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A right noetherian p2ime ring R is, by G3ldie's Theorem, a

right crder in a simple artinian ring (: Q is obtained from R by

inverting all non-zero-divisors. O can be described as the quotient

~< -
-

ring of R at a torsion theory, the Goldie torsion theory. ‘If.R'hasf

right Krull @imension one, the Goldie torsion theory is generated by
i

- the class of all simple right R-modules.

In this thesis we develdp é theory of localization for (right)
noetherian prime rings of (riéht) Krull dimension one, based on the
direct decompositions of the Goldie torsion theéry. We characterize

-

these: decompositions, using a natura} partition of the class of all
simple ‘'modules, and show that the qpotient rings at the components
remain right noetherian, prime and of right Krull diﬁensi&n one. Other
desirable properties of these localizations are aeterminedE they Qre
perfect, they preserve the two-sidedness of ideals, and they are well
behaved on the simple modules.‘ We further show that the§ generalize

the localizations at’ glassical semiprime ideals.

. ) - - \y

A criterion is given for a fight‘quotient ring at a component
of a decomposigion of the right Goldie toxsion theory to be also a
left quotient ring atna'component of the lef; Goldie torsion theory.-
We show that this cgriterion is gatisfied if the ring has global

dimension no larger than two.
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Finally, we study hereditary noetherian prime rings in the
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. INTRODUCTION .

The principal aim of this dissertation is the development, of
a suitable theory‘of localization for noetherian prime rings of Krull

dimension one.

-

Localization has long been a powerful tool in the study of

-
.

commutative rings. In recent vears, a more general theory of

localization has been developed for non-commutative rings, based on

.thejwork of Gabriel [131,.Lambek'[23], Dickson [9], Silver [33], and
A ' . .

Goldman‘[lG], among others. The result is a description'of rings of

quotients through the.multifaceted concept of a torsion theory.

' A prime purpose of a localization technique is to facilitate
the analysis af a ring through the-study of "simpler" rings, the
localizations. With this aim, and within the general framework of

torsion theories, Jategaonkar [20], Lambek and Michler [24], and

Mueller [31] have studied the quotient rings at multiplicative sets

_determined by semiprime ideals in noetherian rings. When these semi-

* prime ideals are classical, that is, if the corresponding multiplicative

sets are sufficiently well behaved, the localizations closely parallel
those in the commutative situation. A cornerstone in this programme
has been the description by Goldie [15] of necessary and sufficient

conditions for a ring to be an order in a semisimple or simple artinian

ring. .



",

&AL
-

e
N

-,
5
YS e

e T
' ‘?1,?,;/_‘}* )
2 %

53 gy,

¥

R
..?

“,N.
wFrvy it

gl
ol

Qo ¥
. ‘..::'

o

- oo

I Ak il B

In this thesis we restrict our attention to noctherian prime

rings

of Krull dimension one, and obtain a localization theory which

is an extension of the cqoncept of the localization at a classical

semiprime ideal. We can give some justification for the restrictions

. . . - - . . . <
on the ring. A noetherian prime ring, by Goldie's criteria, is an order

in a simplt artinian ring. The various localizations will be subrings

v

of this simple artinian doIdie quotient ring, and we can therefore
utilize its arithmetic to study them. The additional assumption of
Krull dimension one guarantees that the torsion theory associated with

this Goldie quotient ring, the Goldie torsion thepry, is agenerated by

the class of all simple modules. his property then allaws us to

directly decompose the Goldie torsiol theory. It is this decomposition

which is the basis of our localization technique. Finally, noetherian

prime rings of Krull dimension one provide a natural generalization of

7

the much studied hereditary noetherian prime (HNP) rings, the non-

‘

commutative analogques of Dedekind domains. A comprehensive theory of

HNP rings has been developed by Eisenbud and Robson in [11] and [12], by

!

Kuzmanqvfch in [21] and [22], by Goodearl [17], Lenagan [25] and others.

In the first chapter we give a characterization of the direct

decompositions of an arbitrary torsion theory, Following a description

of some properties of the components of such a decomposition, we use
this characterization to construct a decomposition of the torsion theory
generated by the class of all simple right modules over a right

noetherian ring, a decomposition which refines all others.
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é.( The direct decomposition of the torsion theory generated by all
% . simple modules has been studied by Dicksen [8] q?d Albu ([l], [2]. and
g, 13]) in the case thre all components are qene;ated by single simple
'EE modules. The components of our decomposition are generated by classeé
i; of simple‘modules which are linked by a relaﬁion, denoted "~", which
é - constitutes the obstruction to such an atomic decomposition:
.t <

The second chapter then applieé the above decompoéition to the
Goldie torsion theory over a right noetherian prime ring of right Krull
' dimension one. The quotient rinqs at the components of the decomposition
.remain right noetherian, prime and of right Krull dimension one, and

the embedding of the ring inteo each of these is a flat epimorphisﬁ.

Several other desirable properties of the localizations are given.

Mueller [30] has introduced the concept of a clan of prime

e i D i it e o PPN S LY

. - .3 . . . .
ideals, a minimal set of incomparable prime ideals whose intersection

is a classical semiprime ideal. We show that over a noetherian prime

‘ring of Krull dimension one, the class of .simple modules annihilated by
the elements of a clan generatega component of our decomposition. Thus,

the localization at a component provides a generalization of the

localization at a classical semiprime ideal.

i

In the third chapter we consider, for a noetherian primé ring

of Krull dimension one, the problem:

-

Uhder what conditions is the

ri?ht quotient riﬁg at a component of the decomposition of the right

Goldie torsion theory also a left localization at a component of the

left Goldie torsion theory? We give a technical criterion for this

23
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to occur and show that this criterioh is met if we require the ring to
have ql pal dimension no larger than two. In this case, we can’

w5 I :
qharactexize those components corresponding tc clans as being precisely
those which are generated by finite sets of unfaithful simple modules.
s . & .
Even if the criterion fails, we can show the equality of the left and

-

right quotient rings at the components corresponding to clans, and at

the torsion theory cogenerated by all simple modules not associated with

any clan.

AN
In the fourth chapter we examine HNP,rings in the context of

our decomposition of the'Gold%F torsion theory. Here, the clans are

\
just the cycles (in the sense of Eisenbud and Robson [12].) Using a

result of Lenagan [25], we show that the cycles are precisely the sets

of annihilators of those~-linked classes consisting entirely of

unfaithful simple modules.

$

%

For HNP rings, the decomposition of the Goldie torsion theory

" into components associated with cycles, with an additional component

generated by the simple modules not associated with 'cycles, has already
been studied by Kuzmanovich in [21] and [22]. We do not know if our
theory provides a generalization of this: that is, whether this

additional component decomposes further.

'

We then analyze the ~-links for HNP rings. Orie consequence we
obtain is the preservation of cycles under arbitrary localizati?ﬁs, if

we discard those prim? ideals which are dense.

A final chapter lists, without proof, some examples.
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CHAPTER I~

DIRECT DECOMPOSITION OF TORSION THEORI{ES

A few preliminary remarks on notation and terminology are in

-

-order.. All rings will have identities and all modules will be unitary,

and will be assumed right modules unless stated otherwise. We denote

u

by mod-R the category of right modules eover the ring R. Unless modified

by "right" or "left" an fdeal will be assumed two-sided; noetherian

¥

(aftinian) will mean both right and left noetherian (artinian). A

Y
)

‘ i . > .
regular element is a pon-zero~divisor. E{(X) will denote the injective

hull of a module X. :The reader is refered to [4] for a general

- ; A -
reference on the theory of rings, and to [36] for a reference on module
.
Sy . - . .
categories, torsion theories and quotient rings.
. r
'3

In this chapter'we give a technical characterization of the

direct decomposition of a torsion theory, and use it to describe the

3 f

decomposition of the tofsion theory generated by all simple.modules

over a right noetherian ring. ) N

l. A CHARACTERIZATION ‘I)F THE DIRECT DECOMPOSITIONS

A torsion theory onr the category of right'R}modules can be

described by any qf‘the @ollowiqg:

- . L4 »
(a) a torsion class T: a class of modules closed under

submodules, factor modules, direct sums and extgnsions,

(b} a torsion-free class Fr closed under submodules, products,

L]

5
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essential extensions and extensions,

.

(c) a'torsion radical T( ): a left exact, idempotent sub-
— &

) 5 N

functor of tT® identity functor on mod-R, with T(%/T(X))=O for all

X € mod-R, or . . - Y *
. . . )
(d) a Gabriel filter G of right ideals: See Chapter VI of [36]

[
for a definition; it is there called ‘a Gabriel topology.

' .
The reader is refered to [36], Chapter Vi, fo

Ta:he details of
the relationship between these concepts. 'Note that whag we call a

torsion theory is there refered to as a heredgtary torsion theory.

£

We

list some ‘crycial properties which we shall be using:
'] Ay

(a) %§%R(A,B)=O for all AaeT and BeF. Given either one of T or

F, this relation determines the other.

(b) T(A)eT and A/T(A)eF for all A € mod-R.

(c) 1eG if and only if R/IET. !
. ¢

(d) aeT(A) if and only if annR(a) £ G, for all A € mod-R.

v’

Through an abuse of language, we will ide;Z;ky the torsion
theory with the corresponding torsion class. If a torsion theory is

distinguished by a sub- or :7perscript, the corresponding torsion—f@ée

class, torsion radical and @ab

riel filter will be denoted by F, T and .G

respectively, amended by the same sub- or superscript.

We say that a torsion theory T is generated by a class Ac mod-R

if T is the smallest torsion class containing A, and T is cogenerated
by A if F is the smallest torsion-free class containing A.
|

L
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The set of torsion theories over a ring forms a complete
Q.
lattice with the meet T A T' corresponding to the torsion class T{1 T’

I d
and the join T \/ T' corresponding to the torsion-free class F{\ F'.

, 1is the torsion theory where all modules are torsion; 0 the torsion
theory where gll modules are torsion-free.

N

Definition. If T is a torsion class in mod-R and {76: Sed} is

a set of torsion sub-classes of T, then T = @ E is a direct
. . ded
decomposition (or simply decomposition) of T if A = ZQT5(A) for all aeT.
. ' . Sed
The Ts{GEA) are the components of the decoﬁbosition. (Of course we use

the notation T = Ty @ T, for a decomposition with the two components

Toe and Tl.)ﬁ We call the decomposition trivial if T=T6' for spome S$’eA.
- . —_—

Lemma 1.1y Assume T = & TG and let 'CA. Then V T =06 T .
' A r Y r Y
Proof. Let C be the class of &11 direct sums of elementd of

L) I}. It is easy to check that C is a torsion class: if'X is any

r

submodule, factor module or extension of any modules in C, then

X = Z@ rd(x), and one shows 16(X)=0 if 8gA, so xeC. It follows that
& g
C=V 7T, and so, since C = Ze T_(C) for all ceC, V T = o TY. -
T \ . r Y r Y r
-
Lemma 1.,2. Assume_ T = & T(5 and let P be a partition of A. Then
’ A
T=9 (6 T). - ~ : .
repr Y L
Proof. Let TF(_) be the torsion radical associated with \/ T
T

for each TeP. Let XeT. By Lemma 1.1, Tn(X) = e TY(k), SO
» b " . I“

jo thx). [

TeP ,

q 3

X=Jort (x) =
A‘

A
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Proposition 1.3. Let T be a tofsion theory. T =@ T. if
= A A

#

and only if:
iy T=V TG and
A
i) Vo= Fs,ﬂT for all §7eA.
§#87 p

Proof. Assume i) and ii). Let AET and let Bg = TS(A) for each

SeA. Consider XAGC: A. This sum is direct, since for any §7ed,

- . ‘(A
Y ’ .
‘ Aé,n(ZA)ETG,ﬂ(\/ T
: 5467 5487 :
= Te () (Fg- NT) by ii)
= {0}- »
Now A/J@Ag ¥ (A/Ag.)/(J@As/Ag-) and B/Ag. € \/ T for all §7ch.
. A ° A §#8°
Therefore .
,A/Zems € ﬂ (\/ Ty
A 8§7eh §#8° 4
» = NFe(ID by i)
8§ eh
; - = FAT by 1)
: = {o}.
We-conclude that. A = Z$A5 and thus T = o T,.
\ A A '

. We now assume T =6 T
A n "
i) follows trivially. To prove ii), assume A € FG' T. Then Ts- (R)=0,

g and prove the reverse implication.

and so,- applying Lemma 1.1, we see A € & T,. To.show the other

‘ 8§#8°
inclusion, assume B € \/ TG' Then Hom (X,B)=0 for all XQTG,: if
87687
EeHomR(X,B) then Im§ € {(\/ TG)rw T6,= 0, implying £=0. Therefore BCFS,.
‘ 8#8°

Obviously BeT so the proof of ii) is complete. LJ

« \
»
|

+ \
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Remark. There is another useful characterization of the

decomposition T = Tg”® T; , 'in terms of the associated Gabriel
filters: T =Ty ® Ty if and only if

i) Iy + I, = R for all I,eG4 and 1,eG;, and

ii) for all IeG there exist I4eG, and I;e€G with IO(WII = I

We omit the proof, whhﬂ;is straightforward, as we shall not need this
¢

criterion in the discussion that follows. Some other equivalent

characterizations of this decomposition are given by Golan ([14]; 23.4)

Definition. Given a torsion theory T, ; module B is a T-dense

submodule of A if A/BeT, and a T-closed submodule if A/BeF. A module D
is T-divisible if, for any T-dense submodule B of a module A and any
homomorphism EeHomR(B,D) , there is a -mapping £ in HomR(A,D) extending §

{(We will use the terms dense, closed and divisible if T is evident from

the context.)

Associated with each torsion theory T, there is a full

. C . ’
_ reflective subcategory D of mod-R, the category of torsion-free

divisible modules. The reflector Q( ) is called the T-quotient functor.

For an elucidation and further characterizations of Q(_), the reader is

refered to [36](Chapter IX). We list some important properties:

a) Q(R), which we denote simply by Q, is* a ring, the guotiént
ring or localization of R at T.

b) D is isomorphic to a subcategory of mod-Q: every DeD. has a
\

natural Q-module structure:

c) For any Acmod-R,.we have the inclusions

A/T(A)C (R C E(A/T(A))
<
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with A/1(A) dense in Q(A) and Q(a) closed in E(A/T(R)).

For a theory of localization to be effective, a procedure of

globalization must be available: we must be able to conclude "global"
properties of the original ring from the "local" properties of the
various localizations. In our case, for example, if T is a to;sion
class in mod-R with a non—triéiql decomposition T = & TG one can
easily verify the following: ‘
a) For any Xemod-R, X=0 if and only if Qé(x)=0 for all SeA.
) b) For any R-homomorphism £ + £ is a monomorphism if ana only

if Qé(g) is a monomorphism for all §eA.
(Compare these with the globalization results of Kuzmanovich ([21] and

[221) for the decomposition he gives of the Goldie torsion theory over
an HNP ring.)

L

\

With a few restrictions imposed, we will show that the

'locgiizations at the components of a decomposition have other desirable

properties. As a result of Lemma 1.2 we need only consider

/ \

‘decompositions of the form T =T, e T, . /

Proposition 1.4. Let T

Proof. Since A is in T, , and hence F; , A is a submodule of

Qo (A).. We can thus consider the exact sequence
0+ A+Qo(A) »Qo(R)/A D

Now Q¢ (A)eT since AeT, and Qo(A)/A € Tg. Qy(A) is Ty-torsion-

‘

%
free divisible, so T,(Qq(A))=0. Therefore Qq(A)eT, , so

G

To [::] Tl and let AET]- Then Qo(A)=A.

®
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FINON)

Qo(n)/A € ToNTy = 0 , that is, Qo(R) = A

0

Definition. A torsion theory T is faithful if T(R)=0. (In this
case R’ is a subring of Q.)
3

Proposition 1.5.

Assume T = Ty ® T, where Ty is faithful, and

Then Qo(annR(A)) = ann_ (A).

Qo

let aeT; .

( A is a Qg-module by
Proposiation 1.4.)

Proof. Let I = annR(A)“and J = ann,. (A}.

If I=0 then Qo (1) =0.
Qo
- But P is essentﬁ*} in QJ so aano(A) = 0.

Assume I#0. J{IRCI since A(J[}R)

0. Also, AQy(I) = O,

assume ag=a' for some ack and qeQo(I). As QO(I)/i € Ty, there is a
LeGy with qLCI.

for

Therefore a'L =.0 so a'eTy(A) = O.

Thllls Qo (I J.
We then have the inclusions

JINRCIcCQ(DrRcINR

and hence equality throughout.
P

Now J/(J(IR) = (J + R)/R e To so 3/Qo(I) ¢ To- Since QO(IT.is
‘To-divisible, Qo (1) is a direct summand of J. But also Qq(I) is an

essential R-submoduyle of J: if K is a submodule of J with K(\QO(I) = 0,
then KNR = KN(I)R) = KN (Q ()N R) = 0, which implies K = 0 as R is
essential in R + J. Therefore Qg (I) = J. D

-

Remark. In the situation of Proposition 1.5, 'AeTl is a

faithful R-module ‘if and only if it is a faithful Q¢-module.
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4 The components of a decomposition retain some of the torsion
-
theoretic properties of the original torsion theory, as we shall now

illustrate.

Definition. A torsion theory is stable if the\torsion class

is closed under essential extensions.

.Definition. A torsion theory T is perfect if the canonical

-

embedding of D in mod-Q is an equivalence. In this case Q is a flat

left R-module and Q(_)', when considered a nctoxr on mod~R, is

> s

naturally equivalent'to _ @ 9Q , and hence is e
R

Chapter XI.)

- v4/
Proposition 1.6. Let R be a right noetherian ring and let

T=9 Té be a decomposition of the torsion theory T over R. Then T
A _ _ .
is stable if and only if T6 is stable for all 8€A.

Proof. a) Assume T is stable and let AeTGJ for some 6'§A.

. «
As A is essential in its injective hull E(3), TG(E(A)) # 0 if and only

]

-

if 8=6". Since T is stable, E{d)eT; it follows that E(A)ETG,.

1 t

b) Assume TG is stable for all deA and let BeT.

We know B = ZQTG(B). Now since R is right noetherian, a direct sum of
A .

injective modules is'injective, so E(B) = ZG'E(TG(B)) eT. D
ha)
N

We next show that a faithful torsion theory is perfect if and

only if the components of.a decompasition are all perfect. We first

\
need two preliminary results.
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Lemma 1.7. A torsion theory % is perfect if and only‘if every
0-module. when considered as an R-module, is in F.

Proof. One implication is trivial. To’show tHe ,other, let us
assume that every Q-module is torsion-free (as an R-module) and
consider Xemod-Q. X is a Q-submodule of O(X) since xeF, and thus by
assumption, Q(X)/X, a Q-module, is in F. But we know Q(k)/x e T, It

follows that Q(X) = X, s0 X is torsion~-free divisible for all X in

mod-Q. Hence T is perfect. D

Lemma 1.8. Assume T = Ty @ T}, where T is a faithful torsion
theory, and let T; be the torsion class in mod-Q¢ consisting of all

modules which are in T; as R-modules. Then Q;(Qp) = Q. ) 2

P4

Proof. As an R-module, Q/Qp is in Fo(\f =Ty, and Q = Qo (Q) is
~

A A
a Q¢-modulé. Therefore Q/Q¢ € Ty. But Q is T;-torsion-free divisible

v
since it is Tj-~torsion-free divisible. We can conclude that

Q %\91(90). 0 ‘

Proposition 1.9. Let T be a faithful torsien theory and assume

Z T6: Then T is perfect if and only if Td is perfect for all GeA.
Proof. a) Assume Té'isAperfect for all 6eld and' let X € mod-Q.
- . _ ) - .
hen X is in mod QS fO? all 6eA, so X € Q)Fé F. By Lemma 1.7, T.ls
perfect.
b) BQ Lemma 1.1, we need only consider the case )
T=Tp ® Ty and show that if T is p;rfect then Ty is. Let X be a Qp-

module. By Lemma 1.8, and using the same notation, Q;(Q¢) = Q.

Therefore Q;(X) is a Q-module. Since T is perfect, Q;(X) € F, and so

s
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A// ~ . N
X/Ty(X) € F. It follows that Ty(X) = T(X) and, by the decomposition
f

of‘T, To(X) = 0 : that is, XfFe. By Lemma 1.6, Ty is perfect. _U
\

N

Remark. a) actually proves that if T =2 \/ TG and TG is
A

perfect for each 8eh, then T is perfect. (cf.[l41, Proposition 17.4.)

L4

<«
2. DECOMPOSING THE TORSION THEORY GENERATED BY ALL SIMPLE MODULES

i
[

We proceed to decompose the torsion theory generated by the
class of all simple modules over a right noetherian ring, using the
1
criterion of Proposition 1.3.

/

-

‘Notation. We will denote by S¥# the class of all simple right

R-modules, and by T# the torsion theory generated by S#. 4

Lemma 1.10. a) A module X is in ;he torsion class T generated
by an isomorphism closed class S of simble modules if and only if every
non-zero factor module o% X has-a submodule in S.

b) Every torsion sub-class of T is generated.by a
sub-class of S. '

Proof. a)_ ([36], Chapter VIII, Propositién 3.1.)

b) Let T~ be any torsion sub-class of T, and let S~ be
the class of all simple modules in T”. Assume XeT’. Aas XeT, every
non-zero factor module of X has a submodule in 8. But this module is

also in T” and hence in $~. Thus, every non-zero factor of X has a

submodule in 37, so by a), S” generates T~ . []

We now define an equivalence relation on S# such that the
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the equivalence classes generate the components of a decomposition of TH

.

when the ring R is right noetherian.

Definition. ~ 1s the equivalence relation on S# generated by
the following relations:
i) s~s' if Extp(s,s') # 0, and ~

ii) S~s' if 5 = §',

Remark. Condition i) means that S~ S*' if there is a non-split

exact sequence

O0+S8" +X+5 >0

L4
This is precisely the obstruction to an atomic decomposition of T# in

the sense of Dickson [8].

Notation. We denote by SA (Aeh) the ~-equivalence classes

(~-classes) and by TXXthe torsion class generated by SA for each AeA.

Theorem 1.11. Let R be a right noetherian ring. Then

T =9 T
A

A
Proof. We show that.the hypotheses of Proposition 1.3 are

satisfied:

i) T =\ TA = Obviously \/ TXC:T” . Since TH¥ is generated
A A S
by S¥, and St/ TA , it follows that T# = \/ T\
A A

{

. . 1
iy VT, = Fx,r\T# for all \7eh : Let U,. = \V2 TX . By
A#A” AN
Lemma 1.10, Aeux,if and only if every non-zero factor module of A has a
submodule in S”\\SA, (the complement of S

A" in S#y.



e . —

16

\ Let AE“X’ . If £ ¢ HomR(B,A) is a non-zero homomorphism for
any BﬁTA, ,‘then A has a submodule in S}' , a contradiction. Hence
Hom (B,A) = 0 for all BETX' and thus A is in FA' . Therefore
UA,C:FX,f)7W

To show the reverse inclusion, le§ A€ Fx,f]T” . We will
construct a -sequence (AB)SQV Xfor some ordinal anber V) of sub-
modules of A satisfying, for all B8,1§Vv :

i) Asg AY if and only if R<y ,

ii) ABEUA, ,

iidi) Exté(S,AB) = 0 for all Sann and

iv) Av = A

It is then evident that A ¢ UA, . The sequence is constructed

[ ]
recursively as follows: '

Take Ap = 0 ;,and assume we have constructed AB for all 8<Y,

such that i), ii)and iii) are satisfied,

If Y is a limit ordinal, let A ={Ja . Then a el,.
Y 83y Y
since a torsion class is closed under arbitrary colimits.

’

Ext;(S,AY) = 0 for all SCSX‘ since, as R is right noetherian,

L]

Exté(s,_) preserves directed colimits ([35], Theorem 3.2).

y-1 - If

XY-l = A we are done; otherwise A/Ale €T so, by Lemma 1.10 there is

If vy is not a limit orginal, we can consider X

a module AY , Where AY‘f::AY(:A , and such that AY/Af'l is simple.

N s . # . .
In fact ARy is in S¥\S, - , for assume the contrary. A/By .y E Sy
implies * Ex£;(hyjhy-l' Ay-l) = 0 , so A has a direct summand isomorphic
to A /A ) - But this implies that A has a submodule in T,., a

contradiction. Thus AY/AY-l € S#\\SA‘ . and so Ay € UX' .
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To ‘show Ext;(S,AY) = 0 for all SESA» , we apply the long exact

. . o
sequence in Ext (S, ) (cf. [26], Theorem 9.6) to the exact sequence

0 +A + A ~A_/A > 0
-1 7Ny TR N

We obtain, for each SSSA, , the exact sequence
1 - 1 - 1
Extp(S.A ) Exto(S,A.) ExtR(S,AY/A_Y_l)

b : . 1
But. E S = S A =0
ut ‘ xtR( 'AY—l) 0 by our construction, and ExtR( ,AY/ Y__l)

s _ . 1 p)
since 8 and AY/AY—l are not ~-equivalent. Therefore ExtR(S,Ay) 0

- \A' 3
It is clear that for some ordinal v, A = Av . D ‘
Ve
We conclude the chapter with a proof that TH = o TA is the
A
"best possibie" direct decomposition of TH. .
{
Definition. Let T be a torsion theory with T = @ TG = 0 UY
A r
The decomposition & T6 refines the decomposition @ UY if there is a
A - r

partition P of A such that for each yel there is a AYEP with
UY=GZYT(S

Proposition 1.12,

® TA refines any direct decomposition of TH,
A

Proof. Assume T# = @ UY and let SY be the class of simple

r
modules in UY . Let SESYfand SteS# such that there is a non-split

exdct sequence

0+S +*X+5s'—+0

Since X ii’indecomposable, and is in T# with a submodule in U_ , we
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t have 7(E:U,Y . Hence S'EUY

-4

Assume there is a non-gplit exact sequence

08" *X>5>0,

S'ESY, for some Y'; therefore’by the above, Y =7y . It follows that

Sy

S
.

yerl.

=LAJSA
My

is ~~closed for each vel.

N

3

Thus, there is a partition P of A with

for some AYEP . By Lemma 1.10, uY =V TX =@ TA' for eac

NN

kS g; ’

18
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CHAPTER 11
e

LOCALIZING NOETHERIAN PRIME RINGS OF KRULL DIMENSION ONE

‘l. DECOMPOSING THE GOLDIE TORSION THEORY '

. N AT
\
N 72

, décomposition of the'Géldie torsion theory for a right noetherian prime

y

ing of right Krull dimension one. We then analyze the quotient xrings

In this section we apply Theorem 1.11 to obtain a direct

-~

tithe components.

An ideal I of a ring R is called prime if, for any a,beER,
aRbcI implies a€l or b€I; a ring is‘grime if 0 is a prime ideal.

“

The Krxull dimension, K(A), of a module A is defined recursively

as follows: 4

< 4
i) k(A) = 0 if A is artinian.
ii) x(A) = n if k(A) * n and for any descending chain
. . ADAD...DA.D...
. 1 i

¢

of submodules-of A, K(Ai/Ai+l) < n. for all but finitely many i.

The reader is refered to~[;8] for the properties of K.

We say a ring R has right Krull dimension n, and write °

right-E(R) =n , if R has-Krull dimension n as a right module.~ If the !

" right and left Krull dimenéiqné of R exist and are equal, we call this

common value the Krull dimension of R, and denote it by K(R).

19 ’ ‘ .



B o P
B

AR L IR L PR A S e
TR T TR BT el
G : A

o ok, IR
vty

20

By Goldie's'Tﬁeorem [15], a righf noetherian prime ring R is
a right order in a simple artinian ring Q. This ring Q is the quotient
ring of R at tﬁe Goldie torsion theory, whose Gabriel filter consists of
all essential fight ideals. (cf. [36], Chapter VI, §6.) This
coincides with the. maximal toréion theory, the torsion theory
cogeneiated by E(R). As a further consequence of Goldie's Theorem, R

-~

has finite Goldie dimension: there is a finite bound on the number
of non-zero coﬁponents in a direct sum décompositioé of 'a right ideal.
Also, a right ideal is essential if and only if it coptains a regulaf
element, of R. Finally, we note that the uniform right ideals of R are
mutually sub-isomorphic: each is isomorphic to a submodule of any

~

"other. (A right ideal is uniform if every non-zero submodule is {
!

5
essential.)
Throughout this section R will be assumed to be right

noetherian, prime and with right-k(R) = 1.

Proposition 2.1. ' The Goldie torsion theory over a right
noetherian prime ring R with right-x(R) = 1 is generated by the class

of all simple right modules.

Proof. By [18] (Proposition 6.1), for a right noetherian prime

,

ring:

v

right-k(R) = sup{ K(R/K) + 1 : K an essential right ideall .

As R has right Krull dimension 1, R/K is artinian for every essential
right ideal K. Therefore, every cyclic Goldie torsion module is

artinian. Lemma 1.10 then implies that the Goldie torsion theory is
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generated by an isomorpﬁism-closed class of simple modules. Since R is

right noetherian and prime (and not qimple arfinian): every simple

3
'

rgshﬁ‘module is Goldie torsion. , Therefore, the class of all simplec

right modules generates the Goldie torsion theory. []

-

We collect some consequences for the Goldie -torsion theory from

the results of the first chapter: o

Proposition 2.2.. The Goldie torsion theory over R has a direct
decomposition into components éenerated by the ;J—ciasses of simple -
modules. 6 Every component of every decomposition of the Goldie torsion
theory is generated by -~ -closed class of simple modules. !

Proof. Propesition 2.1, Theorem 1.11, and Proposition 1.12. D

Notation. T# will now denote the Goldie torsion theory, Q# the
Goldie quotient ring, and TX (Aed) the components of the decomposition,

where Tk is generated by the ™ -class SA .

Proposition 2.3. . Any component of any direct decomposition of

T# is perfect and stable.

Proof. TH# is perfect and stable ([36], Chapter VI, .§7 and

)

Chapter XI, §4). Propositions 1.6 and 1.9 then yield the result. D

We can give a complete description of the lattice of torsion
. . -

theories over a right noetherian prime ring of right Krull dimension 1:

Proposition 2.4. The lattice of sub-torsion theories of T# is
. ~ . '
a Bool$an lattice, isomorphic to the power set lattice of S¥.
. ]

Furthermore, T# is the unique co-atom in the lattice of all torsion
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theories over R.

Proof. By Proposition 2.1 and Lemma 1.10, every sub-torsion
theory of T# is completély éetermlned by its simple torsion modules.
Therefore, the lattice of sub—theories of T# is isomorphic to the

Boolean lattice of subsets of S¥#.

To show that 7# 1s the unique co-atom in the lattice- of all
torsion theories, we must show that if T is any torsion class, other
than the torsion class of all modules, then TCT#., Since T# is the
maximal torsion theory, and as such contains all torsion theories for

«

which R is torsion-free, we need only show that T(R) = O .

Assumne, conversly, that T(R5A¥ 0 . Then there is a uniform
right ideal UeT. Since the uniform right ideals are mutually sub-
isomorphic, all uniform right ideals are in T. Because R has finite
Goldie dimension, some finite direct sum of uniform right ideals is

o

essential in R, Thus R has an essential right ideal X which is in T.

But then K contains a' regular element ¢, so R % cR is in T. We d

conclude that T = mod-R, a contradiction. (]

.

We now come to the main result of this section, which describes

. . ‘ L
the quotient ring of R at any component of a decomposition of T¥#.

Theorem 2.5. Let- T# = Ty, ® T be any non-trivial
decomposition of T# over a right noetherian prime ring R of right Krull
dimension 1,.with Ty and T; generated by the ~ -closed classes S; and
S2 respectively. Let {Sl : AeA2} be the partition of S; into

\

r~s -classes. Then:
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)
a) .91 , the quotient ring at Ty , is right noetherian, prime

and right-x(Q;) = 1 ,
b) S2 is precisely the ciass of simple right 0;-modules,

c) {SA : XeA2} is precisely the set of ~ -classes of simple

o
v

)
01-modules, and

d)CyénnR(A» = ann 1(Q1(A)) for every unfaithful right module A.

Q

Proof. a) Since T is perfect, the right ideals of 9 are in

]
a one-to-one, order preserving correspondence with the Tj-closed right

ideals of R. Thus Q1 is right noetherian since R is. Similarly, for

any descending chain of right ideals of.Q;, all but finitely many of

L

the factors are artinian, as this is the case in R. Noting that Q; is

not artinian, as the decomposition was assumed non-trivial, we

conclude that right-x(Q;) = 1 .

L
Q1 is prime, for if I and I' are ideals of Q; with II'

|
>

1
)

then IfIR=0 or I'MYR=0 since R is prime. Therefore I
t

or I' =0, as R is essential in Q; .

b) By Proposition 1.4, if SeS, then Q;(S) = S, so S; is a
subclass of the class of all simple Q;-modules

Let X be any simple right Q;-module. ‘Then X = 0y/M for a
maximal right ideal M olel . Since Q) i; riqht noetherian, prime and
with right Krull dimension 1, M is an essential right ideal.

Therefore M r\R is an essential right ideal of R. Now

R/(MIIR) = (M+R)/M C O1/M

f

so X has a éimple R-submodule S. As T, is perfect, X ¢ F;. Thus
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X e FlrWT# =T, so S e Ta. Tt follows that S = Ql(S) = X .
We conclude that every simple right O);-module is in S;. Therefore S

is precisely the class of simplej 0;-modules. «“

c) To show that Q;( ) preserves the ~-classes in S, we prove

the stronger result: Exté(s,s') # 0 1if and only if Exté

1(S,S') 7 0
for s and 8' in $S,.
‘Let S and S' be in S; and assume Ext;(s,s') # 0 . Then there
is a non-split exact sequence of R-modules:
O0~>8'" +X+S +0
By Proposition 1.4, S =0;(S) , X = 01(X) and S' = 01(S") , so this

is also an exact sequence of Q;-modules, which is obviously non-split

as such.

%

Conversely, if Exté(S,S') # 0 , then there is a non~split
)1

exact sequence of Qj)-modules Y
“~

0+S'>X*>35+0
If this were split as an R-exact sequence it would also be as a

Q)-exact sequence, since Q){_) would preserve the splitting. Thus

.
~

Ext;(S,S') #0 . .
Q y

d) let I = annR(A). Since R is prime, I is essential in R,

and hence A ¢ T#. Now R/I € T# , so by the decomposition,

R/I = 1,/1 ® I,/ , whexe I,/I € Ty and I,/I € T, . Then

~

R/I, =1,/T € Ty so Iy ¢ Gy . _One readily verifies that, in fact,

”

I, = annR(Tg(A)) as I, is the minimal element of G, containing I.

By Proposition 1.5, Q;(I» = ann 1(Tz(A)) . But, as I,/I ¢ T;,

9
01(I) = 01(Iz) = ann (01(8)) . (]

Q{Tz(A)) = ann

Q
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Corollary 2.6. In the situation of the above’ Theorem. O1(I) 1s

an ideal of Q; whenever T is an ideal of R. -

Proof » d) of the Theorem. D

Theorem 2.5 shows that the localizationg at the components of a
decomposition of T# preserve certain crucial properties of the ring,
properties‘which are preserved by the 1ocalizationé at classical
semiprime ideals. (cf. [19], Theorem 9.) In fact, the localizations
at components generalize the locafizatioﬁs at classical semiprime
;deals, as we shall show in the next sé%tion. We note also that
Michler [29] has shown that if R is a fully bounded noetherian prime

ring of Krull dimension one, then every over-ring of R which is

contained in Q# is noetherian and of Krull dimension one.

2. rv-CLASSES AND CLANS

We open with some remarks on the concepts discussed in this
section. An ideal I of a ring R is semiprime if aRaCI implies a€l.

Associated with a semiprime ideal, I over a right noetherian ring R
\
there is a multiplicative set C(I) = {ceRr: € is regular in R/I}.

14
This set determines a torsion theory TI with Gabriel f;lter\

GI = {K a right ideal: r_le\C(I) = ¢ for all rer}. By [24]
(Corollary 3.10), this is the same as the torsion theory cogenerated

by E(R/I). . .

A right Ore set is a multiplicative set C such that for each

x€R and ceC there exist x'eR and c'eC with xc!' = cx' . ‘A semiprime

92]
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~

ideal ? of a (right) noetherian ring is right localizable if C(I) is a

right Ore set. If, in addition, the Jacobson radical J of QI has the

right Artin-Rees property (i.e. for each right ideal K, there is an

n such that Kr\JnCZKJ), then I is called rxight classical. I is called

classical (localizable) if it is both right ard left classical

+
(respectively localizable). We will see that over a right noetherian

prime ring R, where right-gx(R) = 1 , the concepts of right classical

and right localizable coincide.

If R is a right noetherian prime ring and right-k(R) = 1 , the

quotient ring QI at the right classical semiprime ideal I is a

<+
semilocal noetherian prime ring with Jacobson radical QI(I) = IQI.

KQI is an ideal of QI whenever K is an ideal of R, and the non-zero

4

prime ideals of QI are in-one-to-one correspondence with the prime
(i.e. maximal) idéils_of R which contain I. ( cf. [20], Theorem 2.1.)
h

Compare this wit ur Theorem 2.5.

A semiprime ideal over a right noegherian ring can be expressed
uniquely as a finite irredundant intersection of prime ideals. 1If C
is such a set of.prime ideals, with I = (\C, we say that C is (right)
classical if I is. We will use the alternate label TC to denote the

torsion theory TI . By Lemma 2.4, T, is generated by an igomorphism-

C
closed class of simple modules, which we will call SC .

' P

A Elan (cf. [30]) is a non-empty finite classical set of

mutually incomparable prime ideals, no subset of which is classical.
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The reader is referred to [20], [24], [30], and [31] for

references on these classical locatiratiopa,

In this section, noting a one-to~one correspondence between
non~-zero prime ideals and isomorphism types of unfaithful simple
modules, we show that edch clan corresponds to a as-class of simple

modules, over a noetherian prime ring of Krull dimension 1.

Lemma 2.7. Let R be a right noetherian prime ring with

right-K(R) = 1. There‘is a one-to-one correspondence between non-zero
. !

prime ideals of R and isomorphism typé% of unfaithful simple right
modules, associating to each unfaithful simple module its ‘annihilator
and to each prime ideal P the unique (up to isomorphism) sﬁnplé
submodule of R/P.

ggggﬁ.&lThe verification is straigﬂtforward,giveh the
observation that, since right-k(R) = 1 , every prime ideal P is
maximal (or 0), so R/P is a simple artinian ring and thus all simple
lmodules annihilated by P are isomorphic. D’

3 R

-
Lemma 2.8. If R is a right noetherian prime ring and

right-K(R) = 1 , then every right localizable semiprime ideal of R
is right ciassical.

Proof. We use t@g criterion that a right localizable
semiprime ideal I is’riqht classical if, for every x £ E(R/I),
there is a natural number n such that x1" = 0. ([20], Theorem 4.5.)
Since x%R is a cyclic‘Gbldie torsion godule, it has finite composition

length, so QI(xR) is a right QI—module of finite length. But QI is

27
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semilocal having Jacobson radical IQ_ = Q_IQ

annihilates X0 - Therefore xI" = O. D

For the following lermmas, until we specify otherwise, R is
a right noetherian prime ring, right-x¢(R) = 1, and C is a right
classical set of prime ideals with T = (\C. (For Lemma 2.13 and the
results that follow it we must have these conditions on R on both the

right and left.)

Lemma 2.9. Let S be a simple R-module. Then S ¢ TC if and
only if annR(S) £ C.
Proof. Assume annR(S) = P, where Pe(. S is i1somorphic to a
submodule of R/P and hence to a submodule of E(R/I) = & E{(R/P)
C

Thus s e F so S é,TC .

C ’
Conversely, if annR(S) £ C , then S is not isomorﬁhic to any

submodule of E(R/I). Thus Hom (S,E(R/I)) = 0 so Sc¢ TC. []

Definition. Let T be a torsion theory in mod-R. A right ideal

K of R is T-critical if K is maximal among the T-closed right ideals.

Lemma 2.10. Every TC—critical right ideal of R is a maximal

right ideal.

Proof. Let K be any TC

-critical right ideal. Then QC(K) is

a maximal right ideal of Q since T, is perfect.

c’ C
Now IQC is the Jacobson radical of QC .  Therefore QC(I)

annihilat@s QC(R/K) =,QC/QCQK) and so QC(I){]R annihilates R/XK.
Thus ‘I K. '



Assume K' is a maximal right ideal of R such that KCX' .
Then IC.K', so Ic:gnnR(R/K'). By Lemma 2.9, R/K' € FC . Since K

was assumed TC-critical, we conclude that K = K' 1s a maximal riqght

-

ideal Qf R. D

Remark. The above lemma shows that the simple modules
annihilated by elements of C are precisely the simple right Qc—modules:
1f S %s a simple module with annR(S) ¢ C , then there 1s a cycﬁic
module X with SCX&QH(S) and X/S a simple module in Toe Lemma 2.10

then implies that X = S. But any simple 0,-module is the TC—quotient

C

of some simple R-module, and hence the assertion.

Lemma 2.11, Let S and $' be simple R;m les such that
annR(S) e C. 1If Ext;(s3,s) # Q then annR(S y e C .
Proof. “Since éxt;(S',S) # 0 , there is’a non-split exact
sequence
0+S +»X+5S'" +0
X is cyclic; say X = R/K . We then see that annR(S') e C, for

otherwise K would be Tc-critical and hence maximal by Lemma 2.10. []

»

Lemma 2.12. Let X be an R-module of finite composition length.

Then every composition factor of X/TC(X) is annihilated bngp’element
]

of C.
Proof. Assume the contrary. Let:

0= XoC.X)C...C:Xn = X/TC(X)

-

be a composition series such that X

m+l/xm is not annihilated by any

clement of C, and m is minimal with this property for all composition

\



sevies of X/TC(X).
*

-

Now Xm # 0 by Lemma 2.9, since X/TC(X) f rr . We can
N
therefore consider the exact sequence

<> - -
0 > X /X X1 Xy ¥

m “m-1 m+1 /xm >0

m+1
By the minimality of m, annR(Xm/Xm-l) ¢ C . But then, by Lemma 2.11,

the above sequence must split, for otherwise annR(Xm*l/xm) e ¢,

contrary to assumption. The splitting of this sequence, however,
contradicts the minimality of m. We therefore conclude that all

\

composition factors of X/TC(X) are annihilated by elements of C. D

We must here strengthen the hypotheses on the ring R. R will
henceforward be assumed to be a (two-sided) noetherian prime rang
with «K(R) = 1. Note alsc that we use the notation p.dim(A) for the

projective dimension of a module A.

P!

Lemma 2.13. Exté(_,R) is a duality between the categories of
right and left R-modules of finite composition length and projective
dimension one.

Proof. Let X be a right R-module of finite length and ’
projective dimension 1. We will show that X, = Exté(X,R) is a left
R-module of finite length and projective dimension 1, and X, is

naturallv isomorphic to X.

=
Let N

. 0+p—>Rn+x»0
be a projective resolution of X. Applying the long exact sequence.in

ExtR(_,R) we obtain the exact sequence

30
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OIX*T*(Rn)*"‘P*'*X*"O M R
(where A * = HomR(A,R) for any module A). But X e T#, so X* = 0.

Thus p.dim(x,) = 1.

X, is finitely generated since P* is. We will show that X, 1s
left oldie torsion, and it will follow that X, has finite length.

(Fvery cyclic Goldie torsion module has finite length, so every

finitely generated one does.)

Given any 0 ¢ HomR(P,R) , the result will be proven if we can
find a reqular element c€R such that cf extends to a.homomorphism 8

in HomR(Rn,R).

'-ﬂ‘\\\?ow Rn/P € T¥ , so applying the Goldie quotient functor Q# (),

we obtain ©f = O#(8) ¢ Ho A(QH(P),08) , and OH(P) = o4 (RM) = (om"

"o
Thus 6# is determined by left multiplication by an element (qi)l:l in
(Q#)n. Take ¢ gq be a common left denominator of the qa (i=1l,...,n),

which exists sifice R is an order in Q#. 1If we restrict cb¥to R, we

have the required extension 8 of c0.

Finally, X is naturally isomorphic to X since P#** = P and

L2 ]
(RM)* = R na*lly. 0

L}
Notation. Henceforward we shall denote Ext;(A,R) by A, for any

-

R-module A. v -

Remark. A similar duality was utilized in other contexts by

Auslander and Bridger [5], Cohn [7], and Zaks [38].
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Notation. If C is a clan, we will denote by SE the class of all

simple modules annihilated by elements of (, and, as usual, by T7

C

the torsion theory generated by S5 , with corresponding quotient

¢

functor Q7 . By Lemma 2.9, §7 is the complement of S

¢ C C

the complement of T. in the lattice of sub-torsion theories of T#.

¢

in S# and TE is

Lemma 2.14. Let C be a ¢lan. Let X be a right R-modulec of
finite length and projective dimension 1, and with every composition
factor annihilated by a prime ideal in C. Then every composition
factor of X, is annihilated'bQ a prime ideal in (. ‘

Proof. Let I ={1( and let

0+P-»Rn+X->-O
be a projective fesolution of X. We may, in fact, assume'that P is
a submodule of R. ‘We must show that there is.a‘natural number m,
such that for any 8 ¢ Han(P,R) and any pcIm,.thefe is a homomarphism
8¢ ﬁomR(Rn,R) extending pg. This is précisely the condition tgat "
annihilates X, = P*/(Rn’*, and thus it implies Ppat every composition®

*

factor of X, is annihilated by an element of C.

n
For any ) ¢ HomR(P,R) there exists Y~ ¢ HomR(R ,QE)~ such

'that the diagram

o S 1O
o]
e\
A Y

-
-~

commutes, since Rn/P = X g TE and Qé is Té-divisible. In particular,Q

any pf can be extended by pg”~.
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Now consider the commuting diagram

» .

9

P ———— R

L

where GC = Qc(e). QC is a semilocal noetherian prime ring, K(QC) = 1,
and the Jacobson radical of QC is .QC(I) = ;QC . QC(P) is a projective
right chmodule and QC(X) = Q?/Qc(f) is a right chmodule of finite
length and projective dimension 1. As QC 1s semilocal, all simple
Qc—hodules are unfaithful, so Qcﬁlff annihilates QCKX) for same k. We

can therefore apply Lemma 2.13 to obtain that Exté (QC(X)'QC) is a
. - “C
left Qc-module of finite length and projective dimension 1, and hence

there is séme m such that QC(I)m annihilatesuExté (QC(X),QC). But

= n

this implies that for every pel' there is a’ 8, € HomQ (QC,QC) such

N ) c
that the diagram . ’

Pee
Q. (P) ———Q
L
e
n
. Qc ) .

commutes.

Let § be the restriction of éC to R® and note that po is

simply the restriction of pec to P. We obtain the commuting diagr;m:

i
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We have thus extended p8 to a homomorphism p8~ € HomR(Pn,oé)
and to a homomorphism 0 e HomR(Rn,QC{. Since QC(\QE = R, as TC
and Té are complementary in the lattice of sub-torsion theories of T,

we have an extension of pf to some 5 € HomR(Rn,R).

'
.

This can be illustrated by the following commuting diagram:

where § exists. since-R is 'the intersection of QC and Qé in Q# (and

0pf” = a6 sincé both extend to Q# (p o). D

i

Lemma 2.15. ‘Let C be a clan and let X ¢ TC be a right
R-module of finite length, 1If p.dim(k) = 1, then p.dim(x/TC(x)) = 1,

252253 Let X'' = X/TC(X). We first show that QC(X') = X'

As X' ¢ FC , we can cénsider QC(X')/X' £ Té . If QC(X‘)/X'
is non-zero then it has ; simple submodule Y;X' € T. . By Lémma 2.9,

¢

annR(Y/x'j £ C . But by Lemma 2.12, every composition factor of ¥/1,(Y)
is annihilated by an element of C. Now rp(Y)r‘X' = 0 , and X' is
essential in Y, so tc(Y) = 0 . Thus annR(Y/x') ¢ C , a contradiction.

"It follows that X' = QC(X')-

Now considgr an exact sequence:
n
O+K+R +X'>0
Since X' = chx') = QC(X), X' has projective dimension 1 as a Qc—modulq

™ ®

and hence flat dimension at.most 1 as an R—modﬁle (as Qc'is a flat

[N
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R-module). Therefore, K is a_finitely generated flat module. As

R is noetherian, K is projective. Consequently, p.dim(x') = 1.

But X' is Goldfe torsion, so we must have p.dim(X'} = 1. D

Lemma 2.16. Let X be a (direct sum ) indecomposable right
module of finité length and projective dimension 1. If some
composition factor of X is in 36 then” X is in TE._

Proof. Let X' = X/Tp(X) . X' € Té by Lemma 2,12, and
X' # 0 since some composition factor of X is in Sé . By Lemma 2.15,

<
p.dim(X') = 1. We will show that X, = X . The result will follow,

since then X = X'.

Consider the exact sequence:
0 > Tp(X) * X + X' + 0
Unless TC(X) = 0 , in which case X = X', p.dim(TC(X)) =1 . We
can apply Ext;(_,R) to obtain the exact ‘'sequence of left modules:
0+ X, *X, ~ TC(X)* + 0
1if TC(X)* =0, we are done. Otherwise, let C.= TC(X)* . Ve show

that C is in Tz , the left torsion class determined by C.

]

Let C/Tg(c) C' . By Lemma 2.12, every composition factor
of C' 1s annihilated by an element of C. By Lemma 2.15, p.dim(C') =1
so C, is isomorphic to a submodule of C, = TC(X) and hence C;é¢ TC.

This contradicts Lemma 2.14 unless C, =0 . Hence C' =0 and C¢ Tg.

By Lemma 2.12, every composition factor of X*/Tg(x*) is

annihilated by an element of C. Therefore every composition factor of
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X/ (X, ® f%(x*)) is annihilated by an element of (. But
X,/ (X, ® %%(x*)) is an epimorphic image of C, and as such is in

T% . By Lemma 2.9, it follows that X, = X; ® T%

% - U

(X,) . As X was

assumed indecomposable we must have. X,

1

Theorem 2.17. Let R be & noetherian prime ring with g(R) =1
and let C be a clan in R. The class SE of all simple modules

annihilated by elements of C is a m-eqguivalence class. b
Proof. Let 'S ¢ Sa and suppose
0+>S+X+S'>+>0

is a non-split exact sequence, where S' is a simple right R-module.

) SRS

Lemma 2.12 implies that S' € SE .

Now, suppose é?
i)
0+s"+Y+S >0
is a non-split exact sequence, with S" simple. Since Y is cyclic,
Y = R/K for some essential right ideal K. But then K contains a
reqular element c, and thus Y is an epimorphic image of the cyclic
Goldie torsion mo@ule R/cR . Since Y has a uniqﬁe.non—zero proper
submodule S", the}e must be some indecomposable summand Z of R/cR
which has Y as an eéimorphic image. p.dim(Z) = 1 since p.dim(R/cR)=1.
IAs Se 36 ' we‘can apply Lemma 2.16 to conclude that 2 € T, , and

¢

hence S" ¢ SE . We have thus shown that Sé is ~/-closed.

Now, QC is a semilocal noetherian prime ring, K(QC) =1
and the prime ideals of QCAare precisely the PQC for PeC. ([20],

Theorem 2.1.) 1In fact, ( = {PQC : PeC} is a clan in Qc , for if I

&
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is any classical semiprime ideal of OC containing rnp , then INr

is a classical semiprime ideal of R which contains I, contradicting

that C is a clan unless I = IQC (where, as usual, I = {]C).

We note that since SC'and Sé are ~ =closed, T# = TC ® Té .

Thus SE is precisely the class of simple right QC—modules, by

Theorem 2.5.

‘pefine the relation ~9 on the prime ideals’ of QC by:
PQCA;P'QC if there exist simple right modules S and S§', annR(S) = P,
annR(S') = P', and a non-split exact sequence of Qc-modules
0+S +X+58'"=>90
{cf. [31], Proposition 2). By [31], Theorem 5, as QC is a fully bounded
noetherian ring, C is generated under ~» by any of its elements. Thus

Sé is a ~s-class of Qe~modules.

But if we have a non-split exact sequence
0+S+>X+S" +0
of Qc-modules, this must‘also be a non-split exact sequence of R-modules:
otherwise, the quotient functor QC(_) applied to this sequence yould

induce a splitting as a QC~exact sequence. Thus SE is a s~vrclass. D

We isolate the following:

Corollary 2.18. For any clan C, T# = TC @ Té, and every

Goldie torsion module X has a direct sum decomposition X = xc ® xé

where every simple subfactor of XE is annihilated by an element of C,

and no simple subfactor .of Xc is. D
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We can obhtain a partial converse of Theorem 2.17,

Proposition 2.19. Let S be a ~/-class consisting solely of

unfaithful simple modules, and containing only finitely many
isomorphism types. Then C = {annR(S): seS} is a right classical

set of prime ideals.

38

Proof. Let I = r)C and recall that C(I) is the multiplicative

set associated with I. By [20], Theorem 3.9,\5 is a right classical
semiprime ideal if C(I) operates regularly on E(R/I).

L 3
Let x € E(R/I). xR is a cyclic Goldie torsion module and so

has finite length. Thus, there exist submodules X'C XCE(R/I) such
thatOsx € X\X' and X/X' is a simple right module. But X/X' € S
since E(R/I) is in the' (stable) torsion class generated by S. BAssume
annR(x/x') = P. Then X/X' is isomorphic to a submodule of R/P and
hence to a submodule of R/I, since E(R/I) = ® E(R/P). Since C(I)

. pcI .
operates regularly on R/I, it operates regularly on X/X'. Therefore

xc ¥ 0 for allpsx € E(R/I) and c¢ € C(I). Thus C(I) operates

regularly on E(R/I). [] .

In Proposition(3.8, we will show that with some additional
hypotheses (satisfied, for example, if the ring has global dimension

no larger than 2), C is, in fact, a clan.



CHAPTER 111

TWO~SIDED QUOTIENT RINGS

1. A CRITERION FOR TWO-SIDEDNESS

Throughout this chapter R will be assumed to be noetherian,
prime and of Kr*ull dimension 1. We will show that in certain cases,
Ext;(_,R) provides a corresp&néence bet&gen right and left ~-closed
classes of simple modules in such a way that the corresponding quotient
rings are identical. In particular, we show that this is true for /
those n -classes corresponding to clans, the ~ -closed class of all
simples not associated wiéh clans (and the complements of these classes),
and for all ~-~classes if the global dimension of R is no greater than

2. The use of Ext;(_,R) to provide this correspondence is hased on a

suggestion by B. Mueller. The correspondence is defined as follows:

.pefinition. Let S be a ~-closed class of simple right (ox

-

left) R-modules. Define AS to be the class of all right (left) modules
of finite composition length, préjective dimension 1, and with every:
composition factor in S. We then define S° to be the class of all
simple composition factors of X, = ExtE(X,R) for all X in AS .

- -

(Recall that by Lemma 2.13, Ext;(~,R) provides a duglity'between the
categories\i;/iighj:?nd left modules of finite length and- projective
dimension 1. - M

39
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Lemma 3.1. Let S be a ~-closed class of simple right modules:
For any S € S there exists X ¢ AS such that § is an epimorphic
image of X. X can be chosen indecomposable.

Proof. é ~ R/M for a maximal right ideal M of R. M-containé
a regular element ¢, so S is an epimorphic image of Y = R/cR , and
p.dim (¥Y) =.1,. .But S must be an epimorphic im;ge of some indecomposable

direct summand X of Y. Since S is ~ -closed and X is indecomposable,

all composition factors of X are in S. Thus X € AS . D

Lemma 3.2.° Let S be a ~ ~closed class of simple right modules.

1f S° is ~ -closed then S 8. -

Proof. By Lemma 3.1, for any S€S there is a X in AS with S as

an epimorphic image. S is a composition factor of 'X,, ® X so

ses™. [

Lemma 3.3. Let $; be ; ~ -closed class of simple-right modules
such that S? is ~s-closed and S, = S?o, and let S, be the complement
6f S; in S¥. Then SS is Al-closea, S, = $3° and Sg'is the
complement of S? in {S#)°, the class of all simple left modules.

Proof. We first show that any simple left module is in either
S? or S5. Let S be a simplé left module. Then it is an epimorphic
image of some indecomposable left module X of finite length and
projective dimeésion 1. as X is inéecomposable, X, "is, so either
X, € AS1 or X, € Asz . Therefore S, as a composition factor of

Ce s o o
X = X,,, is in either S or S, .

oN o© . PRI
Now 31(132 = ¢, for assume S is in this intersection. Then
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S is a composition factor of X, for some indecomposable X ¢ Aq

?
T
O . P . s s
But, as 5) is ev-closed and X, is indecomposablc, every composition

L o’ L . C
factor of X, is in Sy. This implies X ™ Xy (/ASI , a contradiction.

$

Thus S} and S? are complementary subsets of (S#)°. It follows that,

. o, o .
since Sy is ~/~closed, S; is.

It remains to show that S; = S?O. By Lemma 3.2, it suffices

to show that S?°t:sz . Let S ¢ S§°. Then S is a composition factor
of Y, for some indecomposable Y e-ASo . Y, is indecomposable, so is
. . 2

in either ASl or AS2 , as S; and S, are complementary n/-closed

. . o ‘s
classes. But if Y ¢ AS , then, since §; = Slo, every composition
1

factor of Y& v is in §,

. » a contradiction. Therefore Y, € A

S
(

Lemma 3.4. a) If C is a clan and 36 is the class of all

and hence S ¢ S, . D

simple right modules S where annR(S) is in C, then (Sé)o is the

~ ~-class of all simple left modules S' where annR(S') is in C.

¥

Furthermdre, (S&)°° =Sg . . el

b) If S” is the class of all simple right modules

.

S where annR(S) is in no clan, then (S”)° is the A -closed class of

-

all simple left modules S' where annR(S') is in no clan.. Furthermore,

(871°° = g~.

Proof. Theorem 2.17, Lemva 2.14 and Lemma 3.3. E

Theorem 3.5. Let S be a a/~closed class of simple right
o oo . o
modules such that S~ is o/~closed and S = S, and let Q and Q  be

L)
the quotient rings at the torsion theories generated by S and S°

41
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‘,\"“f-.,

respectively. Then QO = Qo (as subrings of Q#).

: : . . o
Proof. It is sufficient to show that 0 MRO /r = 0, for
.. o ., .
assume this is the case. Then, for any q£Q and ge€0 there exist rcR
and q'eQ such that q'r = q and rqg € R. Therefore, qqg = q'rqp ¢ Q.

If we take, in particular, q = 1, we obtain that q, is in Q. Thus

QOCQ- By symmetry, QCQO so Q=Q°.

To show that @ QRQO/R-= 0, we first observe that the left

R-module QO/R is the direct limit of its submodules of finite length

and projective dimension 1: if X ¢ QO/R, then x = rc 1 where c is
a8 regular element of R. Thus X ¢ Rc-l/R,'which has finite length and
projective dimension 1. But RX ¢ To, the torsibn c¢lass generated by

S°, so % ¢ T°4Rc-1/R). Now To(Rc-l/R)‘\has finite length, projective

’

dimension 1 (as it is a qrrect summagg of Rc_l/R), and is a submodule

<

of 0°/R (as Q°/R = P (Q#/RI D tO(Re /R ).

@
As a result, we need only show that. Q @RX = 0 for all

X € Aso . But, for any such X, X, € AS and X x X,,. We must thus

show that 0 @Rsxté(Y,R) =0 for all Y ¢ AS .

-

The proof will be complete if we know that
0 GRﬁxt;(Y,R) = Ext;(Y,Q) ‘
for assume this.is the case and let
0+Q » A + Y+ 0
be an exact sequencé with Y ¢ Aé . Since Y ¢ T ;nd 0 is
T-divisible, this sequence split$. Thus Exté(Y,Q) = 0 and hence

the result.
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.complement of S* in S#. Then Q' = @1° ana 9" = (@"°.

43

s

All that remains to show is that, for Y ¢ AS

0 @RExt;(Y,R) ~ Ext;(Y,Q),
Take a projective resolution

O+ Py =+ Py >+ Y +‘0
of Y. Applying the l;ng exact sequence in ExtR(_,R). we obtain
»the exact sequence:
<
0 + Hom_(Po,0) % Hom  (P1,Q) * Extl(Y,0) » 0

§§ [26], Proposi;ion 4.2, '

Q ERHomR(Pi,R) = HomR(Pi,Q) (i=0,1)
via the isomorphism 1y with 1i(q @ 8) = qf. Noting that the
monomorphism f: Q @RHomR(Po,R) + 0 ERﬁomR(Pl,R) induced by Ii is just

the map Q @ o, we obtain that Ext;(Y,R) is the cokernel of Q & a.
-

Therefore it is iscmorphic to Q,QRExt;(Y,R). D

Corollary 3.6. Let S D& as in Theorem 3.5 and let S” be the

complement of S in S#. Let Q' and (Q')O be the quotient ringsat the
torsion theories generated by S~ and,(S‘)0 respectively. Then
Q' = (@")°,

Proof. Lemma 3.3 and the above Theorem. D

Corollary 3.7. ‘a) Let C be a clan. Then (in the terminology

of Chapter II, 2) QC = (QC)o and Q& = (Qé)o.
b) Let S” be the class of all simple modules

not annihilated by any element of any .clan, and let S be the -

Proof.  Lenma 3.3, Lemma 3.4 and the above Theorem. [
‘ "
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In the situation of Theorem 3.5, we can strengthen

L 3
Proposition 2.19.

Proposition 3.8,

Let S be a ~s~class of simple modules

containing only finitely many isomorphism types, and such that every

S €S is unfaithful.

1f S° is ~-closed and S = Soo, then

C = {annR(S): seS} is a clan.

Proof, With Q and Qo defined as in Theovem 3.5, O = Qo,
a noetherian prime riné of Krull dimension 1. By Proposition 2.19,

Cis a right classical set, and by Lemma 2.9, O is the quotient ring

of Rat C. Thus Q is a semilocal ring.

Now, by Theorem 2.5, So is precisely the class of all simple
left Q-modules, and hence contains only finitely many isomorphism

types, since Q is a semilocal ring. Applying Proposition 2,19 again,

we obtain that C is a left classical set of prime ideals. Thus C
is a classical set. But S is a ~-class, so by Theorem 2.17,

¢ must
be a minimal classical set: 'that is, C is a clan.’ D
2. GLOBAL DIMENSION TWQ
‘We will denote by gl.dim(R) the global dimension of R. We

retain the assumptions that R is noetherian, prime and of Krull
dimension 1. It will be shown in this section that the hypotheses of

Theorem 3.5 are satisfied by every ,rv-closed class if we impose the

condition that gl.dim(R) S 2.

44
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Lemma 3.9. If gl.dim(R) = 1 then every Goldie torsion module
has projective dimension 1.

Proof. A Goldie torsion module cannot bhe projective and thus

_— L]

must have projective dimension 1. D

Lemma 3.10. If qgl.dim(R) = 2 and X is a Goldie téésion
module of projective dimension 1, then every non-zero submodule of X
has projective éimension 1.

Proof. Let Y be a non-zerc submodule of X. Y cannot have
projective dimension 0, since it is Goldie torsion.. Applying the
long exact sequence in ExtR(_,A), for any module A, we obtain the exaét
sequence:

Ext;(X,A) - Ext;(Y,A) -~ Ea;t;\(x/Y,A) '

Exté(x/Y,A) = 0 since .gl.dim(R) = 2, and Ext;(x,h) = 0 since
p.dim(X) = 1. ‘Thus Ext;(Y,A) = 0 for all modules A, and hence

p.dim(Y) = 1. ]

Lemma 3.11. Assume gl.dim(R) = 2. Let S be a ~-class of
simple right (or left) modules and let S ¢ §. If S is an epimorphic
image of both the indecomposable modules X and X', where X and X' are
in AS sthen all composition factors of X, and X, are in the same
~-class,

Proof. Let the following diagram be a pullback of the

epimorphisms: ¢
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Then Y is isomorphic to a submodule of X ® X', so by Lemma 3.10,

p.dim(Y) = 1. Applying the duality Ext%(_,R) we obtain the

ronomorphisms v X, Y and \UHERD S SR . S

We will assume that X, and X} have composition factors in
different ~ -classes and obtain a contradiction. As X, and X, are
indecomposable, if they contain composition factors which are not
r~-gquivalent we have the induced dbnomorphism:'

' N
VBV, X, ® X, * Y,

Applying the .quality again we obtain the commuting diagram:

N

where £ is the epimorphism (V*Qv;); , and 7 and w; are the projections.
But then § must simply be the embedding ¢ of Y into X & X', as

m'§ =n'c and 1§ = wg. We conclude that Y = X & X', which
contradicts the construction of Y. D

Lemma 3.12. Asgsume gl.dim(R) £ 2 and let S and'S' be simple
N\ .

right (left) R-modules such that ExtR(S',S) # 0. If X and X' are

.indecomposable modules g% finite léngth and projectiVe dimehsion 1,

such that S is an epimorphic image of X and S' is an epimorphic image

of X', then all composition factors of X, and X| are ~i-equivalent.
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Proof.  Let
0+S+A=S +0
be a non-split exact sequenice. Since A is cyclic with unigque simple
submodule £, we can find a module X", indecomposable, of finite length
and projective dimension 1, with an epimorphism V" € HomR(X",A).
Then $' is an epi_morphic'image of X" so, by Lemma 3.11, all composition

factors of X, and X, are ~ -equiyalent.

Consider the following.pullbéck diagram:

xg;______# XII

vo vll ,
§ —————> A

-

&
By Lemma 3.10 (or Lemma 3.9 if gl.dim(R)'= 1), p.dim(X ) = 1. Now

some indecomposable summand Y of X¢ maps epimé}.'phically onto S. By

 Lemma 3.11, all composition factors of ¥, and X, aré ~-equivdlent.

L

But YCX" , so Y, is an epimoxphic image of X{. Therefore, all

2

composition factors of Y, and X are n~-equivalent, and hence this

is so for all composition ‘factors of X, and X,. D

-

Proposition 3.13. Assume gl.dim(R) 5 2 and let S be a

right a-class. Then So is a le'ft ~-class and S = SOQ.

Proof. Let S and S' be in S°. . Then S and S' are composition
factors -of X, and X respectively, for some X and X' in AS . As a
result of Lemma 3.12, all composition factors of X, and X, are in‘the

’ sam.e' N-efquivalence class. In.particular, S~S'..

*
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It remains, to show that,So is ~-closed. Let T ¢ So, where,
say, T is a composition factor of z, (2 € AS)‘ Then T is an epimorphic

image of some submodule Y of'z*. By-Lemma 3.10, p.dim(Y) = 1. Assume

that for qomé simple left module T', Ext;(T,T') # 0 or

Exté(T{,T) # 0. Let T' be an epimorphic image of the indecomposable

module Y' of finite length and projective dimension 1. Then, by id

_Lemma 3.12, all composition factors of Y, and Y, are 7V -equivalent.

o
Thus Y' € AS and so T' € S°. We conclude that S° is a ~ -class.

By Lemma 3.2, SO%DJS , so since 8% js a axclass, $°° = 8. []

Corollary 3.14.

If R is a noetherian prime ring with Krull

dimension 1 and glabal dimension no greater than 2, .then the right

quotient ring at the torsion theory generated by a ~-closed class S
is also a left quotient ring at the torsion theory generated by_the
left ‘a~closed class S°. N "

Proof. Theorem 3.5 and the above Proposition. []

We pose the question: To what extent can the hypothesis

gl.dim(R) S 2 be weakened?
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CHAPTER 1V

HEREDITARY NOETHERIAN PRIME RINGS

1. ~-CLASSES AND CYCLES

Hereditary noetherian prime (HNP) rings are the non-commutative
|
analogues of Dedekind domains. 1In this chapter we present some results

on HNP rings in the context of the theory developed in the preceding

chapters.

We must first mention some of the key concepts involved in the
study of HNP rings. For an ideal I of the HNP ring R we define:
0, (1) = {geQ#: IqcI} and

OE(I) = {qu#:(qIC:I}.

‘A cycle is'a finite set {Ml,:..,Mn} of maximal ideals , where

. X
Qm(Ml) = Qc(Mz), “e f o&(Mi) = oz(Mi+1), oo s On(Mn) = oz(Ml)‘

A cycle has an alternate description as a minimal set of maximal ideals
whose intersection is an inve;tible ideal. (An ideal is invertible if
II* = (I*)I = R where I* = {qeQ¥: qICéR}.) The concept of a cycle-

was defined and studied in [12]. ﬁy Theorem 11 of [30], the cycles. :

are preciqely the clans.

Lenagan [25] has shown that for a (right) bounded HNP ring, .

evefy non-zero ideal contains an invertible ideal, and.hence every

Y

maxifal ideal is in a cycle. (A ring is right bounled if every

49 T
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essential right ideal contains a non-zero two~sided ideal.)

We also note that an artinian HNP ring is simple artinian.
Throughout this chapter, R will be a non-artinian HNP ring. As a

consequence, R has global dimension 1.

We open by presenting some well known results which allow

us to apply the results of the preceding chapters to HNP rings.

Lemma 4.1. A non-artinian HNP ring has Krull dipensioh 1.
‘Proof. Let R be an HNP ring. By [37], Theorem 4, R/K is
artinian for every essential right ideal K. Therefore, by [18], ;

Proposition 6.1, the Krull dimension of R is 1. D

Proposition 4.2. In an HNP xing the clans are precisely the

cycles.

Proof. [36], Theorem 11. D

)

Corol%éry 4.3. Let R be an HNP ring and let {Cy: Yel'} be
the seé,éf cycles of R. Théq every Goldie torsion module X has a
decompositipn: X = ? XY ® 3' where every simple‘gubfactor of x_Y is
annihilaﬁed by an element of C& , and no simple subfactor of X' is
annihilated by any element of any cycle.

Proof. This follows from Theorem 2.17, which can be applied

on the basis of the above Proposition. D} -

This decomposition’has been demonstrated by Kuzmanovich ([22],

Theorem 3.7),'togetﬁer with a corresponding globalization.

50
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The localizations at the components of a decompasition of

the Goldie torsion theory are again hereditary. 1In fact:

Proposition 4.4.

ring Q#, and let R' be any over-ring of R contained in Q#.

Then
R' is HNP, and is the quotient ring of R for some torsion theory.

Further, every torsion theory over R is perfect.

Proof. [17], Proposition 2 and Theorem 5, and [36},

Corollary 3.6 of Chapter XI. U
s .

In the HNP case we can further strengthen Propositions 2.19
and 3.8.

{

t

Proposition 4.5. Let R be a non-artinian HNP ring and let

S be a rv-class of simple right medules containing only unfaithful}
modules.

Then § has only finitely many isomarphism types and
{annR(S): SeS} is a cycle.

s

Proof. Let Q be the quotient ring of R at the torsion theory

cogenerated by S. By Theorem 2.5, S is precisely the class of simple
right Q-modules, and all \S € § are unfaithful as Q-modules. Thus

Q is right bounded, so by [QS], every maximal ideal of Q is in a cycle.
Therefore, since § is a as-class, {aQnQ(S): Ses} is a cycle of Q,

as a result of Theorem 2.17. But then S contains only finitely many

isomorphism types, so by Propositions 3.8 and 3.13,

I

{annR(S): SeS} is a cycle in R.

For HNP rings, the nature of the s~ -links between simple ‘

modules annihilated by ideals in\s.cycle can be described explicitely,

Iet R be an HNP ring with Goldie quotiént'

51
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We must first strengthen our notation.

Definition. Let S and S' be simple right modules. Then

S~)S' if Ext;(s',s) # 0.

Proposition 4.6. Let C be a cycle and let S = {Sl,...,sn}

be a set of isotypic representatives of the class of modules
annihilated by elements of C."The;} under a suitable reindexing,

S. NS . ~V...~S ~»>S
2 n

1 and these are the only A~y relations between

l,
elements of S. Further, if Pi = annR(si) for i=1,...,n, then
on(Pi) = OL(Pi+l) (i.e. the ~y correspond to the links between ideals
in a cycle as defined in [}2].)

Proof. Noting that, by [IQ], every proper factor ring is
serial, we determine that there is a unique generalizea composition

series of EKSi):

OC$1C ch_X = ...CE(Sl)

2
where xk+l/xk = xj+1/xj if and only if k = j(mod n). This ?as been

constructed in [34], and follows from the facts that xi has a unique

composition series and E(S)/Xi =~ E(X,

1+l/Xi) for Also (from

[34])), s, is a composition factor of E(S,) for all i=1,...n, again by
the uniseriality of xi, since all Si are r-linked and there are only
finitely ﬁany of them.

<

It follows that Slaqxl/sl = 82 and inductive

Sia1 % Xy/Ry gm0 Ry ) /Xy B 800 \ .
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It remains to show that the ~»-links correspoﬁd to the links

between the associated maximal ideals. Let Pl = annR(Sl). Then, by

ﬁ2], Corollary 5.4, Rl = OA(PI) is, a minimal over-ring of R %n o#.

ol - . . , ar P Y
) Further, R ¥R{Pl) , the idealizer of Pl in Rl dﬂ? Rl/ 1 is
semisimple with all simple summands isomorphic. Let Y. be a

1 »
\

representative of this isomorphism class. Then Sl is an R-submodule

of Y. N

Now Rl is a localization of R at some torsion theory, which,

" since R1 is minimal, must be generated by a single simple module.

But®this single simple module is isomorphic to a submodule of Rl/R

and hence it must be Yl/s1 {by [32],‘Corollary 2.4), which, by

uniseriality, is just 32' We thus obtain the non-split exact sequence:

. (0 s1 -+ Y1 -+ 82 + 0

We know that Rl = OE(P2) « for some P2. Now P2P1 annihilates

i - . P ihi S .
Yl since ch_Rl/P1 and Pzpf::Pl Thus P2 1 annihilates 52

We conclude that P2 = annR(Sz).' By the cyclic nature of the ~y-~links,

we have actually demonstrated’that On(Pi)'= OL(Pi+I) where
1). ‘D

. = S, , = .
Pl annR( l) and P1+1 anr.xR(Sl+

-

2. ARBITRARY LOCALIZATIONS

We now analyze the behavior of classes of simple modules

under arbitrary localizationa of an HNP ring. Our first result shows

that if § is an arbitraxy class of simple modules and Q is the quotient

ring of R at the torsion theory generated by S, then Q is also the
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left quotient ring at the torsion theory generated by

= {Ext;(S,R): seS}. This generalizes Corollary 3.14 for HNP rings.

The basis of the proof is the following:

Lemma 4.7." Let S be a simple right R-module and let O(_) be

any quotient functor on mod-R (with quotient ring Q) such that
Q(S) # 0. Then Ext;(S,R) is a left R-subpmodule of Extl(Q(S),d).

Proof. Suppose S = R/M. Then Ext;(S,R) > HomR(M,R)/EndR(R)

as can be seen by applying the long exact sequence in ExtR(_,R) to

the exact sequence: 3
V,
O~+M=+>R>S5S >0

114

Similarly, noting that Q(S) = 0/Q(M) (as the localization is perfect),

N

14

1
ExtQ(Q(S),Q) HomQ(Q(M).R)/EndO(Q)

Consider the R-homomorphism vy: HomR(M,R) - Hom

M) ,Q
Q(Q( ).Q)

defined by: v(f) = Q(f). Y induces the R—homomorphism

vl 1 1
Y: ExtR(S,R) - ExtQ(Q(S),Q)

(for if f ¢ HomR(M.R) extends to an endomorphism of R then Q(f)

extends to an endomorphism of Q).

Now, if ‘7K§) = for some f € HomR(M,R) then there is a

£ € EndQ(Q) extending Y (f). But then £ < Q(fo) for some
fO € HomR(I,R) £or some right ideal I which is dense in R (with

respect to the given torsion theory). We thus have Q(fo) extending

Y (f) and hence the commuting diagram:
I
5///2 \\\ff
INM R
\)M/f7

'
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"But I + M= R since I is dense and M is critical. Therefore,

there is a Y such that the diagram

INM JR—W——:R -
\‘ (//
M
{

commutes. Therefore £ = 0. It follows that Y is a monomorphism. D

Proposition 4.8. Lt Q be the right quotient ring of R at

the torsion theory generated by an arbitrary class S of éimple right
modules. Then Q is also the left quotient ring qf R at the toréion
theory generated by s° = {s,: seS}. ‘

Proof. Let S” be the complement of S in S#. Then
{o(S): SeS”°} is the c}ass of all simple right Q-modules. Since Q is
HNP, {Exté(Q(S),Q): SeS”} is the the class of all simple left

Q-modules. By Lemma 4.7, Extg(S,R)C Ext! (0(S),0) for all S ¢ S-.

0
Now, by Proéosition 4.4, Q is the left quotient ring of R for some

torsion theory, so this must be the torsion theory generated by
‘ o
s° = {ExtR(S,R): SeS} (noting that $° is the complement of (S”) in.

the class of all simple left modules), D

We now analyze the behavior of the relation ~» with respect

to arbitrary localizations of R.

‘iIII-r

» . a

Lemma 4.9. Let S and S' be simple right R-modules with S~S',

and let Q(_) be any quotient functor on mod-R such that Q(S),0(s') #
. ]

0.
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Then Q(S)«#Q(S') as Q-modules.
Proof. Consider the non—spl‘it exact sequence:
0S8 =>x~>8"*+0
Apply the functor Q(_) to obtain the exact sequeﬁbe
0+ Q(S) > Q(X) > Q(S') » 0

which is non-split since S is essential in X and hence in Q(X). D
Lemma 4.10. Let S and S' be simple right R-modules and let

Q( ) be any quotient functor such that 0(S),Q(S') # 0. If

Q(S)Y~ Q(S') as Q-modules then S~ S'.

Proof. We need only show that if Q(S)~9 Q(S') as Q-modules,

then S~ S'. Assume S ~-#S' and let
O+ 0Q(S) » X»>0Q(s8') ~0

be a non-split Q-exact sequence. X is Goldie torsion, so X = Z@ T]
A

&gX)
(as defined in Chapter I). Now, since S # S' , the simple subfactors

of Q(S) are ‘not ~/-equivalent to the simple subfactors of Q(S').

.

Thus, the sequence splits, so Q(S)f?Q(S') as OQ-modules. D

5 Lemma 4.11. Let Sqr S1, and S; be simple right R-modules

with S¢~yS;~¥S; , and let Q( ) be ény quotient functor with Q(S;) = 0
and Q(Sy), Q{Sz)'# 0. Then ,Q(Sg)~r9Q(S;) as Q-modules.

Proof. Suppose we have non-split exact sequences:

O+Sy»+»X~>538; +0

. and ° 0+8;, Y5, +0

Then E(Sy)/S; has # submodule isomorphic to S;.- Since R is hegéditary,

E(S¢)/So is injective. "Thus E(S;)C E(Sp)/Sy, and hence YCE(Sy)/Sy.

56



We can then apply Q(_) to obtain Q(S2) = Q(Y) C E(Sp)/Q(So).

Takirg the pullback:

E(Sy) ————H E(S)/Q(Sy)
4

|
J

*+ 0(S2)

J(So)

and the pullback:

L 4

< Q(Se)

we obtain the following commuting diagram:

0 =+ Q(Sg) + E(Sg) » E(S¢)/Q(Sy) » O

)

00— 1 > B + 0(S,) —-~> 0

Applying Q( ) to the bottom rxow, we obtain the exact sequence:
0 + Q(A) + Q(B) » Q(S2) = O
which is non-split since Sy is essential in B.. Now Q(A) = Q(Sy),’

so Q(Sg) P Q(S;) as Q-modules. D

’ Proposition 4.12. Let Q( ) be an arbitrary quotient functor

on mod-R (not the Goldie quotient functor). Then C is-a cycle in 0

L

A
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if and only if there is a cycle C in R such that

T- {ann, (0(5)) : S simple, ann_(S)eC, O(S)70]

Proof. a) Let C be a cycle in R and let

C = {aan(Q(S)): S simple, annR(S)EC, Q(S)#0}.. By Proposition 4.6,
there is a set of isotypic representatives {Sl""’sn} of simple

modules annihilated by ideals in (, such that S 8,7 8 S
By the preceding three Lemmas, applying Q(_) to this set yields a set
of simple right Q-modules {Q(s; Yre.esQ(S, )} with
1 k
S “ee . .
ol i )A?Q(Si )~ rQQ(Si )~4Q(§1)

1 2 k 1

These Q(Si ) are unfaithful as Q-modules since, by [6],
3 .
Theorem 3.5, the Jacobson radical Jj of the localization of R at the

prime ideal annR(Si ) is non-zero. Hence Q(Si ) is annihilated by
3 .

J
ij\Q. We can thus apply Proposition 4.5 to obtain that

(aan(Q(si ): j=1,...,k} is a cycle
j

b) Let 6‘be a cycle in Q. Then ? = {aan(O(S)): seS} for

some class § of simple right R-modules. By [6], Theorem 3.5, the

Jacobson radical Jp of QP (the localization of Q at the prime ideal P)

is non-zero, for P in 6. Now Qp is the lccalization of R at the

prime ideal annR(S) where P = aan(Q(S)). Thus, by [6], Theorem 3.5,

annR(S) is in some cycle C.

L 3
{ann, (($)): s simple, ann (S)eC, ()70} = E. ]

Part a) now implies that

Hi
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CHAPTER V

EXAMPLES

We list here, without proof, some examples.

1) Commutative noetherian prime rings of Krull dimension 1:
A commutative ring which is noetherian, prime and of Krull
dimension 1 is either a Dedekind domain or a noetherian domain of

’

infinite global dimension.

2) A non-commutative Dedekind prime ring with one maximal
invertible ideal and infinitely many faithful simple modules:

Let F be a field and 0 an automorphism of infinite order. Then
D = F[x;o], the ring of polynomials subject to ax‘= x0 (a) for all acF,

)

has the required properties (cf.'[ll]). The maximal ideal is xD.
3) An HNP ring with one maximal invertible ideal, a maximal
ideal not in a cycle, and infinitely many faithful simple modules:
Let D be as in 2) and let K be any maximal right ideal‘which
is not a two-sided ideal, Then H = I (K) (the idealizer of K in D)
is an HNP ring with the required properties. K is a’'maximal ideal of H

which is in no cycle.  (cf. [3%].) A

4) A simple HNP ring with all ‘simple modu1§§ ~-equivalent:
Let F be a field of characteristic O, and let B = F(y)[x],

subject to xy-yx = 1. Then B is a simple principal ideal domain and
, .
59
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all simple modules are equivalent (cf. [27]).

S5) An HNP ring which is not simple and with all simple
<

modules IV—eqﬁﬁvalent:

With F and B as in 4), let Ro = F + xB. Then RO has the

required properties (cf. [32]). All simple modules are as-equivalent

since B is a localization of RO (and applying the results of Chapter IV
(2)).

6) A noetherian prime ring of Krull dimension 1 and glohal

dimension 2, and with all simple modules n/-equivalent:

With F and B as in 4), Rl = F + x2B has the required

properties (cf..[32]).

ﬁ

7y A construct;on of new HNP rings from old, preserving the

~=structure:

Let R be an HNP ring with maximal ideal M.

R M
“ T =
' R R
is an HNP ring and there is a one~to-one correspondence between the

simple modules of R not annihilated by M and the simple modules of

M M
R M

The simple module of R which is annihilated by M corresponds to two

T not annihilated by

simples of T, which are a~-linked (cf. [32])ﬂ The above correspondence

prqvides a one-to-one correspondence between the s~ -classes of R and T.

»
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8) An interesting noetherian prime ring of Krull dimension 1,
a ‘- ' which is not HNP:

. " Lét R be an HNP ring and I an grbitrary non~zexo ideal.’

R. I

[

(o=}
]

" is a noetherian prime ring of Krull dimension 1, which is HNP if and

orfly if I is semiprime (as follows from [32]). It appears that-there

is a one-to-one correspondence between the ~-classes of U and those of

~

R. . 4 P . '

9 Mi}.':liler ([28], Remark 6.6, and [2'9]) has offered a

' cqnstfﬁc-tion of noetherian prime rings of Kryll tdimension 1 and
e, arb'i'ti:ary' global dimension.

LY a

o ‘ ; ’ " }
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