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ABSTRACT 

Pursuing efficiency is a fundamental characteristic of 

economic activity. correspondingly, efficiency measurement 

seems an eternal interest of production economists. The 

present dissertation is a comparative study of alternative 

technical efficiency estimation methods. Two recently 

developed methods based on different methodologies, namely, 

data envelopment analysis (DEA) and the stochastic frontier 

approach (SF) are studied. In this dissertation we review the 

production and efficiency structure defined by modern 

production theory. Based on earlier works of Afriat, we 

discuss a set of propositions underpinning the non-parametric 

programming approach (or DEA). Further, we demonstrate the 

relationship between non-parametric and parametric production 

frontiers as references for technical efficiency measurement. 

We also explore the corresponding relationships between 

various versions of the DEA model and their implications 

regarding returns to scale properties. On the side of the SF 

approach, we work out a conditional estimation model to 

extract technical efficiency from a composite error structure. 

The main empirical contribution is a simulation study that is 
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carried out to examine the capabilities of both approaches 

under various circumstances. In the first set of experiments 

we examine the performances of the two methods under assorted 

efficiency profiles, by which we describe the industry's 

efficiency distribution. Then, in a second set of experiments 

we investigate the performance of the two methods when the 

experimental data has different returns to scale properties. 

Finally, we test the robustness of the two models in regards 

to varied magnitudes of random noise . Our results indicate 

that though the SF model often leads the competit ion by a 

small margin i n our experimental environment, both methods 

have reasonable performances. 
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CHAPTER 1. INTRODUCTION 

The present dissertation is a comparative study of 

alternative technical efficiency measurement techniques. The 

importance of the subj ect can not be overstated in modern 

economics. As Michael J. Farrell, one of the pathfinders in 

this area, expressed, "the measuring of the productive 

efficiency of an i ndustry is important to both the economic 

theorist and the economic policy maker".1 

The theoretical structure of productive efficiency 

analysis was laid out in early nineteen fifties by T. c. 

Koopmans (1951), G. Debreu (1953) and M.J. Farrell (1957). 

HOWE!Ver, more comprehensive studies and research have emerged 

only in the last ten or fifteen years. It has taken a few 

decades for the profession to respond to the earlier thrusts. 

A couple of reasons may account for the delayed concern. 

First, the primary interest of empirical production analysis 

had been focused mainly on the functional relationship in the 

production process. Those functional relationships are 

char acterized by the economic behaviour of production agencies 

at full efficiency. Until those relationships were fully 

1 M.J. Farrell (1957), 11. 

1 
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expos,ad and understood, the analysis of productive 

inefficiency, which primarily concerns non-optimal or sub­

optimal status, had only secondary importance. Second, the 

empirical studies of productive efficiency rely upon support 

from other branches of the science (e.g. applied mathematics, 

statistics and operation research) and hinge on more efficien 

computing techniques and facilities. These supports were 

either in a less developed stage, or unavailable, in earlier 

years. When the first linear production frontier was modeled 

by Farrell with the assistance of EDSAC (Electronic Delay 

Stora.ge Automatic Calculator) in the middle fifties, few 

people had access to equivalent facilities. Recently, with 

incrE!asing attention and updated technical assistance, studies 

of productive efficiency have developed in many dimensions. 

To appreciate the recent achievements, it is worthwhile to 

revisit the historical path of development over the years. 

The study of productive efficiency was primarily a 

post-World War II phenomenon. The 1950's was the period when 

the foundations of productive efficiency studies were laid 

out. The newborn set-theoretic model, and the related 

activity analysis in particular, were the main thrusts to 

initiate the analysis of productive efficiency. The following 

ideas from activity analysis had an immediate influence on the 

efficiency studies: (a) the production frontier of an industry 

can be defined by a group of firms with best performance; (b) 
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a firm's production potential can be defined as the linear 

combinations of the activities which have best performance; 

(c) the efficiency of a firm is measured by its position 

relative to the frontier. Though efficiency studies have 

changed in many ways in these days, the thoughts are still 

the generally valid principles guiding the current analysis. 

An important theoretical advance in 1950's was the 

structure of productive efficiency proposed by G. Debreu 

(1951) . Though the structure was developed for a general 

equilibrium framework, it has a direct impact on production 

theory. According to Debreu, productive inefficiency may be 

decomposed into two parts: allocative (in)efficiency and 

tech.nical (in) efficiency. While the former measures the 

achievement of an economy in choosing the optimum input bundle 

given the factor prices, the latter assesses the success of an 

economy in producing maximum output from a given inputs 

bundle. Concerning technical efficiency measurement in 

particular, Debreu introduced a "coefficient of resource 

uti J ization", which measures the radial distance between an 

interior point and a corresponding boundary point of a 

production possibility set. 

Based on these theoretical concepts, 

workable measurement scheme emerged in 1957 

pathbreaking paper by Michael J. Farrell appeared. 

first contribution is his decomposition of 

the first 

when a 

Farrell's 

productive 
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efficiency which is a analogue of Debreu's work but in the 

framE~work of production analysis. Moreover, while the 

analytical structure embraced Debreu' s ideas closely, his 

measurement procedure was deeply influenced by activity 

analysis. According to Farrell, the technical efficiency of 

an observation can be measured by the radial distance between 

the point and the corresponding point on a production 

front:ier, which is built from the data through a linear 

programming procedure. 

Farrell's work has some important features. First, 

the production frontier, which is constructed from "best 

performance" input-output data, is consistent with the 

theor etical def ini tion of a production function, i. e. the 

maximized output for given inputs. Second, the linear 

progr amming procedure can be extended to cover multi-input, 

mUlti-output situations without any difficulties. It is well 

known that this type of production process usually can not be 

handle properly without resorting to an indirect method such 

as e~stimating the cost function. Third, the technical 

inefficiency of an economic agency can be revealed solely 

based on the analysis of the physical input-output data. As 

a result, efficiency analysis becomes possible for non-profit 

organizations, public sector, and even agents in a non-market 

driven economy where the market information is unavailable. 

Two major criticisms to Farrell's measurement approach 



5 

are frequently encountered: 2 one regards its inability of 

handling random errors and the other concerns the lack of 

flexibility in handling various degrees of returns to scale in 

the production process. Farrell and Fieldhouse (1962) 

attempted to remedy the returns to scale problem but without 

much success. Developments since then indicate that the 

solution to the problem depends on compatibility between the 

measurement and a reasonably regulated production structure. 

with a properly defined production structure, the FarrE!11 

measurement can be applied to the production process with 

constant returns to scale, non-increasing returns to scale and 

variable returns to scale property. 3 The other criticism 

seems to be a more fundamental problem. Being non­

statistical, Farrell's measurement is inherently unable to 

accomodate random errors. However, the validity of the 

measurement may depend on whether the random noise plays a 

dominant role in a production process. Farrell's measurement 

still be valid as long as random error is ignorable comparing 

to other systematic factors. 

The remainder of the sixties seems to be a less active 

period for the studies of productive efficiency. The work by 

Aigner and Chu (1968), however, is a maj or thrust in the 

2 See Royal statistical Society (1957). 

3 See the discussion in Chapter 4. 
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period. It is well known that programming approach features 

a non-parametric frontier property. In other words, t:he 

production frontier is defined relatively rather than 

parametrically in the approach. However, Aigner and Chu 

attempted to impose a parametric form to the programming 

approach. Briefly, the technique attempted to build up and 

locate a parametric production function by minimizing ·the 

radial distance between all the data points and a theoretical 

frontier yet to be formed. Correspondingly, the programming 

problem need not have a linear form. The production funct.ion 

derived by Aigner and Chu has a frontier property, hence is 

consistent with the theoretical definition of a production 

function. 

preserved. 

property, 

Further, all the neo-classical properties are 

since the production frontier has an efficiency 

the deviation of an observation from the frontier 

must be interpreted as inefficiency. This treatment 

pos.itively confirms the presence of technical inefficiency in 

a m.odel of production process. On the other hand, because~ the 

fr()ntier is still obtained through a programming method, it 

shares some fundamerital weaknesses with Farrell's procedure, 

e. q. there is no room for a stochastic component in the m()del. 

Ai9ner and Chu's approach, however, had a theoret ical impact 

reaching beyond its modelling techniques. The concept of a 

"frontier production function" was introduced explicitly in 

production theory. The traditional treatment of production 
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function estimation was seriously questioned and a profound 

discussion on the relevant issues was stimulated in 1:he 

subsequent period. 4 

studies of productive efficiency were not truly 

activated until Afriat's paper (1972) emerged. Afriat's work 

bestowed efficiency studies with two major contributions. The 

first contribution involves a series of theorems which shows 

that any data dependent production frontier is bounded from 

below by a data dependent linear production frontier. 5 This 

linear frontier is in fact an inner envelope or "underwE~ar" 

covering the data set. Therefore, any efficiency measurement 

taking some production frontier as a reference must be bounded 

by the efficiency measurement that takes the "inner" envelope 

as the reference. These theorems provide the different 

approaches, e.g., conventional functional approach and the 

proqramming approach, with a common shell and a mutually 

accepted efficiency structure. 6 

4 See D. J Aigner and S.F. Chu (1968), P. Schmidt 
(1976) (1977) and S.F. Chu (1977). 

5 A data dependent production frontier, roughly 
speaking, is a production function spanned by best performance 
firms and covering the entire data set. It, hence, has a 
frontier property. See Chapter 4 for a detailed discussion. 

6 In the Data Envelopment Analysis (DEA), a programming 
approach developed later on, the root was traced back to the 
inverted cost function introduced by Shephard (1953). 
Hmvever, one may note that the DEA formulation has a closer 
connection to Afriat's Theorems. See R. Banker, A. Charnes 
and W. W. Cooper (1984). 
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Second contribution by Afriat is the concept of "the 

distribution of technical inefficiency", which describes how 

the ,efficiency indexes or scores are distributed among t :he 

firms within an industry. A frequency distribution V.ras 

initially introduced into efficiency analysis by Farrell to 

summarize the results of estimation. 7 The distribution, 

nevertheless, was adopted in a somewhat ad hoc way and it was 

by no means an integrated part of Farrell's theoretical 

efficiency structure. 

formal way: the data 

Afriat put the hypothesis in a more 

points laid inside the product i on 

frontier could be modeled by some sort of statistical density 

function. As he demonstrated, a Beta distribution might serve 

the purpose adequately. The significance of the distribution 

can be stretched far beyond Afriat's original intent. The 

dist,ribution may, in fact, reflect an industry's dynamic 

profile revealing technical progress, technology 

transformation and diffusion, maturity, etc.. It is of 

considerable interest to note that the concept of "capacity 

dist:ribution" by Johansen (1972) contains a similar idea. 'I'his 

distribution is a snapshot of the productivity profile for an 

industry and bears the same efficiency interpretation 

(according to Johansen). The coincidence suggests nothing but 

an E~merging methodology which takes the efficiency profilE~ as 

7 See M. J. Farrell (1957), 270-271. 
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a vehicle to address an industry's structure. 

The earlier theoretical developments reaped a 

considerable harvest in the seventies. Many efficiency 

estimation techniques were cUltivated in this period. 

Tradit i onal econometrics brought about two new procedures in 

the :field of production function estimation. A so-called 

"dete!rministic statistical model" estimates the frontier 

production functions by using information of an efficiency 

distribution. In this approach, the frontier property of a 

product ion function is emphasised and technical inefficiency 

is treated as a statistical variable spreading beneath the 

fron1:ier. The second approach suggested a stochastic 

production frontier which asserts that the production frontier 

is a distribution rather than a fixed measure. The stochast:ic 

frontier model was initially introduced by Aigner, Lovell and 

Schmidt (1977) and has been applied by a larger group of 

resea.rchers . 8 

Totally different from the econometric treatment, 

another important development in late seventies is the 50-

call,ed "data envelopment analysis" (DEA) which emerged from 

the .area of management science. DEA efficiency measurement, 

formulated by A. Charnes, W. W. Cooper and E. Rhodes (1978), 

8 Most referenced works in the group are W. Meeusen 
and J. van den Broeck (1977), F.R. Forsund and Hjalmarsson 
(1979), F.R. Forsund and E.S. Jansen (1977), R.J. Kopp and 
V.K. Smith (1978) and L.F. Lee and W.G. Tyler (1978). 
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is an alternative version of Farrell's efficiency measurement. 

However, the measurement is endowed with a brand new 

formulation which bears the colours of operation research. 

The early 1980' s witnessed a surging interest in 

frontier production function and in efficiency studies from 

the economics profession. As an extension of the earlier 

stochastic frontier model, a new conditiona l estimation 

technique was introduced to extract a measure of technical 

efficiency from a composite error structure. The method, 

suggested by J. Jondrow, C.A. Lovell, I.S. Materov and 

P.Sc.hmidt (1982), defined a new standard for technical 

efficiency estimation. At the same time, the DEA approach was 

also extensively studied from different angles. In addition 

to the original constant returns to scale formulation, some 

new formulations were introduced to cover the production 

proc::ess characterized with non-increasing returns to scale and 

var iable returns to scale (see Banker, Charnes and Cooper 

(1984)]. Assisted by better estimation techniques, DEA has 

now been applied to efficiency and productivity investigations 

in many areas. These include: manufacturing industry, 

agriculture, administration, education, airlines, energy, 

etc: . . 9 

Many innovative thrusts have emerged in the most 

9 See Lovell and Schmidt (1988) for more references. 
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recen·t period. The stochastic frontier model and the DEA 

model have became dominant approaches to productive eff iciency 

analysis. On the side of the stochastic frontier approach, 

many efforts have been spent to extend the analysis to the 

cost function and related systems .10 Another focus of t h e 

approach is the search for more flexible efficiency 

struc:tures. Greene (1990) proposed a Gamma-distributed 

effic:iency structure and has worked out the formula for the 

conditional estimation of technical efficiency. There are 

also some new developments in the estimation techniques for 

the stochastic frontier model. The "moments" method has drawn 

considerable attentions and has been applied in various 

circumstance [see Kopp and Mullahy (1990), Greene (1990)]. 

Moreover, Kumbhakar (1987, 1989, 1990) has applied the 

stochastic frontier model to panel data. As a result, 

technical efficiency has become a time-varying factor. One 

may find that there is a strong dynamic potential in ·the 

stochastic frontier analysis along this orientation. 

On the side of the DEA approach, in addition to the 

sprouting of empirical applications, a major development is 

the comprehensive analysis of the cone structure of the model. 

According to this analysis, the frontier structure can be 

adjusted by imposing a priori weight vector (multipliers). As 

10 For a more detailed survey of recent developmenl: in 
the stochastic frontier approach, see Bauer (1990). 
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a result, flexibility and manoeuvrability of the DEA model are 

considerably enhanced [see Charnes, Cooper, Huang and Sun 

(1990) and Thompson, Langemeier, Lee, Lee and Thrall (1990)]. 

Further, there have been recent efforts to introduce 

stocha.stic components into the programming model 

[Sengupta(1990)]. In the empirical literature, we also find 

comparative studies which assess the stochastic frontier and 

the DEA model by putting them into a competition in empirical 

work [e.g., Bjurek, Hjalmarsson and Forsund (1990)]. 

As a result of these dynamic developments, ·the 

analysis and measurement of productive efficiency has been 

integ-rated gradually into modern production theory.11 These 

developments provides a primal motivation for present 

comparative study. 

Although allocative efficiency, a part of productive 

efficiency, is a primary concern in production theory for many 

reasons, the domain of the present study is conf ined to 

technical efficiency estimation for the following reasons. 

First, knowledge and information about total productive 

efficiency is based on the understanding of its two 

complementary components. Should technical efficiency be 11w'ell 

understood and measured, allocative efficiency can be 

estimated without much additional complication. To some 

11 For theoretical generalization of the developments, 
see R. Fare (1988) and Varian (1984, 1990). 
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extent, the technical efficiency is a starting point for any 

further investigation of production process. Second, 

technical efficiency measurement has its own economic 

signi.ficance which has often been ignored. Economists are 

used to thinking of measurement of technical efficiency as a 

job for engineers. This is simply not the case. An 

economist's measurement of technical efficiency never relies 

on any predetermined physical or technological standard as a 

yardstick. Technical eff iciency measured by economists is 

comparative efficiency with a strong Pareto sense. This has 

been expressed fairly clearly in both the earlier literature 

of clctivity analysis and in more recent literature [See 

Koopmans (1951) and Charnes, Cooper and Rhodes (1985)]. 

Third, technical efficiency measurement has much potential in 

an economy or a section of an economy which is not market 

driven or where price information is not available. In these 

circumstances, technical efficiency measurement is the only 

possibility. 

This introduction can be concluded as follows: (i) 

Debreu-Farrell's efficiency structure is a corner stone of the 

producti ve eff iciency analysis shared by different approaches. 

(ii) The current research frontier is led by two key 

approaches: the stochastic frontier production function 

approach and the nonparametric programming approach (or DEA, 

as named by management scientists). (iii) Though both 
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approa.ches have been extensively applied, comparative studies 

seemed to be an rarely explored area. All these observations 

merge to a major driving force to pursue the present study: 

a comparative study of two alternative approaches to technical 

efficiency measurement. 

The thesis is structured as follows. Chapter 2 

revie~ls the production structure and the notion of efficient 

technology in modern production theory. Chapter 3 examines 

various technical efficiency estimation models and explores 

methodological aspects of technical efficiency estimation. 

Chapter 4 discusses empirical frontier production functions 

and introduces a set of "inner envelope" propositions which 

prove that the family of empirical frontier production 

functions are bounded by a set of linear production frontier. 

Based on these propositions, we focus on the programming 

approach (the DEA model). Various model specifications and 

their implications are discussed. Chapter 5 is devoted to the 

stochastic frontier approach. Based on previous studies, we 

work out conditional estimation procedures for a generalized 

stochastic frontier model and discuss its implications. 

Chapter 6 lays out the ground work for a simulation study of 

the t~wo approaches. Experimental design and relevant test 

statistics are the topics of the chapter. In Chapter 7, we 

report the results of the experimental simulation. The 

dissertation is summarized in Chapter 8. 



CHAPTER 2 THE PRODUCTION STRUCTURE AND 

EFFICIENT TECHNOLOGY 

This chapter concentrates on the theoretical 

background of this productive and technical efficiency study. 

section 1 of the chapter reviews a set of axioms that regulate 

a production process. The primary function of the axiomatic 

approach is to set out a well.regulated production structure. 

Based on this structure, section 2 examines various 

definitions of an efficient production technology. with a 

well defined theoretical structure, empirical production 

behaviour can be reasonably interpreted. section 3 

concentrates on the measurement of producti ve efficiency. 

Sect ion 4 concludes the chapter. 

2.1 Basic Axioms of the 

Production correspondence 

Our choice of axioms is based on three major 

considerations: first, an axiom must be able to interpret 

production data with reasonable logic; second, an axiom has 

to be flexible enough in a sense of "simple and true" so it 

will not lose validity if applied to various production 

15 
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will n.ot lose validity if applied to various production 

models; finally, it should be strong enough to have an 

active regulating role and yield some useful results. 

The set of axioms is aimed to regulate a production 

process described by a mapping from output space R~ to input 

space Rn + (an input correspondence): 1 

m R n 
L: R+ ... • 

By definition, L is a "point to set" mapping. In 

other words, the image of an output u in the input space is 

the input set x that can produce at least u. Correspondingly, 

the graph of L is defined as: 

GrL (u) - [(x, u) I x E L (u), U E R+m] (2.1) 

The input correspondence L (u) is regulated by the 

axioms stated as follows: 

L.1 L: R+m ... R.n is a closed correspondence. 

The axiom states that the graph of the input 

corrE~spondence is a closed set. By definition, a set is 

closl:d if all its boundary points exist and are contained in 

the set. In Figure 2.1, the boundary set for graph L is the 

1 For the sake of simplicity, our attention is limited 
to t :he input space unless otherwise stated. For a detailed 
discussion on the output correspondence and complete axioms, 
see R. Fare (1988). 
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a 

GrI.(u) 

a x 

Figure 2.1 The Graph GrI.(u) 

set of the frontier points from 0 to a. 

The closedness axiom ensures the existence of a 

produ.ction frontier (or isoquant in input space) and 

continui ty of the frontier. As we will explain later, 

efficient technology is a sub-set of the frontier. Thus the 

closE~dness further ensures the existence of an efficient 

production set. 

L.2 ifu~O, then o$L(u) 

This axiom states that if at least one element of 

the output vector u is larger than zero, then its image, L(u), 

cannot have all zero elements. In other words, a production 
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proce::;s cannot produce something from nothing. 2 Figure 2.2 

illus"trates the axiom graphically: if the axiom is true, the 

vertical axis cannot be part of the graph of the input 

correspondence except at the origin. 

L • 3 L ( 0) = R+n 

The third axiom states that a positive input may result 

in a null output, so the production activity may turn out to 

be a f r uitless effort. To put it in another way, there is a 

possibility of extreme inefficiency. In single input, single 

output space, the axiom implies that the graph of the 

production function may collapse onto the horizontal axis as 

shown in Figure 2.2. 

L.4 for all x·>xEL(u), X·EL(u) 

This axiom states that if x belongs to the set of 

inputs which is able to produce u, then x· > x (each element 

of the former vector is larger than the corresponding element 

of ·the later) must be able to produce u also. 

The axiom has some implications somewhat more 

complicated than its superficially simple appearance. First, 

2 The axiom comes from a fundamental postulate proposed 
by Koopmans: "the impossibility of the land of Cockaigne". See 
Nika i do (1970), 216. 
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o 

L2: No part of the vertical axis can 

be included in GrI.( u} 

L3: GrI.(u} may collapse onto the 

horizontal axis 

x 

Figure 2.2 The implications of axioms L2 and L3 
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the production frontier (the boundary of the graph GrL) can 

not decrease. In Figure 2.3. (a)., x is an input level 

producing u. The axiom requires that any x· > x must be able 

to produce u also. Then the graph of the correspondence must 

at least include the area between o-a-b and X-axis. As a 

result, the production frontier (boundary point of the graph, 

i.e., o-a-b) is non-decreasing. The economic interpretation of 

the result is: we cannot have a situation where all inputs 

can be reduced with an increasing output level. 

Further, a backward bending isoquant in input space is 

also prohibited by the axiom. In Figure 2 . 3 . (b) I X is a vector 

which is able to produce u. Suppose there is x· > x , the 

axiom in fact states: (a) x· must also be able to produce u; 
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(b) ij: U is produced by x·, the activity (u , x·) does not 

attain its potential. The second part of the statement can be 

verified by a contradictory situation. Suppose the activity 

(u , x") is at its potential, then the isoquant will have a 

backward bending portion x-x·. If this were true, any other 

point like x'> x would have an output level less than u. This 

is contradictory to the axiom. Therefore, any backward 

bending portion of isoquant is incompatible with the axiom. 

u 

u 
~ ____ ~~ _________________ b 

o X Y! X 

Figure 2.3.{a} The production frontier is non-decreasing in X 

The axiom has an important implication in the context 

of efficiency study. Since the production function is non-

decreasing and a backward bending isoquant is ruled out, the 

behaviour of points like c in Figure 2.3. (a) or x· and x, in 

Figure 2. 3.(b) have to be interpreted as a sort of inefficiency. 
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X
2 

Figure 2.3.(br. Backward bending of an isoquant is prohibited 

L . 5 If u· < u, th en L ( u) c L ( u • ) 

This axiom, though pertaining to an input correspondence, can 

be illustrated more clearly in output space. By the axiom, an 

output vector u· < u (every element of u· is less then the 

corresponding elements of u) should have a larger input image 

set L (u·) (Figure 2.4.(a)) , Therefore, the production 

possibility frontier cannot have an inward bending portion 

(Fiqure 2.4. (a) . 

The possibilities of inefficiency exist according to 
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this axiom. Any output vector less than u must be able to be 

produced by less inputs (thus input set is larger than L(u»), 

if not, inefficiency occurs. Therefore, the production 

frontier cannot bend backwards toward the u-axis. 

u 

u
2 

Figure 2.4.{a) The production possibility frontier 

should not have an inward bending portion 

L.6 L(u) is bounded for u < +00. 

The axiom states that for any finite output, the input 

requirement must be bounded by some finite number. Therefore 

it rules out the situation where a finite output level 

requ i res infinitely large inputs. To extend this axiom to 

output space, one would conclude that it is impossible to 

produce infinite output by finite inputs. 



u 

u 

.,.,.'\ / ruled out by L5 
, , 
\ , 
: , 
! 

u * f-------T\ 
!'(u*)--­
L(u) V 

o x ~ x 

Figure 2.4.(b) The production frontier should not 

have a backward bending protion 
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The axiom states that the graph GrL is a convex set on 

R+ nxR+ m. This implies that the production possibility set L (u) 

is convex too. In Figure 2.5. (a), the graph GrL is a convex 

set and the projected image L(u) must have a convexity 

prop,erty. 

However, strict convexity of GrL is not required. As 

a result, the production frontier could have either linear or 

non-linear structure. [Figure 2.5. (b)] 

The above axioms can be matched by a set of 

symmetrical counterparts regulating the output 



correspondence. 3 

u 

GrI.{u) 

L(u) 

x 
Figure 2.5.(a). Convexity of GrL(u) 

u 

GrI.(u) 

I.(u) 

x 
Figure 2.5.(b) Convexity of Gr:U a linear boundary 

3 See R. Fare (1978), Chapter 1. 
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In the next section, we formally define an efficient 

technology and will frequently refer back to the axioms to 

check their implications for technical efficiency analysis. 

2.2 The Efficient Technology 

The axioms L.l (the closedness of the graph GrL) 

enablE!s us to define the boundary of GrL. For an output level 

U, the proj ection of the boundary of GrL (u) on input space can 

be defined as an isoquant: 

ISOQL(u) -{x: XEL(u),x$L(u'), u'~u} 

However, efficiency is not an unambiguous property for 

the isoquant unless axiom L.4 is in effect. Axiom L.4 rules 

out the case that an isoquant has a backward bending portion. 

Thus, a Weakly Efficient set (a subset of ISOQ L(u))can be 

defined as: 4 

WEFF L(u) - { x XEL(u),x*$L(u), x*>x} 

4 In the following definitions, " a > b " implies that 
each elements of a is larger than band " a ~ b " implies that 
at least one element of a is larger than b. 
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FurthE~r , at times we might wish to rule out the case that an 

isoqucmt has a portion parallel to the vertical or the 

horizontal axis. In this case, an Efficient Set can be 

definE~d as 

EFF L (u) • { x: x E L (u), x· ~ L (u) I x· ~ X } 

There are nested relationships among the above three 

input sets as follows: 5 

EFF Leu) ~ WEFF Leu) ~ ISOQ Leu) 

In Figure 2.6, the curve a-b-c-d is an isoquant for 

LeU). On this isoquant, the backward bending section a-b is 

an inefficient part; the portion b-c is weakly efficient and 

the portion c-d is efficient. Therefore, an input vector x is 

technically efficient for an output vector u if and only if x 

~ EFF Leu). 

Since most currently available efficiency measurement 

techniques are not able to distinguish between weak and 

ordinary efficiency, we will not stress the distinction 

betw€~en the two in the rest of the presentation unless 

othe!~ise stated. 

From the definition of technical efficiency and axiom 

L.7, we define an efficiency subset of the graph: 

EFF GIL - [(x, u) I x E EFF L(u), u ER.m] 

5 ~ indicates a subset. 
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a 

b 

c 

d 

o 
Figure 2.6 The isoquant and the efficient frontier 

Note that since GrL(u) is a convex set by L.7, EFF GrL 

can be viewed as a function concave on X. Accordingly, we may 

define an efficient production technology as a one-to-one 

mapping from the input to the output space: 

f: x ~ u 

which has a graph identical with EFF GrL. 

2.3 The structure and Measurement of 

Productive Efficiency 

Taking the efficient technology, EFF L(u), as a 

reference set, the technical inefficiency of an interior point 
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x' in L(u) can be measured by it's radial distance to the 

efficient frontier. The Farrell measurement of technical 

efficiency is given by 

T(x' i u) - min { 't' 't' x' E L (u) ,'t' ~ 0 } (2.2) 

where T is non-negat ive scaler. Suppose x 8 E EFF L(u) is a 

referenced point, Farrell's measurement can be made in such 

a way that x 8 = T(x': u) *x. Since x > x 8 
E EFF L(u), T(x'; 

u) must have an effective range (0,1].6 

Although we have indicated earlier that we will 

restrict our attention to the technical efficiency, it is 

useful to note how t his relates to overall efficiency. The 

overall performance of an economic agency can be measured by 

the productive or total cost efficiency. Given an input price 

vector W = {W1, ••• , wn }, the total cost function C(u;W) = 

wx* (111;W) reflects the cost for the optimal choice of input set 

x*. Thus the total cost or productive inefficiency for an 

obsE!rvation x is measured by 

C( U i w) 
P( x i U ,w) -

wx 
(2.3) 

6 By axiom L. 2, it is impossible to produce something 
from nothing, therefore, T(x'; u) can't be zero for an output 
vector with at least one non-zero element. 

po 
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The allocative efficiency can then be defined as the residual 

part of total productive efficiency after the effect of 

technical efficiency is removed. 

A(x u ) _ _P--.:(~x---=--_u~) 
T( xu) 

(2.4) 

In Figure 2.7, productive inefficiency of e producing 

u i s measured by the ratio of the radial distance oe3 /oe. 

Techni cal inefficiency is measured by oe2/oe and allocative 

inefficiency by oe3/oe2 • Therefore: 

Productive Inefficiency = Allocative inefficiency 

o 

, , , , , 
/ '/ 

" ,/ 

, , 

// 

, , , 

, , 

X Technical inefficiency. 

e 

Figure 2.7 Decomposition of total productive inefficiency 
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Although allocative efficiency and cost efficiency are 

very important aspects of efficiency analysis, we have no 

intention to go beyond the scope of technical efficiency 

measurement in the present dissertation due to the reasons 

stated i n Chapter 1. Moreover, Farrell had revealed the 

complementary relationship between the technical and the 

allocative efficiency. If the technical efficiency is known 

and marke"t information is available, the allocative efficiency 

can be found without much difficulty. 

One may note that Farrell's measurement is rigorously 

rooted in the modern production theory. The referenced 

technol09Y in Farrell's measurement is exactly the efficient 

production frontier as we defined in the previous section. 

The measurement itself is a perfect match of Debreu's 

"coefficient of resource utilization". Moreover, as noted by 

Lovell and Schmidt (1988), the measurement P (x;u) has a 

duality rel ationship with L(u) and in fact is the inverse of 

the distance function proposed by Shephard (1953,1970). 

However, if the referenced production frontier is 

weakly E~fficient, in particular, a vertical or horizontal 

segment of an isoquant, for example, the Farrell measurement 

of technical inefficiency may yield a biased measurement. In 

Figure 2.8, the referenced frontier b-c is a weakly efficient 

portion,. so the radial measurement is obviously an overstated 

measuring. The Lieontief technology is an extreme example. In 
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Figure 2.8, the line b-c-d is a Lieontief production frontier. 

The efficient frontier then collapses to a point c. 

Obviously, any radial estimate not passing through the point 

would overestimate the true efficiency. However, this flaw is 

shared by all the radial efficiency measurements. 

x 
1 

o 

" " " " " ,~' 
~ . . 

" :' 

" 

, , . . , , , , , , , , 
, ' 

b . ' 
, " 
" , ' , ' . ' , ' , ' " ,A-------- d 

," ,,' C , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 
" " " " 

x 
2 

Figure 2.8 Efficiency and weak efficiency 

To correct the weakness, Fare and Lovell (1978) 

suggested a Russell measure of technical inefficiency which 

gauges the non-radial distance of technical inefficiency as: 

!
:E&(XJ Ai 

R(x u) - min -~-----

L 0 (Xi) 
i 

AX E L ( u) , A i E (0, 1] ( 2 • 5 ) 



where 

5 (x,l - { 
1 

o 

if Xi > o. 

, otherwise. 

32 

Note that the reference here for a data point is not taken 

along the radial direction but along each dimension of the 

input space. correspondingly, the original efficiency 

measuring is an n-dimensional vector that can be converted 

into a weighted scaler. Apparently, the Farrell's measurement 

is a spacial case of the Russell's measurement as 1,=12= 

... , =In· 

However, there are a few problems with Russell's 

measurement. First, the technical inefficiency gauged along 

the different directions may not maintain a measuring 

consistency. Second, the local property and behaviour of the 

referenced frontier play a more important role than in the 

Farrell's measurement. Unless the knowledge about the 

referenced frontier is complete, Russell efficiency should 

be interpreted with caution. Moreover, estimation of Russell 

efficiency is not as tractable as Farrell's . Therefore, 

Farrell's measurement is still believed to be the most 

tractable measure of productive and technical efficiency and 
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we will use it in this thesis. 

2.6 Summary 

In this chapter, we have reviewed the theoretical 

background for effic i ency measurement. The fundamental axioms 

of the modern production theory are the starting point in 

defining the structure of production and efficiency. Unlike 

the calculus based classical framework, in this structure, we 

do not assume that economic agencies operate in a situation 

where all marginal conditions being fulfilled. On the 

contrary, inefficient production and slackness in operation is 

plausible. In this chapter, we also reviewed Farrell's 

decomposition of productive efficiency and the different 

concepts of efficiency. In the next chapter, we turn to 

empirical issues: the estimation techniques for technical 

efficiency. We will review various modelling techniques and 

discuss the technical efficiency from a different point of 

view. 



CHAPTER 3. EMPIRICAL MODELS OF TECHNICAL 

EFFICIENCY MEASUREMENT 

The theoretical structure of technical inefficiency 

discussed in the Chapter 2 provides a framework which shelters 

various production analyses. Nevertheless, it is well known 

that in practice " ... there is not yet a consensus on how one 

should , or whether one can, measure the technical efficiency 

of a firm, even if this agreed to be useful things to 

measure. II 1 

This chapter, presented in five sections, reviews 

alternative modelling techniques and their underpinnings. 2 

The first section reviews efficiency measuring techniques in 

early classical production analysis. The production frontier 

models developed in 1970's are discussed in section two. In 

section three, we concentrate on two more updated approaches: 

the stochastic frontier model and the non-parametric 

programming model. The recent development of efficiency 

1 F.R. Forsund, C.A. Lovell and P. Schmidt (1980) 23. 

2 For the reviews of efficiency studies in different 
period, see Nerlove (1965), Kopp (1981), Silkman (1986), 
Sengupta (1988), Lovell and Schmidt (1988), Bauer (1990) and 
Seiford and Thrall (1990). 
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estimation techniques is described in section four. In 

section five, we discuss the significance and implications of 

the recent developments. The last section summarizes the 

chapter. 

3.1 Efficiency Measurement in the Classical 

Production Model 

The notion of technical inefficiency seemed to be 

an ambiguous concept in early production analysis. Technical 

effici ency was often viewed as a pure technical measuring of 

the production process rather than a relative economic 

measuring. The economic significance of technical efficiency 

measuring was not fully recognized. 3 However, some classical 

analysts did provide penetrating insights on technical 

efficiency. In an influential pioneering work of production 

theory, Marschak and Andrews (1944) stated4 

the production function will 
change, even within the same industry, from 

3 For example, the constant term in a Cobb-Douglas 
production function was interpreted as a "term of technical 
efficiency" in some pedagogic versions of classical theory. 

4 See J. Marschak and W. H. Andrews (1944), 145. 
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firm to firm and from year to year, depending 
on the technical knowledge, the will, effort, 
and lack of a given entrepreneur: these 
factors can be summarized as "technical 
efficiency, " and may be represented by one or 
more random parameters. 

This is obviously true even judged by our present knowledge. 

Technically, it was suggested that productive 

efficiency can be treated as a random parameter rather than a 

variable. In practice, however, the proposed random parameter 

model had never been as popular as some simplified models with 

non-random parameters. To capture the performance difference 

among the firms, a production function may have following 

form: s 

I =1,2 ... (3.1) 

where x and u are input and output respectively and parameter 

Ar is regarded as a measure of technical efficiency for the r-

th group of firms. Though the model does distinguish inter-

group performance, it can not provide firm-specific efficiency 

measuring. This weakness is shared by all the models with a 

parameterized efficiency measure. 

More conventionally, the effect of technical 

inefficiency may be captured by a stochastic variable 

5 The model by Lau and Yotopoulos (1971) should be 
regarded as a modern version of classic treatment. 



randomizing the production function. 

production function can be written as6 
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Correspondingly, the 

u - f(x,p,e) (3.2) 

where is a random term representing "technical 

inefficiency". The conventional econometric techniques are 

believed applicable to the model. Though the production 

function f() may have a complicated form to meet various well­

behaved properties, the treatment of technical efficiency was 

usual l y quite simple in the early models. It was common 

practice to attach interpretation of ineffici ency 

unexplainable estimation error. The efficiency 

to the 

of an 

observation was measured by its relative distance to the 

estimated function. 

The most problematic part of the classical approach 

is its average treatment of the production function. In this 

approach, the potential output for a given input level is a 

statistical average one rather than a maximum. The estimated 

production function is, therefore, basically inconsistent 

with the theoretical definition. Furthermore, the economic 

significance of such measured technical efficiency is 

questionable. Though by comparing the relative position of an 

observation to the production function, one can rank a group 

6 See Marschak and Andrews (1944). 



38 

of observations ("firms"), it is frequently noted that the 

efficiency measure has only statistical significance rather 

than economic significance. 7 

These followed some new models which, though viewed as 

classical models, are pionee~ works in frontier production 

f unction analysis. According to Klein (1953), if productive 

inefficiency is under consideration, the production function 

for profit maximizing firms is: 

u = Ltt. KI'> e 
(3.3) 

where z is the total revenue from sales of the product u; ZL 

and ZK are the firm's expenditures for the factors Land K; 

the v parameters represent failure of short-run profit 

rnaximization; and, finally, e is a random error. Due to the 

presence of the v parameter, performances of firms vary 

a.ccording to their success in maximiz ing the profits. It 

should be noted that the v parameters are regarded as 

systematic components in production. One may further 

introduce random components into the model. The resulting 

7 As Schmidt (1977) stated, the parameter set obtained 
from OLS estimation of a production function are consistent 
except for the constant term, thus one can "rank-order firms 
by efficiency the more positive or less negative the 
residual, the more efficient the firm ... ". 
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model then has the form of 

z z (3.4) 

where e ' S are firm-specific random components. As a result of 

introducing the random components, the production structure 

has a composite error kernel. According to Nerlove (1965), 

Klein's models in fact have a frontier property and efficiency 

measurement based on the models is exactly consistent with 

Farrell's efficiency structure. However, most of the 

c:lassical models do not have this nice feature. In contrast, 

c:onventional classical treatment features an average 

production function which presents to be a maj or problem 

prohibiting them to have a correct measurement of the 

technical inefficiency. 

3.2 Production Frontier Models 

As demonstrated in the last Chapter, Farrell's 

measurement of technical efficiency 



40 

F(x·,u·) = min {'t i 'tx· E L(u·) } (3.5) 

is one of the earliest production frontier models. In the 

model, the technical efficiency of an observation x* is 

evaluated by its radial distance to a production frontier. 

'I'his structure spawned a number of frontier production models 

in 1960's and 1970's. 

Aigner and Chu (1968) proposed a programming 

procedure to obtain a parametric production frontier as: 

s.t 

min t 
j} 

t=lnf(xiP) -lnu 

t ~ 0 

(3.6) 

1Nhere t is the term of technical inefficiency and all other 

variables are defined in a conventional way. A programming 

procedure was suggested to solve for all the parameters and 

9ive a parametric description of the production function f (x) . 

Fundamentally, f(x) can keep a frontier property by imposing 

the restriction u ~ f(x). 

However, the parametric form can be a straitjacket if 

it is not flexible enough or mis-specified. In the model, 

observed input-output data are explained by two components: 

the part explained by the estimated parameter set and the 
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residuals interpreted as inefficiency. Clearly, should the 

f unctional form of the production function be mis-specified, 

technical efficiency cannot be a precise measure. 

Another problem associated with the above frontier 

model is its inability to handle random errors. Conceivably, 

the deviation from a frontier could be caused by either 

technical efficiency factor or other random factor. Should 

the random component be handled improperly, the production 

frontier could be mis-placed and efficiency measurement would 

be affected. 8 However, the pure random errors were often 

ignored in the early frontier models. 

Farrell acknowledged9 : 

On this negligence, 

errors of observation will 
introduce an optimistic bias, which can only 
be eliminated if the distributions of both 
errors and efficiencies are known. . ... for 
practical purposes the important fact is that 
if errors are small compared with the 
variation in efficiencies, this bias will be 
negligible. 

Therefore, the validity of the models depends on the 

8 An empirical example can be found in D. Deprins, L. 
Simar and H. Tulkens (1985). In their study of labour­
efficiency in Belgian Regie des Postes, extraordinary outliers 
are found to have either "global" or "local" effects on the 
frontier and hence the estimated indexes. 

9. M. J. Farrell (1957), 263. 
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presence of only small random factors.'o In this regard, the 

econometric method should have some advantages. 

Deterministic frontier models were the dominating 

statistical approaches in 1970'S." The typical 

deterministic frontier model has the following structure: 

u - f (Xi ~) • e- t t ~ 0 (3.7) 

where variable t is technical inefficiency term and is subject 

to some pre-specified statistical distribution. It has been 

suggested that t may have a Beta [Afriat (1972)] or a Gamma 

[Richmond (1974), Greene (1980)] distribution. The suggested 

estimation techniques include corrected OLS method (eOLS), 

which relocates the production function by correcting the 

constant term in order to ensure a frontier property, and the 

maximum likelihood method (ML) , which requires a properly 

specified distribution for the efficiency term to yield 

consistent and asymptotically efficient estimation of the 

'0 There are some other factors that may cause the 
observed efficiencies to differ from factual ones. Those 
factors have external effects on the production process. The 
'Meather condition is an example of such a factor. Those pure 
random factors may be assumed to have a normal distribution. 
See R. Forsund et. ale (1980) 

11 The approach was initially proposed by Afriat 
(1972) . 
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pa.ra.meter set. 12 

The mostly celebrated contribution of the 

deterministic frontier model, as it is called, is the frontier 

property. Now the production function keeps a perfect 

consistency with its theoretical definition, i. e., the maximum 

a1:tainable output level for given inputs. However, the 

interpretation of technical inefficiency by the deterministic 

frontier approach is much less convincing. The question is: 

if the deviation from the frontier is viewed as technical 

inefficiency, there would be no room for the pure random 

noise. In this regard, strength of the econometric method is 

not fully employed in the deterministic frontier model. This 

dleficiency turns out to be a major motivation for developing 

the more sophisticated stochastic frontier model. 

12 See Richmond (1974) for the eOLS technique and 
Greene (1980) for the ML method and associated problems. 
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3.3 The DEA and the Stochastic Frontier Models 

The following two models emerged in late 1970's as the 

two major approaches in production and efficiency analysis. 

(1). The Stochastic Frontier Model. 

Based upon the earlier deterministic frontier models, 

th,e stochastic frontier model features a composite error 

structure. 13 It has the following typical form: 

-00 < v < 00, t ~ a (3.8) 

wh.~re f ( ) is a deterministic production function and exp (v-t) 

respresents the error structure. In the kernel of the error 

term, v i s the random component and is conventionally assumed 

to have a normal distribution. Further, in the earlier 

versions of the stochastic frontier model, t is assumed to 

have either a half-normal or an exponential distribution. 

Moreover , it was assumed that v and t are statistically 

independent. 

Let us define e = (v-t). Given the probability 

density f unctions (pdf) Pv(v) and ~(t), the marginal pdf of 

thE~ composite error e can be obtained by integrating the joint 

13 The earliest composite error structure of productive 
efficiency can be traced back to Klein (1953). 
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density functions: 

(3.9) 

This leads to the maximum likelihood function: 

(3.10) 
where 

t=lnu-lnf(XiP) 

Jondrow et. al (JLMS, 1982) proposed a conditional 

estimation procedure to extract the technical efficiency term 

t out of the composite error e. According to the Baysian 

rule, t h e pdf of t conditional on e is given by: 

= Pt,v( t, t) 

P z (e) 
(3.11) 

Finally, the expectation and mode of t conditional on 

e can be obtained by: 

E(t I e) = foCOtpt(t I e) dt 

M (t It) = t I ap (t; I z) = 0 
at 

(3.12) 

The major attraction of the model comes from its subtle 

error structure. The other statistical models reviewed 

previously, though maintaining a frontier property, are not 
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able to distinguish technical inefficiency and the effect of 

random noise. The frontier is therefore subj ect to the 

influence of stochastic disturbances. wi th the compos i te 

error structure, extraordinary behaviour of an observation can 

be filtered out and has less effect on the location of the 

production frontier. 

The limitation, on the other hand, is the restrictive 

efficiency distribution form imposed as the model is 

specified. As many researchers realized, "the more structure 

WE: impose on a model the better our estimates - provided the 

st:ructure we impose is correct. ,,14 However, correct 

specification can never be assured unless we have perfect 

knowledge of the real world. Thus specification error of the 

eff i ciency distribution presents a major threatening to the 

s1:ochastic frontier approach. Furthermore, the correct 

specification of the functional form for the production 

process is of important. Should the functional form were mis­

specified, the location and the shape of the production 

f r ontier would be interpretated improperly. Finally, the 

effects would be dumped to and distort the efficiency 

estimation. 

(2) The Non-parametric DEA Model 

Following Farrell's measurement scheme, Charnes, 

14 Bauer (1990), 40. 
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Cooper and Rhodes (1978) suggested that technical efficiency 

can be measured by solving a fractional programming problem 

s. t.: 

max: 
«.P 

La juj 
LP i X ; 

i = 1, ... ,n (3.13 ) 

j = 1, . .. ,m 

r = 1, ... ,k 

where n, m and k are the dimensions of input, output and the 

numbers of observations respectively. IS Essentially, the 

programming procedure known as DEA (Data Envelopment Analysis) 

creates two convex cones in input and output space 

respecti vely. The efficiency of an observation wrapped in the 

cones can be measured by the radial distance from the data 

point to a matching point on the hull of the convex body. 

Clearly the procedure conforms to the Farrell's measurement of 

technical efficiency defined previously. 

The distinguishing feature, the non-parametric 

property, of DEA can not be overstated. In DEA, one does not 

need to specify a functional form either for the production 

structure or for the efficiency structure. The risk of mis-

specification in this regard is reduced correspondingly. 

IS There are a number of other variations of the basic 
DEA model which we will discuss in Chapter 4. 
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However, it is important to understand that the lack of a 

requirement on the functional form does not imply the non-

existence of functional relationship in production. In fact, 

as we will discuss later, a DEA . solution does defines a 

mapping from input to output spacel6
• Further, the 

feasibility of the DEA analysis depends on only whether there 

are enough observations to span the convex cones in input and 

output space. This implies that the requirement for DEA in 

terms of on the sample size is much less restrictive than for 

statist ical models. 

The shortcoming of the DEA model is its inability to 

cope with random noise. As a non-statistical model, DEA 

considers all the deviations, including the ones caused by 

random noise, from the data envelope as systematic 

inefficiency. 17 The consequence is: extraordinary behaviour 

of any observation may exert a direct impact on the location 

of the production frontier and hence on efficiency 

measurement. Should the random noise present in production, 

the DEA tends to under-estimate technical efficiency. 

Another impending risk to the DEA model is mis-

specification on the returns to scale property. Though a 

funct i onal form specification is not required, as we will 

16 See the discussion in Chapter 4. 

17 In this regard, Farrell's statement quoted in the 
last section remains valid. 



49 

dE~monstrate in Chapter 4, specification of a returns to scale 

property is a compulsory requirement for the DEA. The returns 

to scale property defines the shape of the production 

frontier, and hence determines the interpretation of entire 

d.ata set and the measurement of the technical efficiency. 

Therefore, accuracy of efficiency measurement cannot be 

ensured unless the returns to scale property is correctly 

specified. 

3.4 Recent Development of Production 

Frontier Analysis 

The recent period is one of elaboration, in which both 

the stochastic frontier model and the DEA model continue their 

domination in efficiency analysis. Some important 

developments are worthy noticing in both approaches. 

On the stochastic frontier analysis, the major efforts 

have been directed to three major dimensions .18 

First, much effort has been paid to seeking more 

flexible functional forms for the composite error production 

structure. Research along this dimension follows a similar 

pattern to that we have seen in traditional production 

18 For a detailed review of recent developments in the 
stochastic frontier approach, see Bauer(1990) . 
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analysis. The cost function has been a primary vehicle used 

to reveal the production and efficiency structure. In 

addition, the family of share equations is brought into the 

analysis and has been modelled with a composite error 

structure. The stochastic frontier model has been extended to 

cover the entire cost system. In this cost system approach, 

one may find more detailed discussions in Greene (1980) and 

KUlmbhakar (1989). 

The second dimension is to relax the less flexible 

st:ructure imposed on the (either technical or allocative) 

efficiency terms. The dominating models of error structure 

since late 1980's have been the half-normal (technical 

e1:ficiency)/normal (random noise) and exponential (technical 

efficiency) /normal (random noise) models proposed by ALS 

(1977). Based on these two models, JLMS (1982) developed the 

conditional estimation technique. As a result, the two models 

dominated the stochastic frontier approach for the rest of 

1980's. However, there is no emperical evidence suggesting 

t hat the efficiency distribution follows those particular 

distribution forms. stevenson (1980) developed two 

generalized models: the truncated-normal (technical 

efficiency)/normal (random noise) model and Gamma/normal 

model. However, the conditional estimation procedures for 

these two generalized models were not worked out until 

recently due to the complexity of the mathematical structure. 
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Recently, Greene (1990) has developed the conditional 

estimation procedure for the Gamma/normal model. with a 

flexible Gamma distribution, greater freedom can be achieved 

for the efficiency structure. 

The third dimension of advance in the stochastic 

frontier approach is the application to the panel data. The 

primary advantage of using panel data is to obtain consistency 

o JE efficiency estimation which is not available in cross 

section analysis. Moreover, using panel data may reduce the 

n:~liance on the restrictive assumption on the efficiency 

distribution. Finally, an industry's efficiency may have a 

time profile in addition to a cross section profile [see 

Jondrow et. al. ( 1982), Schmidt and Sickles (1984), Kumbhakar 

and Summa (1989)]. 

New developments in estimation techniques have also 

appeared recently. While maximum likelihood estimation serves 

as the major vehicle, alternative techniques are also applied. 

Noticeably, the moment method is more frequently employed in 

Hstimation. To estimate a stochastic frontier function 

(3.14) 

the core issue is to find out the parameter sets for the 



52 

probability density functions of v and t. In this regard, the 

various order moments of the composite error, i.e., E[(V-t)r], 

impose many restrictions (therefore provide a great amount of 

information) on the parameters. From these moment 

restrictions, the parameter set can then be identified. 

Because the composite error usually has a cumbersome complex 

functional structure, the moment method has an obvious 

advantage in revealing the structure. Regarding empirical 

application, Greene (1990) suggests using the moment method to 

E~stimate the proposed Gamma/normal error structure. Kopp and 

}1ul lahy (1990) discusses various aspects of applying the 

moment method to the stochastic frontier model. They suggest 

that the moment restrictions may play an important role in 

1:esting the stochastic frontier model specification. 

On the side of the non-parametric approach, we also 

find some important advancement. The most important 

achievement in the DEA approach is the polyhedral cone-ratio 

generalization of the DEA models. In the basic DEA model, the 

referenced efficiency set is obtained inclusively from the 

data set under investigation. This referenced input-output 

sets define a convex cone in both input and output spaces. 

Efficiency can then be measured as an input-output cone ratio. 

However, according to Charnes, Cooper, Wei, and Huang (1986) 

and Charnes, Cooper, Huang and Sun (1990), the cones can be 
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defined much more generally so that external information can 

be employed in the cone construction. As a result, the 

external evaluation for the input and output could be imposed 

as a priori weight (or multiplier) vector to assist the cone 

building. This new modelling technique has been applied into 

an empirical investigation by Thompson, Langemeier, Lee, Lee 

and Thrall (1990). 

Another development in the DEA approach is the 

si:ochastic DEA model proposed by Sengupta (1988) (1990). In 

the standard DEA approach, individual efficiency estimation 

seems to be the ultimate intention. However, according to 

Sengupta, a statistical distribution can be imposed to fit the 

DEA efficiency estimates and provides an interface for the DEA 

a nd the statistical model. 

The recent developments signify somewhat important 

changes in the methodology of production theory. These 

changes in turn influence the further development of 

efficiency study. 

The most important, the change in methodology should 

be observed. Optimizing behaviour is a pivotal assumption in 

economic analysis. The convention of economics is to analyse 

the optimized track of economic activity, with the assumption 

that the track can utltimately be attained. Non-optimal or 

sub-optimal behaviour, except it as results from imperfect 

]larkets, is out of consideration. Following this convention, 
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economic agent is assumed born efficient in production. 

Correspondingly, the production function estimated by the 

conventional econometric model describes "average" optimizing 

be:haviour. Deviations from the function have only statistical 

significance rather than economic significance [Varian 

(1990 ) ]. The surging interest in frontier production models 

indicates that the economic significance of violating an 

opt i mizing model is now becoming a major concern of production 

anal ysis. 

It is worth noting too that trend of efficiency study 

has been influenced by the changing methodology. The first 

noticeable change in the efficiency study is the firm-specif i c 

oriented analysis. Heterogeneous performances of firms had 

b ,een observed by empirical production study for many years 

[e.g., Johanson (1970)]. However, econometrics had done 

little to model the phenomenon. Even for efficiency study, 

the focus was on the average efficiency of an industry. The 

stochastic frontier model, and especially the conditional 

estimation technique has changed the situation. Currently, 

t .he firm-specific efficiency analysis becomes a new standard 

f'or efficiency study. The theory underlying for this 

orientation is that the economic agents (or DMU -decision 

nlaking unit) are heterogeneous. The role of efficiency study 

i s to distinguish rather than blur the differences. 

1:hinking brings out a convergency of interests 

This 

of 
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microeconomics and management science regarding efficiency 

analysis. 

Further, the study of the industrial efficiency 

profile characterizes another aspect of recent developments. 

The industrial efficiency profile is often referred to as the 

efficiency distribution of an industry. There are many 

reasons to direct our attention to this rarely explored 

alspect. Empirical studies suggest that, even using same input 

factors and producing same outputs, firms may have diversified 

performance. 19 Many factors account for the performance 

discr epancy: technology invention and diffusion, geographic 

distribution, equipment replacement and upgrading. As a 

result, each industry features its own pattern of efficiency 

profiles. 

The earliest effort to model the efficiency profile 

can be dated to Farrell (1957) who gave a first description of 

efficiency distribution. In a more formal way, Afriat (1972) 

proposed a Beta distribution to characterize the efficiency 

profile. In fact, all efforts in stochastic frontier 

approaches are focused on one point: seeking a flexible 

distribution form to capture the underlying efficiency 

19 As Johansen (1972) observed, the performance of some 
inputs may have a difference factor of two to four times. A 
more recent example can be found in Deprins, Simar and Tulkens 
(1984). By analyzing the labour efficiency structure in the 
Belgian Post Office, they found that there is a wide spread 
spectrum of possible efficiency profiles. 
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profile. 2o We observed that recently the ability of 

recovering the efficiency profile has became a criterion to 

assess alternative estimation procedure [See Bjurek and 

Hjalmarsson (1990)].21 

3.6 Summary 

In this chapter, we 'reviewed alternative modelling 

techniques for efficiency estimation. From this review, we 

found that production frontier analysis is the central issue 

of efficinecy measurement. In fact, two production frontier 

models, i.e., the stochastic frontier model and the DEA model 

are leading the current efficiency studies. In addition, we 

;also discussed recent developments and their siginificances. 

with these understandings, we will devote our efforts to 

these two leading approaches in the next two chapters. 

20 The concept of "capacity distribution" propsoed by 
Johansen (1972) bears a similar meaning. For recent concern 
about the concept, see Muysken (1985). 

21 As matter of fact, to handle an irregular pattern of 
efficiency distribution (e.g., a skewed one) is one of major 
motivation to apply the SF model to panel data. It is hoped 
that reliance on the restrictive distribution form of 
efficiency can be reduced by introduing time dimension. See 
Kumbhakar and Summa (1989). 



CHAPTER 4. NON-PARAMETRIC ESTIMATION OF 

TECHNICAL EFFICIENCY: A PROGRAMMING APPROACH. 

This chapter concentrates on one of the leading 

approaches to efficiency estimation: the non-parametric 

programming approach. The approach introduced by Farrell 

aimed to solve the efficiency estimation problem in a CRS 

(constant return to scale) production process. Two important 

advances emerged in the 1970's which generalized Farrell's 

model. The analysis by S.N. Afriat (1972) focuses on 

theoretical aspects of efficiency estimation. In his 

analysis, a series of "inner envelope" propositions can be 

regarded as the theoretical foundation for the programming 

approach. Further, it serves as a bridge linking this 

approach with other conventional approaches. Later, in the 

management science literature, R. Banker, R. Charnes and W. 

Cooper (1978) formulated the DEA problem, as we outlined 

previously, which greatly enhanced the non-parametric 

programming approach. 

This Chapter attempts to re-interpret the non­

parametric approach in a way more consistent with economic 

analysis. The chapter starts with a discussion of the 

57 
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properties associated with a data dependent production 

function (DDPF). This discussion is applicable to empirical 

production frontier analysis in general. In section two, we 

discuss a set of linear production frontiers and, following 

Afriat (1972), and provide a second proof for a series of 

" inner envelope" propositions pertaining to these frontiers. 

~ve demonstrate that these propositions playa pivotal role in 

l inking parametric and non-parametric production frontier 

lnodels. Based on these propositions, section three reviews 

,two sets of efficiency estimation models. These two sets of 

models are in fact the primal and dual formulations of one 

linear programming (LP) problem. Then, in section four we 

will trace out the technology correspondence in the duality 

relationship. The returns to scale property is a very 

important consideration should a non-parametric efficiency 

estimation model be employed. The issue is discussed in 

section four together with some other issues. 

ends with a summary. 

The chapter 

4.1 The Data Dependent Production Frontier 

This section addresses the notion of the efficient 

production frontier and its interface with empirical data. 

Assume there are k observations in a set of input­

output data. The activities of the data set (or, activity of 
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an industry) can be characterized by an input matrix 

x; 2 
Xl" • X/ 

X= 

Xl 2 
Xn

k 
n X n ,· . 

and an output matrix: 

u; 2 
U1 • •• u/ 

U= 

u l 2 Uk 
m um •• • m 

A data dependent production frontier (DDPF) can be 

jointly defined by these k observations. 

More specifically, a DDPF describes a point to point 

mapping from input to output space: 

f : X - U 

In this relationship we assume that the previously outlined 

axioms about L(u) hold, and f is the boundary Qf the graph GrL 

describing the data set. It represents the frontier of a 

technology transforming input into output. 

As a function constructed from the observed data set, 

a DDPF features the following characteristics: 

( 1) Theoretical consistency. 

The DDPF should interpret the observed data 
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consistently with all the axioms L.1 through L.7 introduced in 

Cha.pter 2. and in particular: 

(a) To be consistent with L.4 and L.S, f is a non­

decreasing function on the domain of empirical data D(X), 

D(X) _ {x: min[x/] ~ Xi ~ max[x{], X E R..n , 

r=1, ••• ,k }. 

and on an extended domain of the empirical data: 1 

ED(X) :: { x: Xi ~ max[x{], X E R..n , r=1, ••• ,k }. 

(b) By L.7, f is concave either on ED(X) or on D(X).2 

(c) since f is the boundary of graph L, it is at least 

weakly efficient. 

(2) Data consistency 

A DDPF f is consistent with a given set of data in the 

sense that at least for some observations (x',u'), we have 

u' = f(x,) 

and for all other observations (x,u), 

u < f (x) 

It is crucial important for a production function to have the 

frontier property. Should this property and all the axioms be 

satisfied, the production function f is an efficient frontier. 

Data consistency makes technical inefficiency a 

1 The extended domain includes the origin. 

2 However, strict concavity is not required. 
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legitimate part of the production structure. Deviation from 

the! producti on frontier is regarded as a permissible 

behaviour. In the non-parametric approach, the performance 

gap 

f(x) - u 

bears the systematic interpretation of inefficiency. However, 

i n the statistical production models, the gap may be assumed 

to contain both a systematic and a purely random component. 3 

(3) Requi rement for Sufficient Observations 

To ensure the existence of a DDPF in space R+mxR+D, it 

is necessary to require that the number of observations should 

not be less than the sum of the dimension of inputs and 

outputs. 4 If this requirement were not satisfied, the 

production possibility set would degenerate (at least in some 

dimensions), and we would not be able to estimate DDPF f. 

However, this requirement is a necessary rather than a 

sufficient condition for the existence of an empirical 

3 According to Farrell (1957), the stochastic 
component, if it does exist, can be reasonably ignored 
provided it is relatively small. 

4 strictly speaking, the requirement pertains t~ the 
construction of the production frontier in space ~~n~ ~elford 
and Thrall (1990) states that this is also the condltlon for 
the DEA model. As matter of fact, the condition for th~ ~EA 
model should be k ~ max[m,n]. This is the necessary condltlon 
to span production frontiers in both input and output space 
respectively. 
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frontier. In the programming approach, linear dependence 

between different observations may still cause the 

degeneration of a frontier. 

u 

a x 
Figure 4.1 A family of DDFP 

The above characteristics of DDPF are illustrated in 
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Fi9ure 4.1. For a given set of observations such as (a, b, 

c) I' a family of production frontiers satisfying the above 

cha.racteristics can be constructed. The form of these 

candidates may vary from linear, e. g. f1 and f3 (o-b-c), to 

non-linear, e.g. f2 (o-b-c) and f4 (o-c). The frontier f1 is 

ray (CRS) production function which passes through the data 

point b and leaves observations a and c as interior points of 

the frontier. The frontier f3 is a linear function with a 

non-increasing return to scale (NIRS) property. It has a eRS 

portion (o-b) and a portion (b-c) with a decreased marginal 

product. The NIRS frontier goes through both observation b 

and c, and thus both are identified as efficient observations. 

f2 also goes through the observation band c, but the frontier 

is non-linear. f4 is another possible non-linear frontier to 

interpret the given data set. However, only observation c is 

efficient if f4 is referenced. All of these frontiers are in 

fact valid DDPFs and may be employed to interpret the data 

set. It is easy to check that all of these frontiers maintain 

theoretical consistency with our previously outlined axioms. 

Also, all of them are featured with data consistency by 

covering the observations in one way or other. This example 

shows that the DDPF for a given data set usually refers to a 

family of possible candidates. 

The propositions in the next section prove that, in 

each returns to scale category, the family of frontier 
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production functions is bounded from below by a piecewise 

linear production frontier. Those linear frontiers are in 

fact a set of "inner envelopes" or "underwear" covering the 

body of a given data set. 

4.2 The Inner Envelope propositions 

In this section, we introduce three data dependent 

linear production frontiers. The efficient "inner envelope" 

property is stated by a series of propositions, which are 

based closely upon the theorems proposed by Afriat (1972). 

Denote A = (A', ••• ,A k) as an intensity vector 

evaluating the observations' participation in frontier 

building. Three types of frontiers can be defined by imposing 

further restrictions on the intensity vectorS Constant 

RE:turn to Scale (CRS), Non-Increasing Return to Scale (NIRS) 

and Variable Return to Scale (VRS). 

4.2.1 eRS Production Frontier 

Of many production frontiers satisfying the declared 

properties, a piecewise linear model featuring CRS technology 

is expressed as 

S The technologies are classified according to the 
t :heir global property, which refers to a model's behaviour in 
the domain ED(X). 
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f C (x) - max { w.. : x :t! xl.., I.. E R/ } 
i. 

(4.1) 

Moreover, it has an inverse which can be expressed as: 

u ~ Ul.., I.. E R/ } (4.1.a) 

(1) "Inner Envelope" Property 

The following proposition (due to Afriat) states that 

(4.1) represents a technically efficient CRS technology and 

has an "inner envelope" property. 

Proposition 4.2.1 If there exist k activities with 

inputs X € Rn
+ , outputs U € Rm

+ and axioms L.1-L.7 

being satisfied, then the linear mapping fC: Rn
+ -+ Rm

+ 

represents an efficient CRS technology (homogeneous 

degree 1) and serves as a lower bound of any 

other efficient CRS mapping f: Rn
+ -+ Rm

+. 

Proof: Assume there is some other data dependent eRS 

frontier, say f(), satisfying the claimed axioms6 , then the 

non-decreasing property of the production frontier requires: 

(4.2) 
I.. r :t! 0, r - 1, ... ,k 

6 A single-output/multi-input production process is 
assumed in the proof for the sake of convenience, though the 
proof can be extended to cover multi-input, mUlti-output cases 
without much difficulty. 
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The homogeneity property of the CRS production 

function and the convexity axiom stated by L.6 imply that f() 

is a concave function featured by? 

').I ~ 0, r - 1, ... ,n 

Further, since f is non-decreasing, we have 

').I ~ 0, r - 1, ... ,k 

This relation can be rewritten as: 

f(x) ~ {L ').If(x I ), X ~ L ').IX I , 

').I ~ 0, r - 1, ... ,k} 

and further, in particular, we have8 : 

? For a concave function f, we have 

f(L ,:I XI) ~ L ,:I f(xI) 
L..J'). I L..J'). I 

(4.3) 

(4.4) 

(4.5) 

Further, if f is homogeneous of degree 1, we are able 
to get (4.3) by cancelling out the common denominator. Thus, 
CRS production function f has a cone property [see Nikaido 
(1972) , 188]. 

8 Since (4.5) holds for any '). , it holds for the 
particular'). that satisfying (4.6). 



f (x) ~ max { L A If (x I ), x ~ L A I X I 
). 

AI~O, r-1, ... ,k} 
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(4.6) 

Consider the right hand side of (4.6). Since f(x) is 

data consistent, for some observations (x',u'), we have 

u' = f(x') 

and for all other (x,u) 

u < f(x) 

Thus for non-negative A, we have 

Therefore, we have: 

f{x) ~ max{ L AIf{x I ), X ~ L AIX I 
). 

AI ~ 0, r - 1, ... ,k} 

~ f C (x) - max {L A I u I, X ~ L A I X I, 
). 

A I ~ 0, r - 1, ... , k} 

(4.7) 

(4.8) 

'rhis proves the "inner envelope" and efficient properties of 

Finally, it can be verified that fC (x) has the CRS 

(homogeneous of degree 1) property as follows. Let 0 be a 



positive number, then9 

f C (ox) = max { U l : ox ~ xl, l E R .. k } 

= max { 0 U l: ox ~ oxl, ol E R .. k } 

= max {o U l: x ~ xl, l E R+k } 

= ofC(x) 

Thus the homogeneity property is proved. 

Q.E.D. 
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(4.9) 

9 The fo l lowing properties of fC(x) should be noted. 
Let a be a positive real number, then 

fC(x) = max { mCt. : X ~ XlCt.,lCt. E R/} 
A 

= max { ul : x ~ xl, l E R/ } 
A 

i.e. scale of intensity vector does not affect the function 
evaluation. However, we should note 

max { m Ct. : X ~ xl, l E R/ } 
A 

= Ct. max { m : x ~ x).., ).. E R/ } 
A 

in the linear relationship. These 
transparent if f C(x) is rewritten 
probl em form as in (4.10). 

two points 
in linear 

are fairly 
programming 
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(2) The nature of the solution 

The linear frontier fC(x) is in fact the solution to an 

op·timization problem with the intensity vector A as the choice 

variables. The process selects some observations such as 

(x',u') to build a frontier by assigning them a positive A. 

For all other interior points such as (x,u), the intensity 

elements would be assigned a value of A = O. 

To demonstrate the nature of the optimal solution that 

ch.aracterizes (4.1), we rewrite it in the form of a linear 

programming (LP) problem: 

max L }.,Iu I 
A I 

S. t. i - 1, ... ,n 
(4.10) 

This can be further expressed by the Lagrangian function: 

max min L(}.,,~) - L }.,IU I + L ~i( Xi - L }.,Ix /) 
A 6 I i I 

(4.11) 

where S's are Lagrangian multipliers (and the shadow prices 

for the primal). The above Lagrangian function can be 

rewritten as: 

max min L (}., , ~ ) - L ~ ·x + L }., I ( U I - L ~ i X / 
A 6 i .z I i 

(4.12) 



Thi s, in fact, corresponds to the dual problem: 

s. t. : I: a ixI ~ u I 

i 
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(4.13) 

The Goldman and Tucker theorem [Nikaido (1970), 252-

2:;4] states that for this type of programming problem, the 

optimal solution to the dual is characterized by the following 

conditions: 

(1) I I: a· I u - iXi ~ 0 , r - 1, ... I k 
i 

(4.14) 

(2 ) I: lX- ( U I - I: a:xI ) - 0, i - 1 , ... , n 
I i 

where A* and 0* are the optima. The first condition above 

implies that we can define 

f(x) • I: a-·x . ~ u . l.l 
(4. 15) 

1 

and the second implies: 

f(x I) > u I - (4.16) 
lI. > 0 
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Therefore, the optimization process ensures data 

consistency and that only some observations such as (x',u') 

arE~ selected to build a DDPF of the form: 

f C (x) - max { L A ru r, X ~ LA rx r, 
.l 

Ar ~ 0, r -l, ... ,k} 

(4.17) 

This again verifies the efficiency property of fC(x) . 

This demonstration of the optimal status should be 

considered as an extension to the proof of the Proposition 

4 .. 1. It is extremely important to note that we had in fact 

dt~monstrated the relationship between the non-parametric 

frontier and a parametric frontier. Though the parameteric 

frontier associated with (4.15) is only a facet of a complete 

frontier, it bears a conventional interpretation of production 

function. 

The linear production frontier fC(x) is illustrated in 

Figure 4.2 where a facet denoted as fC is spanned by the 

observations (x',u'). In fact a set of similar facets can be 

generated to wrap the entire data set. Obviously, any other 

production frontier like the nonlinear shell in the picture is 

bounded from below by this set of facets. 

-- ----------------------
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u 

Xl 
Figure 4.2 A facet of the inner envelope of the CRS frontier 

4.2.2 NIRS Production Frontier 

To illustrate the case of NIRS, let us consider data 

set (a/b/c/d) in Figure 4.3 (disregard c' and d' for the 

moment) . As explained previously, we can construct a CRS 

production frontier along the ray O-a-a'. However, a 

production process may not keep the proportional expansion 

path after some production scale is reached. The marginal 

product may decline. To accommodate this situation, a linear 

production frontier may be constructed as O-a-b in Figure 4.3. 

This is a piece-wise linear NIRS production frontier. 
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u 

o x x 

Figure 4.3 Linear NIRS production frontier 

Due to the concavity assumption, the observations c 

and d can not be on the frontier. The potential outputs for 

the input level X C and x d are indicated by c' and d' 

respectively. To express these potentials by the given 

observations, we have: 

c' = A 0 0 + )., 4 a I 

d' = )., 4 a + )., b b I 

).,0+).,4=1 

).,4+).,b=1 

where A'S are the intensity (or weight) factors. It should be 

stressed that though the origin f(O) = 0 now serves as a data 
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point spanning the frontier, its appearance is usually 

nullified in conventional expressions. As a result, the 

restriction on the intensity vector becomes: 

EA. r ~ 1, r = l, ... ,k 

This result leads to a linear model featuring the NIRS 

p r operty: 

(4.18 ) 

and it has an inverse: 

gn(u) = min {A.X: u ~ A.U, EA. r ~ l,A. E R/} (4.18.a) 
). 

To show the efficiency and the "inner envelope" 

properties, we have 

Proposition 4.2.2 If there exist k activities with 

input X E RO+ and U E Rm + and the axioms L. 1 to L. 7 are 

satisfied, then a linear mapping fO:Ro+ - Rm+ expressed 

as (4.18) represents an efficient NIRS technology and 

serves as a lower bound of any other efficient NIRS 

mapping fO: RO + - Rm + • 
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Proof. Assume there is some other production frontier 

f() satisfying the axioms L.l - L.7. Further, f is concave on 

ED(X), then 

E 'AIf(x I ) ~ f(EAIX I ), E'AI = 1, 

'AI ~ 0, r = 0,1, .. . ,k 
(4.19) 

Not:e that superscript r running from 0 to k so that f (0) = 0 

is included in the data domain. To express it explicitly, we 

have 

EA I + A 0 = 1, 'A I ~ 0, r = 1, .. . ,k 

since f(O) = 0, we have 

L 'AIf(x I ) ~ f(E'AIXI) , E'AI ~ 1, 

'AI ~ 0, r = 1, ... ,k 

(4.20) 

(4.21) 

Thus (4.21) is the condition that the linear piecewise f is 

concave on ED (X) . For the restriction on the intensity 

vE~ctor, equality sign must hold for all sections of the 

frontier except the portion adjacent to the origin. For the 

portion of the frontier adj acent to f (0) = 0, the summation of 

i n tensity factors A is less than one since the f(O) = 0 is 

only an implicit data point and its weight AO is not counted 
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among the elements of intensity vector which has k elements. 

Further, f is non-decreasing by axiom L.4, i. e. 

Ar ~ 0, r = 1, ... , k 

I f combining this with the concavity condition, 

f (x) ~LArf(xr), ifx~LArXr, 

LA r ~ 1, A r ~ 0, r = 1 , . . . , k 

This can be rewritten as: 

f (x) ~ {LArf(x r ), x ~ LArxr, 

LA I ~ 1, r = 1, ... , k} . 

in general and, in particular, we have 

f(x) ~ max{ L>..rf(x r ), if x ~ LAr, AI ~ 0 
A 

LA r ~ 1, r = 1, ... , k} 

(4.22) 

we have 

(4.23) 

(4.24) 

• (4.25) 

Finally, as shown in the proof of the proposition 

4.2.1, if f() is data consistent, we have: 



f(x) ~ max {LAIf(x I ), if x ~ LAIx I , AI ~ 0 
1 

LA I ~ 1, r - 1, . . . ,k } 

max { LA I u I, if x ~ LA I X I, 
1 

A I ~ 0, LA I ~ 1, r - 1, . . . , k} 
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(4.26) 

This proves the efficiency and "inner envelope" 

property of fn (x) • 

Q.E.D 

The characteristics featuring the optimal solution of 

(4.18) can be found in a way parallel to what we have done for 

th,e eRS Case. 

4.2.3 VRS Production Frontier 

The third model has a variable returns to scale 

property. The VRS assumption allows the marginal product to 

increase in the first phase of production and then decrease 

aft:er some production scale is reached. The Figure 4.4 

illustrates the VRS case in a linear process. Again, we have 

a set of observations a,b,c and d as in the NIRS case. 

Hov.rever, observation c now may serve as a point on the 

frontier under the VRS assumption. Should this be the case, 

the l inear VRS frontier is c-a-b. It should be noted that if 

observation c (which is the closest to the origin among the 

all observations) is allowed to participate the frontier 

building, the origin could not be part of the frontier. 

otherwise, the concavity condition stated in Chapter 2 for the 
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production frontier would be breached. Therefore, a VRS 

. linear frontier virtually does not cover the section between 

'the origin and its most adjacent observation. In Figure 4.4, 

ithe VRS production frontier is c-a-b accordingly. Formally, 

1:he 1 inear VRS model is concave just on D (X) .10 The key 

point to formulate the VRS model is, therefore, to enforce 

t:he absence of the origin in the frontier building. The 

emforcement is handled by imposing a tighter constraint on the 

intens i ty vector, namely 

u 
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.. ' .. ' 

.. ' , . 
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r = l,,,.,k 

x 

Figure 4.4 Linear VR) production frontier 

(4.27) 

10 This assumption, however, is not consistent with the 
axiom L.3 as there, the origin f(O) = 0 has to be excluded 
from the graph L(u). 
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on the intensity vector. The constraint brings out a linear 

VRS model with a form of 

(4.28) 

and it has an inverse: 

gV(u) = min {A X: u~ AU, LA r l,A E R/} (4.28.a) 
.l. 

To show the "inner envelope" property, we have 

Proposition 4.2.3 If there exist k activities with 

input X ERD+ and output U ERm+ and the axiom L.l - L.2, 

L.4 - L.7 are satisfied, then the linear mapping fV:RD+ 

- Rm+ defined as (4.28) represents an efficient VRS 

technology and serves as a lower bound of any other 

efficient VRS mapping f:RD+ _ Rm+. 

Proof. Assume there is an arbitrary production 

correspondence f() satisfying the axioms L.1-L.2, and L.4 -

L.7. Further, the origin is excluded from the graph L(u), so 

f is concave on D(X) only, thus 

(4.29) 
Ar ~ 0, r = 1, ". ,k 

From the non-decreasing property of f, we have: 



AI ~ 0, r = 1, ... ,k 

The above relations imply 

AI ~ 0, r = 1, ... ,k 

Rewriting the above in another form, we have 

f(x) ~ {LAIf(x I ), if x ~ LAIxI 

LA I = 1, A I ~ 0, r = 1, ... , k } 

in general, and 

f(x) ~ max{ LA If(x I), if x ~ LA IX I 
). 

LA I = 1, A I ~ 0, r = 1, . . . , k } 
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(4.30) 

(4.31) 

(4.32) 

(4.33) 

in part i cular. Again, as shown in the proof of the 

proposition 4.2.1 and 4.2.2, the data consistency ensures that 



f(x) ~ max { LAIf(x I ), X ~ LAIxI 
1 

LA I_I, A I ~ 0, I - I, . . . , k } 

~ max { LA I u I, X ~ LA I x I, 
1 
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(4.34) 

Th is proves the "inner envelope" property of (4.28) as a 

linear VRS production frontier . 

Q.E.D 

Here we should pointed out that the frontiers bounded 

by fV (x) must be concave on D (X) . Finally, the nature of 

op1:imal solution of (4.28) can be explored in a similar manner 

as in the eRS case. 

The above three propositions reveal that the family of 

DDPF, in each returns to scale category, is bounded from below 

by a linear production frontier. The linear production 

frontiers are "underwear" or "inner envelopes" covering the 

data sets. 
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Figure 4.5 The "inner envelope" property and 

measurement of technical efficiency 
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This "inner envelope" property has an important 

implication for efficiency measurement. As discussed as in 

Chapter 2, the technical efficiency of a data point is 

measured by the radial distance from the data point to the 

corresponding point on a production frontier. In the input 

space illustrated as Figure 4.5, the technical efficiency 

measurement for an interior point e based on some f(x) is 

oe'/oe. Note f(x) has DOPF property in general. However, the 

proposit i ons 4.2.1, 4.2.2, and 4.2.3 reveal that fO is 

bounded from below by a piece-wise linear frontier. 

Correspondingly, the measurement of technical inefficiency 

bas,ed on the 1 inear frontier is oe" / oe. Apparently, no other 

gau(le of technical efficiency yields a larger magnitude than 
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t .his measurement. 11 Therefore, the measurement based on the 

linear frontier serves as an upper bound of any other 

measurement. This leads to a proposition regarding 

measurement of technical inefficiency: 

Proposition 4.2.4 Technical efficiency measurement 

based upon the linear frontier such as (4.1), (4.18) 

and (4.28) is the upper bound for technical efficiency 

measurement based upon any other DDPF. 

Proof of this proposition is omitted due to the 

apparent simplicity. 

Finally, it should be noted that the propositions hold 

only as long as no random noise is present in the production 

process. If random noise is present, we would not be able to 

locate the linear production frontiers exact l y and have 

precise efficeincy measurement. 

11 otherwise, production possibility set would not be 
a convex set. 
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4.3. The Formulation of the Non-parametric 

programming Approach for Efficiency Estimation 

Based upon the propositions stated previously, in 

this and the next section we will examine the relationship 

be~tween alternative models of technical efficiency measurement 

in the context of non-parametric programming approach. 12 

Suppose that the eRS frontier introduced in the last 

section is to be referenced. A linear programming problem 

follows immediately: 

't C - min 't 

s. t. t AI x! ~ • 
~ 't Xi i-1,,,.,n 

I-l 
(4.35) 

t AI U! ~ • 
] Uj 

I-l 
j-1, ... ,m 

I-l/ " Ik 

Thl~ objective value of the LP solution serves as an estimate 

of technical efficiency for the observation (x*,u*) in input 

12 Recently, Seiford and Thrall (1990) examined the 
relationship between different models based on a numerical 
analysis. However, the analysis in this section follows the 
La9rangian approach as employed in the exposition of optimal 
status in the Proposition 4.2.1. 
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space .13 The choice variable A's are defined as the 

intensity vector as before. 

A counterpart measurement in output space can be 

obtained by solving 

't C = max 't 

s. t. t ).I U ! ........ u· 
J '". j 

I=l 

t ).I xl ~ xl 
I=l 

i = 1, ... ,n 
(4.36) 

j = 1 ... ,m 

r=l / ""k 

Suppose the constraints are active for some optimal choice A, 

then, obviously the objective value can be read as the ratio 

of the observed output u· and a point on the imaged frontier. 

I n the following presentation, however, we will concentrate on 

input space. The output counterpart of the measurement can be 

inferred in an parallel way.w 

As explained in section 4.2, by imposing a further 

restriction on the intensity vector, we have the LP problem 

13 Note that this LP problem provides an estimate of 
efficiency for only one point (x·, u·) in the data set. A 
separate LP is required for each data point to obtain an 
estimate of its efficiency. 

14 Intuitively, efficiency can be measured either in 
terms of how many fewer inputs are required for a given 
out.put, or, how much extra outputs could be produced from the 
given inputs. 
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't n - min 't 

s. t. tAr xI :s: 't xi i -l,,,. , n 
r-l 

(4.37) 
uf ~ uj j - 1, ... 1m 

r -l, ,, .,k 

which measures the efficiency under the restriction of NIRS. 

In the case of variable returns to scale (VRS) , the 

i nequality of the intensity vector constraint i s replaced by 

an. equality constraint. Thus, the LP problem formulation 

becomes 

s. t. tAr xI :s: 't xi i-l,,,.,n 
r-l 

(4.38) 
uI ~ uj j-l, ... ,m 

t ).r - 1 r-l,,,.,k 
r-l 

The formulation for measurements in the NIRS and VRS 

cases in output space can be derived parallel to equation 

(4.36) • 

As one may notice, this measuring scheme conforms with 

the theoretical efficiency structure described in Chapter 2. 

Formation of a piece-wise production frontier is the starting 

point to carry out a performance evaluation. The economic 

und(~rpinning for the formulation can be easily perceived. 
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This approach has been closely followed by theorists, e.g. 

Afriat (1972) and R. Fare (1988). 

On the other hand, management scientists evaluate a 

firm's performance by looking at a maximized ratio of its 

weighted outputs to weighted inputs, and subj ect to the 

condition that the similar ratio of every other firms be less 

or equal to unit. [Charnes et. ale (1978)] The data 

envelopment analysis (DEA) is devised to solve the non-linear 

programming problem 

max y -

i-1, ... ,n (4.39) 

S. t. ~ 1 j - 1, ... ,m 

r - 1, ... ,k 

aj,Pi:<!O 

to measure the technical efficiency for the observation 

(x~,u*). The problem can be rewritten in a linear form as 

max. y' - t a ·u ~ 
. 1 ] ] 
]-

S. t.: t r t Pix/ ~ 0 
j-1 

a jUj -
i-1 

j - 1, .. . ,m 
(4.40) 

t Pix; - 1 
i-1 

i-1, ... ,n 

a j , Pi :<! 0 r-1, ... ,r 
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The DEA model in this original form is capable only of 

handling CRS technology. In 1984, Banker, Charnes and Cooper 

(BCC) introduced a major improvement to DEA in order to 

capture alternative technologies characterizing production 

surface. The problem is formulated as: 

s. t.: 

max. yl - t (X.U ~ - t 
. 1 ] ] r 

t r t PixI t ~ (X jUj - -
j-l i-l 

t P ixl - 1 
i-l 

(Xj , Pi ~ 0 

0 j - 1, .. . ,m 

i-1, . .. ,n 

r-1, ... ,r 

(4.41 
) 

According to BCC, the unsigned variable t is introduced to 

capture the returns to scale effect. Increasing, constant or 

decreasing returns to scale are implied according to whether 

t is less, equal or greater than zero. Therefore, the 

equation (4.41) is a generalized DEA model. The equation 

(4 ,.40) is regarded a special case of (4.41) with the term t 

set to zero (CRS technology). 

There exists apparently two sets of formulation. The 

equations (4.35), (4,37) and (4.38) are in the first set and 

thE~ equat ion (4.41) in the second. The relationship and the 

consistency between the two approaches are now considered. 
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4.4 The Duality Relationship Between the 

Two Lines of Model Formulation 

To reveal the duality relationship, we rewrite (4.38), 

the VRS formulation, as 

't v = min 't 

S. t. tAr xl s: 't xi i = l, ... ,n 
ral 

t Ar 

r=l 
uI ~ uj j = l, ... ,m (4.42) 

r = l, ... ,k 

note that the constraint on the intensity vector is decomposed 

into two separate parts. 

This LP problem can be rewritten in a Lagrangian form 

as: 

Mi n max L ( A , e) = 't + t P i ( tAr x I - 't xi ) 
). e i r=l 

+ t a · ( • t Ar u! (4.43) Uj -
j J J r=l 

+ tl ( t Ar - 1 ) + t2 ( 1 - t A r ) 
r=l r=l 

where 
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is the vector of Lagrangian multipliers. Rearranging it, we 

have 

min max L(A,e) = t aJ.u; - t 
A e j 

+ t A I ( - t a . U I + t P iX I + t) 
I j J i 

+ 't ( 1 - t P I xI) 
i 

(4.44) 

where t = tl - t2 is an unsigned variable handling the effect 

of the constraints on the intensity vector. This form then 

leads to the dual formulation: 

max. 't = t a .u; - t 
j-1 J 

S. t.: t a JUI - t P ixI - t ~ a 
j=l i=l 

j = 1, . ,m 
(4.4S) 

i = 1, . ,n 

r = 1, . ,k 

This is exactly the BBC formulation. 15 

15 Note that the second constraint in (4.45) has an 
equality sign. This is because the Lagrangian multiplier in 
the last term of equation (4.44) is positive. In fact the 
multiplier is the measure of efficiency, which has an 
eff ective range (0,1]. 
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The treatment of constraints apparently plays a 

pivotal role in equalizing the two approaChes. As revealed by 

t he duality relationship, the term t in DEA formulation 

Gorresponds to the constraints on the intensity vector in the 

primal formulation. The exact correspondence according to the 

qlobal property can be checked by the following chart: 

Primal Dual 

CRS: A r ~ a - t = a 
NIRS: LA r ~ 1 - t ~ a 

VRS: LA r = 1 - t unsigend 

However, in the BCC formulation, t is an unsigned variable 

'Which is subject to LP evaluation. Therefore the BCC 

formulation in fact corresponds to the VRS version of the 

primal. 

To see this correspondence, it should be noted that 

for each observat i on (x,u) the suggested LP problem yields a 

particular facet of the production frontier. Consequently, 

the entire production frontier is formed by applying the LP 

procedure repeatedly to all k observations. In the primal 

formulation, the stated property (e.g. CRS) is consistently 

enforced by imposing the corresponding constraint as each of 

the k facets of the frontier is built. As a result, the 

derived frontier maintains a global consistency. This 

consistency may still be preserved if the same constraint is 
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consistently enforced in the dual problem. However, the BCC 

formulation does not maintain this consistency as t is 

unsigned. As a result, the entire frontier implied by (4.45) 

does not have a unified global property. In other words, VRS 

is its default global property. 

Therefore , we conclude that "returns to scale" has a 

different underpinning in these two approaches. In the primal 

formulation, it refers to a global property whereas in the BCC 

formulation, it suggest a local property. 

The fundamental discrepancy between the two lines of 

formulation can be traced to the level of basic axioms. BCC 

postulated the following convexity axiom for the production 

possibility set T:16 

If (xr ,ur) E T, r =1, ... ,k, and Ar ~ 0 are 

non-negative scalars such that L Ar = 1, then 

This condition is sufficient to ensure that we can 

build convex cones L A~r and L Arur in input and output space. 

However, it does not imply that the set T (or any graph 

linking x and u) a convex graph. Therefore, this condition is 

16 See Banker, Charnes and Cooper (1984), 1081. The 
notations are changed for the sake of presentation 
ccmsistency . 
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less regulative than axiom L.7 introduced in Chapter 2.17 

Empirically, by this definition, the origin is excluded from 

the graph of input (output) mapping. Suppose there is some 

point to point mapping f transforming inputs to outputs, 

than, the above axiom implies that f(O) = 0 is not regarded as 

(an implicit) data point, f is concave on, and only on, the 

domain D(X). This is exactly the VRS case handled by 

proposition 4.2.3. 

In Figure 4.6, there are four observations a-b-c-d in 

a data set. In our primal formulation, different constraints 

on the intensity vector alters our proposed frontier. In the 

CRS case, this proposed frontier is o-b-c while in the NIRS 

case it is o-b-c-d. In the VRS version of the primal and the 

BCC formulation, the frontier is concave only on x.-xd and we 

have a frontier a-b-c-d. If section a-b (a facet) is 

r(~ferenced, we have IRS local property; if b-c is referenced, 

then CRS is obtained; if c-d is referenced, the DRS is noted. 

Having this discrepancy in mind, one should be warned that the 

efficiency gauged by the BCC formulation is equivalent to the 

standard measurement under VRS restriction. For the 

observation f in the figure 4.6, this is the distance f-e'. 

This discrepancy leads to an alternative way of 

17 However, if axiom L.7 hold, above condition is 
implied. 
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interpreting technical ineff iciency . The concept of "most 

productive scale size" (m.p.s.s) introduced by BCC refers to 

the frontier that is derived by imposing t = o. Clearly the 

derived frontier is the CRS frontier (o-b-c) in the primal 

formulation. Total technical inefficiency (defined as f-e" ) 

can be decomposed into two parts: pure technical inefficiency 

f-e' and scale inefficiency e'-e". Even for an observation 

l ocated on the portion a-b (or c-d) , it may not be efficient 

since it may not reach (or exceed) the most productive sca l e 

size of operation, namely, b-c. 

To conclude this section, we say that the two versions 

of non-parametric efficiency estimation approach is exactly 

matched in form of primal and dual if and only if the 

restrictions on the LP problem are consistently specified. 

u 

o x 

Figure 4.6 Returns to scale and Ill. p.s.s 



4.5 Summary 

In this chapter, 

important approaches of 

we have reviewed one of 

efficiency estimation: the 
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most 

non-

parametric programming approach. We checked the theoretical 

foundations of the non-parametric approach and alternative 

formulations of efficiency estimation. Also, we investigated 

the duality relationship between the two, with returns to 

scale as a key consideration. We demonstrated that the bas i c 

axiomatic assumption leads to different strategies in 

addressing the estimation problem. In the next chapter, we 

t:urn to the econometric approach to technical efficiency 

€:stimation. 



CHAPTER 5. CONDITIONAL ESTIMATION OF 

TECHNICAL EFFICIENCY: A STOCHASTIC FRONTIER MODEL 

In the realm of conventional econometric studies of 

the production process, the stochastic production frontier 

models bear some unique advantages in handling technical 

efficiency. This chapter concentrates on the stochastic 

frontier approach to technical efficiency estimation. In the 

first section of this chapter, we review alternative model 

specif ications and estimation techniques. Based on this 

review, we propose a conditional estimation procedure to 

extract a measure of technical efficiency from a composite 

E~rror structure. 1 The model employed is a generalized version 

of the stochastic frontier model, which assumes that the 

E!fficiency profile of a given set of production data has 

truncated normal distribution. As a result of the 

generalization, the capacity of stochastic model can be 

enhanced to cover wider spectrum of assorted efficiency 

profiles. The third section discusses the application of the 

model and estimation techniques. 

1 The section is based on a working paper (1990) by 
the author, which proposed conditional efficiency estimation 
procedures for both the truncated-normal/normal and the 
Laplace (double exponential)/normal error structure. 
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5.1 Stochastic frontier models: 

technique and Specifications. 

5.1.1 The methodology. 
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The stochastic frontier (SF) model assumes that the 

mapping of an input set to output space is subject to the 

influence of some random disturbing force. Due to the 

presence of the random factor, the input and output are 

related in following functional form: 

u = f(x) . e v -00 < v < 00 (5.1) 

~ihere f() is a deterministic kernel mapping the input set to 

t:he output space. The variable v is a random component which 

is unconstrained in sign and is assumed to be i ndependent of 

input variables. Because of the stochastic component, the 

projected image of the input set on output space also has a 

probability distribution. 

The effect of technical efficiency is handled by 

another variable in the SF model. To express t h e model in a 

conventional way, the production process has the following 

functional form: 

u f(x) e t 

(5.2) 
£ = V - t -co < v < 00 , t ~ 0 
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where in the composite error structure exp(v-t), t is a non­

negative variable representing technical inefficiency in 

production. The term exp (-t) in the error structure can serve 

as a standard measure of technical efficiency along the radial 

direction, ranging from zero to unity. 

This composite error structure has some advantages 

over other models. In a conventional statistical model, if a 

production function is forced to maintain data consistency and 

Cl frontier property, an extraordinary outlier (due to some 

random shock) may result in the misplacement of the frontier 

and put the effect on the entire efficiency estimation. 

However, in a SF model, the modelling variable v serves as a 

fil ter screening out the effect of random shocks. An 

extraordinary outlier then has only a limited effect on the 

placement of the frontier. Figure 5.1 is an illustration of 

the SF model's production and efficiency structure. The 

observed data set is explained by a conventional parametric 

f unction f() which covers the mass of observat i ons (snapshot 

A) . Further, the observations lying below f() are assumed to 

be distributed as Pt(t) due to the influence of inefficiency 

factors (snapshot B) and the random noise v distributes as 

Pv (v) (snapshot C). 
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u 

Figure 5.1 The structure of stochastic frontier model 

5.1.2 Estimation Procedure of SF approach. 

As we briefly outlined in Chapter 3, there are two 

successive steps in the entire estimation procedure; the first 

step pertains to production frontier estimation and the second 

one is the efficiency estimation. 

In the first step, the maximum likelihood (ML) method 

is employed to estimate the production frontier. To obtain 

the ML function, the distributions Pv(v) and Pt ( t) have to be 

pre-specified. Based on these specifications, the likelihood 

f u nction can be expressed as: 

(5.3) 

where 6 and e are parameter sets to be estimated in f (x) , 
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pv(v) and ~(t). Within the ML function, it should be noted 

that: 

e i = In u I 
- In f(x I

) 

and if, as we will assume throughout, v and t are independent, 

we have: 

P, (e) = fa" p(t,c) (t, e) dt 

= L"pt (t) Pv(v) Iv=ut dt 

Based on the estimates of the parameter sets, the 

technical inefficiency of an observation can be estimated i n 

the second step [See Jondrow et. a1. (1982)]. In this step, 

t he distribution of t conditional on the composite error (v-t) 

is derived based on the Baysian rule, i.e 

= PIt,,) (e, t) 

P, (e) 

Therefore, the first order moment of the origin for 

the distribution 

(5.4) 
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and the mode of the distribution 

t I a (t I ) = 0 ~O TtPe C 

M( t I e) (5.5) 

t I a < 0 TtPe(t I c) 2 0 

may serve as the two alternative measures of technical 

inefficiency. 

These two measures for each observations are 

conditional on specific composite error e for each 

observations. The composite error e is replaced by its 

estimated value in empirical work. 

5.1.3 Alternative Model Specifications 

Clearly, specification on the distribution Pt(t) and 

Pv(v) are crucially important in the SF model . Since it was 

introduced by Aigner, Lovell an~ Schmidt (1977), the SF model 

has had very few variations. within the composite error 

structure, the pure random term v has been consistently (and 

reasonably ) assumed to have a normal distribution. On the 

contrary, the distribution form for the technical efficiency 

term t has a few variations. The half-normal and exponential 

distributions are the most popular specifications for the 

e f ficiency term due to the simple distribution structure. 

It should be noted that the distribution of the 

exponential of the term -t, (i. e., exp (-t» describes the 
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efficiency prof i le of a set of observations, say, an industry. 

In this regard, a flexible distribution of t implies a greater 

capacity to resemble the real world. To achieve the 

flexibility, Greene (1990) recently formulated the conditional 

estimation procedure for a Gamma-distributed stochastic 

frontier model. However, in his somewhat delicate model, the 

condit ional estimation has no closed form and hence results in 

considerable complexity in estimation. 

In the next section, we introduce a generalized model 

which assumes that the efficiency term t has a truncated 

normal distribut i on. 2 The advantage of this model, compared 

with the half-normal and the exponential models, is that a 

mode (or peak) is allowed in the normalized domain of 

technical i nefficiency (a, 1]. It should be mentioned that 

the original model's structure is due to stevenson (1980). 

'l'he new development introduced in the next section is the 

conditional estimation procedure for the conditional mean and 

conditional mode. 

5.2. Conditional Estimates of Generalized Models. 

5.2.1 The Production Functions and the Error 

structures 

2 Si nce this thesis was written, we have found a paper 
by Battese and Coelli (1988), which derived similar result in 
the context of panel data. However, they did not provide the 
mode for the conditional distribution. Beside, Greene (1990) 
gave a same result, though there is a sign error in the 
result. 
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Assume a production function has the following 

structure: 

u = f(x) ee (5.6) 

e = v - t t ~ 0, 

where u E R+ is output and x E RD + is an input vector. wi thin 

the error structure e, t is a term reflecting technical 

inefficiency and v is a pure stochastic variable. 

We make the following statistical assumptions: 

A.l. The pure stochastic variable v is distributed as 

N(O,a/) • 

A.2. t is a variable with a generalized truncated normal 

(GTN) distribution. 3 

A.3. v and t are statistically independent. 

A.4. Both t and v are statistically independent of the 

input vector x. 

In the Cobb-Douglas case, the above assumptions imply 

that 

3 The truncation point is set at zero and only the 
portion distribution for positive t is preserved. 
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Max: II p (e I) 
I-l 

e I In u I - In A - t ~ i In xl, 
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(5.7) 

i = 1, . . . ,n, 

may serve as the objective function for maximum likelihood 

estimation. 4 

The probability density function (pdf) of GTN is5
: 

1 

a t fi1C [1 - F* (- L)] 
at 

e t ~ 0, (5.8) 

where F* (-J.L/U t ) is a standard cumulative normal dens i ty 

function evaluated at -J.L/u t and J.L is the mean for the 

untruncated normal pdf. 

By assumption A.3, and substituting out v bye, we 

obtain the joint density function 

p(e , e) (e, ,t) = p(v, t) Iv=e ... t (5.9) 

4 See Stevenson (1980). 

5 See K.Bury (1975) p.154-155. 
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whic h can be integrated to a marginal density function 

pee) = 10" pee, t) dt 

= 

whE!re f· () is a standard normal pdf. The mean and the 

variance for the density function (5.10) are given by 

E ( e) 

and 

V(e) 

rE~specti vely6 . 

-~ 
2 

eat 
------) 
2 1t F(L)2 

(]t 

(5.11) 

(5.12) 

6 It is easy to prove that these first order moments 
are generalization of the results given by Weinstein (1962). 

- -~----------------
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If ~ = 0, the marginal density function reduces to 

[ 1 - F * ( __ E-;:::;O =t :::;:::) ] 
o . /0 2 +0 2 

(5.13) 
P (E ~ = 0) = 

v V t v 

which is the result given by Aigner, Lovell and Schmidt (1977) 

(where t has half-normal distribution). 

The Baysian rule implies that the density function of 

t conditional on e can be derived from the ratio p(e,t) to 

p (e), i.e. 

p( t 

}

-l 

2 2 
_ F* ( EO t - ~O v ) 

o vO ,';o',+o'v 1 

(5.14) 

From the conditional density function, it follows 

immediately that: 

Proposition 5.1. If the term for technical 

efficiency t has a generalized truncated normal 

distribution and random variable v has a normal 

distribution, then the mathematical expectation of t 

conditional on e is 
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E(t I e) = a t a v [ f* (A) - A ] 
Ja 2 

+0
2 1-F* (A) 

t v 

(5.15) 

where 

e 0
2 

- J.l 0
2 

A t v = 
a t: a v Ja 2

t + 0
2 
v 

(5.16) 

proof. The result is obtained by integrating the 

conditional density function multiplied by t. 

Further 

proposition 5.2 The mode for the conditional 

distribution M(tle) is given by 

M( t I e) = { 

J,la 2
v - ea 2

t 

a2
t + a2

v 

o 

(5.17) 

proof. The result can be derived from the first order 

derivative of the conditional distribution. 

It is easy to show that the results are identical to 

those derived by Jondrow et. ale (1982) if the distribution of 

t is truncated at ~ = o. 
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5.3 Implications of the Model 

As revealed in Chapter 3, there are many possible 

patterns for technical efficiency profile. The early versions 

of the SF model approximated these patterns by either a half-

normal or exponential distribution. Correspondingly, the 

normalized efficiency index exp(-t) exists in the range (0,1] 

and the mode of the distribution is fixed at unity. [pattern 

A in Figure 5.2]. The limitation of these early versions is 

quite obvious. If the "true" pattern of the real world is a 

distribution with a mode located in the range (0,1], then 

nei ther of the previous versions can authentically approximate 

thle real world. 

The major achievement of the current generalization is 

ob"tained by introducing the location parameters ~ (which was 

forced to be zero in earlier versions). Introducing the 

location parameter make it permissible for an efficiency 

distribution to have a mode wi thin the range (0,1]. As a 

result, the risk of mis-interpretation of the real pattern 

(e .. g., B in Figure 5.2) is substantially reduced. 

Nevertheless, there is a cost for this generalization: some 

extra effort has to be paid to handle the additional 

parameters and the estimation procedure becomes a more 

complicated task. 7 

7 The gradient vector employed in maximum likelihood 
estimation is given in Appendix 1. 
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Pattern B 

o 

Figure 5.2 Two patterns of efficiency profiles 

5.4 Summary. 

The advantages derived from above generalization are 

obvious. The truncated-normal/normal error structure provide 

enhanced flexibility for the SF model. On one hand, 

production function estimation is benefits from a more 

adequately accommodated error structure while on the other 

hand, it is expected that the model can cover a wider spectrum 

of technical inefficiency profiles. However, extra effort may 

have to be paid to handle the delicate structure. Finally, 
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one should understand that there is no guarantee that the 

efficiency term can be successfully extracted from the 

composite error. The reliability of estimation result should 

be verified . 



CHAPTER 6. THE EXPERIMENT DESIGN FOR 

A SIMULATION STUDY 

Making use of the knowledge presented previously, this 

and the next chapter are devoted to a simulation study 

designed to test the ability of the stochastic frontier (SF) 

and the DEA model to measure efficiency under assorted 

situations. 1 This chapter concentrates on the design of the 

simulation experiments and related issues. 

In contrast to flourishing empirical applications, 

experimental investigation on alternative efficiency 

estimation methods is rarely explored. However, a few 

reported studies, each with a different focus, are worthy of 

not.e. 

To test the SF model, Aigner, Lovell and Schmidt (ALS) 

(1977) designed a series of experiments to compare outcomes 

obtained from different specifications of the production and 

efficiency structure. Their focus is the performance of the 

SF model under different settings. Another early experimental 

study of the stochastic frontier model is due to Olson, 

1 For the sake of simplicity, SF and DEA are used to 
refereed to the stochastic frontier model and data envelopment 
analysis respectively in the rest part of the presentation. 

111 
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Schmidt and Waldman (OSM) (1980). The major concern of their 

study is alternative estimation techniques rather than model 

specifications. In the study, the effectiveness of MLE, 2STEP 

(Two Step Newton-Raphson ) and COLS (Corrected Ordinary Least 

Square) estimation techniques were assessed. 

shou ld be noted about these earlier studies. 

Two points 

First, the 

emphasis of the experiment is the estimation of the production 

frontier. Technical efficiency estimation itself is not the 

focus. Second, these studies examine the competence of 

altE~rnative model specifications or alternative estimation 

procedures with the same methodology. Little effort was made 

to compare effectiveness of alternative approaches (that is, 

across econometric and non-econometric approaches ) . 

A comparative study of estimation techniques with more 

dist i nct methodologies was reported more recently. Banker, 

Charnes, Cooper and Maindiratta (BCCM) (1988) conducted a 

simulation study of alternative eff i ciency estimation 

schedules. They compared a DEA model with a conventional OLS 

model and assessed their performance. This study brought 

efficiency est i mation into the focus and the models based on 

distinct methodologies are compared. BCCM report that the DEA 

mode l has an unambiguous superiority over the OLS in regards 

to the accuracy of efficiency estimation. However, because 

a somewhat naive OLS model was employed in the study, the 
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qUE~stion remains open regarding more recent estimation 

models. 2 

The present comparative study focuses on two 

efficiency estimation methods: the stochastic frontier model 

and the DEA model. Since our focus is the estimation of 

technical efficiency. Thus, we do not divert our attention to 

the analysis of the production structure. 

This chapter proceeds as follows. section one 

discusses the details of the proposed experiments. In section 

two, we consider performance assessment criteria. section 

three discusses the data generation and the estimation 

techniques adopted in the experiment. 

6.1 Assignment of Experiments 

Before the discussion of experimental design, two 

notions we used in this and the next chapter should be 

explained. 

Efficiency index 

As demonstrated in Chapter 2 and 4, we know that 

Farrell's technical efficiency measurement (and the DEA 

estimation) has an effective range (0,1]. In SF model, 

2 The recent empirical comparative applications of 
parametric and non-parametric methods can be found in Ferrier 
and Lovell (1990) and Bjurek, Hjalmarsson and Forsund (1990). 
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hOT.lTever, efficiency term is represented by variable t (t ~ 0). 

Therefore, we define 

z = exp(-t) 

as a normalized efficiency index. Clearly, since z has an 

effective range (0,1], thus this transformation provides the 

SF and OEA efficiency estimates with a comparable basis. 

The Efficiency Profile 

In our experiments, the notion of "efficiency profile" 

is refereed to the frequency distribution of z. Provide that 

t has a truncated normal distribution as (5.8), the 

distribution of z given by: 

1 
(6.1) t ~ 0, e 

z a t /21C [1 - F* (- L)] 
at 

with the mean and the variance equal to: 

E(z) = J.Lz 

(6.1.a) 
1 dz = 

and 

v(z) = 
(In z + f') 2 

(6.1b) 
dz 

Further, we emphasize that in our experiments, the 



115 

comparison is made between the samples of the "true" 

efficiency indexes a nd their estimates. The parent or 

population distribution from which the efficiency indexes are 

drawn has only a secondary importance. Recovering a parent 

distribution is not our intention. 

Now we proceed on to experiment design. The proposed 

experiments are grouped into three sets. In the first set, we 

evaluate the performances of DEA and SF under assorted 

efficiency profiles. In the second set of experiments, the two 

met .hods are applied to the production processes with different 

returns to scale and their performances are examined. The 

last set of experiments is des i gned to test the robustness of 

thE~ two approaches rega rding to various magnitudes of random 

no i se. We discuss them in turn. 

Experiment Set I: Exploring the Efficiency Profile 

This experiment set is designed to examine the 

performance of both models under assorted underlying 

efficiency profiles. We consider four types of profiles: 

Case A. A "J type " distribution (the right tail of a 

truncated normal distribution). 

Case B. An efficiency profile from a typical truncated 

normal distribution (with a tail being truncated) . 

Case C. A profile with large variance. 

Case D. A left-skewed eff i ciency profile. 



116 

-t 
p(e ) 

type A 

type B 

type D 

o 1.0 
Figure 6.1. Assorted Efficiency Profiles 

These four types illustrated in Figure 6.1 are 

designed to represent four possible efficiency profiles. 3 It 

is worth pointing out here, that types "A" and "B" are typical 

truncated normal distribution. The type "A" is in fact a tail 

of normal distribution while type "B" is a normal distribution 

wi 1:h a tail being cut off. Further, types "e" and "D" follows 

no particular distribution. They are included to allow 

examination of the SF model when the assumed efficiency 

distribution (e.g. truncated-normal) is not in fact the true 

efficiency distribution . Admi ttedly, e and D are not wildly 

3 Though these patterns are hypothetical ones, some 
empirical evidences for these possible patterns can be found 
in Deprins, Simar and Tulkens (1985) and Bjurek, Hjalmarsson 
and Forsund (1990). 
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different from a truncated normal. However, they should be 

sufficiently different to test the robustness of the SF model. 

In experiment set I, the production function used to 

generate the production data has a CRS property and is fixed 

throughout the experiment. 

Experiment set II: Exploring Returns to Scale 

specification. 

As discussed in Chapter 4, the returns to scale 

assumption affects the interpretation of a production process 

and the measurement of technical efficiency. The SF model 

and the DEA model are f undamentally different in the way they 

handle the returns to scale property. In the SF production 

model, the returns to scale property is revealed as an ex post 

outcome derived from parameter estimates. It is not necessary 

to specify the returns to scale property prior to estimation. 

Consequently, the risk of mis-specification (from this 

sources) usually does not exist. 4 On the other hand, mis-

specification of returns to scale can cause problems in the 

DEA approach because a pre-specification of returns to scale 

property is a necessity. As shown in Chapter 4, three types 

of returns to scale frontiers, i.e., constant returns to scale 

(CRS) , non-increasing returns to scale (NIRS) and variable 

4 There is indeed a possibility of having less 
accurate estimates of the returns to scale parameters. This, 
however, is not a specification error. 
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naturns to scale (VRS ) , can be built for a given a data set. 

In fact, the VRS frontier nests below the NIRS frontier and 

both of them nest below the CRS frontier. In order to measure 

technical efficiency accurately, one is obligated to select 

the correct DEA model that is consistent with the real world. 

otherwise, the efficiency estimation cannot be accurate. 

Nevertheless, our knowledge of the real world is limited and 

a specification error seems to be a persistent threat to the 

DE.A approach . 

Retaining the Cobb-Douglas production structure, our 

second set of experiments includes two hypothetical 

sCE~narios: 5 

Case A: The production function exhibits constant 

returns to scale (CRS). 

Case B: The production function exhibits decreasing 

returns to scale (DRS). 

Pretending that reality is unknown to us, three DEA 

models and one SF model will be applied in each case. It is 

expected that the consequence of mis-specification in DEA can 

be revealed. The experiments have a differet implication to 

5 with a Cobb-Douglas production structure, we may 
havE~ one of three cases: constant returns to scale (CRS), 
decreasing return to scale (DRS) and increasing returns to 
scale (IRS). However, the IRS case has been ruled out since 
it violates over convexity axiom. Further, in the Cobb­
Douglas function, only the DRS case is consistent with the 
NIRS assumption. 
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SF model. In many situations, the depressing effect of 

technical inefficiency on a production process is similar to 

thl: one of decreasing returns to scale. Therefore, the 

ability of SF model to separate these two effects is under 

examination. Table 6.1 is a panel showing the combinations of 

correctly and incorrectly specified situations for DEA models. 

Table 6.1 Return to Scale Specification 

DEA models applied : CRS 

True property: 
CRS Y 
DRS N 

Note: Y - correct specification. 

NIRS 

N 
Y 

N - incorrect specification. 

VRS 

N 
N 

In this and the next experiment set, the efficiency 

profile is chosen as Type B in the experiment set I. One 

should recall that this type of efficiency profile comes from 

a typical truncated normal distribution. Further, the results 

of experiment set I show that both models perform better with 

this profile. Thus the profile B is chosen as a default 

profile. 
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Experiment set III: Exploring the Sensitivity to the 

Disturbance of the Random Error. 

This set of experiments is designed to inspect the 

robustness of both approaches with respect to the various 

levels of random noise. Generally, the SF model has a 

sophisticated design to filter out random noise and extract 

the efficiency factor from a mixed disturbance. The DEA 

model, on the other hand, less sophisticated in this regard. 

It does not provide any accommodation for random noise and, as 

a result, combines the effect with the inefficiency factor. 

However, with a louder noise, the robustness of the built-in 

filter in the SF model is also worthy of investigation. To 

extract systematic signals from a stream, heavily contaminated 

by larger noise, has some obvious difficulties. The SF model 

may fail to distinguish the efficiency factor from the random 

noise and to separate them effectively. It is unclear .£ 

priori which model will perform better with larger noises. 

In this experiment set, the standard deviation of the 

random noise component will be set at four levels so that the 

relative competence of both approach can be checked. In Case 

A, the standard deviation of the random noise is set at 0.01. 

In other words , this level on average is about 1 percent of 

full scale of the technical efficiency index, which has a 

range (0,1 ] . The noise level in Case B is the default noise 

level adopted in other sets of experiments. The standard 
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deviation of the random noise at this level is 0.03. In Case 

C, the standard deviation is set at 0.06. Finally, the 

standard deviation of random noise is set at 0.09. 

The assignments and the settings for the three 

experiment sets discussed above are summarized in Table 6.2. 

The table is read as follows: On the diagonal cells (boxed), 

one finds the variable factors being tested. The off diagonal 

cells may be viewed as control settings. Horizontally, in 

experiment set I, we investigate the effect of variations of 

the efficiency profile. The production function here has a 

CRS property and the noise level is set at a "moderate" level. 

On the second line, we have the settings of experiment set II 

that examines the effects of specification error with respect 

to returns to scale property. The efficiency profile in this 

case is fixed as type B and the noise level is set again at a 

moderate level. Finally, in experiment set III, we vary the 

random noise to different levels and examine the effects of 

such changes. The efficiency profile is set to be type Band 

the production function has a CRS property. 

As indicated in the table, experiment set I has four 

cases, each corresponds to a different efficiency profile. 

Two basic cases in Experiment set II yield four possible 

situations: correctly specified and mis-specified situations 

with the CRS and the DRS situations. In addition to these, we 
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add two experiments to examine the consequence of applying the 

VRS version of the DEA model to both of the eRS and DRS 

production data. Finally, experiment set III has four cases 

correspondi ng to various random noise levels. 

applied. 

EXp. 

EXp. 

EXp. 

For each case, both the DEA and the SF models are 

Table 6.2 Assignment of Experiment Sets 

set I 

set II: 

set III: 

Efficiency 
Profiles 

Type A 
B,C and D 

Type B 

Type B 

Property of 
Production 

Function 

eRS 

eRS, DRS 

CRS 

ReI. random 
noise level 

(in std.) 

0 . 03 

0.03 

0.01, 0.03, 
0.06 and 0.09 

6.2. Performance Assessment criteria 

To assess the performance of the SF and the DEA 

estimation of technical efficiency, we implement a series of 

tests. The tests are grouped to cover three aspects of 
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The first group of tests focuses on the accuracy 

efficiency index estimation. These tests 

attempt to measure how well we have done in estimating the 

efficiency of individual units. The second group of tests 

examines the ability of the two methods to rank the 

observations by efficiency. The third group of tests is 

designed to look at the ability of the methods to fit a given 

efficiency profile. In other words, it indicates how the 

distribution of the estimated technical efficiency resembles 

its origi nal profile. Efficiency profile recovery can be 

viewed as a measure of performance of the model. 

Test Group 1. Individual Index Estimation. 

The first group of statistics concentrates on the 

accuracy of individual efficiency index estimation. 

Average Deviation. 

The average deviation is the average of the estimated 

technical efficiency index less the "true" value. The 

statistics reflect if a model over- or under-estimates the 

efficiency index. However, since the over-shooting and under­

shooting values may offset each other, this statistics cannot 

tell the whole story. 

To detect the sources where the deviations are 

generated, we divide the efficiency indexes and their 

estimates into three sub-groups according to the true index 

value: the first group contains the 25% most efficient 
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observations; the second group contains the middle 50% 

observations; the last group contains the 25% least efficient 

observations. The average deviations for these three groups 

are reported individually. Since these grouped measures all 

contribute to the total, the total average deviation is in 

fact a weighted average of the three. 

As well as showing where in the distribution of 

efficiency i ndexes, estimation is good and where poor, the 

separat i on into three groups might allow one to choose one 

method that is more accurate for the part of the distribution 

of most interest (e.g., very inefficient firms). 

Average Absolute Deviation. 

The average absolute deviation is the average of 

absolute difference between estimated technical efficiency 

index and the corresponding actual value. It indicates 

average estimation accuracy. A small average implies a better 

estimation quality. However, as an absolute value, it cannot 

indicate t he direction of bias. 

Test Group 2. Rank Information. 

It is often claimed that technical efficiency is a 

comparative measurement of performance. In t h is regard, 

ranking may be a more effective indicator for a group of 

observations than the efficiency index itself. To check 

whether the alternative estimation procedures can provide 

correct ranking of observations, we chose Spearman's rank 
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order correlation coefficient as a measuring gauge. 

The theoretical definition of the coefficient is: 

I -s (6.2) 

where Ri and Ri est are ranks of original and estimated 

efficiency index for observation i respectively and bars 

denote sample means of the ranks. 6 

Test Group 3. Distribution of Technical Inefficiency. 

The frequency distribution of the technical 

inefficiency index for n observations is obtained by binning 

the n data points appropriately. To avoid information loss 

resulting from binning, we set the numbers of the bins to be 

26 (besides the end bin , there are 25 bins running from 0.4 

to 1.0 at width of 0.024). Further, we define fori and fest as 

the binned frequency vectors for the original and the 

estimated efficiency indexes (from either DEA or SF). The i-

th elements of the vectors are the number of the observations 

falling into the bin. 

6 If there is a tie among the ranks, it will be 
replaced by its mid-ranking value. Considering tied 
situation, we use the formula provided by Press, Flannery, 
Teukolsky and Vetterling (1989) to calculate Spearman's rank 
order correlation coefficient. 



126 

Chi-square Test 

The Chi-square statistics is employed to test whether 

the distribution of the estimated efficiency indexes is 

significantly differ ent from the original one. For the null 

hypothesis that the estimated distribution is identical with 

the original one, the Chi-square statistic is defined as: 

(f/st; _ ftri) 2 

f ,est; + f ,od 
~ ~ 

(6.4) 

In this formula, both fOri and fest are now treated as samples. 

Thus the denominator is the sum, rather than average of the 

two terms. 7 

These test statistics reflect different aspects of 

estimation quality. There is clearly no unique measure of 

quality, but we think these measures capture t h e key features 

that might be of interest. 

6.3 Other specifications and 

computational Techniques. 

Data Generation and Sample Size 

Three sets of variables, i.e. the production data, the 

7 For a discussion of the Chi-square statistics, see 
W.H. Press et. al., 488-489. 
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efficiency index, and the random noise component, were 

generated from independent sources as follows. 

( 1 ). Production data 

For the sake of simplicity, we assume there are two 

inputs (L,K) and one output in a Cobb-Douglas production 

structure: 

t ~ 0 , -00 < v < 00 

(6.6) 
10 (L ~ 20,20 < K~ 30 

Data for both inputs Land K are generated from a uniform 

distribution with the range shown. The observable output u is 

then obtained from the function. The constant term is set to 

unity. The other parameter settings vary across experiments 

and will be given in the next chapter. 

(2 ) The efficiency term 

The efficiency term t is generated from a truncated 

normal distribution for the profiles "type A" and "B". The 

efficiency index exp(-t) then can be obtained correspondingly, 

However, in experiment set I, case C and D are designed to 

test the robustness of the two methods under some particular 

efficiency profiles. In these two cases, sampl es resembl i ng 

the desired efficiency patterns as described in section 6.1 

were created for the simulat i on study. 

(3) The random variable 
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The samples of the random variable , V , are drawn from 

a normal distribution with a zero mean and a standard 

deviation that vary according to particul ar experiment set 

(See Table 6 . 2). 

After the v a riables t and V are generated, they are 

merged with output u so that each sample contains only three 

series: two inputs and a "contaminated" output. 

The sample size of experiment and number of 

replications are worth of discussion. As a general principle, 

larger the sample size and more replications, better the 

results. This is not only true for the SF model but also true 

for the DEA model since more data points yield a better 

approximation of the given production frontier from which 

data are generated. However, our experiments are confined by 

some inherent limitations. First, with a large sample size 

and many replications, computation burden for DEA could 

increase substantially. In the linear programming problem of 

DEA, the constraints increase as the sample size swells. As 

a result, the size of the tableau can be enlarged 

geometrically. This will reduce the computation speed 

siginificantly. Moreover, the DEA efficiency measurements for 

a given data set of size n is obtained by solving n LP 

problems repeatedly, each for a data point. Th is is another 

consideration to limit sample size and numbers of replication 

within a reasonable range. Therefore, we should emphasis that 
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the results from our experiment pertain to finite sample 

properties of the methods under examination. The large sample 

properties are simply not our intention. 

with these considerations, we set sample size at a 

moderate level with each sample contains 100 observations. 

However, for each case under examination, we draw 5 samples 

and only control the efficiency terms. Therefore, we have 5 

replications in each case. 8 For instance, in case A of 

experiment set I, an identical series t is merged with five 

sets of input-output data and 5 drawings of random variable v, 

and five samples are generated. The estimation procedures are 

then implemented to all five samples yielding five sets of 

estimates. 

Case A and B in the experiment I have a typical 

truncated normal distribution. In particular, the Case B is 

a norm for both experiment sets II and III. In these two 

cases (A and B), we add supplementary experiments. In each 

case, the five samples are generated in such way that one set 

of production data and pure noise is merged with five 

efficiency index vectors drawn from same popul ation. 

Normalization of the Efficiency Indexes 

8 Thus our experiments, designed in the last section, 
include 6800 LP problems, each with more than 100 constrants, 
to evaluate the technical efficiency for each data point. 
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since the DEA method measures the comparative 

efficiency relative to a best performance observation at 100% 

efficiency, it seemed desirable to normalize the sample of 

efficiency indexes to put SF and DEA on an equal footing by . 

dividing the sample indexes by the maximum of them. Thus the 

best performance observation in each data set has at least one 

efficiency index equal to one. It can be shown that this 

transformation does not affect the ML estimation for the SF 

model (See Appendix 2). 

Summary of Experimental Results. 

In most of the cases except case A and B in experiment 

set: I, we will report only summarized results. The method of 

summarization will be addressed in next chapter. 

Estimation Techniques 

The LP programming formulations employed in the 

experiments are identical with those given in Chapter 4. 

Technical efficiency is measured along the direction of output 

axis. The computation procedure is carried out by a FORTRAN 

program interfacing with LINDO. 9 The program set up the data 

tableau for the LP problem and called LINDO to solve the 

problem i terati vely. The FORTRAN code is provided in Appendix 

3 to the thesis. 

9 LINDO (Linear, Interactive aNd Discrete Optimizer) 
was developed by LINDO systems at University of Chicago. 
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The SF mode l employed is the truncated-normal/normal 

model discussed in Chapter 5. The estimation is implemented 

by a FORTRAN program, which is a maximum likelihood function 

estimation procedure using Davidon-Fletcher-Powell (DFP) 

algorithm. 10 The program conducts a mUlti-dimension search 

for the maximum (minimum) of a (negative) likelihood function 

fol l owing the direction indicated by a Hessian matrix, which 

is constantly updated by the gradient information at run time. 

The gradient vector for the ML function is given in Appendix 

1. 11 It should be noted that the same algorithm was employed 

by Meeusen and van den Broeck12 (1977), Olson, Schmidt and 

Waldman13 (1980) and Greene(1990) and proved to be an 

effective procedure. 

The input data, the efficiency term t and the random 

variable v were generated by the random number generator 

supplied by MINITAB.~ For the efficiency term t, a large 

10 Major reference for the algorithm can be found in 
Press et. ale (1988). Chapter 10. 

11 The code is provided in Appendix 4 to the thesis. 

12 The estimation package used was MINUIT, the method 
is incorporated into the package by J. James and M. Roos of 
CERN at Geneva. 

package 
Program. 

13 The estimation 
developed by the 

package is 
Princeton 

the Goldfeld-Quandt 
Econometric Research 

~ MINITAB is a statistical and data processing 
software developed by Minitab Inc. 



132 

number of observations (8000) were generated for given 

popu lation parameters and then truncated. Afterward, samples 

of 100 were drawn from the truncated distribution. 

The data edit ing and compiling jobs for the experiments 

were accomplished on a 80286 based Pc computer and the major 

computation tasks were implemented on the VAX system of 

McMaster University. 



CHAPTER 7. THE RESULTS OF SIMULATION STUDY 

As explained in the last chapter, our comparative 

study of alternative efficiency estimation methods contains 

three sets of experiments. The results of the experiments are 

presented in this chapter. The chapter is arranged as 

follows: The first section assesses the performance of the SF 

and the DEA approaches under assorted effici ency profiles. 

The second section compares the robustness of the two 

appr oaches under a l ternative returns to scale scenarios. 

section three examines the robustness of the two methods under 

alternative assumptions about the size of the random noise 

component . The final section provides a general assessment of 

the two efficiency measurement models. 

7.1. Experiment Set I: Efficiency Profile 

The four types of frequency distribut i ons considered 

for the efficiency index are plotted in Figure 7.1. The four 

cases are chosen to provide a variety of testing frameworks 
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for SF and DEA estimation. 1 Profiles A and B are the actual 

samples randomly drawn from a truncated normal distribution 

(with different shapes because of different truncation points) 

while profiles C and D are not. C is chosen to be somewhat 

flatter than a truncated normal while D is chosen to be left 

skewed. The truncated-normal (efficiency)/normal (random 

noise) model is a correct specification for the SF model 

discussed earlier only for cases A and B and the rest of the 

chapter (the second and third sections) focuses on these 

cases. Nevertheless, it seemed worthwhile exploring some 

cases where the efficiency error did not come from a truncated 

normal distribution. We discuss these four cases in turn. 

Case A. Efficiency Profile Type A. 

In this case, the mass of the distribution is close to 

unity and the distribution is the truncated tail of a normal 

distribution (with more than half of the distribution being 

cut off). In the experiments presented, we first combined one 

drawing of the efficiency index with 5 drawings of CRS 

production data and 5 drawings of random noise. 2 In this way, 

1 To justify the paramter settings for these profiles, 
we suggest that emperical investigations by Deprins et ale 
(1985) and, more recently, by Bjurek et ale (1990) should be 
referenced. 

2 The way in which capital, labour and the random 
noise component are generated is discussed in the previous 
chapter. 
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five samples were generated. Both SF and DEA estimation 

procedures were then implemented. The theoretical (and 

population) parameters were used to serve as the initial 

values for the maximum likelihood (ML) estimation procedure. 

The purpose of this choice is to minimize computational error 

in the ML procedure. 3 

The results of these experiments are listed in Table 

3 It should be noted that the experimental data sets 
have been contaminated by random noise. Thus our choice just 
places the ML function value at some neighbourhood of the 
global maxima. The steps to reach the maximum vary from one 
to more than forty. However, a line minimization procedure is 
sti l l involved in each step to search for the minimum along 
one direction. See Press et. ale (1988), 324-328. 
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7.1.A.1. 4 The statistics introduced in Chapter 6 for the five 

sample estimations are listed in the columns of the table. In 

the top section entitled "individual efficiency estimation", 

the first row reports the average deviation of the estimate 

from the true value (in particular, we report the average of 

the estimate minus the true value) over all 100 observations; 

the next three rows report the deviations in various sub-parts 

of the sample (from more to less efficient observations) while 

the fifth row reports the average absolute deviation over the 

100 observations. The last two rows report the Spearman's 

rank correlation coefficient and the Chi-square value as 

explained in the last chapter. The last two columns of the 

table require further explanation. The first five rows (in 

these columns) report the averages across the 5 samples. 

However, no meaning can be attached to an average of the rank 

coefficients or of t h e Chi-square values. We report instead 

statistics for pooled estimation. In addition, the average 

absolute deviations for the pooled estimation are also 

reported. By pooled estimation we mean that we have taken the 

5 separate estimates of the efficiency of each observation (or 

"firm") and formed an average estimate of the efficiency of 

4 The statistics for the efficiency index exp(-t) in 
the title of the table are population statistics. The 
formulas for converting the statistics for the variable t to 
those of exp(-t) are given in Chapter 6. 
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that observation. s 

As a second part of this experiment, five drawings 

(sets) of efficiency indexes were merged with one set of the 

eRS production data and random noise6 • The results are given 

in Table 7.1.A.2. As we have five drawings of efficiency 

indexes in this part of the experiment, pooled estimation is 

not applicable and hence not shown in the Table 7 .1.A. 2 

(n.a.'s in the table). 

The results of these two tables will be discussed 

together. First, for individual efficiency index estimation 

(the upper part of the tables), SF shows no significant 

tendency to over or underestimate the efficiency index. 

However, for the mos t efficient observations, it frequently 

under shoots the target. 7 On the other hand, DEA shows a 

consistent tendency to undershoot the target in all parts of 

5 Note that the first 5 rows reporting deviations (not 
abso l ute deviations) would be the same for the pooled results 
as for the average of the sample estimates that are reported. 

6 A random selection from the columns of Table 7.1.A.1 
was made and the third column chosen for these experiments. 

7 As explained in the last chapter, the SF results are 
normalized so that the most efficient firm regi sters at 100% 
efficient. In fact, this makes only trivial difference. The 
issued is discussed in the appendix to the chapter in which 
the comparisons with "un-normalized" SF estimation are 
reported. 
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the distr ibution8 
• These results can be seen in all the 

individual samples listed in Tables 7.1.A.1 and 7.1.A.2. 

Generally, SF performs somewhat better on these measures. 

In comparing the average absolute deviations, we find 

that SF performs better than DEA in all sample estimations. 

The performance difference varies from .0078 to 0.0206 in the 

first part of experiment (Table 7.1.A.1) and from 0.0114 to 

0.0291 in the second part of experiment (Table 7.1.A.2). On 

average, the absolute deviation for the SF method is about two 

percent and for the DEA is about three percent (the average of 

the samples in both tables). In the pooled estimation, where 

the effect of random noise is partially removed, we find that 

the performance difference is somewhat smaller with a factor 

of about 1.5 percent in terms of the average absolute 

deviat i on (Table 7.1 . A.1). 

The Spearman's rank correlation coefficients indicate 

the relationship between the true ranks of the observations 

and the ranks of the estimates. For SF estimation, the 

coefficients vary from 0.8994 to 0.9365 in the first part of 

experiment and from 0.8640 to 0.9354 in the second part. For 

DEA estimation, the Spearman's correlation coefficients are 

somewhat lower in each sample. However , i n the pooled 

8. One would expect this tendency, given that the random 
noise component will "push the estimated frontier out". 
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estimation (after some of the random noise is averaged out) we 

find the SF and DEA yield quite similar results. 

The Chi-square statistic reports on the ability of the 

methods to extract a correct efficiency profile, and we find 

that in most cases, SF has a better performance than DEA 

though both survive the goodness-of-fit test at 90% confidence 

levE~l. 

Case B: Efficiency Profile Type B . 

In this case, the distribution of the efficiency term 

t is truncated in such a way that only one tail is cut off. 

In compa rison with t he Case A, more information about the 

origina l distribution is thus preserved. Thus, the SF model 

should have a better chance to attain more accurate 

estimati on. This experiment set also contains two parts 

parallel to the Case A above: in the first part one drawing of 

efficiency index was merged with five sets of CRS production 

data; i n the second part, five drawings of the efficiency 

index ware merged with one set of CRS production set. The 

resu lts are reported in Table 7.1.B.1 and Table 7.1.B.2 .. 

In examining the "individual index estimation", we do 

not find much evidence of systematic over- or under-shooting 

behaviou r for DEA. On the other hand, it seems that SF has 

more cha nce to overshoot the targets. In the first part of 

the experiment, the average deviation of estimation is -0.0102 
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for the SF and is -0.0060 for the DEA. The difference factor 

is about 0.0042 or 0.4 percent (Table 7.1.B . 1). In the second 

part of experiment, the figure is -0.0037 for the SF and 

0.0041 for the DEA. The difference factor is about 0.0004 or 

0.04 percent. However, since both over- and under-shooting 

occur, the signed "average deviation" is more volatile, and 

hence l ess indicative, than the unsigned "average absolute 

deviation". 

In the first part of the experiment, the average 

absolute deviation is 0.0187 for the SF model and 0.0217 for 

the DEA model (Table 7.1.B.1). The difference factor here is 

about 0 . 3 percent. In the second part of the experiment, the 

figures are 0.0216 and 0.0235 (Table 7.1.B.2) respectively 

with a difference factor of 0.31 percent. In the pooled 

results , with some random noise being removed , we find that 

the figure is 0.012 3 for the SF model and is 0.0113 for the 

DEA (the pooled average absolute deviation i n Table 7.1.B.1). 

Thus for both methods, the "pooled" absolute estimation error 

is about one percent. 

In this second profile (type B), the Spearman's rank 

correlation coefficients indicate that the rank of the 

eff i ciency index can be reconstructed with higher precision by 

both models (than for profile A). In the sample estimated, 

the coefficients for the SF results vary from 0.9876 to 0.9919 

in the first part of experiment and from 0.9834 to 0.9914 in 
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the second part of experiment. On average, the coefficients 

for the SF estimation are slightly higher than those for the 

DEA method. The difference factor between the two 

coef ficients varies from 0.0021 (sample 2) to 0.0084 (sample 

4) i n the first part of experiment (Table 7.1.B.l) and from 

0.0013 (sample 3) to 0.0072 (sample 4) in the second part of 

the experiment (Table 7.1.B.2). For the pooled estimations, 

the coefficient is 0 . 9974 for the SF model and 0.9971 for the 

DEA estimation. The difference is narrowed down to 0 . 0003 . 

I n measuring the ability of efficiency profile 

recovery, we note that the Chi-square values for both the SF 

and DEA models are well below the critical value for the 

goodness-of-fit test at 90% confidence level (34.3816). 

Genera l ly, DEA has better performance than SF. However, for 

the pooled estimation, the Chi-square value i s 10.2579 for the 

SF model and 10.6173 for the DEA estimation. 

This second profile (type B) of the experiment set I 

will be treated as a norm for the rest of the experiments. 

Moreover, since we have found that the two parts of the 

experiment yie l d much the same information (Tab l e 7.1. A.l v. s. 

7.1.A.2 and Table 7.1.B.l v.s. 7.1.B.2), our future 

experiments will concentrate on one type of experiment, 

namely, the samples are formed by 1 drawing of an efficiency 

index a nd 5 drawings of production data and random noise. 

Finally, only the average of the sample estimation 
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(corresponding to the last two columns in Tables 7.1.A.1 and 

7.1.B.1) will be reported for the sake of simplicity though we 

will report the Spearman's r and the Chi-square statistics for 

each of the samples. 

Case C. Efficiency Profile Type C. 

Unlike the previous two cases, the efficiency profile 

in Case C is pre-selected in such a way that it features a 

larger standard deviation for the efficiency index exp(-t). 9 

The distribution is still some what like a truncated normal 

and can be treated as "approximately truncated normal". Since 

the selection procedure blurs the connection between the 

sample and the population, the sample rather than population 

statistics are reported in the title of Table 7.1.C. We note 

that the consistency properties of the ML procedure no longer 

hold when the efficiency profile is not a truncated normal. 

Never theless, it is worth noting whether the efficiency 

estimates from the SF degenerate if the profile is not truly 

a truncat ed normal. 

In t his case, we find that while both the SF and the 

DEA model have a higher chance to underestimate the efficiency 

index . On average, the SF estimation has an average deviation 

of - 0 .0147 from the target while DEA estimation has one of -

9 It should be noted that both mean and standard 
deviation of exp (-t) are the functions of the mean and 
standard deviation of t. See Chapter 6. 
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0.0123 (Table 7.1. C) . The average absolute deviation is 

0.0303 for the SF estimation and is 0.0354 for the OEA. The 

difference factor here is 0.0051. For the pooled estimation, 

the average absolute deviations are 0.0198 and 0.0219 for the 

SF and OEA estimation respectively and the difference factor 

is 0 .0021. 

In Case C, the rank order of the original index is 

quite well reconstructed by both methods. However, there is 

evidence suggesting that unusual behaviour of a particular 

data set may exert considerable impact on both SF and OEA 

est i mation. For example, in sample 3, the Spearman's r is 

0.8720 for SF estimation and 0.8370 for OEA estimation. Both 

figures are substantially lower than the other samples 

estimated. 10 For pooled estimation, the Spearman's r is 

0.9918 for the SF estimation and 0.9874 for the OEA 

estimat ion. 

Measuring the efficiency profile recovery, we find in 

general the SF performs better. In four out of the five 

samples, the SF yields a better Chi-square value. The 

difference between the pairs of Chi-square statistics varies 

from 1.684 to 9.5096. However, for the pooled estimation, the 

Chi-square value is 17.4933 for the SF estimation and 10.3352 

10 Since the OEA and the SF estimation are carried out 
independently, it seems obvious that the source of variation 
here is in the data set. 
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for the DEA estimation, an insignificant difference. 

In comparison to the previous cases, the quality of 

the SF estimation is relatively less accurate. One possible 

reason is that the larger variance of the distribution makes 

the frequency distribution thicker and somewhat featureless. 

As a result, the ML procedure may be less able to successfully 

pinpoint to the maximum which is not very distinguishable from 

its neighbours. 

Case D. Efficiency Profile Type D. 

The efficiency profile of Case D features an even 

further deviation from a truncated normal. In fact it is an 

asymmetr i cal distribution for the efficiency index exp(-t). 

It skews towards the left with the mean located at 0.63 and a 

sample standard deviation of 0.16 (see Figure 7.1). The 

efficiency index scatters widely over a range from about 0.3 

though 1.0. The results of the experiment are reported in 

Table 7. 1. D . 

In the first group of statistics, we find that the 

average deviation of the SF estimation is larger than for the 

DEA (·-0.0151 v.s. 0.0060). On the average, SF has more chances 

to undershoot the target while DEA is more likely to overshoot 

the target . The average absolute deviation is 0.0190 for the 

SF and 0 . 0233 for the DEA. In the pooled estimation (which 

eliminates some of the random noise), we find that the 
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aver age absolute deviation is 0.0153 for the SF estimation and 

0.0108 for the DEA. The difference factor is 0.0045. 

Both approaches yield acceptable rank statistics. 

However , in each sample estimation, SF leads the competition 

by a small margin. For the pooled estimation, the spearman's 

r is 0.9983 for the SF model and is 0.9962 for the DEA model. 

Compared to the previous cases, the fitting of the 

eff i ciency profile, as measured by Chi-square, for the SF 

model is somewhat less accurate in individual sample 

estimations. In three out of the five samples, the Chi-square 

values for the SF estimation exceed those of the DEA 

estimation. For the pooled estimation, the DEA estimation now 

performs better than the SF. The chi-square value is 20.4569 

for t he SF and is 7.4492 for the DEA. As one might expect, as 

the distribution of the efficiency term deviates further from 

the assumed truncated normal, SF has a relatively worse 

performance. 

We draw the following conclusion from Experiment Set 

I: 

(1) Under assorted efficiency profiles, the 

efficiency index can be estimated by either the SF or DEA 

model with reasonable accuracy. On average, the estimation 

errors are about 3 percent, and the SF model performs somewhat 

better. The difference in performance between the two methods 
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is small. We observe that the average difference between 

t he two estimates is between one and two percent. After the 

effec ts of random noise are partially averaged out (for pooled 

estimati on), the dif f erence is even smaller. In Cases A and 

C, the individual index estimation by the SF method is not as 

accurate as in the other two cases. To account for these 

facts, we note that in Case A the ML procedure, in fact, 

attempts to infer the information about the entire 

distr ibution from a small tail. This could result in less 

accurate parameter estimation and hence in efficiency index 

estimation. For Case C, it should be noted t hat the large 

variance o f the distribution may make the maximum more 

i ndistinguishable from its neighbourhood and hence may 

increase the difficulty of estimation. 

(2 ) . In all cases, the efficiency rank orders of 

observat i ons can be reconstructed with consider able accuracy 

by both SF and DEA methods. In most cases, the rank 

correl ation coefficients between the "true" and estimated 

indexes a re higher than 0 . 9 . However, if the eff iciency 

indexes are more closely clustered as in Case A, the ranking 

of the estimated indexes may be less accurate. It is 

conce i vable that in such cases a certain estimation error may 

result. in l a rger disturbances in the efficiency ranking order . 

( 3) In all four cases, the effi ciency profile can be 

fitted rea sonably wel l by both methods. Though the SF model 
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has a better performance in general, we find occasionally that 

DEA yields better results. In spite of the fact that the Chi­

square stati stics for DEA are usually higher than those for 

SF, the y are less volatile. 

7.2 Experiment set II: specification 

Errors Regarding Production Technology. 

The production structure defined in Chapter 2 allows 

that a production process has a property of either constant or 

decreasing returns to scale (DRS). Increasing returns to 

scale technology is ruled out due to its inconsistency with 

the convexity assumption. Thus, we assume in this set of 

experiments that production data are generated from either one 

of the two permissible technologies . 

Pre-specification of the production technology is 

required for DEA. The specification errors emerge in the 

following two circumstances: a) a CRS technology is loosely 

specified as the Non-increasing Returns to Scale (NIRS) one, 

or b) a DRS technology is erroneously treated as a CRS one. 

Besides t he two types of errors just referred to, the 

consequence of employing a VRS specification (which violate 

the basic axioms of production structure by containing a 

possible IRS portion) is also considered in our evaluation. 

Implication of this experiment for the SF model should 
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be noted in particular. Though pre-specification of 

production technology is not required, the SF method faces a 

harsher t ask to distinguish the technical inefficiency from 

the effect of returns to scale. In many cases, effect of 

decreasing returns to scale has similar impact to inefficiency 

on the output. 

To explore the consequences of the technology mis-

specification, we create two hypothetical data sets: one has 

a CRS property while the other has a DRS property. The 

drawing of the efficiency indexes in this experiment is 

identical to the one employed in Case B of the experiment set 

I.11 The results of this experiment are reported in Table 

7.2.A and Table 7.2.B. 

Case A: CRS Production Technology. 

In this case, the input and output data are generated 

as earlier from a CRS technology: 

The samples are generated in such a way that one set 

of the efficiency index is merged with five sets of CRS 

production data and drawings of the random error. For each of 

the five samples, four estimation procedures (the SF model, 

CRS, NIRS and VRS versions of the DEA model) are applied. 

11 By retaining the results from case I.B, this choice 
provides bot h experiments with a comparable starting points. 
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Since the set of efficiency index is identical to the one 

employed in Case B of experiment set I, the first two columns 

in Table 7.2.A (the SF and CRS estimations) are the 

duplications of the corresponding columns in Table 7.1.B.1. 

Columns 3 and 4 of the Table 7.1.B.1 are the test 

statistics for the DEA estimation as the NIRS or VRS 

technology is specified. To examine the individual index 

estimat i on, the column by column comparison shows that in 

comparison with the CRS model, the NIRS and VRS model have a 

tendency to "over-shoot the target". This result is 

consistent with the theoretical anticipation that both NIRS 

and VRS models may over-estimate efficiency index since both 

the NIRS and VRS frontier are nested below the CRS frontier. 

From the average absolute deviation measures we find that 

while the SF result (0.0187) is better than all the DEA 

models, the CRS model performs better than the NIRS and VRS 

models (0.0217 V.s. 0.0244 and 0.0427). However, for the 

pooled estimation, the NIRS model is slightly better than the 

CRS and the VRS model. It should be noted that while the 

difference between the CRS and the NIRS model are very small, 

the difference between them and the VRS model is quite 

signifi cant . 

The rank information exhibits a similar scenario. 

While the SF model keeps best track of the true rank order, 
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the rank coefficient for the CRS is slightly higher than the 

one for the NIRS and the one for the VRS estimation. For the 

pooled estimation, we find that the correctly specified CRS 

model (Spearman's rank correlation coefficient is 0.9971) 

perf orms slightly better than the NIRS model (0.9966) and both 

of them perform much better than the VRS model (0.9782). 

I n comparing the Chi-square statistics across the 

samples, we find the CRS and the NIRS model yield very close 

results . However, the VRS fitting is a more distorted one. 

For t he pooled estimation, the Chi-square statistic for the 

CRS esti mation (10.2579) is better than for the NIRS model 

(12. 9010) and for the VRS model (14.5595). 

Case B: DRS Production Technology 

The production function in this case has following 

specificati on: 

As explained in Chapter 6, the proper DEA specification for 

the da ta set generated from this DRS structure is the NIRS 

model. CRS and VRS are now mis-specified models. The 

statistics of the estimation are listed in Table 7.2.B, which 

report the same information as in Table 7.1.A. 

First we look at the individual index estimation. In 

compari son with the previous case, we find that the SF results 
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are insign ificantly changed. Though the average deviation for 

the SF model has a sign change (0.0005 in this case v.s. -

0.0102 in previous case), the average absolute deviation 

(0.0180) is quite close to the previous one (0.0190). 

However, there is a change in the pooled average absolute 

deviation for the SF estimation (0.0071 i n this case v. s. 

0.0123 in previous case). The results indicate that the SF 

model can effectively distinguish the effect of technical 

inefficiency under alternative returns to scale structure. 

In comparing the three DEA models, our observations 

are as follows: first, the CRS model has a tendency to 

underestimate the efficiency index when the structure is, in 

fact r DRS. This phenomenon is consistent with the theoretical 

anticipation because the CRS frontier envelopes the NIRS and 

VRS f rontiers and hence efficiency for an observation will be 

underestimated if the CRS envelope is referenced. Further, we 

note that the correctly specified NIRS model ties with the CRS 

model and both of them perform better than the VRS model. In 

terms of the pooled estimation, the NIRS model performs better 

than the CRS and the VRS model. 

Regarding the rank information, the column by column 

comparison shows that the ranking by the SF results continues 

to dominate the competition. Among the DEA models, the 

correctly specified NI RS model yields the best results (the 

rank correlation coefficient for the pooled estimation is 
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0.9953) though the CRS model, in spite of the mis­

specification, still provides reasonable results. The VRS 

results, in contrast, are much weaker. These observations can 

be found in all sample estimations. 

Regarding efficiency profile fitting, we find that the 

SF model still leads the competition with lower Chi-square 

valu es . However, the correctly specified NIRS model has a 

relatively worse profile fitting than the CRS model. Finally, 

the VRS estimation has the worst fitting of the efficiency 

prof ile (25.3810). 

The experiment set II can be summarized as follows: 

The correct specification of returns to scale 

technology i s vitally important to DEA estimation. According 

to our experiments, the estimation result of a DEA model is 

sensitive to the technology specification. A correctly 

specified DEA model generally has a better performance. 

However, if a choice is between a CRS and a NIRS technology, 

the perfor mance gap between the correctly and the incorrectly 

specified model is insignificant. Our experiments show that, 

in s uch a case, even a mis-specified model may yield a 

reasonable result. Nevertheless, if the VRS property were 

imposed on a data set which is generated from either the CRS 

or t he NIRS world, the performance of the DEA could be 

impaired severely. The efficiency indexes would be over-
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estimated and the efficiency ranking and profile could be 

enormously distorted. This finding is consistent with the 

emperical observations by both Deprins et al. (1985) and 

Bj urek et ale (1990), that VRS specification yielded a set of 

efficiency estimates significantly different from ones 

obtained from other models or other versions of the DEA model. 

Thus discretion is strongly advised for employing a VRS model, 

unless a data set is assured to have the VRS property. In 

this regard, we believe that the SF model could have a role to 

assist the DEA model in correctly specifying an unknown 

technology. 

Finally, the experiments indicate that the SF model 

can successfully distinguish the effect of inefficiency from 

the eff ect of returns to scale and performs better in both 

cases. 

7.3 Experiment set III: 

varying the Random Noise Level 

The standard deviation of the random variable v was 

set at 0.03 through all previous cases. 12 This noise level 

(standard deviation) can be considered as roughly a 3 percent 

dist.urbance in addition to the effect of technical 

12 This is the population parameter. The actual sample 
standard deviation may vary from sample to sample. 
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inefficiency. In experiment set III, we set the random noise 

to different levels in order to study the robustness of the 

estimation techniques in the pure stochastic disturbance. 

We examine four cases here with the standard deviation 

being set at 0.01 in Case A, 0.03 in Case B, 0.06 in Case C 

and 0.09 in Case D. The experimental results are summarized 

in Table 7.3.A, Table 7.3.B, Table 7.3.C and Table 7.3.D. It 

should be noted that the efficiency profile employed in this 

experiment is identical to the one in Case B of the experiment 

set I. Therefore, Table 7.3.B duplicates the corresponding 

contents of Table 7.1.B.1. 

In this experiment set, we discuss the four cases 

together for the sake of convenience. First we look at the 

individual efficiency estimation. As the noise level rises, 

we find that the estimation of the SF and the DEA model are 

affected in a somewhat different pattern. At the lowest noise 

level, Case A, DEA shows a tendency to over-estimate the 

efficiency index (Table 7.3 .A) . The over-estimation can 

presumably be explai ned by the inner envelope property of 

DEA I s linear frontier. 13 However, the DEA frontier is 

pushed up by the random noise as its level rises, and as a 

result, under-estimation becomes a prevailing phenomenon (the 

second column in Table 7.3.B, 7.3.C and 7.3.0). 

13 This propert y surfaces only when the noise level is 
set at the lowest level. 
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On the other hand, the SF model may over- or under­

estimat e the efficiency indexes and the results seem to vary 

from case to case. From the average absolute deviation, we 

observe the followings; first, the SF in general has a 

smaller absolute deviation than the DEA in all four cases, and 

second , performance gap becomes smaller from Case A to Band 

then becomes larger in Case C and D. The differences between 

the two are; 0.0063 in the Case A, 0.0030 in the Case B, 

0.0052 in Case C and 0.0134 in the Case D. For the pooled 

estimation the gaps are 0.0078 for the Case A, 0.0010 for the 

Case B, 0 . 0062 for the Case C and 0.0083 for the Case D. 

Thus, we consider i n terms of individual efficiency index 

est i mation, increased random noise seems to affect the 

est i mation quality of both methods, though in a slightly 

different pattern. 

The experiment shows that there is direct relationship 

between the random noise level and the ability of the rank 

order reconstruction. As the random noise level rises, the 

Spearman's rank correlation coefficients for both methods 

decrease. However, one may observe that t he SF model leads 

the competition by a slight margin in each single case. 

Another point that should be noted here is that the rank order 

seems to be a quite stable measure. Even when the data set is 

severel y contaminated by random noise, both SF and DEA methods 

could preserve a highly authentic efficiency ranking. 
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Regarding the ability of the methods to recover an 

effici ency profile, we find that though the SF model provides 

a better fit of the efficiency profile than the DEA at low 

noise l evel, its ability is more sensitive to the random noise 

dis'turbance. In particular, at the lowest noise level, SF 

provides a closer fit for all 5 samples but at the highest 

noise level, SF is better in only two out of five samples. 

However, for the pooled estimation, we find the SF still 

provide a better fitting of the give efficiency profile in 

most of the cases. 

Experiment set III can be summarized as follows; the 

presence of increased random noise affects the estimation 

quality of both the SF model and the DEA model. Though with 

SF there i s a built- i n noise filtering mechanism which allows 

for noise , the superiority of the SF model to the DEA model is 

not a overwhelming one. We find that the performance of the 

SF model degenerates as the random noise level rises. Our 

experiments show that at least in some aspects, e.g., 

individual index estimation and profile estimation, the DEA 

model has acceptable performance even when the noise level 

becomes quite high. Moreover, at low noise levels, where one 

might expect that DEA models to perform best, the efficiency 

profile fitted by the DEA model is not as good as by the SF 

model, though it is a more stable one. Therefore, we conclude 
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over var i ous noise level, the DEA model remains a competitive 

alternat i ve to the SF model. 

7.4 Summary 

Generally speaking, the efficiency estimation quality 

of the SF and the DEA models are quite compet i tive. However, 

our exper iments show that SF estimation frequently leads the 

alternative by a small margin. To account for this fact, we 

note that DEA has a congenital disadvantage in handling random 

noise. Moreover, some credit has to be granted to the DEA 

model f or the following unfavourable situation it faces; the 

production data are generated from a parametric production 

function for which the DEA model provides only an 

appr oximation at best. Taking these into account, the general 

perf ormance difference between the two seems quite small. 

Thus under many circumstances, the DEA model and the SF model 

are competitive alternatives. Finally, we emphasise that the 

estimati on cost, which confines our present scale of 

~xperiments, should be taken into consideration when a choice 

is made between alternative models. This is particularly true 

for the DEA model. For a given data set, a linear programming 

procedure has to be repeated for each observation and the size 

of t he LP problem varies as the numbers o f observations 

increase. As a result, the cost of estimation rises as the 
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sample size increases. On the other hand, if numbers of 

observations are limited, the SF model may not yield 

s a tisfactory results. In this situation, DEA is a good 

a l ternative. 



Table 7.1A1 Comparison of SF and DBA Profile A 
Experiment Set I: 1 efficiency index merged with 5 sets of CRS production data 
Distribution Characteristics: mean(exp(-t)] = 0.904, std[exp(-t)] = OJ>69, std[exp(-v)] = 0.03 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average of Sample Estimation 
Statistics SF DBA SF DBA SF DBA SF DBA SF DBA SF DBA 
Individual Index Estimation 

Average Deviation: -0.0013 -0.0324 -0.0011 -0.0179 -0.0050 -0.0380 0.0009 -0.0160 -0.0073 -0.0238 -0.0028 -0.0256 

Average Deviation for: 
25% mott efficient obs.: 
middle 50% of obs.: 
25 % least efficient obs.: 

Average Absolute Deviation: 

-0.0143 -0.0341 
0.0002 -0.0339 
0.0067 -0.0297 

0.0173 0.0379 

-0.0148 -0.0256 
0.0015 -0.0167 
0.0059 -0.0145 

0.0182 0.0279 

-0.0126 -0.0313 
-0.0055 -0.0430 
0.0018 -0.0365 

0.0193 0.0419 

Pooled Arerage absolute Deviation: 

Rank Information 

Spearman's r: 0.9365 0.8989 0.9219 0.8911 0.9113 0.9107 

EfficienCJ Profile Information 

-0.0151 -0.0261 -O.OITl -0.0216 -0.0149 -O.02Tl 
0.0033 -0.0135 -0.0046 -0.0253 -0.0010 -0.0265 
0.0102 -0.0129 -0.0043 -0.0252 0.0041 -0.0238 

0.0223 0.0301 0.0216 0.0331 0.0197 0.0342 

0.0102 0.0263 

0.8994 0.8559 0.9058 0.8958 0.9172 0.9722 

Chi-square (34.3816) : 18.3706 28.4768 13.8487 18.2927 10.9353 36.7602 17.8044 122040 19.4453 19.2734 17.7480 28.0726 

Note: (1)The mean and standard deviation of exp(-t) in the title are population statistics. 
(2) The bracketed Chi-square value is the critic:a1 value for the upper 10% tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation - see text for details. 



Statistics 

Individual Index Estimation 

Average Deviation: 

Average Deviation for: 

25% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Average Absolute Deviation: 

Rank Information 

Tabie 7.1A2 Comparison of SF and DBA Proftlo A 
Experiment Set 1: 5 sets of efficiency indexes merged with 1 set of CRS production data 
Distribution Characteristics: m[exp(-t)] = 0.904, std[exp(-t)] = 0.069, std[exp(-v)] = 0.03 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 
SF DBA SF DBA SF DBA SF DBA SF DBA 

-0.0050 -0.0380 -0.0022 -0.0321 -0.0036 -0.0434 -0.0101 -0.0273 O.oorJ -0.0257 

-0.0120 -0.0313 -0.0172 -0.0349 -0.0178 -0.0437 -0.0244 -0.0323 -0.0120 -0.0306 
-0.0055 -0.0430 0.0013 -0.0338 0.0001 -0.0430 -0.0082 -0.0270 0.0099 -0.0221 

0.0018 -0.0365 0.0055 -0.0264 0.0030 -0.0442 0.0002 -0.0233 0.0037 -0.0203 

0.0193 0.0419 0.0198 0.0385 0.0204 0.0495 0.0225 0.0339 0.0195 0.0329 

Average of Sample 
SF DBA 

-0.0036 -0.0333 

-0.0167 -0.0346 
-0.0005 -0.0338 
0.0028 -0.0301 

0.0203 0.0393 

Spearman's r: 0.9113 0.9107 0.9354 0.9206 0.9219 0.8724 0.8640 0.8523 0.8959 0.8908 n.a. n.a. 

Efficiency Profile Information 

Chi-square (34.3816) : 10.9353 36.7602 6.8956 17.6524 11.6649 19.4300 19.2826 20.7675 15.8127 30.7451 n.a. 

Note: (1) The mean and standard deviation of exp( -t) in the title are population statistics. 

(2) The bracketed Chi-square value is the critical value for the upper 10% tail of the Chi-square distribution. 

n.a. 
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Table 7.1.B.l Comparison of SF and DBA Profile B 
Experiment Set I: 1 efficiency index merged with 5 sets of CRS production data 
Distnbution Olaracteristics: mean[exp(-t)] = 0.118, std[exp(-t)] = 0.138, std[exp(-v)] = 0.03 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average of Sample Estimations 
Statistics SF DBA SF DBA SF DBA SF DBA SF DBA SF DBA 
Individual Index Estimation 

Awrage Deviation: -0.0136 -0.0011 -0.0088 -0.0123 -0.0082 0.0014 -0.0102 -0.0078 -0.0100 -0.0100 -0.0102 -0.0060 

Average Deviation for: 
25% most efficient obs.: -0.0142 0.0068 -0.0158 -0.0173 -0.0080 0.0073 -0.0165 -0.0104 -0.0161 -0.0124 -0.0141 -0.0052 
middle 50% of obs.: -0.0154 -0.0033 -0.0077 -0.0102 -0.0095 0.0005 -0.0095 -0.0091 -0.0126 -0.0141 -0.0109 -0.0072 
25% least efficient obs.: -0.0095 -0.0050 -0.0044 -0.0012 -0.0058 -0.0029 -0.0054 -0.0028 0.0011 0.0002 -0.0048 -0.0023 

Awrage Absolute Deviation: 0.0213 0.0234 0.0186 0.0213 0.0111 0.0186 0.0175 0.0239 0.0188 0.0216 0.0187 0.0217 

Pooled Average absolute Deviation: 0.0123 0.0113 

Rank Information 

Spearman's r: 0.9876 0.9814 0.9898 0.9877 0.9914 0.9893 0.9919 0.9835 0.9895 0.9858 0.9974 0.9911 

Efficiency Profile Information 

Chi-square (34.3816) : 13.7821 14.8895 14.1872 122504 17.0283 21J.9'l22 20.9296 19.5052 18.4112 10.5218 10.2579 10.6173 

Note: (1) The mean and standard deviation of exp( -t) in the title are population statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation - see text for details. 

I-' 
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Statistics 
Individual Index Estimation 

Average Deviation: 

Average Deviation for: 
25% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Average Absolute Deviation: 

Rank Information 

Spearman's r: 

Efficiency Profile Information 

Chi-square (34.3816): 

Table 1.1.B.2 Comparison of SF and DBA. Profile A 
Experiment Set !: 5 sets of efficiency indexes merged with 1 set of CRS production data 

Distribution Otaracteristica: mean[exp(-t)] = 0.118, std[exp(-t)] = 0.138, std[exp(-v)] = 0.03 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average of Sample 
SF DEA SF DEA SF DEA SF DEA SF DEA SF DEA 

-0.0082 0.0014 0.0261 0.0233 -0.0232 -0.0163 -0.0065 0.0015 -0.0066 0.0104 ~.0031 0.0041 

-0.0080 0.0013 0.0287 0.0309 -0.0294 -0.0111 -0.0126 -0.0022 -0.0063 0.0133 ~.0055 0.0063 
-0.0095 0.0005 0.0283 0.0235 -0.0221 -0.0110 -0.0043 0.0050 -0.0061 0.0101 ~.0030 0.0044 
-0.0058 -0.0029 0.0190 0.0151 -0.0119 -0.0136 -0.0050 -0.0019 -0.0069 0.0080 ~.0033 0.0009 

0.0111 0.0186 0.0294 0.0283 0.0260 0.0230 0.0116 0.0250 0.0118 0.0224 0.0216 0.0235 

0.9914 0.9893 0.9834 0.9812 0.9891 0.9818 0.9910 0.9825 0.9897 0.9835 n.&. n.a. 

17.0283 20.9'l22 20.1066 15.3013 18.3426 15.4435 24.6568 18.3649 15.6644 13.6055 n.a. n.a. 

Note: (1) The mean and standard deviation of exp( -t) in the title are population statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% tail of the Chi-square distribution. 



T3.ble 7.1.C Comparison of SF and DBA Profile C 
Experiment Set I: 1 efficiency index merged with 5 seta of CRS production data 
.Q!;st Characteristics: mean[ exp( -t)]=0.67, std[ exp( -t)]=0.21, std[ exp( -v)] =0.03 

Average of Sample Estimation 
SUltiStiCS SF DEA 
Individual Index Estimation 

Average Deviation: 

Average Deviation fo r. 
25% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Avc:rage Absolute Deviation: 

Pooled Average absolute Deviation: 

Rank Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816): 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

-0.0147 

-0.0268 
-0.0139 
-0.0043 

0.0303 

0.0198 

0.9918 
0.9906 
0.9945 
0.8720 
0.9863 
0.9919 

17.4933 
7.5808 

11.5616 
25.0878 
18.9703 
10.5208 

-0.0123 

-0.0257 
-0.0099 
-0.0039 

0.0354 

0.02191 

0.9874 1 
0.9910 
0.9853 
0.8370 
0.9846 
0.9920 

10.3352 1 
9.2648 

16.1781 
34.5974 
225310 
8.1314 

NOte: (1 ) The mean and standard deviation of exp(-t) in the title are sample 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tai l of the Chi-square distribution. 
(3) The resulta in the box refer to pooled estimation - see text for details. 
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Table 7.1.D Comparison of SF and DRA Profile D 
Experiment Set I: 1 efficiency index merged with 5 sets of CRS production data 
gist Characteristics: mean[exp(-t)] = 0.63,std[exp(-t)] =0.16, std[exp(-v)]=O.03 

Average of Sample Estimations 
Statistics SF DEA 
Individual Index Estimation 

Average Deviation: 

Average Deviation for: 
25% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Average Absolute Deviation: 

Pooled Average absolute Deviation: 

Rank Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816) : 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

-0.0151 

-0.0263 
-0.0146 
-0.0050 

0.0190 

0.0153 . 

0.9983 
0.9923 
0.9938 
0.9923 
0.9931 
0.9915 

20.4569 
222100 
17.5524 
226463 
223261 
16.1352 

0.0060 

0.0089 
0.0055 
0.0039 

0.0233 

o.ot081 

0.99621 
0.9876 
0.9717 
0.9805 
0.9924 
0.9863 

7.44921 
10.7209 
26.5424 
18.8199 
16.8699 
17.5861 

Note: (1) The mean and standard deviation of exp( -t) in the title are sample 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.2A Comparison of SF and DBA. Profile B 
Expc~riment Set II: 1 efficiency index merged with 5 sets of CRS production data 
Dist. Characteristics: mean[e~~-t~]=0.72, std[~~-t~]=0.14, std[e~~-v~] = 0.03 

Average of SamEle Estimations 
Statistics SF CRS NIRS VRS 
Individual Index Estimation 

Average Deviation: -0.0102 -0.0060 0.0024 0.0278 

Average Deviation for: 
25% most efficient oba.: -0.0141 -0.0052 0.0023 0.0222 
mid/die 50% of obs.: -0.0109 -0.0072 0.0020 0.0296 
25% least efficient obs.: -0.0048 -0.0023 0.0030 0.0296 

Average Absolute Deviation: 0.0187 0.0217 0.0244 0.0427 

Pooled Average absolute Deviation: 0.0123 0.0113 0.0101 0.03051 

Rank Information 

Spearman's r: 0.9974 0.9971 0.9966 0.97821 
Sample 1: 0.9876 0.9814 0.9817 0.9418 
Sample 2: 0.9898 0.9877 0.9846 0.9415 
Sample 3: 0.9914 0.9893 0.9897 0.7771 
Sample 4: 0.9919 0.9835 0.9634 0.9258 
Sample 5: 0.9895 0.9868 0.9851 0.9138 

Efficiency Profile Information 

Chi-square (34.3816) : 10.2579 10.6173 129010 14.5595 1 
Sample 1: 13.7821 14.8895 16.3969 23.8742 
Sample 2: 14.1872 122504 120547 20.3229 
Sample 3: 17.0283 20.9222 23.6711 39.5977 
Sample 4: 20.9296 19.5052 17.2063 23.5317 
Sample 5: 18.4112 10.5218 10.6175 27.3737 

~: (1) The mean and standard deviation of exp(-t) in the title are population 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.2B Comparison of SF and DBA Profile B 
lli:periment Set II: 1 efficiency index merged with 5 sets of DRS production data 
.Q!st Characteristics: mean[e~~-t2]=0.72, std[e~~-t21=0. 14. std[e~~-v2]=0.03 

Average of Sam~le Estimations 
StltiStiCS SF CRS NIRS VRS 
Individual Index Estimation 

Average Deviation: 0.0005 -0.0047 0.0191 0.0209 

Average Deviation for: 
25% most efficient obs.: -0.0031 -0.0060 0.0179 0.0273 
middle 50% of obs.: 0.0009 -0.0065 0.0221 0.0431 
25% least efficient obs.: 0.0030 -0.0003 0.0135 0.0377 

Average Absolute Deviation: 0.0180 0.0316 0.0281 0.0452 

Pooled Average absolute Deviation: 0.0071 0.0150 0.0020 0.0381 1 

Rank Information 

Spearman's r: 0.9978 0.9928 0.9953 0.98131 
Sample 1: 0.9900 0.9638 0.9720 0.8950 
Sample 2: 0.9919 0.9827 0.9887 0.9021 
Sample 3: 0.9903 0.9719 0.9849 0.9610 
Sample 4: 0.9900 0.9774 0.9846 0.8307 
Sample 5: 0.9933 0.9685 0.9831 0.9174 

Efficiency Profile Information 

Chi-square (34.3816) : 4.7061 10.2658 13.8726 25.3810 1 
Sample 1: 10.0916 14.3954 18.4063 26.9501 
Sample 2: 10.0996 20.3365 224495 325398 
Sample 3: 14.6941 20.7561 19.0540 16.7895 
Sample 4: 17.4808 11.3026 13.5766 227945 
Sample 5: 10.2490 17.6240 19.6852 29.1080 

NQ't';;: (1) The mean and standard deviation of exp( -t) in the title are population 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.3.A Comparison of SF and DRA Profile B 
Experiment Set III: 1 efficiency index merged with 5 sets of CRS production data 
.Q!!st Oaracteristics: mean[exp(-t)]=O.72, std[exp(-t)]=0.14, std[exp(-v)]=O.OI 

Average of Sample Estimation 
Statistics SF DBA 
Individual Index Estimation 

Av,erage Deviation: 

Average Deviation for: 
25i% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Av.~rage Absolute Deviation: 

Pooled Average absolute Deviation: 

Rallk Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816) : 
Sample 1: 
Sample 2: 
Sample 3: • 
Sample 4: 
Sample 5: 

0.0013 

0.0016 
0.0010 
0.0014 

0.0068 

0.0032 

0.9995 
0.9986 
0.9988 
0.9984 
0.9982 
0.9982 

24460 
6.7797 
6.7437 
&.6285 
8.8202 
9.7951 

0.0114 

0.0143 
0.0118 
0.0074 

0.0131 

0.0110 I 

0.99891 
0.9954 
0.9967 
0.9944 
0.9927 
0.9959 

9.78331 
10. 7108 
220967 
24.0877 
16.5305 
18.6336 

NOte: (1) The mean and standard deviation of exp(-t) in the title are popUlation 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Oi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.3.B Comparison of SF and DRA. Profile B 
Experiment Set III: 1 efficiency index merged with 5 sea of CRS production data 
Qisl Characteristics: mean[ exp( -t)] =0. 72, std[ exp(-t)] =0.14, std[ exp( -v)] = 0.03 

Average of Sample Estimation 
Statistics SF DEA 
IIlIdividual Index Estimation 

Average Deviation: 

Average Deviation for: 
15% most efficient obs.: 
middle 50% of obs.: 
15% least efficient obs.: 

Average Absolute Deviation: 

Pooled Average absolute Deviation: 

Rank Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816) : 
Sample 1: 
Sample 2: 
S;ample 3: 
Sample 4: 
S:ample 5: 

-0.0102 

-0.0141 
-0.0109 
-0.0048 

0.0187 

0.0123 

0.9974 
0.9876 
0.9898 
0.9914 
0.9919 
0.9895 

10.2579 
13.7821 
14.1872 
17.0283 
20.9296 
18.4114 

-0.0060 

-0.0052 
-0.0072 
-0.0023 

0.0217 

0.0113 I 

0.9971 I 
0.9814 
0.9877 
0.9893 
0.9835 
0.9868 

10.6173 I 
14.8895 
12.2504 
20.9222 
19.5052 
10.5218 

No,te: (1) The mean and standard deviation of exp(-t) in the title are popUlation 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.3.C Comparison of SF and DEA Profile B 
Experiment Set III: 1 efficiency index merged with 5 sets of CRS production data 
l)ist. Cltaracteristics: mean[exp(-t)]=O.72, std[exp(-t)]=O.14, std[exp(-v)]=O.06 

Average of Sample Estimations 
Statistics SF DEA 
Individual Index Estimation 

Average Deviation: 

Average Deviation for: 
25% most efficient obll.: 
middle 50% of obs.: 
25% least efficient obs.: 

Average Absolute Deviation: 

Pooled Average absolute Deviation: 

Rank Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816) : 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

0.0029 

-0.0170 
0.0080 
0.0123 

0.0338 

0.0174 

0.9939 
0.9651 
0.9678 
0.9705 
0.9683 
0.9801 

19.4886 
18.9115 
25.3040 
28.9478 
12.3677 
220759 

-0.0196 

-0.0294 
-0.0192 
-0.0078 

0.0386 

0.02361 

0.9971 1 
0.9535 
0.9587 
0.9644 
0.9621 
0.9805 

13.19761 
13.3464 
12.1231 
18.0481 
12.3457 
23.8683 

Note: (1) The mean and standard deviation of exp(-t) in the title are popUlation 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation -- see text for details. 
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Table 7.3.0 Comparilon of SF and DBA Profile B 
Experiment Set 111: 1 efficiency index merged with 5 sets of CRS production data 
Pisl Characteristica: mean{exp(-t)]=0.12, std[exp(-t)] =0.14, std[exp(-v)] =0.09 

Average of Sample Estimations 
Statistics SF DEA 
Illdividuallndex Estimation 

Average Deviation: 

Average Deviation for: 
25% most efficient obs.: 
middle 50% of obs.: 
25% least efficient obs.: 

Average Absolute Deviation: 

Pooled Average absolute Deviation: 

Rank Information 

Spearman's r: 
Sample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

Efficiency Profile Information 

Chi-square (34.3816): 
S.ample 1: 
Sample 2: 
Sample 3: 
Sample 4: 
Sample 5: 

0.<XXJ6 

-0.0348 
0.0121 
0.0128 

0.0481 

0.0259 

0.9857 
0.9383 
0.9226 
0.9284 
0.9268 
0.9453 

16.8519 
17.0293 
17.1631 
23.9638 
28.6321 
20.3020 

-0.0266 

-0.0426 
-0.0215 
-0.0212 

0.0615 

0.03421 

0.9820 1 
0.9259 
0.8699 
0.9239 
0.9161 
0.9328 

23.75881 
23.7825 
18.7901 
228242 
224022 
15.9332 

Note: (1) The mean and standard deviation of exp(-t) in the title are population 
statistics. 
(2) The bracketed Chi-square value is the critical value for the upper 10% 
tail of the Chi-square distribution. 
(3) The results in the box refer to pooled estimation - see text for details. 
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CHAPTER 8. A SUMMARY 

Edwin Newman once noted: 1 

Inputs are of course everywhere. 
observation that for some reason there 
more inputs than there are outputs, which 
large number of puts are disappearing 
process. God knows where they'll turn up. 

It is my 
are far 
means a 
in the 

Apparently, pursuing efficiency is a fundamental 

characteristic of production activity. Searching for better 

measurement of productive and technical efficiency, therefore, 

seems to be an everlasting assignment for economists. This 

concern is a primary motivation of the present dissertation. 

This dissertation concentrates on the two leading 

approaches to efficiency measurement developed recently, 

namely, the Data Envelopment Analysis (DEA) and the Stochastic 

Frontier production model (SF). The study, extending from 

the theoretical background to empirical simulation 

experiments, can be summarized as follows: 

1. We reviewed extensively the theoretical background of 

the both approaches. From the basic axioms, we note that the 

structure of production can be interpreted in such a way that 

1 E. Newman . A Civil Tongue, New York: Warner Books, 
1975. Quoted from R. Kopp (1981), 477. 
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inefficient operation is permissible behaviour. Thus an 

efficiency structure can be established based on this 

framework. This structure, namely the Debreu-Farrell 

efficiency structure, is the corner-stone underpinning our 

present analysis. 

2. Among various efficiency measurement procedures, 

the stochastic frontier production model (SF) and data 

envelopment analysis (DEA) draw most attentions due to their 

dist inctive features. Our analysis focuses on the following 

aspects of the two models: 

( i ). For the DEA model, we attempt to relate it to 

modern production analysis and thus put it on a solid basis. 

The propositions in Chapter 4, which are based on Afriat 

(1972), are the results of this effort. In a Lagrangian 

approach, we explored the nature of the optimal solution in 

the non-parametric programming model and gave a formal 

interpretation for its relation with the parametric approach. 

Fur thermore, we demonstrated relationships between alternative 

DEA models that have different returns to scale properties. 

( ii). In the SF approach, based upon the truncated­

normal/normal mode l proposed by Stevenson (1980), and Jondrow 

et.. al (1982), we worked out the conditional estimation 

procedure for the firm-specific efficiency measurement. The 

procedure provides more flexibility in handling a wider 
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spectrum of efficiency profiles. 

3. To compare the effectiveness of the DEA and SF 

models in regards to empirical application, we carried out a 

series of simulation experiments to test the two models in 

var i ous aspects. The findings of the experiments can be 

briefly summarized as: 

(i). Both models perform reasonably well in capturing 

assorted efficiency profiles. 

( ii). Returns to scale specification is important to 

the DEA approach. The correctly specified model has a better 

performance than the mis-specified one. Moreover, the models 

with eRS and NIRS specification yield more similar results 

wh i le the VRS model gives a worse one, providing that the 

convexity axiom is assumed. Further, we find that the SF 

model can successfully separate the effects of technical 

ineffic i ency and the effects of returns to scale. 

(iii). The magnitude of random noise affects 

estimation accuracy. Though the SF model is designed with a 

bu ilt-in noise filter, an increasing noise level does have an 

adverse effect on its efficiency measurement. In comparison 

wi th t he SF model , the DEA model in fact has quite similar 

perfor mance across different noise levels. 

Our study and experimental results suggest some un­

explored issues deserving of further attention. First, in our 

experiments, we assume a simple production structure and no 



specification error for the SF model. However, 

174 

the mis-

specif ication of the production structure is a persistent 

threat to parametric frontier models. Thus the behaviour of 

the SF model under a harsher situation needs to be examined. 

Second, the large sample properties of both methods are 

subject to further evaluation. Confined by estimation cost, 

our analysis has focused on the finite sample properties of 

both mode l s. However, one may expect that the increase of 

samp le size may affect the estimation quality. For the SF 

model, large samples may help to eliminates the computation 

errors. On the other hand, though DEA is not a statistical 

model, but a larger sample size can help DEA to yield a 

refined linear approximation of a given frontier, provided the 

frontier does exist. Third, applications of both DEA and SF 

to panel data are worthy of further exploration. Applying the 

SF model to panel data has been a centre of interests in 

recent period. However, applying DEA to panel data should 

also be a premising area. Finally, complementary usage of 

the SF and the DEA methods should be emphasised in particular. 

By employing their own unique merits, two methods can work 

complementarily to i dentify the structure of data and the 

under l ying technology, and give an observed data set a proper 

interpretation. 

Upon finishing this review, Edwin Newman's comment 

quoted earlier is once more recalled. Though revealing the 
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efficiency of production has been an overriding pursuit for 

economists, many aspects of the subject remain unknown to us. 

It i s hoped, however, that the present dissertation may serve 

as a stepping-stone to further the endeavour. 



Appendix 1: The Gradient vector for the SF Model 

with Truncated-Normal/Normal Distribution 

Provided technical inefficiency component is 

distributed as truncated-normal and random noise has a normal 

distribution, the logarithmic likelihood function 

corresponding to the marginal density function of the 

composite error is 

where all the parameters are defined as in the text. 

If production function has form: 

y = u( x : 9) e~ 

(ignoring the summation sign) the gradient vector for the 

likelihood function is: 

a Be L(e) 
{2 at e-A2

/ 2 

a2
t ..fit [erf(A/{2) - 1] 
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a 
~ L( e ) :: 

12 0 v erf(-!-) + 1 e -A2
/ 2 + V02t; + 02v [erf(A/.j2) - 1 ] e-I'/20

2
e 

t; 

a ~, L( e ) = { [erf(AI ;i2) - 1J [erf( do,) + 1] F 0', (0', + o'v) 3/'r' 

12 {o v [e 0 2t + ~ (202t + 02v)] [erf( ~ ) + 1] e-A2
/
2 

12 0 t 

-"J J 0 ', + o'v[ 1 - er f (AI,/2] ~;i2 (0', + o 'v) 

(e + ~) 2 + 0 t-'---.J.......;...-
(02t + 02v) 2 

a --L (e) :: ao v 

v'2{O t [e (02t + 2 02v) + ~ o~) ] e-A2
/
2+*o3v V02t+02vfit [erf(A / v'2} - 1] 

03v [erf(A/.j2) -1] fit (02t + 02v) 3/2 

where erfC) is the error function and 

A :: 

17 7 
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This vector can be employed to build a Hessian matrix 

to guide optimal searching directions in the Davidon-Fletcher­

Powell mu ltidimensional nonlinear optimization algorithm. 



Appendix 2. Normalization of Efficiency Indexes 

Assume t is the efficiency term with a density 

function p () : 

t -p(ti8), t ~ 0 

where e is the parameter set of the distribution. We define 

z • e- t , t ~ 0 

so the z is a normalized efficiency index with an effective 

range (0,1]. However, for a sample drawing of t, we may have 

min [t] > 0, max [z] - e-min[t] < 1.0 

then a normalizat i on procedure 

z· • 
z _ e-t + min[t] 

max [z] 

is suggested to yield at least one 100 % efficiency 

observation. Following Schmidt ans Sickles (1984), l et t * = 

t - min[t], then the density function for t* has same 

properties as p(t) if sample size can be increased. In the 

contex t of our e xper i ments, if a sample of t is drawn from a 
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truncated normal distribution, then a ML procedure is equally 

applicable to t and its transformation t *. 



Appendix 3: The FORTRAN Code for DEA Estimation 
(CRS Model) 

SUBROUTINE USER(LIN) 
C ************************************************************** 
C A FORTRAN subroutine interfaces with LINDO to conduct data 
C envelopment analysis (DEA). The programm is designed 
C exclusively for present dissertation . . The prototypes of 
C the called subroutines (DEFROW,APPCOL) can be found in LINDO's 
C manual. 
C Input data format: (3x,4(lx,f8 . S)) 
C Times of iteration : 100 
C Output mode: TERSE (optional) 
C (c) Copyright: Dading Li June,199l. 
C ************************************************************** 
C 

CHARACTER*l KNAME,NULL,MALPH 
DIMENSION IRO(80) 
DIMENSION MALPH(12),KNAME(8) 
DIMENSION E (100),OUT(100),X(2,100) 
DIMENSION VAL(80) 
LOGICAL TRUBLE 
INFILE=9 
CALL LUNGET(INFILE,l,O) 
IF(INFILE .LE. 0) RETURN 

C DATA READING 
DO 22 I=1,100 
READ(INFILE,20) E(I),OUT(I),X(1,I),X(2,I) 

OUT(I)=E(I)*OUT(I) 
20 FORMAT(3X,4(lX,F8.3)) 
22 CONTINUE 

DATA MALPH/' ° ' , , 1 ' , , 2' , , 3 ' , , 4' , , 5' , , 6 ' , , 7 ' , , 8 ' , '9' , , S ' , 'L' / 
DATA NULL/' '/ 
TRUBLE=.TRUE. 
DO 900 N=l,lOO 

WRITE(S,23) N 
23 FORMAT(10X, 'CURRENT COUNT IS: ',I3) 
C INITIALIZATION 

CALL IN IT 
C OBJ FUNCTION 

CALL DEFROW(-l,O.,IDROW,TRUBLE) 
C CONSTRAINTS 1 

DO 100 I=2,3 
CALL DEFROW(l,X(I-l,N),IDROW,TRUBLE) 

100 CONTINUE 
C CONSTRAINTS 2 

CALL DEFROW(l,O.,IDROW,TRUBLE) 
C 
C CONSTRAINTS 3 

DO 200 I=l,lOO 
CALL DEFROW(-l,O.,IDROW,TRUBLE) 

200 CONTINUE 
C LAST CONSTRAINT 
C 
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C 

C 

GENERATING 
KNAME (1) = 
KNAME (4) 
KNAME (5) = 
KNAME(6) = 
KNAME (7) = 
KNAME (8) 

Ll TO LI00 
MALPH(12) 
NULL 
NULL 
NULL 
NULL 
NULL 

DO 400 1=1,100 
Ml=INT(Ijl0) 
M2=I-Ml*10 
KNAME(2)=MALPH(Ml+l) 
KNAME(3)=MALPH(M2+1) 
VAL(l)=X(l,I) 
VAL(2)=X(2,I) 
VAL(3)=-OUT(I) 

VAL ( 4) =1. 0 
IRO(1)=2 
IRO ( 2)=3 

IRO(3)=4 
IRO ( 4)=I+4 
NONZ=4 

CALL APPCOL(KNAME,NONZ,VAL,IRO,TRUBLE) 
400 CONTINUE 
C 
C GENERATING LO 
C 

KNAME(1)=MALPH(12) 
KNAME(2)=MALPH(1) 
KNAME(3)=NULL 
KNAME(4)=NULL 
KNAME(S)=NULL 
KNAME(6)=NULL 
KNAME(7)=NULL 
KNAME(8)=NULL 
IRO(l ) =l 
IRO(2)=4 
VAL(1)=1.0 
VAL(2)=OUT(N) 
NONZ=2 
CALL APPCOL(KNAME,NONZ,VAL,IRO,TRUBLE) 

CALL LOOK(1,104) 
CALL GO(LIMGO,ISTAT) 

900 CONTINUE 
STOP 
END 
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Appendi x 4 : The FORTRAN Code for the Maximum Likelihood 
Esti mat i on (Truncated-normal /Normal SF model) 

PROGRAM trucn 
c***** ************************************************************** 
c This Program uses the Davidon-Fletcher-Powell gradient direction 
c multidimentional optimazition algorithm to miniminize the 
c negative maximum likelihood function 'func'. The initial parameter 
c vector is p(l ... n) . The gradient vector g (1 ... n) is derived by 
c calulating derivat i ve function subroutine 'dfunc'. The searching 
c uses line minimazation and golden section sear ch techniques. 
c No initial bracketing for current problem. 
c Estimated parameters, standard deviation and inversed information 
c ma t rix are provided in output file 'report.txt'. Conditional mean 
c vector is printed in another output file' cmean' [format (4x, f8. 5) 1 
c Input data file format (3x,4(lx,f8.5)). 
c (C) copyright: Dading Li , June, 1991. 
c******************************************************************* 

REAL HES(5,5),FTOL,FRET 
REAL EF(100),Y,L, K,RS 
REAL P(5), CM(100),MAX 
DOUBLE PRECISION ET(100) 
COMMON /AAA/Y(100),L(100),K(100) 
INTEGER N,ITER 
OPEN(UNIT=l,FILE='DAT' ,STATUS='OLD' ) 
OPEN(UNIT=2 , FILE='CMEAN' ,STATUS= ' NEW') 
OPEN(UNIT=3,FILE='REPORT.TXT' ,STATUS='NEW') 
WRI TE(*,10) 
DO 1 1=1,100 

READ (1, 2) E F (I) , Y (I) , L ( I) , K (I ) 
Y(I)=LOG(EF(I)*Y(I)) 
L(I)=LOG(L(I)) 
K (I) =LOG (K (I) ) 

1 CONTINUE 
2 FORMAT(3X,4(lX,F8.5)) 

N= 5 
FTOL=O.OOOl 
DO 3, I=l,N 
WRITE (*,6) I 
READ(6,*) P(I) 

3 CONTINUE 

CALL DFPMIN(P,N,FTOL,ITER,FRET,HES) 
IF(P(4) .LT. 0.0001) THEN 

WRITE (*,911) 
GOTO 920 

ENDIF 
CALL CMEAN(P,ET , RS) 
WRITE(*,*) RS 
MAX=O.O 
DO 4 , 1=1,100 

CM(I)= EXP(-ET(I)) 
WRITE(2,5) CM(I) 

4 CONTINUE 
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5 FORMAT (4X,F8.5) 
6 FORMAT(4X,'ENTER INITIAL VALUE FOR COEFFICIENT', 2X,I2) 

10 FORMAT(5X,'READING INPUT FILE ... ') 
WRI TE (3, 100) 
WRITE(3,200) 
WRITE (3, 300) 
WRITE(3,310) 
WRITE(3,*) 
WRITE (3, 320) 
WRITE(3,*) 
WRITE(3,400) 
DO 50,I=1,N 
WRITE (3, 500) I, P (I), SQRT (ABS (HES (I, I))) 

50 CONTINUE 
WRITE(3,*) 
WRITE (3, 590) 
WRITE (3, 600) RS 
WRITE(3,*) 
WRITE (3, 700) 
WRITE(3,*) 
DO 60,I=1,N 
WRITE(3,800) HES(I,1),HES(I,2),HES(I,3),HES(I,4),HES(I,5) 

60 CONTINUE 
WRITE(3,*) 
WRITE(3,100) 
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100 FORMAT(10X,'**************************************************** 
1************') 

200 FORMAT(20X,'MAXIMUM LIKELIHOOD ESTIMATION REPORT') 
300 FORMAT(20X,' VARIABLE METRIC METHOD') 
310 FORMAT(20X,' (DAVIDON-FLETCHER-POWELL ALGORITHM)') 
320 FORMAT(10X,'MODEL SPECI.: AUTHOR: DAD I NG LI ' ) 
400 FORMAT(35X,'ESTIMATION ASYMPTOTIC STD') 
500 FORMAT(10X,'COEFFICIENT' ,I2,':' ,10X,F8.5 , 12X,F8 . 5) 
590 FORMAT(10X,'NUMBER OF OBSERVATIONS: lOa') 
600 FORMAT(10X,'SUM OF SQUARED RESIDUALS :' ,3X,F10.5) 
700 FORMAT(10X,'INVERSED INFORMATION MATRIX (CRAMER-RAO MVB) :') 
800 FORMAT(20X,5(2X , F8.5)) 

WRITE(* , 900) 
WRITE(*,910) 

900 FORMAT(5X,'THE JOB IS DONE. PLEASE RENAME OUTPUT FILES ') 
910 FORMAT(5X,'REPORT.TXT AND CMEAN TO PROTECT THE CONTENTS') 
911 FORMAT(5X,'WARNNING: DATA SET IS NOT CONSISTENT WITH SF MODEL') 
920 CLOSE (1) 

CLOSE (2) 
CLOSE (3) 
STOP 
END 

C 
SUBROUTINE DFPMIN(P,N,FTOL,ITER,FRET,HESSIN) 
REAL FP,FAE,FAD,FAC,FRET 
REAL P(5),XI(5),FTOL 
REAL G(5),DG(5),HDG(5),HESSIN(5,5) 
INTEGER I,J,ITS 
ITMAX=40 
EPS=O.OOOOOOOl 
CALL FUNC(P,FRET ) 
CALL DFUNC(P,G) 
FP=FRET 
WRITE(*,l) 



1 FORMAT(5X,'INITIAL PARAMETER VALUE :') 
WRI TE (* , 3 ) P (1) , P (2) , P (3) , P (4 ) , P (5) 
WRITE(*,2) 

2 FORMAT(5X,'INITIAL GRADIENT VECTOR EVALUATION :') 
WRI TE (* , 3) G ( 1) , G (2) , G (3) , G ( 4 ) , G (5 ) 

3 FORMAT(5X,5(2X,F8 . 5)) 
DO 10,I=1,N 

DO 5,J=1,N 
HESSIN(I,J)=O.O 
IF(I .EQ. J) HESSIN(I,J)=l.O 

5 CONTINUE 
XI (I) = -G (I) 

10 CONTINUE 
ITS=O . O 

20 ITS=ITS+1 
ITER=ITS 

WRITE(*,21) ITS,FRET 
21 FORMAT(10X,'DPF ITERATION' ,I3,5X,'FUNCTION VALUE' ,F10. 5 ) 

CALL LINMIN(P,XI,N,FRET) 
IF(HESSIN(4,4) .LT. 0.0) THEN 
HESSIN(4,4) = 0.0 
GOTO 25 
ELSEIF(HESSIN(5,5) .LT . 0.0) THEN 
HESSIN(5,5) =0.0 
GOTO 25 
ENDIF 
I F(2.0*ABS(FRET-FP) .LE. FTOL*(ABS(FRET)+ABS(FP)+EPS)) THEN 

RETURN 
ENDIF 

25 FP=FRET 
DO 30,I=1,N 

DG (I) =G (I) 
30 CONTINUE 

CALL FUNC(P,FRET) 
CALL DFUNC(P,G) 
DO 40,I=1,N 

DG(I)=G(I)-DG(I) 
40 CONTINUE 

DO 50 I=l,N 
HDG(I)=O.O 
DO 45,J=1,N 

HDG(I)=HDG(I)+HESSIN(I,J)*DG(J) 
45 CONTINUE 
50 CONTINUE 

60 

70 

75 
80 

1 

FAC=O.O 
FAE=O.O 
DO 60,I=1,N 

FAC FAC+DG(I)*XI(I) 
FAE FAE +DG(I)*HDG(I) 

CONTINUE 
FAC=1.0/FAC 
FAD=1.0/FAE 
DO 70,I=1 ,N 

DG(I)=FAC*XI(I)-FAD*HDG(I) 
CONTINUE 
DO 80,I=1,N 

DO 75,J=1,N 

CONTINUE 
CONTINUE 

HESSIN(I,J)=HESSIN(I,J)+FAC*XI(I) *XI(J) 
-FAD*HDG(I)*HDG(J)+FAE*DG(I) *DG( J ) 
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85 
90 

GOTO 20 

DO 90 ,I=l,N 
XI(I)=O . O 
DO 85 J=l,N 

CONTINUE 
CONTINUE 

XI(I) =XI(I)-HESSIN(I,J)*G(J) 

IF( ITS .GT. ITMAX) THEN 
GOTO 100 
ENDIF 

100 WRITE(*,101) 
101 FORMAT ( 2X,'TOO MANY ITERATION') 

RETURN 

C 
END 

SUBROUTINE LINMIN(P,XI,N,FRET) 
REAL P (5) ,XI (5) 
REAL AX,XX,XMIN,CX 
REAL FRET,FIDIM,TOL 
INTEGER N 
COMMON PCOM(5),XICOM(5),NCOM 
WRITE(*,2 ) 

2 FORMAT(10X,'LINMIN') 
TOL=O . OOl 
NCOM=N 
AX=-1 . 0 
XX=O.O 
CX=1 . 0 
DO 10 , J=l,N 

PCOM(J) = P(J) 
XICOM(J)=XI(J) 

10 CONTINUE 
CALL GOLDEN(AX,XX,CX,FIDIM,TOL,XMIN) 
DO 20,J=l , N 

XI(J) =XI(J)*XMIN 
P(J) =P(J) + XI(J) 

20 CONTINUE 

C 

FRET=FIDIM 
RETURN 
END 

REAL FUNCTION FIDIM(X) 
REAL X,FR 
REAL XT(5) 
COMMON PCOM(5),XICOM(5),NCOM 
DO 30, J=l,NCOM 

XT (J)=PCOM(J) +X*XICOM(J) 
30 CONTINUE 

C 

CALL FUNC(XT,FR ) 
FIDIM=FR 
RETURN 
END 

SUBROUTINE GOLDEN(AX,BX,CX,F,TOL,XMIN) 
REAL AX,BX,CX,F , TOL,XMIN 
REAL COEF,FIDIM 
REAL FO,F1,F2,F3,XO,X1,X2,X3 
REAL R, C 
WRITE(*,2) 

2 FORMAT (2X, , GOLDEN' ) 
R = 0.61803399 
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10 

20 

C 

C 1. O-R 

RETURN 
END 

XO = AX 
X3 = cx 
IF (ABS (CX-BX) .GT. ABS(BX-AX)) THEN 

X1=BX 

ELSE 

ENDIF 

X2=BX+C*(CX-BX) 

X2=BX 
X1=BX-C*(CX-AX) 

COEF=X1 
F1=FIDIM (COEF) 
COEF=X2 
F2=FIDIM(COEF) 
IF (ABS(X3-XO) .LT. TOL*(ABS(X1)+ABS(X2))) THEN 

GOTO 20 
ELSE IF (ABS(X3-XO) .LT. 0.000001) THEN 

GOTO 20 
ELSE 

GOTO 10 
ENDIF 

IF(F2 .LT . F1) THEN 
XO=X1 

ELSE 

END IF 

X1=X2 
X2=R*X1+C*X3 
FO=F1 
F1=F2 
COEF=X2 
F2=FIDIM(COEF) 

X3=X2 
X2=X1 
X1=R*X2+C*XO 
F3=F2 
F2=F1 
COEF=X1 
F1=FIDIM (COEF) 

IF (F1 .LT. F2) THEN 
XMIN=X1 

ELSE 

ENDIF 

F=F1 

XMIN=X2 
F=F2 

SUBROUTINE FUNC(COEF,CF) 
REAL PI,SQ2 ,S 
REAL F,CF,E,Y,L,K,ERF 
REAL COEF(S), ALPHA,BETA,MU,SV,ST 
COMMON /AAA/Y(100),L(100),K(100) 
INTEGER N 
N=1 00 
PI=3. 1 41S9 
ALPHA=COEF(l) 
BETA=COEF(2) 
MU=COEF(3) 
ST=COEF(4) 
SV=COEF(S) 
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SQ2=SQRT(2.0) 
S=ST**2+SV**2 
CF=O.O 
E=O.O 
IF(ST .EQ. 0.0) ST=O.OOOOl 
IF(SV .EQ. 0.0) SV=O.OOOOl 
D1=SQRT(2*PI*S) 
D2=1+ERF(MU/(ST*SQ2)) 
D3=ST*SV*SQRT(S)*SQ2 
IF(D1 .EQ . 0.0) D1=0.000001 
IF(D2 .EQ. 0.0) D2=0.000001 
IF(D3 .EQ. 0.0) D3=0.000001 
DO 10,I=1 , N 

E=Y(I)-ALPHA*L(I)-BETA*K(I) 
F=(1.0/(D1*D2))*EXP(-((E+MU)**2)/(2*S)) 

$*(1.0-ERF((E*ST**2-MU*SV**2)/D3)) 
IF(F .LE. 0.0) F=O.OOOOl 
CF=CF-LOG(F) 

10 CONTINUE 

C 

C 

IF(ST .LT. 0.0) CF=100000.0 
IF(SV .LT . 0.0) CF=100000.0 
RETURN 
END 

REAL FUNCTION ERF (X) 
DOUBLE PRECISION ANS 

REAL T,Z,X 
Z=ABS(X) 
T=1.0/(1+0.5*Z) 
ANS=(-Z*Z-1.265S1223+T*(1.00002368+T*(0.37409196+T* 

$(0.09678418+T*(-0 . 18628806+T*(0.27886807+T*(-1.13S204+T* 
$(1.488S1587+T*(-0 . 8221S223+T*0 . 17087277))))))))) 

I F (ANS .LT. -500 . 0) ANS=-SOO.O 
ANS=T*EXP(ANS) 
I F ( X .GE. 0.0) THEN 

ERF= l . O-ANS 
ELSE 

ENDIF 
RETURN 
END 

ERF=1 . 0-(2.0-ANS) 

SUBROUTINE DFUNC(COEF,G) 
REAL G(S),Y,L , K 
REAL E,ALPHA,BETA,MU,G1,G3,G4,G5 
REAL CG1,CG2,CG3 , CG4,CGS 
REAL SV,COEF(S),ERF,B,A 
COMMON /AAA/Y(100),L(100),K(100) 
INTEGER N 
N=100 
SQ2=SQRT(2.0) 
PI=3 . 141S9 
ALPHA=COEF (1) 
BETA=COEF(2) 
MU=COEF(3) 
ST=COEF(4) 
SV=COEF(S) 
WRITE(*,* ) ALPHA,BETA,MU,ST,SV 
G1=0 
G2=0 
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G3=0 
G4=0 
GS=O 
CG1=0 
CG2=0 
CG3=0 
CG4=0 
CGS=O 
S=ST**2+SV**2 
B=MU/(SQ2*ST) 
ERB=ERF(B) 
IF(ERB .EQ. -1.0) ERB=-.999999 
DO 10,I=1,100 

E=Y(I)-ALPHA*L(I)-BETA*K(I) 
A=(E*ST**2-MU*SV**2)/(SV*ST*SQ2*SQRT(S)) 
ERA=ERF(A) 
IF(ERA . EQ. 1.0) ERA=0 . 999999 

G1=SQ2*(ST**2)*EXP(-A**2)/(SV*(ERA-1)*SQRT(PI*S))-(E+MU) / S 
CG1=CG1+G1*(-L(I)) 
CG2=CG2+G1*(-K(I)) 
G3=-SQ2* (SV* (ERB+1.0)*EXP (-A**2)+SQRT(S) * (ERA-1.0)* 

$EXP(-B**2))/(ST*(ERA-1.0)*(ERB+1.0)*SQRT(PI*S))-(E+MU)/S 
CG3=CG3+G3 
G4=SQ2*(SV*(E*ST**2+MU*(2*ST**2+SV**2))*(1 . 0+ERB)* 

$EXP(-A**2)-(1.0/SQ2)*(SQRT(S)*(1-ERA)*(MU*SQ2*S*EXP(-B**2)-ST** 3 
$*SQRT(PI)*(l+ERB)))) / «ST**2)*(ERA-1)*(ERB+1)* 
$SQRT(PI*(S**3))) + ST*«E+MU)**2)/(S**2) 

CG4=CG4+G4 
GS=SV*«E+MU)**2)/(S**2) - SQ2* (ST* (E* (ST**2+2*SV**2) + 

$MU*SV**2)*EXP(-A**2) + (1.0/SQ2)*(sv** 3 )*SQRT(S*PI)*(ERA- 1)) / 
$«SV**2)*(ERA-1)*SQRT(PI*(S**3))) 

CGS=CGS+GS 
10 CONTINUE 

C 

G( 1 )=-CG1 
G(2)=-CG2 
G(3)=-CG3 
G(4)=-CG4 
G(S)=-CGS 
RETURN 
END 

SUBROUTINE CMEAN(COEF,ET,RS) 
REAL Y,L,K 
REAL COEF(S) , ALPHA,BETA,MU,ST,SV 
REAL E,ERF,SQ2,RS . 
DOUBLE PRECISION DERF,ET(100),A 
COMMON /AAA/Y(100),L(100),K(100) 
RS=O.O 
PI=3.141S9 
ALPHA=COEF(l) 
BETA=COEF(2) 
MU=COEF(3) 
ST=COEF(4) 
SV=COEF(S) 
S=SV**2+ST**2 
SQ2=SQRT(2.0) 
SQPI=SQRT(PI) 
SQS=SQRT(S) 
DO 10,I=1,100 

E=Y(I)-ALPHA*L(I)-BETA*K(I) 
A=(E*(ST**2) - MU*(SV**2)) / (ST*SV*SQS) 
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ET(I)=(SQ2*ST*SV*EXP(-0.5*A**2))/«1-DERF(A/SQ2))*SQPI*SQS) 
$ -(E*ST**2-MU*SV**2)/S 

10 CONTINUE 

RETURN 
END 

R=(E+ET(I))**2 
RS=RS+R 

DOUBLE PRECISION FUNCTION DERF(X) 
REAL ANS, T, Z 
DOUBLE PRECISION X 
Z=ABS(X) 
T=1.0/(1.0+0.5*Z) 
ANS=(-Z*Z-1.26551223+T*(1.00002368+T*(0.37409196+T* 

$(0. 009678418+T*(0.18628806+T*(0.27886807+T*(-1.135204+T* 
$(1.48851587+T*(-0.82215223+T*0.17087277))))))))) 

ANS=T*EXP(ANS ) 
IF(X .GE. 0.0 ) THEN 

DERF=1.0-ANS 
ELSE 

DERF=1.0-(2.0-ANS) 
ENDIF 
RETURN 
END 
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