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Abstract

We study the application of reputation as an instigator of beneficial user

behavior in selfish routing and when the network users rely on the network co-

ordinator for information about the network. Instead of using tolls or artificial

delays, the network coordinator takes advantage of the users’ insufficient data,

in order to manipulate them through the information he provides. The issue

that arises then is what can be the coordinator’s gain without compromising

by too much on the trust the users put on the information provided, i.e., by

maintaining a reputation for (at least some) trustworthiness.

Our main contribution is the modeling of such a system as a repeated game

of incomplete information in the case of single-commodity general networks.

This allows us to apply known folk-like theorems to get bounds on the price

of anarchy that are better than the well-known bounds without information

manipulation.
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Chapter 1

Introduction

1.1 Selfish Routing

In the modern society where almost everyone travels on a day-to-day basis,

the study of traffic networks plays an important role. For each traffic user,

when facing more than one route that can lead her to the destination, she

needs to choose one to travel on. In selfish routing, the traffic user always

acts “selfishly” and picks the route which brings her the maximum profit (or

minimum cost), without considering the payoff of any other users. If the traffic

user takes the time cost on the route as the only measure, ignoring other factors

(such as the landscape or personal feelings), then she will choose the one with

the minimum time latency. The road is a public resource shared by many

traffic users, and the more users travel on, the bigger travel latency tends to

be. This phenomenon is called congestion.

This thesis is about the selfish routing with homogeneous and infinites-

imal users, where “homogeneous” means that all traffic users are indistinct

(for example, we do not distinguish motorcycles and cars), and “infinitesimal”

implies that each traffic user’s contribution to the congestion is negligible. So

if some traffic user switches her choice of route from path p to path p′, the

increase of flow on p′ and the decrease of the flow on p is too small to matter.

1
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1.1.1 Routing Model

We will model the traffic network using a strongly connected, directed graph

G(V,E), with V being the set of nodes and E being the set of edges (links).

In reality, the edges are exactly the roads, and the nodes are the intersection

of the roads. All travelers in the network are starting from the nodes called

origins(O) and going to their corresponding nodes called destinations(D). The

origin and its corresponding destination is called an O-D pair. Let W be the

set of such O-D pairs in the network, and demand dw be the total amount of

traffic users associated with the O-D pair w ∈ W . An O-D pair together with

its associated demand is called a commodity. A path is a simple sequence of

connected edges, and Pw denotes the set of all simple paths connecting an O-D

pair w ∈ W . P is defined by P :=
⋃
w∈W Pw.

If an edge e ∈ E is on a path p ∈ P , we will denote it by e ∈ p. Incidence

matrix ∆|E|×|P | captures the relationship between edges and paths in the graph,

which is defined by

∆ep =

{
1; e ∈ p, ∀e ∈ E, p ∈ P

0; e /∈ p ∀e ∈ E, p ∈ P
Each traffic user in the network will pick a path going from her origin

to her destination. The aggregation of all traffic users’ choice will induce a

flow in the network. h, a vector of dimension |P |, denotes a path flow where

each item hp denotes the amount of traffic users on path p ∈ P . f , a vector of

dimension |E|, denotes an edge flow where each item fe denotes the amount

of traffic user on edge e ∈ E.

Definition 1.1.1 (Feasible flow) A path flow h is called feasible iff the

feasible conditions hold: ∑
p∈Pw

hp = dw, ∀w ∈ W

2



M.Sc. Thesis - Kun Hu McMaster - Computing and Software

hp ≥ 0, ∀p ∈ P

An edge flow f is called feasible if there exists a feasible path flow h, st. f and

h satisfy the compatible condition:

f = ∆|E|×|P |h (1.1)

F denotes the set of all feasible edge flow, and U denotes the set of all

feasible path flow.

If a feasible f and a feasible h satisfy the compatible condition, we call

them compatible to each other, and we can get fe =
∑

p3e hp, ∀e ∈ E.

The traffic users are homogeneous, so they suffer the same latency on the

same edge (or path). The common latency on an edge is related to the flow

because the more traffic users travel on, the more congested it will be, and the

users tend to suffer a bigger latency on it.

We will use edge latency functions to capture the relationship between

a feasible edge flow f ∈ F and the latency on each edge e ∈ E, defined by

le(f) : F → R,∀e ∈ E.

Similarly we will use path latency functions to capture the relationship

between a feasible path flow h ∈ U and the latency on each path p ∈ P ,

defined by lp(h) : U → R,∀p ∈ P .

We will use a tuple (G, l,d) to denote an instance of selfish routing, where

G indicates the topology of the network, l indicates the latency functions and

d indicates the demand.

We assume that the selfish routing problem satisfies the following prop-

erties.

Definition 1.1.2 (Separable property) The latency on an edge e ∈ E is

only related to the edge flow on e, independently of the flow on any other edges.

3
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This makes sense because the congestion on any other edge has nothing

to do with the latency on this edge. Thus later on, we will use le(fe) as the

edge latency function.

Definition 1.1.3 (Additive property) The latency on a path p ∈ P is the

summation of the latency on each edge on p: lp(h) =
∑

e∈p le(fe).

This is also a normal attribute in real life. Written in matrix form, this

is

l(h) = ∆T l(f) (1.2)

Definition 1.1.4 (Social cost) In a feasible flow h or (f), each traffic user

choosing path p ∈ P will suffer the common latency lp(h). Define the social

cost S to be the total latency suffered by all traffic users:

S(h) :=
∑
p∈P

hplp(h)

We can also take the social cost as a function of the edge flow f :

S(f) :=
∑
e∈E

fele(fe)

These two definitions are equivalent, i.e., if f and h are compatible to

each other, then S(h) = S(f), since∑
e∈E

fele(fe) = fT l(f) = hT∆T l(f) = hT l(h) =
∑
p∈P

hplp(h) (1.3)

Definition 1.1.5 (Optimal flow) The optimal edge flow fopt is the feasible

edge flow that minimizes the social cost:

fopt = argmin
f∈F

S(f)

The optimal path flow hopt is the one that is compatible to the optimal

edge flow.

4
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1.1.2 User Equilibrium

We can take the selfish routing problem as a game with all the infinitesimal

users as the players. Each player’s strategy is her choice of which path to travel

on, and her payoff is the negative of the latency on the chosen path. In the

selfish routing game, all the players are trying to maximize their payoff, which

is to minimize the latency on her chosen path.

A strategy profile is a set of strategies which includes one and only one

strategy for each player. In the selfish routing game, a strategy profile will

induce a feasible path flow.

The Nash Equilibrium[20] of the game is the strategy profile in which no

player has the incentive to switch her strategy, if all the other players do not

switch their strategies. The equilibrium flow denotes the flow induced by the

equilibrium strategy of the game. Denote f equ and hequ to be the equilibrium

edge flow and path flow, respectively.

Studies about the equilibrium of selfish routing started early in the last

century, when some basic principles were stated. The first step towards a

mathematical investigation of the problem has been done by J. G. Wardrop [33]

in 1952. He developed the so-called Wardrop’s first principle of equilibrium.

The principle states:

“The journey times in all routes actually used are equal and less than those

which would be experienced by a single vehicle on any unused route”.

The traffic flow that satisfies this principle is referred to as user equilibrium

(UE) flow (see [33][28]). It is an equilibrium state (or stable state) since each

user chooses the route that is the best for her and no user may lower her

transportation cost through unilateral switch.

5
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Based on Wardrop’s first principle, the equilibrium condition in mathe-

matical language is:

Definition 1.1.6 (Equilibrium flow) A feasible flow h is a traffic equilib-

rium flow for the instance (G, l,d) iff : ∀w ∈ W, ∀p1, p2 ∈ Pw with p1 > 0,

lp1(h) ≤ lp2(h).

If we take the social cost as the benchmark of a feasible flow, then the

optimal flow is the most efficient one since it minimizes the social cost. If all

the traffic users act as a team instead of playing selfishly, then their choices

will induce the optimal flow. But in selfish routing, every user plays selfishly

and the equilibrium flow is the stable result of their choices.

Usually the equilibrium flow is different from the optimal one. Pigou’s

Example [24] is a simple example of this.

Example 1.1

Figure 1.1 shows a simple network with a single origin s, a single desti-

nation t, and total demand d = 1. There are two parallel candidate routes:

path 1 has a fixed latency of 1, and the latency on path 2 is equal to the traffic

flow on it. Obviously, at equilibrium all the traffic users will choose path 2,

which is always a safe shot since path 2 is never worse than path 1. No traffic

user would like to choose path 1, because in that case the latency on path 2

will be less than 1, and all those choosing path 1 have an incentive to switch

to path 2.

The social cost of this equilibrium state is 1. But if they act under some

imaginary coordinator, instead of “selfishly”, then half of them will choose

path 1 and the other half choose path 2, which induces the optimal flow with

the social cost 3/4.

6
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Figure 1.1: Pigou’s Example

Beckmann et al. [2] observed that an equilibrium flow is an optimal

solution to a related convex program, and analyzed the existence and

uniqueness conditions for traffic equilibrium. It is proven that if the latency

functions le(fe) are continuous and non-decreasing, then the equilibrium flow

f equ exists and, moreover, all such flow shares the same edge latency l(f).

Price of anarchy (PoA), proposed by Papadimitriou et al. [13][22], is a

method to measure the inefficiency of selfish routing. It is defined by the ratio

of the social cost at equilibrium flow to that at optimum flow.

Definition 1.1.7 (Price of anarchy) If f equ and fopt are the equilibrium

flow and the optimal flow in the network, respectively, then the price of anarchy

is defined by

PoA :=
S(f equ)

S(fopt)
(1.4)

Roughgarden et al. [28] [26] showed that the price of anarchy in user

equilibrium is independent of the network topology, and they gave a tight

upper bound of 4/3 if the latency functions are linear. Correa et al. [5]

found an even simpler proof of this bound for linear latency functions, and

generalized the result to general latency functions by categorizing the latency

7
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functions into classes.

The thesis is about methods to push the equilibrium flow towards the

optimal flow, and reduce the “inefficiency” of the equilibrium flow. There are

several previous works about methods to decrease the bound of PoA. Rough-

garden [27] analyzed the ideas of edge removal and imposing tolls. Edge re-

moval means that some of the edges are removed from the network and the

users are not allowed to use them. Edge removal is a powerful method to

decrease the social cost of equilibrium flow.

In the idea of imposing tolls, the the traffic users are forced to pay

some extra tolls when using the network. The idea of marginal tolls appears

early in 1920s [24]. If the latency functions le(fe),∀e ∈ E are continuous and

differentiable, then the marginal tolls are known to be [27]

τe := f opte

dle
dfe

(f opte )

The marginal tolls push the equilibrium flow to the optimal one.

Another idea, called Stackelberg routing, works under the assumption

that some part of the traffic users would like to obey a central coordinator’s

command and the rest act selfishly in the routing problem. The coordinator

controls a fraction α ∈ (0, 1] of the total amount of users and his strategy to

control these part of users is referred to as Stackelberg policy. Roughgarden [29]

defined two natural Stackelberg policies: SCALE and Largest Latency First

(LLF). SCALE sets the flow on every path p ∈ P equal to α times the optimal

flow hoptp . LLF (applied in parallel-link networks) orders the links by their

latency in the optimal flow from largest to smallest, and saturates them one-

by-one until there are no centrally controlled users remaining. Swammy [32]

considered the Stackelberg policies with general latency functions. Karakostas

et al. [12] generalized the result to multi-commodity networks with gener-

8



M.Sc. Thesis - Kun Hu McMaster - Computing and Software

al latency functions, and got bounds of PoA for both the SCALE and LLF

methods.

1.1.3 Stochastic User Equilibrium

Following McFadden [18] and Sheffi [30], we will consider the case where the

traffic users are allowed to commit some (random) errors when estimating the

path latency. In this case, users have some uncertainty (measured by the

random error) about the latency, and their choices of path to travel on is also

random. The model for this kind of selfish routing is referred to as stochastic

network loading model. The strategy of each traffic user in commodity w ∈ W

is a probability distribution on every path p ∈ Pw, and the payoff is the

negative of the expected latency on the paths they choose. The aggregation

of all the users’ strategy will induce a feasible flow, and the traffic flows where

no user may lower her expected travel latency by unilaterally changing her

current strategy are referred to as flows at stochastic user equilibrium (SUE).

In the stochastic network loading models, the distribution of the random

error plays an important role. “Logit-based model”[3] and “probit-based

model”[4] are the two most widely used models. In the logit-based model, the

random errors on all paths are i.i.d (independent and identically distributed),

following the Gumbel distribution, and in the probit-based model, the random

errors are i.i.d. following the normal distribution. Guo and Yang [10] analyzed

the stochastic user equilibrium in the “logit-based model” and they presented

a bound of the price of anarchy which is related not only to the traffic

network, but also to the Gumbel distribution.

9
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1.1.4 Repeated Games

The kind of game above is referred to as stage game, or one-shot game, in which

the players play the game once. A repeated game [16] is a sequence of stage

games. In a repeated game, the stage game is played repeatedly in periods

0, 1, 2... and the players make their choices simultaneously in each period and

observe that period’s outcome before proceeding to the next one. Let ati be

the action chosen by player i in period t, and at be all the players’ actions in

period t. The payoff (stage payoff) for player i in period t is ui(a
t).

We consider two kinds of players, the long-run players and the short-run

players. A long-run player i plays the game in every period and maximizes his

normalized discount sum of payoff

(1− δ)
∞∑
t=0

δtui(a
t)

where δ ∈ [0, 1) is the discount factor. The discount factor δ indicates the

importance of the stage payoffs in the future. The closer δ is to 1, the more

equivalent the stage payoffs in the distant future are to the ones closer to the

present.

A short-run player i is concerned only with his payoff in the current

period t and hence is often referred to as myopic. He will maximize the stage

payoff ui(a
t).

Fudenberg and Levine [8] [9] analyzed the case where one long-run

player plays a simultaneous-move stage game with a sequence of short-run

players who play only once in their current period but can observe all the

previous play of the long-run player. They considered the case where the

long-run player knows his payoff function but the short-run players do not.

They represented short-run players’ uncertainty about the long-run player’

payoffs using Harsanyi’s notion[11] of a game with incomplete information.

Let the Stackelberg strategy be the pure strategy to which the long-run player

10
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would most like to commit himself. If there is a positive prior probability

that the long-run player will always play the Stackelberg strategy in each

period of the repeated game, then his payoff in any Nash equilibrium of the

repeated game exceeds a bound that converges to the Stackelberg payoff in

the stage game (the payoff he is expected to get when he commits himself to

the Stackelberg strategy) as the discount factor approaches 1. Such results

are known as folk theorems.

Liu et al. [15] discussed the repeated game where instead of observing

the outcome of all the previous periods, the short-run players only have access

to the outcome of the most recent K periods. They analyzed the equilibrium

strategy and the payoff of the single long-run player in the repeated game.

1.2 Our Work and Applications

The thesis is about an idea to decrease the price of anarchy in the selfish

routing. We presented several potential ideas to decrease PoA in Section 1.1.2,

but there are some problems when we apply them in practice.

The idea of edge removal is unrealistic in practice, since given a traffic

network, we can hardly remove an edge or find any reasonable excuse for the

selfish users not to use an existing road.

The idea of imposing tolls is also hard to use in practice. First, the

latency is in terms of time, and the only practical toll is in terms of money,

while it is not easy to find the exchange rate of time and money because

everybody has his own weight of these two. Besides, when the idea is applied

in practice the only possible “person” to collect the tolls is the government.

But the government needs to find a reason to collect tolls from the traffic users.

The idea that part of the traffic users obey the coordinator’s command

is also an unrealistic assumption, since in practice every user acts selfishly.

11
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Our Model Description There will be a coordinator who can broadcast

information about the traffic to all the users in the network via the public

radio or through the Internet. He tells the users that there is some unexpected

extra flow h̄extra in the network. Actually this is fabricated information, and

the extra flow does not exist at all in the network. Broadcasting fabricated

information is the coordinator’s way to manipulate the traffic flow.

The following simple example shows how the extra flow helps to decrease

the PoA if all the traffic users believe the information from the coordinator.

Example 1.2:

Figure 1.2: Virtual Flow Example

Figure 1.2 shows a simple network with a single origin s, a single desti-

nation t, and total demand d = 1. There are two parallel candidate routes:

path 1 has a fixed latency of 1, and the latency on path 2 is equal to the traffic

flow on it. If the coordinator broadcasts the information that on path 2 there

is unexpected extra flow of amount 0.5 and all the users believe in the coor-

dinator, then at equilibrium flow half of the traffic users will choose path 1,

12
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with the perceived travel latency 1, and the other half will choose path 2, also

with the perceived travel latency 1.

The extra flow does not exist in reality, so the users choosing path 2

will suffer latency 0.5, although they are expected to suffer latency 1

when they make their choice. The social cost of the equilibrium flow is

0.5 × 0.5 + 1 × 0.5 = 3/4, which is also the social cost of optimal flow. Thus

the PoA goes from 4/3 (without the extra flow) to 1.

It is the coordinator’s decision to choose how much extra flow to an-

nounce. We will consider the simple case where the coordinator picks an

x ∈ [0, 1] and sets h̄extra := (1− x)hopt where hopt is the optimal flow defined

in Definition 1.1.5.

The traffic users do not have complete information about the network

(they do not know how much the unexpected extra flow is). They will choose

an amount of trust y ∈ [0, 1] to put on the coordinator’s information, and they

will take the part hextra = yh̄extra into account when they make their choices

of which path to travel on. We will call this part virtual flow, since it only

exists in the users’ mind.

We are going to introduce a bi-level game. The upper level is a trust

game between the coordinator who decides how much advantage to take over

users’ incomplete information about the network, and the traffic users who

decide how much to trust the coordinator. The lower level is the selfish routing

game among all the traffic users, with the extra flow determined by the upper

level. In the trust game, the coordinator’s payoff is the negative of the price

of anarchy of the selfish routing game in the lower level, and the traffic users’s

payoff is the negative of their perceived path latency in the equilibrium flow

of the lower level.

Finally we consider the repeated games with the trust game being played

13
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repeatedly. The coordinator is a long-run player, and the traffic users are

short-run since they do not care about the stage payoff in the future periods.

The traffic users can look up the outcome of the previous periods, and then

decide how much trust to put on the coordinator. In this way, the coordinator

cannot be too greedy because he also needs to maintain his reputation so that

the traffic users would like to put more trust in him when they observe the

actions of the previous periods. We conclude that at the equilibrium of the

repeated games, the price of anarchy of the selfish routing game is decreased

from the well-known bounds (see [26][5]).

The thesis is about the traffic assignment. But the same analysis applies

to an information network, which is about data traffic, instead of vehicle traffic.

1.3 Organization

Chapter 1 is the introduction part, which is about the basic background of the

problem and presents some selected relevant works by the previous researchers.

In Chapter 2 we consider the user equilibrium (UE) model and discuss the

trust game between the traffic coordinator and traffic users. In Chapter 3,

we focus on the stochastic user equilibrium (SUE) model, which takes traffic

users’ errors about the measured latency into account, and then discuss the

trust game between the traffic coordinator and the users. Chapter 4 is about

reputation and repeated games, where the traffic coordinator will play with

a sequence of traffic users. The conclusion and some open problems will be

included in Chapter 5.

14



Chapter 2

User Equilibrium

This chapter introduces a trust game between the traffic coordinator and the

traffic users. The coordinator tries to manipulate the selfish users and push

the user equilibrium (UE) flow towards the optimum, by broadcasting virtual

flow to the users. The traffic users choose how much trust to put on the

coordinator, and route selfishly in the network.

2.1 Trust Game between the Network Coor-

dinator and the Users

The traffic coordinator knows everything about the network and he wants to

minimize the PoA of the traffic network. The traffic users route selfishly in the

network, i.e., they want to minimize the latency on their chosen path. Here

we assume that the users know the topology of the network G, the demand

d and latency function l. This is reasonable because G and l are fixed for a

certain traffic network, and we consider the case with fixed demand d. We call

d the normal demand, and the flow consisting of the users in d normal flow.

In the trust game, we introduce the coordinator who broadcasts the

information of unexpected extra flow in the network to all the traffic users.

The traffic users do not know anything about extra flow themselves, so the

coordinator can take advantage of the users’ incomplete information about

15
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the network (here the incomplete information is the extra flow) to manipulate

the information he provides.

In our case, the extra flow that the coordinator broadcasts does not exist

at all in reality and is referred to as “virtual flow”. The coordinator provides

this fabricated information to manipulate the normal flow and push it towards

the optimum. If the traffic users believe the coordinator, they will take the

extra flow into account when they choose the path to route on, because they

believe the extra flow will also make a contribution to the congestion. Note

that even though the information about the extra flow is fabricated, it is not

easy for the traffic users to reveal this fact, because in the users’ view, both

the virtual flow and the normal flow are the aggregation of homogenous traffic

users, and they are not distinguishable at all.

In the game, the coordinator decides how much advantage he will take

of the users. In other words, he decides how much extra flow to broadcast to

the users. We assume the maximum extra demand he will put is d̄extra and

the corresponding extra path flow is h̄extra.

Of course, the traffic users are not required to trust the coordinator’s

information. They are free to choose how much trust to put on the information

the coordinator announces.

On the other hand, when the users distrust the coordinator’s information,

they will be confused about the amount of extra latency the extra flow will

bring, and they will estimate it. Because of the homogeneity, we assume that

each traffic user in commodity w will believe that the extra flow will increase

her latency by mw (the same amount for all the users in w), which is the

estimated extra latency. Furthermore, we assume that the estimated extra

latency is identical for all the paths the users may choose, i.e, the users do not

have any personal feelings about the path p ∈ Pw, and they believe the extra

flow will bring the same extra latency to all the paths.
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Next, we will model this trust game formally.

Game Model

Players : In this game, there are |W | + 1 players. One is the network

coordinator, and the other |W | players are the W commodities. In the traffic

model with homogenous traffic users, we do not distinguish the users in the

same commodity, so we just pick a representative instead of considering each

single user’s choice.

In the following, we will focus on the simplified version where there is

only a single O-D pair in the instance (G, l,d). In this case, all the traffic

users share the same origin and destination, and d is one-dimensional, so

we will use d instead. The trust game involves two players: the coordinator

(denoted as Player 1 in the following) and the representative of all the traffic

users (denoted as Player 2 in the following).

Strategies : Player 1’s strategy s1 is to pick an x ∈ X = [0, 1], which

decides how much advantage he will take of Player 2’s incomplete information.

In our model, Player 1 will tell Player 2 that the extra path flow is h̃extra =

(1 − x)h̄extra. x = 0 indicates that he is taking full advantage of Player 2

and the extra path flow is h̄extra. x = 1 means that he takes no advantage

of Player 2 and the extra edge flow is 0. In the model, Player 1 uses hopt as

h̄extra, so the extra path flow he announces is (1 − x)hopt (the corresponding

extra edge flow is (1 − x)fopt). Clearly, h̄extra can become part of Player 1’s

strategy in the design of the game; we leave this ability to future work and

just use hopt in the following.

Player 2’s strategy s2 is to choose y ∈ Y = [0, 1] which denotes her trust

on Player 1. y = 1 means she completely trusts Player 1’s information, and

y = 0 implies that she totally distrusts Player 1. 1−y will be the corresponding

17
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weight she puts on her own estimation about the extra latency.

We consider the case where the two players move simultaneously. A

strategy profile s = (x, y) ∈ [0, 1] × [0, 1] records Player 1 and Player 2’s

strategies.

Payoffs : Given a strategy profile s = (x, y), Player 2’s perceived latency

function l̂(h) will be

l̂p(h) = lp(h + (1− x)yhopt) + (1− y)m,∀p ∈ P (2.1)

where l(h) is the latency function, h is the normal flow, (1 − x)hopt is the

virtual flow Player 1 announces in which hopt is the optimal flow, and m is

Player 2’s own estimation about the extra latency. Player 2 puts weight y on

the information Player 1 announces, and 1− y on her own estimation.

The traffic users will route selfishly in the instance (G, l̂, d). Denote the

equilibrium flow of the instance by f equ (and path flow hequ).

The result in Beckmann et al. [2] can also be applied here to prove that

the instance with infinitesimal users admits at least one equilibrium flow and

all the equilibrium flow shares the common latency.

We will use ρ, the price of anarchy (PoA) in Definition 1.1.7, to measure

the inefficiency of the equilibrium flow. (1.4) implies ρ := S(fequ)
S(fopt)

, where S(f) =∑
e∈E fele(fe) is the social cost function, fopt is the optimal flow and f equ is the

equilibrium flow in the instance (G, l̂, d).

Player 1 is the network coordinator and his payoff is defined by the

negative of the price of anarchy.

Definition 2.1.1 (Player 1’s payoff) Player 1’s payoff in the trust game

is

Γ1 := −ρ = −S(f equ)

S(fopt)

18
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The ratio ρ is lower bounded by 1 and ρ = 1 implies that the equilibrium

flow coincides with the optimal one.

Player 2 represents the traffic users, and her payoff Γ2 is defined by the

negative of the perceived common latency at equilibrium hequ.

Definition 2.1.2 (Player 2’s payoff) Player 2’s payoff in the trust game

is

Γ2 := −l̂p(hequ), ∀p ∈ P, ∀hequp > 0

This definition is valid since, at equilibrium, Wardrop’s Principle[33] guaran-

tees that all the used paths p (∀p ∈ P, s.t. hequp > 0) bear the same latency.

Hence, we can also use another equivalent definition:

Γ2 = −1

d

∑
p∈P

hequp l̂p(h
equ) (2.2)

We have

Γ2
(1.2)(2.2)

= − 1

d

∑
p∈P

hequp lp(h
equ + (1− x)yhopt)− (1− y)m

(1.3)
= − 1

d

∑
e∈E

f eque le(f
equ
e + (1− x)yf opte )− (1− y)m (2.3)

2.2 User Equilibrium Flow

Lemma 2.2.1 f equ( or hequ), the equilibrium flow for the instance (G, l̂, d), is

also the equilibrium flow for the instance (G, l̃, d), where

l̃e(fe) = le(fe + (1− x)yf opte ), ∀e ∈ E (2.4)

Proof:

l̃(h)
(1.2)
= ∆T

|E|×|P |̃l(f)

(2.4)
= ∆T

|E|×|P |l(f + (1− x)yfopt)
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(1.1)
= ∆T

|E|×|P |l(∆|E|×|P |(h + (1− x)yhopt))

(1.2)
= l(h + (1− x)yhopt) (2.5)

Thus ∀p ∈ P , we have

l̃p(h) = lp(h + (1− x)yhopt)
(2.1)
= l̂p(h)− (1− y)m (2.6)

From Definition 1.1.6, we can see that if hequ is the equilibrium flow

for the instance (G, l̂, d), then it must be an equilibrium flow for the instance

(G, l̃, d).

�

Lemma 2.2.1 states that the equilibrium flow f equ for the instance (G, l̂, d)

is equal to the equilibrium flow for the instance (G, l̃, d). Next we will use the

equilibrium flow for (G, l̃, d) as f equ, and furthermore analyze the payoff for

Player 1 and Player 2 in the trust game.

Recall that l̃e(fe) = le(fe+(1−x)yf opte ),∀e ∈ E. If we denote α = (1−x)y

for convenience, then

l̃e(fe) = le(fe + αf opte ),∀e ∈ E (2.7)

Furthermore, the part αfopt is virtual flow which does not contribute to the

social cost.

2.2.1 Networks with Linear Latency Functions

Consider the case where the latency function of each edge is linear: le(fe) =

aefe + be, ae, be ≥ 0,∀e ∈ E.

Without the virtual flow αfopt, Roughgarden and Tardos [26] proved that

the price of anarchy of (G, l, d) is upper bounded by 4/3 for all kinds of network

topology.

Next we will show that with the virtual flow αfopt, the PoA is decreased.
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Lemma 2.2.2 Let fα be the equilibrium flow for the instance (G, l̃,d) where

l̃ is defined in (2.7), and the latency functions are linear: le(fe) = aefe +

be, ae, be ≥ 0,∀e ∈ E. The price of anarchy ρ(α) is upper bounded by

ρ(α) :=
S(fα)

S(fopt)
≤ 4

3 + α
,∀α ∈ [0, 1] (2.8)

Proof: Since fα is a traffic equilibrium, and l̃e(fe) = le(fe + αf opte ),∀e ∈ E,

the following variational inequality holds ( see [26]):∑
e∈E

l̃e(f
α
e )(fe − fαe ) ≥ 0, ∀f ∈ F (2.9)

By setting f := fopt in (2.9), we get that

S(fα) =
∑
e∈E

(aef
α
e + be)f

α
e

≤
∑
e∈E

(aef
α
e + be)f

opt
e − α

∑
e∈E

aef
opt
e (fαe − f opte )

≤ S(fopt) + (1− α)
∑
e∈E

aef
opt
e (fαe − f opte ) (2.10)

If we set ce := aef
opt
e (fαe − f opte ), ∀e ∈ E, then

(a) if fαe ≤ f opte , then obviously ce ≤ 0 ;

(b) if f opte < fαe , then we define λe := f opte /fαe , 0 ≤ λe < 1, and we have

ce = ae(f
α
e )2(λe − λ2

e)

≤ [
1

4
− (λe −

1

2
)2]ae(f

α
e )2

≤ 1

4
(aef

α
e + be)f

α
e

To sum up, ce ≤ 1
4
(aef

α
e + be)f

α
e , so we have∑

e∈E

aef
opt
e (fαe − f opte ) ≤ 1

4

∑
e∈E

(aef
α
e + be)f

α
e =

1

4
S(fα) (2.11)

From (2.10), we get

S(fα) ≤ S(fopt) +
1

4
(1− α)S(fα)
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Then

ρ(α) :=
S(fα)

S(fopt)
≤ 1

1− 1/4(1− α)
=

4

3 + α
, 0 ≤ α ≤ 1

�

ρ(0) ≤ 4
3

implies that if we do not introduce any virtual flow, the PoA is

upper bounded by 4/3, which is the same result as the one Roughgarden and

Tardos showed in [26].

Lemma 2.2.2 also shows that if the extra flow is equal to fopt, then the

equilibrium flow will coincide with the optimum.

Lemma 2.2.3 Let fα be the equilibrium flow for the instance (G, l̃,d) where

l̃ is defined in (2.7), and the latency functions are linear: le(fe) = aefe +

be, ae, be ≥ 0,∀e ∈ E. We have∑
e∈E

fαe l̃e(f
α
e ) ≤ 4

3− α
S(fopt),∀α ∈ [0, 1] (2.12)

Proof: The variational inequality (2.9) for the instance (G, l̃,d) implies∑
e∈E

fαe l̃e(f
α
e ) ≤

∑
e∈E

fel̃e(f
α
e ), ∀f ∈ F

By setting f := fopt, we get∑
e∈E

fαe le(f
α
e + αf opte ) ≤

∑
e∈E

f opte le(f
α
e + αf opte ) (2.13)

Since the latency functions le(x) are linear le(x) = aex + be, ae, be ≥

0,∀e ∈ E, and we have

1

4
x2 + y2 − xy = (

1

2
x− y)2 ≥ 0,∀x, y

we can get

y[le(x)− le(y)] = ae(xy − y2) ≤ ae ·
1

4
x2 ≤ 1

4
xle(x) (2.14)
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⇔ yle(x) ≤ yle(y) +
1

4
xle(x),∀x, y ≥ 0 (2.15)

If we set x := fαe + αf opte , y := f opte , then (2.15) implies

f opte le(f
α
e + αf opte ) ≤ f opte le(f

opt
e ) +

1

4
(fαe + αf opte )le(f

α
e + αf opte )

Thus ∑
e∈E

f opte le(f
α
e + αf opte )

≤
∑
e∈E

f opte le(f
opt
e ) +

1

4

∑
e∈E

(fαe + αf opte )le(f
α
e + αf opte )

≤S(fopt) +
1

4

∑
e∈E

fαe le(f
α
e + αf opte ) +

1

4
α
∑
e∈E

f opte le(f
α
e + αf opte )

(2.13)

≤ S(fopt) +
1

4
(1 + α)

∑
e∈E

f opte le(f
α
e + αf opte ) (2.16)

Solving (2.16), we get∑
e∈E

f opte le(f
α
e + αf opte ) ≤ 4

3− α
S(fopt)

and (2.13) implies ∑
e∈E

fαe l̃e(f
α
e ) ≤ 4

3− α
S(fopt)

�

2.2.2 Networks with General Latency Functions

The analysis of the linear case in Section 2.2.1 can be extended to general

latency functions that satisfy certain properties. These properties are

described in the following assumptions.

Assumption 1 ∀e ∈ E, le(x) is a convex and non-decreasing continuous func-

tion of x, with the first and second derivative existing everywhere.
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Usually this assumption holds in practice. le(x) is non-decreasing means

that the more the traffic on a road, the greater the latency will be. le(x) is

convex means that if the traffic on an edge is already heavy, the same amount

of additional flow coming in will make more serious congestion than in the

case where the traffic is light. This is common in reality, because when the

traffic is light, a small amount of extra flow will bring no congestion at all,

but when a jam already exists, it will make a big difference.

Let L denote the family of the continuous and non-decreasing latency

functions. Correa et al. [5] introduced the concept of β-function to denote the

linearity of L .

Definition 2.2.1 (Beta-function) ∀l ∈ L, define

β(l) := sup
0<y<x

y[l(x)− l(y)]

xl(x)
(2.17)

Then β(L) is

β(L) := sup
l∈L

β(l)

It is obvious that 0 ≤ β(L) ≤ 1. If L is the family of linear functions

le(fe) = aefe + be, ae, be ≥ 0,∀e ∈ E, then β(L) = 1
4

[5].

Assumption 2 We assume that β(L) < 1
2
, which indicates that these func-

tions are not too “nonlinear”.

Recall that l(f) is |E|−dimensional. Define ∇L(f) to be the Jacobian

matrix of l(f), with dimension |E| × |E|

∇L(f)ij =
∂li
∂fj

, ∀i, j ∈ E

If the separable property (see Definition 1.1.2) holds for the instance,

then li is independent of fj,∀j 6= i, so ∇L(f) will be a diagonal matrix, with

the diagonal entries ∇L(f)ii = dli
dfi

. Note that ∇L(f) is positive semi-definite.
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The Jacobian similarity property [23] implies that there exists a constant

J satisfying that for all feasible flow f , f ′, and for all w ∈ R|E|

1

J
wT∇L(f)w ≤ wT∇L(f ′)w ≤ JwT∇L(f)w (2.18)

and the smallest J is referred to as the Jacobian similarity factor.

Since ∇L(f) is positive semi-definite, (2.18) indicates that J ≥ 1. If the

latency functions are linear, J = 1 since

∇L(f)ii =
dli
dfi

= ai = ∇L(f ′)ii

Assumption 3 The Jacobian similarity property holds for the instance

(G, l,d), and the Jacobian similarity factor J satisfies

J <
1

1− β(L)

Lemma 2.2.4 Let fα be the equilibrium flow for the instance (G, l̃,d) where l̃

is defined in (2.7), and the latency functions l are convex and non-decreasing.

If the Jacobian similarity property holds for the instance, then the price of

anarchy is bounded by

ρ(α) :=
S(fα)

S(fopt)
≤ 1 + (J − 1)α

1− β + βα
(2.19)

where J is the similarity factor and β := β(L).

Proof: Define

T0 : =
∑
e∈E

f opte le(f
α
e ) = [fopt]T l(fα) (2.20)

T1 : =
∑
e∈E

fαe le(f
α
e + αf opte ) (2.21)

T2 : =
∑
e∈E

f opte le(f
α
e + αf opte ) (2.22)

From Definition 2.2.1, we have

β ≥ f opte [le(f
α
e )− le(f opte )]

fαe le(f
α
e )
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Thus

T0 =
∑
e∈E

f opte le(f
α
e )

≤
∑
e∈E

[βfαe le(f
α
e ) + f opte le(f

opt
e )]

= β
∑
e∈E

fαe le(f
α
e ) +

∑
e∈E

f opte le(f
opt
e )

= βS(fα) + S(fopt) (2.23)

Since le(fe) is continuous, if l′e(fe) denotes the first derivative of le(fe)

with respect to fe, then the mean value theorem ([17]) indicates that ∃t ∈ [0, 1]

such that if fe = fe
α + tαfe

opt, then

le(f
α
e + αf opte ) = le(f

α
e ) + αf opte l′e(fe) (2.24)

Similarly, ∃t̂ ∈ [0, 1] such that if f̂e = t̂fe
α, then

le(f
α
e ) = le(0) + fαe l

′
e(f̂e) (2.25)

The convexity of le guarantees l′e(fe) ≥ l′e(f̂e), since fe ≥ fαe ≥ f̂e.

We can get

le(f
α
e + αf opte )fαe

(2.24)
= le(f

α
e )fαe + αf opte l′e(fe)f

α
e

(2.25)

≥ le(f
α
e )fαe + αf opte [le(f

α
e )− le(0)] ∀e ∈ E

Thus we have

T1 =
∑
e∈E

le(f
α
e + αf opte )fαe

≥
∑
e∈E

le(f
α
e )fαe + α

∑
e∈E

f opte le(f
α
e )− α

∑
e∈E

f opte le(0)

≥ S(fα) + αT0 − α
∑
e∈E

f opte le(0) (2.26)

Similarly, we have

T2 =
∑
e∈E

le(f
α
e + αf opte )f opte
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=[fopt]T l(fα + αfopt)

The mean value theorem implies that ∃t ∈ [0, 1] s.t. if f = fα + tαfopt,

then

l(fα + αfopt) = l(fα) +∇L(f) · αfopt

Thus

T2 =[fopt]T [l(fα) + α∇L(f)fopt]

(2.20)
= T0 + α[fopt]T∇L(f)fopt (2.27)

Besides, the mean value theorem implies that ∃t̂ ∈ [0, 1] such that if

f̂ = t̂fopt, then

[fopt]T [l(fopt)− l(0)] = [fopt]T∇L(̂f)fopt (2.28)

The similarity property indicates

[fopt]T∇L(f)fopt ≤ J [fopt]T∇L(̂f)fopt

Using this in (2.27) and (2.28), we get

T2 ≤ T0 + αJ [fopt]T [l(fopt)− l(0)]

= T0 + αJ
∑
e∈E

f opte [le(f
opt
e )− le(0)]

= T0 + αJS(fopt)− αJ
∑
e∈E

f opte le(0) (2.29)

The variational inequality (2.9) and (2.21), (2.22) imply T1 ≤ T2. Thus

S(fα)
(2.26)

≤ T2 − αT0 + α
∑
e∈E

f opte le(0)

(2.29)

≤ (1− α)T0 + αJS(fopt)− α(J − 1)
∑
e∈E

f opte le(0)

(2.23)

≤ β(1− α)S(fα) + (αJ + 1− α)S(fopt) (2.30)

We can get from (2.30)

ρ(α) =
S(fα)

S(fopt)
≤ 1 + (J − 1)α

1− β(1− α)
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�

In the case where the latency functions are linear, J = 1, β = 1
4
, the bound

shown in Lemma 2.2.4 goes to 4
3+α

, which coincides with the one in Lem-

ma 2.2.2.

Lemma 2.2.5 Let fα be the equilibrium flow for the instance (G, l̃,d) where

l̃ is defined in (2.7). If the latency function l satisfies Assumption 2, then we

have ∑
e∈E

fαe l̃e(f
α
e ) ≤ 1

1− (α + 1)β
S(fopt) (2.31)

where β := β(L).

Proof:

From the variational inequality (2.9), we have∑
e∈E

fαe le(f
α
e + αf opte ) ≤

∑
e∈E

f opte le(f
α
e + αf opte ) (2.32)

In (2.17), if we set x := fαe + αf opte , y := f opte , then we will get

f opte le(f
α
e + αf opte )− f opte le(f

opt
e )

(fαe + αf opte )le(fαe + αf opte )
≤ β,

which implies

f opte le(f
α
e + αf opte ) ≤ f opte le(f

opt
e ) + β(fαe + αf opte )le(f

α
e + αf opte )

Thus ∑
e∈E

f opte le(f
α
e + αf opte )

≤
∑
e∈E

f opte le(f
opt
e ) + β

∑
e∈E

fαe le(f
α
e + αf opte ) + αβ

∑
e∈E

f opte le(f
α
e + αf opte )

(2.32)

≤ S(fopt) + (β + αβ)
∑
e∈E

f opte le(f
α
e + αf opte ) (2.33)
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Assumption 2 indicates that β < 1
2
, so (α + 1)β < 1 when 0 ≤ α ≤ 1.

Thus (2.33) implies∑
e∈E

f opte le(f
α
e + αf opte ) ≤ 1

1− (α + 1)β
S(fopt)

From (2.32), we have∑
e∈E

f̃αe le(f
α
e ) =

∑
e∈E

fαe le(f
α
e + αf opte ) ≤ 1

1− (α + 1)β
S(fopt)

�

In the case where the latency functions are linear, β = 1
4
, and the bound

here turns to
∑

e∈E f̃
α
e le(f

α
e ) ≤ 4

3−αS(fopt), which coincides with the one in

Lemma 2.2.3.

2.3 Stackelberg Payoff in the Trust Game

In the trust game, Player 1’s payoff is defined using the price of anarchy.

Lemma 2.3.1 Player 1’s payoff in the trust game is lower bounded by

Γ1(x, y) ≥ −1 + (J − 1)(1− x)y

1− β + β(1− x)y
(2.34)

where J denotes the Jacobian similarity factor and β := β(L).

Proof: From Definition 2.1.1, we have Γ1(x, y) = −S(fequ)
S(fopt)

where f equ is the

equilibrium flow for the instance (G, l̂, d), which is equal to the equilibrium for

(G, l̃, d) as Lemma 2.2.1 implies.

By setting α := (1− x)y, x ∈ [0, 1], y ∈ [0, 1], we can use Lemma 2.2.4 to

get
S(f equ)

S(fopt)
≤ 1 + (J − 1)(1− x)y

1− β + β(1− x)y

Thus

Γ1(x, y) ≥ −1 + (J − 1)(1− x)y

1− β + β(1− x)y
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�

In the following, we will refer to the upper bound in Lemma 2.3.1 as Γ̄1.

Definition 2.3.1 Γ̄1 is a lower bound of Γ1, defined by

Γ̄1(x, y) = −1 + (J − 1)(1− x)y

1− β + β(1− x)y
(2.35)

Note that in the case where the latency functions are linear, we have

J = 1, β = 1
4

and

Γ̄1(x, y) = − 4

3 + (1− x)y
(2.36)

Lemma 2.3.2 f equ, the equilibrium flow for (G, l̂, d), is continuous on (x, y).

Proof: Lemma 2.2.1 implies f equ is also the equilibrium flow for (G, l̃, d). We

denote a = (x, y), a ∈ Φ = [0, 1] × [0, 1]. Given an a ∈ Φ, from [28] we

know that hequ, the equilibrium path flow for (G, l̃, d), is the solution to the

parametric mathematical problem

min
h

z(h, a) =
∑
e∈E

∫ fe

0

l̃e(ω)dω s.t.

∑
p∈P

hp = d,

fe =
∑
p3e

hp, ∀e ∈ E

hp ≥ 0, ∀p ∈ P

The feasible set of the minimization problem is U , which is non-empty

and bounded. Besides, the feasible set (which is U) is independent of a ∈ Φ,

so Theorem 2.2 in [34] indicates that when a belongs to a neighborhood of a∗

and a→ a∗, we have hequ(a)→ hequ(a∗).

So, the equilibrium flow hequ is continuous at (x, y), and therefore f equ is

also continuous. �
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Lemma 2.3.3 1) Function Γ̄1(x, y) and Γ1(x, y) are continuous on x ∈ [0, 1]

and y ∈ [0, 1];

2) If Assumption 3 holds for the instance (G, l̂, d), then Γ̄1(x, y) is con-

tinuously decreasing in x ∈ [0, 1] and increasing in y ∈ [0, 1].

Proof:

1) When x, y ∈ [0, 1], 1− β + β(1− x)y is positive, and Definition 2.3.1

implies the continuity of Γ̄1(x, y).

Lemma 2.3.2 implies that f equ is continuous on x and y. Also

Γ1(x, y) = −S(f equ)

S(fopt)
= −

∑
e∈E f

equ
e le(f

equ
e )

S(fopt)
,

and le(f
equ
e ), e ∈ E is continuous, so Γ1(x, y) is continuous on f equ, and

furthermore, is continuous on x and y.

2) By taking the first derivative of Γ̄1 on x, we have

∂Γ̄1

∂x
= − [β − (J − 1)(1− β)]y

[1− β + β(1− x)y]2

Assumption 3 indicates (1 − β)J < 1, thus [β − (J − 1)(1 − β)]y > 0,

which implies ∂Γ̄1

∂x
< 0. So Γ̄1(x, y) is decreasing in x ∈ [0, 1].

By taking the first derivative of Γ̄1 on y, we have

∂Γ̄1

∂y
= − [(J − 1)(1− β)− β](1− x)

[1− β + β(1− x)y]2

Assumption 3 implies [(J − 1)(1 − β) − β]y < 0, so Γ̄1(x, y) is increasing in

y ∈ [0, 1].

�

Lemma 2.3.4 Function Γ2(x, y) is continuous on x and y.
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Proof:

In Definition 2.1.2, we have

Γ2 = −1

d

∑
e∈E

f eque le(f
equ
e + (1− x)yf opte )− (1− y)m

le(f
equ
e ), e ∈ E is continuous, and Lemma 2.3.2 implies f equ is continuous on x

and y, thus Γ2(x, y) is continuous on x and y. �

Definition 2.3.2 (Best response) In the trust game, given Player 1’s strat-

egy x ∈ [0, 1], B(x) ⊆ [0, 1] is the set which satisfies

Γ2(x, y∗) ≥ Γ2(x, y), ∀y ∈ [0, 1],∀y∗ ∈ B(x)

Furthermore, we defined Player 2’s best response to Player 1’s strategy x to be

y∗(x) = min
y∈B(x)

y

Given an x ∈ [0, 1], Lemma 2.3.4 indicates that Γ2(x, y) is continuous on

the closed set Y = [0, 1], so the boundedness theorem[25] implies Γ2 is bounded

and the set B(x) is non-empty.

From the definition we can see that, in the trust game, if Player 1 plays

x ∈ [0, 1], then Player 2 always has an incentive to play an element in B(x).

When B(x) is not a singleton set, we assume that Player 2 always picks the

least trust in B(x) (the worst case).

Definition 2.3.3 (Stackelberg strategy) [31] In the trust game, Player 1’s

Stackelberg strategy is defined by

xs := arg max
x∈[0,1]

Γ1(x, y∗(x))

Player 1’s Stackelberg payoff is

Γs1 = Γ1(xs, y
∗(xs)) ≥ Γ1(x, y∗(x)),∀x ∈ [0, 1] (2.37)

Next we are going to analyze Player 1’s payoff at equilibrium and his Stackel-

berg payoff.
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2.3.1 Linear Latency Functions

We start from the simple case with linear latency functions le(fe) = aefe +

be(ae, be ≥ 0, ∀e ∈ E). In this case, J = 1 and β = 1
4
, and Player 1’s payoff

function is lower bounded by Γ̄1

Γ̄1(x, y) = − 4

3 + y(1− x)
(2.38)

Lemma 2.3.5 When m is positive, Player 1’s Stackelberg payoff Γ1(xs, y
∗(xs))

is lower bounded away from −4
3
.

Proof:

By Definition 2.3.3, Γ2(x, y∗(x)) ≥ Γ2(x, y),∀x, y ∈ [0, 1], so if we pick

y = 1, then (2.3) implies

−1

d

∑
e∈E

f ∗e le(f
∗
e +(1−x)y∗(x)f opte )−[1−y∗(x)]m ≥ −1

d

∑
e∈E

f 1
e le(f

1
e +(1−x)f opte )

(2.39)

where f∗ is the equilibrium flow when Player 1 plays x and Player 2 plays y∗(x)

in the trust game, and f1 is the equilibrium flow when Player 1 plays x and

Player 2 plays 1 in the trust game.

If we set α = 1− x, then Lemma 2.2.3 implies∑
e∈E

f 1
e le(f

1
e + (1− x)f opte ) ≤ 4

2 + x
S(fopt) (2.40)

Besides, we have∑
e∈E

f ∗e le(f
∗
e + (1− x)y∗(x)f opte ) ≥

∑
e∈E

f ∗e le(f
∗
e ) = S(f∗) (2.41)

Combining (2.39), (2.40) and (2.41), we get

y∗(x) ≥ 1− 4

2 + x

S(fopt)

md
+
S(f∗)

md
(2.42)

If we pick a positive ε, 0 < ε < 1, then ∀x ∈ [0, 1), we have
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1. Case a: 1 ≥ y∗(x) ≥ ε. In this case,

Γ1(x, y∗(x))
(2.34)

≥ Γ̄1(x, y∗(x))
Lemma 2.3.3

≥ Γ̄1(x, ε)

=− 4

3 + (1− x)ε

Thus

Γs1
(2.37)

≥ Γ1(x, y∗(x)) ≥ − 4

3 + (1− x)ε
(2.43)

2. Case b: 0 ≤ y∗(x) < ε. In this case, if we denote k := md
S(fopt)

, then

(2.42) implies

Γ1(x, y∗(x)) = − S(f∗)

S(fopt)
≥ − 4

2 + x
+ [1− y∗(x)]k

> − 4

2 + x
+ (1− ε)k (2.44)

Thus

Γs1
(2.37)

≥ Γ1(x, y∗(x))

(2.44)
> − 4

2 + x
+ (1− ε)k (2.45)

Combining (2.43) and (2.45), we can see that Player 1’s Stackelberg

payoff satisfies

Γs1 ≥ min{− 4

3 + (1− x)ε
,− 4

2 + x
+ (1− ε)k},∀x ∈ [0, 1),∀ε ∈ (0, 1)

Furthermore, we have

Γs1 ≥ max
x∈[0,1),ε∈(0,1)

min{− 4

3 + (1− x)ε
,− 4

2 + x
+ (1− ε)k}

≥ max
(x,ε)∈C

− 4

3 + (1− x)ε
(2.46)

where C is defined by the system

− 4

3 + (1− x)ε
≤ − 4

2 + x
+ (1− ε)k (2.47)
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0 ≤ x <1, 0 < ε < 1

(2.47) is equivalent to

f(x) :=
4

2 + x
− 4

3 + (1− x)ε
≤ (1− ε)k

f(x) is strictly decreasing in x, and f(1) = 0 < (1 − ε)k, ∀ε ∈ (0, 1),

so ∃ε0 > 0, and x0 < 1 s.t. (2.47) holds ∀x ∈ [x0, 1), ε = ε0. Hence C is

non-empty.

To sum up, (2.46) indicates that Player 1’s Stackelberg payoff is lower

bounded by the mathematical program

max
(x,ε)
− 4

3 + (1− x)ε
s.t.

0 < k =
md

S(fopt)
4

2 + x
− 4

3 + (1− x)ε
≤ (1− ε)k

0 ≤ x < 1, 0 < ε < 1

Since (x0, ε0), (ε0 > 0, x0 < 1) is a feasible point, Γ1 is lower bounded by

− 4

3 + (1− x0)ε0
,

which is strictly greater than −4
3
.

�

Therefore, in the trust game, Player 1’s Stackelberg payoff is always

bounded away from −4
3
.

Note that all the hope that the price of anarchy in our model is less than

the one in [26] lies on the chance that Player 1 will play an x < 1 , Player 2

will play a y > 0, otherwise the “virtual flow” we introduced is 0. But in the

Nash Equilibrium of the trust game, (0, 0) may happen.
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Eample 2.3

The graph in Figure 2.1 is a simple network with a single origin s, a single

destination t, and total demand d = 1. There are 2 feasible paths: path 1,

choosing the upper edge from s to o and then to t, and path 2, choosing the

lower edge from s to o and then to t. The optimal flow is hopt1 = 1
2

and hopt2 = 1
2
,

and the social cost at optimum is a+ 3
4
.

If the coordinator claims that the extra flow on path 1 and path 2 is

hextra1 = 1
2
(1 − x) and hextra2 = 1

2
(1 − x), x ∈ [0, 1] and Player 2’s trust is

y ∈ [0, 1], then the equilibrium flow will be hequ1 = 1− (1−x)y
2

and hequ2 = (1−x)y
2

.

Player 1’s payoff in the trust game is

Γ1(x, y) = −S(hequ)

S(hopt)
= −

1
4
(1− y + xy)2 + 3

4
+ a

3
4

+ a

Player 2’s payoff is

Γ2(x, y) = −[1 + a(1− x)y + (1− y)m]

where m is her own estimation about the extra latency.

Player 1 always has an incentive to play x = 0, no matter what Player 2

plays. When m < a, Player 2’s best response to x = 0 is y∗(0) = 0, thus the

equilibrium of the trust game is (0, 0).

At equilibrium, the “virtual flow” does not help, and the price of anarchy

is 1+a
3
4

+a
, which converges to 4

3
when a goes to 0.

2.3.2 General Latency Functions

We will consider the general latency functions which satisfy Assumptions 1-3

in Section 2.2.2. For general latency functions, the well-known bound of PoA

is 1
1−β (see [5]), where β is defined in (2.2.1).

(0, 0) might be the Nash Equilibrium of the trust game, which means

Player 1 will win nothing from the “virtual flow”, and in that case Player 1’s

payoff can be as bad as Γ̄1(0, 0). Next we will analyze Player 1’s Stackelberg
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Figure 2.1: A Traffic Example

payoff Γs1 in the trust game and show that it is bounded away from Γ̄1(0, 0).

Note that

Γ̄1(0, 0) = − 1

1− β

Lemma 2.3.6 When m is positive, under Assumptions 1, 2 and 3 Player 1’s

Stackelberg payoff Γs1 is lower bounded away from Γ̄1(0, 0).

Proof: The same method in Section 2.3.1 applies here. (2.39)(2.41) also hold

for general latency functions. Lemma 2.2.5 implies∑
e∈E

f 1
e le(f

1
e + (1− x)f opte ) ≤ 1

1− (2− x)β
S(fopt)

Thus we can get

y∗(x) ≥ 1− 1

1− (2− x)β

S(fopt)

md
+
S(f∗)

md
(2.48)

If we pick a positive ε, 0 < ε < 1, then ∀x ∈ [0, 1), we have

1. Case a: 1 ≥ y∗(x) ≥ ε. In this case,

Γ1(x, y∗(x))
(2.34)

≥ Γ̄1(x, y∗(x))
Lemma 2.3.3

≥ Γ̄1(x, ε)

(2.35)
= − 1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
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Thus

Γs1
(2.37)

≥ Γ1(x, y∗(x)) ≥ −1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
(2.49)

2. Case b: 0 ≤ y∗(x) < ε. In this case, if we denote k := md
S(fopt)

, then

inequality (2.48) implies

Γ1(x, y∗(x)) = − S(f∗)

S(fopt)
> − 1

1− (2− x)β
+ (1− ε)k (2.50)

Furthermore, we have

Γs1
(2.37)

≥ Γ1(x, y∗(x))

>− 1

1− (2− x)β
+ (1− ε)k (2.51)

Combining (2.49)(2.51), we can see that Player 1’s Stackelberg payoff

satisfies

Γs1 ≥ min{−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
,− 1

1− (2− x)β
+(1−ε)k},∀x ∈ [0, 1),∀ε ∈ (0, 1)

Furthermore, we have

Γs1 ≥ max
x∈[0,1),ε∈(0,1)

min{−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
,− 1

1− (2− x)β
+ (1− ε)k}

≥ max
(x,ε)∈C

−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
(2.52)

where C is defined by the system

−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
≤ − 1

1− (2− x)β
+ (1− ε)k (2.53)

0 ≤ x <1, 0 < ε < 1

(2.53) is equivalent to

f(x) :=
1

1− (2− x)β
− 1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
≤ (1− ε)k
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When Assumptions 2 and 3 hold, β < 1
2

and J < 1
1−β , f(x) is strictly

decreasing in x, and f(1) = 0 < (1 − ε)k, so ∃ε0 > 0, and x0 < 1 s.t. (2.47)

holds ∀x ∈ [x0, 1) and ε = ε0. Hence C is non-empty.

To sum up, (2.52) indicates that Player 1’s Stackelberg payoff is lower

bounded by the mathematical problem

max
(x,ε)
−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
s.t.

0 < k =
md

S(fopt)

−1 + (J − 1)(1− x)ε

1− β + β(1− x)ε
≤ − 1

1− (2− x)β
+ (1− ε)k

0 ≤ x < 1, 0 < ε < 1

Since (x0, ε0), (ε0 > 0, x0 < 1) is a feasible point, Γ1 is lower bounded by

−1 + (J − 1)(1− x0)ε0
1− β + β(1− x0)ε0

When Assumption 3 holds, J < 1
1−β , and the bound is strictly greater than

− 1
1−β .

�

2.4 Networks with Multi-Commodities

If we consider the general network with multiple commodities, i.e., the instance

(G, l,d) with |W | commodities, then there will be |W |+ 1 players in the trust

game. One player is the network coordinator and the other |W | players are

the representatives for the traffic users, each one for a commodity. In the

strategy profile s = (s1, sw) ∈ [0, 1]|W |+1, s1 is the strategy for the coordinator

(denoted as Player 1 in the following) and sw, w ∈ W is the strategy for the

representative of traffic users in commodity w ∈ W (denoted as Player w in

the following).
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Player 1’s strategy s1 is to pick an x ∈ [0, 1] which denotes the amount

of advantage he will take of all the traffic users’ incomplete information. He

broadcasts the information of extra flow to all the traffic users in the network,

f̄ extra = (1− x)fopt.

Player w’s strategy is to pick a yw ∈ [0, 1] to denote the trust she would

put on Player 1, and 1 − yw indicates the weight she would put on her own

estimation about the extra latency. The estimated extra latency is denoted by

mw for commodity w ∈ W .

When the strategy profile in the trust game is s = (s1, sw) ∈ [0, 1]|W |+1,

we denote the induced equilibrium flow by f , and Player w’s payoff is the

negative of the perceived cost

Γw = −l̂p(f) = −
∑
e∈p

le(fe+(1−x)ywf
opt
e )−(1−yw)mw,∀w ∈ W,∀p ∈ Pw, s.t. hp > 0

Player 1’s payoff is the negative of the price of anarchy

Γ1 = − S(f)

S(fopt)

Assumption 4 ∃x0 ∈ [0, 1) s.t. when Player 1 plays some x0, Player w’s

(w ∈ W ) best response is to put a positive trust, i.e., y∗w(x0) > 0,∀w ∈ W .

If Assumption 4 holds, then ∃x ∈ [0, 1) such that when Player 1 plays x,

Player w’s best response is y∗w > 0,∀w ∈ W . We denote

ymin := min
w∈W

y∗w ymax := max
w∈W

y∗w

We analyze the PoA of the induced selfish routing instance (G, l̂,d). The

analysis in Section 2.2.2 also works here, and we can get Player 1’s payoff

Γ1 = −S(f equ)

S(fopt)
≥ −1 + (1− x)(ymaxJ − ymin)

1− β + β(1− x)ymin

where J is the Jacobian similarity factor and β = β(L).
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When all the players w ∈ W put the same trust, i.e., ∃y s.t. y = yw, ∀w ∈

W , we have ymax = ymin = y, and the bound of Player 1’s payoff converges to

Γ1 = −S(f equ)

S(fopt)
≥ −1 + (1− x)y(J − 1)

1− β + β(1− x)y

which coincides with the result in Lemma 2.3.1.

Here we did some basic work in the case of networks with multiple com-

modities.

We hope to prove that Assumption 4 holds (or find the condition which

makes the assumption hold). To do this, we need to consider all the |W | + 1

players’ payoff functions and analyze the trust game with multiple players

(instead of two). Until now, we have not been able to find a way to get rid of

Assumption 4, or get the payoff for Player 1 if the assumption fails.
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Chapter 3

Stochastic User Equilibrium

Chapter 2 is about the user equilibrium (UE), in which traffic users choose

the path with minimum time cost from their origin to the destination. In

that model, we assume that all traffic users have perfect information regarding

travel time over the entire network when they choose the paths to travel on.

In other words, the travel latency function is deterministic.

This chapter is about a new kind of traffic equilibrium, called stochastic

user equilibrium (SUE). In SUE, there is a random error in traffic user’s per-

ception of the travel latency. In this chapter, we are still going to deal with the

bi-level problem, with the trust game between the traffic coordinator and the

users being the upper level, and the selfish routing with random perception

error being the lower level.

3.1 Stochastic Network Loading Models

We consider the case of selfish routing where the traffic users do not have

perfect information of the travel cost. In other words, travelers have some

uncertainty about the latency functions. More realistically, the perceived travel

latency may be considered as a random variable for all the traffic users. Each

user may perceive a different travel time over the same path. The kind of

traffic model is referred to as stochastic network loading model (SNLM).
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We consider the traffic model with single commodity and infinitesimal

traffic users, and we will use (G, l, d, ε) to represent the SNLM. G indicates the

topology of the network, d indicates the demand and l denotes the (measured)

latency functions, as defined in Chapter 1.ε denotes the random error of users’

perception of the latency.

Recall that U denotes the set of all feasible path flow, i.e., h ∈ U iff∑
p∈P hp = d, hp ≥ 0, ∀p ∈ P . F denotes the set of all feasible edge flow, i.e.,

f ∈ F iff ∃h ∈ U s.t. f = ∆h, where ∆ is the incidence matrix defined in

Chapter 1.

In the stochastic network loading model, when a traffic user chooses a

path p ∈ P , the perceived latency she will bear is a stochastic variable

cp = lp + εp, ∀p ∈ P

where lp is the measured travel latency on path p ∈ P , and εp is the random

error.

Furthermore, assume that the expectation E[εp] = 0, or E[cp] = lp, which

indicates that the average random error is 0.

Since cp(∀p ∈ P ) is a stochastic variable, each traffic user may have a

different perception of the path latency. In selfish routing, each user will pick

the path that bears the shortest perceived latency. In the traffic model with

infinitesimal users, given the measured latency lp of all the paths p ∈ P , we

can get qp, the ratio of users choosing path p (see [30])

qp =Pr(cp ≤ ct,∀t ∈ P ), ∀p ∈ P

=Pr(lp + εp ≤ lt + εt,∀t ∈ P ) ∀p ∈ P (3.1)

In other words, the probability that a certain path p ∈ P is chosen is the

probability that its travel latency is perceived to be the shortest of all the

alternatives.
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Definition 3.1.1 (Stochastic user equilibrium) In the instance

(G, l, d, ε), a path flow h reaches the stochastic user equilibrium iff

hp = qpd,∀p ∈ P (3.2)

where qp is the probability that path p ∈ P is chosen, given the measured travel

latency l defined in (3.1).

When every single selfish traffic user chooses the path with shortest perceived

latency for her, the aggregation of all users’ choice induces the equilibrium flow.

At equilibrium flow, no single user has an incentive to unilaterally switch her

current choice, which she has already selected based on her perceived latency.

When the model satisfies the additive and separable attributes, we have

lp =
∑

e∈p le(fe) where le(fe) is the edge latency function. From the definition,

we know the SUE flow hsue, f sue satisfies:

hsuep

d
= Pr[

∑
e∈p

le(f
sue
e ) + εp ≤

∑
e∈t

le(f
sue
e ) + εt,∀t ∈ P ], ∀p ∈ P

3.1.1 Logit-based Model

A widely used route-choice model is called the “logit-based model”. In the

logit-based model, the εp,∀p ∈ P are identically and independently distributed

(i.i.d.) variables of the Gumbel distribution Gumbel(θ) [3]:

Definition 3.1.2 (Gumbel distribution) Gumbel distribution is the dis-

tribution with the probability density function fθ(x) = θe−(θx+γ)e−e
−(θx+γ)

, ∀x ∈

(−∞,∞), where γ is the Euler-Mascheroni constant,

γ := limn→∞[(
∑n

k=1
1
k
)− ln(n)] ≈ 0.57721566.

If X ∼ Gumbel(θ), then we have E[X] = 0, and σ2 = π2

6θ2
.

Following [30], we know that in the logit-based model, when the random

error terms εp are i.i.d of Gumbel(θ), hsue (or f sue) is the the stochastic user

equilibrium flow iff
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Figure 3.1: Probability Density Function of the Gumbel Distribution (θ = 0.4)

qp =
hsuep

d
=

e−θlp(hsue)∑
t∈P e

−θlt(hsue)
, ∀p ∈ P (3.3)

(3.3) implies hsuep > 0,∀p ∈ P , which means that in SUE, all the paths

will be used with a positive probability.

Guo and Yang gave the variational inequality formulation of SUE in the

logit-based model [10], which indicates that hsue is SUE flow for the instance

(G, l, d, ε) iff ∑
p∈P

(lsuep +
1

θ
lnhsuep )(hp − hsuep ) ≥ 0,∀h ∈ U (3.4)

We will use the price of anarchy ρsue to capture the inefficiency of SUE

ρsue =
S(f sue)

S(fopt)
(3.5)

where S(f) is the social cost function S(f) =
∑

e∈E fele(fe),∀f ∈ F , and

fopt = arg minf∈F S(f).

Since at SUE each traffic user is choosing the path with minimum per-

ceived latency, we can get the expected perceived latency for the traffic users

W := E[min
p∈P

csuep ] = E[min
p∈P

(lsuep + εp)]
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where the expectation is taken with respect to the random variables εp.

Theorem 2.2 in [21] indicates that in the logit-based model, we have

W = −1

θ
ln
∑
p∈P

e−θl
sue
p (3.6)

Combining (3.3) and (3.6), we can get

W = lsuep +
1

θ
lnhsuep −

1

θ
ln d, ∀p ∈ P (3.7)

3.2 Trust Game between the Traffic Coordi-

nator and the Users

The trust game is between the traffic coordinator and the traffic users. In

this model, the coordinator (Player 1) broadcasts the fabricated information

about the extra flow to all the traffic users, and Player 2 (the representative of

all the traffic users) chooses how much trust to put on the information. The

only difference with the model in Chapter 2 is that Player 2’s own estimation

about the extra latency on each path p ∈ P due to the extra traffic is not a

deterministic factor m, but a stochastic term m+ ε0, where m is the expected

extra latency due to the extra traffic and ε0 is the error of the estimation.

Furthermore, we assume the errors follow i.i.d Gumbel(θ0).

Game Model

Players : In this game there are two players. One is the network

coordinator (Player 1) and the other is the representative of all the traffic

users (Player 2). In the traffic model with single commodity and homogenous

traffic users, we just pick a representative instead of considering each single

user’s choice.

Strategies : Player 1’s strategy s1 is to pick an x ∈ X = [0, 1], which

indicates the amount of advantage he will take on Player 2’s incomplete infor-
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mation (here the incomplete information means Player 2 does not know about

the extra flow). In other words, Player 1 will tell Player 2 that the extra flow

is (1− x)hopt. x = 0 indicates that he is taking full advantage of Player 2 and

the extra flow is hopt. x = 1 indicates that he takes no advantage of Player 2

and the extra flow is 0.

Player 2’s strategy s2 is to pick y ∈ Y = [0, 1] which indicates her trust

in Player 1. y = 1 means she completely trusts Player 1’s information, and

y = 0 implies that she totally distrusts Player 1. 1−y will be the corresponding

weight she puts on her own estimation about the extra latency, which is m+ε0.

A strategy profile s = (x, y) ∈ [0, 1] × [0, 1] records both of the players’

strategies in the trust game. A strategy profile will induce a selfish routing

instance between all the traffic users.

Payoffs: In the selfish routing instance induced by s = (x, y), the per-

ceived latency on path p will be

cp(h) =lp(h + (1− x)yhopt) + (1− y)(m+ ε0)

=lp(h + (1− x)yhopt) + (1− y)m+ (1− y)ε0 (3.8)

where l is the latency function, h is the normal flow, (1 − x)hopt is the extra

flow Player 1 announces, m+ ε0 is Player 2’s own estimation about the extra

latency, and y is Player 2’s trust in Player 1.

If we set ε = (1 − y)ε0, then y = 1 implies ε = 0, and the users have no

estimation error about the perceived latency. In this case the equilibrium flow

induced by the trust game is the UE flow discussed in Chapter 2.

When y ∈ [0, 1), from Definition 3.1.2, we can see that if ε0 ∼

Gumbel(θ0), then ε ∼ Gumbel(θ) where θ = 1
1−yθ0.

In our model, the users’ measured latency l̂ is

l̂(h) = l(h + (1− x)yhopt) + (1− y)m
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ε is the estimation error about the path latency, which follows Gumbel(θ) in

our case.

When there is random error in traffic users’ perceived latency, we will use

the stochastic network loading model (G, l̂, d, ε) to model the selfish routing

problem.

Let hsue (or f sue) denote the SUE of the SNLM (G, l̂, d, ε) induced by the

trust game profile s = (x, y).

Definition 3.2.1 Player 1’s payoff Γ1(x, y) in the trust game is the negative

of price of anarchy of (G, l̂, d, ε)

Γ1(x, y) := −ρsue = −S(f sue)

S(fopt)
(3.9)

Definition 3.2.2 Player 2’s payoff Γ2(x, y) in the trust game is the negative

of users’ expected perceived latency at SUE of (G, l̂, d, ε)

Γ2(x, y) :=− E[min
p∈P

cp(h
sue)]

(3.6)
=

1

θ
ln
∑
p∈P

e−θl̂
sue
p (3.10)

3.3 Stochastic User Equilibrium Flow

Lemma 3.3.1 f sue( or hsue), the equilibrium flow for the logit-based SNLM

(G, l̂, d, ε), is also the equilibrium flow for the logit-based SNLM (G, l̃, d, ε),

where

l̃e(fe) = le(fe + (1− x)yf opte ), ∀e ∈ E (3.11)

Proof:

For all p ∈ P , (2.6) states

l̃p(h) = l̂p(h)− (1− y)m (3.12)
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If hsue is the stochastic user equilibrium flow for the logit-based SNLM

(G, l̂, d, ε), then (3.3) indicates

hsuep

d
=

e−θl̂p(hsue)∑
t∈P e

−θl̂t(hsue)
, ∀p ∈ P

(3.12)
=

e−θ[l̃p(hsue)+(1−y)m]∑
t∈P e

−θ[l̃t(hsue)+(1−y)m]

=
e−θl̃p(hsue)e−(1−y)m∑
t∈P e

−θl̃t(hsue)e−(1−y)m

=
e−θl̃p(hsue)∑
t∈P e

−θl̃t(hsue)

Thus hsue is also the stochastic user equilibrium flow for the logit-based SNLM

(G, l̃, d, ε).

�

Lemma 3.3.1 implies that the SUE flow f sue for the instance (G, l̂, d, ε)

is equal to the SUE flow for the instance (G, l̃, d, ε). Next we will use the

equilibrium flow for (G, l̃, d, ε) as f sue, and furthermore analyze the payoff for

Player 1 and Player 2 in the trust game.

3.3.1 Networks with Linear Latency Functions

We start from the simple case, where the measured latency functions le(fe) are

linear le(fe) = aefe + be(ae, be ≥ 0, ∀e ∈ E).

Lemma 3.3.2 Let hsue be the SUE flow for instance (G, l̃, d, ε) where l̃ is

defined in (3.11) and latency functions are linear. The price of anarchy in the

SNLM is bounded by

ρsue =
S(f sue)

S(fopt)
≤ 4

3 + y(1− x)
(1 +

k

θc
)

where k solves kek = 1
e
(|P | − 1), c = S(fopt)

d
is the average travel latency of all

network users at optimal flow, and θ is the parameter of ε.
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Proof: The SUE flow hsue satisfies the variational inequaility (3.4)

∑
p∈P

[l̃p(h
sue) +

1

θ
lnhsuep ](hp − hsuep ) ≥ 0,∀h ∈ U

If we set h := hopt, then we get∑
p∈P

[lp(h
sue + (1− x)yhopt) +

1

θ
lnhsuep ](hoptp − hsuep ) ≥ 0 (3.13)

which implies∑
p∈P

lp(h
sue + (1− x)yhopt)(hoptp − hsuep ) +

1

θ

∑
p∈P

(hoptp − hsuep ) lnhsuep ≥ 0 (3.14)

Besides, we have∑
p∈P

lp(h
sue + (1− x)yhopt)(hoptp − hsuep )

(1.3)
=

∑
e∈E

le(f
sue
e + (1− x)yf opte )(f opte − f suee )

=
∑
e∈E

[le(f
sue
e ) + (1− x)yaef

opt
e ](f opte − f suee )

=
∑
e∈E

le(f
sue
e )f opte −

∑
e∈E

le(f
sue
e )f suee + (1− x)y

∑
e∈E

aef
opt
e (f opte − f suee )

Then (3.14) implies∑
e∈E

le(f
sue
e )f suee ≤

∑
e∈E

le(f
sue
e )f opte + (1− x)y

∑
e∈E

aef
opt
e (f opte − f suee )

+
1

θ

∑
p∈P

(hoptp − hsuep ) lnhsuep

≤
∑
e∈E

le(f
opt
e )f opte + [1− (1− x)y]

∑
e∈E

aef
opt
e (f suee − f opte )

+
1

θ

∑
p∈P

(hoptp − hsuep ) lnhsuep (3.15)

For the term
∑

e∈E aef
opt
e (f suee − f opte ), we have

∑
e∈E

aef
opt
e (f suee − f opte )

(2.11)

≤ 1

4

∑
e∈E

le(f
sue
e )f suee (3.16)
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Using Lemma 3 in Guo and Yang [10], we have∑
p∈P

(hoptp − hsuep ) lnhsuep ≤ kd (3.17)

Combining (3.15), (3.16) and (3.17), we have

S(f sue) ≤ 1

1− 1
4
[1− y(1− x)]

[S(fopt) +
1

θ
kd]

Then, the price of anarchy of this stochastic user system is:

ρsue =
S(f sue)

S(fopt)
≤ 4

3 + y(1− x)
(1 +

k

θc
)

�

3.3.2 Networks with General Latency Functions

We will consider the logit-based SNLMs (G, l, d, ε) where the measured latency

functions le(fe),∀e ∈ E are non-linear, and Assumptions 1-3 are satisfied.

Lemma 3.3.3 Let hsue be the SUE flow for (G, l̃, d, ε) with l̃ defined in (2.4).

If Assumption 1 holds for l, then the price of anarchy of (G, l̃, d, ε) is bounded

by

ρsue =
S(f sue)

S(fopt)
≤

1 + (J − 1)(1− x)y + k
θc

1− β[1− (1− x)y]

where k solves kek = 1
e
(|P |−1), c = S(fopt)

d
, J is the Jacobian similarity factor,

β = β(L), and θ is the parameter of ε.

Proof:

We start again from the variational inequality (3.4) to get (3.14), and

define

T0 : =
∑
e∈E

f opte le(f
sue
e ) =

∑
p∈P

hoptp lp(h
sue)

T1 : =
∑
e∈E

f suee le(f
sue
e + (1− x)yf opte ) =

∑
p∈P

hsuep lp(h
sue + (1− x)yhopt)
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T2 : =
∑
e∈E

f opte le(f
sue
e + (1− x)yf opte ) =

∑
p∈P

hoptp lp(h
sue + (1− x)yhopt)

Combining (3.14) and (3.17), we have

T1 ≤ T2 +
1

θ
kd (3.18)

Since (2.23),(2.26) and (2.29) also hold here, we have

T0

(2.23)

≤ βS(f sue) + S(fopt) (3.19)

T1

(2.26)

≥ S(f sue) + (1− x)yT0 − (1− x)y
∑
e∈E

f opte le(0) (3.20)

T2

(2.29)

≤ T0 + (1− x)yJS(fopt)− (1− x)yJ
∑
e∈E

f opte le(0) (3.21)

From (3.18),(3.19),(3.20) and (3.21), we get

S(f sue)− β[1− (1− x)y]S(f sue) ≤ 1 + (J − 1)(1− x)yS(fopt) +
1

θ
kd

Then

ρsue =
S(f sue)

S(fopt)
≤

1 + (J − 1)(1− x)y + k
θc

1− β[1− (1− x)y]

�

In the simple case with linear latency functions, J = 1 and β = 1
4
, and

the bound converges to the one in Lemma 3.3.2.

We will refer to the upper bound in Lemma 3.3.3 as Γ̄1,

Γ̄1(x, y) = −
1 + (J − 1)(1− x)y + k

θc

1− β[1− (1− x)y]
(3.22)

Note that in the case where the latency functions are linear, we have

Γ̄1(x, y) = − 4

3 + y(1− x)
(1 +

k

θc
) (3.23)
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3.4 Stackelberg Payoff in the Trust Game

Lemma 3.4.1 f sue, the SUE flow for (G, l̂, d, ε), is continuous on (x, y).

Proof: Lemma 3.3.1 implies that f sue is also the SUE flow for (G, l̃, d, ε).

The analysis in the proof in Lemma 2.3.2 also works here. We denote

a = (x, y), a ∈ Φ = [0, 1] × [0, 1]. Given an a ∈ Φ, from [10] we know that

hsue, the equilibrium path flow for (G, l̃, d, ε), is the solution to the parametric

mathematical problem

min
h

z(h, a) =
1

θ

∑
p∈P

hp lnhp +
∑
e∈E

∫ fe

0

l̃e(ω)dω s.t.

∑
p∈P

hp = d,

fe =
∑
p3e

hp, ∀e ∈ E

hp ≥ 0. ∀p ∈ P

The feasible set of the minimization problem is U , which is non-empty

and bounded. Besides, the feasible set (which is U) is independent of a ∈ Φ,

so Theorem 2.2 in [34] indicates that when a belongs to a neighborhood of a∗

and a→ a∗, we have hequ(a)→ hequ(a∗).

So, the equilibrium flow hequ is continuous at (x, y), and therefore f equ is

also continuous.

�

Lemma 3.4.2 1) Function Γ̄1(x, y) and Γ1(x, y) are continuous on x ∈ [0, 1]

and y ∈ [0, 1];

2) If Assumptions 1-3 hold for the instance (G, l̂, d, ε), then Γ̄1(x, y) is

continuously decreasing in x ∈ [0, 1] and increasing in y ∈ [0, 1].
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Proof: The analysis in the proof of Lemma 2.3.3 also works here. �

Lemma 3.4.3 Γ2(x, y) is continuous.

Proof: The analysis in the proof of Lemma 2.3.4 also works here. �

Assumption 5 When Player 2’s estimation about the extra latency is m+ ε0,

we assume that θ0m > ln |P | holds, where θ0 is the parameter of ε0, and P is

the set of paths connecting the O-D pair.

The expectation of Player 2’s own estimation about the extra latency is

m, and the variance σ2
0 satisfies σ2

0 = 6π2

θ20
, thus θ0m = π√

6
m
σ0

. So Assumption 5

indicates m
σ0
>
√

6
π

ln |P |.

Lemma 3.4.4 If Assumptions 1, 2, 3 and 5 hold, then Player 1’s Stackelberg

payoff Γs1 is lower bounded away from Γ̄1(0, 0).

Proof:

We start from the simple case where the latency functions are linear. By

definition, Γ2(x, y∗(x)) ≥ Γ2(x, y),∀y ∈ [0, 1].

If we set y := 1, then the random error is 0, and the SUE converges to

the UE. If we set α = 1− x, then Lemma 2.2.3 implies

Γ2(x, 1) ≥ − 4

2 + x

S(fopt)

d
(3.24)

(3.7) implies that if y∗(x) 6= 1, and hsue denotes the induced SUE flow,

then

Γ2(x, y∗(x)) = −W = −l̂p(hsue)−
1

θ
lnhsuep +

1

θ
ln d,∀p ∈ P

Furthermore we have

Γ2(x, y∗(x)) = −1

d

∑
p∈P

hsuep l̂p(h
sue)− 1

θd

∑
p∈P

hsuep lnhsuep +
1

θ
ln d (3.25)
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Note that in the minimization problem

minZ(h) =
∑
p∈P

hp lnhp s.t.∑
p∈P

hp =d,

hp ≥0

the KKT conditions indicate that the solution is hp = d/|P |,∀p ∈ P and the

minimum Zmin = d ln d− d ln |P | [14].

hsue is a feasible solution for the problem, so we have

1

θd

∑
p∈P

hsuep lnhsuep ≥ 1

θ
(ln d− ln |P |) (3.26)

Then we have

Γ2(x, y∗(x))
(3.25)(3.26)

≤ − 1

d

∑
p∈P

hsuep l̂p(h
sue) +

1

θ
ln |P |

(3.12)

≤ − 1

d

∑
p∈P

hsuep l̃p(h
sue) +

1

θ
ln |P | − [1− y∗(x)]m

(3.11)
= − 1

d

∑
p∈P

hsuep lp(h
sue + (1− x)y∗(x)hopt) + [1− y∗(x)](

1

θ0

ln |P | −m)

(2.5)(1.3)
= − 1

d

∑
e∈E

f suee le(f
sue
e + (1− x)y∗(x)f opte ) + [1− y∗(x)](

1

θ0

ln |P | −m)

≤− 1

d

∑
e∈E

f suee le(f
sue
e ) + [1− y∗(x)](

1

θ0

ln |P | −m)

=− 1

d
S(f sue) + [1− y∗(x)](

1

θ0

ln |P | −m) (3.27)

Γ2(x, 1) ≤ Γ2(x, y∗(x)), thus if Assumption 5 holds, then combining

(3.24) and (3.27), we have

y∗(x) ≥ 1− 4

2 + x

θ0S(fopt)

(θ0m− ln |P |)d
+

θ0S(f sue)

(θ0m− ln |P |)d
(3.28)
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The same analysis in the proof of Lemma 2.3.5 also works here, and we

can prove that Γs1 is lower bounded by

Γs1 ≥ max
x∈[0,1),λ∈(0,1)

min{− 4

3 + (1− x)λ
[1 +

k

θ0c
],− 4

2 + x
+ (1− λ)r}

≥ max
(x,λ)∈C

− 4

3 + (1− x)λ
[1 +

k

θ0c
]

where r := (m− ln |P |
θ0

)d/S(fopt), and C is the set of (x, λ) that are the solutions

of the system
4

2 + x
− 4

3 + (1− x)λ
[1 +

k

θ0c
] ≤ (1− λ)r (3.29)

x ∈ [0, 1), λ ∈ (0, 1]

Note that when Assumption 5 holds, r > 0. Since

f(x) =
4

2 + x
− 4

3 + (1− x)λ
[1 +

k

θ0c
]

is continuous and strictly decreasing in x ∈ [0, 1), C is non-empty if ∃λ ∈ (0, 1]

s.t.

f(1) < (1− λ)r (3.30)

Since f(1) = −4
3
k
θ0c

< 0, (3.30) holds, and C is non-empty. Furthermore

∃λ0 > 0, and x0 < 1 such that (3.29) holds ∀x ∈ [x0, 1), and λ = λ0.

To sum up, Player 1’s Stackelberg payoff Γs1 is lower bounded by

max
x,λ
− 4

3 + (1− x)λ
[1 +

k

θ0c
] s.t.

r =
md− ln |P |

θ0
d

S(fopt)

4

2 + x
− 4

3 + (1− x)λ
[1 +

k

θ0c
] ≤ (1− λ)r

0 ≤ x < 1, 0 < λ ≤ 1

(x0, λ0) is a feasible point for the maximum program, so Γs1 is lower

bounded by

− 4

3 + (1− x0)λ0

[1 +
k

θ0c
]
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which is strictly greater than Γ̄1(0, 0) = −4
3
(1 + k

θ0c
).

We can generalize the analysis from the linear latency functions to general

latency functions satisfying Assumptions 1-3. Following the same method, we

have

y∗(x) ≥ 1− 1

1− (2− x)β

θ0S(fopt)

(θ0m− ln |P |)d
+

θ0S(f sue)

(θ0m− ln |P |)d
(3.31)

Also we can get the bound of Γs1 which is

max
x,λ
−1 + (J − 1)(1− x)λ

1− β + β(1− x)λ
[1 +

k

θ0c
] s.t.

r =
m− ln |P |

θ0
d

S(fopt)

1

1− (2− x)β
− 1 + (J − 1)(1− x)λ

1− β + β(1− x)λ
[1 +

k

θ0c
] ≤ (1− λ)r (3.32)

0 ≤ x < 1, 0 < λ ≤ 1

Since

f(x) :=
1

1− (2− x)β
− 1 + (J − 1)(1− x)λ

1− β + β(1− x)λ
[1 +

k

θ0c
]

is continuous and strictly decreasing in x ∈ [0, 1) when Assumption 2 and 3

hold, C is non-empty if ∃λ ∈ (0, 1] such that

f(1) < (1− λ)r (3.33)

Since f(1) = −4
3
k
θ0c

< 0, (3.33) holds and C is non-empty. Furthermore ∃λ0 >

0, and x0 < 1 s.t. (3.32) holds ∀x ∈ [x0, 1) and λ = λ0.

(x0, λ0) is a feasible point for the maximization problem, so Γs1 is lower

bounded by

−1 + (J − 1)(1− x0)λ0

1− β + β(1− x0)λ0

[1 +
k

θ0c
]
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When Assumption 2 and 3 hold, it is strictly greater than Γ̄1(0, 0) =

− 1
1−β [1 + k

θ0c
].

�

Note that (0, 0) might be the Nash Equilibrium of the trust game, so

Player 1’s Stackelberg payoff is bounded away from his equilibrium payoff.
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60



Chapter 4

Reputation and Repeated
Games

In the trust game mentioned in the previous chapters, Player 1 (coordinator)

and Player 2 (representative of traffic users) play this game only once. We call

such a game a “stage game”, or “one-shot” game.

If the stage game is played repeatedly, but the players do not record any

information about previous periods, then all the players will insist on playing

the Nash Equilibrium strategy of the stage game repeatedly. It is exactly

the fact that the players have a record of the past history of the game that

allows Player 1 to achieve a higher payoff than the equilibrium payoff in the

stage game by exploiting a reputation that he can build in his interaction with

Player 2. We formulate this new setting using the standard notions of repeated

games, as they are used in game theory and economics.

4.1 Repeated Games

A repeated game is an infinite repetition of the playing of a stage game in

periods or times t = 0, 1, 2, . . . ,∞. In our case the stage game is the trust

game defined in Section 2 (the induce traffic equilibrium is UE) and Section 3

(the induced traffic equilibrium is SUE).

Of central importance in order to escape the stage game Nash equilibrium
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is the notion of history ht = {(x0, y0), (x1, y1), . . . , (xt−1, yt−1)}, defined for

every time length t as the sequence of pure strategies played by the two players

in the first t periods (h0 = ∅ at the beginning of the game). Each player always

records all his or her past actions (has perfect recall), and we consider the case

where the history is also available to all the players (they have access to all

players’ previous action). But we will later distinguish between a Player 2 with

unlimited memory who has a perfect record of Player 1’s actions from the very

beginning (period 0), and a Player 2 that has a limited memory and can only

record the last K actions of Player 1. In reality, the former means that the

traffic coordinator publishes the records of all the previous periods; the latter

means that the traffic users only have access to the records of the most recent

K periods.

Player 1 is a long-run player, i.e., his total payoff is a summation of his

stage payoff over all periods discounted by a discount factor δ ∈ [0, 1):

g1(x, y) = (1− δ)
∞∑
t=0

δtΓt1(xt, yt) (4.1)

The factor δ indicates the importance of the payoff in the future. The

closer δ is to 1, the more equivalent (in terms of importance) stage payoffs in

the distant future are to the ones closer to the present. The factor (1 − δ) is

a normalization factor that brings the repeated game payoff to the same units

as the stage payoff. In our case, Player 1 (the coordinator) is almost equally

interested in the payoffs of all periods, i.e., δ → 1.

Let Ht = (X × Y )t be the set of all possible histories of length t ≥ 0

(H0 = ∅), and H = ∪∞t=0Ht be the set of all possible histories. Then the

behavioral strategy of (long-run) Player 1 is defined as σ1 : H → X.

Player 2 can be simulated as a sequence of short-run players. She can be

replaced by an infinite sequence of players i0, i1, i2, . . ., each with a behavioral

strategy of σit2 : Ht → Y and payoff Γt2; each such player enters the game
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in only one specific period and acts myopically, but has the whole history

available to Player 2 in that period.

A Nash equilibrium of the repeated game then is defined in the usual

way, as a behavioral strategy profile σ = (σ1, σ
i0
2 , σ

i1
2 , . . .) with the property

that no deviation by any player will improve his (or her) payoff if the other

players’ strategies remain the same.

In order to exploit reputation phenomena in repeated games, we define

two types for Player 1’s strategy profile:

• committed type ωc: If Player 1 is of this type, he always plays c ∈ [0, 1]

in every period, independently of the history of the repeated game. The

strategy c is the Stackelberg strategy defined as follows:

c := arg max
x∈[0,1]

Γ1(x, y∗(x))

The Stackelberg strategy is the one Player 1 would like the most to

commit himself to.

• rational type ωr: Player 1 is not restricted in playing any strategy in

every period (he is opportunistic), and the payoff for the moves of this

type of Player 1 is given by g1(x, y) defined in (4.1).

In the repeated game, Player 1’s type is a private information that Play-

er 2 does not know. Player 2’s perception of the type of Player 1 is captured

by µ(ωc|h) which indicates the probability Player 2 assigns to Player 1 being

of committed type when she sees history h. µ∗ = µ(ωc|h0) is the initial belief

Player 2 assigns to Player 1 being of committed type when she has no history

available (and, hence, probability 1− µ∗ of being of rational type ωr).

4.2 Payoff in the Repeated Game

We first consider the case where there is no limit to the length of history, which

means that at period t, Player 2 has access to the full history from period 0
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to period t− 1.

Let Γs1 be the Stackelberg payoff of Player 1 in the stage game, and Γmin1

be the minimum possible payoff he would get in the stage game.

Let V 1(δ, µ∗) be the least payoff achievable by Player 1 in the repeated

game with discount factor δ and initial belief µ∗ for the type of Player 1 held

by Player 2.

Since the payoff functions Γ1(x, y) and Γ2(x, y) in the stage game are

proved to be continuous in Lemma 2.3.3 and Lemma 2.3.4 when the perceived

latency functions are deterministic, and in Lemma 3.4.2 and Lemma 3.4.3

when the perceived latency functions are stochastic, we can use Theorem 4 in

Fundenberg and Levine [8]:

Theorem 4.2.1 ([8]) If 0 < µ∗ < 1, then for all ε > 0 there exists a δ < 1

such that for all δ ∈ (δ, 1)

V 1(δ, µ∗) ≥ (1− ε)Γs1 + εΓmin1 .

This Folk theorem implies that Player 1 can almost achieve the payoff

Γs1 in the repeated game when δ → 1. We have shown that if the equilibrium

of the stage game is (0, 0), then Γs1 is bounded away from Γ̄1(0, 0), which is

the bound of Γ1(0, 0).

4.3 A New Payoff Function

Instead of considering the exact price of anarchy for each instance, plenty of

work (see [28][12][10]) is about the bound of price of anarchy which applies for

a certain class of latency functions.

So, in our model we assume that Player 1 uses the bound Γ̄1 in (2.35)

(in the case of UE) and (3.22) (in the case of SUE) as the payoff function of

the stage game, instead of Γ1.

64



M.Sc. Thesis - Kun Hu McMaster - Computing and Software

In the following we focus on the case where the perceived latency is

stochastic and latency functions are the general functions satisfying Assump-

tions 1, 2 and 3. Note that linear functions are special cases of such general

functions. Besides, when the stochastic part ε in the perceived latency goes to

0, the instance goes to the deterministic case.

Fact 1 The following are true for function Γ̄1(x, y):

1. (myopic incentive of Player 1) Γ̄1(x, y) is strictly decreasing in x if y > 0

and constant if y = 0 (see Lemmas 2.3.3, 3.4.2).

2. (Player 1 wants to be trusted) Γ̄1(x, y) is strictly increasing in y, unless

x = 1 in which case it is constant (see Lemmas 2.3.3, 3.4.2).

Assumption 6 In the case where Player 2’s perceived latency is stochastic

and the latency functions satisfy Assumptions 1, 2 and 3, we assume that

[β + (J − 1)(1− β)](1− 2β)

β
>

k

θ0c
(4.2)

holds for the instance (G, l, d, ε) where k solves kek = 1
e
(|P | − 1), c = S(fopt)

d

and θ0 is the parameter of ε0.

Note that Assumptions 2 indicates [β + (J − 1)(1− β)](1− 2β) > 0, and

furthermore, in the deterministic case, 1
θ0

goes to 0, and the assumption holds.

Besides, in the case where latency functions are linear, J = 1, β = 1
4
,

and (4.2) goes to
k

θ0c
<

1

2

Lemma 4.3.1 (sub-modularity of Player 1) Γ̄1(x, y)− Γ̄1(x′, y) is strictly in-

creasing in y for any x < x′.

Proof: (3.22) indicates

Γ̄1(x, y) = −
1 + (J − 1)(1− x)y + k

θc

1− β[1− (1− x)y]
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Thus ∀x, x′ ∈ [0, 1] and x < x′,

f(x, y) = Γ̄1(x, y)− Γ̄1(x′, y) =
(x′ − x)y[β(1 + k

θc
+ (J − 1)(1− β)]

[1− β + β(1− x′)y][1− β + β(1− x)y]

=
(x′ − x)y[β + β(1− y) k

θ0c
+ (J − 1)(1− β)]

[1− β + β(1− x′)y][1− β + β(1− x)y]

f(x, y) is increasing in y for all 0 ≤ x < x′ ≤ 1, if

f̄(y) =
y[β + β(1− y) k

θ0c
+ (J − 1)(1− β)]

[1− β + βy]2

is increasing in y.

By taking the derivative of f̄ on y, we have

df̄

dy
=

[β + β(1− y) k
θ0c

+ (J − 1)(1− β)][1− β − βy]− βy k
θ0c

(1− β − βy)3

Assumption 6 implies

[β + (J − 1)(1− β)](1− 2β)

β
>

k

θ0c

Then df̄
dy

> 0 holds for all 0 ≤ y ≤ 1. Thus Γ̄1(x, y) − Γ̄1(x′, y) is strictly

increasing in y for any x < x′.

�

Assumption 7 In the case where the perceived latency is stochastic and the

latency functions satisfy Assumptions 1, 2 and 3, we assume that Player 2’s

own estimation about the extra latency, m+ ε0, satisfies

m >
β

1− β
S(fopt)

d
+

ln |P |
θ0

(4.3)

where β = β(L), S(fopt) is the social cost of the optimal flow, and θ0 is the

parameter of ε0.

Assumption 7 is about Player 2’s own estimation about the extra latency.

Note that S(fopt)
d

is the average latency in the optimal flow.
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In the case where latency functions are linear, β = 1
4
, and β

1−β = 1
3
. Then

(4.3) is

m >
1

3

S(fopt)

d
+

ln |P |
θ0

Besides, Definition 3.1.2 implies that the variance of ε0 satisfies σ2
0 = π2

6θ20
,

so the part ln |P |
θ0

is equal to π ln |P |√
6
σ0. When σ0 goes to 0, the perceived latency

tends to be deterministic, the part ln |P |
θ0

goes to 0, and (4.3) is

m >
β

1− β
S(fopt)

d

Lemma 4.3.2 (valuable reputation for Player 1) ∃c ∈ [0, 1], s.t.

Γ̄1(c, y∗(c)) > Γ̄1(0, 0). In other words, Player 1 prefers Player 2 to believe

that he is a commitment type and to act accordingly rather than play (0, 0) in

the stage game.

Proof: We consider the case where latency functions are the general functions

satisfying Assumptions 1, 2 and 3, and the perceived latency is stochastic.

Note that Lemma 3.4.4 shows that Γs1 > Γ1(0, 0) holds under Assump-

tion 5. The same result also applies for Γ̄s1, if we make a stronger assumption

(Assumption 7) about Player 2’s estimation of extra latency, instead of As-

sumption 5.

From (3.31) we have

y∗(x) ≥ 1− 1

1− (2− x)β

θ0S(fopt)

(θ0m− ln |P |)d
+

θ0S(f sue)

(θ0m− ln |P |)d

≥ 1− 1

1− (2− x)β

θ0S(fopt)

(θ0m− ln |P |)d
+

θ0S(fopt)

(θ0m− ln |P |)d

= 1− (2− x)β

1− (2− x)β

S(fopt)

d

θ0

θ0m− ln |P |

Note that
(2− x)β

1− (2− x)β
∈ (

β

1− β
,

2β

1− 2β
] ⇔ x ∈ [0, 1)

Thus if
β

1− β
S(fopt)

d

θ0

θ0m− ln |P |
< 1
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⇔ m >
β

1− β
S(fopt)

d
+

ln |P |
θ0

,

which is implied in Assumption 7, then ∃x0 < 1 such that y∗(x0) > 0, and

Γ̄s1 ≥ Γ̄1(x0, y
∗(x0))

(2.35)
= −1 + (J − 1)(1− x0)y∗(x0)

1− β + β(1− x0)y∗(x0)

Note that Γ̄1(0, 0) = − 1
1−β , and Γ̄s1 > Γ̄1(0, 0) holds when J < 1

1−β as Assump-

tion 3 indicates.

�

Note that the case where latency functions are linear is a special case of

the general latency functions satisfying Assumptions 1, 2 and 3, where β = 1
4

and J = 1.

Besides, when 1
θ0

goes to 0, the stochastic case goes to the deterministic

one.

Assumption 8 (myopic incentive of Player 2) For any strategy by Player 1

x ∈ [0, 1], Player 2’s best response y∗(x) is increasing in x.

The assumption implies that the less Player 1 takes the advantage over

Player 2, the more trust Player 2 would like to put on Player 1.

Fact 1, Lemmas 4.3.1, 4.3.2 and Assumption 8 allow us to use a more

powerful result by Liu and Skrzypacz [15] in the case where Player 2 is of

bounded rationality, in the sense that Player 2’s record keeping is limited (e.g.,

by memory limitations) to recording only theK most recent actions of Player 1,

for some parameter K (Player 2 still has perfect recall of her own actions in

all past history).

Unlike the Folk theorem of [8], this limitation allows [15] to describe

exactly the equilibrium strategies for the two players, and prove a payoff bound

for Player 1’s payoff similar to the bound in Theorem 4.2.1 at any point of the

game (not just at the beginning of the game as the bound in Theorem 4.2.1

68



M.Sc. Thesis - Kun Hu McMaster - Computing and Software

does). This is important for the study of games that have already been played

for a number of periods which we do not know (or do not care about), and we

want to evaluate the quality of Player 1’s payoff at the moment we start our

observation.

Let P (t), µ(ω|h) be Player 2’s prior belief of whether the current period is

t (i.e., she does not keep track of time, so she must have a prior belief on which

is the current period), and her posterior belief over Player 1’s type being ω(ωc

or ω0) given a history h (truncated to the most recent K periods for Player 1’s

actions). Assume P (t) is improper uniform prior which indicates that Player 2

assigns identical probability on t = 0, 1, 2.... Note that µ∗ is Player 2’s initial

belief over Player 1’s type being ωc with the history h0 = ∅.

If h contains a non-commitment action x 6= c, then

µ(ωc|h) = 1− µ(ω0|h) = 0

In this case, the notion of equilibrium used is that of stationary Perfec-

t Bayesian Equilibrium (PBE) which is more sophisticated than the simple

Nash equilibrium considered above since it takes into account Player 2’s be-

liefs µ . µ is updated using Bayes’ rule1.

Then Theorem 2 in [15] holds in our case:

Theorem 4.3.1 ([15]) For any ε > 0, µ∗ ∈ (0, 1), there exists an integer

K(ε, µ∗) such that Player 1’s payoff in the repeated game with limited records

of length K > K(ε, µ∗) is lower bounded at any time by

(1− δK)Γ̄1(0, 0) + δKΓ̄s1 − ε

which converges to Γ̄s1 as δ goes to 1.

Theorem 4.3.1 indicates that in the repeated game, the bound of Play-

er 1’s payoff converges to his Stackelberg payoff in the stage game. In the

1See [15] for a formal definition of the Bayes’ rule applied here.
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previous sections, we proved that the Stackelberg payoff is bounded away from

Γ̄1(0, 0), which might be the equilibrium payoff.

Given a history h of length K, we define the index of h to be the number

of commitment actions since the most recent non-commitment action in h.

Theorem 1 in [15] describes the the equilibrium strategies for the players in

the repeated game with limited-length history.

Theorem 4.3.2 ([15]) For any δ > δ̄,K > 0 and any prior µ∗ > 0, any

stationary PBE takes the following form:

1. There exists a strictly increasing sequence {βk}K−1
k=0 ⊂ (0, 1) such that,

if the index of the history is k < K, Player 1 plays c with probability βk and 0

with probability 1− βk; Player 2 plays y = y∗(βk).

2. If the index of history is K, Player 1 plays 0 (with probability 1);

Player 2 plays y∗(µK) where µK > βK−1.

The theorem indicates that when the history is totally “clear” (Player 1

plays c in all the previous K periods), Player 1 will exploit his reputation, and

play his dominant strategy 0 in the current period. When the history h is

not clear (Player 1 plays something other than c in the history), the index k

indicates the distance from h to the clear history (the greater k is, the closer h

is to the clear history). The greater k is, with the higher probability Player 1

will play c (he wants to accumulate his reputation).
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Chapter 5

Conclusion and Open Problems

The thesis is about a method to decrease the price of anarchy of a selfish rout-

ing problem. We designed a trust game between the traffic coordinator and

the users, in which the coordinator takes advantage of the users’ incomplete

information and provides them with fabricated information of unexpected ex-

tra traffic. Each strategy profile in the trust game will induce a selfish routing

instance, and Player 1 wants to decrease the price of anarchy of the induced

selfish routing instance.

We concluded that Player 1’s Stackelberg payoff in the trust game is

bounded away from his equilibrium payoff (in cases where the equilibrium of

the trust game is (0, 0)). To entice the coordinator to play the Stackelberg

strategy instead of the Nash Equilibrium strategy in the trust game, we con-

sidered the repeated game with the trust game to be the stage game in each

period. In the repeated game with infinite memory of the previous actions,

using the result in [8], we concluded that the bound of the coordinator’s payoff

in the repeated game converges to the Stackelberg payoff in the stage game. In

the repeated game with limited-length memory, the result in [15] implies that

the coordinator’s payoff in the repeated game converges to the Stackelberg

payoff in the stage game at any time.

In conclusion, in the repeated game with each stage game being the
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trust game between the coordinator and the users, the coordinator can push

the equilibrium traffic flow towards the optimal flow and decrease the PoA.

There are still several open problems in the study.

• We made several assumptions in the thesis to make the conclusion work.

Assumptions 1-3 are about the latency functions. Linear functions sat-

isfy all the three. Assumption 1 works for polynomial latency functions

l(x) =
∑∞

i=0 aix
i, ai ≥ 0. Assumption 2 works for linear, quadratic and

cubic functions, and fails for higher level polynomial functions. Assump-

tion 3 is widely used (see [23]), but we need to look more into it and

figure out the circumstances where it can be applied.

Assumption 4 is an assumption about the instance with multiple com-

modities. Assumptions 5 and 6 are about the Player 2’s estimation of

the extra latency. Assumption 7 is a bound for m that we need when we

use Γ̄1 as Player 1’s payoff. Assumption 8 is about the best response in

the trust game which is a basic property for any reasonable trust game

(the less advantage Player 1 takes of Player 2, the more trust Player 2

should put), but we have not yet found an explicit formula for Player 2’s

best response, so we have to put that into an assumption. Future work

may focus on the relaxation of the assumptions.

• In this thesis, Player 1 picks x ∈ [0, 1] and then tells all the users that

the unexpected extra flow is (1−x)hopt. Actually he can be more flexible

when choosing the extra flow to announce. Future work can be on some

other clever choices of the extra flow.

• The main part of the thesis is about the selfish routing problem with

a single commodity. In the case of multiple commodities, we made As-

sumption 4 in the thesis, and in the future, we may try to get rid of it

or make some other natural assumptions instead.
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• When we use the negative of the price of anarchy as Player 1’s payoff

function, we can use the conclusion in [9] to get the payoff in the repeated

game with infinite-length history. Also in the thesis we got bounds of

PoA, and when using the bounds to define Player 1’s payoff function,

we can apply the conclusion in [15] under several additional assumptions

(Assumptions 6, 7 and 8). To find a better (tighter) bound to avoid the

assumptions remains an open problem.
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