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Abstract

A framework is described using the phase-field crystal model for the study of premelting in
binary alloys through short-range interfacial interactions that arise from the structure of
grain boundaries. A nonconserved model A formulation of PFC was used to model grain
boundaries in two dimensions for several different angles of misorientation: 27.8o, 21.8o,
17.8o, 13.2o, 5o. The character of the premelting transition, whereby a liquid-like film
develops at a defect at temperatures below the melting point, changed with misorientation
angle. An excess mass over the grain boundary can be defined as an analog to the liquid
layer thickness due to premelting. It is found that low-angle grain boundaries remain at
a relatively constant value of excess mass, and indeed can remain solid above the melting
point. High-angle grain boundaries have a logarithmically increasing width that diverges
at the melting point. A width-dependent energy can be defined called the disjoining
potential that takes into account structure, interfacial and bulk energies to describe the
liquid-layer width. The form of this disjoinging potential was found to be exponential and
monotonically decreased as width increased for high angles and produced an attractive
minimum for low angles. The results of this work were compared to a pure material from
a previous study.
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Chapter 1

Introduction

Set aside from the essentially mean field properties of the bulk phase, grain boundaries
and their interactions are fundamentally important to processes such as crystallization. A
phenomenon known as premelting exists whereby a stable, nanometer-scale, disordered,
liquid-like film at the grain boundaries can exist at temperatures just below the melting
point.

During the onset of premelting, a grain boundary will separate into two solid-liquid
interfaces - this wetted configuration can greatly change the macroscopic properties of a
polycrystalline material. By introducing a region of liquid internally, a metal’s resistance
to shear stresses will be greatly reduced. An example of a material failure caused by
premelting is hot tearing, which causes a material to essentially rip open at the grain
boundaries under the shear stresses experienced during rolling. As the melting point is
approached from below the premelted liquid-like film will grow, until either diverging at
the melting point, or overheating to remain solid in the liquid region for a short range of
temperatures.

It is helpful to introduce a quantity known as the disjoining potential, V (h), which
allows a more quantitative description of the width of the liquid-like film, h. Considering
only the bulk energies, in the solid region of the phase diagram the crystalline state will
always be favoured. However, in a premelted system interfacial energies favour the forma-
tion of a liquid layer. The free energy cost of maintaining a solid grain boundary becomes
less favoured than forming two solid-liquid interfaces, γGB > 2γSL, where γ is the excess
free energy per unit area of the interface. Thus, the thermodynamics of premelting are
governed by the balance between bulk and interfacial free energies:
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ωexcess = �ωh+ 2γSL + V (h) (1.1)

where γSL is the solid-liquid interfacial energy, ωexcess = (ωtotal − ωlocalsolid) is the excess
grand potential energy of the system due to the grain boundary and �ω = (ωbulkliquid −
ωbulksolid) is the difference of bulk grand potential energies. Increasing grain boundary
misorientation increases γGB, and thus it serves as a convenient parameter to vary in order
to study a range of premelting behaviours.

The nanometer scale of the liquid-like films, high temperatures, and buried nature
of grain boundary premelting make it difficult to observe and measure experimentally.
There have been some attempts, such as imaging premelting in colloidal crystals using
optical microscopy, (see figure 1) [1] as well as transmission electron microscopy and
Auger spectroscopy for binary alloys [16][17] However, since atomistic-scale simulations
can directly control grain geometry and external conditions by carefully choosing initial
conditions, they are well-suited to capturing premelting behaviour.

Figure 1.1: Work by A.M. Alsayed et al. Science 19 August 2005. Misorientated colloidal
crystals show the effects of premelting.

Previous work has been done to study grain boundary premelting theoretically, for
both pure materials and alloys using a variety of techniques. For pure materials, Monte
Carlo simulations [3][4] and the lattice-gas model (in 2D) have confirmed grain boundary
premelting, as well as giving a prediction for the form of the divergence of the liquid-
like film width at the melting point. Molecular dynamics studies have found evidence of
premelting behaviours that have a disjoining potential with a weakly attractive minimum
that is not just based on misorientation. [11]. Multi-phase field models have studied
premelting for alloys [23] [19]. It was observed that premelting could be induced by adding
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solute to a dry grain boundary of a pure material. The addition of solute raises the dry
grain boundary energy and allows the formation of a liquid-like film to become favourable.
A premelting region was proposed to be added to the phase-diagram parallel to the solidus
to account for the onset of premelting due to solute. Since the addition of solute raises the
interfacial energy, It has been suggested that an alloy is likely to have larger widths at a
given temperature then its pure counterpart. However, it is still unclear how the addition
of solute effects the disjoining potential.

Grain boundary premelting will be studied here using the phase-field crystal model
(PFC), which models polycrystalline materials as periodic structures in density. PFC has
roots in the Swift-Hohenberg model, a model developed to study pattern formation and can
be derived from classical density functional theory. The ability to simulate diffusive time
scales and atomic length scales makes PFC a valuable tool for the study of the behaviour
of grain boundaries.

Work was previously done by Mellenthin et al. [18] to determine the disjoining potential
of a pure polycrystalline material using PFC, however there has been no exploration of the
effect of solute addition to grain boundary premelting. Therefore, the goal of this work will
be to study the structural disjoining potential of a premelted grain boundary in a binary
alloy using PFC in order to elucidate the behaviour of the liquid film width as the system
approaches the melting point.
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Chapter 2

BACKGROUND - PREMELTING
THEORY

2.1 Grain Boundary Structure

Observations of premelting in previous studies [5][15] have revealed key relationships be-
tween the structure of an interface and its characteristic film thickness. In order to elucidate
these relationships grain boundary structure will be discussed first.

A grain boundary can form when coalescing crystal grains of different orientations
impinge on each other, forming a region that is in general more disordered, less dense, and
at a higher energy than the bulk crystal. Misorientation describes the angle of rotation of
the orientation change between grains. If the axis of rotation can be defined in the same
plane as the boundary then it is a tilt grain boundary [26]. This work deals exclusively
with tilt grain boundaries. There are two types of tilt boundaries that will be considered
based on the magnitude of the misorientation: low angle and high angle.

Low (or small) angle grain boundaries, shown in figure 2.1, are characterized by having
a misorientation angle, θ, of less than approximately 15o. For θ < 15o some crystal planes
will line up with the opposing plane in the neighbouring grain, matching one lattice point
with another. However some lattice planes will not match up, and a dislocation will be
formed. As the misorientation angle increases, more planes will not match up with the
lattice in the neighbouring grain, causing the number of dislocations to increase and the
spacing between dislocations to decrease.

High (or large) angle grain boundaries have θ > 15o, as seen in figure 2.1. At these
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Figure 2.1: Top: A low angle grain boundary represented by a row of dislocations (white),
Bottom:A high angle grain boundary represented by a disordered region (blurry white).
Both are in a triangular lattice (atoms in black). Obtained using PFC simulation

angles, the dislocations have ceased being individually distinguishable, interacting in such
a way as to distort the dislocation core from the core structure of an isolated dislocation
in a crystal lattice. No long-range order exists for high angle boundaries, although some
local ordering is possible.

Grain boundary interfacial energy, γGB, is structure dependent. Read and Shockley
introduced a description of low-angle grain boundary energy in 1950 by considering the
elastic contribution due to the localized stress field caused by a dislocation. For the low-
angle regime, grain boundary energy increases as a function of misorientation:

γGB = E0θ(A− lnθ) (2.1)

E0 = Gb
4π(1−ν) and A = 1 + ln( b2πr0), where G is the shear modulus, b is the Burgers

vector, ν is poisson’s ratio, and r0 is the radius of the dislocation core.
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In contrast, the grain boundary energy for high-angles changes very little with misori-
entation, as can be seen in figure 2.2. Equation 2.1 is not applicable for high angle grain
boundaries. Once the dislocation cores begin to overlap, the elastic contribution can no
longer describe the total energy and atomic interactions must be considered explicitly. [26]

Figure 2.2: Grain boundary energy as a function of misorientation as determined by the
PFC model (dashed line) and the Read-Shockley equation (solid line). [6]

At the interface, the lattice periodicity of the crystal is disrupted, causing excess energy
from the broken interatomic bonds that would have been whole if there had been no
interface. The more broken bonds there are per unit area, the higher the interfacial energy.
[28] Therefore low angle grain boundaries can be expected to have a lower γGB than most
high angle grain boundaries, which will in turn have less interfacial energy than a free
surface. Exceptions exist, like twin boundaries which, while described by high angles of
misorientation, can have very low γGB.

In alloys, solute preferentially segregates to interfaces. The disordered region of a grain
boundary provides a large number of sites for solute atoms to attach. High angle grain
boundaries accumulate solute within a distance of one or two atomic spaces from the
boundary midplane. This suggests that the overlapping dislocation cores were attracting
solute more strongly than other areas in the lattice. [26] While the degree of segregation
will depend on the specific grain boundary structure, in general high angle boundaries will
segregate more solute than low angle boundaries. If increasing misorientation increases
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dislocation core density, then that suggests that increased misorientation also increases the
amount of solute segregation.

2.2 Solid-Liquid Transitions

The familiar phenomenon of melting is well known to progress through the mechanism
of nucleation. Fluctuations in various thermodynamic parameters occur frequently in a
material. However, when the solid is heated to past the melting temperature, T > Tm, the
liquid free energy becomes less than the solid free energy. This change in preferred phase
from solid to liquid allows the potential for lasting small nuclei of liquid phase to form and
grow. If the free energy benefit of creating the liquid phase can balance or outweigh the
energy cost of forming a solid-liquid interface then the nuclei will be stable. If the volume
of the nuclei is not enough to ’pay’ the interfacial solid-liquid energy cost, the nuclei will
disappear back into its parent solid phase. Heterogeneous nucleation occurs when a nucleus
forms on a defect - be that an impurity, surface, grain boundary or any other site that will
lower the energy cost of the solid-liquid interface. [13]

At temperatures below the melting point, there exists another mechanism for melting
other than the bulk melting predicted by the phase diagram - premelting. Regions of
partial order, analogous to a liquid, appear due to the benefit of forming solid-liquid
interfaces. These stable, nanometer width films form heterogeneously at defects. As Tm

is approached from below, the film grows until eventually complete melting is attained at
or past the melting point. Of particular interest is the influence of these ’premelted’ films
on macroscopic quantities due to the difference in properties between the film and a bulk
system, as seen in hot tearing. (Described in section 1) [2] [16]

2.3 Premelting Thermodynamics

The effects of premelting have been observed in a diverse selection of materials in such
number that it could be suggested that this phenomenon is characteristic of any material
in the solid phase. The basic process requires only that the interfacial structure causes
the relative surface energies between solid-solid and solid-liquid to shift, such that the
formation of two solid-liquid interfaces are favoured. [27]

A premelted grain boundary, as shown in figure 2.3, replaces the once dry solid-solid
interface with two solid-liquid interfaces. The distance between the solid-liquid interfaces
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Figure 2.3: A premelted grain boundary, where h is the film width

is known as the film width or thickness and is denoted as h. The film width for a typical
high-angle grain boundary under premelting conditions will increase continuously with
temperature until diverging at the melting point, as seen in figure 2.4 curve a). This
behaviour can be described through complete wetting (figure 2.5).

Figure 2.4: Characterization of film thickness with temperature for different grain boundary
energies, γGB. The vertical dashed line indicates the melting temperature. Simulated using
multi-phase field model. Modified from [19]

Wetting describes the interaction of a liquid and a solid substrate. A drop of liquid
will conform to a shape determined by the relative surface energies between the liquid, the
solid, and the surrounding medium – usually air. In this way, premelting can be described
in the language of wetting, where instead of two different materials as the liquid and solid,
it is the solid and its own melt.

Young’s equation is a well-known expression that relates the contact angle, to the
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Figure 2.5: A liquid drop on a solid substrate. [25]

interfacial energies of a free surface.

cos θ =
(γSV − γSL)

γ
(2.2)

Where γSV , γSL, and γ, are the interfacial energies between at the solid-vapour, solid-
liquid, and liquid-vapour respectively. θ is the contact angle. The contact angle is the
angle between the liquid surface and substrate, as measured through the liquid. For a
premelted grain boundary, Young’s equation can be adapted to:

cos θ =
(γGB − γSL)

γSL
(2.3)

Where γGB is the excess energy due to the grain boundary of a completely ’dry’ system
(i.e. one without a premelted film). Under complete wetting conditions the contact angle
goes to zero, giving a relation of:

1 =
(γGB − γSL)

γSL
0 = γGB − 2γSL (2.4)

If γGB = 2γSL then it is just as favorable for a system to choose to maintain two solid-
liquid interfaces as opposed to one solid-solid interface - i.e. the grain boundary. This idea
can be extended into a premelting criterion:

If γGB > 2γSL, then the system will premelt.

Conversely, if γGB < 2γSL, then the system will not premelt.

It becomes clear that with only the information presented on an equilibrium phase
diagram a ’premelting region’ cannot be identified. The crystalline state will always be
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favored in the solid region. The creation of a disordered liquid-like film is an interface driven
phenomenon, reliant on more than the bulk energies. However the premelting criterion is a
necessary but not sufficient condition for a film width to be measurable, as will be discussed
in section 2.4.

Any factor that increases γGB can cause γGB > 2γSL to be satisfied and premelting to
be induced. For grain boundaries, misorientation is a convenient choice of parameter to
vary in order to study the effect of the change of γGB on premelting. High angle grain
boundaries are more likely to induce premelting due to a higher γGB (figure 2.2). The
converse is true for low angle grain boundaries. For this thesis, misorientation shall be
focused on for the study of premelting and γSL will be taken as a material constant.

2.4 Structural Disjoining Potential

While the premelting criterion is a necessary condition to determine if a system will premelt,
it cannot provide information about the premelted film width. γGB > 2γSL also gives no
information about competition between the bulk and interfacial energies. The criterion
does not take into account the energy cost of the formation of a (unfavored) liquid-like
region from the (favoured) solid, reducing the volume of the solid phase. In order for a
liquid-like film to form:

γGB > 2γSL +∆fBulkh+ V (h) (2.5)

where ∆fBulk = fliquid− fsolid. The second term represents the inherent energy cost for
inserting a width, h of the unfavoured liquid phase into the system, where a unit cross-
sectional area has been assumed. In addition to the bulk and interfacial contributions
to this new sufficient condition there is also a structural contribution, V (h), from the
interaction of the solid-liquid interfaces through the film. V (h) is known as the structural
disjoining potential. The exact form of V (h) is not well understood.

By framing the premelting phenomenon in terms of a disjoining potential, the behaviour
of the premelted film width can be explored. Equation 2.5 can be restated to solve for a
value for the disjoining potential:

V (h) = γGB − 2γSL −∆fBulkh (2.6)

Below the melting point, if γGB > 2γSL then V (h) will be positive. This result is
typically found in grain boundaries whose liquid film width increases monotonically before
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diverging at the melting point, i.e. complete wetting (see figure 2.4, curve a.). This
behaviour is thought to arise from short-ranged structural interactions between the solid-
liquid interfaces. [11]

Figure 2.6: Shows the overlap of the density profile, indicating a diffuse interface. From
these pictures can see that a liquid-like film doesn’t approach the bulk liquid properties
until at high h. (Top: closer to the melting point, Bottom: further from the melting point)

If, instead, V (h) < 0, then an attractive interaction between interfaces will occur, and
the grain boundary will typically remain dry to the melting point. There exists another
type of interface interaction where both long-range attractive and short-range repulsive
forces cause a disjoining potential that has both an attractive and repulsive component.
This attractive-repulsive interaction leads to a grain boundary that maintains a finite width
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as the melting point is approached, and must be overheated (i.e. T > Tm) in order to fully
melt the system. Figure 2.4 b. demonstrates this behaviour.

Figure 2.7: Disjoining potential as predicted in an MD simulation. A twist grain boundary
is found to be repulsive, and a tilt boundary is found to be attractive-repulsive. [11]

The attractive-repulsive disjoining potential is characterized by having a weak attractive
minimum in the disjoining potential. In figure 2.7, it can be seen that the grain boundary
starts out as repulsive at small widths, causing a liquid film to appear. At higher widths,
attraction becomes dominant and the liquid film is kept from diverging by the dispersion
forces. This interesting case is difficult to predict, because it appears to have a complex
dependence on width, and by extension, the structure of the grain boundary.

A form for V (h) has been suggested from mean-field arguments and lattice-gas models
for the diverging width of a high energy, repulsive grain boundary:

Vrep(h) = 2γSL +∆γ exp(
−h

δ
) (2.7)

Where ∆γ = γGB − 2γSL and δ is an interaction length on the order of the atomic
spacing. Similarly, a form has been proposed for a disjoining potential with an attractive
minimum,

Vatt(h) = 2γSL +∆γ1 exp(
−h

δ1
) +∆γ2 exp(

−h

δ2
) (2.8)
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Chapter 3

BACKGROUND - MODEL
THEORY

Connecting length scales is of great interest in microstructure modelling; equally interesting
is the consideration of long time scales. Due to a computationally efficient formulation,
the Phase-Field Crystal model (PFC) can simulate both diffusive timescales and atomic
length scales, which allows for the study of microscale structures like grain boundaries and
dendrites. In the next section the PFC Free Energy functional for a pure material will be
introduced.

3.1 The PFC Free Energy Functional

The basic PFC free energy functional for a pure material is:

FPFC [n(r)] =

�
d3r[

n

2
[�+ (1 +∇2)2]n+

n4

4
] (3.1)

Where n(r) is the dimensionless number density, and is itself a function of r, the radial
spatial component, � is a control parameter that is related to the temperature difference
from the melting point. This free energy can be minimized, δFPFC [n(r)]

δn(r) = 0 by periodic
solutions. The density field is sinusoidal in the solid, but goes to a constant value in the
liquid region. An interface width, as seen in figure 3.1, can be defined, ξ that is on the
scale of nanometers. The amplitude of the periodic density structure is a convenient order
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parameter that can be defined as varying between zero in the liquid and non-zero in the
solid.

Figure 3.1: A profile of a solid crystal meeting a liquid region at an interface of width ξ.
Adapted from [21] by Michael Greenwood.

The peaks of the sinusoidal wave can roughly be described by the general location of
an atom on a lattice site. In a 2D simulation, a peak in the density field looks like a bright
point. Notice in figure 3.2 how the grain boundary (line through the middle of the picture)
is slightly diminished in brightness. This change in appearance is because the interface is
at decreasing amplitude compared to the bulk solid region due to disorder.

Figure 3.2: A 2D periodic structure in the density field is visible by the bright peaks in a
constant configuration. A grain boundary occupies the middle of the frame.

3.2 Derivation from Classical Density Functional The-
ory (CDFT)

Classical density functional theory was developed to consider the coarse-grained properties
of various physical systems. In the mid-1970’s [22], it was developed further to explore
liquid-solid phase transitions and has since become well known for its success with solving
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first-order phase transitions in general. In this theory, the continuum atomic density field,
ρ(r), is averaged either in time or over the ensemble, and varies in amplitude between the
solid and liquid phases. ρ(r) is not the same as the dimensionless number density n(r),
which will be detailed later. The solid phase is represented by highly localized peaks in
ρ(r) that represent the probable locations of atoms in the lattice. ρ(r) goes to a constant
value while in the liquid. [2] From this continuous density field description of a solid-liquid
system in CDFT, the phase-field crystal (PFC) model can be derived by simplifying it. This
treatment of the PFC derivation will follow closely with methods used in [2], and [21] The
CDFT free energy functional can be understood as containing three distinct contributions.
The functional is written as:

F (ρ(r)) =

�
[fideal + finteraction + fexternal]dr (3.2)

where, fideal = ρ(r) ln(ρ(r)ρl
) − δρ(r) is the non-interacting ideal gas free energy, ρl is

a reference average number density and δρ(r) ≡ ρ(r) − ρl. It should also be noted that
fideal is just the free energy due to the atoms themselves being present. It is related to
the entropy of the system - what configurations the atoms in the system can take. [2]
This term drives the system toward a uniform field, which describes the liquid phase.
finteraction is the excess free energy contribution due to many-body interactions in the
system. Crystals can be classically described as a series of multi-body interactions to a
first order approximation. [10] The contribution from finteraction to the total free energy will
drive the system towards a periodic state, which describes the solid phase, when sufficiently
large. fexternal is the additional free energy due to an external potential, such as a magnetic
field. In the discussion to follow, the contribution to the total free energy from external
sources will be assumed equal to zero.

The CDFT free energy functional can additionally be described through a Taylor series
of correlation functions, as described in the Yussoff and Ramkrishnan model. [22] Corre-
lation functions describe the interatomic interactions between a given number of ’bodies’.

C2(|r1 − r2|) = C2(r)

is the two-point correlation function and describes two-body interactions, C3 is the
three-point correlation function describes three body interactions, etc. [2]

The Helmholtz free energy can be expanded in relation to a liquid reference energy
at coexistance, Fl, such that ∆F ≡ F − Fl. It can also be scaled by kBT where kB is
Boltzmann’s constant and T is the temperature, to give:
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∆F =

�
dr[C1(r1)δρ(r1)+

1

2!
C2(r1, r2)δρ(r1)δρ(r2)+

1

3!
C3(r1, r2, r3)δρ(r1)δρ(r2)δρ(r3)+· · · ]

(3.3)

Ramakrishnan and Yussouff [22] provided a link between the first term in equation
3.3 and fideal. Thus the remaining terms correspond with finteraction for CDFT. For PFC,
finteraction can be simplified to only contain the two-body interactions and thus equation
3.3 is truncated at the two point correlation function. To proceed with the derivation of
PFC from this more fundamental formalism, two key steps must be taken. First, it is
useful to define a dimensionless number density in terms of ρ and with respect to ρl:

n ≡ ρ(r)− ρl
ρl

=
ρ(r)

ρl
− 1 (3.4)

Introducing this new parameter to fideal yields:

fideal = ρl(n+ 1) ln(n+ 1)− (ρl(n+ 1)− ρl) (3.5)

= ρl[(n+ 1) ln(n+ 1)− (n+ 1− 1)] (3.6)

= ρl[(n+ 1) ln(n+ 1)− n] (3.7)

A taylor expansion of the term (n+ 1) ln(n+ 1) yields:

n+
n2

2
− n3

6
+

n4

12
− n5

20
+ · · · (3.8)

Substitution of this expansion into the ideal energy term and keeping terms up to fourth
order, we have:

fideal = [
n2

2
− n3

6
+

n4

12
]ρl (3.9)

With the second step C2(|r1 − r2|) is expanded in Fourier space as k2 around k = 0 up
to k4. This step assumes that the full two-point correlation function can be well described
by:

C2(k) = −c0 + c2k
2 − c4k

4 (3.10)
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Figure 3.3: A representation of the two-point correlation function in Fourier space. [21] The
red dashed line represents a fit to C2(k) used in the standard PFC approach. Any k values
for which C2(k) > 0 will be preferred by the system. Thus, structures with characteristic
lengths corresponding to k values with large peaks will be formed in the system.

Where c0, c2 and c4 are constants that can be fit to the first peak of C2(k) in figure 3.3.

Taking the inverse Fourier transform of equation 3.10 yields two laplacian terms which
when combined with equation 3.9 result in the PFC free energy functional:

∆F =

�
dr[

n2

2
− n3

6
+

n4

12
] + [−c0n

2 + n(c2∇2 + c4∇4)n] (3.11)

where ρl can be absorbed into the scaling of ∆F . A series of coefficients can be intro-
duced such that the PFC free energy functional takes on easily adjustable parameters to
various physical material features [21]:

∆F =

�
dr[

Bl

2
n2 − t

n3

3
+ v

n4

4
] + [

Bx

2
n(2R2∇2 +R4∇4)n] (3.12)

where
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t =
1

2
, v =

1

3
, Bl ≡ 1 + ρc0, Bx ≡ ρc22

4c4
, R ≡

�
2|c4|
c2

(3.13)

Bl is the isothermal compressibility in the liquid phase, and Bx is the compressibility
in the solid phase. R is the spacing of atoms, and ∆B0 = Bl − Bx is a temperature scale.

3.3 Properties of PFC

3.3.1 Triangular Lattice

To find what kind of lattice structures minimize the free energy it is possible to do a
one-mode approximation of the density field and minimize with respect to several inten-
sive parameters, like T, average n, etc. For free energy functionals similar to equation 3.1
(like the Swift-Hohenberg model, Landau-Brazovskii model, etc. [2] ), the structures that
minimize it are already known [9]. A triangular phase is one of the simplest structures
to minimize the PFC free energy functional in 2D. In order to construct a phase diagram
for the triangular phase, the free energy must be minimized based on the one mode ap-
proximation and several non-constrained variables like wave number and amplitude. By
minimizing the free energy with respect to non-constrained variables they are effectively
minimized out so that a minimization based only on a constraint quantity can be reached.
The two variables that will be left will be temperature and average density, and with these
two quantities, a phase diagram can be built.

3.3.2 Rotational Invariance

In order for misorientation to occur in simulation, isotropy must be preserved in the con-
tinuum fields that govern the system. Isotropy requires that no one direction is favoured
over any other direction. To successfully maintain misorientation between separate crystal
grains all misorientations must be equally favourable. If the system had long-range order
only in specific directions, the free energy of one orientation would be preferential to an-
other and the system would shift to that lower free energy. Since the PFC free energy
is invariant under rotation, multiple crystal orientations can exist simultaneously because
they all have equivalent energy.
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3.3.3 Elasticity

The exact form of the periodic solutions that minimize the free energy determines the
crystal lattice structure that is produced. One of the simplest periodic solutions to the
PFC free energy functional produces a triangular lattice in 2D. Minimizing the free energy
functional in this way naturally captures elasticity. Consider a sinusoidal density field
describing a solid, such as in figure 3.4.

Figure 3.4: If a peak in the number density is shifted, the system can elastically relax the
peak back to its original position to lower the free energy back to a minimum value.

Since the lowest energy state is described by a periodic density field, then there is some
wavelength that the system prefers. If a density peak is shifted in such a way that it is
no longer at this preferred wavelength, the system will be at a higher free energy then its
minimum free energy. In order to return to this lowest energy the system must return the
shifted peak to the location described by the preferred wavelength. This natural relaxation
back to a given starting position suggests elastic properties in the system. Consider a
system governed by a characteristic length scale, a, like a preferred wavelength. Its free
energy can be described by an expansion of a around its equilibrium value; this is analogous
to shifting the density peak from its equilibrium position.

f(a) = f(aeq) +
δf(a)

δa
|eq(a− aeq) +

1

2

δ2f(a)

δa2
|eq(a− aeq)

2 + · · · (3.14)

The characteristic length scale must be able to minimize the free energy, thus δf(a)
δa |eq =

0, and the expansion at second order becomes:
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f(a)− f(aeq) =
1

2

δ2f(a)

δa2
|eq(a− aeq)

2 + · · ·

where the spring constant can be defined as k ≡ δ2f(a)
δa2 . This brings the above equation

in line with Hooke’s Law:

∆f =
1

2
k(∆a)2 (3.15)

3.4 Simulating Binary Alloys using PFC

The Phase Field Crystal model can be extended to study binary alloys, by using two
continuum fields - dimensionless number density and dimensionless concentration. Similar
to the discussion for the pure material, a derivation of binary PFC can be done from CDFT
by including the free energy functionals of each of the species as well as a two component
mixing term. The first proposal of a binary PFC was introduced by Elder et al. [9]

The same steps used for the pure material can be followed for the binary case. [2] The
total free energy functional can be described as:

F =

�
dr[fAA + fBB + fAB] (3.16)

By incorporating the separate contributions to the free energy from each species, A and
B:

F =

�
dr([fA

idealA+ fA
interactionA] + [fB

idealB + fB
interactionB] + [fA

interactionB]) (3.17)

After expanding C2(|r1 − r2|) in Fourier space as k2 around k = 0 up to k4, and
introducing the dimensionless number density, n, both fAA and fBB goes to:

fAAorBB =
nAAorBB

2
[r + (1 +∇2)2]nAAorBB +

n4
AAorBB

4
(3.18)

While fAB goes to:
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fAB = nAB[r + (1 +∇2)2]nAB (3.19)

Again, r ∼ T − Tc as introduced as in section 3.1

Finally, a species concentration field can be introduced [2]:

ψ = nA
(nA+nB)

where n = nA + nB. This allows the definition of a final binary free energy functional
[7]:

FPFC =

�
(
n

2
(∆B0+Bl

2ψ
2+Bx

0 (1+∇2)2)n− t

3
n3+

v

4
n4+

w

2
ψ2+

u

4
ψ4+

K

2
|∆ψ|2)d�x (3.20)

Where Bl
2, K, w, u and Bx

0 are tunable constant parameters. x ≡ r
R

1+αψ

where α is the

solute expansion coefficient.

3.5 Equation of Motion

The free energy functional of a closed system can fully describe the static thermodynamic
state of a system in equilibrium. However, for a system out of equilibrium, additional
equations must be satisfied to determine how the system will evolve in time. These equa-
tions of motion are chosen to drive the system towards equilibrium by minimizing the free
energy functional, as required by thermodynamics.

Atomistic models like Monte-Carlo allow the system to evolve in time through the
discrete movement of individual atoms. Continuum models are coarse-grained to neglect
these degrees of freedom, and thus must be advanced through general thermodynamic
principles. Further constraints on the system can be introduced through conservation laws
that limit how the continuum field(s) can progress in time.

3.5.1 Model A: Nonconserved Dynamics

Nonconserved dynamics advance the free-energy functional of a system towards equilibrium
without the restriction of a conservation law:
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δφ

δt
= −(M

δF

δφ
) (3.21)

where φ is a field which tracks a given property or feature of the system and is typically
referred to as an order parameter. In addition, t is time, F is the free energy functional
chosen for the system under examination, and M is a mobility coefficient. Noise has been
neglected in this equation, but a stochastic noise term can be added on the right-hand side
to model fluctuations.

The above equation describes the rate of change of the field φ with time. As the free
energy works towards a minimum it is not restricted to a constant local φ. Furthermore
δφ
δt does not need to bring the system into local equilibrium during the evolution, instead
allowing it to adopt unphysical results out of equilibrium.

The Swift-Hohenberg model was developed using nonconserved dynamics.

3.5.2 Model B: Conserved and Diffusive Dynamics

In simulations using conserved dynamics, the free-energy functional is minimized under
the constraint that the total flux of some quantity in the system is conserved. The flux
used as a constraint could be any conserved field, like mass, momentum, thermal energy,
etc.

δn

δt
= ∇(M∇δFPFC

δn
) (3.22)

By solving equation 3.22, the system can only progress in a fashion that lowers free
energy while also holding constant the local amount of n. Constraining the system to hold
constant the local density means that mass must travel through the system by physically
diffusing across a distance. The simple description of PFC described in section 3.1 is
evolved through conserved dynamics as are most descriptions of PFC. Noise can also be
added to the right-hand side of the above equation.
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Chapter 4

METHODS

To understand the underlying physics behind the formation and growth of a liquid film,
the structural disjoining potential was introduced in section 2.4. As stated previously, an
exponential form has been proposed to describe the short-ranged structural interactions
that cause repulsive behaviour:

Vrep(h) = 2γSL +∆γ exp(
−h

δ
) (4.1)

Where ∆γ = γGB − 2γSL and δ is an interaction length on the order of the atomic
spacing. Similarly, a form has been proposed for a disjoining potential with an attractive
minimum,

Vatt(h) = 2γSL +∆γ1 exp(
−h

δ1
) +∆γ2 exp(

−h

δ2
) (4.2)

Equations 4.1 and 4.2 are helpful phenomenological forms to compare with simulated
PFC results. However, without direct derivation from the underpinning thermodynamic
theory these two equations serves only as a guide [11]. The disjoining potential can also
be expressed as the competition between bulk and interfacial energies:

γGB = ∆fbulkh+ 2γSL + V (h) (4.3)

Taking the first derivative of this equation with respect to h yields a simple form:
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δV (h)

δh
= −∆fbulk = V �(µ) (4.4)

This is known as the disjoining pressure, and is only a function of the chemical potential.
By plotting disjoining pressure against width and integrating, V (h) can easily be recovered.
The advantage of this method is that far fewer quantities need to be calculated, namely
fliquid, fsolid and h. In addition, in order to integrate analytically, V �(µ) will be fit to an
exponential form like equation 4.1 or equation 4.2.

The calculation of V (h) will be discussed in the following sections. First, the detailed
parameter choice and model specifics will be presented.

4.1 Grand Canonical Ensemble

As the system approaches the melting point, the grain boundary region becomes increas-
ingly disordered, until forming a liquid-like film and eventually completely melting. Instead
of using temperature as the intensive variable to control this phenomenon and vary V (h),
chemical potential can be chosen instead. In this analogous scheme the system becomes
more disordered as µ approaches the solidus line (µEQ), and can be described using the
grand canonical ensemble instead of the Gibbs ensemble. This scheme was also chosen by
Mellenthin et al. [18], whose work will be directly compared with the results presented
in section 5. Since the system contains both concentration and density fields, the grand
potential can be calculated as follows:

ω = FPFC − µψψ − µnn (4.5)

where F is the PFC free energy,

FPFC =

�
(
n

2
(∆B0+Bl

2ψ
2+Bx

0 (1+∇2)2)n− t

3
n3+

v

4
n4+

w

2
ψ2+

u

4
ψ4+

K

2
|∆ψ|2)dx (4.6)

µψ is the chemical potential of concentration, µn is the chemical potential of density,
n is the dimensionless number density and ψ is the dimensionless concentration field. The
chemical potential of concentration and the chemical potential of density can be stated as
follows:
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δFPFC

δψ
= µψ = (w + n2Bl

2 −K∆2)ψ + uψ3 (4.7)

δFPFC

δn
= µn = (∆B0 +Bl

2ψ
2 +Bx

0 (1 +∇2)2)n− tn2 + vn3 (4.8)

Chemical potential of concentration that was chosen to be varied intensive quantity,
while the chemical potential of density and temperature were held constant. The values
for constants mentioned here are specified in section 4.3.2

4.2 Equations of Motion (EOM)

Model B is the usual choice for PFC simulations. It has built-in mass conservation, and
thus can give physical results while the system evolves. However, this means the system
must advance at diffusion-limited speeds. Premelting is an equilibrium phenomenon, which
means that accurate dynamics are not a concern for its study. Model A dynamics do
not have this diffusion-limited behavior and drive the system more quickly towards an
equilibrium state, as was done by Mellenthin et al. [18] A lagrange multiplier is introduced
to equation 4.9 and 4.10 to force the chemical potentials of the system to evolve to the
values of the langrange multiplier. For a binary alloy two equations of motion must be
satisfied:

δn

δt
= −(M

δF

δn
)− µn (4.9)

δψ

δt
= −(M

δF

δψ
)− µψ (4.10)

Where the lagrange multiplier is written as the chemical potential of the density or
concentration field, i.e. µn or µpsi, respectively. Since the system picks values for concen-
tration and density based on the chosen chemical potential and energy minimization, the
dynamics of the concentration and density fields are nonconserved for this study. Finally
it should be noted that the nonconserved model A dynamics cannot simulate phase coex-
istence as model B dynamics do, in which there is coexistence for a range of simulation
parameters (in this case the system average density) at a given temperature. Instead, there
will only be coexistence between the solid and liquid phases at a single chemical potential,
the melting point, for a given temperature.

25



4.3 System Characteristics

A search of parameter space in µψ was conducted until a premelting region was discovered.
Chemical potential for our system is negative and increases (gets more positive) as it
approaches the solidus. Since chemical potential is normalized, it can be either positive or
negative.

Figure 4.1: Highlighted lattice points in the concentration field show the differently oriented
crystal grains forming a grain boundary. The system is far into the solid region (µψ =
−0.029951) at a misorientation of θ = 27.8o.

A triangular crystal structure (see figure 4.1) was chosen to model grain boundaries
(in 2D) because of its simplistic construction as periodic solutions of the PFC free energy
functional. The system ’window’ is a square box of size NxxNy, where Nx and Ny are
the lengths (in grid points) of the system in the x and y-directions, respectively. Even
though the system was simulated with periodic boundary conditions, in both the x and y
directions, there are issues with fitting a triangle lattice in a square box. Since an integer
number of density peaks cannot fit in both directions, some number of lattice sites will feel
some amount of strain as they compress into the box. While PFC can easily manage this
elastic effect, however this accommodation will alter the free energy density of the solid.
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This problem can be partially mitigated by choosing specific misorientations that allow the
lattice to more easily ’fit’ into the size restraints. The size of the numerical grid spacing
(δx or δy) can also be tuned independently to lower the contribution of strain to free energy
density. In the model presently being used, however, δx =δy is fixed, so a small additional
strain component to the free energy density is expected in our simulations. Numerical grid
spacing is in dimensionless spacial units of the free energy functional. In addition, it should
be noted that due to the periodic boundary conditions, two grain boundaries exist in the
simulation - one in the centre, and one split between the top and bottom of the image, as
seen in figure 4.2.

Figure 4.2: Highlighted regions in the concentration field show the two different grain
boundaries one in red, and one in yellow. The system is significantly premelted (µψ =
−0.0249686) at a misorientation of θ = 27.8o

4.3.1 Simulations

To simulate a grain boundary the initial condition of the system is set as two crystal grains
set a distance apart with liquid between them. Each grain is rotated by θ

2 , as seen in Figure
4.1. The solid phase is seeded by setting the density field to a triangular crystal described
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in terms of sinusoids. The density in the liquid region is specified by being set to an initial
constant value. A µψ is chosen for the system, and held constant as the simulation is
evolved in time. Equilibrium is reached when the system has ceased to change - i.e. when
the local measured µψ is equal to the total µψ imposed on the system from the initial
conditions. It is at this point that measurements of the system’s energy are taken.

4.3.2 System Values

Values for PFC simulations:

w 0.088
u 4.0
t 0.6
v 1.0
B2

l -1.8
Grid spacing δx = δy

π
4

Bx 1.0
Dimensionless scaled 0.05
temperature dB0
µn 1.05
System size 1024x1024

4.4 Width Calculation

Measuring the film width is an essential step to calculating the disjoining potential. From
the film width, important information about the interface interactions can be inferred.
However, what constitutes the width of a premelted grain boundary is not well defined
in the literature. Indeed, the nanometer scale film is so small that for most premelted
boundaries, the overlapping interfaces keep the film from truly reaching the bulk liquid.
Only the largest widths, nearest to the solidus, have values close to bulk liquid properties.
These large widths have a near-zero disjoining potential, which makes them uninteresting
for the current discussion.

While a variety of width finding techniques have been applied in the literature, the
chosen technique for this study was an excess mass calculation detailed in Mellenthin et
al. (2008) [18]. This calculation technique takes advantage of the additional disorder that
occurs as the grain boundary approaches the solidus, and its deviation from bulk values.
Excess mass can find a width value from the amount of deviation even when a film is
not evident. Not only does this technique allow low width films to be probed, but it also
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collects data on completely dry grain boundaries providing a baseline for comparison. The
subsequent discussion will not differentiate between boundaries where a film is visually
present and where it is not.

It is helpful to consider a reference system made only of bulk liquid and bulk solid.
Comparing a grain boundary system to these bulk components, a region of bulk solid
can also be identified for some portion of the crystal grains. The remaining liquid-like
region will have some measure of similarity to a bulk liquid, depending on how close to
the solidus the system is. With this idea, a ratio can be expressed as the variation of the
grain boundary system from the reference system.

nexcess(r) =
n(r)− nS

nL − nS
(4.11)

Where n(r) is the dimensionless number density field, nS is the average density in the
bulk solid and nL is the average density in the bulk liquid. Equation 4.11 approaches zero
when the grain boundary is dry, and approaches 1 when the film is large, it will however
never reach either of these values since some difference will remain due to an interface
present in the system. For a binary alloy, either the concentration or density field can be
chosen for this calculation. For this study, density was chosen in order for a more direct
comparison with pure material results, which can only use a density field.

h =

�
nexcess(r)δyLy

NxLy
(4.12)

4.5 Finding the Structural Disjoining Potential

Solving for the disjoining potential from the disjoining pressure, δV (h)
δh , is a straightforward

exercise. The only values necessary are from the bulk grand potential energies, and the
grain boundary width. Twelve values for chemical potential were selected as snapshots
of the system at different stages in the premelting process. For each chemical potential
chosen, three systems were run: a completely solid system, a completely liquid system,
and a grain boundary system. The bulk solid system was initialized in a similar manner to
the grain boundary system; however there was no angle of misorientation and only a solid
region was seeded. The bulk liquid system was seeded with only liquid phase. Five angles
of misorientation were chosen based on the low-strain calculations done by Mellenthin et
al: 27.8o, 21.8o, 17.8o, 13.2o, 5o. [18]The misorientation angles are a mix of high, low
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Figure 4.3: The window method allows a region (red) to be specified that corresponds to
only one grain boundary.

and intermediate angle boundaries. V (µ) = ωsolid − ωliquid will be the same for all angles,
and thus the only quantity that changes throughout these angles is width. To recover the
disjoining potential the curve of disjoining pressure with respect to width was fit to an
exponential function similar in form to equation 4.2. While this assumes the form of the
disjoining potential to be exponential, there is good agreement in the literature with this
form [11][2] and this study is no different. While the grain boundary for 27.8o had enough
points to plot values for low and high widths, the other angles only had data for lower
values. In order to accurately fit the other misorientations it was necessary to include
higher width points. Since all misorientations should go to the same value of disjoining
pressure at high widths, points were selected from the limit shown by 27.8o and inserted into
the plots of the other misorientations at very high widths. It was also observed that 27.8o

was going to a non-zero value of disjoining pressure for high widths. For reasons discussed
in the next chapter, a non-zero high width limit is undesirable, thus once all angles had
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been fit to a curve a constant value equal to the high width limit was subtracted from them.
The fit equation for the disjoining pressure, which now went to zero for large widths, was
then analytically integrated to produce an equation for the disjoining potential.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Results

Varying misorientation is a very useful method of investigating the structural disjoining
potential. In this section results are presented for the angles of 27.8o, 21.8o, 17.8o, 13.2o and
5o. This range neatly maps out the behaviour of the premelted film width and associated
disjoining potential with the transition from high-angle to low-angle grain boundaries.

Figure 5.1 shows the nature of the increase in premelted film width with chemical po-
tential. Since width was calculated using the excess mass technique, a dry grain boundary
(i.e. a boundary far into the bulk solid) will always have some finite width. Since excess
mass is a measure of how far the grain boundary is from the properties of the bulk solid
phase, low-angle boundaries will have a smaller dry grain boundary width than a high-angle
boundary. Grain boundaries vary very little in width for the majority of the approach to
the solidus (i.e. melting point). Only the 27.8o high-angle boundary changes width rapidly
as it diverges to infinity - representing a fully melted system. The 5o low-angle boundary
maintains a width close to its dry grain boundary width on its approach to the solidus.
Past the solidus the 5o boundary overheats, that is, continues to maintain solid phase in a
region where the free energy favours the liquid phase. The grain boundaries at 21.8o, 17.8o,
and 13.2o lie somewhere between these two extremes. A melting point can be inferred from
figure 5.1 where the grey dashed line is drawn. It is at this point that the boundaries for
the angles > 15o melt completely, in line with what is expected for high-angle boundaries.
The estimated chemical potential for the melting point is µmelt ≈ −0.025.

The disjoining potential for 27.8o displays a monotonically decreasing form in line with
equation 4.1. As misorientation angle decreases, an attractive minimum forms and gets
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Figure 5.1: The width of a premelted grain boundary vs. chemical potential of concentra-
tion. The grey dashed line is the solidus line as predicted by where the grain boundaries
completely melt. The width was determined using an excess mass calculation and is in
terms of the lattice spacing.
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Figure 5.2: Disjoining potential vs. width as determined from
�
V �(µ). The disjoining

potential goes to zero in the limit of large widths for all misorientations.
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deeper, which is better described by equation 4.2. The appearance of an attractive min-
imum marks the change between repulsive and attractive-repulsive behaviours. With an
increase in misorientation the width predicted by the attractive minimum increases. The
attractive minimum holds the grain boundary width around this minimum value as the sys-
tem approaches the solidus, and for the lowest angle cases, past the solidus as well. Mishin
et al. [19], also found that as the depth of the well increased with decreasing misorientation,
which holds here except for 5o. Likely, not enough points were gathered for 5o for the fit to
capture this behaviour. A more detailed study of these attractive-minimums could correct
the depth of the 5o minimum. The y-intercept for the disjoining potential corresponds
with the grain boundary energy for a completely dry grain boundary. [18] Therefore it is
expected as misorientation decreases, grain boundary energy decreases, which is the case
in figure 5.4.

5.2 Discussion

Plotting the disjoining pressure vs. width reveals a negative exponential form that can be
expected from the first derivative of equation 4.1. However, after fitting all angles of grain
boundaries to an exponential curve, it is observed that they have a disjoining pressure that
does not go to zero in the limit of large widths. A non-zero high-width disjoining pressure
would mean that the disjoining potential would also never go to zero at large widths for
these boundaries. Disjoining potential must go to zero at high widths because otherwise
it effectively means that no matter what the size of the liquid-like film the two solid-liquid
interfaces would always be able to interact, which is not a physical result. A physical
result can still be determined from these two grain boundaries by shifting the curves up
by a constant amount until they reach zero, as seen in figure 5.3. This non-zero value for
large widths is likely due to strain effects, which can also be seen through the shift in the
melting point.

The grain boundary width vs. chemical potential predicts a chemical potential of
µGB
melt ≈ −0.025 as the melting point. A plot of the grand potential of the bulk liquid

and solid vs. chemical potential predicts a value of µBulk
melt ≈ −0.024. The melting point

as predicted by the grain boundary systems, µGB
melt, agrees across all misorientations. This

suggests that the cause of the discrepancy affects all systems equally. A strain imposed on
the system due to the misfit of the triangular lattice in the simulation window would cause
a shift in the grand potential. The system would melt at a smaller chemical potential
due to an increase in free energy density in the solid lattice for all misorientations. If
the misorientations chosen all impose zero, or a constant low strain on the system, then
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Figure 5.3: Disjoining pressure vs. width as determined from V �(µ) = γS − γL plus a
shifting term. The disjoining pressure now goes to zero in the limit of large widths for all
misorientations.
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Figure 5.4: The grand potential calculated for the bulk solid and bulk liquid. Data was
acquired from simulations of completely liquid and completely solid systems. A melting
point is predicted at the intersection of these two lines, which gives: µBulk

melt ≈ −0.0240813

a strain is likely caused by the grid spacing as discussed in section 4.3. A similar effect
would also apply to the bulk solid simulation. For this system the misorientation is zero
which means that the triangular lattice will be arranged so that the bases of the triangles
will be arranged parallel to the x-direction. A brief analysis can be done to determine if
an integer number of density peaks can fit in the system in the x and y-directions. If it
can then the system should not be strained.

The grid spacing for the x-direction is defined as δx = π
4 . The number of peaks, P in

the x-direction is given by:

Px =
Nxδx
α

(5.1)

where Nx = 1024 is the system size in the x-direction, and α = 2π is the lattice
parameter. This results in a total of 128 peaks in the x-direction. For the y-direction, a
rectangle shape can be used to count the number of peaks which is constructed from two
triangles arranged tip-to-tip. The number of peaks in the y-direction can be given by:
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Figure 5.5: Alignment of the triangular lattice for zero misorientation.

Py =
Nyδy
α
√
3

(5.2)

Where for the simulations presented here δx = δy, and the result is Py ≈ 73.9. This
value represents the number of peaks the system would have with zero strain. The system
will still have an integer number of peaks in the y-direction, but with a slight strain.
Although this may seem like a small amount, because the disjoining potential is sensitive
to small changes in energy, this could potentially have a large impact.

The effect of strain on the bulk solid system is to shift the ωsolid curve up, causing the
melting point prediction for the bulk system to be an underestimate. This shift in bulk
solid system energy also impacts the calculation of the disjoining pressure. The strain
likely does not affect the grain boundary system and the solid system to the same degree.
Since the shift introduces more energy, when investigating a value for a given potential,
the value actually measured effectively corresponds to a chemical potential further along
the same curve. Therefore it is likely that the values for ωS − ωL and h that are supposed
to be at the same chemical potentials likely relate to different chemical potentials. This
is a potential reason for the shift seen in disjoining pressure for all angles. However, since
the strain value shifts the system by a constant value, some of the strain can be accounted
for in the analysis and removed.

A visual inspection of the 2D concentration field reveals the necessity for an excess
mass formulation of the film width. Figure 5.6 illustrates grain boundaries for two of
the five chosen angles of misorientation at chemical potentials close to the solidus. Only
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Figure 5.6: 2D concentration fields of grain boundaries at different misorientations close to
the melting point. Dark regions are solid, light regions are disordered or liquid-like. Left:
5o at µψ = −0.0246499, Right: 27.8o at µψ = −0.0249686
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Figure 5.7: Comparison of results from this study to the pure material results of Mellenthin
et al. [18], For Mellenthin et al., axis are in terms of u, which is a scaled chemical potential,
and width over lattice spacing. Both are simulated using PFC

one out of five grain boundaries exhibits a noticeable liquid-like film. Three of the grain
boundaries are technically high-angle (> 15o), and thus it might be expected that they
would all demonstrate visible liquid films. However, the range of chemical potentials will
show visible signs of premelting is very narrow. Mellenthin et al showed similar results
in their study of pure material grain boundary melting using PFC, as seen in figure 5.7.
Although the scales between the two plots are not the same, it appears that angles 21.8o

and 17.8o progress further towards the solidus than the pure material before they show a
divergence in width.

It becomes more difficult to compare the pure material (figure 5.8) and alloy (figure
5.2) for the disjoining potential. In a multi-phase field study by Mishin et al., the pure
material and alloy were compared [19]. It was found that the minimum width specified by a
given grain boundary configuration didn’t greatly change between alloy and pure material,
however the depths of the minimum were increased in the alloy over the pure material.
Since for the present study 2γSL is not known, a direct comparison of the depth of the
minimum with the Mellenthin et al. pure results can not be done at this time. However it
can be seen that as the misorientation decreases, the alloy produces an attractive minimum
before the pure material. Also the shape of the ’well’ produced by the minima is far less
broad in the alloy than the pure material, suggesting it is in fact deeper.
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Figure 5.8: Disjoining potential vs. width from [18] for a pure material. Simulated using
PFC
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5.3 Conclusion

Despite residual strain effects from fitting the crystal lattice into a square system, phe-
nomenological forms for the disjoining potential were produced that are in line with previ-
ous work. The disjoining potential was found to have an exponential form that was large at
small widths and went to the limit of zero at large widths. Misorientation angle determined
the size and shape of the disjoining potential curve, including influencing the y-intercept
which is equal to γGB. Comparing to the pure material from Mellenthin et al. [18], the alloy
was found to have much more pronounced attractive minimum in the disjoining potential,
and it reached larger premelted widths faster for repulsive grain boundaries.
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