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ABSTRACT

Pursuing efficiency is a fundamental characteristic of
economic activity. Correspondingly, efficiency measurement
seems an eternal interest of production economists. The
present dissertation is a comparative study of alternative
technical efficiency estimation methods. Two recently
developed methods based on different methodologies, namely,
data envelopment analysis (DEA) and the stochastic frontier
approach (SF) are studied. In this dissertation we review the
production and efficiency structure defined by modern
production theory. Based on earlier works of Afriat, we
discuss a set of propositions underpinning the non-parametric
programming approach (or DEA). Further, we demonstrate the
relationship between non-parametric and parametric production
frontiers as references for technical efficiency measurement.
We also explore the corresponding relationships between
various versions of the DEA model and their implications
regarding returns to scale properties. On the side of the SF
approach, we work out a conditional estimation model to
extract technical efficiency from a composite error structure.

The main empirical contribution is a simulation study that is
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carried out to examine the capabilities of both approaches
under various circumstances. In the first set of experiments
we examine the performances of the two methods under assorted
efficiency profiles, by which we describe the industry's
efficiency distribution. Then, in a second set of experiments
we investigate the performance of the two methods when the
experimental data has different returns to scale properties.
Finally, we test the robustness of the two models in regards
to varied magnitudes of random noise. Our results indicate
that though the SF model often leads the competition by a
small margin in our experimental environment, both methods

have reasonable performances.

iv




ACKNOWLEDGEMENTS

At the time to submit this final fulfilment for the
requirement of my degree study, I feel deeply that without
help and support from many people, my own efforts could not
have resulted in the present dissertation

First, I would like to acknowledge and thank the
members of my dissertation committee for their guidance,
patience and support. In the last few years, Professor Les
Robb, Chairman of the Committee, guided my research by
numerous thoughtful and stimulating advices extending from the
arrangement of the entire investigation scheme to the details
of presentation. Professor M.W. Luke Chan, who has given me
much generous help since I arrived in this country, and
Professor Dean Mountain have both given many precious
suggestions and insightful comments by using their expertise
in this research area. The knowledge and research experience
accumulated under their guidance will be a priceless asset in
my future endeavour.

An additional thank goes to the Canada International
Development Agency (CIDA). Its initial sponsorship enable

many Chinese students, including me, to pursue their studies



in this country.

Finally, my thanks should be dedicated to my late
father, my mother and in particular my wife, Hong. Without
their support and encouragement, I would not have been able to
finish my studies. Moreover, I am in a great debt to Xiaoli,
my son, for his patience and well-behaved cooperation during

my working time.

vi



TABLE OF CONTENTS

ABSTRACT ® © 2 9 09 2 9 0009 00 0000 0000090002 009000000 00O 0000

ACKNOWLEDGEMENTS ® ®© © 0 9 0 9 0 9 0 9900 06009 5 E 0O 00000 S 00 80 OO

LIST OF ILLUSTRATIONS ® © ® 9 0 9 002 900 0O 00 0® 0 O0® OO 0O OO SO

LIST OF TABLES ® ® @ ® ® 0 O % O 9 O O O O O O O O O O O SO OO OO S OO SO 0O e 80
Chapter
1. INTRODUCTION ® © @ @ 5 ® 0 0 0 0 O 0 O O O 0 O 0 9 O 0 O SO SO S PSSO e N e

2.

3.

THE PRODUCTION STRUCTURE AND EFFICIENCY
TECHNOLOGY ® ® @ 9 ® 0 O O O O O G O O O OO OO S S O O O S SO OSSO e e e

Basic Axioms of Production Correspondence
The Efficient Technology

The Structure and Measurement of Productive
Efficiency

Summary

EMPIRICAL MODELS OF TECHNICAL EFFICIENCY
MEASUREMENT ® © & © @ ® © © 9 9 O O O O P O S O S O S O O S S SO O e 0" e e 80

Efficiency Measurement in Classical
Production Models

Production Frontier Models
The DEA and Stochastic Frontier Models

Recent Developments in Production Frontier
Analysis

Significance of the Recent Developments

Summary

vii

15

34




4. NON-PARAMETRIC ESTIMATION OF EFFICIENCY: A
PROGRAMMINGAPPROACH ® ® 9 0 © ® ® 0 O O O " O O 6O " O e 0 O 0 e 0 o0 57

The Data Dependent Production Frontier
The "Inner Envelopment" Propositions

The Formulation of the Non-parametric
Programming Approach for Efficiency Estimation

Duality Relationship Between the Two Lines of
Model Formulation

Summary
S. CONDITIONAL ESTIMATION OF TECHNICAL
EFFICIENCY: A STOCHASTIC FRONTIER MODEL «¢ccccce 96

Stochastic Frontier Models: Techniques and
Specifications.

Conditional Estimates of Generalized Model
Implications and Reliability of the Estimation
Summary

6. THE EXPERIMENT DESIGN FOR A SIMULATION
STUDY ® % ® © 9 O 0 O 9 O O 9 O O O SO0 OO SO S OO NS OS8O e e e e e o 111

Assignment of Experiments
Performance Assessment Criteria
Other Specifications aﬂd Computational
Techniques
7. THE RESULT OF SIMULATION STUDY ¢ccccesscscsssss 133
Experiment Set I: Efficiency Profiles
Experiment Set II: Specification Errors

Regarding Production Technology

viii




Experiment Set III: Varying Random Noise Level
Summary
8. A SUMMARY .cccscccccsccsccsscssscsscscscsssscscscssscscscsscscse 171
Appendix

1. The Gradient Vector for the SF Model
With Truncated-Normal/Normal Distribution ...... 176

2. Normalization of Efficiency Indexes ....cceees. 179

3. The FORTRAN Code for DEA Estimation
(CRS ModEI) ® @ & 0 ® ® % ° 9 O 5 O % O O O O O S O O O 8O SO e e " OO e e 0 181

4. The FORTRAN Code for the Mamximum Likelihood
Estimation (Truncated-normal/Normal SF model) .. 183

IBIBLIOGRAPHY ® © 8 © 92 © 5 ° ° 00 00000 90 90 0 00 00000 E 000008 0 191

ix




Figure
2.1

2:2

LIST OF ILLUSTRATIONS

The Graph GrL(u) ...c... S E R PP wrie ) 9 6@ @
The Implications of Axioms L.2 and L.3 ......

(a) Production Frontier Is Non-Decreasing
(b) The Backward Bending of an Isoquant Is

Prohibited .sssssssasssvssssnssnnsnsnmens
(a) The production Possibility Frontier Should

Not have an Inward Bending Portion ......
(b) The production Possibility Frontier Should

Not have an Backward Bending Portion ....
(a) Convexity ©f BrLi{n) ssssussssssssnsssnesn
(b) Convexity of GrL(u): a linear boundary ...
The Isoquant and The Efficient Frontier .....
Decomposition of Total Productive
Ineffilclency sassscessnssssessnssssmansmsnsumes
Efficiency and Weak Efficiency ...ceeeeceecns
A& Faully of DOFP cssvcessonssnsi@snnsinsssiyss
A Facet of Inner Envelope of CRS Frontier
Linear NIRS Production Frontier .............
Linesar VRS Production Frontier .essssswssssas
The "Inner Envelope" Property and Measurement
of Technical Efficiency .......... e e
Returns to Scale and M.P.S.Se csevssssnvessss
Structure of Stochastic Frontier Model ......

Two Patterns of Efficiency Profiles .........

X

17

19

20

21

22

22

24
24

27

29

31

62

72

73

79

83

94

99

109



6.1 Assorted Efficiency Profiles ..... .

6.2 Distribution of exp(-t)

x1i



LIST OF TABLES

Table
6.1 Retiirns to Scale Specification ..csisssssssas 119
6.2 Assignment of Experiments ......cccceeeecnans 122
7.1.A.1 Experiment Set I, Case A (part 1) ....... 159
7.1.A.2 Experiment Set I, Case A (part 2) ....... 160
7.1.B.1 Experiment Set I, Case B (part 1) ....... 161
7.1.B.2 Experiment Set I, Case B (part 2) ....... 162
7.1.C Experiment Set I, Case € ..osvsnasnanssmnsn 163
7:1.D Experiment Set I, CAS@ D .vsssansnvnssnves 164
7.2.A Experiment Set II, Case A ...veeeeencaaanns 165
7.2.B Experiment Set II, Case B cosvvessosanasssa 166
7.3.A Experiment Set III, Cas€ A .iiivececccns . 167
7.3.B Experiment Set III, Case B ..i.ieeeeeeenn .. 168
7.3.C Experiment Set III, Case C ...... o 5w sws 169

7.3.D Experiment Set III, Case D ..eveeseeesees 170

xii



CHAPTER 1. INTRODUCTION

The present dissertation is a comparative study of
alternative technical efficiency measurement techniques. The
importance of the subject can not be overstated in modern
economics. As Michael J. Farrell, one of the pathfinders in
this area, expressed, "the measuring of the productive
efficiency of an industry is important to both the economic
theorist and the economic policy maker".! -

The theoretical structure of productive efficiency
analysis was laid out in early nineteen fifties by T. C.
Koopmans (1951), G. Debreu (1953) and M.J. Farrell (1957).
However, more comprehensive studies and research have emerged
only in the last ten or fifteen years. It has taken a few
decades for the profession to respond to the earlier thrusts.
A couple of reasons may account for the delayed concern.
First, the primary interest of empirical production analysis
had been focused mainly on the functional relationship in the
production process. Those functional relationships are
characterized by the economic behaviour of production agencies

at full efficiency. Until those relationships were fully

1 M.J. Farrell (1957), 11.

1



2
exposed and understood, the analysis of productive
inefficiency, which primarily concerns non-optimal or sub-
optimal status, had only secondary importance. Second, the
empirical studies of productive efficiency rely upon support
from other branches of the science (e.g. applied mathematics,
statistics and operation research) and hinge on more efficien
computing techniques and facilities. These supports were
either in a less developed stage, or unavailable, in earlier
years. When the first linear production frontier was modeled
by Farrell with the assistance of EDSAC (Electronic Delay
Storage Automatic Calculator) in the middle fifties, few
people had access to equivalent facilities. Recently, with
increasing attention and updated technical assistance, studies
of productive efficiency have developed in many dimensions.
To appreciate the recent achievements, it is worthwhile to
revisit the historical path of development over the years.

The study of productive efficiency was primarily a
post-World War II phenomenon. The 1950's was the period when
the foundations of productive efficiency studies were 1laid
out. The newborn set-theoretic model, and the related
activity analysis in particular, were the main thrusts to
initiate the analysis of productive efficiency. The following
ideas from activity analysis had an immediate influence on the
efficiency studies: (a) the production frontier of an industry

can be defined by a group of firms with best performance; (b)
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a firm’s production potential can be defined as the linear
combinations of the activities which have best performance;
(c) the efficiency of a firm is measured by its position
relative to the frontier. Though efficiency studies have
changed in many ways in these days, the thoughts are still
the generally valid principles guiding the current analysis.
An important theoretical advance in 1950’s was the
structure of productive efficiency proposed by G. Debreu
(1951) . Though the structure was developed for a general
equilibrium framework, it has a direct impact on production
theory. According to Debreu, productive inefficiency may be
deccmposed into two parts: allocative (in)efficiency and
technical (in)efficiency. While the former measures the
achievement of an economy in choosing the optimum input bundle
given the factor prices, the latter assesses the success of an
economy in producing maximum output from a given inputs
bundle. Concerning technical efficiency measurement in
particular, Debreu introduced a "coefficient of resource
utilization", which measures the radial distance between an
interior point and a corresponding boundary point of a
production possibility set.
Based on these theoretical concepts, the first
workable measurement scheme emerged in 1957 when a
pathbreaking paper by Michael J. Farrell appeared. Farrell’s

first contribution is his decomposition of productive
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efficiency which is a analogue of Debreu’s work but in the
framework of production analysis. Moreover, while the
analytical structure embraced Debreu’s ideas closely, his
measurement procedure was deeply influenced by activity
analysis. According to Farrell, the technical efficiency of
an observation can be measured by the radial distance between
the point and the corresponding point on a production
frontier, which is built from the data through a 1linear
programming procedure.

Farrell’s work has some important features. First,
the production frontier, which 1is constructed from "best
performance" input-output data, is consistent with the
theoretical definition of a production function, i.e. the
maximized output for given inputs. Second, the 1linear
programming procedure can be extended to cover multi-input,
multi-output situations without any difficulties. It is well
known that this type of production process usually can not be
handle properly without resorting to an indirect method such
as estimating the cost function. Third, the technical
inefficiency of an economic agency can be revealed solely
based on the analysis of the physical input-output data. As
a result, efficiency analysis becomes possible for non-profit
organizations, public sector, and even agents in a non-market
driven economy where the market information is unavailable.

Two major criticisms to Farrell’s measurement approach
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are frequently encountered:? one regards its inability of
handling random errors and the other concerns the lack of
flexibility in handling various degrees of returns to scale in
the production process. Farrell and Fieldhouse (1962)
attempted to remedy the returns to scale problem but without
much success. Developments since then indicate that the
solution to the problem depends on compatibility between the
measurement and a reasonably regulated production structure.
With a properly defined production structure, the Farrell
measurement can be applied to the production process with
constant returns to scale, non-increasing returns to scale and
variable returns to scale property.> The other criticism
seems to be a more fundamental problem. Being non-
statistical, Farrell's measurement is inherently unable to
accomodate random errors. However, the validity of the
measurement may depend on whether the random noise plays a
dominant role in a production process. Farrell's measurement
still be valid as long as random error is ignorable comparing
to other systematic factors.

The remainder of the sixties seems to be a less active
period for the studies of productive efficiency. The work by

Aigner and Chu (1968), however, is a major thrust in the

2 See Royal Statistical Society (1957).

3> Ssee the discussion in Chapter 4.
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period. It is well known that programming approach features
a non-parametric frontier property. In other words, the
production frontier 1is defined relatively rather than
parametrically in the approach. However, Aigner and Chu
attempted to impose a parametric form to the programming
approach. Briefly, the technique attempted to build up and
locate a parametric production function by minimizing the
radial distance between all the data points and a theoretical
frontier yet to be formed. Correspondingly, the programming
problem need not have a linear form. The production function
derived by Aigner and Chu has a frontier property, hence is
consistent with the theoretical definition of a production
function. Further, all the neo-classical properties are
preserved. Since the production frontier has an efficiency
property, the deviation of an observation from the frontier
must be interpreted as inefficiency. This treatment
positively confirms the presence of technical inefficiency in
a model of production process. On the other hand, because the
frontier is still obtained through a programming method, it
shares some fundamental weaknesses with Farrell’s procedure,
e.g. there is no room for a stochastic component in the model.
Aigner and Chu’s approach, however, had a theoretical impact
reaching beyond its modelling techniques. The concept of a
"frontier production function" was introduced explicitly in

production theory. The traditional treatment of production
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function estimation was seriously questioned and a profound
discussion on the relevant issues was stimulated in the
subsequent period.*

Studies of productive efficiency were not truly
activated until Afriat’s paper (1972) emerged. Afriat’s work
bestowed efficiency studies with two major contributions. The
first contribution involves a series of theorems which shows
that any data dependent production frontier is bounded from
below by a data dependent linear production frontier.’ This
linear frontier is in fact an inner envelope or "underwear"
covering the data set. Therefore, any efficiency measurement
taking some production frontier as a reference must be bounded
by the efficiency measurement that takes the "inner" envelope
as the reference. These theorems provide the different
approaches, e.g., conventional functional approach and the
programming approach, with a common shell and a mutually

accepted efficiency structure.®

4 See D. J Aigner and S.F. Chu (1968), P. Schmidt
(1976) (1977) and S.F. Chu (1977).

5 A data dependent production frontier, roughly
speaking, is a production function spanned by best performance
firms and covering the entire data set. It, hence, has a
frontier property. See Chapter 4 for a detailed discussion.

® In the Data Envelopment Analysis (DEA), a programming
approach developed later on, the root was traced back to the
inverted «cost function introduced by Shephard (1953).
However, one may note that the DEA formulation has a closer
connection to Afriat’s Theorems. See R. Banker, A. Charnes
and W. W. Cooper (1984).
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Second contribution by Afriat is the concept of "the
distribution of technical inefficiency", which describes how
the efficiency indexes or scores are distributed among the
firms within an industry. A frequency distribution was
initially introduced into efficiency analysis by Farrell to
summarize the results of estimation.’ The distribution,
nevertheless, was adopted in a somewhat ad hoc way and it was
by no means an integrated part of Farrell’s theoretical
efficiency structure. Afriat put the hypothesis in a more
formal way: the data points 1laid inside the production
frontier could be modeled by some sort of statistical density
function. As he demonstrated, a Beta distribution might serve
the purpose adequately. The significance of the distribution
can be stretched far beyond Afriat’s original intent. The
distribution may, in fact, reflect an industry’s dynamic
profile revealing technical progress, technology
transformation and diffusion, maturity, etc.. It is of
considerable interest to note that the concept of "capacity
distribution" by Johansen (1972) contains a similar idea. This
distribution is a snapshot of the productivity profile for an
industry and bears the same efficiency interpretation
(according to Johansen). The coincidence suggests nothing but

an emerging methodology which takes the efficiency profile as

e |

See M. J. Farrell (1957), 270-271.




a vehicle to address an industry’s structure.

The earlier theoretical developments reaped a
considerable harvest in the seventies. Many efficiency
estimation techniques were cultivated in this period.
Traditional econometrics brought about two new procedures in
the field of production function estimation. A so-called
"deterministic statistical model" estimates the frontier
production functions by using information of an efficiency
distribution. In this approach, the frontier property of a
production function is emphasised and technical inefficiency
is treated as a statistical variable spreading beneath the
frontier. The second approach suggested a stochastic
production frontier which asserts that the production frontier
is a distribution rather than a fixed measure. The stochastic
frontier model was initially introduced by Aigner, Lovell and
Schmidt (1977) and has been applied by a larger group of
researchers.?

Totally different from the econometric treatment,
another important development in late seventies is the so-
called "data envelopment analysis" (DEA) which emerged from
the area of management science. DEA efficiency measurement,

formulated by A. Charnes, W. W. Cooper and E. Rhodes (1978),

! Most referenced works in the group are W. Meeusen
and J. van den Broeck (1977), F.R. Forsund and Hjalmarsson
(1979), F.R. Forsund and E.S. Jansen (1977), R.J. Kopp and
V.K. Smith (1978) and L.F. Lee and W.G. Tyler (1978).
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is an alternative version of Farrell’s efficiency measurement.
However, the measurement 1is endowed with a brand new
formulation which bears the colours of operation research.

The early 1980’s witnessed a surging interest in
frontier production function and in efficiency studies from
the economics profession. As an extension of the earlier
stochastic frontier model, a new conditional estimation
technique was introduced to extract a measure of technical
efficiency from a composite error structure. The method,
suggested by J. Jondrow, C.A. Lovell, I.S. Materov and
P.Schmidt (1982), defined a new standard for technical
efficiency estimation. At the same time, the DEA approach was
also extensively studied from different angles. In addition
to the original constant returns to scale formulation, some
new formulations were introduced to cover the production
process characterized with non-increasing returns to scale and
variable returns to scale [see Banker, Charnes and Cooper
(1984)]. Assisted by better estimation techniques, DEA has
now been applied to ;fficiency and productivity investigations
in many areas. These include: manufacturing industry,
agriculture, administration, education, airlines, energy,
9

etc..

Many innovative thrusts have emerged in the most

° See Lovell and Schmidt (1988) for more references.
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recent period. The stochastic frontier model and the DEA
model have became dominant approaches to productive efficiency
analysis. On the side of the stochastic frontier approach,
many efforts have been spent to extend the analysis to the
cost function and related systems.!® Another focus of the
apprcach 1is the search for more flexible efficiency
structures. Greene (1990) proposed a Gamma-distributed
efficiency structure and has worked out the formula for the
conditional estimation of technical efficiency. There are
also some new developments in the estimation techniques for
the stochastic frontier model. The "moments" method has drawn
considerable attentions and has been applied in various
circumstance [see Kopp and Mullahy (1990), Greene (1990)].
Moreover, Kumbhakar (1987, 1989, 1990) has applied the
stochastic frontier model to panel data. As a result,
technical efficiency has become a time-varying factor. One
may find that there is a strong dynamic potential in the
stochastic frontier analysis along this orientation.

On the side of the DEA approach, in addition to the
sprouting of empirical applications, a major development is
the comprehensive analysis of the cone structure of the model.
According to this analysis, the frontier structure can be

adjusted by imposing a priori weight vector (multipliers). As

1 For a more detailed survey of recent development in
the stochastic frontier approach, see Bauer (1990).
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a result, flexibility and manoeuvrability of the DEA model are
considerably enhanced [see Charnes, Cooper, Huang and Sun
(1990) and Thompson, Langemeier, Lee, Lee and Thrall (1990)].
Further, there have been recent efforts to introduce
stochastic components into the programming moclel
[Sengupta(1990)]. In the empirical literature, we also find
comparative studies which assess the stochastic frontier and
the DEA model by putting them into a competition in empirical
work [e.g., Bjurek, Hjalmarsson and Forsund (1990)].

As a result of these dynamic developments, the
analysis and measurement of productive efficiency has been
integrated gradually into modern production theory.!! These
developments provides a primal motivation for present
comparative study.

Although allocative efficiency, a part of productive
efficiency, is a primary concern in production theory for many
reasons, the domain of the present study is confined to
technical efficiency estimation for the following reasons.
First, knowledge and information about total productive
efficiency 1is based on the understanding of its two
complementary components. Should technical efficiency be well
understood and measured, allocative efficiency can be

estimated without much additional complication. To some

I For theoretical generalization of the developments,

see R. Fare (1988) and Varian (1984, 1990).
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extent, the technical efficiency is a starting point for any
further investigation of production process. Second,
technical efficiency measurement has its own economic
significance which has often been ignored. Economists are
used to thinking of measurement of technical efficiency as a
job for engineers. This is simply not the case. An
economist’s measurement of technical efficiency never relies
on any predetermined physical or technological standard as a
yardstick. Technical efficiency measured by economists is
comparative efficiency with a strong Pareto sense. This has
been expressed fairly clearly in both the earlier literature
of activity analysis and in more recent literature [See
Koopmans (1951) and Charnes, Cooper and Rhodes (1985)].
Third, technical efficiency measurement has much potential in
an economy or a section of an economy which is not market
driven or where price information is not available. In these
circumstances, technical efficiency measurement is the only
possibility.

This introduction can be concluded as follows: (i)
Debreu-Farrell’s efficiency structure is a corner stone of the
productive efficiency analysis shared by different approaches.
(ii) The current research frontier is 1led by two Kkey
approaches: the stochastic frontier production function
approach and the nonparametric programming approach (or DEA,

as named by management scientists). (iii) Though both
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approaches have been extensively applied, comparative studies
seemed to be an rarely explored area. All these observations
merge to a major driving force to pursue the present study:
a comparative study of two alternative approaches to technical
efficiency measurement.

The thesis 1is structured as follows. Chapter 2
reviews the production structure and the notion of efficient
technology in modern production theory. Chapter 3 examines
various technical efficiency estimation models and explores
methodological aspects of technical efficiency estimation.
Chapter 4 discusses empirical frontier production functions
and introduces a set of "inner envelope" propositions which
prove that the family of empirical frontier production
functions are bounded by a set of linear production frontier.
Based on these propositions, we focus on the programming
approach (the DEA model). Various model specifications and
their implications are discussed. Chapter 5 is devoted to the
stochastic frontier approach. Based on previous studies, we
work out conditional estimation procedures for a generalized
stochastic frontier model and discuss its implications.
Chapter 6 lays out the ground work for a simulation study of
the two approaches. Experimental design and relevant test
statistics are the topics of the chapter. 1In Chapter 7, we
report the results of the experimental simulation. The

dissertation is summarized in Chapter 8.




CHAPTER 2 THE PRODUCTION STRUCTURE AND

EFFICIENT TECHNOLOGY

This chapter concentrates on the theoretical
background of this productive and technical efficiency study.
Section 1 of the chapter reviews a set of axioms that regulate
a production process. The primary function of the axiomatic
approach is to set out a well .regulated production structure.
Based on this structure, Section 2 examines various
definitions of an efficient production technology. With a
well defined theoretical structure, empirical production
behaviour can be reasonably interpreted. Section 3
concentrates on the measurement of productive efficiency.

Section 4 concludes the chapter.

2.1 Basic Axioms of the

Production Correspondence

Our choice of axioms 1is based on three major
considerations: first, an axiom must be able to interpret
production data with reasonable logic; second, an axiom has
to be flexible enough in a sense of "simple and true" so it

will not 1lose validity if applied to various production
15
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will not lose validity if applied to various production
models; finally, it should be strong enough to have an
active regulating role and yield some useful results.

The set of axioms is aimed to regulate a production
process described by a mapping from output space R™. to input

space R". (an input correspondence):1

By definition, L is a "point to set" mapping. In
other words, the image of an output u in the input space is
the input set x that can produce at least u. Correspondingly,

the graph of L is defined as:

GrL(u) = [(x,u) | x € L(u), ue R™ (2.1)

The input correspondence L(u) is regulated by the

axioms stated as follows:

L.1 L: R” - R is a closed correspondence.
The axiom states that the graph of the input
correspondence is a closed set. By definition, a set is
closed if all its boundary points exist and are contained in

the set. In Figure 2.1, the boundary set for graph L is the

' For the sake of simplicity, our attention is limited
to the input space unless otherwise stated. For a detailed
discussion on the output correspondence and complete axioms,
see R. Fare (1988).




GrL(u)

Figure 2.1 The Graph Grl{u)

set of the frontier points from o to a.

The closedness axiom ensures the existence of a
production frontier (or isoquant in input space) and
continuity of the frontier. As we will explain later,
efficient technology is a sub-set of the frontier. Thus the
closedness further ensures the existence of an efficient

production set.

L.2 ifu=20, then o ¢ L(u)

This axiom states that if at least one element of
the output vector u is larger than zero, then its image, L(u),

cannot have all zero elements. In other words, a production
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process cannot produce something from nothing.? Figure 2.2
illustrates the axiom graphically: if the axiom is true, the
vertical axis cannot be part of the graph of the input

correspondence except at the origin.

L.3 L(0) = R"

The third axiom states that a positive input may result
in a null output, so the production activity may turn out to
be a fruitless effort. To put it in another way, there is a
possibility of extreme inefficiency. In single input, single
output space, the axiom implies that the graph of the
production function may collapse onto the horizontal axis as

shown in Figure 2.2.

L.4 for all x*> x€ L(u), x* € L(u)

This axiom states that if x belongs to the set of
inputs which is able to produce u, then x° > x (each element
of the former vector is larger than the corresponding element
of the later) must be able to produce u also.

The axiom has some implications somewhat more

complicated than its superficially simple appearance. First,

? The axiom comes from a fundamental postulate proposed
by Koopmans: "the impossibility of the land of Cockaigne". See
Nikaido (1970), 216.
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u
L2: No part of the vertical axis can
be included in Grl(u)
L.3: Grl{u) may collapse onto the
horizontal axis
0 X

Figure 2.2 The implications of axioms L2 and L3

the production frontier (the boundary of the graph GrL) can
not decrease. In Figure 2.3.(a)., X 1is an input 1level
producing u. The axiom requires that any x' > x must be able
to produce u also. Then the graph of the correspondence must
at least include the area between o=-a-b and X-axis. As a
result, the production frontier (boundary point of the graph,
i.e., o=a=b) is non-decreasing. The economic interpretation of
the result is: we cannot have a situation where all inputs
can be reduced with an increasing output level.

Further, a backward bending isoquant in input space is
also prohibited by the axiom. 1In Figure 2.3.(b), X is a vector
which is able to produce u. Suppose there is x° > X , the

axiom in fact states: (a) X must also be able to produce u;
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(b) if u is produced by x°, the activity (u, x') does not
attain its potential. The second part of the statement can be
verified by a contradictory situation. Suppose the activity
(u,x’) is at its potential, then the isoquant will have a
backward bending portion x-x'. If this were true, any other
point like x’> x would have an output level less than u. This
is contradictory to the axiom. Therefore, any backward

bending portion of isoquant is incompatible with the axiom.

u

0 X  of X
Figure 2.3.(a) The production frontier is non—decreasing in X

The axiom has an important implication in the context
of efficiency study. Since the production function is non-
decreasing and a backward bending isoquant is ruled out, the
behaviour of points like ¢ in Figure 2.3.(a)or x  and x’ in

Figure 2.3.(b)have to be interpreted as a sort of inefficiency.
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- X
2
Figure 2.3.(b): Backward bending of an isoquant is prohibited

L.5 If u* < u, then L(u) < L(u*)

This axiom, though pertaining to an input correspondence, can
be illustrated more clearly in output space. By the axiom, an
output vector u' < u (every element of u’ is less then the
corresponding elements of u) should have a larger input image
set L(u’) (Figure 2.4.(a)). Therefore, the production
possibility frontier cannot have an inward bending portion
(Figure 2.4.(a)).

The possibilities of inefficiency exist according to
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this axiom. Any output vector less than u must be able to be
produced by less inputs (thus input set is larger than L(u)),
if not, inefficiency occurs. Therefore, the production

frontier cannot bend backwards toward the u-axis.

Yo

Figure 2.4.(a) The production possibility frontier
should not have an inward bending portion

L.6 L(u) is bounded for u < +.

The axiom states that for any finite output, the input
requirement must be bounded by some finite number. Therefore
it rules out the situation where a finite output 1level
requires infinitely large inputs. To extend this axiom to
output space, one would conclude that it is impossible to

produce infinite output by finite inputs.
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/ ruled out by L5

L(u*)
L(u)

0 X
Figure 2.4.(b) The production frontier should not
have a backward bending protion

L.7 L is convex on R”xR].

The axiom states that the graph GrL is a convex set on
R,°xXR,™. This implies that the production possibility set L(u)
is convex too. In Figure 2.5.(a), the graph GrL is a convex
set and the projected image L(u) must have a convexity
property.

However, strict convexity of GrL is not required. As
a result, the production frontier could have either linear or
non-linear structure. [Figure 2.5. (b)]

The above axioms can be matched by a set of

symmetrical counterparts regulating the output
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correspondence.?

Figure 2.5.(a). Convexity of GrL{u)

Grl(u)

Figure 2.5.(b) Convexity of GrL: a linear boundary

’ See R. Fare (1978), Chapter 1.
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In the next section, we formally define an efficient
technology and will frequently refer back to the axioms to

check their implications for technical efficiency analysis.

2.2 The Efficient Technology

The axioms L.1 (the closedness of the graph GrL)
enables us to define the boundary of GrL. For an output level
u, the projection of the boundary of GrL(u) on input space can

be defined as an isoquant:

ISOQ L(u) = {x: x€ L(u), x¢ L(u), u >u}

However, efficiency is not an unambiguous property for
the isoquant unless axiom L.4 is in effect. Axiom L.4 rules
out the case that an isoquant has a backward bending portion.
Thus, a Weakly Efficient Set (a subset of ISOQ L(u))can be

defined as:*

WEFF L(u) = {x: x € L(u), x* ¢ L(u), x*> x}

 In the following definitions, " a >
each elements of a is larger than b and " a 2
at least one element of a is larger than b.

b " implies that
b " implies that
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Further, at times we might wish to rule out the case that an
isoquant has a portion parallel to the vertical or the
horizontal axis. In this case, an Efficient Set can be

defined as

EFF L(u) ={x: x€ L(u), x* “L(u), x*2x}

There are nested relationships among the above three
input sets as follows:’

EFF L(u) ¢ WEFF L(u) < ISOQ L(u)

In Figure 2.6, the curve a-b-c-d is an isoquant for
L(u). On this isoquant, the backward bending section a=-b is
an inefficient part; the portion b-c is weakly efficient and
the portion c-d is efficient. Therefore, an input vector x is
technically efficient for an output vector u if and only if x
Cc EFF L(u).

Since most currently available efficiency measurement
techniques are not able to distinguish between weak and
ordinary efficiency, we will not stress the distinction
between the two in the rest of the presentation unless
otherwise stated.

From the definition of technical efficiency and axiom

L.7, we define an efficiency subset of the graph:

EFF GrL = [(x,u) | x € EFF L(u), u €RrR™

> ¢ indicates a subset.
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0 X
2
Figure 2.6 The isoquant and the efficient frontier
Note that since GrL(u) is a convex set by L.7, EFF GrL
can be viewed as a function concave on X. Accordingly, we may
define an efficient production technology as a one-to-one

mapping from the input to the output space:

f: x-u

which has a graph identical with EFF GrL.

2.3 The Structure and Measurement of

Productive Efficiency

Taking the efficient technology, EFF L(u), as a

reference set, the technical inefficiency of an interior point
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X' in L(u) can be measured by it's radial distance to the
efficient frontier. The Farrell measurement of technical

efficiency is given by

T(x' ; u) =min{t : tx’€L(u) ,Tt2>20} (2.2)

where 7 is non-negative scaler. Suppose x? € EFF L(u) is a
referenced point, Farrell's measurement can be made in such
a way that x* = T(X'; u)*x. Since x > x® € EFF L(u), T(x';
u) must have an effective range (0,1].6

Although we have indicated earlier that we will
restrict our attention to the technical efficiency, it is
useful to note how this relates to overall efficiency. The
overall performance of an economic agency can be measured by
the productive or total cost efficiency. Given an input price
vector w = {(wy,...,W,}, the total cost function C(u;w) =
wx (u;w) reflects the cost for the optimal choice of input set

X . Thus the total cost or productive inefficiency for an

observation x is measured by

P(x; u,w - Clu; w) (2.3)

w X

¢ By axiom L.2, it is impossible to produce something
from nothing, therefore, T(x'; u) can't be zero for an output
vector with at least one non-zero element.
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The allocative efficiency can then be defined as the residual
part of total productive efficiency after the effect of

technical efficiency is removed.

. . Plx; a) .
A(x; u) Txru) (2.4)

In Figure 2.7, productive inefficiency of e producing
u is measured by the ratio of the radial distance oe’/oe.
Technical inefficiency is measured by oe?/oe and allocative
inefficiency by oe®’/oe?. Therefore:

Productive Inefficiency = Allocative inefficiency

X Technical inefficiency.

0 e
Figure 2.7 Decomposition of total productive inefficiency
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Although allocative efficiency and cost efficiency are
very important aspects of efficiency analysis, we have no
intention to go beyond the scope of technical efficiency
measurement in the present dissertation due to the reasons
stated in Chapter 1. Moreover, Farrell had revealed the
complementary relationship between the technical and the
allocative efficiency. If the technical efficiency is known
and market information is available, the allocative efficiency
can be found without much difficulty.

Cne may note that Farrell's measurement is rigorously
rooted in the modern production theory. The referenced
technology in Farrell's measurement is exactly the efficient
production frontier as we defined in the previous section.
The measurement itself 1is a perfect match of Debreu's
"coefficient of resource utilization". Moreover, as noted by
Lovell and Schmidt (1988), the measurement P(x;u) has a
duality relationship with L(u) and in fact is the inverse of
the distance function proposed by Shephard (1953,1970).

However, if the referenced production frontier is
weakly efficient, in particular, a vertical or horizontal
segment of an isoquant, for example, the Farrell measurement
of techriical inefficiency may yield a biased measurement. In
Figure 2.8, the referenced frontier b-c is a weakly efficient
portion, so the radial measurement is obviously an overstated

measuring. The Lieontief technology is an extreme example. In
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Figure 2.8, the line b-c-d is a Lieontief production frontier.
The efficient frontier then collapses to a point c.
Obviously, any radial estimate not passing through the point
would overestimate the true efficiency. However, this flaw is

shared by all the radial efficiency measurements.

0 X

Figure 2.8 Efficiency and weak efficiency

To correct the weakness, Fare and Lovell (1978)
suggested a Russell measure of technical inefficiency which

gauges the non-radial distance of technical inefficiency as:

Y 8(x;) Ay
R(x ; u) = min {2 i Ax € L(u) , A; € (0,11} (2.5)

Y8 (xy)




32

where

{ 1 s 1F2 3 B

0 , otherwise.

A= (Apseeeshy)

n

Note that the reference here for a data point is not taken
along the radial direction but along each dimension of the
input space. Correspondingly, the original efficiency
measuring is an n-dimensional vector that can be converted
into a weighted scaler. Apparently, the Farrell's measurement
is a spacial case of the Russell's measurement as 1,=A,=
cees=A.

However, there are a few problems with Russell's
measurement. First, the technical inefficiency gauged along
the different directions may not maintain a measuring
consistency. Second, the local property and behaviour of the
referenced frontier play a more important role than in the
Farrell's measurement. Unless the knowledge about the
referenced frontier is complete, Russell efficiency should
be interpreted with caution. Moreover, estimation of Russell
efficiency is not as tractable as Farrell's. Therefore,
Farrell's measurement is still believed to be the most

tractable measure of productive and technical efficiency and
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we will use it in this thesis.

2.6 Summary

In this chapter, we have reviewed the theoretical
background for efficiency measurement. The fundamental axioms
of the modern production theory are the starting point in
defining the structure of production and efficiency. Unlike
the calculus based classical framework, in this structure, we
do not assume that economic agencies operate in a situation
where all marginal conditions being fulfilled. On the
contrary, inefficient production and slackness in operation is
plausible. In this chapter, we also reviewed Farrell's
decomposition of productive efficiency and the different
concepts of efficiency. In the next chapter, we turn to
empirical issues: the estimation techniques for technical
efficiency. We will review various modelling techniques and
discuss the technical efficiency from a different point of

view.




CHAPTER 3. EMPIRICAL MODELS OF TECHNICAL

EFFICIENCY MEASUREMENT

The theoretical structure of technical inefficiency
discussed in the Chapter 2 provides a framework which shelters
various production analyses. Nevertheless, it is well known
that in practice "... there is not yet a consensus on how one
should, or whether one can, measure the technical efficiency
of a firm, even if this agreed to be useful things to
measure."’

This chapter, presented in five sections, reviews
alternative modelling techniques and their underpinnings.?
The first section reviews efficiency measuring techniques in
early classical production analysis. The production frontier
models developed in 1970's are discussed in section two. 1In
section three, we concentrate on two more updated approaches:

the stochastic frontier model and the non-parametric

programming model. The recent development of efficiency

' F.R. Forsund, C.A. Lovell and P. Schmidt (1980) 23.

2 For the reviews of efficiency studies in different
period, see Nerlove (1965), Kopp (1981), Silkman (1986),
Sengupta (1988), Lovell and Schmidt (1988), Bauer (1990) and
Seiford and Thrall (1990).

34
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estimation techniques 1is described in section four. In
section five, we discuss the significance and implications of
the recent developments. The last section summarizes the

chapter.

3.1 Efficiency Measurement in the Classical

Production Model

The notion of technical inefficiency seemed to be
an ambiguous concept in early production analysis. Technical
efficiency was often viewed as a pure technical measuring of
the production process rather than a relative economic
measuring. The economic significance of technical efficiency
measuring was not fully recognized.? However, some classical
analysts did provide penetrating insights on technical
efficiency. In an influential pioneering work of production
theory, Marschak and Andrews (1944) stated*

... the production function will
change, even within the same industry, from

> For example, the constant term in a Cobb-Douglas

production function was interpreted as a "term of technical
efficiency" in some pedagogic versions of classical theory.

4 see J. Marschak and W. H. Andrews (1944), 145.




36 -
firm to firm and from year to year, depending
on the technical knowledge, the will, effort,
and lack of a given entrepreneur: these
factors <can be summarized as "technical
efficiency,” and may be represented by one or
more random parameters.
This is obviously true even judged by our present knowledge.
Technically, it was suggested that productive
efficiency can be treated as a random parameter rather than a
variable. In practice, however, the proposed random parameter
model had never been as popular as some simplified models with
non-random parameters. To capture the performance difference

among the firms, a production function may have following

form:’

u= A, f(x,) r=l;2:qs (3.1)

where X and u are input and output respectively and parameter
A, is regarded as a measure of technical efficiency for the r-
th group of firms. Though the model does distinguish inter-
group performance, it can not provide firm-specific efficiency
measuring. This weakness is shared by all the models with a
parameterized efficiency measure.

More —conventionally, the effect of technical

inefficiency may be captured by a stochastic variable

5 The model by Lau and Yotopoulos (1971) should be
regarded as a modern version of classic treatment.
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randomizing the production function. Correspondingly, the

production function can be written as®

u=f(x,p,e) (3.2)
where £ is a random term representing "technical
inefficiency". The conventional econometric techniques are

believed applicable to the model. Though the production
function £() may have a complicated form to meet various well-
behaved properties, the treatment of technical efficiency was
usually quite simple in the early models. It was common
practice to attach interpretation of inefficiency to the
unexplainable estimation error. The efficiency of an
observation was measured by its relative distance to the
estimated function.

The most problematic part of the classical approach
is its average treatment of the production function. 1In this
approach, the potential output for a given input level is a
statistical average one rather than a maximum. The estimated
production function 1is, therefore, basically inconsistent
with the theoretical definition. Furthermore, the economic
significance of such measured technical efficiency is
questionable. Though by comparing the relative position of an

observation to the production function, one can rank a group

¢ See Marschak and Andrews (1944).
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of observations ("firms"), it is frequently noted that the
efficiency measure has only statistical significance rather
than economic significance.’

These followed some new models which, though viewed as
classical models, are pioneer works in frontier production
function analysis. According to Klein (1953), if productive
inefficiency is under consideration, the production function

for profit maximizing firms is:

where z is the total revenue from sales of the product u; zg
and zx are the firm’s expenditures for the factors L and K;
the v parameters represent failure of short-run profit
maximization; and, finally, &€ is a random error. Due to the
presence of the v parameter, performances of firms vary
according to their success in maximizing the profits. 1t
should be noted that the v parameters are regarded as
systematic components in production. One may further

introduce random components into the model. The resulting

7 As Schmidt (1977) stated, the parameter set obtained
from OLS estimation of a production function are consistent
except for the constant term, thus one can "rank-order firms
by efficiency - the more positive or 1less negative the
residual, the more efficient the firm ...".
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model then has the form of

> (3.4)
a v, = , B vy =
Zg € Zy €

where ¢’s are firm-specific random components. As a result of
introducing the random components, the production structure
has a composite error kernel. According to Nerlove (1965),
Klein’s models in fact have a frontier property and efficiency
measurement based on the models is exactly consistent with
Farrell’s efficiency structure. However, most of the
classical models do not have this nice feature. In contrast,
conventional classical treatment features an average
production function which presents to be a major problem
prohibiting them to have a correct measurement of the

technical inefficiency.

3.2 Production Frontier Models

As demonstrated in the 1last Chapter, Farrell’s

measurement of technical efficiency
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F(x*,u*) =min {t ; tx* € L(u*) } (3.5)
is one of the earliest production frontier models. In the
model, the technical efficiency of an observation x° is
evaluated by its radial distance to a production frontier.
This structure spawned a number of frontier production models
in 1960’s and 1970'’s.

Aigner and Chu (1968) proposed a programming

procedure to obtain a parametric production frontier as:

min : ¢t
B

s.t: t=1n f(x;B) - ln u
t=20

(3.6)

where t is the term of technical inefficiency and all other
variables are defined in a conventional way. A programming
procedure was suggested to solve for all the parameters and
give a parametric description of the production function f(x).
Fundamentally, £(x) can keep a frontier property by imposing
the restriction u < f(x).

However, the parametric form can be a straitjacket if
it is not flexible enough or mis-specified. In the model,
observed input-output data are explained by two components:

the part explained by the estimated parameter set and the
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residuals interpreted as inefficiency. Clearly, should the
functional form of the production function be mis-specified,
technical efficiency cannot be a precise measure.

Another problem associated with the above frontier
model is its inability to handle random errors. Conceivably,
the deviation from a frontier could be caused by either
technical efficiency factor or other random factor. Should
the random component be handled improperly, the production
frontier could be mis-placed and efficiency measurement would
be affected.? However, the pure random errors were often
ignored in the early frontier models. On this negligence,
Farrell acknowledged’:

.% errors of observation will
introduce an optimistic bias, which can only
be eliminated if the distributions of both
errors and efficiencies are known. saisw O
practical purposes the important fact 1s that
if errors are small compared with the

variation in efficiencies, this bias will be
negligible.

Therefore, the validity of the models depends on the

% An empirical example can be found in D. Deprins, L.
Simar and H. Tulkens (1985). In their study of labour-
efficiency in Belgian Regie des Postes, extraordinary outliers
are found to have either "global" or "local" effects on the
frontier and hence the estimated indexes.

°. M. J. Farrell (1957), 263.
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W In this regard, the

presence of only small random factors.
econometric method should have some advantages.
Deterministic frontier models were the dominating

statistical approaches in  1970's." The  typical

deterministic frontier model has the following structure:

u=f(x;p) et t20 (3.7)

where variable t is technical inefficiency term and is subject
to some pre-specified statistical distribution. It has been
suggested that t may have a Beta [Afriat (1972)] or a Gamma
[Richmond (1974), Greene (1980)] distribution. The suggested
estimation techniques include corrected OLS method (COLS),
which relocates the production function by correcting the
constant term in order to ensure a frontier property, and the
maximum likelihood method (ML), which requires a properly
specified distribution for the efficiency term to yield

consistent and asymptotically efficient estimation of the

" There are some other factors that may cause the
observed efficiencies to differ from factual ones. Those
factors have external effects on the production process. The
weather condition is an example of such a factor. Those pure
random factors may be assumed to have a normal distribution.
See R. Forsund et. al. (1980)

" The approach was initially proposed by Afriat
(1972) .
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parameter set.!?

The mostly celebrated contribution of the
deterministic frontier model, as it is called, is the frontier
property. Now the production function keeps a perfect
consistency with its theoretical definition, i.e., the maximum
attainable output 1level for given inputs. However, the
interpretation of technical inefficiency by the deterministic
frontier approach is much less convincing. The question is:
if the deviation from the frontier is viewed as technical
inéfficiency, there would be no room for the pure random
noise. In this regard, strength of the econometric method is
not fully employed in the deterministic frontier model. This
cdeficiency turns out to be a major motivation for developing

the more sophisticated stochastic frontier model.

2 see Richmond (1974) for the COLS technique and

Greene (1980) for the ML method and associated problems.
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3.3 The DEA and the Stochastic Frontier Models

The following two models emerged in late 1970’s as the
two major approaches in production and efficiency analysis.

(1) . The Stochastic Frontier Model.

Based upon the earlier deterministic frontier models,
the stochastic frontier model features a composite error

structure.?® It has the following typical form:

u=f(x;p)e” ¢, ~0 < V<o, t20 (3.8)

where £( ) is a deterministic production function and exp(v-t)
respresents the error structure. In the kernel of the error
term, v is the random component and is conventionally assumed
to have a normal distribution.  Further, in the earlier
versions of the stochastic frontier model, t is assumed to
have either a half-normal or an exponential distribution.
Moreover, it was assumed that v and t are statistically
independent.

Let us define ¢ = (v=-t). Given the probability
density functions (pdf) p,(v) and p,(t), the marginal pdf of

the composite error ¢ can be obtained by integrating the joint

B The earliest composite error structure of productive
efficiency can be traced back to Klein (1953).
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density functions:

p,(g) = foup,_.(t) p,(e + t) dt (3.9)
This leads to the maximum likelihood function:

ML(e) = [[p,.(e)

(3.10)
where

¢ =1lnu-1ln £f(x;B)

Jondrow et. al (JLMS, 1982) proposed a conditional

estimation procedure to extract the technical efficiency term
t out of the composite error e. According to the Baysian
rule, the pdf of t conditional on ¢ is given by:

PeylE.8)

PylE | &) = p, (¢)

(3.11)

Finally, the expectation and mode of t conditional on

& can be obtained by:

E(t | e) =f0°'cpc<c | &) dt

M(tle) =t |ap(t e) _g
t

(3.12)

The major attraction of the model comes from its subtle
error structure. The other statistical models reviewed

previously, though maintaining a frontier property, are not
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able to distinguish technical inefficiency and the effect of
random noise. The frontier is therefore subject to the
influence of stochastic disturbances. With the composite
error structure, extraordinary behaviour of an observation can
be filtered out and has less effect on the location of the
production frontier.

The limitation, on the other hand, is the restrictive
efficiency distribution form imposed as the model is
specified. As many researchers realized, "the more structure
we impose on a model the better our estimates - provided the
structure we 1impose is correct."' However, ~correct
specification can never be assured unless we have perfect
knowledge of the real world. Thus specification error of the
efficiency distribution presents a major threatening to the
stochastic frontier approach. Furthermore, the correct
specification of the functional form for the production
process is of important. Should the functional form were mis-
specified, the 1location and the shape of the production
frontier would be interpretated improperly. Finally, the
effects would be dumped to and distort the efficiency
estimation.

(2) The Non-parametric DEA Model

Following Farrell's measurement scheme, Charnes,

“ Bauer (1990), 40.
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Cooper and Rhodes (1978) suggested that technical efficiency

can be measured by solving a fractional programming problem

max: 251121
a,p Eﬂixz
P of
St -Eéiﬁﬁl £ 1, = 1;6sayl (3.13)
Eﬁ _in_r
J=dyueeil
@«;, ;20 ESLponsslt

where n, m and k are the dimensions of input, output and the
numbers of observations respectively.? Essentially, the
programming procedure known as DEA (Data Envelopment Analysis)
creates two convex cones 1in input and output space
respectively. The efficiency of an observation wrapped in the
cones can be measured by the radial distance from the data
point to a matching point on the hull of the convex bédy.
Clearly the procedure conforms to the Farrell’s measurement of
technical efficiency defined previously.

The distinguishing feature, the non-parametric
property, of DEA can not be overstated. In DEA, one does not
need to specify a functional form either for the production
structure or for the efficiency structure. The risk of mis-

specification in this regard is reduced correspondingly.

5 There are a number of other variations of the basic
DEA model which we will discuss in Chapter 4.
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However, it is important to understand that the lack of a
requirement on the functional form does not imply the non-
existence of functional relationship in production. In fact,
as we will discuss later, a DEA. solution does defines a
mapping from input to output spacelS. Further, the
feasibility of the DEA analysis depends on only whether there
are enough observations to span the convex cones in input and
output space. This implies that the requirement for DEA in
terms of on the sample size is much less restrictive than for
statistical models.

The shortcoming of the DEA model is its inability to
cope with random noise. As a non-statistical model, DEA
considers all the deviations, including the ones caused by
random noise, from the data envelope as systematic
inefficiency.!” The consequence is: extraordinary behaviour
of any observation may exert a direct impact on the location
of the production frontier and hence on efficiency
measurement. Should the random noise present in production,
the DEA tends to under-estimate technical efficiency.

Another impending risk to the DEA model is mis-
specification on the returns to scale property. Though a

functional form specification is not required, as we will

16 See the discussion in Chapter 4.

7 In this regard, Farrell’s statement quoted in the
last section remains valid.
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demonstrate in Chapter 4, specification of a returns to scale
property is a compulsory requirement for the DEA. The returns
to scale property defines the shape of the production
frontier, and hence determines the interpretation of entire
data set and the measurement of the technical efficiency.
Therefore, accuracy of efficiency measurement cannot be
ensured unless the returns to scale property is correctly

specified.

3.4 Recent Development of Production

Frontier Analysis

The recent period is oné of elaboration, in which both
the stochastic frontier model and the DEA model continue their
domination in efficiency analysis. Some  important
developments are worthy noticing in both approaches.

On the stochastic frontier analysis, the major efforts
have been directed to three major dimensions.!

First, much effort has been paid to seeking more
flexible functional forms for the composite error production
structure. Research along this dimension follows a similar

pattern to that we have seen in traditional production

¥ For a detailed review of recent developments in the
stochastic frontier approach, see Bauer(1990).
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analysis. The cost function has been a primary vehicle used
to reveal the production and efficiency structure. In
addition, the family of share equations is brought into the
analysis and has been modelled with a composite error
structure. The stochastic frontier model has been extended to
cover the entire cost system. 1In this cost system approach,
one may find more detailed discussions in Greene (1980) and
Kumbhakar (1989).

The second dimension is to relax the less flexible
structure imposed on the (either technical or allocative)
efficiency terms. The dominating models of error structure
since late 1980's have been the half-normal (technical
efficiency)/normal (random noise) and exponential (technical
efficiency)/normal (random noise) models proposed by ALS
(1977). Based on these two models, JIMS (1982) developed the
conditional estimation technique. As a result, the two models
dominated the stochastic frontier approach for the rest of
1980's. However, there is no emperical evidence suggesting
that the efficiency distribution follows those particular
distribution forms. Stevenson (1980) developed two
generalized models: the truncated-normal (technical
efficiency)/normal (random noise) model and Gamma/normal
model. However, the conditional estimation procedures for
these two generalized models were not worked out until

recently due to the complexity of the mathematical structure.
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Recently, Greene (1990) has developed the conditional
estimation procedure for the Gamma/normal model. With a
flexible Gamma distribution, greater freedom can be achieved

for the efficiency structure.

The third dimension of advance in the stochastic
frontier approach is the application to the panel data. The
primary advantage of using panel data is to obtain consistency
of efficiency estimation which is not available in cross
section analysis. Moreover, using panel data may reduce the
reliance on the restrictive assumption on the efficiency
distribution. Finally, an industry’s efficiency may have a
time profile in addition to a cross section profile [see
Jondrow et. al. (1982), Schmidt and Sickles (1984), Kumbhakar
and Summa (1989)].

New developments in estimation techniques have also
appeared recently. While maximum likelihood estimation serves
as the major vehicle, alternative techniques are also applied.
Noticeably, the moment method is more frequently employed in

estimation. To estimate a stochastic frontier function

y:f(xl-B)eV“t (3.14)

the core issue is to find out the parameter sets for the
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probability density functions of v and t. In this regard, the
various order moments of the composite error, i.e., E[(v-t)'],
impose many restrictions (therefore provide a great amount of
information) on the parameters. From these moment
restrictions, the parameter set can then be identified.
Because the composite error usually has a cumbersome complex
functional structure, the moment method has an obvious
advantage in revealing the structure. Regarding empirical
application, Greene (1990) suggests using the moment method to
estimate the proposed Gamma/normal error structure. Kopp and
Mullahy (1990) discusses various aspects of applying the
moment method to the stochastic frontier model. They suggest
that the moment restrictions may play an important role in
testing the stochastic frontier model specification.

On the side of the non-parametric approach, we also
find some important advancement. The most important
achievement in the DEA approach is the polyhedral cone-ratio
generalization of the DEA models. In the basic DEA model, the
referenced efficiency set is obtained inclusively from the
data set under investigation. This referenced input-output
sets define a convex cone in both input and output spaces.
Efficiency can then be measured as an input-output cone ratio.
However, according to Charnes, Cooper, Wei, and Huang (1986)

and Charnes, Cooper, Huang and Sun (1990), the cones can be
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defined much more generally so that external information can
be employed in the cone construction. As a result, the
external evaluation for the input and output could be imposed
as a priori weight (or multiplier) vector to assist the cone
building. This new modelling technique has been applied into
an empirical investigation by Thompson, Langemeier, Lee, Lee
and Thrall (1990).

Another development in the DEA approach 1is the
stochastic DEA model proposed by Sengupta (1988) (1990). In
the standard DEA approach, individual efficiency estimation
seems to be the ultimate intention. However, according to
Sengupta, a statistical distribution can be imposed to fit the
DEA efficiency estimates and provides an interface for the DEA
and the statistical model.

The recent developments signify somewhat important
changes in the methodology of production theory. These
changes in turn influence the further development of
efficiency study.

The most important, the change in methodology should
be observed. Optimizing behaviour is a pivotal assumption in
economic analysis. The convention of economics is to analyse
the optimized track of economic activity, with the assumption
that the track can utltimately be attained. Non-optimal or
sub-optimal behaviour, except it as results from imperfect

markets, is out of consideration. Following this convention,
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economic agent 1is assumed born efficient in production.
Correspondingly, the production function estimated by the
conventional econometric model describes "average" optimizing
behaviour. Deviations from the function have only statistical
significance rather than economic significance [Varian
(1990)]. The surging interest in frontier production models
indicates that the economic significance of violating an
optimizing model is now becoming a major concern of production
analysis.

It is worth noting too that trend of efficiency study
has been influenced by the changing methodology. The first
noticeable change in the efficiency study is the firm-specific
oriented analysis. Heterogeneous performances of firms had
been observed by empirical production study for many years
[e.g., Johanson (1970)]. However, econometrics had done
little to model the phenomenon. Even for efficiency study,
the focus was on the average efficiency of an industry. The
stochastic frontier model, and especially the conditional
estimation technique has changed the situation. Currently,
the firm-specific efficiency analysis becomes a new standard
for efficiency study. The theory underlying for this
orientation is that the economic agents (or DMU -decision
making unit) are heterogeneous. The role of efficiency study
is to distinguish rather than blur the differences. This

thinking brings out a convergency of interests of
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microeconomics and management science regarding efficiency
analysis.

Further, the study of the industrial efficiency
profile characterizes another aspect of recent developments.
The industrial efficiency profile is often referred to as the
efficiency distribution of an industry. There are many
reasons to direct our attention to this rarely explored
aspect. Empirical studies suggest that, even using same input
factors and producing same outputs, firms may have diversified
performance. Many factors account for the performance
discrepancy: technology invention and diffusion, geographic
distribution, equipment replacement and upgrading. As a
result, each industry features its own pattern of efficiency
profiles.

The earliest effort to model the efficiency profile
can be dated to Farrell (1957) who gave a first description of
efficiency distribution. In a more formal way, Afriat (1972)
proposed a Beta distribution to characterize the efficiency
profile. In fact, all efforts in stochastic frontier
approaches are focused on one point: seeking a flexible

distribution form to capture the underlying efficiency

¥ As Johansen (1972) observed, the performance of some
inputs may have a difference factor of two to four times. A
more recent example can be found in Deprins, Simar and Tulkens
(1984) . By analyzing the labour efficiency structure in the
Belgian Post Office, they found that there is a wide spread
spectrum of possible efficiency profiles.
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profile.? We observed that recently the ability of
recovering the efficiency profile has became a criterion to
assess alternative estimation procedure [See Bjurek and

Hjalmarsson (1990)].%

3.6 Summary

In this chapter, we reviewed alternative modelling
techniques for efficiency estimation. From this review, we
found that production frontier analysis is the central issue
of efficinecy measurement. In fact, two production frontier
models, i.e., the stochastic frontier model and the DEA model
are leading the current efficiency studies. 1In addition, we
also discussed recent developments and their siginificances.

With these understandings, we will devote our efforts to

these two leading approaches in the next two chapters.

2 The concept of "capacity distribution" propsoed by
Johansen (1972) bears a similar meaning. For recent concern
about the concept, see Muysken (1985).

2l As matter of fact, to handle an irregular pattern of
efficiency distribution (e.g., a skewed one) is one of major
motivation to apply the SF model to panel data. It is hoped
that reliance on the restrictive distribution form of
efficiency can be reduced by introduing time dimension. See
Kumbhakar and Summa (1989).




CHAPTER 4. NON-PARAMETRIC ESTIMATION OF

TECHNICAL EFFICIENCY: A PROGRAMMING APPROACH.

This chapter concentrates on one of the 1leading
approaches to efficiency estimation: the non-parametric
programming approach. The approach introduced by Farrell
aimed to solve the efficiency estimation problem in a CRS
(constant return to scale) production process. Two important
advances emerged in the 1970’s which generalized Farrell’s
model. The analysis by S.N. Afriat (1972) focuses on
theoretical aspects of efficiency estimation. In his
analysis, a series of "inner envelope" propositions can be
regarded as the theoretical foundation for the programming
approach. Further, it serves as a bridge 1linking this
approach with other conventional approaches. Later, in the
management science literature, R. Banker, R. Charnes and W.
Cooper (1978) formulated the DEA problem, as we outlined
previously, which greatly enhanced the non-parametric
programming approach.

This Chapter attempts to re-interpret the non-
parametric approach in a way more consistent with economic

analysis. The chapter starts with a discussion of the

57
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properties associated with a data dependent production
function (DDPF). This discussion is applicable to empirical
production frontier analysis in general. In section two, we
discuss a set of linear production frontiers and, following
Afriat (1972), and provide a second proof for a series of
"inner envelope" propositions pertaining to these frontiers.
We demonstrate that these propositions play a pivotal role in
linking parametric and non-parametric production frontier
models. Based on these propositions, section three reviews
two sets of efficiency estimation models. These two sets of
models are in fact the primal and dual formulations of one
linear programming (LP) problem. Then, in section four we
will trace out the technology correspondence in the duality
relationship. The returns to scale property is a very
important consideration should a non-parametric efficiency
estimation model be employed. The issue 1is discussed in
section four together with some other issues. The chapter

ends with a summary.

4.1 The Data Dependent Production Frontier

This section addresses the notion of the efficient
production frontier and its interface with empirical data.
Assume there are k observations in a set of input-

output data. The activities of the data set (or, activity of
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an industry) can be characterized by an input matrix

T X s X
X = r

Xn Xpe.o X

and an output matrix:

ur uf Uy

U =
2
um um um

A data dependent production frontier (DDPF) can be
jointly defined by these k observations.
More specifically, a DDPF describes a point to point

mapping from input to output space:

f:x-u

In this relationship we assume that the previously outlined
axioms about L(u) hold, and f is the boundary Qf the graph GrL
describing the data set. It represents the frontier of a
technology transforming input into output.

As a function constructed from the observed data set,
a DDPF features the following characteristics:

(1) Theoretical Consistency.

The DDPF should interpret the observed data
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consistently with all the axioms L.1 through L.7 introduced in
Chapter 2. and in particular:

(a) To be consistent with L.4 and L.5, £ is a non-
decreasing function on the domain of empirical data D(X),

D(X) = { x: min[x;"] £ X; £ max[x;"], X € R,
r=l,...,k }.

and on an extended domain of the empirical data:'

ED(X) = { x: X; < max[x;"], X € R", r=1,...,k }.

(b) By L.7, £ is concave either on ED(X) or on D(X).?

(c) Since f is the boundary of graph L, it is at least

weakly efficient.

(2) Data Consistency
A DDPF f is consistent with a given set of data in the
sense that at least for some 6bservations (x',u'), we have
u'* = f(x')
and for all other observations (x,u),
u < f(x)
It is crucial important for a production function to have the
frontier property. Should this property and all the axioms be
satisfied, the production function £ is an efficient frontier.

Data consistency makes technical inefficiency a

! The extended domain includes the origin.

2 However, strict concavity is not required.
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legitimate part of the production structure. Deviation from
the production frontier 1is regarded as a permissible
behaviour. In the non-parametric approach, the performance
gap

f(x) - u
bears the systematic interpretation of inefficiency. However,
in the statistical production models, the gap may be assumed

to contain both a systematic and a purely random component.?

(3) Requirement for Sufficient Observations

To ensure the existence of a DDPF in space R, ™xR.", it
is necessary to require that the number of observations should
not be less than the sum of the dimension of inputs and
outputs.? If this requirement were not satisfied, the
production possibility set would degenerate (at least in some
dimensions), and we would not be able to estimate DDPF £.

However, this requirement is a necessary rather than a

sufficient condition for the existence of an empirical

3 According to Farrell (1957), the stochastic

component, if it does exist, can be reasonably ignored
provided it is relatively small.

4 strictly speaking, the requirement pertains to the
construction of the production frontier in space RJ”E $e1ford
and Thrall (1990) states that this is also thg condition for
the DEA model. As matter of fact, the condition for thg pEA
model should be k 2 max[m,n]. This is the necessary condition
to span production frontiers in both input and output space
respectively.
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frontier. In the programming approach, linear dependence
between different observations may still <cause the

degeneration of a frontier.

Figure 4.1 A family of DDFP

The above characteristics of DDPF are illustrated in
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Figure 4.1. For a given set of observations such as (a, b,
¢), a family of production frontiers satisfying the above
characteristics can be constructed. The form of these
candidates may vary from linear, e.g. f' and f* (o-b-c), to
non-linear, e.g. f? (o-b-c) and f* (o-c). The frontier f' is
ray (CRS) production function which passes through the data
point b and leaves observations a and ¢ as interior points of
the frontier. The frontier f> is a linear function with a
non-increasing return to scale (NIRS) property. It has a CRS
portion (o=-b) and a portion (b-c) with a decreased marginal
product. The NIRS frontier goes through both observation b
and ¢, and thus both are identified as efficient observations.
f? also goes through the observation b and ¢, but the frontier
is non-linear. f* is another possible non-linear frontier to
interpret the given data set. However, only observation ¢ is
efficient if f* is referenced. All of these frontiers are in
fact valid DDPFs and may be employed to interpret the data
set. It is easy to check that all of these frontiers maintain
theoretical consistency with our previously outlined axioms.
Also, all of them are featured with data consistency by
covering the observations in one way or other. This example
shows that the DDPF for a given data set usually refers to a
family of possible candidates.
The propositions in the next section prove that, in

each returns to scale category, the family of frontier
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production functions is bounded from below by a piecewise
linear production frontier. Those linear frontiers are in
fact a set of "inner envelopes" or "underwear" covering the

body of a given data set.

4.2 The Inner Envelope Propositions

In this section, we introduce three data dependent
linear production frontiers. The efficient "inner envelope”
property is stated by a series of propositions, which are
based closely upon the theorems proposed by Afriat (1972).

Denote A = (A',...,2¥) as an intensity vector
evaluating the observations' participation in frontier
building. Three types of frontiers can be defined by imposing
further restrictions on the intensity vector® : Constant
Return to Scale (CRS), Non-Increasing Return to Scale (NIRS)
and Variable Return to Scale (VRS).

4.2.1 CRS Production Frontier

Of many production frontiers satisfying the declared
properties, a piecewise linear model featuring CRS technology

is expressed as

> The technologies are classified according to the
their global property, which refers to a model's behaviour in
the domain ED(X).
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fe{x) -max{U). : X2 XA, A eRf} (4.1)
A
Moreover, it has an inverse which can be expressed as:

g <(u) -m%n{xk : us< UL, A €RS} (4.1.2)

(1) "Inner Envelope" Property

The following proposition (due to Afriat) states that
(4.1) represents a technically efficient CRS technology and
ﬁas an "inner envelope'" property.

Proposition 4.2.1 If there exist k activities with
inputs X € R", , outputs U € R", and axioms L.1-L.7
being satisfied, then the linear mapping f°:R", - R",
represents an efficient CRS technology (homogeneous
degree 1) and serves as a lower bound of any
other efficient CRS mapping f:R", - R",.

Proof: Assume there is some other data dependent CRS

frontier, say f(), satisfying the claimed axioms®, then the

non-decreasing property of the production frontier requires:

Fix) 2 £ (X AtxT), if x = ATx"T,
AT 20, =1,...,KkK

(4.2)

¢ A single-output/multi-input production process is

assumed in the proof for the sake of convenience, though the
proof can be extended to cover multi-input, multi-output cases
without much difficulty.
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The homogeneity property of the CRS production
function and the convexity axiom stated by L.6 imply that £()
is a concave function featured by’
F(XAT xT) 2 XATf(xT), AT>0, r=1,...,n (4.3)

Further, since f is non-decreasing, we have

f(x) 2 L ATf(x*), if x 2 LA*x?T,

(4.4)
AT 20, r=1,...,k
This relation can be rewritten as:
Fix) = { X AF(x"), x2 X A*x"T, a5

AE 20, Tw Lysunak]

and further, in particular, we have®:

7" For a concave function f, we have

AT AT
Fllwts %) b Leanenf{x¥) AT 20
b e AT
Further, if f is homogeneous of degree 1, we are able
to get (4.3) by cancelling out the common denominator. Thus,

CRS production function f has a cone property [see Nikaido
(1972), 188].

8 since (4.5) holds for any A, it holds for the

particular A that satisfying (4.6).
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f(x) smax{ X A*f(x*), x> X A*%*T
A (4.6)

AT 20, Tml,:usk}

Consider the right hand side of (4.6). Since f(x) is
data consistent, for some observations (x',u'), we have
u' = f(x')
and for all other (x,u)
u < f(x)

Thus for non-negative A, we have

Y ATF(xT) > XAT urf (4.7)

Therefore, we have:

f(x) 2max{ X ATf(x*), x2 X A*x*
A
AT 20, r=1,...,k}
(4.8)
2 £f°(x) = m?x{E L¥u®,x 2 X A*%*",

AT20,r=-1,...,k

This proves the "inner envelope" and efficient properties of
E°(x) -
Finally, it can be verified that £°(x) has the CRS

(homogeneous of degree 1) property as follows. Let § be a
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positive number, then’

f°(dx) =max{UA : 8x 2 XA, AER,"}
max {8 UA: 8x 2 8xA, 8\ € R}
(4.9)

max {8 UA: x 2 XA, A € RX}

O0f °(x)

Thus the homogeneity property is proved.
Q.EID.

° The following properties of f°(x) should be noted.
Let a be a positive real number, then

fe(x) = max{U?.a i X > XA, A eRf‘}
Iy

=max { UA : x 2 XA, AERJ‘}
A

scale of intensity vector does not affect the function

i.e.
However, we should note

evaluation.
max { UAa : x 2 XA, A ER,k}
1

=amax { UA : x 2 XA, A € RX}
2
These two points are fairly

in the 1linear relationship.
in linear programming

transparent if £°(x) 1is rewritten
problem form as in (4.10).
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(2) The nature of the solution

The linear frontier £°(x) is in fact the solution to an
optimization problem with the intensity vector ) as the choice
variables. The process selects some observations such as
(X',u') to build a frontier by assigning them a positive 2.
For all other interior points such as (x,u), the intensity
elements would be assigned a value of A = 0.

To demonstrate the nature of the optimal solution that
characterizes (4.1), we rewrite it in the form of a linear
programming (LP) problem:

max : X Afu”f
A r
I3 .o
gt s LA £ %,; L=liicazh e i
r

AT 20
This can be further expressed by the Lagrangian function:

max min L(A,8) =X Afu®+ X 8 ,( x; - X A*x{ ) (4.11)
A8 r i r

where §'s are Lagrangian multipliers (and the shadow prices
for the primal). The above Lagrangian function can be
rewritten as:

m?xm%nL(A,b) =X o ;x+XAT(ur-X&,xf) (4.12)
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This, in fact, corresponds to the dual problem:

min: E d ,x
- * i
) 5 §

(4.13) |
8., + L d.xf 2 u’ |
1
320

The Goldman and Tucker theorem [Nikaido (1970), 252-
254] states that for this type of programming problem, the

optimal solution to the dual is characterized by the following

conditions:

(1) u*-X8%x <0, r=-1,...,k
1

(2) X A™(ur-X 8% ) -o0, i=-1,...,n

r

where )" and §" are the optima. The first condition above

implies that we can define
f(x) =X 8%, 2u (4.15)
S £

and the second implies:

£(x*) > u* - AT* =0,

AT > 0 - fix¥] = ut,

(4.16)
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Therefore, the optimization process ensures data

consistency and that only some observations such as (x',u')
are selected to build a DDPF of the form:

fe(x) =max { X Afu®, x > XATx7*,
1 (4.17)

AT x 0, % Lyunssk}

This again verifies the efficiency property of £°(x).

This demonstration of the optimal status should be
considered as an extension to the proof of the Proposition
4,1. It is extremely important to note that we had in fact
demonstrated the relationship between the non-parametric
frontier and a parametric frontier. Though the parameteric
frontier associated with (4.15) is only a facet of a complete
frontier, it bears a conventional interpretation of production
function.

The linear production frontier £°(x) is illustrated in
Figure 4.2 where a facet denoted as f° is spanned by the
observations (x',u'). In fact a set of similar facets can be
generated to wrap the entire data set. Obviously, any other
production frontier like the nonlinear shell in the picture is

bounded from below by this set of facets.
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|

Figure 4.2 A facet of the inner envelope of the CRS frontier

4.2.2 NIRS Production Frontier

To illustrate the case of NIRS, let us consider data
set (a,b,c,d) in Figure 4.3 (disregard c¢' and d' for the
moment) . As explained previously, we can construct a CRS
production frontier along the ray oO-a-a’. However, a
production process may not keep the proportional expansion
path after some production scale is reached. The marginal
product may decline. To accommodate this situation, a linear
production frontier may be constructed as 0-a-b in Figure 4.3.

This is a piece-wise linear NIRS production frontier.
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T
0 x€ X X

Figure 4.3 Linear NIRS production frontier

Due to the concavity assumption, the observations ¢
and 4 can not be on the frontier. The potential outputs for
the input 1level x° and x' are indicated by ¢’ and 4’
respectively. To express these potentials by the given

L]

observations, we have:

/=20 + A2 a, A+ A2 =1
d =A2a+ Ab b, A2+ AP =1

where A’s are the intensity (or weight) factors. It should be

stressed that though the origin £(0) = 0 now serves as a data
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point spanning the frontier, its appearance is wusually
nullified in conventional expressions. As a result, the

restriction on the intensity vector becomes:

YAt <1, AT >0, r=1,...,k

This result leads to a linear model featuring the NIRS

property:

£2(x) =max {AU: x 22X, A7 <1, LR} (4.18)

and it has an inverse:

g2(u) = min {Ax: u<s AU, ZAT <1,4 € RX} (4.18.a)

To show the efficiency and the "inner envelope"

properties, we have

Proposition 4.2.2 If there exist k activities with
input X €R", and U € R", and the axioms L.1 to L.7 are
satisfied, then a linear mapping f":R", - R™, expressed
as (4.18) represents an efficient NIRS technology and
serves as a lower bound of any other efficient NIRS

mapping f":R°, - R",.
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Proof. Assume there is some other production frontier
f() satisfying the axioms L.1 - L.7. Further, f is concave on

ED(X), then

Y ATF(xT) s F(XATxT), AT =1,
AT B0, =0,10suaK

(4.19)

Note that superscript r running from 0 to k so that £(0) = 0

is included in the data domain. To express it explicitly, we

have
X ATF(xT) + A°f(0)< F(XATxXT + A°0),
(4.20)
AT +A°=1, AT20, = 1y s isak
Since £(0) = 0, we have
X Af(x%) ¢ F(EATxT), XAT < 1,
(4.21)

AIZO, r=1l"'lk

Thus (4.21) is the condition that the linear piecewise f is
concave on ED(X). For the restriction on the intensity
vector, equality sign must hold for all sections of the
frontier except the portion adjacent to the origin. For the
portion of the frontier adjacent to £(0) = 0, the summation of
intensity factors A is less than one since the £(0) = 0 is

only an implicit data point and its weight A° is not counted
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among the elements of intensity vector which has k elements.

Further, £ is non-decreasing by axiom L.4, i.e.

f(x) 2 f(XA*x*), if x 2 LA*x*,
AT 20, = 1,6expk

(4.22)

If combining this with the concavity condition, we have

f(x) 2 XATf(x*%), if x 2 XA*x?*,

(4.23)
TAT €L, AT 20, F=1,....%
This can be rewritten as:
fix) ={ ZATF(x*), x = Ll*x®,
(4.24)
AT 1, r=1,...,K.
in general and, in particular, we have
fi(x) » max{ ZA*F(x%), ifx = A%, AT 20
A . (4.25)

LAT L1, = lyunes K}

Finally, as shown in the proof of the proposition

4.2.1, if £() is data consistent, we have:
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f(x) 2 mrilx{E).’f(xr), if x 2 XA %%, A2 0

ZAT 21, = 1l,cnusk}
(4.26)

m?x{}:l.fu’, if x = LA®%7,
AF 2 0,0AT £ 1,2 = 1,05 .,5

This proves the efficiency and "inner envelope"

property of f"(x).
Q.E.D

The characteristics featuring the optimal solution of
(4.18) can be found in a way parallel to what we have done for
the CRS Case.

4.2.3 VRS Production Frontier

The third model has a variable returns to scale
property. The VRS assumption allows the marginal product to
increase in the first phase of production and then decrease
after some production scale 1is reached. The Figure 4.4
illustrates the VRS case in a linear process. Again, we have
a set of observations a,b,¢c and 4 as in the NIRS case.
However, observation ¢ now may serve as a point on the
frontier under the VRS assumption. Should this be the case,
the linear VRS frontier is c=-a-b. It should be noted that if
observation ¢ (which is the closest to the origin among the
all observations) is allowed to participate the frontier
building, the origin could not be part of the frontier.

Otherwise, the concavity condition stated in Chapter 2 for the
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production frontier would be breached. Therefore, a VRS
" linear frontier virtually does not cover the section between
the origin and its most adjacent observation. 1In Figure 4.4,
the VRS production frontier is c-a-b accordingly. Formally,
the linear VRS model is concave just on D(X).! The key
point to formulate the VRS model is, therefore, to enforce
the absence of the origin in the frontier building. The
enforcement is handled by imposing a tighter constraint on the

intensity vector, namely

AT =1, AT 20, r=1,...,k (4.27)

Figure 4.4 Linear VRS production frontier

1 This assumption, however, is not consistent with the
axiom L.3 as there, the origin £(0) = 0 has to be excluded
from the graph L(u).
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on the intensity vector. The constraint brings out a linear

VRS model with a form of

fY(x) =max {AU: x2AX, ¥A* =1, A eR"} (4.28)
A
and it has an inverse:

g¥(u) = m}n { A X: us AU, XA =1,A € Rf} (4.28.a)

To show the "inner envelope" property, we have
Proposition 4.2.3 If there exist k activities with
input X €R", and output U €R", and the axiom L.1 - L.2,
L.4 - L.7 are satisfied, then the linear mapping f':R",
- R™, defined as (4.28) represents an efficient VRS
technology and serves as a lower bound of any other
efficient VRS mapping f:R", - R",.
Proof. Assume there is an arbitrary production
correspondence f() satisfying the axioms L.1-L.2, and L.4 -
L.7. Further, the origin is excluded from the graph L(u), so

f is concave on D(X) only, thus

Y ATE(xT) < £(XATxT), AT = 1,
AIZO, r=1l---lk

(4.29)

From the non-decreasing property of £, we have:
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f(x) 2 f(XA*x*), if x 2 LA*x”T,

(4.30)
AT 20, F=1,..:,k
The above relations imply
£lx) & ZATL(x®), IFf x> TATx*,
(4.31)
AIZO, r=l,...,k
Rewriting the above in another form, we have
£(x) 2 { TATF(xT), if x 2 TAFXT
(x) 21 (x*), if x x (h. 5253
AT =1, A*T20, r®l,..x.k)}
in general, and
f(x) 2 max{ XATf(x*), if x 2 XA*x*
A (4.33)
2AhT=l, AT 0, Z=Tresick)
in particular. Again, as shown 1in the proof of the

proposition 4.2.1 and 4.2.2, the data consistency ensures that
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f(x) 2 max { ZATE(x ), ® 2 AT

AT =, AT 20, Ful,u0:.k)
(4.34)

2 max { X1l u=, x 3z 2A%%%,

YAT =1, }.ER,"}

This proves the "inner envelope" property of (4.28) as a
linear VRS production frontier.
Q.E.D
Here we should pointed out that the frontiers bounded
by f£Y(x) must be concave on D(X). Finally, the nature of
optimal solution of (4.28) can be explored in a similar manner

as in the CRS case.

The above three propositions reveal that the family of
DDPF, in each returns to scale category, is bounded from below
by a 1linear production frontier. The 1linear production
frontiers are "underwear" or "inner envelopes" covering the

data sets.
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0 A x2

Figure 4.5 The "inner envelope" property and

measurement of technical efficiency

This "inner envelope" property has an important
implication for efficiency measurement. As discussed as in
Chapter 2, the technical efficiency of a data point is
measured by the radial distance from the data point to the
corresponding point on a production frontier. In the input
space illustrated as Figure 4.5, the technical efficiency
measurement for an interior point e based on some f(x) is
oe’/oe. Note f(x) has DDPF property in general. However, the
propositions 4.2.1, 4.2.2, and 4.2.3 reveal that f£() is
bounded from below by a piece-wise linear frontier.
Correspondingly, the measurement of technical inefficiency
based on the linear frontier is oe'/oe. Apparently, no other

gauge of technical efficiency yields a larger magnitude than
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this measurement.!! Therefore, the measurement based on the
linear frontier serves as an upper bound of any other
measurement. This 1leads to a proposition regarding

measurement of technical inefficiency:

Proposition 4.2.4 Technical efficiency measurement
based upon the linear frontier such as (4.1), (4.18)
and (4.28) is the upper bound for technical efficiency

measurement based upon any other DDPF.

Proof of this proposition is omitted due to the
apparent simplicity.

Finally, it should be noted that the propositions hold
only as long as no random noise is present in the production
process. If random noise is present, we would not be able to
locate the 1linear production frontiers exactly and have

precise efficeincy measurement.

1 otherwise, production possibility set would not be
a convex set.
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4.3. The Formulation of the Non-parametric

Programming Approach for Efficiency Estimation

Based upon the propositions stated previously, in
this and the next section we will examine the relationship
between alternative models of technical efficiency measurement
in the context of non-parametric programming approach. '

Suppose that the CR8 frontier introduced in the last
section is to be referenced. A linear programming problem

follows immediately:

Tt =min t

s.t.ﬁl'xi’srx; 1= l,eus,0
i (4.35)

}; AT uf 2 uj j=1,....m

AT 20 Lo dlsenngk

The objective value of the LP solution serves as an estimate

of technical efficiency for the observation (x",u’) in input

2 Recently, Seiford and Thrall (1990) examined the
relationship between different models based on a numerical
analysis. However, the analysis in this section follows the
Lagrangian approach as employed in the exposition of optimal
status in the Proposition 4.2.1.
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space.’ The choice variable A’s are defined as the
intensity vector as before.

A counterpart measurement in output space can be

obtained by solving

T =max t

s.t.2 A ui 27T u; kS TR
r=1
(4.36)
fllfxfsxf F o laowyi
Ir=
AT 20 T=2l,00nasd

Suppose the constraints are active for some optimal choice A,
then, obviously the objective value can be read as the ratio
of the observed output u’ and a point on the imaged frontier.
In the following presentation, however, we will concentrate on
input space. The output counterpart of the measurement can be
inferred in an parallel way.!

As explained in section 4.2, by imposing a further

restriction on the intensity vector, we have the LP problem

3 Note that this LP problem provides an estimate of
efficiency for only one point (x°,u’) in the data set. A
separate LP is required for each data point to obtain an
estimate of its efficiency.

¥ Intuitively, efficiency can be measured either in
terms of how many fewer inputs are required for a given
output, or, how much extra outputs could be produced from the
given inputs.
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T2 =min =t

s.t.il‘xfsrx} i=1,...,n
r=1
f . (4.37)
IAIUerUj j-l,...,m
I-
f AL =< 1 r=1,...,k
r=1

which measures the efficiency under the restriction of NIRS.

In the case of variable returns to scale (VRS), the
inequality of the intensity vector constraint is replaced by
an equality constraint. Thus, the LP problem formulation

becomes

T2 =min t

s.t.il’xi’srx} =3, .00.0
r=1
ﬁ s . ] (4.38)
I_llfuj 2 ujy b B RPN
f AT =1 = 1yuesapk
r=1

The formulation for measurements in the NIRS and VRS
cases in output space can be derived parallel to equation
(4.36).

As one may notice, this measuring scheme conforms with
the theoretical efficiency structure described in Chapter 2.
Formation of a piece-wise production frontier is the starting
point to carry out a performance evaluation. The economic

underpinning for the formulation can be easily perceived.
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This approach has been closely followed by theorists, e.gq.
Afriat (1972) and R. Fare (1988).

On the other hand, management scientists evaluate a
firm's performance by looking at a maximized ratio of its
weighted outputs to weighted inputs, and subject to the
condition that the similar ratio of every other firms be less
or equal to unit. [Charnes et. al. (1978)] The data
envelopment analysis (DEA) is devised to solve the non-linear

programming problem

ﬁa.u'
max y = _J.#
1f:1$ix§
ST iml,.eu,0 (4.39)
‘ F“4d
ol 2 b %1 j=1,...,m
r
i%piui Fel,soupk
«;, B ;20

to measure the technical efficiency for the observation

(x",u”). The problem can be rewritten in a linear form as

max. y = £ auj

j=1
S.E. 1 ﬁajuj’-ﬁ[}ixi’so j=1,...,m

j=1 i=1 (4.40)
i%ﬁix;-l i=-1,...,n

«;, B;20 EwLyvsngl
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The DEA model in this original form is capable only of
handling CRS technology. In 1984, Banker, Charnes and Cooper
(BCC) introduced a major improvement to DEA in order to
capture alternative technologies characterizing production

surface. The problem is formulated as:

max. y/ - ) au; -t

F1
B.E.1 ﬁ « . uf - f xf -t<0 j = 1,...,m
i e B i o (4.41
)
ﬁlez-l i-l,..-,n
i-1
(ZJ,BiZO r-l,...,l"

According to BCC, the unsigned variable t is introduced to
capture the returns to scale effect. Increasing, constant or
decreasing returns to scale are implied according to whether
t is 1less, equal or greater than zero. Therefore, the
equation (4.41) is a generalized DEA model. The equation
(4.40) is regarded a special case of (4.41) with the term t
set to zero (CRS technology).

There exists apparently two sets of formulation. The
equations (4.35), (4,37) and (4.38) are in the first set and
the equation (4.41) in the second. The relationship and the

consistency between the two approaches are now considered.
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4.4 The Duality Relationship Between the
Two Lines of Model Formulation

To reveal the duality relationship, we rewrite (4.38),

the VRS formulation, as
tV=min 7t
s.t.ﬁlrxi’srxl'-‘ £ =255l
r=1
5 j=1,...,m (4.42)

r I
ik UjZLlj
r=1

f AT 21

r=1

f)ﬂ’s 1
r=1

note that the constraint on the intensity vector is decomposed

into two separate parts.
This LP problem can be rewritten in a Lagrangian form

as:

M%'n max L(A,0) =1+ ﬁﬁi( $ AT x§ -t xi)
r=1

- g a; (uj - ﬁ AT ui) (4.43)
a

r=1

+E, | i AT-1 )+t (1~ f AT )
r=1 =1

where
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0= {BsemnsaPumi®icsssslge syl

is the vector of Lagrangian multipliers. Rearranging it, we

have
min max L(A,0) = 5 «uj -t
A 8 J
+§}\.’(—gajujr+ﬁﬂixf+ t) (4.44)
T J -

+ 7 1-ﬁ B xf)

where t = t; = t, is an unsigned variable handling the effect
of the constraints on the intensity vector. This form then

leads to the dual formulation:

max. t =ﬁaju;-—t
Jj=1
B bot «uj - ) X{ - t<0 F=1l,00,m
=4 fut (4.45)
f:Bi T =1 i=1, ,n
i=1
«; , p;20 r=1, i X

This is exactly the BBC formulation.?

5 Note that the second constraint in (4.45) has an
equality sign. This is because the Lagrangian multiplier in
the last term of equation (4.44) is positive. In fact the
multiplier is the measure of efficiency, which has an
effective range (0,1].
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The treatment of constraints apparently plays a

pivotal role in equalizing the two approaches. As revealed by
the duality relationship, the term t in DEA formulation
corresponds to the constraints on the intensity vector in the
primal formulation. The exact correspondence according to the

global property can be checked by the following chart:

Primal Dual
CRS: AT 0 - t=0
NIRS: AT <1 - t20
VRS: AT =1 e«  tunsigend

However, in the BCC formulation, t is an unsigned variable
which 1is subject to LP evaluation. Therefore the BCC
formulation in fact corresponds to the VRS version of the
primal.

To see this correspondence, it should be noted that
for each observation (x,u) the suggested LP problem yields a
particular facet of the production frontier. Consequently,
the entire production frontier is formed by applying the LP
procedure repeatedly to all k observations. In the primal
formulation, the stated property (e.g. CRS) is consistently
enforced by imposing the corresponding constraint as each of
the k facets of the frontier is built. As a result, the
derived frontier maintains a global consistency. This

consistency may still be preserved if the same constraint is
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consistently enforced in the dual problem. However, the BCC
formulation does not maintain this consistency as t is
unsigned. As a result, the entire frontier implied by (4.45)
does not have a unified global property. In other words, VRS
is its default global property.

Therefore, we conclude that "returns to scale" has a
different underpinning in these two approaches. In the primal
formulation, it refers to a global property whereas in the BCC
formulation, it suggest a local property.

The fundamental discrepancy between the two lines of
formulation can be traced to the level of basic axioms. BCC
postulated the following convexity axiom for the production

possibility set T:!¢

If (x, ,u) €T, r =1,...,k, and A\, 2 0 are

non-negative scalars such that } A\, = 1, then

(Y A%, LAu) E€T.

This condition is sufficient to ensure that we can
build convex cones Y} Ax, and Y} Au, in input and output space.
However, it does not imply that the set T (or any graph

linking x and u) a convex graph. Therefore, this condition is

16 See Banker, Charnes and Cooper (1984), 1081. The

notations are changed for the sake of presentation
consistency.
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less regulative than axiom L.7 introduced in Chapter 2.V
Empirically, by this definition, the origin is excluded from
the graph of input (output) mapping. Suppose there is some
point to point mapping f transforming inputs to outputs,
than, the above axiom implies that £(0) = 0 is not regarded as
(an implicit) data point, £ is concave on, and only on, the
domain D(X). This 1is exactly the VRS case handled by
proposition 4.2.3.
In Figure 4.6, there are four observations a-b-c-d in
a data set. In our primal formulation, different constraints
on the intensity vector alters our proposed frontier. 1In the
CRS case, this proposed frontier is o-b-c while in the NIRS
case it is o=b=-c-d. In the VRS version of the primal and the
BCC formulation, the frontier is concave only on x,-x; and we
have a frontier a-b-c-d. If section a-b (a facet) is
referenced, we have IRS local property; if b-c is referenced,
then CRS is obtained; if c=-d is referenced, the DRS is noted.
Having this discrepancy in mind, one should be warned that the
efficiency gauged by the BCC formulation is equivalent to the
standard measurement under VRS restriction. For the
observation £ in the figure 4.6, this is the distance f-e’.

This discrepancy leads to an alternative way of

17
implied.

However, if axiom L.7 hold, above condition is
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interpreting technical inefficiency. The concept of '"most
productive scale size" (m.p.s.s) introduced by BCC refers to
the frontier that is derived by imposing t = 0. Clearly the
derived frontier is the CRS frontier (o-b-c) in the primal
formulation. Total technical inefficiency (defined as f-e" )
can be decomposed into two parts: pure technical inefficiency
f-e’ and scale inefficiency e’=-e'. Even for an observation
located on the portion a=b (or c-d), it may not be efficient
since it may not reach (or exceed) the most productive scale
size of operation, namely, b-c.

To conclude this section, we say that the two versions
of non-parametric efficiency estimation approach is exactly
matched in form of primal and dual if and only if the

restrictions on the LP problem are consistently specified.

u

Figure 4.6 Returns to scale and m.p.s.s
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4.5 Summary

In this chapter, we have reviewed one of most
important approaches of efficiency estimation: the non-
parametric programming approach. We checked the theoretical
foundations of the non-parametric approach and alternative
formulations of efficiency estimation. Also, we investigated
the duality relationship between the two, with returns to
scale as a key consideration. We demonstrated thét the basic
axiomatic assumption 1leads to different strategies 1in
addressing the estimation problem. In the next chapter, we
turn to the econometric approach to technical efficiency

estimation.



CHAPTER 5. CONDITIONAL ESTIMATION OF

TECHNICAL EFFICIENCY: A STOCHASTIC FRONTIER MODEL

In the realm of conventional econometric studies of
the production process, the stochastic production frontier
models bear some unique advantages in handling technical
efficiency. This chapter concentrates on the stochastic
frontier approach to technical efficiency estimation. In the
first séction of this chapter, we review alternative model
specifications and estimation techniques. Based on this
review, we propose a conditional estimation procedure to
extract a measure of technical efficiency from a composite
error structure.! The model employed is a generalized version
of the stochastic frontier model, which assumes that the
efficiency profile of a given set of production data has
truncated normal distribution. As a result of the
generalization, the capacity of stochastic model can be
enhanced to cover wider spectrum of assorted efficiency
profiles. The third section discusses the application of the

model and estimation techniques.

! The section is based on a working paper (1990) by

the author, which proposed conditional efficiency estimation
procedures for both the truncated-normal/normal and the
Laplace (double exponential) /normal error structure.

96
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5.1 Stochastic frontier models:
technique and Specifications.

5.1.1 The methodology.

The stochastic frontier (SF) model assumes that the
mapping of an input set to output space is subject to the
influence of some random disturbing force. Due to the
presence of the random factor, the input and output are

related in following functional form:

u=f(x)-eVv —e < V< oo (5.1)

where f£() is a deterministic kernel mapping the input set to
the output space. The variable v is a random component which
is unconstrained in sign and is assumed to be independent of
input variables. Because of the stochastic component, the
projected image of the input set on output space also has a
probability distribution.

The effect of technical efficiency is handled by
another variable in the SF model. To express the model in a
conventional way, the production process has the following

functional form:

f(x) et
v-t —2» < v<<ow, t20

<
]

(5.2)

™
]
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where in the composite error structure exp(v-t), t is a non-
negative variable representing technical inefficiency in
production. The term exp(-t) in the error structure can serve
as a standard measure of technical efficiency along the radial
direction, ranging from zero to unity.

This composite error structure has some advantages
over other models. In a conventional statistical model, if a
production function is forced to maintain data consistency and
a frontier property, an extraordinary outlier (due to some
random shock) may result in the misplacement of the frontier
and put the effect on the entire efficiency estimation.
However, in a SF model, the modelling variable v serves as a
filter screening out the effect of random shocks. An
extraordinary outlier then has only a limited effect on the
placement of the frontier. Figure 5.1 is an illustration of
the SF model's production and efficiency structure. The
observed data set is explained by a conventional parametric
function £() which covers the mass of observations (snapshot
A) . Further, the observations lying below f£() are assumed to
be distributed as p:(t) due to the influence of inefficiency
factors (snapshot B) and the random noise v distributes as

pv(Vv) (snapshot C).
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Figure 5.1 The structure of stochastic frontier model

5.1.2 Estimation Procedure of SF approach.

As we briefly outlined in Chapter 3, there are two
successive steps in the entire estimation procedure; the first
step pertains to production frontier estimation and the second
one is the efficiency estimation.

In the first step, the maximum likelihood (ML) method
is employed to estimate the production frontier. To obtain
the ML function, the distributions p,(v) and p,(t) have to be
pre-specified. Based on these specifications, the likelihood

function can be expressed as:

L(e;;B,0,.,0,) =][p.(c,;:B.0.,6,) (5.3)

where 6 and © are parameter sets to be estimated in f(x),
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p,(v) and p,(t). Within the ML function, it should be noted

that:

e;=1lnu’-1ln f(x7)

and if, as we will assume throughout, v and t are independent,

we have:

p.(e) = [" D, (t,2) dt

=j;wpt(t) pV(V) |v=:+t dt

Based on the estimates of the parameter sets, the
technical inefficiency of an observation can be estimated in
the second step [See Jondrow et. al. (1982)]. In this step,
the distribution of t conditional on the composite error (v-t)
is derived based on the Baysian rule, i.e :

p(t,t) (el t)

p.(¢t | g) = D, (¢)

Therefore, the first order moment of the origin for

the distribution

E(t | &) =f;°'t:pt(t[s) dt (5.4)
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and the mode of the distribution

t t
|§%pﬁtlz)=0 ! Ig%pﬁtlz)=o

M(t|e) = (5.5)
0, E | <0

20

$pelt o) =0

may serve as the two alternative measures of technical
inefficiency.

These two measures for each observations are
conditional on specific composite error ¢ for each
observations. The composite error & 1is replaced by its
estimated value in empirical work.

5.1.3 Alternative Model Specifications

Clearly, specification on the distribution p,(t) and
p,(v) are crucially important in the SF model. Since it was
introduced by Aigner, Lovell and Schmidt (1977), the SF model
has had very few variations. Within the composite error
structure, the pure random term v has been consistently (and
reasonably) assumed to have a normal distribution. On the
contrary, the distribution form for the technical efficiency
term t has a few variations. The half-normal and exponential
distributions are the most popular specifications for the
efficiency term due to the simple distribution structure.

It should be noted that the distribution of the

exponential of the term =-t, (i.e., exp(-t)) describes the
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efficiency profile of a set of observations, say, an industry.
In this regard, a flexible distribution of t implies a greater
capacity to resemble the real world. To achieve the
flexibility, Greene (1990) recently formulated the conditional
estimation procedure for a Gamma-distributed stochastic
frontier model. However, in his somewhat delicate model, the
conditional estimation has no closed form and hence results in
considerable complexity in estimation.

' In the next section, we introduce a generalized model
which assumes that the efficiency term t has a truncated
normal distribution.? The advantage of this model, compared
with the half-normal and the exponential models, is that a
mode (or peak) 1is allowed in the normalized domain of
technical inefficiency (0, 1]. It should be mentioned that
the original model’s structure is due to Stevenson (1980).
The new development introduced in the next section is the
conditional estimation procedure for the conditional mean and
conditional mode.

5.2. Conditional Estimates of Generalized Models.

5.2.1 The Production Functions and the Error

Structures

2 since this thesis was written, we have found a paper
by Battese and Coelli (1988), which derived similar result in
the context of panel data. However, they did not provide the
mode for the conditional distribution. Beside, Greene (1990)
gave a same result, though there is a sign error in the
result.
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Assume a production function has the following

structure:

<
]

f(x)e® (5.6)
v-t 20,

™
I

where u €R, is output and x €R", is an input vector. Within
the error structure ¢, t is a term reflecting technical
inefficiency and v is a pure stochastic variable.
We make the following statistical assumptions:
A.1. The pure stochastic variable v 1is distributed as
N(0,0?).
A.2. t is a variable with a generalized truncated normal
(GTN) distribution. ?
A.3. v and t are statistically independent.
A.4. Both t and v are statistically independent of the

input vector x.

In the Cobb-Douglas case, the above assumptions imply

that

® The truncation point is set at zero and only the

portion distribution for positive t is preserved.
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Max: (e %)
1l 2 1573

ef=lnuf—lnA—ﬁﬁilnxi’, 2= Ly s mq Dy
i

may serve as the objective function for maximum likelihood

estimation.?

The probability density function (pdf) of GTN is’:

2

_{t-p)
_ il

D.AE) = e 29, t=o0, (5.8)
’ 0. VZT [1- F'(- 2]

t

where F#*(-up/0,) 1is a standard cumulative normal density
function evaluated at =-u/o, and u 1is the mean for the

untruncated normal pdf.

By assumption A.3, and substituting out v by &, we

obtain the joint density function

5.9
P,y (8, 08) = p(v, t) lv=z+c ( )

4 See Stevenson (1980).

5 See K.Bury (1975) p.154-155.
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which can b