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Abstract

This investigation is motivated by the problem of optimal design of cooling elements

in modern battery systems. We consider a simple model of two-dimensional steady-

state heat conduction described by elliptic partial differential equations (PDEs) and

involving a one dimensional cooling element represented by an open contour. The

problem consists in finding an optimal shape of the cooling element which will ensure

that the solution in a given region is close (in the least square sense) to some prescribed

target distribution. We formulate this problem as PDE-constrained optimization and

the locally optimal contour shapes are found using the conjugate gradient algorithm in

which the Sobolev shape gradients are obtained using methods of the shape-differential

calculus combined with adjoint analysis. The main novelty of this work is an accurate

and efficient approach to the evaluation of the shape gradients based on a boundary-

integral formulation. A number of computational aspects of the proposed approach is

discussed and optimization results obtained in several test problems are presented.
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Chapter 1

Introduction

This work is motivated by the problem of optimization of the heat transfer processes

in automotive industry. In particular, we are investigating the shape of the cooling

channel in Li-ion battery pack which provides the energy for hybrid electric vehicles

(HEV). The main question discussed in this thesis is how we can design the channel,

so that for some provided length we can achieve some target temperature distribution

in the given area of the battery pack. Generally, the shape of a cooling element can

depend on many different factors, such as the heat sources distribution, the material

of cooling channel, etc. Here we concentrate on the fundamental effect of the geometry

of the cooling units on the efficiency of the heat transfer processes in the battery pack.

We consider a simple mathematical model of two-dimensional steady-state heat con-

duction involving a one-dimensional cooling element represented by an open contour.

This investigation is an extension of the previous work [1], where the cooling channel

was modelled as a closed contour. Optimization of geometry of the cooling element

leads to shape optimization problem, which is treated using ”optimize-then-discretize”

approach, i.e., while we ultimately discretize the problem for the purpose of a numeri-

cal solution, the key components of our approach are derived in the continuous setting.

As a consequence, they are independent on the specific discretization applied.
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1.1 Mathematical Modelling of Heat Transfer

Heat transfer problems arise in many industrial and environmental processes, partic-

ularly in energy utilization, thermal processing, and thermal control. There are three

types of heat transfer: heat transfer by means of molecular agitation within a material

without any motion of the material as a whole (conduction), heat transfer by mass

motion of a fluid such as air or water when the heated fluid is caused to move away

from the source of heat, carrying energy with it (convection) and heat transfer through

empty space by the propagation of electromagnetic waves (radiation). The problem

we are considering in this work is a primarily heat conduction problem, so we start

with a brief introduction to heat conduction and its mathematical modelling.

Conduction is the transport of thermal energy in solids and fluids due to short-range

atomic interactions, modelled by the heat equation. Here we consider two dimensional

(2D) parabolic partial differential equation derived from Fourier’s law and conservation

of energy:
∂u

∂t
− k∆u = q, in Ω, (1.1)

where Ω ⊂ R2 with the boundary ∂Ω, u(x, t) is a temperature as a function of space

and time, q(x) is a prescribed heat sources in the domain Ω and k > 0 is the thermal

conductivity of a given isotropic material at given conditions (assumed constant).

In problems of heat transfer, it is common to encounter the condition that no

heat may enter or leave the boundary of the domain, i.e. that the domain is perfectly

insulated. This corresponds to the Neumann boundary conditions where the derivative

in the direction given by the unit normal vector n is zero

∂u

∂n
= 0, on ∂Ω.

If we want to model a heat flow f(x) on the boundary, we impose inhomogeneous
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Neumann conditions k ∂u
∂n

= f . Alternatively, we can place the Dirichlet boundary

conditions, when the temperature is known at the boundary, or some mixed or more

complicated boundary conditions. For instance, we can impose Robin boundary con-

ditions au + b∂u
∂n

= 0 on ∂Ω for some a, b 6= 0, as a linear combination of Dirichlet

and Neumann boundary conditions, which arises if heat flux at the boundary is pro-

portional to the temperature.

As times goes on, we arrive at some stationary state when the spatial distribution

of temperature does not change any further, i.e. ∂u
∂t

= 0, the heat equation (1.1)

becomes an elliptic PDE called Poisson’s equation

−k∆u = q, (1.2)

which, without the non-homogeneous term, becomes Laplace equation −∆u = 0.

These are so-called steady-state cases and a solution u is the stationary solution.

1.2 Shape Optimization in Heat Transfer

To predict the response of dynamic systems from given parameters, data and source

terms requires a mathematical model of the behaviour of the process under investi-

gation and a physical theory linking the state variables of the model to data and pa-

rameters. This mathematical model is a so-called direct problem and usually defined

by one or more coupled integral, ordinary or partial differential systems and sufficient

number of boundary and initial conditions. If any of the parameters necessary to de-

fine a direct problem are unknown or known incompletely, an inverse problem arises.

It specifies the desired outcomes and computes the unknown parameters and/or the

data such that the resulting outcome is as close as possible to the desired one [2].

In shape optimization, the undetermined property is the shape of the domain, i.e.
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optimization of the geometry is of primary interest. Introduction to mathematical and

computational aspects of shape optimization is given in [3]. In [2] the authors focus

on modelling and simulations with application to heat exchanger systems as well as

computational methodologies such as finite-difference, finite-element and finite-volume

methods, lattice Boltzmann numerical method, boundary element method. Several

works which discuss the shape optimization problem are as follows: Huang and Wuchiu

[4] study a shape design of interfacial surface between two conductive bodies in a three-

dimensional multiple region domains, based on the desired system heat flux and domain

volume. The design algorithm utilized the Levenberg-Marquardt method (LMM) and

B-spline surface generation. In [5] the simplified conjugate-gradient method (SCGM)

combined with the finite element method to optimize the shape of the slug inside the

LED package. A three-dimensional inverse design problem is solved in [6] by using the

LMM.

This work continues the investigation started in [1], where the case of closed cool-

ing contour was considered. Here, we discuss an open channel with the ends on the

boundary of the domain and consider not only some constant temperature of the con-

tour, but also a linear change of the temperature along the channel. Replacing a closed

contour (with periodic data) with an open contour with a nonperiodic data leads to

a number of technical problems which need to be addressed in order to retain high

accuracy of the computations.

The main difficulty in this investigation is related to numerical solution of the

boundary integral equation with singular kernel on non-periodic domain, which arises

as an equivalent formulation of the direct and adjoint problems. The approach to

removing singularity applied in this work is similar to the procedures discussed in

[7, 8] and [9]. Moreover, the collocation method from [7] is utilized. However, in

the present work we emphasize spectrally accurate approximation of the regularized

integral by the Clenshaw-Curtis quadrature.
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1.3 Structure of the Thesis

In the next chapter we introduce the mathematical model of our problem and then

cast it as a two-dimensional optimization problem. In Chapter 3 we review shape

calculus basics and state the optimality conditions followed by the derivation of the

cost functional gradient with the help of adjoint variables. An approach to the gra-

dient approximation employing spectral methods is presented in Chapter 4, then the

validation of the method is performed and computational examples are discussed in

Chapter 5, while conclusions and outlook are deferred to Chapter 6. In Appendix A

shape derivation of the arc length coordinate is considered and in Appendix B the

alternative formulations of the gradient are discussed.
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Chapter 2

Formulation of the Problem

2.1 Mathematical Model

In this work, we consider a simplified steady-state 2D model of our problem:

−k∆u1 = q in Ω1, (2.1a)

−k∆u2 = q in Ω2, (2.1b)

u1 = u2 on C, (2.1c)

k
(∂u2

∂n
− ∂u1

∂n

)
= γ(u1 − u0) on C, (2.1d)

k
∂u

∂n
= 0 on ∂Ω, (2.1e)

where u1 = uχΩ1 , u2 = uχΩ2 and χ is the characteristic function of the corresponding

set.

We assume that the battery pack is given by a 2D square region Ω ∈ R2 with ∂Ω

denoting its boundary. Our goal is to remove heat from the domain Ω by optimizing

the shape of the cooling channel C, which in our model is simplified to be a smooth
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curve of total length L and a temperature u0 (analogue of the cooling fluid temperature

in the physical model).

Since the cooling channel goes across the battery pack, the endpoints of our con-

tour C are attached to the boundary ∂Ω. In addition, the curve is considered to be

perpendicular to the boundary at these points to guarantee that it stays in the domain

Ω during entire optimization process.

As shown in Figure 2.1, the contour C divides the domain into two subdomains

Ω1, Ω2 ∈ Ω, with the boundaries C ∪ ∂Ω1 and C ∪ ∂Ω2 respectively.

Ω

Ω2 n

C

∂Ω

∂Ω

B

B'

Figure 2.1: Sketch of the domain

Let us consider system (2.1) in more detail:

• The governing PDEs (2.1a) and (2.1b) describe the distribution of the tempera-

ture u in the domains Ω1 and Ω2 (i.e. u1 = uχΩ1 and u2 = uχΩ2 respectively),

corresponding to the distribution of prescribed heat sources q : Ω −→ R and the

boundary conditions (2.1c) – (2.1e). We assume that q(x) is at least a continu-

ous function of x ∈ Ω. The thermal conductivity coefficient k > 0 depends on

material properties of the battery pack.
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• The boundary condition (2.1c) means that the temperature u is continuous across

the contour C.

• The relation (2.1d) is based on Newton’s cooling law and the conservation of

energy, showing that the net flux across the cooling channel is directly propor-

tional to the difference between the outside temperature u|C on the contour and

the temperature of the channel u0 = u0(s), s ∈ C. Unlike thermal conductivity

k, heat transfer coefficient γ is not a property of material and in our problem its

considered to be a known constant.

• The reference temperature u0 = u0(s) of the cooling contour C is varying along

the contour. We assume that u0 increases linearly with the length corresponding

to the coolant liquid heating up as it absorbs heat, i.e.

u0(s) = uin +
uout − uin

L
s, s ∈ [0, L], (2.2)

where uin and uout are the prescribed temperatures at the inlet and outlet and

L is the length of the contour.

• Condition (2.1e), where n is the unit normal to the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2

and pointing out of the domain, states that the boundary is thermally insulated.

2.2 Problem of Optimal Shape Design

Our optimization problem consists in finding a smooth curve C which minimizes the

difference between the temperature u, corresponding to the given curve C, and some

prescribed temperature ū. The difference is taken in the least square sense over some

subdomain A ⊆ Ω. Thus, the cost functional representing the performance criterion
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we want to optimize is defined as:

J (C, u) =
1

2

∫
A

(u− ū)2 dx. (2.3)

The cost functional depends on u explicitly, whereas u itself depends on the shape

of the contour C through the system of equations (2.1), which allows us to think of the

cost functional as a function of one variable C only. In addition, since in the real-life

applications the contour C representing the cooling element may not be arbitrary, we

also consider the additional constraint on the contour length, namely,

∫
C
ds = L0,

where L0 is some prescribed length. Then, the problem of finding an optimal curve Ĉ

can be formulated as PDE-constrained optimization in the following way:

min
C
J (C)

subject to: system (2.1)∫
C
ds = L0.

(2.4)

Let us mention here the key elements required to address the given optimization

problem. An approximation of a minimizer C can be found using the steepest descent

gradient method, given some initial guess C0, i.e:

xC(i+1) = xC(i) − τ (i)∇J (C(i)), i = 0, 1, 2, ...

xC(0) = xC0 ,
(2.5)

where the points xC(i) represent the contour C(i).

The gradient-based optimization is chosen since it gives a stable numerical method
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even when no good initial guess for the control variable C is available. To apply the

scheme (2.5) to our problem we need to define the gradient ∇J . This can be done

by expressing ∇J as a function of the solution of a suitably-defined adjoint system.

This is a standard approach to solution of PDE-constrained optimization problems

introduced in [10], which involves the shape calculus and the Riesz representation

theorem [11] as the key tools. In addition to methods of the shape-differential calculus,

our computational approach will be based on the combination of spectral methods and

the boundary integral equation technique discussed in Section 4.4. The step τ (i) is

determined by the line minimization method introduced in Section 4.5.1.

As can be seen from (2.5), the central ingredient of the algorithm is computation of

the cost functional gradient ∇J with respect to our control variable, namely the shape

of the contour C. In the next chapter we discuss what is the optimality condition which

guarantees the optimal shape of the contour C and how to define a suitable adjoint

system which ensures that the gradient ∇J respects the PDE constraints.

Finally, the main steps of the algorithm are:

1. Choose initial guess C(0) = C0, set iteration index to i := 0.

2. Solve direct problem (2.1).

3. Solve adjoint problem.

4. Compute the gradient ∇J .

5. Find the optimal step τ (i).

6. Update C(i+1) by (2.5).

Set i := i+ 1.

Continue from step 2 until optimality conditions (to be determined in Section 3.2)

is satisfied.
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Chapter 3

Shape Optimization Approach

At the beginning of this chapter we clarify how to describe changes in the geometry

and how to differentiate functions with varying domains of their definition. On the

basis of these results we obtain the necessary optimality conditions for our optimiza-

tion problem. Next, we demonstrate the derivation of a special adjoint system which

provides us with an expression for the gradient - a crucial instrument required by the

gradient descent method (Section 3.3) for the numerical treatment of the problem.

3.1 Sensitivity Analysis in Shape Optimization

Sensitivity analysis in shape optimization deals with computations of derivatives of

solutions to direct problems and cost functionals with respect to shape variations.

Based on this information we can derive necessary optimality conditions satisfied by

solution to optimization problems. Sensitivity analysis also plays an important role

in computations, providing us with the gradient information required by the gradient

type methods. The key tool of sensitivity analysis, the material derivative approach,

is presented with an assumption that all data we need are sufficiently smooth.
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3.1.1 Shape Calculus: Material and Shape Derivative

In this section we introduce the notion of the shape and material derivatives and pro-

vide the differentiation results for some model partial differential and integral operators

based on the monograph [3].

Let Λ be a bounded open set of R2, with a regular boundary Γ and let ψ(x) :

Λ −→ R be a real function.

Consider the following model equations:

A(ψ) =f in Λ, (3.1a)

B(ψ) =g on Γ. (3.1b)

Here A and B denote some linear partial differential operators with constant coeffi-

cients, for example, A could be the Laplace operator and B is the Neumann or Dirichlet

boundary conditions, f and g are some functions defined on R2.

As a prototype of cost functionals consider the integrals:

J(Λ) =

∫
Λ

ψ(x) dx, (3.2a)

G(Γ) =

∫
Γ

ψ(x) ds. (3.2b)

We are interested in the behaviour of ψ, J and G, more specifically, how to differ-

entiate these functions if the domain of their definition varies. Let us denote a new

configuration of the domain Λ at some pseudo-time τ ∈ R as Λτ . To formalize the

12



change in the geometry of Λ we introduce a mapping

Tτ : Λ −→ R2

Tτ = I · x + τV ∀x ∈ Λ,

where I is a d×d identity operator and V : R2 −→ R2 is a vector field of an appropriate

smoothness. Note that when τ = 0, we have Tτ = I, so we can write Λ = Λ0 = T0(Λ)

and Λτ = Tτ (Λ). Moreover, for τ small enough, Tτ is close to identity I and Λτ is an

open set with regular boundary Γτ = Tτ (Γ), close to Λ. In this set-up the function

ψτ : Λτ −→ R2 can be viewed as

ψτ (xτ ) = ψ(τ,x + τV) = ψ(τ,xτ ). (3.3)

Then, its material derivative is given by the chain rule as total derivative at τ = 0:

ψ̇ =
d

dτ
ψ(τ,x + τV)

∣∣∣
τ=0

=
[∂ψ(τ,xτ )

∂τ
+ ∇ψ(τ,xτ ) · V(x)

]∣∣∣
τ=0

= ψ′+∇ψ ·V , (3.4)

where the partial derivative ψ′ := ∂ψ
∂τ

∣∣∣
τ=0

is known as the shape derivative. Note that

the symbol ψ now has two meanings: it designates the function ψ defined by (3.3) and

designates its restriction to the pseudo-time level τ = 0. Under certain smoothness

assumptions the shape and spatial derivatives commute [3]:

(
∂ψ

∂xi

)′
=

∂

∂xi
(ψ′).

So now, if our model PDE system (3.1) depends on τ , i.e.:

A
(
ψ(τ,xτ )

)
=fτ in Λτ , (3.5a)

B
(
ψ(τ,xτ )

)
=gτ on Γτ , (3.5b)
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we can differentiate it by taking the shape derivative of both sides of (3.5) and

exchange the order of the shape and spatial derivatives on the left hand side (LHS) of

the equations which leads to the so-called sensitivity or perturbation PDEs:

A(ψ′) =f ′ in Λ, (3.6a)

B(ψ′) =g′ on Γ. (3.6b)

Next, we provide the differentiation results for integrals (3.2) in which both the

domains and integrands depend on τ , i.e.:

J(Λτ ) =

∫
Λτ

ψ(τ,xτ ) dxτ ,

G(Γτ ) =

∫
Γτ

ψ(τ,xτ ) dsτ .

The material derivatives of these integrals can be viewed as the directional deriva-

tives characterizing the behaviour of J and G when Λ ’moves’ in the direction V

defining Tτ .

Lemma 1.

J̇(Λ;V) =

∫
Λ

ψ̇ dx +

∫
Λ

ψ divV dx, (3.7a)

J̇(Λ;V) =

∫
Λ

ψ′ dx +

∫
Γ

ψV · n dx, (3.7b)

Ġ(Γ;V) =

∫
Γ

ψ′ ds+

∫
Γ

(
∂ψ

∂n
+ κψ

)
V · n ds, (3.7c)

where ψ̇ := ψ̇(0,x) and ψ′ := ψ′(0,x) are the material and shape derivatives of ψ

respectively and κ denotes the curvature of Γ.

The proof of this Lemma can be found in [3].
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In case of more complicated integrals, for example

Eτ =

∫
Λτ

F (τ, ψ(τ,xτ )) dxτ ,

where the integrand F is a function of ψ and pseudo-time τ , the material derivative

of E can be derived by applying the results of Lemma 1 and the chain rule:

Ė =
dE
dτ

∣∣∣∣∣
τ=0

=

∫
Λ

{
∂F (0, ψ)

∂τ
+
∂F (0, ψ)

∂ψ
· ψ′
}
dx +

∫
Γ

F (0, ψ)V · n dx. (3.8)

In particular, if F does not depend on τ explicitly, we get:

Ė =

∫
Λ

∂F (0, ψ)

∂ψ
· ψ′ dx +

∫
Γ

F (0, ψ)V · n dx. (3.9)

So far, we have discussed the results on curvilinear integrals over closed contours.

We conclude the discussion of the shape calculus by presenting the result for the case

of integrals defined over open contours [12].

Theorem 1. Let ψ be a smooth function defined on perturbations Γ(τ,V) of a smooth

arc Γ(0) := Γ(0,V) = B̂B′. Then

(∫
Γ(τ,V)

ψ ds
)′

=

∫
Γ(0)

ψ′ ds+

∫
Γ(0)

(
κψ +

∂ψ

∂n

)
V · n ds+ [ψV · ν ]

∣∣∣B′
B
, (3.10)

where ν is the unit vector tangent to Γ(0).
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3.2 Optimality Conditions

3.2.1 Optimality Conditions without Length Constraint

Recall that we are looking for an optimal curve Ĉ, such that the minimum of the cost

functional (2.4) is achieved.

The necessary condition that characterizes the minimizer Ĉ of the cost functional

is the vanishing of its shape derivative

J ′(Ĉ; ζ) = 0 (3.11)

for all perturbations ζ affecting the contour. In particular, in the case when no length

constraint imposed on the contour, we have:

J ′(Ĉ; ζ) =

∫
A

(u− ū)u′ dx = 0. (3.12)

Note that the solution u will depend on the shape of the contour C, i.e. u = u(C).

We emphasize that, while the elliptic PDEs and the boundary conditions in system

(2.1) are linear in the dependent variables u1 and u2, problem (2.1) is in fact geomet-

rically nonlinear with respect to the shape of the contour C. Therefore, problem (2.4)

may admit several local minimizers and so the condition (3.12) can characterize local

minimizer Ĉ only.

On the other hand, according to the Riesz representation theorem [13], there is a

unique element ∇J ∈ X which satisfies the identity

J ′(Ĉ; ζ) = 〈∇J , ζ〉X ∀ζ ∈ X , (3.13)

where 〈 · , · 〉X denotes the inner product in some suitable Hilbert space X . Since
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ζ ∈ X is arbitrary, combining identity (3.13) with the necessary conditions (3.12), we

conclude that our optimality condition is

∇J = 0. (3.14)

From here we restrict ourselves to the space of square-integrable functions X =

L2(Ω), but later we discuss the effect of choosing X to be a Sobolev space.

An expression for the gradient ∇J cannot be obtained in a straightforward manner

from (3.13) and (3.12), since J ′(Ĉ; ζ) is not in the form consistent with 〈∇L2J , ζ〉L2

yet. The derivation of the gradient using suitably-defined adjoint variables is described

in Section 3.3.2.

3.2.2 Optimality Conditions in the Presence of Length Con-

straint

Now, let us consider the case when the contour is subject to length constraint
∫
C
ds =

L0. We can take this constraint into account by adding a weight (penalty) term to the

cost functional as follows:

JL0(C) = J (C) +
1

2
α
(∫

C

ds− L0

)2

, (3.15)

where J (C) is the same as in (2.4), α ∈ R+ is a constant determining the penalty on

the violation of the length constraint. We note that the more systematic formulation

of the constrained problem using Lagrange multipliers could be presented, but, given

the geometric nonlinearity of the constraint
∫
C
ds = L0, the Lagrange multipliers can

be rather hard to compute accurately, so for simplicity in this work we chose weighted

sum formulation (3.15).
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Using (3.12) as the derivative of the first term and applying (3.7c) to differentiate

the second term in the gradient we get:

J ′L0
(Ĉ; ζ) = J ′(Ĉ; ζ) + α

(∫
C

ds− L0

)∫
C

κζ ds. (3.16)

Thus, applying identity (3.13) to the first term and writing the second term as L2

inner product, which is already in the Riesz form, we obtain the following expression:

J ′L0
(Ĉ; ζ) = 〈∇L2J , ζ〉L2 +

〈
α
(∫

C

ds− L0

)
κ, ζ

〉
L2

. (3.17)

If we denote by ∇L2

L0
J the gradient corresponding to the length-constraint case, by

the same argument as above we can write

J ′L0
(Ĉ; ζ) = 〈∇L2

L0
J , ζ〉L2 (3.18)

and our optimality condition is

J ′L0
(Ĉ; ζ) = 0 ∀ζ ∈ H1.

Combining with (3.17) we derive the gradient expression as

∇L2

L0
J = ∇L2J + α

(∫
C

ds− L0

)
κ

and an equivalent optimality condition can be seen to be

∇L2

L0
J = 0.

The optimality conditions derived in this section are utilized by the gradient descent
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method to determine that the minimizer of the cost functional, i.e. to find the locally

optimal contour Ĉ.

3.3 Gradient Descent Method

To find a local minimum of the cost functional we need to make steps in the steepest

descent direction, i.e. in the direction of −∇J . Up to this point, we have described

the optimality condition that should be satisfied by the gradient, but were not able

to provide an explicit expression for the gradient itself. The connection between the

shape derivative of the cost functional and its gradient was established with the help

of the Riesz formulation. In this section we show that some useful relations can be

derived by analysing the sensitivity of each variable involved in the problem definition.

Moreover, together with adjoint analysis, these relations provide a formula for the

gradient as required by the algorithm.

3.3.1 Perturbation PDE System

Given a vector field V on Ω such that V(∂Ω) = 0, the flow map Tτ introduced in

Section 3.1.1 can be written as Tτ = I + τ V , where I is the identity operator. Here

we employ the assumption that the end points of the contour C are attached to the

domain boundary ∂Ω at the right angle (see Figure 2.1), so the terms proportional to

(V ·ν)|B′B in (3.10) vanish identically. Therefore, only the normal component ζ := V ·n

of the perturbation velocity field on the contour C plays a role in expression for shape

differentials (3.10).

Thus, Cτ can now be defined as the set of points xC(τ) such that:

xC(τ) = x + τζn, xC(τ) ∈ Cτ , x ∈ C.
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Since the shape of the domains Ω1, Ω2 depends on τ , then the functions u1 and u2

defined on these domains are functions of τ themselves and can be denoted u1τ , u2τ .

Thus, we can interpret our problem as parameter-dependent PDE system:

−k∆u1τ = qχΩ1τ in Ω1τ , (3.19a)

−k∆u2τ = qχΩ2τ in Ω2τ , (3.19b)

u1τ = u2τ on Cτ , (3.19c)

k
(∂u2τ

∂n
− ∂u1τ

∂n

)
= γ(u1τ − u0τ ) on Cτ , (3.19d)

k
∂uτ
∂n

= 0 on ∂Ω, (3.19e)

where u1τ = uχΩ1τ and u2τ = uχΩ2τ .

As will be seen later, the shape derivative of u′ is an important element of the

adjoint analysis. The set of relations satisfied by u′ is obtained by taking material

derivative of system (3.19) with respect to τ at τ = 0 and then using formula (3.4).

Theorem 2. The shape derivative u′ of the solution u satisfies the following perturba-

tion PDE system:

−k∆u′1 = 0 in Ω1, (3.20a)

−k∆u′2 = 0 in Ω2, (3.20b)

u′2 − u′1 =
(∂u1

∂n
− ∂u2

∂n

)
ζ on C, (3.20c)

k
(∂u′2
∂n
− ∂u′1

∂n

)
− γu′1 = γ

[∂u1

∂n
+ κ(u1 − u0)

]
ζ − γu′0 on C, (3.20d)

k
∂u′

∂n
= 0 on ∂Ω, (3.20e)

where ζ = V · n.

Details of this derivation is provided in [1].
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3.3.2 Adjoint PDE System

The shape derivative of the cost functional (3.12) can now be transformed to a form

consistent with Riesz identity (3.13) by introducing a suitable adjoint operator and

the corresponding adjoint state.

Thus, we need to find the adjoint system

A∗(u∗) =f ∗ in Ω,

B∗(u∗) =g∗ on C,

C∗(u∗) =h∗ on ∂Ω,

such that
∫
A

(u − ū)u′dx =
∫
C∇

L2J ζ ds, which holds for some ∇L2J depending on

u∗ and u. Suppose

u∗1 : Ω1 −→ R,

u∗2 : Ω2 −→ R

are two shape-independent functions, i.e. (u∗1)′ = 0 and (u∗2)′ = 0. Now, to define

the adjoint system we need to perform a series of transformations, such as integrating

the governing equations (3.19a) and (3.19b) against, respectively, u∗1 and u∗2 over Ω1

and Ω2, performing integration by parts and shape differentiation. First, we multiply

(3.19a) by u∗1, integrate over Ω1 and then apply Green’s formula:

− k
∫

Ω1τ

∆u1τu
∗
1 dx

= −k
[∫

∂Ω1

∂u1τ

∂n
u∗1 ds+

∫
Cτ

∂u1τ

∂n
u∗1 ds−

∫
Ω1τ

∇u1τ · ∇u∗1 dx
]

=

∫
Ω1τ

qu∗1 dx.

Next, we take the shape derivative of both sides of the equation at τ = 0 and consider
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(3.19e) which cancels the first integral on the right hand side:

− k d
dτ

[∫
Cτ

∂u1τ

∂n
u∗1 ds−

∫
Ω1τ

∇u1τ · ∇u∗1 dx
] ∣∣∣∣∣

τ=0

= −k

{∫
C

(∂u1

∂n
u∗1

)′
ds+

∫
C

(
∂

∂n

(∂u1

∂n
u∗1

)
+ κ

∂u1

∂n
u∗1

)
ζ ds−

∫
Ω1

∇u′1 · ∇u∗1 dx

−
∫

Ω1

∇u1 · ∇ (u∗1)′ dx−
∫
∂Ω1

∇u1 · ∇u∗1ζ ds−
∫
C
∇u1 · ∇u∗1ζ ds

}
=

∫
Ω1

(qu∗1)′ dx +

∫
∂Ω1

qu∗1 ζ ds+

∫
C
qu∗1 ζ ds.

Consider the fact that (u∗1)′ = 0, q′ = 0 and ζ = 0 on ∂Ω1 and apply Green’s

formula to
∫

Ω1
∇u′1 · ∇u∗1 dx:

− k

{∫
C

∂u′1
∂n

u∗1 ds+

∫
C

(
∂

∂n

(∂u1

∂n
u∗1

)
+ κ

∂u1

∂n
u∗1

)
ζ ds+

∫
Ω1

u′1∆u∗1 dx

−
∫
C

∂u∗1
∂n

u′1 ds−
∫
∂Ω1

∂u∗1
∂n

u′1 ds−
∫
C
∇u1 · ∇u∗1ζ ds

}
=

∫
C
qu∗1 ζ ds.

After grouping the terms we get

− k

{∫
Ω1

u′1∆u∗1 dx +

∫
C

(
∂u′1
∂n

u∗1 −
∂u∗1
∂n

u′1

)
ds

+

∫
C

(
∂

∂n

(∂u1

∂n
u∗1

)
+ κ

∂u1

∂n
u∗1 −∇u1 · ∇u∗1

)
ζ ds−

∫
∂Ω1

∂u∗1
∂n

u′1 ds

}
=

∫
C
qu∗1 ζ ds.

(3.21)

Next, we multiply (3.19b) by u∗2 and integrate over Ω2 and then apply Green’s
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formula:

− k
∫

Ω2τ

∆u2τu
∗
2 dx

= −k
[∫

∂Ω2

∂u2τ

∂n
u∗2 ds−

∫
Cτ

∂u2τ

∂n
u∗2 ds−

∫
Ω2τ

∇u2τ · ∇u∗2 dx
]

=

[
by (3.19e),

∂u2τ

∂n
u∗2 = 0 on ∂Ω2

]

= k

[∫
Cτ

∂u2τ

∂n
u∗2 ds+

∫
Ω2τ

∇u2τ · ∇u∗2 dx
]

=

∫
Ω2τ

qu∗2 dx.

Then, we take the shape derivative of both sides of the equation at τ = 0:

k
d

dτ

[∫
Cτ

∂u2τ

∂n
u∗2 ds+

∫
Ω2τ

∇u2τ · ∇u∗2 dx
] ∣∣∣∣∣

τ=0

= k

{∫
C

(∂u2

∂n
u∗2

)′
ds+

∫
C

(
∂

∂n

(∂u2

∂n
u∗2

)
+ κ

∂u2

∂n
u∗2

)
ζ ds+

∫
Ω2

∇u′2 · ∇u∗2 dx

+

∫
Ω2

∇u2 · ∇ (u∗2)′ dx +

∫
∂Ω2

∇u2 · ∇u∗2ζ ds−
∫
C
∇u2 · ∇u∗2ζ ds

}
=

∫
Ω2

(qu∗2)′ dx +

∫
∂Ω2

qu∗2 ζ ds−
∫
C
qu∗2 ζ ds.

Combining with (u∗2)′ = 0, q′ = 0 and ζ = 0 on ∂Ω2, applying Green’s formula to∫
Ω2
∇u′2 · ∇u∗2 dx and rearranging the terms:

k

{
−
∫

Ω2

u′2∆u∗2 dx +

∫
C

(
∂u′2
∂n

u∗2 −
∂u∗2
∂n

u′2

)
ds

+

∫
C

(
∂

∂n

(∂u2

∂n
u∗2

)
+ κ

∂u2

∂n
u∗2 −∇u2 · ∇u∗2

)
ζ ds+

∫
∂Ω2

∂u∗2
∂n

u′2 ds

}
= −

∫
C
qu∗2 ζ ds.

(3.22)
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Finally, we add (3.21) and (3.22), and then group the terms to obtain:

k

{
−
∫

Ω1

u′1∆u∗1 dx−
∫

Ω2

u′2∆u∗2 dx +

∫
C

(
∂u′2
∂n

u∗2 −
∂u′1
∂n

u∗1 +
∂u∗1
∂n

u′1 −
∂u∗2
∂n

u′2

)
ds

+

∫
C

[
∂

∂n

(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+ κ
(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+
(
∇u1 · ∇u∗1 −∇u2 · ∇u∗2

)]
ζ ds

+

∫
∂Ω2

∂u∗2
∂n

u′2 ds+

∫
∂Ω1

∂u∗1
∂n

u′1 ds

}
=

∫
C
(qu∗1 − qu∗2) ζ ds.

(3.23)

At this point let us choose

−k∆u∗1 = (u− ū)χA1 , (3.24)

−k∆u∗2 = (u− ū)χA2 , (3.25)

where A1 = A ∩ Ω1 and A2 = A ∩ Ω2. Then, the first two terms in (3.23) can be

transformed into

k

{
−
∫

Ω1

u′1∆u∗1 dx−
∫

Ω2

u′2∆u∗2 dx

}
=

∫
Ω

(u− ū)χA1u
′
1 dx +

∫
Ω

(u− ū)χA2u
′
2 dx

=

∫
A

(u− ū)u′ dx

= J ′(C; ζn).

We also choose the following boundary conditions:

∂u∗1
∂n

= 0 on ∂Ω1,

∂u∗2
∂n

= 0 on ∂Ω2,

(3.26)
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and so (3.23) can be written as:

J ′(C; ζn) = B,

where

B =− k
∫
C

(
∂u′2
∂n

u∗2 −
∂u′1
∂n

u∗1 +
∂u∗1
∂n

u′1 −
∂u∗2
∂n

u′2

)
ds+

∫
C
(qu∗1 − qu∗2) ζ ds

− k
∫
C

[
∂

∂n

(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+ κ
(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+
(
∇u1 · ∇u∗1 −∇u2 · ∇u∗2

)]
ζ ds.

(3.27)

Now, we focus on the first term in (3.27) which is the only one not in the Riesz form

yet. Since it is not immediately obvious how adjoint boundary conditions should be

chosen in this case, we follow the algorithm for symbolic generation of adjoint systems

from [14]. First, let us define two symbolic vectors:

V′ :=

[
u′1,

∂u′1
∂n

, u′2,
∂u′2
∂n

]T
,

V∗ :=

[
u∗1,

∂u∗1
∂n

, u∗2,
∂u∗2
∂n

]T
.

(3.28)

Then, boundary conditions (3.20c), (3.20d) on C of the perturbed system (3.20) can

be rewritten in the matrix form:

M V′ =

 ∂u1
∂n
− ∂u2

∂n

γ
[
∂u1
∂n

+ κ (u1 − u0)− Ã
] ζ, (3.29)
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where

M =

−1 0 1 0

−γ −k 0 k

 (3.30)

and Ã is the integral operator representing the derivative of u0(s) with respect to the

arc length s given by:

u′0(s; ζ) = Ãζ =
uout − uin

L

∫ L

0

[
H(s− s̃)− s

L

]
κ ζ ds̃, (3.31)

where H(s) is the Heaviside function. The complete details of the derivation of (3.31)

are provided in Appendix A.

We can think of V′ as an unknown solution for underdetermined system (3.29)

and solve it for V′. Note that we have 2 degrees of freedom, so we introduce 2 free

variables: v1 and v2. By ansatz from [14] we have

V′ = ζp0 + v1p1 + v2p2,

where p0 ∈ Range(MT ) is a particular solution of the system M V′ = Wζ, where W

is the matrix on the right hand side (RHS) of (3.29) and span{p1,p2} = Ker(M).

Thus

V′ = ζ p0 + v1p1 + v2p2

= ζ


∂u2
∂n
− ∂u1

∂n

−γ
k

[
∂u2
∂n

+ κ (u1 − u0)− Ã
]

0

0

+ v1


1

−γ
k

1

0

+ v2


0

1

0

1

 .
(3.32)

Now, let us denote the first integrand of B as b1 and write it in a matrix form using
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a suitably defined matrix A:

b1 =
∂u′2
∂n

u∗2 −
∂u′1
∂n

u∗1 +
∂u∗1
∂n

u′1 −
∂u∗2
∂n

u′2

= V∗TAV′,

(3.33)

where

A =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 . (3.34)

Using the expression for V′ from (3.32) we get:

b1 = V∗TA[ζ p0 + v1p1 + v2p2]

= (V∗TAp0)ζ + (V∗TAp1)v1 + (V∗TAp2)v2.
(3.35)

Notice that, if we set V∗TAp1 = 0 and V∗TAp2 = 0 due to the definition of p1 and

p2, then our b1 is a linear form of ζ and so B will be in the Riesz form. Enforcing

these conditions we get:

V∗TAp1 =

[
u∗1,

∂u∗1
∂n

, u∗2,
∂u∗2
∂n

]


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0




1

−γ
k

1

0


=
∂u∗1
∂n

+
γ u∗1
k
− ∂u∗2

∂n
= 0,
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V∗TAp2 =

[
u∗1,

∂u∗1
∂n

, u∗2,
∂u∗2
∂n

]


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0




0

1

0

1


= −u∗1 + u∗2 = 0.

Therefore, we determined the following boundary conditions of the adjoint system:

k

(
∂u∗2
∂n
− ∂u∗1

∂n

)
=γ u∗1, (3.36)

u∗2 − u∗1 =0. (3.37)

Thus, the first integral in B is in the desired form

− k
∫
C
(V∗TAp0)ζ ds

= −k
∫
C

{(
∂u2

∂n
− ∂u1

∂n

)
∂u∗1
∂n

+
γ u∗1
k

[
∂u2

∂n
+ κ (u1 − u0)− Ã

]}
ζ ds

= [ by (2.1d)] =

∫
C

{
−γ(u1 − u0)

∂u∗1
∂n
− γ u∗1

[
∂u2

∂n
+ κ (u1 − u0)− Ã

]}
ζ ds

=

∫
C

{
−γ (u1 − u0)

(
κu∗1 +

∂u∗1
∂n

)
− γ u∗1

∂u2

∂n

}
ζ ds−

∫
C
γu∗1Ãζ ds

=

∫
C

{
−γ (u1 − u0)

(
κu∗1 +

∂u∗1
∂n

)
− γ u∗1

∂u2

∂n

}
ζ ds

− γ(uout − uin)

L

∫ L

0

{∫ L

0

[
H(s̃− s)− s̃

L

]
u∗1(s̃) ds̃

}
κ ζ ds,

(3.38)

where the integral operator Ã was expanded (cf. (3.31)).

Also note that by (3.36) the second integral in B vanishes. It remains to consider

the third integral. Since it is already in the Riesz form, let us simplify it by expressing
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its integrand b2 in the local curvilinear form:

b2 =

[
∂

∂n

(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+ κ
(∂u2

∂n
u∗2 −

∂u1

∂n
u∗1

)
+
(
∇u1 · ∇u∗1 −∇u2 · ∇u∗2

)]

=
∂2u2

∂n2
u∗2 +

∂u2

∂n

∂u∗2
∂n
− ∂2u1

∂n2
u∗1 −

∂u1

∂n

∂u∗1
∂n

+ κ
∂u1

∂n
u∗2 − κ

∂u1

∂n
u∗1

+

(
∂u1

∂s
,
∂u1

∂n

)
·
(
∂u∗1
∂s

,
∂u∗1
∂n

)
−
(
∂u2

∂s
,
∂u2

∂n

)
·
(
∂u∗2
∂s

,
∂u∗2
∂n

)
=
∂2u2

∂n2
u∗2 −

∂2u1

∂n2
u∗1 + κ

∂u2

∂n
u∗2 − κ

∂u1

∂n
u∗1 +

∂u1

∂s

∂u∗1
∂s
− ∂u2

∂s

∂u∗2
∂s

.

To deal with ∂2

∂n2 terms we use Laplace-Beltrami operator which is defined as:

∆n,s := ∆− κ ∂

∂n
,

where ∆n,s := ∂2

∂n2 + ∂2

∂s2
and ∆ is Laplacian in Cartesian coordinate system, so we

have:
∂2

∂n2
= ∆ − ∂2

∂s2
− κ ∂

∂n
. (3.39)

This gives us

b2 =
(

∆u2 −
∂2u2

∂s2

)
u∗2 −

(
∆u1 −

∂2u1

∂s2

)
u∗1 +

∂u1

∂s

∂u∗1
∂s
− ∂u2

∂s

∂u∗2
∂s

.

Next, we notice that since u1 = u2 and u∗1 = u∗2 on C we get ∂iu1
∂si

= ∂iu2
∂si

, i = 1, 2

and
∂u∗1
∂s

=
∂u∗2
∂s

. Together with ∆u1 = ∆u2 on C, which follows from smooth extension

of the Laplacian of u1 and u2 to C, we get that b2 vanishes and so the third integral in

B is zero.
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Finally, we have

B =

∫
C

{
− γ (u1 − u0)

(
κu∗1 +

∂u∗1
∂n

)
− γ ∂u2

∂n
u∗1

}
ζ ds

− γ(uout − uin)

L

∫ L

0

{∫ L

0

[
H(s̃− s)− s̃

L

]
u∗1(s̃) ds̃

}
κ ζ ds.

(3.40)

Since B = J ′(C; ζn) = 〈∇L2J , ζ〉, our L2 gradient is:

∇L2J =− γ (u1 − u0)
(
κu∗1 +

∂u∗1
∂n

)
− γ ∂u2

∂n
u∗1

− γκ(uout − uin)

L

∫ L

0

[
H(s̃− s)− s̃

L

]
u∗1(s̃) ds̃ on C.

(3.41)

In the presence of length constraint the gradient is given by:

∇L2

L0
J =− γ (u1 − u0)

(
κu∗1 +

∂u∗1
∂n

)
− γ ∂u2

∂n
u∗1

− γκ(uout − uin)

L

∫ L

0

[
H(s̃− s)− s̃

L

]
u∗1(s̃) ds̃+ α

(∫
C
ds− L0

)
κ on C.

(3.42)

Ultimately, our adjoint system is:

−k∆u∗1 = (u− ū)χA1 in Ω1, (3.43a)

−k∆u∗2 = (u− ū)χA2 in Ω2, (3.43b)

u∗2 − u∗1 = 0 on C, (3.43c)

k
(∂u∗2
∂n
− ∂u∗1

∂n

)
= γ u∗1 on C, (3.43d)

k
∂u∗

∂n
= 0 on ∂Ω, (3.43e)
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where u =

u1, x ∈ Ω1

u2, x ∈ Ω2

and u∗ =

u
∗
1, x ∈ Ω1

u∗2, x ∈ Ω2

.

We emphasize that in order to evaluate cost functional gradient (3.42) direct and

adjoint problems (2.1) and (3.43), respectively, need to be solved. The appropriate

numerical scheme is discussed in the next chapter.

3.3.3 Ensuring smoothness of the gradient

The perturbation of C in the direction of the gradient ∇L2J might not lead to a

smooth contour, since the L2 space only guarantees square integrability. To ensure the

smoothness of the perturbed contour C, we can use an operator from some Sobolev

space, in particular the Hilbert space H1, to extract a smoother gradient. According

to the Riesz representation theorem, there exists the corresponding gradient ∇H1J ,

which satisfies the following identity [15]:

J ′(C; ζn) = 〈∇H1J , ζ〉H1 =

∫
C

(
∇H1J + l2

∂∇H1J
∂s

∂ζ

∂s

)
ds, (3.44)

where l is a constant sometimes referred to as the Sobolev coefficient playing the role

of an adjustable length-scale parameter. Applying integration by parts, we get

J ′(C; ζn) = 〈∇H1J , ζ〉H1 =

∫
C

(
∇H1J − l2∂

2∇H1J
∂s2

)
ζ ds+ l2

∂∇H1J
∂s

ζ
∣∣∣B′
B
.

Combining this result with the Riesz representation in L2, namely,

J ′(C; ζn) = 〈∇L2J , ζ〉L2 =

∫
C
∇L2J ζ ds
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we can derive the following system characterizing the Sobolev gradient ∇H1J :(1− l2∂2
s )∇H1J = ∇L2J on C

l2 ∂∇
H1
J

∂s
= 0 at B,B′.

(3.45)

Similar result holds for the gradient corresponding to the case with the length con-

straint. Note that l → 0 recovers the standard L2 gradient, whereas l → ∞ recovers

the H1 gradient based on the inner product corresponding to the seminorm (3.44), i.e.

larger l values result in the higher smoothness of the Sobolev gradient.

More specifically, incorporating derivatives into the inner product, has the effect

of scale-depending filtering [15]. The procedure introduced above is equivalent to

applying a low-pass filter to the L2 gradient with the quantity l−2 representing the

”cut-off” scale.

The extraction of gradients in spaces of smoother functions, such as Sobolev space

H1, is a well-known technique in adjoint-based optimization of PDEs [15, 16], where

it is treated as a form of preconditioning.
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Chapter 4

Numerical Implementation

To obtain an optimal contour C, corresponding to a local minimum of our cost func-

tional, we need to be able to evaluate the gradient (3.42) at each iteration of the

algorithm. Since the expression for ∇J involves the solutions of both direct and ad-

joint problems (2.1) and (3.43), the corresponding systems of PDEs have to be solved

for any new configuration of the contour C. Since these systems have in fact essen-

tially identical structure, we will focus our discussion on the solution of the first one.

We observe that both problems (2.1) and (3.43) can be treated as combinations of

two Poisson problems (defined in Ω1 and in Ω2) which are coupled via some mixed

boundary conditions on the contour C separating the two domains. Given the linearity

of equations (2.1a)—(2.1b), we split problem (2.1) into two subproblems: a potential

problem associated with the complex boundary conditions (2.1d) and another elliptic

problem arising from the presence of the source term q, which are then coupled using

a suitable interpolation scheme. Since the solution methods for these subproblems are

adapted to their analytic structure, we achieve for each of them the highest possible

(spectral) accuracy.

We begin this chapter with a brief introduction to spectral methods and the bound-
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ary integral equation technique which provide theoretical preliminaries for dealing with

our subproblems, followed by the computational scheme developed for their numerical

solution. The major steps are summarized in the optimization algorithm provided at

the end of this chapter.

4.1 Spectral Methods for Non-periodic Domains

In this section we will see how to construct spectral methods for bounded, non-periodic

domains. Suppose we work with non-periodic functions defined on [−1, 1]. One way is

to extend the functions periodically and treat them as periodic applying trigonometric

(Fourier) interpolation in equispaced points. The disadvantage of such approach is

the loss of spectral accuracy, since in general a smooth function becomes non-smooth

when periodically extended. Instead, a polynomial interpolation on unevenly spaced

points is the right choice [17]. The common property of appropriate sets is the density

of grid points distribution:

density ∼ N

π
√

1− x2
.

The most common set and the one we will use is Chebyshev points :

xj = cos(jπ/N), j = 0, ..., N.

Geometrically, these points can be seen as the projections on [−1, 1] of equispaced

points jπ/N, j = 0, ..., N on the upper half of the unit circle (see Figure 4.1). Note

that the points are numbered from right to left.
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Figure 4.1: Chebyshev points

4.1.1 Spectral Differentiation for Non-periodic Domain

Now, we will use Chebyshev points to construct Chebyshev differentiation matrices

and demonstrate how to apply them to numerically solve a certain class of PDEs. Let

us first discuss how we can approximate a discrete derivative w of a function v having

only the values vj at the Chebyshev points xj = cos(jπ/N), j = 0, ..., N . Following

[17], this can be done in two steps:

• Let p be the unique polynomial of degree ≤ N with p(xj) = vj, j = 0, ..., N .

• Set wj = p′(xj).

Since this operation is linear, it can be represented as multiplication of a vector v :=

[v0, ..., vN ] by a (N + 1)× (N + 1) matrix denoted as DN :

w = DNv.

If we construct the polynomial p from step 1 given above, say, by writing it in the

Lagrange form, and taking the derivative as in step 2, we can derive general formulas

for the elements of DN for an arbitrary N :
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Lemma 2. [20] For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1)

Chebyshev spectral matrix DN be indexed from 0 to N . The entries of this matrix are

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DN)ii =
−xi

2(1− x2
i )

1 6 i 6 N − 1,

(DN)ij =
ci(−1)i+j

cj(xi − xj)
i 6= j; 1 6 i, j 6 N − 1,

(4.1)

where

ci =

 2, i = 0 or N,

1, otherwise.

Note that the second derivative of v can be computed by applying D2
N matrix

which is the square of DN . Let us now consider an example of solving a simple

ordinary differential equation (ODE) with Neumann and Dirichlet conditions at the

left and right endpoints respectively.

Example 1:

uxx = e4x, −1 < x < 1, ux(−1) = u(1) = 0. (4.2)

We already know how to treat derivatives numerically with spectral accuracy with

the help of the spectral differentiation matrix. Denote v = [u0, ..., uN ] as the vector

of unknowns corresponding to Chebyshev points x0, ..., xN and f = [e4x0 , ..., e4xN ] as

a vector corresponding to the right hand side of the equation evaluated on this grid.

Then, the second derivative operator on the LHS evaluated at these points can be

approximated by D2
Nv.

So now the question is how we can impose the boundary conditions. The condition

at x = 1, which corresponds to the grid point j = 0, will be satisfied if we replace
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the first row of the differentiation matrix D2
N with the row [1, 0, 0, ..., 0] and the first

element of the vector f with 0. At x = −1, i.e. j = N , on the other hand we need to

impose a condition involving the first derivative. To approximate the first derivative

of u at this point we will replace the last row of D2
N with the last row of the spectral

differentiation matrix DN . The corresponding element of the vector f is assigned 0.

So, in the end we will be solving (N + 1)× (N + 1) linear system of equations in which

N − 1 equations enforce the governing equation at the interior grid points and the

first and last equations provide the Dirichlet and the Neumann boundary conditions

respectively. The RHS will be represented by the vector [0, e4x1 , ..., e4xN−1 , 0].

After giving the idea of the approach for one-dimensional problem, we now consider

how to extend the method to problems in several space dimensions. Due to the nature

of our mathematical model, we restrict ourselves to 2D case.

To be more specific, let us consider the discretization of 2D Laplace operator:

∆u := uxx + uyy, x, y ∈ [−1, 1].

The proper grid is based on Chebyshev points independently constructed in each di-

rection and known as a tensor product grid (see Figure 4.2).

To express the operators, in particular the Laplacian, on such grid we use tensor

(Kronecker) products, denoted by ⊗: if B and C are of dimensions n ×m and l × r,

respectively, then B ⊗ C is nl ×mr matrix with n ×m block form, where the (i, j)

block is bijC.

Let us demonstrate how it works on a small size grid N = 2 (see Figure 4.3). Note,

that the way we enumerate the nodes is crucial for the method - another ordering

would, in general, give another equivalent operator representation. Here we begin

with the upper-right grid point and move to the lower-left point: start at the level
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Figure 4.2: 2D Chebyshev grid

y0 = 1 and enumerate points going from x0 = 1 to xN = −1, next, move to the level

y1 and repeat until yN = −1 is reached. This idea is an extension of a numeration

approach applied in 1D case and correlates with the spectral differentiation matrix

construction.

We emphasize that by applying the enumeration technique described above, we

reshape our data on (N + 1) × (N + 1) grid to be represented by a (N + 1)2 vector.

This linear transformation sometimes referred as the vectorization of the matrix.

Suppose we get discrete representation of u at these grid points: [v1, ..., v9]T . To

approximate the Laplacian we need to differentiate spectrally in the x and y directions

independently. With the help of the spectral differentiation matrix D2
N we can derive

the second derivative in the x direction as [17]:

uxx ≈ I ⊗D2
Nv,

where I is the (N + 1)× (N + 1) identity matrix.
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Figure 4.3: Tensor product grid 3x3 and enumeration pattern

Let us demonstrate this fact by expanding the Kronecker product for N = 2:

uxx ≈


D2

2 0 0

0 D2
2 0

0 0 D2
2




v1

...

v9

 ,

where D2
2 is a 3×3 matrix and 0 stands for a 3×3 zero block. On the other hand, the

second derivative in the y direction is approximated by the following tensor product:

uyy ≈ D2
N ⊗ I v,

so that

uyy ≈


(D2

2)11I (D2
2)12I (D2

2)13I

(D2
2)21I (D2

2)22I (D2
2)23I

(D2
2)31I (D2

2)32I (D2
2)33I




v1

...

v9

 .
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Thus, our discrete Laplacian is given by:

∆ ≈∆N := I ⊗D2
N + D2

N ⊗ I. (4.3)

If we need to include some boundary conditions to such type of the problems, we

should follow a similar idea as was developed for 1D case (see Example 1), i.e. replace

the corresponding rows or columns in the final matrix, ∆N in our case, with the data

from the matrix representing boundary conditions. For example, if we want to enforce

ux = 0 at x = 1 as a part of some boundary condition, we start with identifying the

indices of the corresponding elements in the vector v. From Figure 4.3 we get that

v1, v4 and v7 are given at the point x = 1. Thus, in the discrete Laplacian columns

1, 4 and 7 need to be replaced with the corresponding columns of the matrix I ⊗DN

which is an approximation of ux on 2D Chebyshev grid.

4.1.2 Spectral Collocation Methods

The basic idea for solving differential and integral equations expressed in a general

form Lu = f , where L is differential or integral operator, is to assume that unknown

function u(x) can be approximated by a sum of N + 1 basis functions ϕn(x):

u(x) ≈ uN(x) =
N∑
n=0

anϕn(x). (4.4)

After substituting this series back into the equation the so-called residual function is

defined:

R(x; a0, ..., aN) = LuN − f.

The residual function is identically equal to zero for the exact solution. To obtain

an approximation to the solution, i.e. the coefficients a0, ..., aN in (4.4), two main

approaches exist:
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• spectral or Galerkin

The coefficients are computed by multiplying the residual R(x, an) by given basis

functions and integrating over the domain of definition (coefficients a0, ..., aN are

chosen such that the residual is orthogonal to the subset spanned by the basis

functions)

• pseudospectral or collocation

The coefficients are found by requiring that the residual vanish at the collocation

points.

Since the pseudospectral method is equivalent to the spectral if the integrals of the

latter is computed by Gaussian numerical quadrature [18], in this work we are using

collocation method for the sake of computational efficiency.

Due to non-periodicity of our domain, the best choice for the basis set is Chebyshev

polynomials of the first kind:

Ti(x) = cos(i arccosx), i = 0, ..., N.

The optimal choice of the collocation points associated with the Chebyshev basis

functions depends on the type of the problem we are solving, but the most common

sets are the following:

• Gauss-Chebyshev points:

xi = cos

(
(2i+ 1)π

2(N + 1)

)
, i = 0, ..., N.

Note that this set of points exclude the end points of the interval [−1, 1].
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• Chebyshev-Lobatto points:

xi = cos
(πi
N

)
, i = 0, ..., N.

Now the end points are included, which allows us to enforce some boundary

conditions, if applicable.

The most appropriate set of points for solving direct and adjoint problems (2.1),

(3.43) is discussed in Section 4.4 devoted to numerical techniques.

4.2 Clenshaw-Curtis Quadrature

Let us discuss how the Chebyshev polynomials and points can be utilized for numerical

evaluation of certain integrals. Consider an integral

I =

∫ 1

−1

f(x) dx. (4.5)

To obtain a spectrally accurate approximation of such type of the integral the

Clenshaw-Curtis quadrature can be used:

I ≈
N∑
j=0

wj f(xj), (4.6)

where xj = cos(πj
N

), j = 0, ..., N are Chebyshev-Lobatto grid points and wj are the

weights to be determined. Recall that Chebyshev polynomials are the images of cosine

functions under the mapping x = cos(t). Thus, this grid is an evenly spaced in the

trigonometric coordinate t. The integral I after the transformation x = cos(t) becomes:

I =

∫ π

0

f(cos(t)) sin(t) dt
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and the quadrature approximation is given by [18]:

IN =
N∑
j=0

wj f(cos(tj)),

tj = πj/N, j = 0, ..., N,

wj = sin(tj)
2

N

N∑
m=0

sin(mtj) [1− cos(mπ)]/m.

Such a quadrature is exact for polynomials of degree (N −1) [18]. One could argue

that Gaussian quadrature with the weight function w(x) ≡ 1 could be a better choice,

since it is exact when f(x) is a polynomial of degree (2N − 1) or less. The discussion

on this subject can be found in [19] and [18] and, as demonstrated in [19], the two

formulas are about equally accurate for most integrands. The main benefit from the

Clenshaw-Curtis quadrature for the algorithm employed in this work is the fact that

the Chebyshev grid, where the integrand is evaluated, serves also as a main tool for

discretizing the data in the direct and adjoint problems. On the other hand, Gaussian

type quadratures with similar abscissas, such as Chebyshev-Gauss quadrature with

the weight function w(x) = 1√
1−x2 , would result in the need for a discontinuous change

of variables to adjust the integrand offsetting the advantage of this approach (see the

concrete example in Section 4.4.2).

4.3 Boundary Integral Equation

The boundary integral equation method denotes the transformation of a linear partial

differential equations with d spatial variables into an integral equation over a (d− 1)-

dimensional surface. It is typically applicable to elliptic PDE problems. The method

starts from a differential equation Lu = 0 with suitable boundary conditions and

looks for an equivalent formulation as integral equation. Here, we restrict ourselves
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to the two-dimensional Laplace equation and demonstrate how to transform it into an

integral equation.

4.3.1 Single-layer Potential

We observe that the solution of an inhomogeneous linear differential equation, in par-

ticular the governing Poisson equation (2.1a) in our problem, can be represented as a

sum

u = up + uh (4.7)

consisting of the solution up of some inhomogeneous problem and some harmonic

function uh, satisfying Laplace equation and complicated boundary conditions (2.1d)-

(2.1e). The solutions up and uh can be thought as solutions of two different subprob-

lems, one of which is governed by Poisson equation and another is governed by Laplace

equation.

In this section we discuss remarkable properties of the solution of Laplace equation

which will be utilized to introduce the boundary integral formulation of one of the

subproblems satisfying boundary conditions (2.1d)-(2.1e).

Let us consider the case when d = 2, Γ = ∂Ω is a closed curve. For Laplace’s

equation −∆ Φ = 0 in R2 we have the following fundamental solution [20]

ω(x,y) = − 1

2π
ln |x− y|, (4.8)

which only depends on the Euclidean norm |x − y| and the order of singularity at

x = y is the weakest possible.

The curvilinear integral

Φ(x) =

∮
Γ

ω(x,y)µ(y) dy (4.9)
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over Γ with fundamental solution ω defines the single-layer potential corresponding

to differential operator L. The function µ is called the density of the single-layer

potential. In particular, the single layer potential corresponding to Laplace’s operator,

according to (4.8), has the following form in R2

Φ(x) = − 1

2π

∮
Γ

ln |x− y|µ(y) dy. (4.10)

The next lemma gives the fundamental result on integral representation of Laplace

equation.

Lemma 3. [20] Let Γ is a piecewise C1 curve. The single-layer potential (4.10) satis-

fies the Laplace equation in R2 \ Γ, i.e.,

−∆ Φ = 0 x 6∈ Γ. (4.11)

Next, we will demonstrate some properties of single-layer potential Φ which will be

used in numerical implementation.

Lemma 4. The single-layer potential Φ defined as (4.9) over Γ is continuous for

x ∈ R2 and analytic in R2\Γ.

The proof of this result can be found in [20].

The next lemma employs the fact that for x 6∈ Γ, the derivative of Φ may be taken

under the integral sign.

Lemma 5. The gradient of Φ is:

∇Φ = − 1

2π

∮
Γ

x− y

|x− y|2
µ(y) dy. (4.12)
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Note that the kernel x−y
|x−y|2 is not improperly integrable over Γ.

In addition, we present some results for ∂Φ±
∂n

evaluated on the boundary:

Theorem 3. [20] Let Γ be Hölder-continuously differentiable and the density function

µ of single-layer potential Φ satisfies f ∈ L∞(Γ). For any x ∈ Γ, if we denote the

unit outer normal vector at x as n(x), then

1. the one-sided normal derivative for Φ− and Φ+ exists at x and is given by:

∂Φ±
∂n

(x) := lim
ε→ 0+

n(x) · ∇Φ (x± εn(x)), (4.13)

2. the jump relation holds as:

∂Φ+(x)

∂n
− ∂Φ−(x)

∂n
= −µ(x), (4.14)

3. mean value of ∂Φ+(x)
∂n

and ∂Φ−(x)
∂n

is:

1

2

[
∂Φ+(x)

∂n
+
∂Φ−(x)

∂n

]
= − 1

2π

∫
Γ

< n(x),x− y >

|x− y|2
µ(y) dy, (4.15)

where < · , · > denotes the Euclidean inner product.

Equation (4.15) can also been written in the form

1

2

[
∂Φ+(x)

∂n
+
∂Φ−(x)

∂n

]
= − 1

2π

∫
Γ

∂

∂nx
ln |x− y|µ(y) dy. (4.16)

Moreover, the right hand-side of (4.15) has an integrand with a removable singu-

larity, namely [20]:

lim
y→x

< n(x),x− y >

|x− y|2
=
κ

2
x,y ∈ Γ, (4.17)
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where κ is the signed curvature of Γ.

Theorem 3 together with (4.17) provides us with specific techniques necessary to

apply the BIE method to the direct and adjoint problems.

4.4 Numerical Implementation

In this section we reformulate our direct problem (2.1) in terms of the solutions up

and uh using relation (4.7) and employ the properties of the single-layer potential,

introduced in the previous section, to satisfy mixed boundary condition (2.1d).

Now the direct problem (2.1) is given by the following system:

−k∆up =q(x) in Ω, (4.18a)

∆uh =0 in Ω \ C, (4.18b)

uh

∣∣∣
1

=uh

∣∣∣
2

on C, (4.18c)

k

(
∂uh
∂n

∣∣∣∣∣
1

− ∂uh
∂n

∣∣∣∣∣
2

)
=γ(u− u0) on C, (4.18d)

∂up
∂n

=− ∂uh
∂n

on ∂Ω, (4.18e)

where uh

∣∣∣
1

= uhχΩ1 , uh

∣∣∣
2

= uhχΩ2 and

uh(x) = − 1

2π

∮
C

ln |x− xC|µ(xC)dσ on Ω \ C (4.19)

in which µ is the density function.

Considering the jump relation (4.14) and the boundary condition (4.18d), the den-

sity µ(x) satisfies:

−µ(x) =
γ

k
(u− u0(x)) ∀x ∈ C. (4.20)
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Next we plug (4.7) and the single-layer potential into (4.20) and get a singular

boundary integral equation

−µ(x) +
γ

2πk

∮
C

ln |x− xC|µ(xC) dσ =
γ

k
(up(x)− u0(x)) ∀x ∈ C

of Fredholm type II, satisfied by density µ.

Since by Lemma 4 uh is continuous across C, then (4.18c) is satisfied by definition

and we can write system (4.18) in an equivalent form with up(x) and µ(x) as unknowns:

−k∆up =q(x) in Ω, (4.21a)

−µ(x) +
γ

2πk

∮
C

ln |x− xC|µ(xC) dσ =
γ

k
(up(x)− u0(x)) ∀x ∈ C, (4.21b)

∂up
∂n

=− ∂uh
∂n

x ∈ ∂Ω. (4.21c)

In the later sections we will use this system to approximate the solution of direct

problem (2.1).

4.4.1 Discretizing Equation (4.21a)

To discretize up on Ω we introduce a matrix U where Uij = up(xi, yj), i, j = 0, ..., N

is an approximation of up on 2D Chebyshev grid. Following the ideas from Section

4.1.1, we rearrange the terms in matrix U to obtain a vector Ũ and apply the same

technique to the right-hand side q, denoting the resulting column vector Q̃. Now, using

spectral differentiation matrix (4.3), the Laplacian of u in (4.21a) can be numerically

approximated as:

−k∆N Ũ = Q̃. (4.22)

Note that the method of reordering the elements to get the vectors Ũ and Q̃ is cru-

cial and should be the same for both sides of the equation and in further numerical
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evaluations.

4.4.2 Discretizing Equation (4.21b)

To proceed with discretization of BIE (4.21b) first we need to convert the line integral

in (4.21b) into a definite integral. This can be achieved if we parametrize the contour

C in terms of t ∈ [0, π] by a map z : R→ R2 such that:

x = z(t) := [z1(t), z2(t)], x ∈ C, t ∈ [0, π].

There are 2 steps which lead to such parametrization. First, we introduce arc length

parameter s and the transformation θ : s ∈ [0, L] → x ∈ C with ||θ′(s)|| = 1 which

converts a line integral over the curve to a definite integral from 0 to L.

Next, define s(t) = Lt
π

, t ∈ [0, π], s′(t) = L
π

which maps t ∈ [0, π] to s ∈ [0, L].

Thus, we have z := θ ◦ s, such that ||z′(t)|| = ||θ′(t)|| = ||θ′(s)||s′(t) = L
π

.

Let us denote x and xC as z(t) and z(t′), respectively. Then, we have our equation

transformed to:

−µ(x) +
γL

2π2k

∫ π

0

ln |z(t)− z(t′)|µ(t′) dt′ =
γ

k
(up(t)− u0(t)) , t ∈ [0, π]. (4.23)

We have to address the singularity in this line integral as t → t′. Let us split the

integral in the following way:

−µ(x) +
γL

2π2k

∫ π

0

ln

∣∣∣∣∣ z(t)− z(t′)

cos(t)− cos(t′)

∣∣∣∣∣µ(t′) dt′︸ ︷︷ ︸
(I)

+
γL

2π2k

∫ π

0

ln | cos(t)− cos(t′)|µ(t′) dt′︸ ︷︷ ︸
(II)

=
γ

k
(up(t)− u0(t)), t ∈ [0, π].

(4.24)
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Now the singularity in the integral (I) can be removed by replacing the kernel with

ln
∣∣∣ ||z′(t′)||sin(t′)

∣∣∣ when t→ t′.

Note that (II) is the integral containing the principal part of the logarithmic kernel,

while (I) contains a regular one. The numerical evaluation of the integral (II) with

the logarithmic-kernel is neither accurate nor simple in general, so that we will over-

come this problem by analytic evaluation of (II) on suitably chosen discrete points.

Following [7], we define an approximating subspace XM = span{Tm(t) = cos(mt),m =

0, 1, 2, ...,M, 0 ≤ t ≤ π} and approximate the unknown density function as

µ(t) = µM(t) =
M∑
m=0

amTm(t), 0 ≤ t ≤ π,

where Tm(t) are Chebyshev polynomials.

To treat integral (II) we use the observation that, for 0 ≤ t ≤ π,

∫ π

0

Tm(t′) ln | cos(t)−cos(t′)| dt′ =
∫ 1

−1

Tm(cos−1(ξ))√
1− ξ2

ln |ξ−x| dξ =

−π ln(2), if m = 0

− π
m
Tm(t), if m ≥ 1,

where we noted that cos(t) = ξ.

Then, we have (4.23) in the form

−
M∑
m=0

amTm(t) +
γL

2π2k

M∑
m=0

am

∫ π

0

ln

∣∣∣∣∣ z(t)− z(t′)

cos(t)− cos(t′)

∣∣∣∣∣Tm(t′) dt′−

γL

2π2k

(
a0π ln(2) +

M∑
m=1

amπ

m
Tm(t)

)
=
γ

k
(up(t)− u0(t)), t ∈ [0, π].

(4.25)
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So, now to find µM(t) we need to find the coefficients am, m = 0, 1, ..,M from

−
M∑
m=0

amTm(t)+
γL

2π2k

M∑
m=0

amIm(t)− γL

2πk

(
a0 ln(2)+

M∑
m=1

am
m
Tm(t)

)
=
γ

k
(up(t)−u0(t)),

(4.26)

where

Im(t) =

∫ π

0

ln

∣∣∣∣∣ z(t)− z(t′)

cos(t)− cos(t′)

∣∣∣∣∣Tm(t′) dt′. (4.27)

Let us discuss the numerical treatment of this integral.

Option 1: Note that the change of variables τ = cos(t) with dt = −1√
1−τ2 dτ and

z(t) = z(cos−1(cos(t))) = z(cos−1(τ)) = z̃(τ) transforms (4.27) to

Im(τ) =

∫ 1

−1

ln

∣∣∣∣∣ z̃(τ)− z̃(τ ′)

τ − τ ′

∣∣∣∣∣ Tm(cos−1(τ ′))√
1− τ ′2

dτ ′.

The weight function 1√
1−τ2 suggests the use of the Chebyshev-Gauss quadrature to

approximate the integral. However, investigating the smoothness of the integrand

ln
∣∣∣ z̃(τ)−z̃(τ ′)

τ−τ ′

∣∣∣Tm(cos−1(τ ′)) and, in particular, Tm(cos−1(τ ′)) = cos(m cos−1(τ ′)), whose

derivative given by m sin(m cos−1(τ))√
1−τ2 has a singularity at τ = ±1, we conclude that the

integrand does not obey the smoothness requirements on the interval τ ∈ [−1, 1]

necessary to guarantee the spectral convergence of the quadrature.

Option 2: We can also make use of the spectral methods for the integrals by

representing the curve z(t), t ∈ [0, π] in some new variable y ∈ [−1, 1] via a linear

change of variables. Let t = y+1
2
π, dt = π/2 dy. Thus, (4.27) is equivalent to

Im(t) =
π

2

∫ 1

−1

ln

∣∣∣∣∣ z(t)− z(y
′+1
2
π)

cos(t)− cos(y
′+1
2
π)

∣∣∣∣∣ cos

(
m(y′ + 1)

2
π

)
dy′. (4.28)

To approximate this integral with the spectral accuracy we apply the Clenshaw-
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Curtis quadrature on the Chebyshev nodes {yi = cos( πi
M

), i = 0, 1, ..,M} [17] :

Im(t) =
π

2

M∑
i=0

wiρm(t, yi), (4.29)

where ρm(t, yi) = ln

∣∣∣∣∣ z(t)−z(
yi+1

2
π)

cos(t)−cos(
yi+1

2
π)

∣∣∣∣∣ cos
(
m(yi+1)

2
π
)
.

This approach avoids the regularity issue of Option 1 and gives the benefit of

spectral accuracy.

Considering (4.26) and (4.28) we conclude that two overlapping discretizations of

the curve C are needed for solving BIE (4.23):

• uniform in the arc length :

sj =
Ltj
π
, tj =

2j + 1

2(M + 1)
π, j = 0, 1, ..,M, (4.30)

These points will serve for the collocation approach applied to (4.26). We empha-

size here that there are two equivalent representations of Chebyshev polynomials

Tm, namely Tm(t) = cos(mt), 0 ≤ t ≤ π and Tm(x) = cos(m arccosx), −1 ≤

x ≤ 1, so we can think of collocation points xj = cos(tj) as Chebyshev in x or

as uniform in t. Since both sets of points result in the uniform grid in arc length

s(t) = Lt
π

on the curve C, we will refer to these sets as a ”uniform” grid.

• Chebyshev in the arc length :

si =
L

2
(yi + 1), yi = cos

(πi
M

)
, t̂i =

yi + 1

2
π, i = 0, 1, ..,M (4.31)

involved in the Clenshaw-Curtis quadratures such as (4.29). We note that Cheby-

shev nodes {yi} ∈ [−1, 1] correspond to Chebyshev points in the arc length

si = L
2
(yi + 1) ∈ [0, L], i = 0, 1, ..,M . To highlight this property we will refer to
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0 2

Figure 4.4: Schematic illustration of the different grids used to discretize the contour
C: (circles) - Chebyshev grid, (squares) - uniform grid.

these points as Chebyshev grid.

Figure 4.4 illustrates two grids constructed to discretize the problem.

Alltogether, the collocation method and Clenshaw-Curtis quadrature transform

(4.26) to the system of M + 1 equations with respect to the expansion coefficients

am, m = 0, 1, ..,M :

−
M∑
m=0

amTm(tj) +
γL

4πk

M∑
m=0

am

M∑
i=0

wi ln

∣∣∣∣∣ z(tj)− z(t̂i)

cos(tj)− cos(t̂i)

∣∣∣∣∣ cos(m t̂i)−

− γL

2πk

(
a0 ln(2) +

M∑
m=1

am
m
Tm(tj)

)
=
γ

k
(up(tj)− u0(tj)), i, j = 0, 1, ..,M.

(4.32)

In the matrix form problem (4.32) can be represented as

[T + c1K1 + c2K2] · a = [
γ

k
(Ũ0 − P ·U)],

where T = [Tm(tj)] is a matrix of Chebyshev polynomials evaluated on a uniform grid,

a = [a0, ..., aM ] and K1 = [Ijm] is a matrix representing the integral with removable

singularity (4.28):

Ijm =
M∑

i=0,tj 6=t̂i

wi ln

∣∣∣∣∣ z(tj)− z(t̂i)

cos(tj)− cos(t̂i)

∣∣∣∣∣Tm(t̂i) + wj ln

∣∣∣∣∣ L

π sin(tj)

∣∣∣∣∣Tm(tj).

Operator K2 = [
Tm(tj)

m
], in which the entries corresponding to m = 0 are replaced with
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ln(2), represents the improper integral, P is an interpolation operator, Ũ0 is a vector

given by elements u0(tj), j = 0, ...,M and coefficients c1 = − γL
4πk

and c2 = γL
2πk

.

Finally, together with (4.22) we get the following matrix representation of (4.21a)

and (4.21b): −∆N 0

γ
k
P T + c1K1 + c2K2

 ·
Ũ

a

 =

 1
k
Q̃

γ
k
Ũ0

 . (4.33)

4.4.3 Discretizing Boundary Conditions (4.21c)

It remains to include the boundary conditions

∂up
∂n

= −∂uh
∂n

, on ∂Ω

into the matrix representation (4.33) of direct problem (4.21).

Suppose we are at the boundary position xc0 = (−1, y0) (see Figure 4.5) which

corresponds to the c-th element in the rearranged vector U. Since we are at x = −1,

−1 −0.5 0 0.5 1

n
y

0

Figure 4.5: Sketch of the normal vector at the boundary position xc0
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we have n = (−1, 0) and :
∂up
∂n

= −∂up
∂x

.

Then (4.21c) has the form:
∂up
∂x

=
∂uh
∂n

∣∣∣
xc0

.

Thus, for the RHS of (4.21c) combined with (4.12) we have

∂uh
∂n

∣∣∣
xc0

= ∇uh · n
∣∣∣
xc0

= − 1

2π

∫
C

〈n,x− xC〉
|x− xC|2

µ(xC) dσ
∣∣∣
xc0

.

Next, we transform the integral to the definite integral over [−1, 1], substitute n =

(−1, 0) and the expansion of density function µ in terms of the Chebyshev polynomials:

∂uh
∂n

∣∣∣
xc0

= − L

4π

M∑
m=0

am

∫ 1

−1

1 + z1(y+1
2
π)

|xc0 − z(y+1
2
π)|2

Tm

(y + 1

2
π
)
dy.

Then, we apply the Clenshaw-Curtis quadrature:

∂uh
∂n

∣∣∣
xc0

≈ − L

4π

M∑
m=0

am

M∑
i=0

wi
1 + z1(t̂i)

|xc0 − z(t̂i)|2
Tm(t̂i) = b(c) · a,

where t̂i = yi+1
2
π and b(c) is a row vector with the elements:

b
(c)
j =

L

4π
wi

1 + z1(t̂i)

|xc0 − z(t̂i)|2
Tm(t̂i), j = 1, ...,M.

Recall that for the LHS of (4.21c) we have

∂up
∂x
≈ DN ⊗ IN+1 · Ũ, (4.34)

where the numerical differentiation technique from Section 4.1.1 is applied.
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Now, linking the LHS and RHS together at the c-th position we have:

−(DN ⊗ IN+1)c Ũ + b(c) · a = 0, (4.35)

where (DN ⊗ IN+1)c is the c-th row of DN ⊗ IN+1. To impose the boundary condition

at xc0 we have to replace the c-th row of ∆N in (4.33) with −(DN ⊗ IN+1)c and the

c-th row of zero matrix 0 with b(c). For points other than xc0 we can impose the

corresponding boundary condition in the same way and finally our resulting numerical

scheme for (4.21) is:

−∆′N B
γ
k
P T + c1K1 + c2K2

 ·
Ũ

a

 =

 1
k
Q̃′

γ
k
Ũ0

 (4.36)

in which ∆′N , B and Q̃′ correspond to, respectively, ∆N , 0 and Q̃ in (4.33) after

imposing the boundary conditions. Thus, we have described the way we solve direct

problem (2.1).

Note that for the adjoint system (3.43) the same strategy is applied. The adjoint

variable u∗ is now given by the sum u∗ = u∗h + u∗p and the vector a∗ corresponds to

the expansion coefficients of the density function of single-layer potential u∗h in the

Chebyshev polynomials. This leads to the algebraic system similar to (4.36), but with

different right-hand side:−∆′N B
γ
k
P T + c1K1 + c2K2

 ·
Ũ∗

a∗

 =

 1
k
Q̃∗

0

 , (4.37)

where Ũ∗ corresponds to the rearranged vector representing u∗p and Q̃∗ is the reordering

of (u − ū)χAi , i = 1, 2, evaluated on 2D Chebyshev grid after imposing boundary

conditions of the adjoint system.
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4.4.4 Discretization of uh(x)

By solving (4.21) we obtain an approximation of up in Ω and uh on C. In order to

derive the values of temperature distribution u in domain Ω by (4.7) it remains to find

uh in Ω \ C. Recall that by (4.19)

uh(x) = − 1

2π

∮
C

ln |x− xC|µ(xC) dσ in Ω \ C.

To remove the singularity as x −→ xC we use the same splitting technique as for

the equation (4.21b) and then collocate it on the same grid. In terms of operators

introduced in Section 4.4.2 we have

Uh =
[
− L

4π
K1 +

L

2π
K2

]
· a,

where Uh = uh(ti), i = 0, 1, ...,M given on uniform grid (4.30). Note that uh(x) for

x ∈ Ω \ C is given by regular integral (4.19), so we can directly apply the Clenshaw-

Curtis quadrature:

uh(t) ≈ −
L

4π

M∑
i=0

wi ln |z(t)− z(t̂i)|µ(t̂i),

where t̂i, i = 0, 1, ..,M is Chebyshev grid (4.31).

4.4.5 Normal Derivatives on C and Curvature

Solutions of the direct and adjoint problems serve to compute the gradient (3.42):

∇L2

L0
J =− γ (u1 − u0)

(
κu∗1 +

∂u∗1
∂n

)
− γ ∂u2

∂n
u∗1

− γκ(uout − uin)

L

∫ L

0

[
H(s̃− s)− s̃

L

]
u∗1(s̃) ds̃+ α

(∫
C
ds− L0

)
κ on C,
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where α = 0 corresponds to the problem without the length constraint. Since u1 and

u∗1 can be obtained in a straightforward manner from the solutions of the corresponding

systems, we focus on evaluation of the normal derivatives ∂u2
∂n

and
∂u∗1
∂n

, entering the

formula for the gradient (3.42). By construction, the normal derivatives ∂u1
∂n

and ∂u2
∂n

are given by:
∂u1

∂n
=
∂u−h
∂n

+
∂up
∂n

,

∂u2

∂n
=
∂u+

h

∂n
+
∂up
∂n

,

(4.38)

where we applied the fact that up ∈ C2(Ω), i.e. ∂up
∂n

:=
∂u−p
∂n

=
∂u+p
∂n

. Let us first treat

the normal derivatives of uh. Using the properties (4.14) and (4.15) of density function

µ on x ∈ C, we obtain:

∂u+
h

∂n
=− 1

2π

∫
C

〈n(x),x− y〉
|x− y|2

µ(y) dy − 1

2
µ(x), (4.39a)

∂u−h
∂n

=− 1

2π

∫
C

〈n(x),x− y〉
|x− y|2

µ(y) dy +
1

2
µ(x). (4.39b)

To approximate the integral on the right hand side, we transform the domain of inte-

gration to [−1, 1] and after applying the Clenshaw-Curtis formula we have:

− 1

2π

∫
C

〈n(x),x− y〉
|x− y|2

µ(y) dy ≈ − L

4π

M∑
l=0

wl
〈n(x), z(t)− z(t̂l)〉
|z(t)− z(t̂l)|2

µ(t̂l), (4.40)

where t̂l are the Chebyshev points. Next, we collocate (4.39a), (4.39b) at Chebyshev

points t̂i, and replace all terms where i = l with κ
2
µ(t̂i) followed from (4.17). Finally, to

compute the curvature κ recall that the curve C is given by the map z(t) = [z1(t), z2(t)],

so

κ =
z′1z
′′
2 − z′2z′′1

(z′21 + z′22 )3/2
.

To calculate the derivatives of z with spectral accuracy we apply the technique de-

scribed in Section 4.1.1.
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Now, it remains to discuss ∂up
∂n

which is given by ∂up
∂n

= ∇up ·n. The gradient of up

can be approximated with spectral accuracy by the Chebyshev differentiation method

introduced in Section 4.1.1 as (Ux,Uy) ≈ (IN+1 ⊗DNU, DN ⊗ IN+1U). The values

of ∂up
∂n

for x ∈ C are derived by applying interpolation operator P to the gradient:

∂up
∂n
≈ P (Ux,Uy) · n. To evaluate

∂u∗1
∂n

and
∂u∗2
∂n

we follow the same idea.

4.4.6 Sobolev Gradient and Evaluation of Cost Functional

After solving the direct and adjoint PDE systems, and then computing ∂u2
∂n

and
∂u∗1
∂n

we

can evaluate the gradient ∇L2J given by (3.41). As was mentioned in Section 3.3.3,

the resulting gradient is not useful for actual contour modification, since it does not

guarantee the smoothness of the updated contour. For this purpose, we introduced

Sobolev gradient ∇H1J as a solution of the PDE with Neumann boundary condition

(3.45).

For the numerical solution of given PDE on bounded non-periodic domain, we

apply spectral differentiation matrix D2
N to discretize the second derivative operator,

so that the governing equation is given by:

(
IN −

4l2

L2
D2
N

)
∇̃H1

J = ∇̃L2

J ,

where ∇̃H1

J and ∇̃L2

J are column vectors representing the gradients and the factor

4
L2 is the result of curve parametrization in [−1, 1]. To enforce Neumann boundary

conditions we replace the first and last row of (IN − 4l2

L2 D2
N) with corresponding rows

of DN , and the first and last elements of the vector ∇̃L2

J on the right hand side with

zeros.

59



4.5 Optimization Algorithm

4.5.1 Conjugate Gradient Method

To minimize the cost functional (2.3) and to update the shape of the contour at each

iteration we use the following gradient-descent algorithm:

xC(i) = xC(i−1) − τ (i−1)∇J (C(i−1)), i = 1, 2, ...

xC(0) = xC0 ,
(4.41)

where the contour C0, which meets the domain boundary at the right angle (see Sec-

tion 2.1), represents the initial guess and τ (i−1) is the length of the step along the

descent direction at the (i − 1)-th iteration. To find this step we need to solve a line

minimization problem:

τ (i) = argminτ>0J (C(i) − τ∇J (C(i))). (4.42)

For one-dimensional minimization in (4.42) we use Brent’s method [21]. It com-

bines a golden section search designed to handle the worst possible case of function

minimization and, if function is nicely parabolic near to the minimum, the parabola

fitted through any three points to take us very close to minimum in a single step.

To find the optimal step τ (i), Brent’s method needs to evaluate the cost functional in

(4.42) multiple times for different values of τ . This requires solving our direct problem

for each such evaluation and therefore, the search of the parameter τ (i) is the most

expensive part of the algorithm.

We emphasize that, while for the sake of brevity of notation formula (4.41) repre-

sents the steepest descent approach, we use the Polak-Ribiere version of the nonlinear

conjugate gradient method [22] to obtain the results presented in Section 5.3. Thus,

60



we use the Polak-Ribiere formula

βi =
∇J T (C(i))

(
∇J (C(i))−∇J (C(i−1))

)
∇J T (C(i−1))∇J (C(i−1))

(4.43)

to update the conjugate direction

P (i) = −∇J (C(i)) + βiP
(i−1).

4.5.2 Optimization Algorithm

In this section we summarize the iterative algorithm which solves our optimization

problem.

Algorithm 1.

Step 0. Choose an initial guess for the contour C(0) = C0. Set i = 0.

Step 1. Obtain the gradient ∇L2J (C(i)) by solving direct and adjoint problems (2.1), (3.43).

Step 2. Compute smoother (Sobolev) gradient ∇H1J (C(i)) as a solution of the system (3.45).

Set P (i) = −∇H1J (C(i)).

Step 3. Proceed by bracketing the local minimum of the cost functional J (C(i) + τP (i))

and apply linear search method to find τ (i) = argminτ>0J (C(i) + τP (i)).

Step 4. Update the curve C(i+1) = C(i) + τ (i)P (i).

Step 5. Compute βi+1 by Polak-Ribiere formula (4.43).

Update the conjugate gradient P (i+1) = −∇H1J (C(i+1)) + β̃i+1P
(i),

where β̃i+1 = max(βi+1, 0) and β̃i+1 is set to 0 every 20 iterations.

Step 6. Set i = i+ 1.

Exit if ‖ ∇H1J (C(i)) ‖L2< Tol which is equivalent to the optimality condition

∇J = 0 reached with some tolerance Tol.

Else: go to Step 1.
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Chapter 5

Results

5.1 Validation of BIE Method

Recall that our direct problem (4.18) has an equivalent representation (4.21) with

the boundary integral equation (4.21b). In this section we describe the test which

validates the numerical approach developed for BIE (4.21b), which we restate here for

completeness:

−µ(x) +
γ

2πk

∮
C

ln |x− xC|µ(xC) dσ =
γ

k
(up(x)− u0(x)) ∀x ∈ C.

This is a Fredholm integral equation of the second kind with a weakly singular kernel.

The development of an appropriate numerical scheme for this BIE is a key to

construction of highly-accurate discretization of the whole system (4.21). So we have

to choose an efficient way to approximate the integral with removable singularity (4.27).

Our Option 1 was a Gaussian-type approach, namely the Chebyshev-Gauss quadrature.

We have shown analytically that the lack of smoothness of the integrand prevents us

from getting spectrally accurate result for this type of the numerical scheme. Our
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Option 2 was the Clenshaw-Curtis quadrature which from the analytical point of view

should give us the desired rate of convergence. Note that we solve BIE (4.21b) by

the Chebyshev collocation approach combined with one of the quadratures, so the

error of the methods is a sum of the error of collocation approach and the error of the

quadrature itself.

Let us compare the accuracy of both methods: one involving the Gaussian quadra-

ture and the other with the Clenshaw-Curtis quadrature, by solving BIE (4.21b) in

isolation from other equations in (4.21) with different ”manufactured” solutions. By

comparing a known actual solution and the numerical solutions obtained on succes-

sively refined grids, the method of the manufactured solution allows us to demonstrate

that the equations are solved to the theoretical order of accuracy of the discretization

methods applied.

This approach consists of the following steps:

1. choose some function to be a solution of the equation,

2. substitute this function back to the equation and find corresponding right hand

side of the equation that would guarantee our solution satisfies the equation,

3. solve numerically the equation with the customized RHS derived in step 2,

4. compare the numerical solution from step 3 with analytic function that was

chosen in step 1.

It is a non-trivial task to compute the singular integral in (4.21b) analytically in a

general case, so we restrict ourselves to the contour C given by z(t) = [sin(t), cos(t)], t ∈

[0, π] which leads to a simpler form of the singular kernel ln |z(t)− z(t′)|.

Consider now two manufactured solutions: µ̃1(t) = cos(t) and µ̃2(t) = sin(t). In the

first case, Figure 5.1 demonstrates the spectral rate of convergence of the collocation
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method with the Clenshaw-Curtis quadrature, while the Gaussian quadrature only

shows an algebraic accuracy. Note that since both methods employ the same colloca-

tion approach, the difference in their performance is due to the quadrature that is used

in each method. So, as was predicted based on the smoothness of the integrands in

Option 1 and Option 2, the numerical scheme with the Chebyshev-Gauss quadrature

cannot compete with the Clenshaw-Curtis quadrature due to locally singular change

of variables required to transform the integral to the Gaussian type.

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

NCURV

er
ro

r

 

 

Figure 5.1: The accuracy of BIE method with density µ(t) = cos(t): (asterisks) -
the Clenshaw-Curtis quadrature approach, (circles) - the Chebyshev-Gauss approach,
(solid line) - a line with the slope -3/4

On the other hand, in the second case when µ̃2(t) = sin(t) both approaches give

only algebraic accuracy with Clenshaw-Curtis method showing slightly better results

(see Figure 5.2). In this case, the lack of smoothness comes from the representation

of µ̃2(t). Expansion of density function µ in the truncated Chebyshev series involved
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in the collocation approach requires µ(τ), where τ = cos(t), t ∈ [0, π], τ ∈ [−1, 1],

to be smooth in τ to provide spectrally accurate results. Note that in the present

case µ̃2(τ) =
√

1− τ 2, τ ∈ [−1, 1] and its first derivative has a singularity at the end

points τ = −1 and τ = 1. So here the algebraic errors in both options come from the

limitations of the collocation method. We can nonetheless conclude that, the approach

that employs the Clenshaw-Curtis quadrature has better properties than the one that

uses the Gaussian quadrature, especially in cases when the smoothness requirements

of the collocation method are resulting in the spectral convergence.
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Figure 5.2: The accuracy of BIE method with density µ(t) = sin(t): (asterisks) -
the Clenshaw-Curtis quadrature approach, (circles) - the Chebyshev-Gauss approach,
(solid line) - a line with the slope -3/2
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5.2 Validation of the Cost Functional Gradient

In this section we present the test which demonstrates consistency of the gradient com-

putations. Recall that, according to Riesz representation (3.13), for any perturbation

ζ of contour C, the shape derivative of the cost functional can be given by the following

inner product in L2:

J ′ε (C; ζn) =

∫
C
∇L2J ζ ds.

We define the quantity

κ(ε) :=
J ′ε (C; ζn)∫
C ∇

L2J ζ ds
, (5.1)

where J ′ε (C; ζn) denotes a finite-difference approximation of the directional derivative

with respect to the shape of C in the direction of some perturbation ζ:

J ′ε (C; ζn) =
J (C + ε ζn)− J (C)

ε
.

Deviation of κ(ε) from 1 is a measure of the inconsistency of the gradient.

To test our gradient, we plot this quantity for a range of ε values, starting from very

small and increasing by several orders of magnitude. We summarize our test settings

in the table below.

Contour C u0(s) Perturbations Resolution
(N, M)

Domain

κ-test 1 C0 u0(s) ≡ 10 ζ1, ζ2, ζ3 and ζ4 (30, 50), (41, 100),
(52, 300)

Ω

κ-test 2 C0 u0(s) = 5 + 10s ζ1, ζ2, ζ3 and ζ4 (30, 50), (41, 100),
(52, 300)

Ω

Table 5.1: Settings for different κ-tests defined in (5.1)
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Here we briefly comment on Table 5.1. The second column is the cooling contour

we are using for the tests shown in Figure 5.3. The contour C0 represents a straight

line at the position x = 0.15. The third column contains the information about the

reference temperature along the contour (cf. (2.2)). For the first test we are using

constant value u0, for the second test we assume that the temperature is changing

along the contour linearly. The fourth column specifies all the perturbations applied

to the contour during the test. In each case we are using four different perturbations

ζj(t), j = 1, 2, 3, 4, for the contour displacement given as:

ζj(t) =


1, −1 ≤ t ≤ −1

2
,

cos
(
j (2t+1)π

2

)
, −1

2
≤ t ≤ 1

2
,

(−1)j, 1
2
≤ t ≤ 1,

j = 1, 2, 3, 4. (5.2)

Thus, the points of the perturbed contour satisfy the following identity

xjC = xC + ε ζj n, j = 1, 2, 3, 4. (5.3)

For the sake of clarity we illustrate these perturbations in Figure 5.3.

The fifth column specifies the resolutions applied in different cases where we use

a 2D Chebyshev grid of size (N + 1) × (N + 1) for the domain and M Chebyshev

points for the contour representation. The last column is the domain of our interest

where Ω = [−1, 1]× [−1, 1]. For all κ-tests here we use the heat sources q and target

temperature distribution ū given by:

q(x, y) = 50− 15x2 − 15(y − 0.5)2,

ū(x, y) = 15 + sin(2πx) sin(2πy).
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Instead of plotting κ(ε) itself, we plot the values of log10 |κ(ε)−1| to determine the

accuracy of the κ-test in terms of significant digits.

Results of κ-test 1 are displayed in Figure 5.4. We observe that for different pertur-

bations ζj, j = 1, 2, 3, 4, the value of κ stays very close to 1 for the intermediate values

of ε. The deviation of κ from 1 for very small values of ε is the result of subtractive

cancellation errors and for big values of ε it is the result of poor approximation of the

first derivative of the cost functional by finite differences. For intermediate values of

ε, where we might expect κ to be free from round-off and truncation errors, we do not

observe a significant improvement in κ(ε) approximation, i.e., a ”wedge” shape in the

plot of ε, which is due to the presence of other computational errors such as interpo-

lation errors. The closeness of κ to 1 confirms that the cost functional gradient ∇J

is evaluated accurately. Moreover, as we increase the resolution, we obtain a better

estimate for the gradient.
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Figure 5.3: Initial contour C0 and perturbed contours (5.3) used in the κ-test
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Results of κ-test 2 are illustrated in Figure 5.5. Here we see that κ also stays close

to one, except for the regions where the round off errors or big approximation errors

for the first derivative of J occur. Note that in both tests we have an accuracy up to

2 significant digits or higher. Finally, we conclude that the validation tests exhibit the

anticipated results with refinement of resolution leading to increasing accuracy of the

cost functional gradient ∇J .

10
−10

10
−5

10
0

−3

−2

−1

0

1

2

ε

lo
g 10

 |κ
 −

1|

 

 N=30, n=50
N=41, n=100
N=52, n=300

(a) Perturbation ζ1

10
−10

10
−5

10
0

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

ε

lo
g 10

 |κ
 −

1|

 

 
N=30, n=50
N=41, n=100
N=52, n=300

(b) Perturbation ζ2

10
−10

10
−5

10
0

−4

−3

−2

−1

0

1

2

ε

lo
g 10

 |κ
 −

1|

 

 
N=30, n=50
N=41, n=100
N=52, n=300

(c) Perturbation ζ3

10
−10

10
−5

10
0

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

ε

lo
g 10

 |κ
 −

1|

 

 
N=30, n=50
N=41, n=100
N=52, n=300

(d) Perturbation ζ4

Figure 5.4: κ-test 1, log10 |κ− 1| for ∇J with 4 different perturbations
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Figure 5.5: κ-test 2, log10 |κ− 1| for ∇J with 4 different perturbations

5.3 Optimization Results

The results of the κ-tests provide us with the confidence in the accuracy of the gradient

evaluation, so we can now obtain reliable optimization results. In this section we will

study solutions of the following three optimization problems, as indicated in Table 5.2.

The second column indicates the heat sources distribution applied in each case,
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q ū α l L0 C(0) u0

CASE 1 q1 ū1 0, 1, 10,
102, 103

0.2 4 C(0)
1 u0 = 10

CASE 2 q2 ū2 0, 10, 102,
103, 104

0.2 2.3 C(0)
2 u0(s) = 20s

CASE 3 q2 ū3 0, 1, 10,
102, 103

0.2 2.3 C(0)
1 u0 = 10 ,

u0 = 10 + 6s,
u0 = 10 + 9s,
u0 = 4 + 6s,
u0 = 1 + 9s

Table 5.2: Parameters of the optimization problems

where q1 is given by

q1(x, y) = 50− 30 cos
(3π

2
x
)

cos
(3π

2
y
)
, (x, y) ∈ Ω, (5.4)

see Figure 5.6(a), and q2 represents the data obtained from the temperature distribu-

tion determined experimentally in an actual battery cell [23] (cf. Figure 5.7(a)).

The third column are the desired temperature distributions ū defined for (x, y) ∈ Ω

as:

ū1(x, y) = 20− sin(0.75x− 1.6) sin(1.25y − 2.5),

ū2(x, y) = 40 + 20 sin

(
x cos(π

5
)− y sin(π

5
)

2
− 1.6

)
sin

(
2y cos

(π
5

)
+ 2x sin

(π
5

)
+ 1.5

)
,

ū3(x, y) = 30.

(5.5)

The plots of ū1 and ū2 are provided, respectively, in Figure 5.6(b) and Figure 5.7(b).

The target temperature distribution ū3 represents the constant temperature in the
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domain Ω. The 4th column α is the weight for the length constraint (cf. (3.42)) and

the fifth column is the Sobolev coefficient l (cf. Section 3.3.3). The next column is the

total length L0 for the cases where the length constraint enforced. The 7th column

represents the contours we use as initial guesses for the optimization algorithm in each

case:

C(0)
1 :x(t) = t,

y(t) = 0.78, t ∈ [−1, 1]

C(0)
2 :x(t) = −0.78,

y(t) = t, t ∈ [−1, 1].

(5.6)

The last column provides us with the reference temperature of the contour, which

could be a constant or changing along the arc length. In all tests we consider Ω to be

the domain of interest over which the cost functional is defined and N = 30, M = 100

represent the resolution for the domain and the number of the points used to discretize

the contour, respectively.

In Figures 5.6—5.8 we summarize the optimization results obtained in each case.

In all plots representing the initial and optimal temperature distribution the contour

that generates the corresponding distribution is indicated with a thick solid curve.

Also in all cases we use the thick solid line to highlight the various data related to

the reference case α = 0 (i.e., when no length constraint is present), such as the cost

functional, the contour length evolution and the locally optimal contours.

Below we briefly describe the results obtained in the different cases.

CASE 1: The target temperature field used in this case varies very slowly and stays close to

a constant distribution (cf. Figure 5.6(b)). In the case when no length constraint

was enforced (thick solid line in Fugure 5.6(d)) we observe a significant drop of

the cost functional value from O(104) to O(10). The length of the curve evolves

from an initial value of L = 2 to L = 5.5 (cf. 5.6(e)). When we introduce the
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length constraint and increase α from 1 to 103 by factor of 10, we observe that

the minimum value of the cost functional increases as α does, while the total

length of the contour converges to the desired value which is set to be L0 = 4.

Thick dash-dotted line corresponds to α = 1, data for α = 10 is represented by

thin dash-dotted line, thick dashed line denotes α = 100 case and thin dashed

line is used for α = 1000 case. For the optimal temperature distribution when

different α applied see Figure 5.6(g)—5.6(k).

CASE 2: The heat sources in this case are represented by a typical distribution in an actual

battery. The target temperature field is shown in Figure 5.7(b). The reference

temperature u0 is changing along the length of the contour. In the case when

no length constraint was enforced (thick solid line in Fugure 5.7(d)) we observe

a significant drop of the cost functional. The achieved minimum of the cost

functional increases as value of the parameter α goes up, while the total length

of the contour converges to the desired value of L0 = 2.3. Thick dash-dotted line

corresponds to α = 10, data for α = 102 is represented by thin dash-dotted line,

thick dashed line denotes α = 103 case and thin dashed line is used for α = 104

case. The optimal temperature distributions corresponding to the locally optimal

curves obtained with different weights of the length constraint are displayed in

Figure 5.7(g)—5.7(k).

CASE 3: In this case we also use the heat sources distribution q2, but with the constant

target temperature distribution and C(0)
1 as initial guess. The data concerning

this case is collected in Figure 5.8. First, using the contour shown in Figure

5.8(b) as the initial guess, we solve our optimization problem (2.4) assuming

u0 = const and α = 0 (solid line in Figures 5.8(c) and 5.8(e)). Then, using

the obtained optimal shape as the initial guess, we solve problem (2.4) again,

but now we allow u0 to vary with the arc length s. We model changes in the

inflow/outflow temperature of the coolant liquid by decreasing uin or increasing
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uout (cf. (2.2)), which corresponds to, respectively, decreasing thickness of the

dash-dotted and dashed contours in Figure 5.8(e). In Figure 5.8(c) we observe

that in the initial optimization the cost functional drops by over three orders

of magnitude during less than 10 iterations. Next, we consider the case with

uin = 10 and uout = 19, and solve the optimization problem with the length

constraint L0 = 2.3 and increasing values of α. The resulting locally optimal

contours are shown in Figure 5.8(f) and Figure 5.8(d) presents the evolution

of the contour length L(C(n)) with iterations for different values of α (thinner

lines correspond to increasing α). As expected, for increasing values of α, the

contour length approaches the prescribed value L0 while the contours themselves

become less deformed. The temperature fields u(x, y) obtained in the cases with

u0 = 10, uin = 1 and uout = 10, and uin = 10 and uout = 19, and without the

length constraint are shown in Figures 5.8(g)—5.8(i). The last case with the

length constraint and α = 1000 is shown in Figure 5.8(j). We see that, with the

exception of the case in which the inflow temperature uin is quite low, the optimal

contour shapes tend to weave around the two hot spots in the heat distribution

(Figure 5.8(a)).
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Figure 5.6: Optimization results for CASE 1

75



x

y

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

16

17

18

19

20

21

22

23

24

25

26

27

(g) Optimal temperature distribution, α = 0
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(h) Optimal temperature distribution, α = 1
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(i) Optimal temperature distribution, α = 10
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(j) Optimal temperature distribution, α = 100
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(k) Optimal temperature distribution, α = 1000

Figure 5.6: (continued) Optimization results for CASE 1
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Figure 5.7: Optimization results for CASE 2
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(g) Optimal temperature distribution, α = 0
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(h) Optimal temperature distribution, α = 10
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(i) Optimal temperature distribution, α = 100
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(j) Optimal temperature distribution, α = 103
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(k) Optimal temperature distribution, α = 104

Figure 5.7: (continued) Optimization results for CASE 2
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Figure 5.8: Optimization results for CASE 3
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(h) Optimal temperature distribution, uin = 1,
uout = 10, α = 0
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(i) Optimal temperature distribution, uin = 10,
uout = 19, α = 0
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(j) Optimal temperature distribution, uin = 10,
uout = 19, α = 1000

Figure 5.8: (continued) Optimization results for CASE 3
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Chapter 6

Conclusion and Future Work

This work is motivated by the problem of optimal design of the liquid coolant el-

ements used in modern battery systems. We employed a modified version of the

two-dimensional steady-state heat conduction model introduced in [1] to describe the

heat transfer process in the battery pack. The battery pack was modelled by a two-

dimensional isolated square domain with some prescribed heat sources representing

the battery heating. The coolant channel was simplified to a one-dimensional open

coil with end points attached to the domain boundary and the reference temperature

varying linearly with the length corresponding to the coolant liquid heating up as it

absorbs heat. The problem is to find the shape of the cooling channel such that the

temperature in some given region is close to a target temperature distribution. The

difference between the actual and desired temperature over a certain region of inter-

est was measured in the least square sense by a suitably chosen cost functional. The

problem was formulated as a PDE-constrained optimization and a necessary optimal-

ity condition based on the shape calculus was introduced. The problem was solved

numerically using a combination of a spectral method and a boundary-integral ap-

proach. The locally optimal shape of the coil was found using the conjugate gradient

method based on the gradients of the cost functional with respect to the shape of the
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contour. The shape gradient of our functional is obtained using adjoint analysis and

shape-differential calculus. The method we introduced to numerically evaluate the

shape gradients based on a boundary-integral approach is the key novel contribution

of this work. In particular, two overlapping discretizations of the contour were used

to solve a singular BIE on an open contour with the spectral accuracy. Then, the

validation of the boundary integral method was performed, whereas the consistency of

our cost functional gradient was confirmed by κ-test. Finally, the optimization results

based on different settings were presented.

Based on the validation results obtained in Section 5.1 we could see that our bound-

ary integral technique works well for the solution of the Fredholm integral equation

of the second kind with a weakly singular kernel. By increasing the number of points

used for the contour discretization we can obtain a highly accurate result.

Validation based on the κ-test also provided us with confidence in our adjoint-based

calculation of the shape gradient. Since the resolution can be a crucial factor affecting

the accuracy of the gradient, we believe that by using sufficiently fine grids an accurate

shape gradient can be obtained.

The optimal results in Section 5.3 demonstrate that when different combinations of

heat sources q and desired temperature profiles ū are considered, the optimal shape of

the contour is generally not intuitive. Moreover, the optimal shapes Ĉ that we obtained

lead to a reasonably small difference between the desired and actual temperatures

distributions in a given domain. The presence of the length constraint results in

limited contour variation and thus the optimal result is not that promising compared

with the unconstrained cases. We note that the proposed approach may not be well

adapted to handle problems with large values of L0, since with increasing L0 increases

the possibility of self-intersecting due to a long contour packed into a finite domain.

Several alternative formulations of the shape gradients defined for a very simple
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model are discussed in Appendix B including a PDE-based approach, method involv-

ing shape-differentiation at the PDEs level with a BIE-based derivation of the adjoint

system and a BIE-based approach. For future improvements one may consider alter-

native gradient derivation techniques applied to more complicated problems, such as

the problem discussed in this thesis. It is an interesting open problem to compare the

accuracy of the shape gradients evaluated using these different approaches. In addi-

tion, the actual fluid flow in the cooling channel can be modelled more accurately and

the possibilities for topological optimization of the cooling element will be considered.
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Appendix A

Shape-Derivative of the Arc-Length

Coordinate

The sensitivity analysis plays an important role in the construction of the adjoint sys-

tem and, as a consequence, in the representation of cost functional gradient. In this

appendix we discuss the derivation of an explicit formula for the shape derivative (i.e.,

sensitivity) u′0 of the reference temperature of the contour C which enters perturba-

tion PDE (3.20). As u0(s) varies along the contour, i.e., depends on the arc length

coordinate s, the shape derivative s′ need to be addressed as well.

First of all, we need to define u′0. As follows from (2.2), the shape derivative of u0

is given by:

u′0(s; ζ) =
(uout − uin)(s′L− sL′)

L2
. (A.1)

We thus need to compute the shape derivatives of the total length L and the arc

length s, respectively. By the definition of the length of the curve, we immediately

obtain that:

L′(C; ζ) =

(∫
C
ds

)′
=

∫
C
κζ ds. (A.2)
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To proceed with the shape differentiation of s, we introduce the following parametriza-

tion of the contour C:

x(ξ) = [x(ξ), y(ξ)] ∈ C,

where the parameter ξ ∈ [0, 1]. Then, the arc length s can be expressed as

s(x(ξ)) =

∫ ξ

0

ds

dξ
dξ′ =

∫ ξ

0

∣∣∣∣∣ dxdξ
∣∣∣∣∣ dξ′ =

∫ ξ

0

√
x′(ξ′)2 + y′(ξ′)2 dξ′. (A.3)

Now we can shape-differentiate (A.3) as follows:

s′(x(ξ); ζ) =

∫ ξ

0

d

dε

∣∣∣∣∣ ddξ (x + ε ζ n)

∣∣∣∣∣
∣∣∣∣∣
ε=0

dξ′. (A.4)

Let us consider the integrand in more detail. By the chain rule the term d
dξ

(x+ε ζ n)

can be written as

d

dξ
(x + ε ζ n) =

dx

dξ
+ ε

[
dζ

dξ
n + ζ

dn

dξ

]
=
dx

dξ
+ ε

[
dζ

dξ
n + κζ

ds

dξ
t

]
, (A.5)

where t denotes the tangent vector and the fact that dn
dξ

= ds
dξ
dn
ds

and Frenet’s formula

dn
ds

= κ t were applied. Therefore, the integrand is given by

d

dε

∣∣∣∣∣ ddξ (x + ε ζ n)

∣∣∣∣∣
∣∣∣∣∣
ε=0

=
d

dε

√√√√(dx
dξ

+ ε
[dζ
dξ

n + κ ζ
ds

dξ
t
])2∣∣∣∣∣

ε=0

=

1∣∣∣dxdξ ∣∣∣
dx

dξ
·

(
dζ

dξ
n + κ ζ

ds

dξ
t

)
.

(A.6)

We notice that 1∣∣∣ dxdξ ∣∣∣ dxdξ = t and after we multiply it by the first term in brackets in

(A.6), the product vanishes due to t · n = 0 leaving us with the following formula for
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the integrand in (A.4)

d

dε

∣∣∣∣∣ ddξ (x + ε ζ n)

∣∣∣∣∣
∣∣∣∣∣
ε=0

= κ ζ
ds

dξ
. (A.7)

Now, returning to the shape-derivative of the arc-length coordinate s (A.4), we have:

s′(x(ξ); ζ) =

∫ ξ

0

κ ζ
ds

dξ
dξ′ =

∫ s

0

κ ζ ds̃. (A.8)

Finally, we conclude with the expression for u′0 (cf. (A.1)):

u′0(s; ζ) =
(uout − uin)

L

[∫ s

0

κ ζ ds̃− s

L

∫ L

0

κ ζ ds̃

]
=

(uout − uin)

L

∫ L

0

[
H(s− s̃)− s

L

]
κ ζ ds̃,

(A.9)

where H(s) is the Heaviside function.
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Appendix B

Alternative Formulation of the

Shape Gradients

In this thesis we used a standard sensitivity analysis and a suitably defined adjoint

system to derive the gradient. Then, to approximate the gradient numerically, we

solved the direct and adjoint systems using their boundary integral formulations. The

question we are asking here is how the formula for the gradient would change if from the

beginning we worked with the BIE representation of the direct or perturbed systems

instead of their PDE forms. It may turn out that such an alternative formulation

would be easier to derive and/or more convenient for numerical approximation.

According to the Riesz representation theorem, there is a unique gradient ∇J ,

such that

J ′(Γ; ζ) = 〈∇J , ζ〉X ∀ζ ∈ X , (B.1)

so the gradients derived by different approaches must be equivalent.

In this appendix we compare three different techniques for deriving the gradient of

the cost functional as summarized schematically in Figure B.1.

87



PDE
problem

BIE
problem

Perturbed
BIE

Adjoint
BIE(2)

BIE
problem

Adjoint
BIE(1)

Perturbed
PDE

Adjoint
PDE

Gradient

Figure B.1: Schematic of the gradient derivation: (double lines) - BIE transformation,
(dashed lines) - shape differentiation, (dotted lines) - adjoint identity, (solid lines) -
formulation of the gradient
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To focus attention on the key issues, we consider an optimization problem for the

following very simple system

−∆u = 0 in Ω, (B.2a)

u = g on Γ = ∂Ω, (B.2b)

where Ω ⊂ R2 is a domain with the boundary Γ and g is some known function

representing the Dirichlet boundary data.

The cost functional we want to minimize is

J (Γ) =
1

2

∫
A

ω(x)(u− ū)2 dx, (B.3)

where ū is our target value of u (for example, a target temperature distribution), ω(x)

is some given weight function defined in A and A ⊂ Ω is the region where we want to

match our target field ū.

Recall that using the Riesz representation theorem, in Section 3.2 we derived an

equivalent formulation of the optimality condition ∇J = 0, where the gradient is

derived from identity (3.13), which we repeat here for completeness:

J ′(Γ; ζ) = 〈∇J , ζ〉L2 ∀ζ ∈ L2. (B.4)

The shape derivative of our cost functional (B.3) by Lemma 1 is given by

J ′(Γ; ζ) =

∫
A

ω(x)(u− ū)u′ dx (B.5)

and, since it is not in the desired Riesz form yet, we need to define a suitable adjoint

system to extract the gradient from this expression.

Thus, in the following sections we derive expression for the cost functional gra-
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dient of our model optimization problem applying three different techniques shown

schematically in Figure B.1. Each column in this schematic represents a different ap-

proach and the different line types illustrate different operations, namely the double

lines represent the BIE transformations of PDE problems, the dashed lines indicate the

shape-differentiation operations, the dotted lines introduce the adjoint variables and

the solid lines stand for the gradient formulations. The main difference between these

approaches is the stage at which the problem is transformed to a boundary integral

formulation and resulting in different types of equations which need to be solved to

obtain the gradient in each approach.

B.1 PDE-based Shape-Differentiation and Deriva-

tion of the Adjoint System

In this section to obtain the gradient we work solely with partial differential equations,

which is the most common approach to the gradient derivation. This technique (cf.

left column in Figure B.1) relies on the PDE formulation of the direct problem, so the

perturbation and adjoint systems are derived in the PDE form as well.

First, we derive our perturbation PDE system

−∆u′ = 0 in Ω, (B.6a)

u′ +
∂u

∂n
ζ = 0 on Γ, (B.6b)

where ζ is an arbitrary perturbation, n is an outer unit normal vector and u′ is the

shape derivative of u as before. This system follows directly from the shape calculus

applied to the statement of the direct problem (B.2) and the fact that the boundary

data g is considered to be independent on the shape of the boundary Γ.
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Next, to derive the gradient formulation, we introduce an adjoint variable u∗ defined

in Ω and, after multiplying the governing equation (B.6a) by u∗ and integrating over

Ω, we get the following equality:

∫
Ω

∆u′ u∗ dx = 0.

Using Green’s identity, this expression is transformed to:

0 =

∫
Ω

u′∆u∗ dx +

∫
Γ

(
u∗
∂u′

∂n
− u′∂u

∗

∂n

)
ds.

If we impose an adjoint equation

−∆u∗ = (ω(u− ū))χA,

the first term in our identity can be replaced by the shape derivative of the cost

functional (B.5), so that now we have:

J ′(Γ; ζ) = −
∫

Γ

(
u∗
∂u′

∂n
− u′∂u

∗

∂n

)
ds.

After we express u′ from (B.6b) and substitute it into the previous relation, we get

J ′(Γ; ζ) = −
∫

Γ

u∗
∂u′

∂n
ds−

∫
Γ

∂u

∂n

∂u∗

∂n
ζ ds,

where the second term in the Riesz form already. Finally, introducing the boundary

condition

u∗ = 0 on Γ

we obtain

J ′(Γ; ζ) = −
∫

Γ

∂u

∂n

∂u∗

∂n
ζ ds.
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Thus, using Riesz identity (B.1) the cost functional gradient is obtained in the form

∇J = −∂u
∂n

∂u∗

∂n
, (B.7)

where u∗ is a solution of the following adjoint PDE:

−∆u∗ = (ω(u− ū))χA in Ω, (B.8a)

u∗ = 0 on Γ. (B.8b)

B.2 PDE-based Shape-Differentiation and BIE-based

Derivation of the Adjoint System

In this method (cf. central column in Figure B.1) we use the PDE formulation of the

direct problem, then shape-differentiate it and transform the corresponding perturbed

system into an equivalent BIE which is used for deriving a BIE-based formulation of

the adjoint system.

As a starting point for this approach, we follow the method as above. The mod-

ifications begin after the perturbation system (B.6) is derived. Following the idea

introduced in Section 4.3, the solution of the governing equation (B.6a) is given by a

single-layer potential:

u′(x) = − 1

2π

∫
Γ

ln |x− y|ρ′(y) dsy, x ∈ Ω,

where ρ′(y), y ∈ Γ, denotes the corresponding density function.

Thus, we obtain the following BIE as an equivalent formulation of the perturbation
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system (B.6):

− 1

2π

∫
Γ

ln |x− y|ρ′(y) dsy = −∂u
∂n

ζ(x), x ∈ Γ, (B.9)

which corresponds to (B.6b) and in which the integral is to be interpreted as an

improper one. Introducing an adjoint variable ρ∗ : Γ −→ R to facilitate the gradient

derivation, multiplying (B.9) by it and integrating over the boundary Γ, we get:

− 1

2π

∫
Γ

ρ∗(x)
[ ∫

Γ

ln |x− y|ρ′(y) dsy

]
dsx = −

∫
Γ

ρ∗(x)
∂u

∂n
ζ dsx. (B.10)

Let us stop here for a moment and give an expression for the cost functional deriva-

tive (B.5) in terms of the single-layer potential representation of u′:

J ′(Γ; ζ) = − 1

2π

∫
A

ω(u− ū)
[ ∫

Γ

ln |x− y|ρ′(y) dsy

]
dx,

which after exchanging the order of integration becomes:

J ′(Γ; ζ) = − 1

2π

∫
Γ

ρ′(y)
[ ∫

A

ω(u− ū) ln |x− y| dx
]
dsy. (B.11)

Next, we rewrite the adjoint identity (B.10), also after changing the integration

order:

− 1

2π

∫
Γ

ρ′(y)
[ ∫

Γ

ln |x− y| ρ∗(x) dsx

]
dsy = −

∫
Γ

ρ∗(x)
∂u

∂n
ζ dsx. (B.12)

Note that, if we now introduce the following adjoint boundary integral equation

∫
Γ

ln |x− y| ρ∗(x) dsx =

∫
A

ω(u− ū) ln |x− y| dx, (B.13)

then with the help of identity (B.12), the shape derivative (B.11) of the cost functional
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becomes equal to the following Riesz representation

J ′(Γ; ζ) = −
∫

Γ

ρ∗(x)
∂u

∂n
ζ dsx.

Thus, the cost function gradient is given by

∇J = −ρ∗(x)
∂u

∂n
, (B.14)

where ρ∗(x) is the solution of the adjoint boundary integral equation (B.13).

B.3 BIE-based Shape-Differentiation and Deriva-

tion of the Adjoint System

In this approach (cf. right column in Figure B.1), we work solely with boundary integral

equations introducing BIE formulation of problem (B.2), which we shape-differentiate

to obtain the perturbed equation and the corresponding adjoint BIE. In addition, to

define our shape derivative properly, we introduce auxillary problem in the complement

domain R2 \ Ω.

We begin by formulating our model problem (B.2) as a BIE by introducing a single-

layer potential

u(x) = − 1

2π

∫
Γ

ln |x− y|µ(y) dsy, x ∈ Ω, (B.15)

where µ(y), y ∈ Γ, is the corresponding density function.

Thus, we obtain the direct problem in the following BIE form:

− 1

2π

∫
Γ

ln |x− y|µ(y) dsy = g, x ∈ Γ, (B.16)
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which corresponds to (B.2b) with (B.2a) satisfied identically by representation (B.15).

Let us first discuss the shape differentiation of u given by (B.15), since it will play

an important role in the derivation of the perturbation equation and will also enter

the expression for the shape derivative of cost functional (B.5).

Recall the definition of the material derivative of u(x)

u̇ = u′ + ∇u · V . (B.17)

Note that

∇u(x) · V = − 1

2π

∫
Γ

∇x ln |x− y|µ(y)dsy · V = − 1

2π

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy · ζ(x).

(B.18)

To compute u′, we refer to formula (3.7c) for the differentiation of the curvilinear

integrals:

u′(x) =− 1

2π

∫
Γ

ln |x− y|µ′(y)dsy −
1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy

− 1

2π

(∫
Γ

ln |x− y| ∂µ
∂ny

+ κ ln |x− y|µ(y)

)
ζ(y) dsy,

(B.19)

where κ is the signed curvature of the boundary Γ.

Finally, after adding the intermediate results above, we have:

u̇ =− 1

2π

∫
Γ

ln |x− y|µ′(y)dsy −
1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy

− 1

2π

(∫
Γ

ln |x− y| ∂µ
∂ny

+ κ ln |x− y|µ(y)

)
ζ(y) dsy

− 1

2π

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy · ζ(x).

(B.20)

95



We observe that formula (B.20) contains the term ∂µ
∂ny

which is not defined properly,

since the density function µ(y), y ∈ Γ, is not defined away from the boundary. To give

sense to this expression, we need to define one-sided limits of u on the two opposite

sides of the contour.

First, we smoothly extend the Laplacian to the boundary to get

−∆u−|Γ = 0, (B.21)

where u− = u(x), x ∈ Ω̄ is a solution to the interior problem.

Next, we define u+ as a solution of the following exterior problem:

−∆u+ = 0 in Ω+, (B.22a)

u+ = g on Γ, (B.22b)

where Ω+ stands for some exterior domain with respect to Ω, e.g., Ω+ = R2 \ Ω.

Finally, we recall the property (4.14) of the density function

−µ(x) =
∂u+(x)

∂n
− ∂u−(x)

∂n
.

Thus, we can express its normal derivative as

∂µ(x)

∂n
= −∂

2u+(x)

∂n2
+
∂2u−(x)

∂n2
. (B.23)

To deal with the second-order normal derivatives of u+ and u−, we use the Laplace-

Beltrami operator introduced in Section 3.3.2. In this way we obtain the following
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useful equality defined in the local curvilinear coordinates (s, n):

∂2

∂n2
= ∆ − ∂2

∂s2
− κ ∂

∂n
. (B.24)

Therefore, using expression (B.24) and problems (B.21), (B.22), the normal deriva-

tive of µ (cf. (B.23)) is given by

∂µ(x)

∂n
= −

(
− ∂2u+

∂s2
− κ∂u+

∂n

)
+

(
− ∂2u−

∂s2
− κ∂u−

∂n

)
= −κµ(x), (B.25)

where property (4.14) and the fact that the solution u is continuous across the bound-

ary were applied.

Finally, we substitute (B.25) back to formulae (B.19), (B.20) and get simplified

expressions for the shape and material derivatives of u, respectively:

u′ = − 1

2π

∫
Γ

ln |x− y|µ′(y)dsy −
1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy (B.26)

and

u̇ =− 1

2π

∫
Γ

ln |x− y|µ′(y)dsy −
1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy

− 1

2π

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy · ζ(x).

(B.27)

Based on this result and the fact that g is shape-independent, the following per-

turbed boundary integral equation is obtained:

− 1

2π

∫
Γ

ln |x− y|µ′(y)dsy =

1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy +
1

2π

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy ζ(x).

(B.28)
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Now, to derive an expression for the cost functional gradient, we introduce an

adjoint variable µ∗(x), x ∈ Γ, multiply our perturbed equation (B.28) by µ∗ and

integrate over Γ:

− 1

2π

∫
Γ

µ∗(x)

∫
Γ

ln |x− y|µ′(y) dsy dsx =

1

2π

∫
Γ

µ∗(x)

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy dsx +
1

2π

∫
Γ

µ∗(x)

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy ζ(x) dsx.

After changing the order of integration, we have

− 1

2π

∫
Γ

µ′(y)

[∫
Γ

ln |x− y|µ∗(x) dsx

]
dsy =

1

2π

∫
Γ

[∫
Γ

∂ ln |x− y|
∂ny

µ∗(x) dsx

]
µ(y) ζ(y) dsy+

1

2π

∫
Γ

[∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy

]
µ∗(x) ζ(x) dsx.

(B.29)

Next, with the notion of simplified formula (B.26) for the shape derivative u′, the

shape derivative of the cost functional (B.5) can be written as:

J ′(Γ; ζ) =

∫
A

ω(x)(u−ū)

(
− 1

2π

∫
Γ

ln |x−y|µ′(y)dsy−
1

2π

∫
Γ

∂ ln |x− y|
∂ny

µ(y) ζ(y) dsy

)
dx.

After exchanging the order of integration, J ′ becomes

J ′(Γ; ζ) =− 1

2π

∫
Γ

µ′(y)

[∫
A

ω(x)(u− ū) ln |x− y| dx

]
dsy

− 1

2π

∫
Γ

[∫
A

ω(x)(u− ū)
∂ ln |x− y|

∂ny
dx

]
µ(y)ζ(y) dsy.

(B.30)

We note that the second term is in the Riesz form (cf. (B.1)).
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Let us now take a look at the first term in (B.30). Imposing the adjoint equation

∫
Γ

ln |x− y|µ∗(x) dsx =

∫
A

ω(x)(u− ū) ln |x− y| dx, (B.31)

and using identity (B.29) we can transform the first term on the RHS in (B.30) to the

Riesz representation

− 1

2π

∫
Γ

µ′(y)

[∫
A

ω(x)(u− ū) ln |x− y| dx

]
dsy =

1

2π

∫
Γ

[∫
Γ

∂ ln |x− y|
∂ny

µ∗(x) dsx

]
µ(y) ζ(y) dsy+

1

2π

∫
Γ

[∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy

]
µ∗(x) ζ(x) dsx.

Moreover, since from (B.31) it follows that

∫
Γ

∂ ln |x− y|
∂ny

µ∗(x) dsx =

∫
A

ω(x)(u− ū)
∂ ln |x− y|

∂ny
dx,

the expression for J ′ can be simplified further and is finally given by

J ′(Γ; ζ) =
1

2π

∫
Γ

[∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy

]
µ∗(x) ζ(x) dsx. (B.32)

From the Riesz representation theorem, the gradient expression

∇J =
µ∗(x)

2π

∫
Γ

∂ ln |x− y|
∂nx

µ(y)dsy = −µ∗(x)
∂u

∂n
(B.33)

follows immediately, where µ∗ solves the adjoint system (B.31).

We remark that in fact the right hand side of (B.33) is not an improper integral,
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since according to Theorem 3 and properties (4.16), (4.17)

lim
y→x

∂ ln |x− y|
∂nx

= lim
y→x

〈n(x),x− y〉
|x− y|2

=
κ

2
, x, y ∈ Γ.

B.4 Summary of the Results

In this section we give a brief summary of the expressions for the gradient obtained

using the three different techniques introduced in sections B.1, B.2 and B.3.

PDE-based derivation
(Section B.1)

direct PDE, adjoint BIE
(Section B.2)

BIEs-based derivation
(Section B.3)

∇J ∇J = − ∂u
∂n

∂u∗

∂n (B.7) ∇J = −ρ∗(x) ∂u
∂n (B.14) ∇J = −µ∗(x) ∂u

∂n (B.33)

Adjoint
System

−∆u∗ = RHS in Ω,
u∗ = 0 on Γ (B.8)

GΓρ
∗(x) = JA(ω, u) (B.13) GΓµ

∗(x) = JA(ω, u) (B.31)

Table B.1: The gradients and adjoint systems derived in the different approaches

For the sake of the brevity of notation, in Table B.1 we denote RHS = (ω(u−ū))χA,

GΓρ
∗(x) =

∫
Γ

ln |x− y| ρ∗(x) dsx and JA(ω, u) =
∫
A
ω(u− ū) ln |x− y| dx.

We emphasize that all variables entering the gradient formulation in the PDE-

based approach are solutions of direct (B.2) and adjoint (B.8) PDE problems, whereas

to obtain the gradient in the BIE-based approach we need to solve direct (B.16) and

adjoint (B.31) BIEs. To find the variables entering the gradient formula in PDE-based

shape-differentiation and BIE-based derivation of the adjoint equation case (cf. B.2),

we have to deal with the direct equation in PDE form and the adjoint BIE.

We also note that the expressions for the gradient derived in the sections B.2

and B.3 are identical, since the adjoint variables µ∗ and ρ∗, entering the gradient

formulation, solve the identical adjoint equations (B.13), (B.31) and the integral in

(B.33) is in fact −∂u
∂n

in (B.14).
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