having a finite intersection

Now, we show that wo(k) is a compact space. Let {Ag, B.: ael, Bea}
property. Hence, let A'be the filter generated by {Aa: ael}, 'and B
the filter generated by {BB: BeA}, then (A, B ) is evidently a
bi-filter. By Remark 2.3.2, there exists a maximal bi-filter (‘&, )

containing (A, B). It follows that Ay € f and B, ¢ S for all

]
ael and all BeA. Therdfore, (f1,¢ ) ¢ a {Az n B;: ael, BeA}. By

Alexandroff subbasis theorem, (wg(X),'W ) is a compact spage.+

2.3.10 Remark: In the proof of the above lémma, we note that

(wa (X), 4, =) is an ordered topological space which has either lower
semicont inuous order or upper semicontinuous grder.

We also néte that a compact ordered spéce with lower semicontinuous

- . . . ot
order need not have a semicontinuous order. - To see this, let 22 be

I

the set of all natural numbers equipped with the usual ordering and

the cofinite topology. Then ;g+ is compact and its order is lower
. . . . . + . .
semicontinuous, since d{n) is closed for each nc 2 . But its order is
’ -

not semicontinuous because it is not upper semicontinucus. In particular,
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uy

N

" this shows that a T; compact ordered space need not have a semicontinuous
order,
Combining Lemma 2.3.6, Lemma 2.3.8 and Lemma 2.3.9, we obtain the

S

following theorem:

2.3,11 Theorem: Let (X, 7 , <) be a convex ordered topological space
v )

with semicontinuous order, then (wg(X),W, <) is a T} compact ordered

space in which X is aensely embedded.

2.3.12 Remark: We note that if the given order on (X, 7 , $) in the
aboye theorem is.éiscrete, then the Theorem reduces to the Wallman
compactification of general topology.

Let (X, 7, $) be an ordered topological sﬁace and (Y, ', <') a
compact ordgre'd space with continuous order, and (%, ¢ ) a maximal
bi—filte? on X. Let f: X+ Y be a continuous increasing map.: Let us
define by -3* the filter generated by the family {A|A is a closed
decreasing set in Y and £~ 1(A) € 33}, and by'c?* the filter generated

by the family {B{B is a closed increasing set in Y and f~1(B) e G} }.

2

2.3.13 Lemma: - Under the above assumptions, ( “h¥, cj*) is a bi-filter

on Y and there exists a unique y in Y such that y € n {FnG: Fe-x* and

Gec}*}: \? C !

Proof: Since f is a continuous increasing map, it is easy to show that
S* is'a closed filter in the upper space (Y, 44 ) and c7* is a closed
filter in the lower¥space (Y, }. It is also straightforward that

< jﬂ*, °]#*) is a bi-filter in Y. Since Y is compact’, the filter

A

A
.
an
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~

A \\
{FnG: Fe'x*, GeC}*Y has an ac\cumulation\point y.
Hence y € n {FnG: Fe 3%, Geg*} & n {FnG: Fe g%, GeF*}

< o {AnB: Ae By, Be Bey 5}

u

n {AnB: Ae By, Be /.B‘]-,.:}
. & n {FnG: Fe'&*, Geg*},

'where‘ LB?* and 3 oy % are the filter bases of % * and 0} * respectively.
Hence there exists a y in Y such that y ¢ {FnG: Fe'}* and GeC}*}.

In order to!see the ilqueness of y, suppose that there exists x * y in
Y such that x and y avre :lements of n {FnG: Fe %, Ge ©} *}. Then we

may assume that x § y. Hence i(x) n d(y) = §. Since Y is a compact
ordered space with continuous order, we can show that there exist an
open increasing neighbourhood U of x and an open’ decreasing neighbourhood
V of y such that U n V = ¢; thus (Y-U) v (Y-&I) = Y, Therefore

£ 1(y-U) v f'l(Y;V) = X. Since f ig a‘ con::inuous increasing map, by
Lerma 2.3.4, £ 1(Y-U)e F or F1(Y-v)e 9. By the definition of - ’3;*

and %, (Y-U)e'H* or (Y-V)e G*. If (Y-U)e 3*, then x € Y-U, and

hence x ¢ U, which contradicts the fact that xeU. Similarly, if

(Y-V)e cj%, then we obtain a contradiction. Hence x =y,

2.3.14 Theorem: Let (X, 7 , $) be a convex ordered topglogical space
with semicontinuous order and (Y, 7', <') a compact ordered spacé with
continuous order. Let f: X + Y be any continuous increasing function.
Then there exists a unique continuous increasing function ¥ from

wo(X) into Y such that £ o @ = £,
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Proof: Let f: X - Y be a continuous increasing function. For given __

-

( 9.‘, C}«) € WO(X), let %* and %’k be the filters given as before. Byt
AN
\ N

Lemma 2.3.13, there exists a unique point of n {FnG: Fe<x*, Ge Of*}. 1

Now, let us define f: wo(X) +.Y as follows: for given(, S} ) € wo(X),

= , S . SN
f((%, G )) is the unique point of n {FnG: Fe 4%, Ge }*}, that is,
(7, cf)) € n {FnG: Fe #%, Ge oj*}, then we show that f is the

required map.

Firstly, we show that fFod=f: Let x be any point of X. Then we

can easily show that [9(a(x))1* = (a(£(x))) and [Y(i(y))I* = Y(i(£(x))).
Hence ([$(d(x))]%*, [$(i(x)}]*) = (g(d(£(x))), y(i(£f(x))). It follows
that (Fod)(x) = ?((g?(d(x)), $(i(x)))) = £f(x). Thus fodo=£f. Now,

we show that f is continuous map: Since wp(X) and Y are convex ordered
topological spaces, it is sufficient fo show that F is con‘tinuous from
(wo(X), Wy ) into (Y, X ), and f is continuous from (wp(X), Wy )

into (Y,4L ). For a fixed point ( %, ¢ ) £ wo(X), let U-be an open
decreasing neighbourhood of £((h,9)) in Y. Hence Y-U is a closed
increasing set and dogs not contain ¥((Hh, % )). It follows that
d(?((‘}., 3 ))) nl(Y-U) = @ Since Y' is a compact ordered space with
continuocus order, there exist an open decreasing set W and an open
increasing set V such that d(F((F, 4 )) €W, Y-US Vand Wa V= 9.
Hence (Y-W) u (Y-V) = Y; therefore £~1(Y-W) u £-1(Y-V) = X. By .
Lemma 2.3.4, £~1(Y-W)g S} or f’l(Y-{l)g % for any maximal bi-filter

(%, 93 ). Hence (T, ) e [£71¥-W1% or (%, ) e 12 (x-v1%
Therefore (%, 1 ) € [£-1(v-0)1% u.[£1(r-v)1%. It follows that

£71r-01% v (£ -119 = wo(X).  But, since AUF((Fy G )) < W,

B
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\ F((%, op)) ¢ Y-H. Hence it is easy to see that (%, o) ¢ £ 1y-1.
Thus wg(X) - [f"l(Y-W)]i is an open decreasing neighbourhood of
(F, 03) in wo(X). Let ('S ") bt; a member of wp(X) - [f‘l(Y-W)]i.
—Then (-3', ') ¢ [f’l(Y-—W)]i. Since we have already shown that
wo(X) = (£ 1= 1t v [F 1019, (', ") € [E1(x-V)1%.  Hence
£rl(Y-v) e ', and therefore (Y-V) ¢ (-3')*. It follows that
F((5', ")) € Y-V ¢ U. Thus we have £((wo(X) - [f’l(Y-—W')]i)) < U.
‘Hence, f is a continuous function from (wg(X), W, ) into (Y, ).
Similarly, we can show that f is continuous from (wo(X), ‘U{'t ) im\:o
(Y, ). Therefore f is a continuous function. - ”
Finally, we show that f is an increasing map. Let ( %;, %F3) <
(F2, %) in wg(X). Suppose that £(( Fy, % 1)) ¥ F((Fa, %5)).
S:'lnce Y is a comapct ordered space with continuous order, there exis¥
an open increasing neighbourhood U of F((F1, %)) and an open
decreas‘ing neighbourhood V of f({ %3, %,)) such that U n V = Q
Hence £(( $1, %1)) ¢ V. Since T is a’ qontinuous function from
(wy(X), UL, ) into (Y, & ), there exists a closed increasing set A in X
such that wp(X) - Ai is a.n~ open decreasing set containing (o, %>)
and F( (wo(x)-Ai)) c V. Hence,’we have ( %, %F1) e wo(X) - Ai, since
(Hy1, 1) s (ha, 1), It follows that £(( Fy, 1)) € V, which
contradicts E((Fj, %1)) ¢ 'V. Hence, we have F(( Py 1)) s T((Fa, F5)).
{3y This proves that f is an increasing function. In particular, the ‘

uniqueness of F is clear.

2.3.15 Theorem: Let ( x‘, 7 , S) be a convex compact ordered space with:
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.

semicontinuous order, then (X, 7 » S) is iseomorphic with (wy(X), W, <).

Proof: Let (“A, %} ) be a maximal bi-filter on X. Then the filter
{FnG: Fe'F, Ge }} has an accumulation point, say y, in X. Hence, we
have {x} € n {FnG: Fe %, Ge G} < n {FnG: FeH, Ge %}

< n {AnB: Ac By , Be Bg}

n {AnB: Ae By , Be Bg }

where B_.r,‘ and Bq are the filte)r bases of % and 9} respectively.
Since d(x) is a closed decreasing set and {x} < n {A: Ae By}, we have
d(x) ¢ n {A: Ae B4 }. Similarly, we have i(x)c n {B: Be Ba} }. Hence,
it immediately follows that ( F, % ) ¢ @A(x)), g(i(x))).é By the
maximality of ( %, o ), we have (i, 9% ) = (@(d(x)), ¥(i(x))). Hence,
we have ®(X) = WoiX)- Therefore (X, 7 ,.’s) is iseomorphic with

(wo(X), W, ).

2.3.16 Definition: (Nachbin [27]): An ordered topological space

(X, 7, s) is said to be normally ordered if, for every two disjoint
)

closed subsets A and B of X such that A is decreasing and B is increasing,

there exist two disjoint open sets U and V such that U contains A and

is decreas'ing, and V contains B and is increasing.

i

2.3.i7 Theorem: Let (X, 7 , ) be a convéx ordered topological spacé

A4

with semicontinuous order. If wo(X) has a continuous order, thén X is

~
t

Proof: If wp(X) has a continuous order, then wg(X) is clearly a

normally ordered space. Let A and B be two disjoint closed decreasing

e
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and increasing sets in X, respectively. Suppose that Ad n B* * ¢,

and pick (%, ) ¢ Ad n Bi. Then Ae Fand Be . Since (%, 0} ) is

a bi-filter, A n B } ¢, which is a contradiction. Hence ad qsls 9.
Since wg(X) is normally ordered, there exists an open decreasing set W
and an open increasing éet W' in wp(X) such that Adg W, Big W' and
WA W )? 0. While,'w and W' can be written in the following fOIW;IS:
W= g (WO(X) Bj
since A% and B* are compact we have Adg o (wo(X)-—B ) = wp(X) - % B

=1 =1
=

) and W' = u (wo(x)-Ad), where B:J in I‘i X and Aj in T, X.

i

Lde s

Similarly, B® ¢ (wo(X)-—A;.l) = wlx) - (R A% Letu=x - ( A B,)

v jl 3 ]:1

(N
"CS

and V = X - ( nl Aj) Then U is an open decreasing set and V is an
i= .

open increasing set. Let xeA, then d(x) ¢ A, and hence (?(d(x)),

Wwi(x))) € ad, Since A < wo(X) -°( A B ) » we have (Y(d(x)),

j=1
(i(x))) ¢ B.)i. Hence rrll B i(x)); therefore i(x) an B,
(f * j=1 3 j=1 ¢§’( £] =] ]
Hence, we have xeX - 'Rl Bj' It follows that A U. Similarly, we
j: .

have B& V. We also note that [wo(X) - ( n:L B.)" ] n [wo(X) - ( 91 AJ) 1=

- 4
Hence, it is easy to see tha‘t; UnV=9. This proves that X is a

. v '
normally ordered spa};e\

2.3.18 Remark: We note that giventhe following diagram:

&

X ——?——-7 wo()é) , where X is a completely regular
- ~
Bo P
..~ Bo - '
« ‘v . o “--
BpX . s
’ \
-

x) - (& 8.t
vo 521 J

9.
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ordered space, and BgX is a compact ordered space with continuous
order described in Remark 2.2.8, there exists a unique continuous
increasing function Bj such that Bo 0 & = Bo. However, we do not know
whether or not the converse of Theorem 2.3.17 holds. If the converse
of the theorem 2.3.17 holds, then BoX and wo(X) are order equivalent,
in other words, there exists an iseomorphism from wp(X) onto BgX

such that the above diagram cammutes.

Section 4. Order compactifications of lower semicontinuous functions.

s/

We recall that a function from a topological space X into
is lower semicontinuous if and only if for each ac R, £f-1((a, =))
is open in X (see 0.16).
Let (X, 7 , <) be an ordered topological space énd let:

t

L (X) = {£: f is a lower semicontinuous function on X}.
»

ZV(X) = (Fe U(X): £ is nonnegative}, and

u'Ci(X) = {fe £(X): f is increasing}, and
-l'd(x) = {fe £7(X): £ is decreasing}.

We also denote by 4 and ., the upper and lower topologies, respectively,.

2.4.1 g_e&'_)_c_: It is;essy to see that the following statements hold:
1. U is an open i;xcreasing set in (¥, 7, <) if and only if its
characteristic function 'XU belongs to _(,i ), and
U is an open decreasing set in X if and only if its characteristi:'c
function 'XU belongs to ,{d(x); |
2. ¢t+(x), ‘(l (X) and f,d(X) form semi-rings under the usual

pointwise operations (cf. 0.1§).

T
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2.4.2 Remark: The idempotent set of .—gi(x) is equal to the family
{XU: UeU } of all characteristics functions of open increasing sets
in X. For, since every characteristic function is obviously
idempotent, the former is clearly contained in the latter, from the
above Remark 2.4.1. In order to see the other incluéion, let f be a
non-negative lower semicontinuous increasing function and f2 = f.

Let F = {xeX: f(x) = 0}, then F is a closed decreasing set. Hence
X-Fe U and £ = XX-F.

Given f, g in .Z(X), define (fvg)(x) = max {f(x), g(x)}, and

(£Ag)(x) = min {f(x), g(x)} for each xeX, then (fvg) and (fag) are in
Z(X). In fact, Z(X) is a complete join semilattice. In particular,
,,Ci(X) and ,zd(x) are lattices under the above operations v and A.

The following definition is due to Nielsen and Sloyer [28]:

2.4.3 Definition: A proper subset I of .zi(X) is called an ideal if
and only if it satisfies the following conditions:

1. If f and g are in I, then f + gel.

2. If fel and ge ,ti(X), then gefel

3. If feI, then there exists an)idempotent g€y g # 1 in ;(,’i(x)
such that g*f = f, where 1 is defined by 1(X) = 1.
Ideals in _-gd(x) are defined analogously.
Let Ibe an ideal in 2M(X), and let fe£'(X) - I. Then the ideal .
generated by I v {f}, denoted by (I,f) is clearly the ideal {m+f&-f:

mel, Le ,ti(x) and ge(m+2+f) = m+»f for some idempotent g(#1) in 1,1(X)}.

2.4.4 Remark: Let (X, _'j) be a Ty space. Then each point of X can be
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associated with a maximal iQeal in L+(X) (see Nielsen and Sloyer [25]
and 0.18). But, this statement need not be true in an ordered
topological space (X, 7 , sS) with semicontinuous order: For example,
let'X = [0,1] be a topological space equipped with the usual topolo
and the usual order. TFor each xeX, let I = {fe ,ti(x): f(x) = 0}.
Then it can be shown that Ix is an idéal of ;ti(X). In fact, let
stx. Then X-d(x) €4L, since d(x) is a closed decreasing set in X.

e 270, X $ 1 and

X-d(x) X-d(x)
le_d(x)-f = f. Hence I is an ideal for each xeX. Given xeX (x # 0),

K4

By Remark 2.4.1, it follows that X
- -
I, & Io» so that I is not maximal for each x(#0). We also note that

if the order on (X, J , <) is discrete, then L+(X) = .tl(X).

2.4.5 Remark: The following statements are easy to see:

1.  Let Ty (X) denéte the family of all closed decreasing sets in
X and Ty (X) the family of all closed increasing‘}{in X, then
Lo (X) = {Z(£): fe L (XN} and Tp (X) = {Z(H): fe LX)}, vhere
Z2(£) = {xeX: £f(x) = 0}.

2. If f and g are elements of ‘zf(x), then Z(f+g) = Z(f) n 2(g)
Z(f+g) = Z2(Ff) v Z(g).

The following definition is due to Canfell [4].

2.4.6 Definition: Let I and J be ideals in gci(x) and xF(X)

respectively. The pair (I,J) is said to be a bi-ideal in ( ;(,i(x),
(X)), if given ieI and JeJ, (i) n 2() % §. .-

For given two bi-ideéls'(l;,Jl) and (Iz,J2), we define a relation

(I;,0;) € (Lp6Jd7) if and only if I ¢ Iy and J) & Ja.

4
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By a maximal bi-ideal on X we mean a bi-ideal not contained in any

other bi-filter under the above relation.

2.4.7 Remark: We note, by Zorn's lemma, that every bi-ideal is
contained in a maximal bi-ideal.

Let My(X) denote the set of all maximal bi-ideals in ( J:l(X), -LF(X))~

2.4.8 Lemma: Let (M,N) e M(X) and let fe if(x).
Then feM if and only if for giveimeM and neN, Z(f) n Z(m) n Z(n) % ¢.

A dual statement holds for N.

Proof: (—>): Let feM. For givdl meM and neN, since M is igeal,
»
m+feM. Hence ¢ § Z(£+m) n 2Z{(n) = Z(£f) n Z(m) n Z(n).
(¢-): Assume that f¢M. Let (M,f) be the ideal in.'(}(x) generated by

Q\and £, then (M,£) = {m+%f: meM, Le z%(X) and g*(m+&f) = m+df for some

_ idempotent g(#1) in ;ti(x)}. For each neN, Z(m+%£f) n 2Z(n) = Z(m) n

Z(#£) n Z(n) 2 Z(m) n Z(£) n Z(n) % ¢, that is, Z(mt&f) n Z(n) % ¢.
Hence ((M,f), N)) is a bi-ideal containing (M,N). But, this is a

4
contradiction to the maximality of (M,N); therefore feM.

2.4.9 Lemma: Let (M,N) € My(X). Then the following statements hold:
l.Let f and f' be elements of :ti(x) and f-f'eM, then either feM
or fleM.
A dual statement holds for N
2. Let fe g}(X) and ge ;?(X), then f+g = 0 implies either feM

or geN.



54

Proof: (1) and (2) are immediate from Lemma 2.4.8.
Let us define fd = {(M,N) € M y(X): feM} for given fe‘;}(X), and
gl = { (M,N) € M p(X): geN}-for given ?e.x?(x),
d i . .
then {f: fe L (X)} fom}s\a base for the closed sets in TM(X), since

d e} d

£ v £'% = (£.£1)%  similarly, {g': ge 1?(x)} also forms a base for

BN
the closed sets in YMg(X). We denote the topologies in Tﬂﬂ(xszave

{fd: fe I}(X)} and {gi: ge IF(X)} as basis respectively, by 1M, and
Mm,,, and let N\ be the smallest topology containing e and Y.
Define an order relation s on My(X) by the following: (M,N) < (M',N')
if and only if M.2 M' and N € N' for each (M,N) and (M',N') in M,(X).
Then s is obviously a-partial order on TG(X) and ( My(X), M, <) is

an ordered topological space.

2.4,10 Remark: It is immediate that fd and g:L are closed decreasing
and increasing sets in ( My(X), M, <) respectively, for given
fe 1}(X) and ge ;ﬁd(x). Hence, we note that My(X) is a convex ordered

topological space.

2.4.11 Proposition: The convex ordered topo;%ical space ( W(X),It, <)

is Tj-compact.

Proof: By analogous arguments éz those in Lemma 2.3.9, we can show that

M y(X) is a T; space. In order to show compactness of Vy(X), let

{f:, g;: ael’ and BeA} be a family of subbasic members with the finite

d

intersection property. We note that if fa

Hence {Z(fu), Z(gﬂ): acl’ and BeA} has the finite intersection property.

n g; 3 ¢, then Z(£)) n 2(gy) 9

e e by bty e T

U a R g s e N
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Let us define I = {fe Z(X): Z(£) 2 '%1 2(£,4) for any finite number
J:

of fu} and J = {ge ;cd(x): 2(g) 2 jr_gl_ll Z(gej) for any finite number of
gB}. Then it is easy to see that I and J are ideals in :(,i(x) and
;Cd(x), respectively. Therefore, the pair (I,J) is obviously a
bi-ideal. By Remark 2.4.7, there exists a maximal bi-ideal (M,N)

containg (I,J). Hence faeH and g _eN for all ael' and all Bea. It

8
follows that (M,N) € 'fg and (M,N) € gg. Hence (M,N) € n {fg, g;: ael

a
and BeA}, and therefore M p(X) isAcompact space by the Alexandroff

subbasis theorem.

2.4.12 Definition: Let (I,J) be a bi-ideal in ( 2>(X), z3(X)).
Then the bi-ideal (I,J) is said to be fixed if there exists a point

peX such that p e N{2Z(i), 2(j): iel and jeJ}. Otherwise, it is said

to be free,

2.4.13 Lemma: Let(X, 7 , S) be an ordered topological space with
semicontinucous order. For each peX, define M; = {fe £5(X): f(p) = 0}
and H; = {ge Ld(x): glp) = 0}.

Then (H;, Mg) is a fixed bi-ideal with a point p.

Proof: This is immediates from the definition.

2.4.14 Proposition: Let (X, 7, 5) be an ordered topological space with
semicontinuous order. Then the fixed maximal R-—ideals in (.,zjl(X),
id(X)) are precisely the pairs (H;', ﬁg) for peX.

Moreover, these bi-ideals are distinect for distinct points in X.

X

ey Al o o —
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Proof: Let (M,N) be a fixed maximal bi-ideal with a point p in X.

d

Then it is easy to see that (M,N) € (Mll), Mp). By Lemma 2.4.13,

i

(Mp, Mg) is a fixed bi-ideal with a point p. To show Ea}imality of

(Hli), Mi),let fe _zjl(x) and f *\M;; then f(p) > 0. Since i@) is a closed

increasing set, X-i(p) is an open decreasing set. By Remark 2.4.1,

xx-i(p)
xeZ(f) n Z2(X

€ ;('d(X). Suppose that Z(f) n Z(Xx_i(p))% $. Take

), then f(x) = 0 and X (x) = 0. So, x ¢ X-i(p).

X-i(p) X-i(p)
Hence xei(p), i.e. p s x. It follows that £f(p) s f(x). Hence f(p) = O,
» wWhich is a contradiction. Therefote, we have Z(f) n Z( y'X-i(p)) = 4.

We also note that X belongs to Hg. Hence ((M;',f), Mg) is not a

~X-1(p)
bi-ideal. We can easily observe that a dual result holds for g ¢ td(x)
and g ¢ Mg. .Therefore (Hli), Hg) is a maximal bi-ideal. Hence, the fixed
maximal bi-ideals in ( ,ti(x), q;d(x)) are precisely the pairs (H;, Hg)
for peX.

Let p # q in X. Then we may assume without loss of generality that -

q § p. Hence p ¢ i(q) or peX-i(q). By Remark 2.4.1, ’xx—i(q) € ﬁd(X),
. ) . d
and hence )’.x_i(q)(q) = 0 and )Lx_i(q)(p) = 1. Henc‘:e ’)Lx_i(q) € Mq,

d i 4 i . d .
but xX—Kq) ¢ Mp. It follows that (Mp, Mp) 3 (‘Mq, Hq). This completes

»

the proof. '

2.4.15 Progositiorf: Let (X, 7, <) be a compact ordered space with

semicontinuous order, then every bi-ideal in (,,tl(x), :f,d(x)) is fixed.

Proof: Let (I,J) be a bi-ideal in (z;l(x), ;(-,d(x)). Then the family
{2(i), 2(3): ieI, jeJd} has the finite intersection property. By

compactness of X, the result immediately follows.
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2.4.16 Remark: From Propositions 2.4.1% and 2.4.15, we note that if

(X, 7 , s) is a compact ordered space with semicontinuous order, then

every maximal bi-ideal is of the form (H;, Hg) for peX.

2.4.17 Theorem: Let (X, 7, s) be a convex ordered topological space

with semicontinuous order, then (X, 7 , s) is iseomorphic to a dense
subspace of ( My(X), M, <).

Proof: Let us define a map e: (X, 7, s) = ( Mp(X), M , <) by

e(p) = (M;, Mg) for each peX. Then, by Proposition 2.4.11, e is injective.

Firstly, we show that e is an order isomorphism: If p < q in X, then

i i d d i d i .
Mo Mq and MPC: Mq. Hence (M;, Np) < (Mcll’ Mg), that is,e(p) s e(q).

P
So e is an increasing function. To show that if e(p) < e(q) in Yrtg(X),

then p < q in X; assume that p § q; then\p* d(q) or p € X-d(q).

Hence )”X-d(q) € :z:i(X), -Xx—d(q)(P) = 1 and .'X’x-d(q)(q) = 0. It

' i i i i .
follows that xX-d(q) € Mq and xx-d(q) ¢ HP. Hence Mq ¢ Mp’ which

is a contradiction; therefore p < g. Hence e is an order isomorphism,

We can therefore identify X with e(X).
Secondly, we shn;: that X is dense in My(X): it suffices to show that

if £ e LX) and ge £3(x), then TZOT = £ in ( MYx), My ) and

izig)] = ‘}-l in ( Mg(X), My, ), [here~denotes closure in the given

spaces respectively] because if f = g = 0, then X = mM(X). Since

2(f) & fd and fd is ’“-t -closed, - [Z(£)] & fd. On the other hand, suppose

that f’d13 Z(f) for some f' ¢ xl(x), then Z{f') = X n f'd:_D Z(£) -

d =7 +
Let (M,N) ¢ f, then feM. Since Z(f') 2 Z(f), by Lemma 2.u4.8, we have

£'¢M; hence (M,N) ¢ f'd. It follows that f'd; ~fd. Hence [Z(f)] = fd

/A
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in (Mp(X), Mp ).

'

77 . By convexity of the topologies

1}

Finally, we Show that m|X

andin , it is sufficient to show that WYX = I, (X) and my|X = Ty (X)
(see Remark 2.4.5). Let f e,ﬁl(x). Then p € 2 ax i& (M;, Mg) € fd.

iff £ e M; iff p e 2(f). Hence it is easy to see that mLﬁ = Ty (X).

Similarly, we have ™M, lX = Te (X). The proof'is thus complete.

2.4.18 Corollary: Let (X, 7, sS) be a convex compact ordered space

with Semicontinuous order, then (X, 77, <) is isé@orophic to

L
4

( Jﬁo(X),m » S).

-

Proof: By Remark 2.4.16 fthe mapping e: X + Wo(X) given by

e(p) = (M Mp) is obviously onto. Hence the result immediately

follows from the above theorem. -

-

2.4.19 Remark: If the given order on X.in Theorem 2.4.17 is discrete,
then the theorem reduces to the main result of Nielsen and Sloyer [28].

‘ (see Theorem 0.19).

»
2

Section 5. Equivalence of the two order compactifications wp(X) and Ma(X).

In the sections 3 and ¥, we constructed two compactificafions
wp(X) and My(X) for a convex ordered topoIOgical ébace (X, T, <) with
semlcontxnhous order.' . . g | .
~ In this sectlon, We 1nvest1gate relatlons between wo(X) and hto(x) In‘.
fact, it turna out that they are order equlvalent. Throughout thls )

sect;on, we use the same notatlons as those given in the sectzons 3 and 4.

Let (X, CT 5) be an ordered topolbglcal épace w;th semicontinuous

=S

-
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order. Let I be an ideal in ;:J’(X) and " a closed filter in (X, W ).’
We denote Z@) = {Z(f): fel}, and

Z-L(F) = {F ¢ £5(X): 2(F) eF }.

2.5.1 Lemma: Let (X, 77 , s) be an ordered topological space with
semicontinuous order. For any ideal I in xl(X), let "F be the filter
generated by Z(I); (that is, F= {F is a subset of X: F 2 4(f) for

some feI} = P([Z(I)])). Then F is a closed filter in (X, WU).

Proof: We show that Z2(1) is a filter base for % , consisting only of
decr_easing closed sets. Obvi;msly, Z(f) is a decreasing closed set for
each fel. Let Z(f) e Z(I). Then there exists an idempotent g 41 in
;Ci(X) such that g*f = £f. Hence Z(g) ¢ Z(f). Suppose that 2(g) = 0.
Then g(x) $ 0 for all xe¢X. Since g is idempotent, g(x) = 1 for all xeX.
Hence g = 1, but this is a conj:radiction. Therefore Z(g) # ¢ It
follows fhat z2(£) # o, 1f Z(f)‘and Z(g) belong to Z(I), then by
Remark 2.4.5, Z(£f) n 2(g) € 2(I). Hence Z(I) .is a filter base for & ,

that is, % is a closed filter in (X, U ). .

2.5.2 Lemma: Let (X, 7, S) be an ordered topological space with
semicontinuous order, and let "} be a closed filter in (X, ). Then

z"Y(*A) is an ideal in .;Ci(X). Moreover, 'Jl=‘;f([Z(Z'1(':h))]);

Proof: It is easy to see that 27}( %) is an ideal in ;Li(X). To show
the equality % =@([2(2"1(#))]), let F e y( [2(2"1(9))]). Then there
exists B ¢ 2(Z"1(%)) such that B < F. ’Since B e 2(Z"X (%)), B = Z(£f) _

for some £ € 2-1(%); hence Be, and thus Fe %. Conversely, let FeH.

-



60

Since % is a closed filter in (X, @l ), there exists a decreasing
closed set A such that Ae % and A € F .We note that A = Z( XX—A)'
Hence ’X'X-A ¢ 271 1), and hence A € Z(Z1(%)). If foldows that

F e([2 (27Y(#))]) and hence the equality follows immediately.

2.5.3 Remark: We note that the above two Lemmas 2.5.1 and 2.5.2 hold

dually for £%(x)and (x, L).

2.5.4 Lemma: Let (X, , <) be an ordered topological space with

semicontinuous order. Let (M,N) be a maximal bi-ideal in (:,Ci(X),
;cd_(x)). Let % and 0;} be the filters generated by the families

{2(f): feM} and {Z(g): geN} respectj.vely; that is, F = P(Z(M)) and '
= Yz(N)). Then (%,¢ ) is a maximal bi-filter in X.

4

Proof: By Lemma 2.5.1 and Remark 2.5.3, '/ and €} are closed filters
in (X;_M) and (X, &£ ) respectively. If Fe Fand Ge 9, then there exist
feM and geN such that Z(f) € F and Z‘(g) < G. Sinc.e (M‘,N) is a bi-ideal,
Z2(f) n 2(g) ¥ ¢. Hence Fn G % ¢. Therefore (5, ) is a bi-filter
in X. 'To show the maximality of k'—}«, o} ), suppose that there exists a
bi-filter (‘7', o9') such that (F,%) ?_(.‘-}'.', of¥). . Then 7 & ' or
c';} €% '. If HSE F', then we have Z"1(F) & 27 1(%'). It is now easy
to see that (M,N) = (z7 (3, z*1(°1)).£ (z7X ("), 271( '), which
contradicts the r;laximality of (M,N). ' Simjilarly, if ¢ ¢ op', then we

have a contradiction. Thus (F; ¢} ) is a maximal bi- §ilter,

Y

2.5.5 Lemma: Let (X, 7 , <) be an,ordered topological space with

semicontinuous order. Let (%, f ) be a maximal bi-filter in X. .Then

e

P

TRy .
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(z"1#), 271(¢))) is a maximal bi-ideal in ( £M(X), £AX)).

Proof: By Lemma 2.5.2 and Remark 2.5.3, Z7!(F) and 271(% ) are ideals
in ;ci(x) and .(,‘d(X) respectively. IObviously, -1 x), Z"l(O})) is a
bi-ideal. Assume that there exists a bi-ideal (I,J) such that

(27 CR), 273<)) ¢ (1,0). Then Z°M(H) ¢ T or 2°1(% ) ¢ J. If
27Y(3) ¢ I, then we have‘f[Z(Z‘l( F)1¢ @l2(I)]. It is now easy to
see that (%, ¢} )& (W[2(I)], ¥I2(J)]). This contradicts thé maximality
of (#,9). If Z"l(‘i}) ¢ J, then we have also a contradiction. Thus,

(z7¥(H), 271(%)) is a maximal bi-ideal.

2.5.6 Theorem: Let (X,?r , S) be a convex ordered topological space

with semicontinuous order. Then given the following diagram:

X ——> My(x) ,
/
/o~
¢ 79
¢ .
wo(X)
there exists an iseomorphism @: Mg(X) + wo(X) such that Yoe = N

that is, WMy(X) and we(X) are order equivalent.

Proof: For any (M,N) g€ IMy(X), define 3 Mo (X) + wp(X) by 3((‘“,3))"—‘
($12¢M)1, P(2(N)]). This is well defined by Lemma 2.5.4. Now, we shall
show that ¢ is the requireﬂd map‘:

Firstly, we show that ®oe = ¢: Let xeX, and let A e4(d(x)); then

d(x) < A. Since d(xk) = 2( ”Y’x-d(x))’ we have ’y'x-d(x) € .:Ci(x); ‘'Hence -

X X-d(x), © M;. ;t immediately»follows that A € ?[Z(,M;)]. gence

| .‘_”qmunz-'» »
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Y(d(x)) ¢ ‘j’[Z(Mi)]. Conversely, let A € i_f[Z(Mi)]. Then A®2 Z(f) for

some f € M:; hence x ¢ Z(f). Since Z(f) is a closed decreasing set,

d(;c) € Z(f). Therefore d(x)< A or A ¢ @(d(x)). Thus ‘f[Z(Mi,)]Q:. f(d’(x)).

Hence we have show that pld(x)) = ':f[Z(Mi)] for each xeX. Similarly,
we can show that $(i(x)) = 9[Z(M:)]. Thus we have (@(d(x)), lf(.i(x))) =
(?[Z(Mi)], 57[Z(Mi)]. Therefore for each xeX,

(%oe)(x) = F(e(x))

Tl 4 d
3, D))

@z, @1z
(pCalx)), ¢(i(x))) = o(x). .

Hence doe = ¢.

Secondly, we show that ¢ is an order isomorphism: Let (M;,N;) and
(My,N) be in W;(X), and let ((My,N;)) = 8((M,,N,)), that is,
(¢l2(M1)], @l2(N1)]) = (P[2(M2)], w[2(N;)]). We can easily see that
My € 2-L(P[2(¥})]) and N, < ‘1(~f[z(Ni)])- Since (M;,N;) is a maximal.
bi-ideal, (Mj,N;) = (Z'I(S’[Z(HJL)]) Z“I(Y[Z(Nl)])) Slmllarly, we have

(M2,N2) = (ZLSIZ(4)1), Z7LPIZ(N)])).  Since BC(Mp,N1)) = F((My,Np)),

(Z X plz(M)]), 2-HPL2D) = (@ 1(PI206)]), 2-LEI2(0N)1)), that. is,

¥

"(M1,N1) = (My,N,). Hence & is one to one. o >
Let (F,¢ ) g wo(X). Then by Lemma 2.5.5, (2-1(%), 2~ (g £Mp(X).
Hence ¢ ((Z"Y('R), Z-1(%})) = (y[z(z“lcﬁ))] 5°[Z(Z'1("J))]) (;,,0} )
(by Lemma 2.5.2. Thus & is onto '
Let (M3,N;) S (uz,nz> in ‘Wo(X). Then M, 3 M, and N & Np. Thus, ve °
have P[Z(¥1)] 2 $U2(H2)] and $12(01)] SYL08)].  Hence B, <

‘¢((M2,N2)) and thus ? is mcreasmg.

AT e o i s
PP —— pFal
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Let (Mj,N;) and (Mp,Nz) be in YW o(X) and let 3((Mj,N;)) s 3({Mp,Np))

in wo(X). Then’it is easy to show that (M;,N;) < (Mp,N5). Therefore

? is an order isomorphism. .

Finally, we show that ? is a homeomorphism: For givélf € ;ti(X); let

(M,N) ¢ £%; then feMor 2(£) ¢ Z(M). Since Z(M) € $[Z(M], Z(E) e PIZM]. -
Hence 3((M,N)) = (plz(M)], YIZ2(N]) € Z(f)d. Thus we have 3(fd) < Z(f)d.
Conversely, let (“f, 0}) ¢ Z(f)d. Then Z(f) ¢ f or £ ¢ Z2"1(#); hence
(Z72(F), 2-1(3)) e £9.  Therefore $((z-1(F), Z°1(F)) = (F, 63 ) e (D).

Thus Z(f)d§; g(fd). Hence we have E(fd) = Z(f)d f rﬁgivéif e 25(X).

Dually, s(g}) = 2(g)* for given g ¢ otfd(x). Since ° (X) and wp(X) are

convex ordered topological spaces, ? is clearly a homeomoxphism. Hence

i~

¢ is an iseomorphism from "M (X) onto wg(X). This completes fhe proof.

2.5.7 Remark: If the given order on X in fhe,above theorem 2.5.6, is
discrete, then this reduces to ‘the main results of Brumger's paper [3]
" (see Theorem 0.20), that is, Yy (X) is the Wallman compactification of

a T, space X.

td
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CHAPTER III

E-COMPACT ORDERED SPACES

-~

Section 1. Separation Properties of ordered topological spaces.
in this section, all ordered topological spaces which we consider

are assumed to have a continuous order.

3.1.1 Definition: (Priestiey [29]). An ordered topological spacé

(X, 7 , =) is said to be an N-space if givenrclosed sets Fy, Fp such that
aj # ap; for all ajeF;, aeF,, there exist di;joint open sets G;, 'Gp
respectively decreasing, increasing such that Fi = Gi’ i=1, 2. .

An ordered Eopological space (X, 7 , s) is said to have property N‘if

and only if X is an N-space.

3.1.2 Definition: (Hommel [17]). 2An ordered topological space ‘ :v
(X, 7, 8) is said to have property:

TI iff, with respect to the ordering and the dual ordering of X, one has:
Given two disjoint subsets K, F of X, such that K is compact and F is
closed and decreasing, there is a decreasing neigbbourhood.U of F, and
an increasing neigibourhood V of K, such that 6 n'V:= 9. N

Tt iff given xeX and a neighbourhood U of z, there exists continuous

functions £, g: X =+ [0,1] such that f is increasing, g is decreasing -

n

and furthermore, f{x) = g(x) = 1, and inf (f,g) = 0 on X-U.

TIII iff for any x, yeX with x § y, there is a continuous incféésiﬁé\
- .

function f: X 4-HZ‘ for which f(x) > £(y).

T;y iff for any closed deg?gasing«(respﬁ increasing) subset F of X and

any point\‘xzt.f‘, there is an increasing; éégtinuous function f: X > R ‘
- “ "f. 6l | . ‘ : -

N R f .
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such that f = 0 on F and f(x) = 1 (resp. £ = 1 on F and £(x) = 0).

N

3.1.3 ProgositionQ Let (X, 7, $) be an ordered topological space.

If X has property N, then X has property TI'

Proof: Let K, F be disjoint subsets such that K is compact and F is
closed and decreasing. Then K is closed and b % a for any aeK and any
beF. Since X has property N, there exist disjoint open sets G, H
respectix;ely decreasing, increasing such that G2 F and H =2 K. Hence

X has property TI'

3.1.4 EEEEEE’ The converse, of the ébbve proposition 3.1.3 is not

true in general. For example, let [0,Q] and [0,w] be ordinal spaces,
where 2 is the fiqét uncountable ordinal and w is tﬂ; first infinite
ordinal. Then E'é [0,0] x [0,0] is a compact ordered space with the ,
cartesian order: (m,£) < (n,y) if and oﬁly ifm <nand £ € y for

(m,€) and (n,Y) in.B.' Let X = [0,u] x [0,Q] - {(m,ﬂ)} with the relative
topology and the éelgtive ord;r;:;hen X has property TI but does noé
have property N. For, X is a locally compact ordered space (cf.
Dugundjie [7]) and by Corollary 3.1.8, X has property TI; But X is

not an N-space, since the;e exist closed sets F; = {(n,02): 0 < n < w}
and Fp = {(w,£): 0 5 £ < Q) such that aj % ap for all ajeF;, all

aseFy, and that Pi:AFz cannot be separ®ated by disjoint o;;n decreasing,
incréasing neighbourhoods, respectively.

We note that a locally compact ordered space need mot be an N-space.
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. ~

3.1.5 Remark: Priestley [29] showed that if X is an N-space, then X
is a normally ordered space; but the following éxample will show that
the converse is not true in general:

Let X = [0,1]x [0,1] - {(0,1)} with the usual topology and with the
following ordering: (x),y1) s (xs,y2) if and only if x; < x; and

y1 = y2 for (x;,y;) and (x;,%2) in X. Then X is a normally ordered

space, but X is not an N-space; for, obviously X is a locally compact
ordered space with a countable base, and thus X is a normally ordered

space. But X is not an N-space, because there exist closed sets

Fp = ({1} x [0,1]) - {(1,0)},ﬁF2 = {(0,0)} such that a; % ap for all

a)eFy, all aseFp. Moreover, F; and F2 c;nnot be separated by disjoint

open decreasing, increasing neighbourhoods respectively. In what follows, we
assume that the concept of a regular ordered sgpace is the same one in the

McCartan [23].
©3.1.6 Lemma: (McCartan [23]). Every locally compact ordered space

(X, T, <) is regularly ordered.

3.1.7 Theorem: Let (X, ‘7 , &) be a regularly ordered space. Then X

has property TI.

Proof: Let K, F be disjoint subsets of X such.that K is compact and F
is closed and‘decre;sing. Then X-F is open decreasing. For each xeK,
we have x¢X~F. Since X is a régglarly ordered space,7
there exists an increasing neighbourhood Ox of x such that ﬁ;‘é X-F,
or F.Q:X-ﬁ¥, for eagh xeK. §ince K 1s compact there exist Xj, X2, «s+3 Xp
inxsmhﬁmtxg,GWR.mdrg B . (x-Ux.). Let U'= U Ux, and

iz} 1 ] ' 1 i=1 1

i=1



67

v = }% (X-Ux.). Then we have U n V = ¢.
i=1 1

We set W = d(V). Assume that Un W ¢ ¢, and so let y € U n W. Then
y € Uxi for some i and there exists zeV such that y s z. Hence z ¢ Uxi
for some i and therefore U n V § ¢, which is a contradiction. Thus we
have Un W % ¢. Hence U is an increasing né&ghbourhood of K and W

is & decreasing neighbourhood of F, with U and W disjoint. It follows

that X has prdﬁerty TI'

3.1.8 Corollary: (Hommel {17]). Any locally compact ordered space

\ ‘ )
(X, 7, <) has property TI'

Proof: This follows immediately from Lemma-3.1.6 and Theorem 3.1.7.

3.1.9 Remark: 1. A regularly ordered space need not be an N-space.
This follows immediately from the example of Remark 3.1.5 and the fact
that every normally ordered space is obviously a regularly ordered space.
2. A regularly ordered space need n?t have any of the properties TII’

T and TI : The following example is due to Hommel [17]: Let @ be the

III Y
first uncountable ordinal, take ¢ = [1,2) and Q' = [1,2] with their
order topology. Then X = Qp % Q' is locally compact and G = A v (AxB) u
{CGex), (o)) %, y € 2, x <y} v {((x,2)0y,2)):%, ¥ € 9, x < ¥},
where A = {(x,x): xeQp} and B = {(x,2): xeQg}, is the closed graph of an
orderiég on X. Then Hommel [17] showed that X didn't have properties
TII’ TIII and~f1§. But by Lemma 3.1.6, X is a regularly ordered space;
thus it shows that a regularl? ordered space need not have any of the

propertlgs T and TIV'

II’ TIII
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3.1.10 Remark: Combining the results in this section and the results
in Hommel [17], we obtain the following table, where "+" indicates that
the property in the left hand column implies the corresponding property

in the top line.

‘ I II III IV
locally compact ordered space - + - - -
regularly ordered space - + - - -
completely regularly ordered space - - + + -
normally ordered space - + - + +
compact ordered space ) + + +- + +

Section 2. E-completely regular ordered spaces.

Throughout section 2 and section 3, we assume that E = (E, fTE, s.)

is a fixed ordered topological space, unless otherwise indicated.

3.2.1 Definition: Let (X, fTX, sx) be an ordered topological space.

Then X is said to Re E-completely regular ordered if X is iseomorphic

to a subspace of ajpower of E.

3.2.2. Remark: 1. If the given orders on X and E are discrete, then

(X, Ty sx) is E-completely regular ordered if and only if (X, f7x) is
E-completely regular. In other words, the concept of B-compleiely\regular
ordered spaces has the concept of E-completely regular spaces as a -
special case (cf. Mréwka [26]). ‘

2. Let (X, :TX’ sx) be an ordered topological space with continuous

order, and let E = I (or R ). Then X is E-completely regular ordered

if and only if X is completely regular ardered. ) C::;\\kv

s e
- Sken P s

P4

T anm .

:
el

v,

@




69

3.2.3 Lemma: Let (X, :7X, SX) be an ordered topological space. Then
the following statements hold:

1. (E, fTE, SE) is E~completely regular ordered.

2. If (X, U'X, SX) is E-completely regular ordered and
(x*, Ty SX,) is iseomorphic to a subspace of (X, 17x, sx), then X'
is a E-completely regular ordered.

3. The product of an arbitrary collection of E-completely regular

ordered spaces is E-completely regular ordered.

Proof: These are immediate consequences of the definition.
Let ECRO denote the category of all E-completely regular ordered spaces
and continuous increasing maps, and
PTOP: the category of all ordered topological spaces, and continuous
increasing maps, and
HOTS: the category of all ordered topological spaces, whose order
is continuous, and continuous increasing maps.

Then, by Lemma 3.2.3, ECRO is clearly a hereditary, productive category.

/

3.2.4 Proposition: ECRO is an epireflective subcategory of PTOP.

)
Proof: Given X ¢ PTOP, let C;(X,E) denote the family of all continuous

increasing maps from X into E. Define ¢: X + EIC1(X,E)]

by ¢(x)(f) = £(x)
for each f ¢ C)(X,E) and each xeX. Then ¢ is obviously a continuous
increasing map. Let R(X) = ¢(X). Then by Lemma 3.2.3, R(X) is an
E-completely regular ordered space with the relative topology and the

relative order.’

Firstly, we observ: that for every f e Cj(X,E), there exists a unique

-

onam o
-
-
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f: R(X) + E such that fod = f. To show this, let f = pgoe, where

|e1(x,E)|

e: R(X) » E is the inclusion map and Pg: EICI(X,HQI + E is the

fth projection. Then ¥ is continuous and increasing, and fo¢ = £.
Furthermore, since $ is onto, f is unique. )

Secondly, we show that for any Y e ECRO and for any PTOP-morphism
f: X + Y, there exists a unique ECRO-morphism F: R(X) + Y sggs that
fo$ = £. To show this, we identify Y with a subspace of Elsl, where
S is a set, since Y is an E-completely regular ordered space. For

every seS, let fs = psof; then by the first observation, there exists

a unique continuous increasing map ?;: R{X) + E such that ?;o¢ = f
|si

S

for each seS. Define F: R(X) + E!™! by F(y) = (?;(Y1Les for each

y € R(X). We denote this map by F = g;g ?s‘ Then f is a continuous

increasing map. }

since F(R(X)) = F(¢(x)) = (L1 F)(o(x))
= (T F = (M
v = (I Foon (0 = (JL £000
= ([ L pof)(X)
= £(X),

v

—

f is a continuous increasing map from R(X) into Y. Moreover, the

uniqueness of f is immediate from the surjectivity of ¢.
¥

3.2.5 Corollary: Let E be an ordered topological space with continuous

order. Then ECRO is an epireflective subcategory of HOTS.

-

Proof: This follows immediately from the same argument as that given in

the proof of the above Proposition 3.2.4.

e

_,Wq; - .
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3.2.6 Corollary: (Rodriquez [31]) CYORR is an epireflective
subcategory of HOTS, where CYORR is the category of all completely

regular ordered spaces and continuous increasing maps.

b4
Proof: Let E = [ (orR ). Then by Proposition 2.1.1, ECRO = CYORR.

Hence the proof is immediate from Corollary 3.2.5.

3.2.7 Proposition: An ordered topological space (X, fTX, Sx) is an
E-completely regular ordered space if and only if the following
conditions hold:

1. TYor every p, q in X with p *X q, there exists a continuous
increasing map f: X + E such that f(p) *E f(q).

N .
2. For every closed subset AC X and every point peX-A, there
d a continuous increasing functiaon

exists a positive integer n

y
f: X+ E with £(p) § FA&Y./ .

Proof': 6—>):l Let X Be an E-completely regular ordered space. Then
there exists an iseomorpﬁism.h such that ﬁ(X)ti E'Sl for some set S.
For every p, q in X with p $i g, we have h(p) § h(q). Hence
(psoh)(p) *E (psoh)(q) for some P which is the projection of Elsl into
the sth coordinate space. Thps (1) holds. Let A be a closed subset

of X and peX-A. Then h(p) e h(X) - h(AY in EIS[. Hence there exists

" aspositive int;ger n such that U = P} (Uy) npsl(Uz) n ... n pgl(un) is
a basic open set containing h(p) and, U n h(A) = §. Define f: X + E" by
£(x) = ((pioh)(x)i=l for each xeX. Then f is continuous and increasing,
and £(p) = ((pyoh)(p), ..., (P oh)(P)) € Uy x Up-x ...x Up. It is easy

[ 4

e ,,.Mﬁt'-o-_ N
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to show that £(A) n (UyxUpx...xUp) = 6. Hence f(p) ¢4 £(A). Thus
# : '
(2) holds.
«(€7): Define h: X » EICI(X’B)! by h(x)(f) = f(x) for each xeX and each

f € C1(X,E). Then h is continuous and incréasing. Also h is one to

v

~one. For, let p ¥ q in X. Then p *X qorq *X p. IfP *X q, then,
by (1), there exists a continuous increasing map f: X #+ E such that
£(p) *B f(q)~ Hence f(p) # £f(q). Similarly, we have £f(p) $ f(q)

whenever q *X p, -and hence h is one to one. Let h(x) S h(y) in

EICI(X’E)I,,and suppose that x $X y. Then, by (1), g(x) *E g(y) for

some continuous increasing map g: X + E.. Hence h(x) £ h(y). But ’this
is a contradiction; hence x SX Y. Thus. h is continuous and an order

isomorphism. To show that h is a homeomorphism, let A be a closed

subset of X and peX-A. Then, by (2), there exists a positive integer

n and a continuous increasing map f: X + E" such that f(p) ¢ £(A7.

Let fk = pkof, where 1 s k s n. Then fk e C;(X,E) for eéch k, and

clearly fi, fo, ...y fh. satisfies the following condition:

:(fl(pé, eeey £4(p)) ¢ {(fl(a); ity f,(a)): ach}, where the closure is

taken in . Hence by Theorem 0.12, h is an iseomorphism; that is, X
is-an E~completely regular ordered space. . N
. . ? -
_ Using the same argument as in Proposition 2.1.12, we have the following:

3.2.8 Proposition: Let (X, j'x, gx) be To-ordered space such that for

every X, y in X with x $i Y, there exists a continuous increasing function

£: X - E with £(x) ‘ f(y). Then X is an E-completely regular ordered

Ty )
t {x_: aeDl} in X, we have X, * R if and

Y
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only if f(x,) = £(x) for every f € C;(X,E).

3.2.9 Remark: 1. If an ordered topological spaces has a semicontinuous
order (or 'continuous order), then its underlying topological space is
;learly a Tg-space. Hence Proposition 3.2.8 holds for such ordered
topological spaces as well.

é. Let 2 denote the two point discrete space {0,1} with the usual order.
If X is a 2-completely regular ordered space, then X is a compact

zero-dimensional ordered space with continuous order.

Section 3. E-compact ordered spaces.

3.3.1 Definition: Let (X, trx, sx) be an ordered topological space.

Then X is said to be E-compact ordered if X is iseomorphic to a closed

subspace of a power of E. -

3.3,2 Remark: 1. If the given orders on X and E are both discrete,
then (X, ’jx, SX) is E-compact ordered if and oﬁl& if (X,‘?x) is an
f-compact space. Iﬁ other words, the concept of an E-compact .ordered
space contains that of an E-compact space as a special case (cf.

Engelking and Mrdwka [9]).

¥

2. Let X be an ordered topological space with continuous order.:, If

E = [ , then X is E-compadt ordered if and only if X is compact

ordered with a continuous order.
p o L

If E = R, then X is E-compact ordered if and only if X is R -compact

w 0

ordered. ‘. v
3. Every E-compact ordered spacé.is obviously E-completely regular

‘

ordered. ‘
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3.3.5 Lemma: Let (X, trx, SX) be an ordered topological space. Then
the following statements hold: '

1. (g, Tpo SE) is E-compact ordered.

2. If (X, :Tx, sx) is E-compact ordered and (X', :TX" sx') is
iseomorphic to a closed subspace of (X, TTX, SX), then X' is E-compact

ordered.

3. The product of an arbitrary collection of E-compact ordered

spaces is E-compact ordered.

Proof: This follows immediately from the definition.
Let ECOS denote the category of all E-compact ordered space and

continuous increasing maps.

3.3.4 Theorem: Let E be an ordered topological space with continuous

order. Then ECOS is an epireflective subcategory of ECRO.

Proof: Given X ¢ ECRO, let C;(X,E) denote the family of all continuous

lcl(x,E)|

increasing maps from X into E. Define ¢: X+ E by a(x)(f) = £(x)

for all xeX and all f ¢ Cy(X,E). Then by the same arguments as those

|C1(X,E)|.

in Proposition 3.2.7, v is an iseomorphism of X into E Let

BoEX = o(X), where the closure is taken in Elcl(X’E)L

relative topology and the relative order. By the same methods as in

and o(X) has the

Proposition 3.2.%, we obtain that for every continuous increasing map

f: X » E, there exists a unique continuous increasing map~?k.BoE X+E
such that £|X = £f. Let'Y be an E-compact ordered space, i.e. Y £ E€OS,
and g: X *+ Y be any continuous increasing function.r As in Proposition 3.2.4;

v ' &

-
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there exists a unique continuous increasing fynction h: BoE X +fY such
that h|X = g. To show this, let g be a given continuous increé§if§ map
from X into Y. Since Y is an E-compact ordered space, Y is iseomorphic
to a closed subspace of H{Ed: aeT},. where Ea = E for every‘aer. For

each projection map Pys Put g = p og. Then g4 is a continuous increasing

map: X+ E. Hence there exists a unique continuous increasing extension

g, BoE X + E. Now, define h: BoE X - IE, by h(p)(é&) = E;(p) for each
P E BoE X, and for all E;’ ael'. Then h is a continuous, increasing map.
If peX, then E;(R) = ga(p) = paog(p). Hence h(p) = g(p) for all peX.
Finally, since Y is dense in BoE X, h{d) is dense in h(BOE X). But, Y
is closed in ME,, and hence h(X) c Y. It follows that h(B0E X)c Y.

Therefore, h is obviously the required extension of g. Hence ECOS is an

epireflective subcategory of ECRO.

3.3.5 Remark:QAQne easily observes that if Y is an E-compact ordered
space containing X densely and inducing the order of X and such that
every continuous increasing map f: X + E admits a continuous increasing
extension to Y, then Y is iseomq?phic to BoE X under an iseomorphism

that is the identity on X.

We call this Boﬁ X in the above theorem the E-order compactification of X.

3.3.6 Corollary: (Rodriquez [31]). Let X cOT and RcOT be the

categories of I -compact ordered and { -compact ordered spaces respectively.

Then X cOT and R cOT are both epireflective subcategories of CYORR.

Proof: Take E =] (or ), then ECRO = X cOT. (or RecOT) and ECRO = CyORR.

Hence the proof is straightforward.
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£
3.3.7 Corollary: LetE be an ordered topological space with continuous
order. Let X be an E-completely regular ordered space. Then.X is

E-compact ordered if and only if X = BoE X.
Proof: This follows immediately from Theorvem 3.3.4 and Remark 3.3.5.

?.3.8 Remark: Let E be an ordered topological space with continuous
‘ -
‘order. Then, combining Corollary 3.2.5 and Theorem 3.3.u4, we obtain

that ECOS is also an epireflective subcategory of HOTS.
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