
Management and Processing of Vibration Data

MANAGEMENT AND PROCESSING OF VIBRATION DATA

BY

WISAM HUSSAIN, B.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Wisam Hussain, April 2013

All Rights Reserved

Master of Applied Science (2013) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: Management and Processing of Vibration Data

AUTHOR: Wisam Hussain

B.Eng., (Software Engineering)

Concordia University, Montreal, Canada

SUPERVISOR: Dr. Martin von Mohrenschildt

NUMBER OF PAGES: xiii, 97

ii

Abstract

Vibrating screens are mechanical machines used to sort granulated materials based

on their particle size. Utilized in the mining industry, these machines can sort tonnes

of materials per hour. In the past, McMaster University developed sensor devices

that measure and transmit vibration data of these machines to a central data acqui-

sition unit for analysis, tuning, and maintenance purposes. In this thesis, I present

the development of two new software systems that are used to process, manage, and

present the information gained from these measurements. The first system, the of-

fline vibration analysis software, is used to analyze the vibration data in both time

and frequency domain, and presents the measured and calculated data in textual and

graphical forms. The second system, the online vibration analysis software, is used by

vibrating screens manufacturers and their customers to gather and manage vibration

data collected from their vibrating screens by utilizing a central storage. The devel-

opment process of these systems followed an iterative and incremental approach with

continuous feedback from stakeholders. It included extensive requirements gathering

to define a model, in terms of data representation, that captures the business logic

and practices of the industry. Furthermore, it used standard architectures such as

Model View Controller (MVC) and advanced technologies such as Object Relationship

Mapping (ORM) for data access to increase flexibility and maintainability. Finally,

iii

comprehensive unit testing and thorough security risks evaluation were conducted in

order to ensure that these systems are secure and bug free.

iv

Acknowledgements

I would like to express my gratitude to Dr. Martin von Mohrenschildt for his guid-

ance and support during the research and writing of this thesis. Also, I would like to

thank W.S.Tyler for their financial support and their technical expertise in the field

of vibration analysis. In particular, I would like to thank Dieter Takev and Markus

Kopper for their continuous input, suggestions, and feedback. Their invaluable con-

tributions have made this thesis possible. Finally, I am thankful to my parents and

my two sisters for their patience and support during my studies.

v

Contents

Abstract iii

Acknowledgements v

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Objective . 4

1.3 Thesis Contributions . 4

1.4 Thesis Overview . 5

2 Background of Vibration Analysis 6

2.1 Introduction . 6

2.2 Variable Summary . 10

2.3 User Defined Variables . 12

2.3.1 Machine Inclination . 13

2.4 Measured Data Variables . 13

vi

2.4.1 Calibrated Data . 13

2.5 Processed Data Variables . 14

2.5.1 DC Filter . 14

2.5.2 Butterworth Filter . 14

2.5.3 Fast Fourier Transform (FFT) 15

2.6 Calculated Variables . 15

2.6.1 Nodal Variables . 16

2.6.2 Global Variables . 18

3 Requirements 19

3.1 Overview . 19

3.2 Functional Requirements . 21

3.2.1 Offline Vibration Analysis Software 21

3.2.2 Online Vibration Analysis Software 27

3.3 Non Functional Requirements . 30

3.3.1 Offline Vibration Analysis Software 30

3.3.2 Online Vibration Analysis Software 31

4 Design 32

4.1 Technology . 32

4.2 Offline Vibration Analysis Software 35

4.3 Online Vibration Analysis Software 38

4.4 Database . 42

5 Implementation 45

5.1 Frameworks . 46

vii

5.1.1 ASP.NET MVC Framework 46

5.1.2 Entity Framework . 47

5.2 Build System . 48

5.3 Offline Vibration Analysis Software 50

5.4 Online Vibration Analysis Software 58

6 Security 61

6.1 Hypertext Transport Protocol (HTTP) 62

6.2 Authentication . 63

6.3 Authorization . 66

6.4 Cross-Site Scripting (XSS) . 67

6.5 Cross-Site Request Forgery (XSRF) 68

6.6 SQL Injection . 70

6.7 Restrict URL Access . 71

6.8 Other . 72

7 Testing 74

7.1 Unit Testing . 75

7.2 Functional and Non Functional Tests 76

7.2.1 Mathematical Model . 77

7.2.2 Database and XML . 77

7.2.3 User Interface . 77

7.2.4 External Libraries . 77

7.2.5 Other . 77

viii

8 Conclusion 78

8.1 Discussion . 78

8.2 Future Work . 79

A Offline Vibration Analysis Software 80

A.1 Installation . 81

A.2 User Manual . 82

B Online Vibration Analysis Software 87

B.1 Deployment . 88

B.2 User Manual . 89

C Bibliography 95

ix

List of Tables

2.1 Vibration Analysis Constants . 6

2.2 Vibration Analysis Common Notations 7

2.3 User Defined Variables . 10

2.4 Measured Data Variables . 11

2.5 Processed Data Variables . 11

2.6 Calculated Nodal Variables . 12

2.7 Calculated Global Variables . 12

4.1 Technology Stack Choices . 33

4.2 Web Browser Statistics . 35

4.3 Screen Resolution Statistics . 35

5.1 Offline Vibration Analysis Software Classes - Part 1 51

5.2 Offline Vibration Analysis Software Classes - Part 2 52

5.3 Offline Vibration Analysis Software Classes - Part 3 53

5.4 Offline Vibration Analysis Software Classes - Part 4 54

5.5 Online Vibration Analysis Software Classes - Part 1 59

5.6 Online Vibration Analysis Software Classes - Part 2 60

7.1 Software Testing Techniques . 74

x

List of Figures

1.1 Projects Timeline . 2

1.2 Vibrating Screen . 3

1.3 Vibration Analysis Software . 3

2.1 Measurement Locations on a Two Bearing Machine 8

2.2 Measurement Locations on a Four Bearing Machine 8

2.3 Right Side View of a Machine . 9

2.4 Top View of a Machine . 9

2.5 Rear View of a Machine . 9

2.6 Vibration Analysis Variables Summary 10

2.7 Machine Inclination . 13

3.1 Iterative and Incremental Development Approach 20

4.1 Microsoft .Net Framework . 34

4.2 Offline Vibration Analysis Software Classes 37

4.3 Offline Vibration Analysis Software Dependencies 38

4.4 Model View Controller Architecture 39

4.5 Online Vibration Analysis Software Dependencies 40

4.6 Online Vibration Analysis Software Classes 41

4.7 Database Design . 43

xi

5.1 ASP.NET MVC Framework . 46

5.2 Entity Framework . 47

5.3 MSBuild Project File . 49

5.4 Offline Vibration Analysis Software Directory Structure 50

5.5 Sample XML File . 55

5.6 XML Schema Definition - 1 . 56

5.7 XML Schema Definition - 2 . 57

5.8 Online Vibration Analysis Software Directory Structure 58

6.1 HTTP Request and Response . 62

6.2 Forms Authentication . 65

7.1 DC Filter Test Case . 75

7.2 DC Filter Test Case Result . 76

A.1 Microsoft .Net 4.0 Framework Initialization Error 81

A.2 Offline Vibration Analysis Software Menu Items 82

A.3 Offline Vibration Analysis Software Main View 85

A.4 Offline Vibration Analysis Forms View 86

B.5 Online Vibration Analysis Software FTP View 88

B.6 Online Vibration Analysis Software Text View 91

B.7 Online Vibration Analysis Software List View 91

B.8 Online Vibration Analysis Software Create View 92

B.9 Online Vibration Analysis Software Edit View 92

B.10 Online Vibration Analysis Software Details View 93

B.11 Online Vibration Analysis Software Delete View 93

B.12 Online Vibration Analysis Software Login View 94

xii

B.13 Online Vibration Analysis Software Error View 94

xiii

Chapter 1

Introduction

1.1 Thesis Motivation

Vibrating screens are mechanical machines used, in the mining industry, to separate

granulated materials based on particle size. Materials processed by these machines

range from fine materials such as sand, chemicals, and fertilizers to coarse materials

such as coal and phosphate rocks. To prevent such machines from failing and to

reduce the cost of maintenance, the field of vibration analysis was developed [2]. The

Computing and Software Engineering Department of McMaster University was ap-

proached in 2006 by a manufacturer of these machines to develop a vibration analysis

tool. The proposed vibration analysis tool was able to measure, analyze, and dis-

play vibration data collected from eight simultaneous sensors attached to a vibrating

screen [19]. After deploying the vibration analysis tool in 2010, the manufacturing

company proposed the creation of two new software systems. The first system, the

offline vibration analysis software, will be used to analyze vibration data in time and

frequency domain. Furthermore, it will be used to display measured and computed

1

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

data in textual and graphical forms. Whereas the second system, the online vibration

analysis software, will be used to store vibration data in a central database and pro-

vide a web based user interface to access these data to authorized users. The objective

of this thesis is to utilize the knowledge acquired in previous projects to develop the

proposed systems. Figure 1.1 shows these projects and their dependencies [15].

Figure 1.1: Projects Timeline

Figure 1.2 shows a typical vibrating screen that is used in the mining industry.

This machine has two decks and can be used to sort materials of two different particle

sizes. On the other hand, Figure 1.3 shows the offline vibration analysis software

displaying and analyzing a previously recorded vibration data.

2

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 1.2: Vibrating Screen

Figure 1.3: Vibration Analysis Software

3

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

1.2 Thesis Objective

The goal of this thesis is to develop the proposed systems for the purpose of vibra-

tion analysis. The offline vibration analysis software should be able to perform the

following tasks in order to fulfill the proposed requirements:

• Convert data from the old text files format to the newly created XML format

• Validate the content of XML files using an XML Schema Definition (XSD) file

• Process the data by applying filters, FFT transformation, and ellipse fitting

• Compute nodal and global variables such as operating frequency and stroke

where nodal variables are sensor specific and global variable are machine specific

• Plot the measured and processed data using orbit, waveform, and FFT charts

On the other hand, the online vibration analysis software should be able to perform

the following tasks in order to fulfill the proposed requirements:

• Provide public web pages to promote the software to potential customers

• Utilize a central database to store data such as users, machines, records, etc

and provide a web based user interface to view, add, update, and delete data

• Implement security features that deal with access controls list (ACL), cross site

request forgery (CSRF), cross site scripting (XSS), and SQL injection attacks

1.3 Thesis Contributions

The main contribution of this thesis is the development the proposed applications.

This includes gathering the requirements and defining the business model behind it.

4

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Also, it includes the design, implementation, and testing of these applications using

an iterative and incremental development approach.

1.4 Thesis Overview

This thesis work is divided into the following chapters, in order, to reflect the software

development life cycle (SDLC) used in realizing these two applications:

Chapter 2 discusses the mathematical model used in performing vibration analysis

Chapter 3 enlists, in details, the features provided by the applications (functional

requirements) and the operational constraints (non-functional requirements)

Chapter 4 discusses technology choices and architectural design decisions. Also, it

explains how the major components of the applications interact with each other

Chapter 5 describes the implementation of both applications and provides a brief

documentation of the main classes (excluding external libraries)

Chapter 6 discusses, in details, the security features considered and implemented

Chapter 7 explains and provides an examples on how unit testing was utilized

Chapter 8 provides a conclusion for this thesis and discusses suggested future work

Appendix A provides a user manual for the offline vibration analysis software

Appendix B provides a user manual for the online vibration analysis software

5

Chapter 2

Background of Vibration Analysis

This chapter contains the mathematical model used to perform vibration analysis. It

includes six sections that describe in details the constants, common notations, vari-

ables, parameters, algorithms, and equations used in the vibration analysis process.

Furthermore, this chapters includes information on the measurement locations used

to mount the sensor devices and the coordinate system utilized to describe directions.

2.1 Introduction

Constants

Table 2.1 contains the constants used in the vibration analysis process.

Symbol Value Unit Description

G 9.81 m/s2 Gravity

Fs 500 Hz Sampling rate

Table 2.1: Vibration Analysis Constants

6

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Common Notations

Table 2.2 contains the common notations used in the vibration analysis process.

Symbol Description

FE Feed-end

DE Discharge-end

LFB (RFB) Left (Right) Feed-end Bracket

LFS (RFS) Left (Right) Feed-end Sidearm

LDS (RDS) Left (Right) Discharge-end Sidearm

LDB (RDB) Left (Right) Discharge-end Bracket

DC Digital Comb

FFT Fast Fourier Transform

CM Center of Mass

Table 2.2: Vibration Analysis Common Notations

Measurement Locations

There are standard locations to mount the sensor devices when collecting vibration

data. It is recommended to use four sensor devices when dealing with two bearing

machines and eight sensor devices when dealing with four bearing machines. Figure

2.1 shows the standard device locations for a two bearing machine and Figure 2.2

shows the standard device locations for a four bearing machine.

7

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 2.1: Measurement Locations on a Two Bearing Machine

Figure 2.2: Measurement Locations on a Four Bearing Machine

Coordinate System

A traditional cartesian coordinate system is used to indicate directions. In this sys-

tem, the X axis coincides with the flow of the material on the machine, the Y axis is

perpendicular to the screen plane, and the Z axis is perpendicular to both the X axis

and the Y axis. In this system, when standing at the right side of the machine in the

positive Z axis looking at the X and Y axes we will be presented with the right side

view which is represented in Figure 2.3. When hovering above the machine in the

8

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

positive Y axis looking at the X and Z axes we will be presented with the top view

which is represented in Figure 2.4. Finally, when standing behind the machine in the

negative X axis looking at the Y and Z axes we will be presented with the rear view

which is represented in Figure 2.5.

Figure 2.3: Right Side View of a Machine

Figure 2.4: Top View of a Machine

Figure 2.5: Rear View of a Machine

9

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

2.2 Variable Summary

This section contains all variables used in the vibration analysis process. These vari-

ables are divided into four groups: user defined variables, measured data variables,

processed data variables, and calculated variables. Furthermore, the calculated vari-

ables are divided into two groups: Nodal variables and Global variables. Fig 2.6

shows the process of computing these variables.

Figure 2.6: Vibration Analysis Variables Summary

User Defined Variables

Table 2.3 contains the variables that are defined by the user.

Symbol Name Units Description

β Machine Inclination Degrees Machine inclination

Table 2.3: User Defined Variables

10

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Measured Data Variables

Table 2.4 contains the measured data variables that belongs to each sensor device.

Symbol Name Units Description

xcal, ycal, zcal G-Force data point G Calibrated G-Force data point

Xcal, Ycal, Zcal G-Force data set G Calibrated G-Force data set

Table 2.4: Measured Data Variables

Processed Data Variables

Table 2.5 contains the measured data after being filtered and transformed.

Symbol Name Units Description

xdc, ydc, zdc DC G-Force data point G DC filtered G-Force data point

Xdc, Ydc, Zdc DC G-Force data set G DC filtered G-Force data set

xi , yi , zi BW G-Force data point G Butterworth filtered G-Force data point

Xn, Yn, Zn BW G-Force data set G Butterworth filtered G-Force data set

Fx, Fy, Fz Frequency content n/a FFT result from a G-Force data set

freqs Frequencies Hz FFT result corresponding frequencies

Table 2.5: Processed Data Variables

Calculated Variables

Table 2.6 contains the calculated variables related to each individual sensor device

and Table 2.7 contains the calculated variables related to the machine.

11

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Symbol Name Units Description

fop Operating frequency Hz Operating frequency

Phase Phase degrees Phase

E Eccentricity n/a Eccentricity

XG, YG, ZG Device Axis Average G-Force G Device Axis Average G-Force

MG Device Average G-Force G Device Average G-Force

Stroke Stroke m Stroke

Table 2.6: Calculated Nodal Variables

Symbol Name Units Description

fcm
op Operating frequency Hz Machine average operating Frequency

Table 2.7: Calculated Global Variables

2.3 User Defined Variables

This section contains the user defined data which can be utilized in the vibration

analysis process. The current mathematical model does not utilize the machine in-

clination, described in the following section, in any of its computations. However,

it should be noted that the machine inclination is expected to be used in future

mathematical models.

12

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

2.3.1 Machine Inclination

The machine inclination represents the angle between the vibrating screen and the

ground as shown in Figure 2.7

Figure 2.7: Machine Inclination

2.4 Measured Data Variables

This section contains the measured data variables.

2.4.1 Calibrated Data

All sensor devices transmit acceleration in a raw binary format. The receiving data

acquisition unit converts the incoming raw binary data into usable numerical values

and saves them in file(s). The saved data are denoted by Xcal, Ycal, and Zcal.

13

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

2.5 Processed Data Variables

This section contains the filters and the transformations used on the measured data

variables described in the previous section.

2.5.1 DC Filter

Inputs : Xcal (Ycal or Zcal)

Outputs : Xdc (Ydc or Zdc)

The gravity component is removed from the measured data using a DC filter [9].

The following algorithm is applied to each data point to achieve the task.

xscaled = xcurrent − xprevious + 0.98 ∗ xscaled previous

xprevious = xcurrent

xscaled previous = xscaled

It should be noted that the strength of the filter is R = 0.98 (selected experimentally).

2.5.2 Butterworth Filter

Inputs : Fs, fop and Xdc (Ydc or Zdc)

Outputs : Xn (Yn or Zn)

The noise component is removed from the DC filtered data by using a bandpass

Butterworth filter [9]. In this mathematical model, a fourth order bandpass Butter-

worth filter is used that takes into account the sampling rate Fs and the operating

frequency fop of the axis it is filtering. The X axis and the Y axis are filtered using

14

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

their own operating frequency fop whereas the Z axis is filtered using the X axis

operating frequency fop. This is done to study the Z acceleration associated with

the main operating frequency.

2.5.3 Fast Fourier Transform (FFT)

Inputs : Fs and Xdc (Ydc or Zdc)

Outputs : freqs and Fx (Fy or Fz)

Fast Fourier Transform is used to convert the DC filtered data from the time do-

main to the frequency domain [3]. The first step is to calculate the frequencies that

can be represented in the FFT using the following equations:

div =Fs / FFTsize (Calculates bin spacing)

freqs = [1 ∗ div, 2 ∗ div, 3 ∗ div, ..., (FFTSize−2
2

) ∗ div] (Calculates FFT frequencies)

The second step is to calculate the amplitude of each frequency present in freqs using

the following equations:

fullFFT = fft(Xdc, FFTsize) (Performs FFT on data)

halfFFT = fullFFT [1, 2, 3, ..., FFTsize−2
2

] (keep first half - sampling theorem [20])

Fx = abs(halfFFT) (Removes negative sign)

2.6 Calculated Variables

This section contains the equations and algorithms used to compute the calculated

variables. The calculated variables can be either sensor specific or machine specific.

15

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Sensor specific variables are called nodal variables whereas machine specific variables

are called global variables.

2.6.1 Nodal Variables

This section contains the nodal variables calculated for each sensor device.

Operating Frequency

Inputs : Fx (Fy)

Outputs : fop

The operating frequency of a sensor device is the frequency that corresponds to the

highest amplitude present in the Fast Fourier Transform (FFT) result. The selected

frequency is not accurate since the FFT examine a finite set of frequencies. In or-

der to improve the accuracy of the operating frequency, a polynomial interpolation

is used. The polynomial interpolation requires three points where the second point

corresponds to the maximum amplitude (m2 = max(FX)) and the other two points

corresponds to the previous point and the next point. These three points are defined

as [(f1,m1), (f2,m2), (f3,m3)] and are used to compute the polynomial interpolation

using the following equations:

a = m1 ∗ f3 −m3 ∗ f1 −m1 ∗ f2 +m3 ∗ f2 −m2 ∗ f3 +m2 ∗ f1

b = m3 ∗ f12 −m2 ∗ f12 −m3 ∗ f22 +m1 ∗ f22 −m1 ∗ f32 +m2 ∗ f32

fop = − b/a
2

16

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Phase and Eccentricity

Inputs : Xn, Yn

Outputs : P , E

An ellipse fitting algorithm is used to calculate the phase and the eccentricity of

sensor devices in the XY axes, ZX axes, and the ZY axes [8] [6]. The calculated

eccentricity is used to deduce the motion of the device where an eccentricity close to

zero would indicate a circular motion and an eccentricity close to one would indicate

an elliptical motion. The calculated phase indicates the degrees between the major

axis of the ellipse and the X axis. Positive value requires clockwise rotation of the

ellipse to align the major axis with the x axis and the negative values requires counter

clockwise rotation.

Average Accelerations

Inputs : Xn, Yn, Zn

Outputs : XG, YG, ZG,MG

For each sensor, we calculate four average accelerations: XG, YG, ZG,MG. The

XG, YG, ZG represents the average acceleration of the sensor device in the X axis, Y

axis, and Z axis respectively and are calculated using the following equations:

XG = (|max(Xn)|+ |min(Xn)|)/2

YG = (|max(Yn)|+ |min(Yn)|)/2

ZG = (|max(Zn)|+ |min(Zn)|)/2

The MG represents the average acceleration of the sensor device and is calculated

17

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

using a single pair (x,y) from Xn, Yn that yields the largest value using the following

equation: MG =
√
xi

2 + yi
2 (Pythagorean theorem)

Stroke

Inputs : fop and MG

Outputs : Stroke

The stroke is calculated using (Stroke = MG/2 ∗ fop
2) which is derived below:

F = m ∗ r ∗ fop
2 = m ∗ a (equating angular and tangential accelerations)

r ∗ fop
2 = a (cancelling m on both sides)

r = a/fop
2 (dividing both sides by fop

2)

r = MG/fop
2 (replacing a with the sensor main acceleration MG)

Stroke = MG/2 ∗ fop
2 (divide both side by 2 and replacing r/2 with stroke)

2.6.2 Global Variables

This section contains the global variables calculated for the machine.

Operating Frequency (CM)

Inputs : fop (for all n sensors)

Outputs : fcm
op

The machine operating frequency is calculated by taking the average of all the oper-

ating frequencies of all sensors.

fcm
op = average(fop1

, fop2
, ..., fopn

)

18

Chapter 3

Requirements

This chapter enlists the functional and non functional requirements of the two systems

developed as part of this thesis work. The first system, the offline vibration analysis

software, is used to read, analyze, compute, and plot the vibration data of a machine.

The graphical and textual representation of the computed and measured data are used

by trained technicians to determine the status of a machine. Based on the results,

the machine is tuned to improve its performance and to prevent failure. The second

system, the online vibration analysis software, is used to collect and manage data such

as users, roles, machines and records by utilizing a central database. Furthermore,

It provides a web based user interface to authorized user to view, add, update, and

delete these data.

3.1 Overview

The development of both applications followed an iterative and incremental approach.

The features of both applications were listed by priority and divided into small subsets

19

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

where each subset takes approximately one man-month to complete. Each iteration

goes through the requirement, analysis, design, implementation, and testing phases

as shown in Figure 3.1. In a more advanced setting, multiple iteration can be ex-

ecuted concurrently when the feature sets do not depend on each other and when

multiple developers are available. At the end of each iteration, a working version of

the application is produced and used in our monthly meeting with the manufacturing

company (our sponsor) to get feedback. The continuous feedback from the client

made the development more flexible and less costly since problems were identified at

early stages and therefore less expensive to fix.

Figure 3.1: Iterative and Incremental Development Approach

The iterative and incremental approach has many advantages over rigid approaches

such as the classical waterfall model. The iterative and incremental approach makes

risk management more manageable due to the continuous feedback from the client

and makes testing and debugging of the applications easier due to the small size of the

development iteration. Moreover, development iterations can be used as a milestones

to track progress [18].

20

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

3.2 Functional Requirements

This section enlists the functional requirements of both applications. These require-

ments describe the functionalities that the applications provide to their users. Each

functionality or set of functionalities will be translated to a piece of code in the im-

plementation phase [18]. The following requirements are divided into groups based

on their purpose within the application.

3.2.1 Offline Vibration Analysis Software

Data

1. The application shall read its input data from a standard XML file.

2. The XML file shall contain the serial number of the machine and the serial

number of the machine shall be of type string with minimum length of one

character.

3. The XML file shall contain the inclination of the machine at the time of the

recoding and the inclination shall be of type decimal and shall fall within the

range of 0.0 to 360.0 inclusive.

4. The XML file shall contain the starting date and time of the recoding and the

starting date and time shall be of type DateTime.

5. The XML file shall contain the ending date and time of the recording and the

ending date and time shall be of type DateTime

6. The XML file shall contain data for at least one sensor and at most eight sensors.

21

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

7. The XML file shall contain the name of each present sensor and the name shall

be of type string and shall be one of the following eight values: LFB, RFB,

LFS, RFS, LDS, RDS, LDB, and RDB.

8. The XML file shall contain the orientation of each present sensor and the orien-

tation shall be of type string and shall be one of the following two values: Top

and Side.

9. The XML file shall contain a G-Force data set for each present sensor and each

set shall contain at least 4096 G-Force data points. Each G-Force data point

contains three values which represents the acceleration of the machine in the X

axis, Y axis, and Z axis. Each of the three values shall be of type decimal and

shall be in the range of -11 to 11 inclusive.

10. The application shall validate the XML file prior to processing its data to ensure

that all required values are present and to ensure that all values are of the correct

data type.

11. The application shall display an error message and a line number when an error

occurs during the validation process.

12. The application shall use the standard XML Schema Definition (XSD) language

to define the structure, elements and types of the XML. The XSD will be saved

in a file and will be used at runtime to compare the XML file with the XSD file.

13. The application shall benchmark the reading and validation process of the XML

file and shall display the time elapsed in the status bar of the application.

22

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

14. The application shall provide a conversion utility that can be used to convert

data files from the old format (text files) to the new format (single XML file).

Settings

1. The application shall save the user settings locally using a single XML file.

2. The application shall load user settings with every subsequent application launch.

3. The application shall not fail if the settings file is missing or if it is corrupt.

4. The application shall provide a way to reset the user settings to factory defaults.

5. The application shall apply user settings at runtime when it is possible.

6. The settings file shall contain the language and the language shall be of type

string and shall be one of the following five values: English, French, German,

Spanish, and Portuguese.

7. The settings file shall contain the units and the units shall be of type string and

shall be one of the following two values: Metric and Imperial.

8. The setting file shall contain the charts orientation and the charts orientation

shall be of type string and shall be one of the following three values: X vs Y, Z

vs Y, and Z vs X.

9. The setting file shall contain the filter status and the filter status shall be of

type string and shall be on of the following two values: Enabled and Disabled.

10. The application shall have the following as the default settings: English lan-

guage, Metric measurement system, Filters enabled, and X vs Y orientation.

23

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Signal Processing

1. The application shall remove the impact of gravity from the G-Force data sets

by passing the G-Force data set of each axis of each sensor through a DC filter.

2. The application shall remove the noise from the G-Force data sets by passing

the G-Force data set of each axis of each sensor through a Butterworth filter.

3. The application shall calculate the magnitudes of the different frequencies present

in the G-Force data sets by passing the G-Force data set of each axis of each

sensor in a Fast Fourier Transform (FFT).

4. The application shall calculate the operating frequency of each sensor by utiliz-

ing the results of the FFT and by utilizing a polynomial interpolation technique.

5. The application shall calculate the phase and eccentricity of each sensor by

performing an ellipse fitting algorithm on the data of the X axis and the Y axis.

6. The application shall calculate the average acceleration of each axis of each

sensor and the average acceleration of the sensor.

7. The application shall calculate the stroke of each sensor and each of its three

axis.

8. The application shall calculate the operating frequency of the machine using the

previously computed sensor variables such as the sensor operating frequency.

9. The application shall calculate all of the above variables: operating frequency,

phase, eccentricity, average acceleration, and stroke in the metric system and

in the imperial system.

24

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Display

1. The application shall display an orbit chart for each sensor where the orbit

chart can be used to plot the motion of the machine using the filtered or the

unfiltered G-Force data sets of the X vs Y axes, Z vs X axes, and Z vs Y axes.

2. The application shall display the FFT charts of each sensor where the FFT

charts are used to plot the X, Y, and Z G-Force data sets in the frequency

domain.

3. The application shall display the waveform charts of each sensor where the

waveform charts are used to plot the filtered or the unfiltered G-Force data sets

of the X, Y, and Z axes.

4. The application shall allow the user to zoom-in and zoom-out of charts and the

zooming should be synchronized between the X-FFT, Y-FFT, Z-FFT charts as

well as X-Waveform, Y-Waveform, and Z-Waveform charts.

5. The application shall provide a tooltip to format and display the value of the

selected G-Force data point in the the orbit, the FFT, and the waveform charts.

6. The application shall display the operating frequency, phase, eccentricity, and

stroke of each present sensor. Moreover, the application shall display the oper-

ating frequency of the machine.

7. The application shall display all of the above variables: operating frequency,

phase, eccentricity, average acceleration, drive inclination, and stroke in the

metric system and in the imperial system.

8. The application shall display the time used to process the XML file content.

25

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

9. The application shall display orbit charts, FFT charts, waveform charts, and

the calculated nodal and global variables on the screen.

10. The application shall use different colors to indicate that the chart is showing

data in the time domain or in the frequency domain.

11. The application shall provide the user with a dialog box to select an existing

XML file from the local file system. Moreover, the dialog box shall filter the

files to show only those with .xml extension.

12. The application shall allow the user to edit the application settings graphically.

13. The application shall allow the user to convert files from the old format to the

new format graphically without the use of command line or external tools.

14. The application shall allow the user to edit the window layout by hiding/showing

the orbit charts and hiding/showing the calculated variables.

15. The application shall display the author, the version and the copyright data.

16. The application shall provide keyboard shortcuts to all its menu items to in-

crease the application usability.

17. The application shall be multilingual and shall support the following languages

out of the box: English, French, German, Spanish, and Portuguese where the

english language is the default application language.

18. The application shall resize all of its user interface controls such as the charts,

menu, status bar, etc when the application window is resized.

26

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

3.2.2 Online Vibration Analysis Software

Data

1. The application shall manage user roles by storing their data in the database

where each user role has a unique identifier of type integer and a unique name

of type string.

2. The application shall manage registered users by storing their data in the

database where each user has a unique identifier of type integer, a unique user-

name of type string, a password of type string, a lock status of type boolean,

and an expiration date of type datetime.

3. The application shall manage registered companies by storing their data in the

database where each company has a unique identifier of type integer, a unique

name of type string, a geolocation of type string, an address line of type string,

a city of type string, a postal code of type string, a region of type string, a

country of type string, and a postal box of type string.

4. The application shall manage registered plants by storing their data in the

database where each plant has a unique identifier of type integer, a unique

name of type string, a geolocation of type string, an address line of type string,

a city of type string, a postal code of type string, a region of type string, a

country of type string, and a postal box of type string.

5. The application shall manage registered machines by storing their data in the

database where each machine has a unique identifier of type integer, a unique se-

rial number of type string, a designation of type string, a width of type decimal,

27

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

a length of type decimal, and a number of decks of type integer.

6. The application shall manage machine records by storing their data in the

database where each record has a unique identifier of type integer, a start-

ing time of type datetime, an ending time of type datetime, and the location of

the XML file that contains the recorded acceleration data points.

7. The application shall manage machine models by storing their data in the

database where each model has a unique identifier of type integer, a unique

name of type string, an excitation unit size of type integer, and a number of

excitation units of type integer.

8. The application shall manage the machine manufacturers by storing their data

in the database where each manufacturer has a unique identifier of type integer,

and a unique name of type string.

9. The application shall manage the excitation sources by storing their data in the

database where each excitation source has a unique identifier of type integer,

and a unique name of type string.

10. The application shall manage the deck inclination types by storing their data

in the database where each deck inclination type has a unique identifier of type

integer, and a unique name of type string.

11. The application shall provide all registered users with a dashboard to view user

specific statistical data such as the number of recodings per month, the number

of machine managed by the user, etc.

28

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Display

1. The application shall use the role of the logged in user to determine what should

be displayed. In this project, we have three user groups namely the customers

group, the staff group, and the administrators group. Customers have access

to their account only, staff have access to all accounts, and administrators have

access to all data and all accounts.

2. The application shall display a list for each of the following data stored in the

database: roles, users, companies, plants, machines, records, models, manufac-

turers, excitation sources, and deck inclination types.

3. The application shall display the lists using pagination where each page display

ten tuples from the database and the user can use a Next and a Previous button

to navigate among the pages.

4. The application shall allow users to add/edit a tuple in the database by sub-

mitting an HTML form. The application shall validate the data and display an

error message for each field to indicated if the data is present and if it is of the

correct type.

5. The application shall allow users to view/delete a tuple from the database by

submitting a request. The application shall ensure that the tuple exists before

attempting to show it or delete it.

6. The application shall handle errors by catching any exception that may occur

and by displaying the exception error message using a custom error page.

29

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

7. The application shall redirect anonymous and unauthorized users who are at-

tempting to access restricted pages to the login page.

8. The application shall display the logo of the sponsoring company and it shall

display the name of the application in the banner section of each page.

3.3 Non Functional Requirements

This section enlists the non functional requirements of both applications. Non func-

tional requirements describe the quality of the application and is used to judge the

operations of the application [18].

3.3.1 Offline Vibration Analysis Software

1. The application shall run on all modern Windows OS versions including Win-

dows XP, Windows Vista, and Windows 7.

2. The application shall require minimal processing power, minimal memory, and

minimal storage. An acceptable configuration would be 1 GHz CPU, 512 MB

RAM, and few MBs for the application executable.

3. The application shall be fast where loading, validating, and processing of a

single XML file shall not require more than two seconds on an average machine.

4. The application shall be reliable such that exceptions are caught and handled

by the application. The application shall display the exception error to the user

for feedback.

30

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5. The application shall be well structure and well documented to improve the

readability and the maintainability of the application.

6. The application shall provide a simple and easy to use graphical user interface

(GUI) by organizing the user control logically and by using color as a meta

data. An example of using colors as a meta data would be using the red color

for charts in the time domain and using the blue color for the charts in the

frequency domain.

3.3.2 Online Vibration Analysis Software

1. The application shall run in all major browsers such as Internet Explorer,

Mozilla Firefox, Apple Safari, Google Chrome, and Opera consistently.

2. The application shall use standard technologies such as XHTML, CSS, JavaScript

for its graphical user interface (GUI) and the application shall avoid non stan-

dard technologies such as Adobe Flash.

3. The application shall use the standard Model View Controller (MVC) design

pattern and shall be well documented to increase the readability and the main-

tainability of the application.

4. The application shall be fast when performing a tasks in order to increase the

number of concurrent requests that can be handled by the application at once.

5. The application shall be hosted on multiple servers in order to increase the reli-

ability, throughput, and uptime. Also, the application database shall be backed

frequently as a safety measure to increase the recoverability of the application.

31

Chapter 4

Design

Software design is the process of planning how to build a system. It is one of the

main phases in the software development life cycle (SDLC) and it acts as a connector

between the requirements phase and the implementation phase. In this process, the

system is divided into classes and each class is assigned a set of responsibilities.

These classes interact with each other to achieve the functional and non functional

requirements of the system. In general, it is highly recommended to design classes to

have high cohesion and low coupling. This ensures that classes have a focused set of

responsibilities with minimal dependency on external resources such as other classes.

The ultimate goal of this process is to design a software that is easy to implement,

easy to understand, and easy to maintain.

4.1 Technology

This section discusses technology stacks used to develop the both applications. The

offline vibration analysis software is a desktop based application used to read, analyze,

32

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

compute, and plot vibration data. On the other hand, the online vibration analysis

software is a browser based application used as a central storage for vibration data.

In addition, it is used to manage users, roles, companies, etc. At the early stages of

the design process, multiple technology stacks were considered. Table 4.1 shows the

major three technology stacks that were selected for further analysis.

Offline Application Online Application Database

Stack 1 C++ HTML, CSS, JavaScript, PHP MySQL

Stack 2 Java HTML, CSS, JavaScript, JSP, Java Oracle

Stack 3 C# HTML, CSS, JavaScript, ASP.Net, C# MSSQL

Table 4.1: Technology Stack Choices

The ideal technology stack should have a good Integrated Development Environ-

ment (IDE), an object-oriented programming language, a relational database that

can handle tens of thousands of records, a standard Model View Controller (MVC)

implementation, a standard Object Relational Mapping (ORM) implementation, and

a good support for Extensible Markup Language (XML). As a result, All of the

above technology stacks were deemed as good choices. However, due to the fact that

both applications have a common set of functionalities and due to the fact that both

application have to be delivered within twelve months, technology stack 1 was not

considered further since the common set of functionalities had to be implemented

in both the C++ programming language and the PHP programming language. The

vibrating screens manufacturing company is a big supporter of Microsoft technologies

and as a result stack 3 was chosen to develop both applications. Figure 4.1 shows the

different components of the .Net technology stack. The Common Language Runtime

33

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

(CLR) serves as the virtual machine component which manages the execution of the

programs. The Base Class Library (BCL) serves as the core built-in classes that are

available to any program. Other components serve a very specific purpose such as

connecting to a database in the case of ADO.NET. The developed applications use

the CLR, BCL, WinForms, ASP.Net, ADO.Net, ADO.Net Entity Framework, and

LINQ components extensively [12].

Figure 4.1: Microsoft .Net Framework

Based on the statistics provided in table 4.2 and table 4.3, it was decided that all

major browsers including Internet Explorer, Mozilla Firefox, Google Chrome, Apple

Safari, and Opera should be supported. Furthermore, it was decided that all web

pages should have a maximum width of 1024 pixels in order to eliminate the need for

horizontal scrolling [4].

34

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Date Internet Explorer Firefox Chrome Safari Opera

January 2012 20.1% 37.1% 35.3% 4.3% 2.4%

Table 4.2: Web Browser Statistics

Date Higher Resolution 1024x768 800x600 640x480 Other

January 2012 85% 13% 1% 0% 1%

Table 4.3: Screen Resolution Statistics

4.2 Offline Vibration Analysis Software

The offline vibration analysis software is a desktop based application used to read, an-

alyze, compute, and plot vibration data. The application takes user defined data and

measured data stored in a single XML file as an input. The application validates the

content of the XML file against an XML schema to ensure that all required attributes

are present and have the correct data types. If the validation passes, the application

loads the content of the file to memory and starts the filtering and the transformation

phases. The filtered and transformed data is then used to compute the nodal and

global variables such as the operating frequency, phases, etc. Finally, the application

displays the vibration data graphically using waveform charts, FFT charts, and orbit

charts. Moreover, the application stores user settings, converts vibration data from

the old text file format to the newly created XML format, and displays copyright

data. In order to accomplish the above functionalities, the application was divided

into 21 classes as shown in Figure 4.2. The Program class is used as the main entry

35

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

point to the application. It initializes and loads the MainView class. Using the main

view menus the user can navigate to the AboutView which displays the copyright

data, the SettingsView which stores/retrieves user settings, and the ConvertView

which convert vibration data from the old text files format to the newly created XML

format. The user uses the main view menus to select an XML file to do vibration

analysis. The MainView class passes the XML file to the XMLFile class for valida-

tion and parsing. If the validation passes, MainView class uses the Sensor class to

store sensor data, perform filtering and transformation, and compute nodal variables.

Also, the MainView class uses the Machine class to store machine data and compute

global variables. In order to do filtering and transformation, the Sensor class utilizes

the functionalities in the DCFilter, BWFilter, Ellipse, Interpolation, and ArrayUtil

classes. Once all the computation is done the main view utilizes the InfoString class

to display the nodal and global variables and it utilizes the FFTWaveChart class

and the OrbitChart to display the processed and transformed data graphically. Fi-

nally, the application uses the Language Class to provide multilingual support. As

discussed in the technology section, this application is built using C# and can run

on any version of Windows that supports .Net 4.0 and has the built-in namespaces

shown in Figure 4.3. Finally, due to the size of the application, common architectures

such as Model View Controller (MVC), and Model View Presenter (MVP) were not

used in order to avoid overhead.

36

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 4.2: Offline Vibration Analysis Software Classes

37

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 4.3: Offline Vibration Analysis Software Dependencies

4.3 Online Vibration Analysis Software

The online vibration analysis software is a browser based application used to manage

vibration data collected from various vibrating screens. Moreover, the application is

used to manage users, roles, companies, plants, machines, and other data by utilizing

a central database. The application was designed using the Model View Controller

(MVC) architecture which divides the application classes into 3 major categories

based on their purpose. The model classes represent the core of the application which

38

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

is the logic and storage of the vibration data. The views are the visual representa-

tion of the models and are done using the traditional HTML, CSS, and JavaScript.

Finally, the controller classes are mediators that accepts input from users, calls the

model classes to perform a task, and render a view which can be sent to browser.

It is highly recommended to have thin controllers and fat models when designing a

web application using the MVC architecture. This recommendation ensures that our

classes have a cohesive set of responsibilities and are easy to understand and easy to

maintain. Figure 4.4 & 4.6 show the MVC architecture utilized in the design of the

application.

Figure 4.4: Model View Controller Architecture

The application was designed to utilize the ASP.NET MVC 2 framework which is

the standard Microsoft implementation of the MVC architecture [7] [13] [16]. When

the browser sends the first request to the web server, the application gets loaded

into memory. Then, the web server passes the request to the web application which

uses a router to determine which controller and action to invoke. In this applica-

tion, the first part of the URL is used to determine the controller name, the second

39

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

part of the URL is used to determine the action name, and the rest of the URL is

used as parameters for the action. A typical example of a request would look like

http://www.company.com/machine/delete/102 which means invoke the delete func-

tion of the machine controller with a parameter equal to 102. Once the action is

performed, the resulting visual representation is sent back to the browser for con-

sumption. The web application is built using C# and ASP.NET MVC 2 and shall

run on any Windows Server that supports the .Net 4.0 framework that have the built-

in namespaces shown in Figure 4.5.

Figure 4.5: Online Vibration Analysis Software Dependencies

40

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 4.6: Online Vibration Analysis Software Classes

41

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

4.4 Database

The database design shown in Figure 4.7 represents the business model behind the

online vibration analysis software. In this model, each user has a single role and

belongs to one company. Each company can have more than one plant where each

plant can have more than one machine (Vibrating Screen). Each machine has a model

where the model contains information regarding the deck inclination type, excitation

source, etc. Finally, each machine can have more than one record (Vibration Data).

In general, companies who are interested in monitoring their machines need to contact

the administrators of this application to register their company, plants, and machines.

Once the registration process is complete, the user can upload vibration data by

accessing the system and uploading the required files. To accommodate the business

model, the database was designed to allow for a fine control over users access to

machines. This was achieved by using a many-to-many relationship between the

User and the Machine tables. In Figure 4.7, a hybrid between the concept of Entity

Relationship (ER) diagram and the concept of Object Relationship Mapping (ORM)

is shown. Each entity, in this diagram, has three sections. The first section contains

the name of the database table which is also the name of the ORM class. The second

section represents the attributes of the database table which also corresponds to the

attributes of the ORM class. Finally, the third section represents the navigation

properties among the ORM classes. For example, to implement the ORM Role class

we would create a C# class with an integer attribute RoleId, a string attribute Name,

and a reference attribute List<User>Users. To access the list of users for a specific

role, we would use plain C# code such as role.Users. To simplify the access to ORM

classes, a new C# class was created and named DataContext as shown in Figure 4.6.

42

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 4.7: Database Design

43

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

The DataContext class has a reference to all ORM classes within the application.

Furthermore, the DataContext class utilizes the settings stored in the Web.Config file

to establish a connection with the database server. In this project, Microsoft SQL

Server and Microsoft Entity Framework (EF) 4.0 were used extensively. The EF is

the standard Microsoft implementation of the Object Relationship Mapping (ORM)

pattern which runs on top of the .Net framework [14] [10].

44

Chapter 5

Implementation

The implementation phase is one of the main phases of the software development life

cycle (SDLC). The applications were developed using an iterative and incremental

approach as shown in Figure 3.1. Using this approach, the application requirements

were sorted by priority and then divided into sets where each set takes one man-

month to complete. Each set of requirements is analyzed, integrated into the overall

design, and then implemented and tested [18]. At the end of each month, a fully

working version of the application is produced and used in a monthly meeting with

the company to get feedback. In the implementation phase, the requirements and

design are mapped to a set of highly cohesive and low coupled classes. These classes

are written using the C# programming language and then internally documented

using inline comments. It should be noted that the implementation should also meet

the various non functional requirements such as performance and readability. As a

result, detailed comments, minimal object creation, meaningful variable names, and

consistent user interface design were used to accommodate these type of requirements.

45

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5.1 Frameworks

This section enlists and discusses the external frameworks that were used in the

implementation of both applications.

5.1.1 ASP.NET MVC Framework

ASP.NET MVC is a web application framework developed by Microsoft and released

as an open source project in November 2007. This framework is a standard imple-

mentation of the Model View Controller (MVC) architecture which allows for a clear

separation between views, data, and logic. Moreover, this framework provides full

control over the user interface, full control over the URL, and the ability to do Test

Driven Development (TDD) [7] [13] [16]. The online vibration analysis software was

build using version 2.0 of the framework which is prepackaged with Visual Studio

2010. To use version 2.0 with Visual Studio 2008 or 2012, please download and in-

stall the framework from Microsoft website. Figure 5.1 shows the major components

of the framework and how these components interact with each other.

Figure 5.1: ASP.NET MVC Framework

46

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5.1.2 Entity Framework

Entity Framework is a data access framework developed by Microsoft and released

to the public in August 2008. This framework is a standard implementation of the

Object Relationship Mapping (ORM) pattern which provides an object oriented ap-

proach to accessing relational databases such as MSSQL. Moreover, this framework

provides lazy loading, simple query syntax, and the ability to generate the database

from C# classes and visa versa [14] [10]. To use Entity Framework 4.1 with Vi-

sual Studio 2010, please download and install the framework using the following link:

http://www.microsoft.com/en-us/download/details.aspx?id=8363. Figure 5.2 shows

a one-to-many relationship between users and roles and how the entity framework is

used to realize this relationship using the object relationship mapping paradigm.

Figure 5.2: Entity Framework

47

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5.2 Build System

MSBuild is a build system developed by Microsoft and packaged with the .Net frame-

work. This system takes a single XML file as an input which is also known as the

project file. The project file contains four types of elements that can be used to

describe in details the build process. These four types are : properties, items, tasks,

and targets. The properties are used to configure the build process as seen in figure

5.3 by providing key / value pairs such as platform type, output type, icon name,

etc. The items are used to enlist the files that are used by the build process which

can be dynamic-link libraries (*.dll), source code files (*.cs), XML files, image files,

language files, or any other resource. The tasks are commands that are used to

perform part of the build process such as the C Sharp Compiler (csc) command, or

the Generate Resource command. Finally, the target is a group of tasks that are

executed sequentially to build the software [5] [11]. In order to build a system, we

feed msbuild executable a single project file that follows the namespace defined in

http://schemas.microsoft.com/developer/msbuild/2003. Msbuild executable parses

the project file and builds the default target specified in the root element (Project)

and its dependencies in the correct order. To achieve that, msbuild builds the Be-

foreBuild, then the Build, and finally the AfterBuild targets. As a result, msbuild

starts by coping the XSD files, the image files, and the generated resources files to

the output directory. Then, msbuild uses the properties and the items defined in the

project file to build the system using the C Sharp Compiler (csc). Finally, msbuild

deletes all temporary files produced in the compilation process. However due to the

fact that no temporary files are produced, this target was left empty. Figure 5.3

shows the project file used in building the offline vibration analysis software.

48

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 5.3: MSBuild Project File

49

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5.3 Offline Vibration Analysis Software

The application classes were organized into several folders that reflect the purpose

of these classes. As shown in Figure 5.4, these folders are: the References folder

which contains the assembly references, the Build folder which contains the executable

produced by the msbuild executable, the Controls folder which contains the custom

defined chart controls, the Events folder which contains the user interface events,

the Images folder which contains the application images, the Languages folder which

contains the translation files, the Models folder which contains the application core

classes, the Views folder which contains the user interface classes, and finally the

Xsd folder which contains the validation schema.xsd file. In this section, the various

classes of this application (shown in Figure 4.2) will be listed and described.

Figure 5.4: Offline Vibration Analysis Software Directory Structure

50

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

Program.cs This class is the main entry point to the application.

It contains the main function which creates the ap-

plication main thread and loads the main view (using

MainView.cs)

Properties.cs This file contains the following assembly level at-

tributes: title, description, configuration, company,

product, copyright, trademark, culture, com visible,

guid, assembly version, and assembly file version.

ArrayUtil.cs This class implements multiple array helper function-

alities such as finding the index and the value of the

maximum item in an array. This class is mainly used

by the sensor class.

BWFilter.cs This class implements a fourth order bandpass but-

terworth filter that can be used to remove the noise

from the vibration data. This filter takes an array

of doubles and return the filtered data as an array of

doubles.

DCFilter.cs This class implements a digital comb filter of strength

R=0.98 that can be used to remove the impact of

gravity from the vibration data. This filter takes an

array of doubles and return the filtered data as an

array of doubles.

Table 5.1: Offline Vibration Analysis Software Classes - Part 1

51

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

Ellipse.cs This class implements an algorithm that finds an el-

lipse that best fits a set of given data points. This

is done to compute the phase and the eccentricity of

the motion in the XY, ZY, and ZX planes. The data

points are passed using two single dimensional arrays

of type double.

FFT.cs This class implements the radix-2 Cooly-Tuckey FFT

algorithm that can be used to transform the vibration

data from the time domain to the frequency domain.

The algorithm takes an array of type complex (size

= power of 2) and return an array of type complex.

A helper function is also available to convert array of

type double to array of type complex.

InfoString.cs This class contains helper functions that are used to

format the main view information strings.

Interpolation.cs This class implements an interpolation algorithm that

can be applied to three data points. This algorithm is

used to improve the operating frequency calculation.

Language.cs This class provides multilingual support to the appli-

cation by accessing and reading the language resource

files at runtime.

Table 5.2: Offline Vibration Analysis Software Classes - Part 2

52

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

Machine.cs This class represents the machine object. It holds the

machine serial number, the machine inclination, the

recording date/time, and the machine sensors refer-

ences. This class is also used to compute global vari-

ables such as the operating frequency.

Matrix.cs This class contains helper functions that are used in

manipulating matrices in the ellipse class.

Sensor.cs This class represents the sensor object. It holds the

sensor location, sensor orientation, and the sensor cal-

ibrated data sets. This class is also used to perform

dc filtering, butterworth filtering, FFT, and nodal

variable computation. Nodal variables computation

includes computing the operating frequency, average

acceleration, stroke, phase, and eccentricity.

Settings.cs This class represents user settings which are saved lo-

cally on the user machine (user.config file). This class

also provides the functionalities to read and update

these settings at runtime.

TextFiles.cs This class represents the old text files format (multi-

ple files). It is used to parse and convert files to the

newly created XML format (single file).

Table 5.3: Offline Vibration Analysis Software Classes - Part 3

53

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

XMLFile.cs This class represents the new file format (single

XML). It is used to parse and load the content to

memory by creating sensor and machine objects. It

is also used to validate the content of the XML file

against an XML schema definition (XSD). Figure 5.5,

Figure 5.6, and Figure 5.7 show the content of a sam-

ple XML file and the XML schema definition (XSD)

used for validation.

AboutView.cs This class implements the about view by extending

the built-in System.Windows.Forms.Form class

ConvertView.cs This class implements the conversion view by extend-

ing the built-in System.Windows.Forms.Form class

MainView.cs This class implements the main view by extending

the built-in System.Windows.Forms.Form class

SettingsView.cs This class implements the settings view by extending

the built-in System.Windows.Forms.Form class

FftWaveChart.cs This class implements a custom chart controls that

can be used to display FFT charts and waveform

charts. These charts provide zooming, axes synchro-

nization, and tooltips with custom messages

OrbitChart.cs This class implements a custom chart control that

can be used to display orbit charts.

Table 5.4: Offline Vibration Analysis Software Classes - Part 4

54

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 5.5: Sample XML File

55

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 5.6: XML Schema Definition - 1

56

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 5.7: XML Schema Definition - 2

57

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

5.4 Online Vibration Analysis Software

The application classes were organized into several folders that reflect the purpose of

these classes. As shown in Figure 5.8, these folders are: the Properties folder which

contains the various properties of the application, the References folder which con-

tains the assembly references used by the application (such as the System.Web.Mvc.dll

and the EntityFramework.dll assemblies), the Content folder which contains the static

files such as Cascading Style Sheet (CSS) files and image files, the Controllers folder

which contains the application controller classes, the Models folder which contains

the application model classes (logic & persistence), the Scripts folder which contains

the JavaScript file, and finally the Views folder which contains the user interface files.

In this section, the various classes of this application (shown in Figure 4.6) will be

listed and described.

Figure 5.8: Online Vibration Analysis Software Directory Structure

58

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

Global.asax This class is the main entry point to the applica-

tion. It contains the RegisterRoutes and the Applica-

tion AuthenticateRequest functions that are used to

set the route rules and to authenticate user requests

respectively.

Web.config This file contains the application configurations. This

includes the database, sessions, cookies, and frame-

works configurations.

Controller Classes These classes contain the functions that responds to

HTTP Get and Post requests. The controller func-

tions calls a model class to perform a certain task and

then forward the results to the view for display.

Model Classes These classes contains the application core function-

alities such as database persistence, security, excep-

tion handling, and mathematics.

DataContext.cs This class provides object relationship mapping. It is

the main entry point to the database and it provides

a simple interface to perform database queries.

DataInitializer.cs This class is used at development time to drop and

create database. It is also used to seed the newly cre-

ated database with sample data for testing purposes.

Table 5.5: Online Vibration Analysis Software Classes - Part 1

59

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Name Purpose

Error.aspx This active server page is used to display exception

errors caught while processing HTTP requests.

Private.Master This master page is used to create the common layout

for the private pages of the application.

Public.Master This master page is used to create the common layout

for the public pages of the application.

Create.aspx This page displays an HTML form that can be used

to create a new database entry.

Delete.aspx This page is used to delete an entry from the database

Details.aspx This page is used to display the details of an entry

Edit.aspx This page is used to edit the attribute of an entry

Index.aspx This page is used to display all entries of a specific

database table. It also provides pagination and links

to the create, delete, details, and edit pages.

Table 5.6: Online Vibration Analysis Software Classes - Part 2

The online vibration analysis software manages ten database tables as show in

Figure 4.7. Each database table has a dedicated controller, a dedicated model, and five

dedicated views (index, delete, details, create, and edit). In order to avoid repetition,

the above tables show only a partial list of the classes that exist in the application

source code. JavaScript files and Cascading Style Sheet files are not discussed due to

their minor impact on the design and implementation of the application.

60

Chapter 6

Security

It is recommended to consider the security of a web application prior to building it.

With the wide adoption of web applications as a main way of doing business and

delivering services, web applications became targeted by a wide range of attacks. To

prevent these attacks, the following security risks should be considered at the early

stages of the software development: broken authentication & authorization, cross site

scripting (XSS), cross site request forgery (XSRF), SQL injection, failure to restrict

URL access, and insufficient transport layer protection [17]. In this chapter, we will

discuss these security risks and the counter measures developed in the online vibration

analysis software to prevent these attacks. However, before we start our discussion,

we need to take a look at how browsers and web servers interact with each other

using the Hypertext Transport Protocol (HTTP). It should be noted that the offline

vibration analysis software is available to view vibration data by technicians offline

and therefore requires no security measures.

61

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

6.1 Hypertext Transport Protocol (HTTP)

HTTP is an application level protocol used in the communication between browsers

and web servers. This protocol is stateless by design which means that every request

is independent from past and future requests [1]. To overcome the stateless nature of

this protocol, we use a storage mechanism called cookies to store and retrieve data

that allows us to simulate a state-full browsing session as shown in Figure 6.1.

Figure 6.1: HTTP Request and Response

Each cookie has seven attributes that determine its content and the behaviour of

the browser. These attributes are: name, value, expiration, domain, path, secure,

and httponly [1]. The name attribute is used to identify the cookie and the value

attribute is used to store data (e.g. username, session id, language preference, etc).

The name and the value attributes are required when creating a cookie using the set-

cookie header as shown in Figure 6.1. The expiration date is used to determine the

life span of the cookie. The domain and path attributes are used to determine if the

cookie should be included in the HTTP request. The secure attribute is used to tell

the browser to send the cookie only when the Secure Hypertext Transport Protocol

62

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

(HTTPS) is in use. Finally, the httponly attribute tells the browser that the cookie

is not accessible (i.e. JavaScript can not read or modify the content of the cookie).

6.2 Authentication

The current version of HTTP (version 1.1) supports two types of authentication:

basic authentication and digest authentication. These two authentication methods

are not widely used because the authentication process is done by the web server and

not by the web application. Nowadays, the most common authentication method is

forms authentication where the user fills an HTML form by entering a username and

a password. The web application then validates these credentials against a database

or other storage. Forms authentication is a custom authentication method and is not

part of the HTTP protocol. Other custom protocols such as windows authentication

exists but rarely used. In the online vibration analysis software, forms authentication

was implemented by annotating all secure resources with the [Authorize] attribute to

indicate that only authenticated user have the right to access theses resources [7].

public class AccountController : Controller

{

[Authorize]

public ActionResult Index() { ... Implementation Omitted ... }

}

The online vibration analysis software was configured to redirect all unauthenticated

requests to the login page as shown below. In the configuration, the login url, default

url, and the cookie default values are set and used when redirecting requests and

63

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

creating cookies when the authentication process is complete.

<authentication mode="Forms">

<forms name="WebAppAuth"

loginUrl="~/Account/Login"

defaultUrl="~/Dashboard/Index"

protection="All"

timeout="30"

path="/"

requireSSL="false"

slidingExpiration="true"

enableCrossAppRedirects="false"

cookieless="UseDeviceProfile"

domain=""

ticketCompatibilityMode="Framework20">

</forms>

</authentication>

Figure 6.2 shows HTTP requests that the browser sends and HTTP responses that

the web server returns when an unauthenticated user tries to access a secured resource

such as the homepage of an account using the (/Account/Index) URL.

64

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure 6.2: Forms Authentication

Once the authentication process is complete, a cookie with the name ”WebAp-

pAuth” is created. The newly created cookie is sent with each subsequent request to

indicate that the user is an authenticated user. Moreover, to prevent the user from

tampering with the content of the cookie, the cookie is encrypted and hashed. The

encryption and hashing keys are stored in the configuration file (web.config) as shown

below.

<machineKey

validation="SHA1" validationKey="32E3587255897 3DF605835F4F"

decryption="AES" decryptionKey="B179091DB58B2 4F58693DF5F4" />

65

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

6.3 Authorization

After going through the authentication process to determine the identity of the user,

we go through the authorization process to determine what resources the user has

access to. The combination of the above two processes are used to create an Access

Control List (ACL). In the online vibration analysis software, we used two database

tables namely the user table and the role table to determine the identity and the role

of the user. In response to the requirements, each user can assume only one role. The

online vibration analysis software has three roles (Admin, Staff, Customer) where the

administrators have access to all the resources that the Staff have access to and the

Staff have access to all the resource that the Customer have access to. The following

shows the two database tables that were used in this application where the RoleId in

the User table is a foreign key pointing to the primary key of the Role table.

User (UserId, Username, Password, Locked, Expiration, RoleId, ...)

Role (RoleId, Name)

After going through the authentication and the authorization, the web application

determines the identity and the role of user. All secured resource will be decorated

with the Authorize attribute to indicate the role required to grant the user an access.

public class AccountController : Controller

{

[Authorize(Group="Admin,Staff")]

public ActionResult Index() { ... Implementation Omitted ... }

}

66

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

If the Authorize attribute does not specify a specific group then all groups are granted

access [7].

6.4 Cross-Site Scripting (XSS)

XSS attack occurs when a web application accepts input from users without imple-

menting proper filters. This allows users to inject the web application with client

side scripts such as HTML, CSS, or, JavaScript. As a result, the web applica-

tion will display web pages to all subsequent users with the injected client side

scripts. These client side scripts are executed by the browser and usually leads to

one of the following: stealing the user cookie, hijacking the user session, redirect-

ing the user to another URL, defacing the user interface, or modifying the content

of the web page. In the online vibration analysis software, three measures were

considered in order to prevent XSS attacks. First, input sanitization was used

on all inputs to remove tags that are not considered safe. To do that, the sani-

tizer method was used from the Microsoft.Security.Application namespace. The fol-

lowing is an example: Sanitizer.GetSafeHtmlFragement(”abc <script></script>”)

would return only ”abc ”. Second, all inputs were encoded prior to displaying

them in the browser. The encoding was done using the HtmlEncode, JavaScrip-

tEncode, UrlEncode and Other functions from the AntiXSS library from Microsoft.

The following is an example: AntiXss.HtmlEncode(”hello”) would produce

hello Lastly, In order to prevent the client side scripts from ac-

cessing the cookie, the HttpOnly attribute was set when cookies are created. The

HttpOnly attribute tells the browser to send the cookie with the http request only

and should not be accessed by client side scripts such as JavaScript or VBScript [7].

67

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

6.5 Cross-Site Request Forgery (XSRF)

XSRF is one of the most common web application security attacks. XSRF is used to

trick an authenticated user’s browser to send forged HTTP requests to the vulnerable

web application. An example would be to send a request to change the password of

the user’s account. To simplify the following example, we assume that the user is

authenticated and authorized to change his/her account password by filling an HTML

form that submits a GET or POST requests.

GET /Account/ChangePassword?NewPassword=12345

An attacker can utilize this information and try to change the password to gain

access to this account by tricking the user to click on a link or by redirecting the

user’s browser to a webpage the contains an image that contains a link as its source

Click

Now due to the nature of HTTP, Even if the request originated from a different web

application, the session cookie of the vulnerable web application will be sent with any

of the above requests since the session cookie domain and path will match with the

form action (which is ”http://www.website.com/Account/ChangePassword”). The

web application will use the session cookie to identify the user and then change

the password by executing the function ChangePasssword in the Account controller.

If the ChangePassword was an HTTP Post method then the attacker would use

javaScript to assemble a form and submit the request accordingly instead of using

simple URLs. To prevent XSRF attacks, we need to make sure that all requests to

our web application comes from pages that our web application have generated. To

68

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

achieve this, we add a hidden input field to our HTML forms with random string

and we create a cookie and add this random string to it. Now when the request

is submitted, the web application checks the value of these two strings and if they

match we process the request. Otherwise, the web application raises an exception to

prevent XSRF attack. The implementation is done using the Html helper function

AntiForgeryToken() and the annotation attribute [ValidateAntiForgeryToken].

<form action="/Account/ChangePassword" method="..." enctype="..." >

<%= Html.AntiForgeryToken() %>

<!-- The above line will generate -->

<input name="__RequestVerificationToken" type="hidden"

value="saTFWpkKN0BYazFtN6YbZ ... VgeV2cFVmelvzwRZpArs" />

</form>

The Html.AntiForgeryToken() function will generate a hidden input field and create a

cookie with name/value equal to the name/value of the hidden field. The annotation

attribute is used to decorate controller action which indicates that the value of the

cookie and the hidden field needs to be compared prior to the action execution [7].

public class AccountController : Controller

{

[Authorize]

[ValidateAntiForgeryToken]

public ActionResult ChangePassword(...) { ... Implementation Omitted ... }

}

69

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

6.6 SQL Injection

SQL injection is the most common security attack used against web applications.

Even though the idea behind SQL injection is quite simple, the result of such attacks

can be very destructive. Typically an SQL injection attack is used to gain access

to restricted information but it could be also used to change the database content

or even delete the database itself. In the following example, we will discuss how an

SQL injection attack can be used to gain access to restricted information. Most web

application deploy an authentication/authorization system to grant user access to

specific set of data. This is done by comparing the provided username and password

against the database using an SQL statement. We prepare the SQL statement by

concatenating the provided username and password to produce the following:

SELECT * FROM USERS WHERE USERNAME = ’u’ AND PASSWORD = ’p’;

Now assuming we know the username of another user, we can bypass the password

by providing a password which is equal to x’ or ’1’ = ’1

SELECT * FROM USERS WHERE USERNAME = ’u’ AND PASSWORD = ’x’ or ’1’ = ’1’;

To prevent such an attacks, we either have to handle these attacks manually by

scanning the user input for special characters such as single quotation or we can

use a library to automate this task. In the online vibration analysis software, we

used an Object Relationship Mapping (ORM) framework called Entity Framework

to communicate with the database. The Entity Framework has a extensive API that

we use to generate safe SQL statements. To produce an SQL statement equivalent to

the one above, we use the Entity Framework’s API functions. The ORM framework

70

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

functions were designed to prevent SQL injection attacks by using multiple techniques

such as parameterized input, character escaping, etc [7].

User user = dataContext.Users.Where(u => u.Username == login.Username)

.Where(u => u.Password == login.Password);

6.7 Restrict URL Access

Failure to restrict URL access is a common security risk that occurs when a user ma-

nipulate the URL address to access a restricted page. In the online vibration analysis

software, a router was implemented to intercept all requests prior to processing them.

The router rule is defined using a regular expression where the MapRoute statement

indicates that the first segment of the URL is mapped to a controller class, the second

segment of the URL is mapped to an action (method in the controller) and the last

segment is mapped to a parameter in the action [7]. The definition of the default

route is:

routes.MapRoute("Default", "{controller}/{action}/{id}",

new { controller="Home", action="Index", id=UrlParameter.Optional });

Once the router is done processing the URL, the controller class will be initialized and

the action with the correct parameter value gets executed. In other words, all requests

will be mapped to an action in a controller and since all of these actions are decorated

with the authorize attribute, it is impossible for a user to gain an unauthorized access

to any part of the web application. Moreover, if the Controller is not specified in the

URL the the Home controller is used and if the action is not specified then the Index

action is used as defined in the above routing function MapRoute.

71

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

public class SomeController : Controller

{

[Authorize(User="John")] public ActionResult SomeAction1(...) { ... }

[Authorize(Role="Admin")] public ActionResult SomeAction2(...) { ... }

}

In the first example, A user needs to be authenticated and needs to have a username

equal to John to be able to access http://.../SomeController/SomeAction1. In the

second examples, the user needs to be authenticated and needs to be a member of

the Admin group to be able to access the http://.../SomeController/SomeAction2.

Static files such as Images, Cascading Style Sheet (CSS) files and JavaScript files are

exempt from the above routing technique.

6.8 Other

It is highly recommended that a Secure Socket Layer (SSL) protocol is used when

communicating sensitive data between the browser and the web server. In the online

vibration analysis software, SSL was not used due to time constraints. Without

SSL, sending sensitive data such as the username/password, credit card information

and cookies can be intercepted by intruders [7]. An intruder can use these data to

impersonate the original user to gain access to the web application. On the other

hand, the communication between the web application and the database server is

secure. The following connection string is located in the web.config file and is used

to establish a connection between the web application and the database server. By

setting the Encrypt attribute of the connection string to YES, the Database provider

(System.Data.SqlClient) will be informed that a secure connection is required.

72

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

<connectionStrings>

<add name="DataContext"

providerName="System.Data.SqlClient"

connectionString="Data Source=243.243.243.243;

Initial Catalog=Database;

User ID=UserId;

Password=Password;

Encrypt=Yes;" />

</connectionStrings>

Encrypting the communication between the web browser and the web server and

between the web application and the database server will decrease the responsiveness

of the web application and increase the CPU and memory usage of the web server

and the database server.

73

Chapter 7

Testing

Software testing is one of the main phases of the software development life cycle. In

this phase, the software is tested to ensure that it is bug free and it meets the func-

tional and non functional requirements. There are a number of testing techniques

that can be applied to achieve this goal including: unit testing, integration testing,

system testing, and acceptance testing. Table 7.1 describes the purpose of each of

the above techniques [18].

Name Purpose

Unit testing Tests a small unit of the source code (e.g logic, function, etc)

Integration testing Used when two or more units are combined in a larger structure

System testing Tests the end to end quality of the entire software

Acceptance testing Used by the customer when the software is delivered

Table 7.1: Software Testing Techniques

74

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

7.1 Unit Testing

In this thesis work, the source code was divided into small independent units. Each

unit was tested using one or more test cases that covers the various execution paths.

The result of the execution is then compared with the expected result to determine

whether the test has passed or not. To perform unit testing, an open source frame-

work called NUnit was used. NUnit framework is written in C# and can be easily

integrated within Microsoft Visual Studio Express. The test cases were designed to

examine the following components of the applications : XML validation and parsing,

vibration analysis mathematics, and database operations. It should be noted that

the external libraries used in these applications were not tested. To write test cases,

we utilize TestFixture classes [7].

Figure 7.1: DC Filter Test Case

75

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

A TestFixture class is a special C# class that contains one or more test cases as

shown in Figure 7.1. Each test case starts by initializing the classes it uses. Each test

case, then, prepares a sample input and its expected output. Finally, the test case

runs the function and compares the actual result with the expected result as shown

above. Figure 7.2 shows the console output produced by the above test case.

Figure 7.2: DC Filter Test Case Result

7.2 Functional and Non Functional Tests

This section discusses the various tests that were used to ensure that both applications

meet the functional and non functional requirements described in chapter three.

76

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

7.2.1 Mathematical Model

All mathematical functions used in the vibration analysis process were extensively

tested and compared with Matlab. This includes testing the implementation of DC

filter, Butterworth filter, Fast Fourier Transform, Ellipse, Average Accelertaion, Op-

erating Frequency, Stroke, Phase, and Eccentricity functions.

7.2.2 Database and XML

All basic database operations are tested using sample data and a MSSQL server.

These tests were performed for each database table and it includes creating, reading,

updating, and adding database tuples. Also, the validation and parsing process of

the XML file is extensively tested using valid, invalid, and corrput files.

7.2.3 User Interface

The user interface of the online vibration analysis software was tested using different

browsers on different operating systems in order to ensure that the look is consistent.

7.2.4 External Libraries

All external libraries used by both applications are not tested and are assumed to be

stable and bug free. This includes NUnit, ASP.NET MVC, and Entity Framework.

7.2.5 Other

All major functions of both applications are monitored for CPU and memory usage

in order to meet the various non functional requirements such as performance, etc.

77

Chapter 8

Conclusion

8.1 Discussion

This thesis presented the design and implementation of two software systems that

are used to process, manage, and visualize vibration data. These new systems satisfy

a real need in the field of vibration analysis and they are currently being branded

and deployed by our sponsoring company. The offline vibration analysis software will

be used by the company technicians to examine the vibration data in both time and

frequency domain, and to present the measured and calculated data in textual and

graphical forms. On the other hand, the online vibration analysis software will used by

the company management and customers to collect and manage vibration data using

a central data storage. In order to accommodate the continuously changing require-

ments provided by these various stakeholders, an iterative and incremental approach

was chosen. In this approach the requirements were sorted by priority and divided

into small sets where each set takes approximately one man-month to complete. At

the end of each iteration a meeting with the sponsoring company is conducted to get

78

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

feedback. Finally, to ensure that these systems can be further extended, Model View

Controller (MVC) architecture and Object Relationship Mapping (ORM) framework

were utilized in the development process.

8.2 Future Work

This section contains a list of suggested future work that can be used to extend the

functionalities of the new systems. These items are considered desirable and are

expected to be implemented in the near future:

• Port the offline vibration analysis software to tablets and enable the software to

communicate directly with the sensor devices which would eliminate the need

for the data acquisition unit

• Extend the online vibration analysis software to perform mathematical calcu-

lations and to play vibration data recording using standard web technologies

• Utilize data mining in the online vibration analysis software to study the per-

formance and life span of the different machine models that are produced by

the manufacturers of these machines

• Extend the online vibration analysis software to perform fault prediction by an-

alyzing the history of a machine and comparing the results with other machines

of the same type that faulted

• Provide report generation functionality in the online vibration analysis software

that analyzes the current state of the machine and produces recommendations

for the purpose of maintenance

79

Appendix A

Offline Vibration Analysis Software

The offline vibration analysis software is used to read, analyze, compute, and plot

vibration data. The application is build using the C# programming language and

can run on Windows XP, Windows Vista, Windows 7, and any future version of

windows that supports Microsoft .Net 4.0 framework. The application takes a single

XML file as an input where the XML file contains the user defined data and the

measured data of a vibrating screen. The user defined data and the measured data

are used by the application to plot charts and to calculate the values of the nodal and

global variables. The result of the vibration analysis is used by trained technicians to

understand and analyze the behaviour of the vibrating screen. The collection of the

user defined data and the measured data is done using a data acquisition unit that was

developed by graduate students earlier at McMaster University. The format of the

data that is produced by this unit is text based. As a result, the application provides

an integrated tool to convert the data from the old text format to the newly developed

XML format. In this chapter, we provide the users with detailed instructions on the

installation process and the usage of this application.

80

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

A.1 Installation

The installation process of the application involves the following three steps:

1. Obtain and Unzip the OfflineVibrationAnalysisSoftware.zip file

2. Move the extracted OfflineVibrationAnalysisSoftware folder to the Program

Files folder located at ”C: \ Program Files” (Admin. privilege is required)

3. Create a Shortcut by right clicking on ”C: \ Program Files \ OfflineVibratio-

nAnalysisSoftware \ OfflineVibrationAnalysisSoftware.exe” and then clicking

send to Desktop (Shortcut)

If you see Figure A.1 when launching the application then you do not have Microsoft

.Net 4.0 framework installed on your machine. To fix this problem, go to the link

http://www.microsoft.com/en-us/download/details.aspx?id=17718

to download dotNetFx40 Full x86 x64.exe. After the installation of the framework,

try launching the application and the error message should disappear. It is recom-

mended that the computer has at least 1 GHz CPU and 512 MB memory.

Figure A.1: Microsoft .Net 4.0 Framework Initialization Error

81

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

A.2 User Manual

To launch the application, double click on the shortcut which is located on the desktop

or double click on the application executable which is located in the OfflineVibratio-

nAnalysisSoftware directory under Program Files. After launching the application,

you will see the main view of the application which consists of six areas: the menu,

the banner, the information panel, the orbit panel, the FFT/waveform panel, and the

status bar. The information panel will show the calculated variables such as the oper-

ating frequency, average acceleration, stroke, phase, and eccentricity. These variable

are divided into two categories. These two categories are nodal variables which are

sensor specific and global variables which are machine specific. To switch the view

between these two categories, click on the icon in the upper right corner. By default,

the application will show the nodal variables for the currently selected sensor. Figure

A.2 shows the menu items available in this application.

Figure A.2: Offline Vibration Analysis Software Menu Items

To use the application, open the ”File” menu and click ”Open” to select an XML

file from your local file system. The application will validate the XML file against

an internal XML Schema Definition file (Schema.xsd) to check if the file is a valid

input. If the XML file is invalid, an error message will be displayed to tell the user

what the error is and where the error is located in the XML file. On the other hand,

if the XML file is valid the application starts processing the content by loading the

82

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

data into memory, filtering the loaded data, performing Fast Fourier Transformation

(FFT), performing ellipse fitting, and calculating the nodal and global variables. The

application requires approximately one second (+/- 0.25 second) to do all of the above

using an average computer. The time is displayed to the user in the left corner of the

status bar as shown in Figure A.3. To close the application, open the ”File” menu

and click ”Quit” or use the shortcut (Ctrl-Q). The application settings determine

what to show in the main view of the application. By default, orbit charts shows the

X-Y plot and by default the digital filters are enabled. To disable the filters or to

show the Z-Y or Z-X plot, open the ”Settings” menu and click ”Edit” then select the

options from the drop down menus provided to you. The user can also change the

language setting and the measurement system setting to accommodate international

users. The application stores these settings, locally, on the user machine and loads

them with each subsequent launch of the application. These settings are stored in an

XML file named user.config which is located at ”C: \ Documents and Settings \ User

Name \ Local Settings \ Application Data \ W.S.Tyler \ OfflineVibrationAnalysis-

Software.exe Url xxx \ x.x.x.x” in Windows XP and located at ”C: \ Users \Wisam

\ AppData \ Local \ W.S.Tyler \ OfflineVibrationAnalysisSoftware.exe Url xxx \

x.x.x.x” in Windows Vista and Windows 7. It is worth noting that the Application

Data folder in Windows XP and the AppData folder in Windows Vista and Windows

7 are hidden folder. If you want to view the content of these folders, change the

folder options in the control panel to show all hidden folders. If the user.config file

gets corrupted or if you want to reset the setting to the original values use the ”Reset

Setting” button. The application main view contains eight charts in the orbit panel

and six charts in the FFT/waveform panel. In addition to that the application main

83

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

view has an information panel to display the calculated nodal and global variables.

For users with small screens, the application can hide the information panel and/or

the orbit panel. This can be achieved by opening the ”Window” menu and clicking

on ”Hide Info Panel” and/or ”Hide Side Panel”. If the user wants to return to the

original layout of the application main view then click on the ”Reset Window Lay-

out”. The changes to the application main view layout are temporary and are ignored

when the application is closed. As discussed earlier, the collection of the user defined

data and the measured data is done using a data aquisition unit which was developed

by other graduate students. The measured data which contains the G-Force data sets

are measured by attaching one to eight sensor(s) to specific locations on the vibrating

screen. These sensors uses a built-in accelerometer to measure the acceleration of the

screen in the x, y, and z axes. These sensors then send the measured accelerations to

the data aquisition unit using Bluetooth technology. The unit saves the acceleration

data of each sensor by creating a text file for each sensor in common folder. The unit

adds two extra files to specify the machine and to add any notes that the technician

have entered at the recording time. In order to fill the gap between the output of the

data aquisition unit which is a collection of text files in a folder and the input of this

application which is an XML file, a conversion tool was built and integrated within

the application. To access the conversion tool, open the ”Tools” menu and click

”Convert”. Select the source folder of the text files and destination folder where the

XML file will be created and click ”Apply Conversion”. If the conversion is successful,

a new XML file will created at the destination folder and this XML file can be used

as an input to the application. Finally, to access copyright and version information

open the ”Help” menu and click ”About”.

84

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure A.3: Offline Vibration Analysis Software Main View

85

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure A.4: Offline Vibration Analysis Forms View

86

Appendix B

Online Vibration Analysis Software

The online vibration analysis software is used to manage the user defined data and

the measured data of all vibrating screens. This is achieved by storing these data in a

central database and by allowing the authorized users to access these data. The web

application is built using the C# programming language and can run on any Win-

dows server that has Internet Information Services (IIS) installed and that support

Microsoft .Net 4.0 framework. In order to built a robust and maintainable web appli-

cation, we used the ASP.NET MVC 2 framework to utilize a popular implementation

of the Model-View-Controller design pattern. Also, we used the Entity Framework

4.1 to utilize the Object Relationship Mapping (ORM) technique when accessing the

database. In other word, querying the database for data and updating the content

of the database is done by using the Entity Framework API. The Entity Framework

is database independent and can work with a wide variety of databases including

MSSQL, Oracle, MySQL, and others. In this web application, MSSQL was used as

database server. If you want to change the current database configuration, refer to

the connection string section of the web.config file.

87

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

B.1 Deployment

The deployment process of the application involves the following four steps:

1. Obtain and Unzip the OnlineVibrationAnalysisSoftware.zip file

2. Use an SSH client to remotely create a database account on the server

3. Edit the web.config file to reflect the newly created database information

4. Use an FTP client as in Figure B.5 to transfer the extracted files to the server

Figure B.5: Online Vibration Analysis Software FTP View

The web application connects to the database using the data provided by the web.config

file. When the first request is executed, the web application checks to see if the

database contains the required tables using the entity framework API. If the tables

are not present, the web application will then attempt to create these tables and

populate them with seed data. If your hosting provider does not support creating

tables at runtime, use an SSH client to create and populate the tables manually.

88

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

B.2 User Manual

To access the web application, type its address in the browser and hit enter. The

address was ”localhost” at the development phase and ”macvib.com” at the testing

phase. The online vibration analysis software was built using standard web tech-

nologies (XHTML, CSS2.1, and JavaScript). As a result, all modern browsers are

supported including Internet Explorer, Mozilla Firefox, Google Chrome, Safari, and

Opera. To improve usability, all of the web application pages were divided into six

areas: the login, the banner, the menu, the title, the content, and the footer. Prior

to login, the user can access the public content of the web application which contains

a group of pages that promote the online vibration analysis software and attract

new customers by providing information about the service, the features, the terms

and conditions, the customer support, and the contact information. Once the user

is logged in, the user can access the private content of the web application which

contains a group of pages that allow the user to create, edit, view, delete, and list

data such as companies, plants, machines, records, etc. As mentioned in the previous

chapters, each user of the web application falls in one of the following three categories:

Administrator, Staff, or Customer. Each of these groups has access to a subset of

the web application functionality. In general, customers can access their accounts.

Staff can access their accounts, and any user account. Administrators can do all of

the above and can access and manage other parts of the web application such as

users, roles, companies, plants, machines, records, manufacturers, models, excitation

sources, deck inclination types, etc. Anonymous users trying to access private con-

tent will be redirected to the login page prior to processing their requests. To use the

web application, launch the application in your favourite browser and then login by

89

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

entering your username and password. Using the web.config file, the web application

is configured to direct all users to the dashboard page after the login process succeed.

The dashboard page shows the user some important information such as the number

of machines accessible by the user, and the number of recording per machine, etc.

Moreover, the dashboard shows different information based on the role of the user.

For example, only administrator can see the number of registered users, number of

active users and number of inactive users, etc. The web application has ten database

tables that fully covers the initial business model specified by the sponsoring com-

pany. Please refer to the requirements chapter and the design chapter to get a better

understanding of the application requirements and the business model behind it. The

web application provides as robust way to create, edit, view, delete, and list tuples

from the following tables (role, user, company, plant, machine, record, manufacturer,

model, excitation source, and deck inclination type). The web application provides

the user with a custom menu to list the tables that are accessible by the user based

on the his/her role. To perform a task on a certain table, click on the menu item

that is associated with that table and the listing page will appear. The listing page

will show ten rows at a time and the user can navigate through the rows by clicking

the ”Next” and the ”Prev” buttons in the lower right corner of the table. If the

user wants to edit a certain row, click on the ”Edit” link within the Actions column.

After the task is performed, the user will be redirected to the listing page. Similar

to the edit functionality, to create, view, or delete click on the link and follow the

provided instructions. Finally, it is highly recommended to logout after using the

online vibration analysis software.

90

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure B.6: Online Vibration Analysis Software Text View

Figure B.7: Online Vibration Analysis Software List View

91

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure B.8: Online Vibration Analysis Software Create View

Figure B.9: Online Vibration Analysis Software Edit View

92

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure B.10: Online Vibration Analysis Software Details View

Figure B.11: Online Vibration Analysis Software Delete View

93

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

Figure B.12: Online Vibration Analysis Software Login View

Figure B.13: Online Vibration Analysis Software Error View

94

Appendix C

Bibliography

[1] U.C. Berkeley A. Barth. Http state management mechanism. https://tools.

ietf.org/rfc/rfc6265.txt, 2011.

[2] Sahar Abughannam. Design and implementation of a vibration analysis tool.

Master’s thesis, McMaster University, 2008.

[3] Burrus. DFT/FFT And Convolution Algorithms. Wiley, 1984.

[4] Refsnes Data. Browser information. http://www.w3schools.com/browsers/

default.asp, 2012.

[5] Sayed Ibrahim Hashimi & Sayed Ibrahim Hashimi. Inside the Microsoft Build

Engine: Using MSBuild and Team Foundation Build. Microsoft Press, 2011.

[6] The MathWorks Inc. fit ellipse. http://www.mathworks.com/matlabcentral/

fileexchange/3215-fitellipse, 2003.

[7] Jimmy Bogard Jeffery Palermo, Ben Scheirman and Matthew Hinze. Asp.NET

MVC 2 In Action. O’REILLY, 2011.

95

https://tools.ietf.org/rfc/rfc6265.txt
https://tools.ietf.org/rfc/rfc6265.txt
http://www.w3schools.com/browsers/default.asp
http://www.w3schools.com/browsers/default.asp
http://www.mathworks.com/matlabcentral/fileexchange/3215-fitellipse
http://www.mathworks.com/matlabcentral/fileexchange/3215-fitellipse

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

[8] Charles F. Van Loan. Using the ellipse to fit and enclose data points. http:

//www.cs.cornell.edu/cv/OtherPdf/Ellipse.pdf, 2006.

[9] R. G. Lyons. Understanding Digital Signal Processing. Prentice Hall, 2004.

[10] Microsoft. Ado.net entity framework. http://msdn.microsoft.com/en-us/

library/bb399572%28v=vs.100%29.aspx, 2010.

[11] Microsoft. Msbuild reference. http://msdn.microsoft.com/en-us/library/

0k6kkbsd(v=vs.100).aspx, 2010.

[12] Microsoft. .net framework class library. http://msdn.microsoft.com/en-us/

library/gg145045(v=vs.100).aspx, 2010.

[13] Microsoft. Microsoft asp.net mvc: Getting started. http://www.asp.net/mvc,

2011.

[14] Julia Lerman & Rowan Miller. Programming Entity Framework : Code First.

O’REILLY, 2011.

[15] Jay Parlar. Vibration analysis and vibrating screens: Theory and practice. PhD

thesis, McMaster University, 2010.

[16] Pluralsight. Introduction to asp.net mvc 3. http://pluralsight.com/

training/Courses/TableOfContents/aspdotnet-mvc3-intro, 2011.

[17] The Open Web Application Security Projects. The ten most critical web ap-

plication security risks. http://owasptop10.googlecode.com/files/OWASP%

20Top%2010%20-%202010.pdf, 2010.

[18] Ian Sommerville. Software engineering. Addison Wesley, 2007.

96

http://www.cs.cornell.edu/cv/OtherPdf/Ellipse.pdf
http://www.cs.cornell.edu/cv/OtherPdf/Ellipse.pdf
http://msdn.microsoft.com/en-us/library/bb399572%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/bb399572%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/0k6kkbsd(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/0k6kkbsd(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/gg145045(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/gg145045(v=vs.100).aspx
http://www.asp.net/mvc
http://pluralsight.com/training/Courses/TableOfContents/aspdotnet-mvc3-intro
http://pluralsight.com/training/Courses/TableOfContents/aspdotnet-mvc3-intro
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

M.A.Sc. Thesis - Wisam Hussain McMaster - Software Engineering

[19] Daniel Volante. Vibration based condition monitoring. Master’s thesis, McMas-

ter University, 2011.

[20] Wikipedia. Nyquist shannon sampling theorem. http://en.wikipedia.org/

wiki/Nyquist%E2%80%93Shannon_sampling_theorem, 2001.

97

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Thesis Motivation
	Thesis Objective
	Thesis Contributions
	Thesis Overview

	Background of Vibration Analysis
	Introduction
	Variable Summary
	User Defined Variables
	Machine Inclination

	Measured Data Variables
	Calibrated Data

	Processed Data Variables
	DC Filter
	Butterworth Filter
	Fast Fourier Transform (FFT)

	Calculated Variables
	Nodal Variables
	Global Variables

	Requirements
	Overview
	Functional Requirements
	Offline Vibration Analysis Software
	Online Vibration Analysis Software

	Non Functional Requirements
	Offline Vibration Analysis Software
	Online Vibration Analysis Software

	Design
	Technology
	Offline Vibration Analysis Software
	Online Vibration Analysis Software
	Database

	Implementation
	Frameworks
	ASP.NET MVC Framework
	Entity Framework

	Build System
	Offline Vibration Analysis Software
	Online Vibration Analysis Software

	Security
	Hypertext Transport Protocol (HTTP)
	Authentication
	Authorization
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (XSRF)
	SQL Injection
	Restrict URL Access
	Other

	Testing
	Unit Testing
	Functional and Non Functional Tests
	Mathematical Model
	Database and XML
	User Interface
	External Libraries
	Other

	Conclusion
	Discussion
	Future Work

	Offline Vibration Analysis Software
	Installation
	User Manual

	Online Vibration Analysis Software
	Deployment
	User Manual

	Bibliography

