
An FPTAS for Total Weighted Earliness Tardiness Problem
with Constant Number of Distinct Due Dates and Polynomially

Related Weights

AN FPTAS FOR TOTAL WEIGHTED EARLINESS
TARDINESS PROBLEM

WITH
CONSTANT NUMBER OF DISTINCT DUE DATES AND

POLYNOMIALLY RELATED WEIGHTS

By

Jingjing Huang, B.Eng.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

c© Copyright by Jingjing Huang, April 2013

MASTER OF SCIENCE (2013) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE: An FPTAS for Total Weighted Earliness Tardiness Problem with Con-
stant Number of Distinct Due Dates and Polynomially Related Weights

AUTHOR: Jingjing Huang, B.Eng. (Uni. of Science and Technology of China)

SUPERVISOR: Dr. George Karakostas

NUMBER OF PAGES: x, 72.

ii

Abstract

We are given a sequence of jobs on a single machine, and each job has a

weight, processing time and a due date. A job is early when it finishes before or

on its due date and its earliness is the amount of time between its completion

time and its due date. A job is tardy when it finishes after its due date and

its tardiness is the amount of time between its due date and its completion

time. The TWET problem is to find a schedule which minimizes the total

weighted earliness and tardiness. We are focusing on the TWET problem with

a constant number of distinct due dates and polynomially related weights. This

problem has been proven to be NP-hard. In this thesis, we present a dynamic

programming algorithm for our TWET problem first and then convert it into

an FPTAS by adopting a rounding scheme.

There are several important points in our algorithm: we observe the im-

portance of the straddlers and guess them at the beginning through exhaustive

enumeration, and insert them back at the very end by solving a linear problem;

we know a series of structural properties of the optimal schedule to shrink the

state space of the DP; we increase each due date to get a new problem and

adopt a rounding scheme of the DP for the new problem to avoid preemption.

Finally we move the due dates back to get the final schedule for the original

TWET problem without changing the objective value much.

iii

iv

Acknowledgments

First of all, I gratefully acknowledge my supervisor, Dr. George

Karakostas. His advice and supervision during the regular meetings between

us helped me so much with my research. His serious attitude towards the

research and broad horizon of knowledge impressed me deeply to make my-

self more concentrated and enthusiastic on my work. Besides, his patience for

pointing my grammar errors when we were talking helped me improve my oral

English a lot.

I wish to express my sincere thanks to Dr. Antoine Deza, Dr. Franya

Frannek and Dr. Sanzheng Qiao. Their courses gave me a deeper understand-

ing of algorithms and computation theory which helped and inspired me with

my research in scheduling problems. My special thanks are to the member-

s of the examination committee: Dr. Alan Wassyng, Dr. Franya Franek and

Dr. George Karakostas.

Many thanks to my friend Kun Hu, our discussions and his suggestions

helped me with my work. Also thanks to my friends Linyan Liu, Haibo Liang,

Chao Zhu, Yunfei Cai, Yi Hu, Linna Pang, Xiang Yin, Bingzhou Zheng and

so on. They are helpful and supportive and I had a great time with them.

At last, I would like to thank my parents in China. With their supports

and encouragements, I completed my thesis program successfully.

v

vi

Contents

Abstract iii

Acknowledgments v

List of Figures ix

1 Introduction 1

1.1 The TWET Problem and Motivation 1

1.2 Previous Work . 4

1.2.1 Previous work on TWT Problem 4

1.2.2 Previous work on TWET Problem 7

1.3 Our Work . 8

1.4 Thesis Outline . 12

2 Approximation Algorithms and Some Scheduling Problems 15

2.1 Overview of Approximation Algorithms 15

2.1.1 Basic Concepts . 15

2.2 Structural Properties in Single Machine Scheduling 18

2.3 Preemption Properties for the TWET Problem 21

3 FPTAS for the Single Machine TWET Problem with Common

Due Date 25

3.1 FPTAS for TWT Problem with Common Due Date 25

vii

3.1.1 Preliminaries . 25

3.1.2 DP for the Non-straddling Jobs 26

3.1.3 Inserting the Straddler Back 27

3.1.4 Rounding Scheme . 28

3.2 FPTAS for TWET with Common Due Date 29

3.2.1 Preliminaries . 29

3.2.2 DP for the Non-straddling Jobs 31

3.2.3 Symmetric Quadratic Knapsack Problem 32

3.2.4 Rounding Scheme . 34

3.2.5 Scheduling Without a Straddler 35

3.2.6 Scheduling With a Straddler 35

4 FPTAS for the Single Machine TWET Problem with Distinct

Due Dates and Polynomially Related Weights 39

4.1 Preliminaries . 39

4.2 An Exact Dynamic Programming Algorithm 42

4.3 The FPTAS . 45

4.3.1 The Algorithm with Rounding Scheme 45

4.3.2 Proof of Near Optimality 47

4.3.3 Complexity of the Rounding Algorithm 54

4.4 A Simpler Rounding Scheme . 55

4.4.1 A New Dynamic Programming 55

4.4.2 The New FPTAS . 57

4.4.3 General Straddlers . 62

5 Conclusions and Open Questions 65

5.1 Conclusion . 65

5.2 Open Questions . 66

Bibliography 67

viii

List of Figures

4.1 Insert job Jk as a tardy job in interval Ii 41

4.2 Insert job Jk as an early job in interval Ii 41

4.3 The original due dates and intervals 46

4.4 The new due dates and intervals 46

4.5 Algorithm FPTAS . 47

4.6 The Simpler FPTAS Algorithm 58

ix

x

Chapter 1

Introduction

Scheduling, with the objective to minimize (or maximize) one or more perfor-

mance measures, is the allocation of limited resources to various activities [30].

Scheduling problems involve both single machine and multi-machine schedul-

ing problems. If the single machine problem can be solved, its solution can

be used to understand and provide the basis to solve the more complex multi-

machine problem. The Just-In-Time(JIT) scheduling is an important branch

of scheduling in which each scheduling task needs to be executed as close to its

due date as possible. In this thesis, we are particularly interested in the prob-

lem of minimum total weighted earliness-tardiness (TWET) in JIT scheduling

on a single machine.

1.1 The TWET Problem and Motivation

The goal of scheduling tasks in a Just-In-Time (JIT) fashion has been a central

goal for logistics. According to JIT, the minimum total weighted earliness-

tardiness problem (TWET) for a single machine is defined as follows. Based on

a single machine environment, we are given n jobs indexed as Jj, j = 1, 2, . . . , n.

Assume that all the n jobs are ready at time 0 for processing and no preemption

is allowed. Each job has a processing time pj and due date dj by which the

processing of job Jj is due to be completed. We want to schedule all the n

1

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

jobs as close to their due dates as possible. Once a job cannot be executed to

complete exactly at its due date, there is a penalty measured as the weight wj

(per unit of time) of the job Jj and it shows how important the job is.

With the fact that only one job can be processed at a time on a single

machine, the processing order together with the time that each job finishes at of

the n jobs identifies one specific scheduling. For a given scheduling (processing

order) S, the completion time of job Jj, j = 1, 2, . . . , n is defined by Cj(S) or

just Cj. Therefore, two quantities related to the completion time Cj(S) of job

Jj in a schedule S are important: its tardiness Tj(S) := max{0, Cj(S) − dj},

and its earliness Ej(S) := max{0, dj − Cj(S)}. A job is called a tardy job

when its tardiness is positive. Otherwise, it’s an early job. We say that

each job j weights both its earliness and tardiness symmetrically, i.e., with

the same weight wj. We study the symmetric weights in the thesis. Then

motivated by the logistical objective, the minimum total weighted earliness

tardiness (TWET) problem on a single machine is defined as the computation

of a schedule S on this machine that minimizes the total weighted earliness

and tardiness
∑n

j=1wj(Ej(S) + Tj(S)), or simply
∑n

j=1wj(Ej + Tj).

For all j = 1, ..., n, the due date dj value comes from a set of K possible

distinct due dates {d1, d2, ..., dK}, while d1 < d2 < · · · < dK , 1 ≤ K ≤ n. Let

W :=
∑

j wj, and wmin(wmax) be the minimum(maximum) job weight. In this

thesis, we are focusing on the above TWET problem with a constant number

of distinct due dates and polynomially related symmetric weights, i.e., based

on the following

Assumption 1.1.1 (i) K is a constant, (ii) the weights of the jobs are poly-

nomially related, i.e., wmax
wmin

= O(poly(n)).

A little different from the definition of TWET problem above, the total

weighted tardiness (TWT) problem only considers the tardy jobs, i.e, all the

early jobs have no cost and only tardy jobs count for the total cost. Thus,

2

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

the minimum total weighted tardiness (TWT) problem on a single machine is

defined as the computation of a schedule S on this machine that minimizes the

total weighted tardiness
∑n

j=1wjTj. Many results have been proposed for the

TWT problem in, e.g., [22], [21], [20]. It is obvious that the TWT problem is

a special case of TWET problem when the weight for early jobs is 0. Thus, we

also introduce the TWT problem to provide some basic idea for our problem.

The TWET problem has attracted the attention of both industry and

academic researchers. In a JIT scheduling environment, jobs that complete

early must be held in goods inventory until their due dates, while jobs that

complete tardy may cause a customer to shut down operations. Thus, many

scheduling problems, like goods deliveries, products on assembly lines in fac-

tories, can be modeled as a TWET problem of JIT scheduling. It has received

much attention not only because it is meaningful in practice, but also because

it has inspired several new methods in the design of the solution procedures

through a non-regular performance measure. All these problems are known

to be NP-hard. If we can solve the TWET problem, then a series of related

problems can be solved too.

Because of the hardness of the TWET problem with arbitrary due dates

and arbitrary weights, there’re only a few results. So far, only some special

cases of the TWET problem have been intensively researched, for instance,

when all the jobs have the same processing time [38], [39]; when no idle time

is allowed between jobs [1]; when all the jobs have a common due date [23];

when all the weights are the same, and so on. In this work, we tackle the

TWET problem for the case of a constant number K of distinct due dates and

polynomially related weights.

3

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

1.2 Previous Work

In this section, we will introduce several previous works in both TWT and

TWET problem by which our work is inspired. Although both of them have

been proven to be strongly NP-hard for arbitrary weights [27][29][7], various

aspects of solving the TWT and TWET problem and their variants have at-

tracted considerable attention from many researchers. We present some of the

results first and we only cite a limited number of them since they are numerous

(see, e.g. [2], [7], [14]).

1.2.1 Previous work on TWT Problem

Several methods have been applied to solve the minimum TWT problems. We

mainly introduce the typical branch-and-bound method, dynamic program-

ming method and approximation algorithms in turn.

The branch-and-bound method was firstly used to TWT problem in [11].

In this paper, Elmaghraby showed the branch-and-bound method is more ef-

ficient than the dynamic programming method. Then Shwimer [36] proposed

a branch-and-bound algorithm for the TWT problem which is applicable on

a computer. Since then, the branch-and-bound technique for TWT problem

has been widely and deeply researched.

Picard et al. [31] used the method of branch-and-bound and sub-gradient

optimization to find the shortest paths in a network when they observed that

the time-dependent traveling salesman problem can be modeled as the TWT

problem.

To restrict the size of the search and find the optimal solution, Emmons

[12] developed dominance rules. Based on the dominance rules, Rachamadugu

[34] showed a local dominance property among adjacent jobs in an optimal

schedule. Importantly, such a proposition identified the weighted shortest pro-

cessing time (WSPT) order among adjacent tardy jobs in the optimal schedule

4

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

of TWT problem. The WSPT order is important through the whole thesis.

Potts et al. [33] formulated the TWT problem as a Lagrangian prob-

lem and used the local dominance property in [34] in their branch-and-bound

algorithm. They used the Lagrangian dual solution as a lower bound for the

TWT problem. However, such a lower bound to find the optimal solution was

not practical to use because of the extensive computation the algorithm needs.

Thus, Akturk et al. [3] introduced a new dominance rule to develop a new

lower bound. The new dominance rule was a generalization of the rules in

[12] and [29], and it could reduce the number of alternatives for finding the

optimum to make the algorithm more efficient.

More recently, Babu et al. [5] developed a Lagrangian decomposition

on a 0 − 1 time indexed formulation and then used the optimal value of the

duality problem as a lower bound. They also designed a Lagrangian heuristic

to get an upper bound. They gave the branch-and-bound algorithm using the

lower and upper bound. They also combined the dominance and elimination

rules to get a trade-off between a tighter lower bound and the time needed

for the enumeration. Up to now we have introduced several works using the

branch-and-bound method and the shortcoming of it is that it needs a huge

amount of computation time.

For the dynamic programming method, a quite early use in schedul-

ing problems was proposed by Schrage et al. [35]. They considered several

constraints from practical considerations and from the characteristics of the

optimal schedule, to reduce the number of possible sequences. Based on the

enumeration of all feasible subsets of tasks, they presented a method to assign

an easily computed label to each feasible subset. As a consequence, a dy-

namic programming algorithm can be applied to many scheduling problems,

including the TWT problem.

Arkin et al. [4] proposed a pseudo-polynomial time algorithm using dy-

5

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

namic programming to solve a special case of TWT problem where the weight

of each job is proportional to its processing time. Huegler and Vasko [19] de-

veloped a dynamic programming based on heuristics. A big improvement has

been made to reduce the time complexity by Congram [10]. He proposed a new

neighborhood search technique which is called dynasearch. Dynasearch uses

dynamic programming in local search. It can explore exponential size neigh-

borhoods in polynomial time and hence it decreases the computation time.

Although the dynamic programming method can generate the exact solution,

it is still constrained by the computer storage and its time complexity.

Not only branch-and-bound and dynamic programming method have

been extensively researched, but also approximation algorithms have been

developed to solve scheduling problems. With certain degree of loss in op-

timality, approximation algorithms can compute the near optimal solution

quite efficiently. Nowadays, approximation algorithms are receiving increas-

ing attention for solving combinatorial optimization problems. For the NP-

hard problem, a fully polynomial time approximation scheme (FPTAS)1 is the

strongest possible result. We give the details of FPTAS in section 2.1.

Lawer [27] presented an FPTAS for the TWT problem when the weights

of all the jobs are the same through a modification of the dynamic programming

algorithm. When the differences between the due dates of jobs and their

processing times are the same constant, i.e., di = pi + q where q is a constant,

Cheng et al. [9] constructed an FPTAS. Besides, when there’s a common due

date for all the jobs, Kellerer and Strusevich [22] give an FPTAS by applying

a rounding scheme to the dynamic programming method.

When the number of distinct due dates is a constant, Kolliopoulos et

al. [25] presented a pseudo-polynomial time dynamic programming algorithm.

With the assumption that the maximal job weight is bounded by a polyno-

1An FPTAS is a family of algorithms that given any constant ε > 0 produce a solution
within a factor of (1 + ε) of the optimal in time polynomial in n and 1/ε.

6

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

mial in n, where n is the total number of input jobs, they used the rounding

scheme in [28] for their dynamic programming algorithm to generate an FP-

TAS. Karakostas et al. [21] also proposed an FPTAS for the more general case

with a fixed number of distinct due date.

1.2.2 Previous work on TWET Problem

Due to the significance of TWET problem, it has a long history of intensive

study (see, e.g., [15] and [18]). Its NP-completeness was proven (quite non-

trivially) by Garey et al. [13], and recently Müller-Hannemann and Sonnikow

[37] showed that the weighted version is notoriously hard, unless P = NP .

It cannot be approximated within a factor O(bn) for any constant b > 0 in

polynomial time. Nevertheless, there have been good exact or approximation

algorithms for several important special cases.

Garey et al. [13] show that the unweighted version with all jobs having

the same processing time can be solved in O(n log n) time.

For arbitrary weights and arbitrary number of due dates, quite little is

known on the approximation of TWET. When all the jobs have the same

processing time, Verma and Dessouky [39] give a linear programming exac-

t solution in polynomial time. Müller-Hannemann and Sonnikow [37] give a

constant ratio approximation algorithm for constantly related weights and pro-

cessing times, i.e., the ratio between the maximal processing time pmax and

the minimal one pmin among all jobs is a constant, and, likewise, the ratio be-

tween the maximal weight wmax and the minimal one wmin is also a constant;

for a constant number of due dates, through guessing all the possible straddles

(defined as the jobs which start before a due date and finish after a due date

in their paper) and the starting time of each straddler and then inserting all

the other jobs using dynamic programming, they give a pseudo-polynomial

algorithm whose complexity depends on the total processing time to solve the

7

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

problem exactly.

When all the jobs have a common due date, there are two possibilities:

the non-restrictive case, where d ≥
∑

j pj, and the harder restrictive case,

when d ≤
∑

j pj. The former is still NP-complete for the weighted case [16],

but there is a fully-polynomial time approximation scheme (FPTAS) for this

case [26]. This scheme does not require any prior knowledge of lower and

upper bounds on the value of a complete optimal solution since it recursively

computes lower and upper bounds on the value of partial optimal solutions.

More recently, Kellerer and Strusevich [23] presented an FPTAS for the more

difficult restrictive case via a connection to the quadratic knapsack problem.

We will introduce their work in Chapter 3.

1.3 Our Work

In this thesis, we present an FPTAS for the TWET problem with a constant

number K of distinct due dates and polynomially related weights given in

Section 1.1 and it’s proven to be NP-hard [7]. We design a pseudo-polynomial

algorithm using dynamic programming first and then apply a rounding scheme

to obtain the desired approximation scheme. This work is inspired by [23], [21],

but we introduce a number of new ideas for our problem.

To understand our algorithm, an important thing is to understand the

intrinsic difficulty of the TWET problem which lies in the change of objec-

tive value when the completion time of a job slides from before its due date

(being early) to after it (being tardy). We note that the jobs in an optimal

schedule that straddle the due dates (or exactly finished at some due date),

defined as straddlers, play a special role in splitting the problem into a number

of ‘knapsack’ problems (one per interval between two consecutive due dates,

except the last (infinite) interval). This indicates that we should distinguish

the straddlers from all the other jobs. A common assumption is that every

8

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

straddler is only straddling one due date and we can see that each due date

has a straddler (straddling the due date or finishing exactly on the due date).

In reality, we have no idea about the optimal schedule. Thus, knowing which

job is the straddler for each due date becomes a problem. A useful and ac-

curate technique, although not that efficient, is exhaustive enumeration (or

guessing). By guessing, we mean that, we enumerate all possible combinations

of the straddlers from the set of all jobs. We show that this guessing can be

done in polynomial time when the number of distinct due dates is constant in

the following chapters. And we can say we “have guessed” the straddlers for

each due date from now on.

Once the straddlers for all due dates have been guessed, they divide the

time horizon into intervals. We notice that in each interval, all the tardy

jobs must be processed before all the early jobs since both of them contribute

to the objective value. To minimize the total earliness and tardiness, it has

been proved in [7] that these early jobs must be in I-WSPT (inverse weighted-

shortest-processing-time, i.e., p1
w1
≥ p2

w2
≥ · · · ≥ pn

wn
) order and the tardy jobs

must be in WSPT order. This fact compels us to sort the input jobs at the

beginning in I-WSPT order in our algorithm. We sort the jobs before inserting

them to avoid keeping record of which job goes where. Instead, we only need

to record the total earliness and tardiness in each interval.

The next step is to consider the placement of the jobs including the tardy

straddlers. We follow the idea of Kellerer’s and Strusevish’s rounding scheme

to produce an FPTAS [23] in which they insert the straddlers after inserting

all the other jobs. Then how to place the other jobs and where to place the

straddler become the problems. Here, we can think backwards: Suppose we

have the optimal schedule and we can know which jobs are straddlers for the

due dates. If we remove those straddlers, we are left with a hole around each

due date to separate the early and tardy jobs. Now we can push the early jobs

9

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

forward and tardy jobs backward to the due date to remove the hole between

them (actually, moving the place of the hole) for each due date. We notice that

all the early jobs are still early and the tardy jobs are still tardy, although each

of them has a decrement in its earliness (or tardiness) by the same amount.

Now we are left with a partial schedule without the straddlers. Note that the

placement of these jobs are exactly the same as their placement in the optimal

schedule. The difference is only the earliness or tardiness of each job. With

the partial schedule, the optimal schedule can be constructed by inserting each

straddler between the early and tardy jobs for each due date optimally. This

optimal insertion of the straddlers can be expressed as a linear problem (LP)

which can be solved in polynomial time.

Practically, since we do not know which partial schedule will give us the

optimal schedule, we have to try all possible placements in order to find it.

When inserting a job in a interval, we must check whether there is enough

space for it. We come up with sufficient feasibility conditions to check that.

When a job is to be inserted as early (or tardy) in a interval, there must

be enough space in the interval such that this insertion will not push any

previously inserted jobs into any other intervals. Besides, since the straddles

need to be inserted in the end, we still need a condition to make sure that

we can insert the straddlers for all the due dates without making any inserted

early job tardy or tardy job early. Once all these conditions are satisfied, a

job can be inserted feasibly and safely. More specifically, before inserting a

non-straddling job, we check if there is enough space for it first, and then we

check if the straddlers can still be inserted after the insertion of this job.

Since we are going to use a rounding scheme in the FPTAS, the feasibility

conditions must also hold for the FPTAS. Here we play a trick: we increase each

due date (except the first one) a little to make the space of the intervals between

every two adjacent new due dates bigger than that between the original ones.

10

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

This is the big difference from [21] since no preemption is allowed in our TWET

problem and it is a new idea. To reduce the running time of the algorithm, we

round up the summation of total processing time of early and tardy jobs from

the second interval to the last interval. One consequence of this rounding up

is that some jobs which are early (or tardy) in the optimal schedule cannot

be inserted as early (or tardy) in the rounded schedule. The small extension

of the intervals can prevent that without any preemption. We then use the

new due dates to insert the jobs and the straddlers. At the very end, we move

the due dates back (without moving the jobs) to their original values with a

possible increase in objective value to get the final schedule. We can prove

that such movements only contribute a little to the objective value since the

extensions are small.

In order to make the complexity of the algorithm polynomial in the

problem size, we have to consider a reduced number of values of the variables

by rounding up. Of course, we can not reduce them arbitrarily. We have to

confine our output within a neighborhood of the optimal solution. It is the

feasibility conditions that help us to achieve this goal. Applying the FPTAS

to the TWET problem with common due date [23], or even the TWT problem

with common due date [22] and distinct due dates [21], it’s easy to see that our

algorithms can solve them with small changes. We develop an FPTAS for the

TWET problem with a constant number of distinct due dates and polynomially

related weights. When the number of distinct due dates is arbitrary or the

weights are arbitrary, the complexity of the algorithm will be exponential.

To summarize, our FPTAS algorithm works as follows: Guess K (K is

number of distinct due dates) straddlers (exhaustive enumeration) when the

straddler is defined as the job starting before a due date but finishing after

or on the same due date. Order the remaining m = n − K jobs in inverse

weighted shortest processing time (I-WSPT) order, i.e., p1
w1
≥ p2

w2
≥ · · · ≥ pm

wm
.

11

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Then move the due dates a little bigger to get the new due dates. For each

set of the guessed straddlers with the new due dates, we apply the following

dynamic programming for the non-straddling m = n−K jobs:

• Each job can be inserted either early or tardy by selecting the proper

interval and it needs to be inserted without any preemption. Before

inserting the job, we need to check the feasibility conditions to make

sure that there is enough space in the interval to insert that job. After

the insertion, the feasibility conditions must also hold for the straddlers.

The job can be inserted successfully only when all the conditions are

satisfied. If a placement can be done, we round the states of this DP

by (i) grouping them into groups with very similar characteristics (see

Algorithm FPTAS given in Chapter 4), and (ii) keeping the state that

maximizes the total processing time packed in the (finite) intervals except

the first. In this way, there is a sequence in our rounded DP that follows

closely the optimal DP (given as a Lemma in Chapter 4). The heart of

our algorithm is the idea that we can do (i) and (ii) not for the original

problem, but for the problem where we have given our schedule a little

more space by moving the due dates later (but not much later).

After inserting all the non-straddling jobs, we insert the straddlers into their

optimal positions by solving a linear problem. And finally, we show that

moving the new due dates back to their original values doesn’t increase the

objective value by much. This FPTAS algorithm is the main contribution of

this thesis.

1.4 Thesis Outline

In this chapter, we have given a brief introduction of the TWET problem, the

related backgrounds and the previous works. The remainder of this thesis is

12

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

organized as follows. Basic background of approximation algorithms and some

related scheduling problems will be introduced in Chapter 2. In Chapter 3, we

introduce the key ideas of [23] which are important for our work. We present

the main result of this thesis in Chapter 4, an FPTAS for the TWET problem

with a constant number of distinct due dates and polynomially related weights.

Then in the last Chapter, we give a summary of the whole thesis and possible

future work.

13

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

14

Chapter 2

Approximation Algorithms and
Some Scheduling Problems

From the introduction in Chapter 1, we know that approximation algorithms

can be used to solve NP-hard scheduling problems. Here we say that we “solve”

the problem if an algorithm can give a solution within the approximation guar-

antee. In this chapter we will introduce some basic concepts of approximation

algorithms. Besides, we notice that some basic scheduling problems are related

to each other. If we find an optimal solution for one problem, it may help us

to find an optimal schedule for another, just like the solution for TWET with

one common due date can help us get a solution for TWET with distinct due

dates. Thus, we also introduce several elementary results and properties of

optimality for some scheduling problems.

2.1 Overview of Approximation Algorithms

2.1.1 Basic Concepts

Many natural optimization problems, which contain the scheduling problems

we introduce in Chapter 1, have been proven to be NP-hard. Therefore, under

the wide common belief that P 6= NP , the exact optimal solutions are usu-

ally prohibitively time consuming. If the exact optimal value is not required,

we will be satisfied with a provably good solution produced by an efficient

15

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

algorithm. That is the idea of approximation algorithms, which is, generate

provably near-optimal solutions quite efficiently in terms of complexity of al-

gorithms. Approximation algorithms have attracted increasing attention and

become more prominent as the tool for the generation of the near optimal

solutions for NP-hard optimization problems since the mid-20th century.

In the following paragraphs, we will list several exact mathematical

definitions of the main concepts in the area of approximation algorithms.

Details can be found in [40]. An optimization problem is specified by an

input set I, a set S(I) of feasible solutions (i.e. the solutions which satisfy all

constraints) for each input I ∈ I, and an objective function f that calculates

an objective value f(s) for every feasible solution s ∈ S(I). We assume

that all feasible solutions have non-negative objective values. We denote the

optimal objective value for input I by OPT (I) and denote the size of an input

instance I by |I|, i.e., the number of bits used in writing down I in some

fixed encoding. Since the TWET problem we are focusing on is NP-hard, it

is impossible to find the exact optimal solution within polynomial time in |I|

(unless P = NP) except in special cases.

ρ−Approximation Algorithm

Let P be a minimization problem. Let ρ > 0. An algorithm A is called a

ρ−approximation algorithm for problem P, if for every instance I, it returns

a feasible solution with objective value f̂(s) such that

f̂(s)−OPT (I) ≤ ρ ·OPT (I)

The value ρ is called the performance guarantee or the worst case ration of

the approximation algorithm.

Pseudo-Polynomial Time Approximation Algorithms

16

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

As described above, an algorithm is said to run in polynomial time if its

running time is polynomial in the size of the input instance |I|, the number

of bits needed to write I.

Definition 2.1.1 Pseudo-Polynomial Time is polynomial time when the

numeric values in the input string (given as integers) are given in unary

representation rather than in binary.

A Pseudo-Polynomial Time Algorithm is an algorithm if its running time is

polynomial in the size of input instance |I| and the numeric values of the

input (provided these are given as integers), rather than rather than the

binary representation of their values.

Polynomial Time Approximation Schemes

Definition 2.1.2 A Polynomial Time Approximation Scheme (PTAS) for a

problem P is a collection of 1 + ε approximation algorithms A(ε), one for

every constant ε > 0, whose time complexity is polynomial in the input size

|I|.

Fully Polynomial Time Approximation Schemes

Definition 2.1.3 A Fully Polynomial Time Approximation Scheme

(FPTAS) for a problem P is a PTAS whose time complexity is polynomial in

both the input size |I| and 1
ε
.

From the above definitions, the only difference between FPTAS and PTAS is

the demand on polynomial time in 1
ε
. In terms of the worst case

approximation, an FPTAS gives the strongest possible result that we can

hope to derive for an NP-hard problem.

From the definition of the approximation algorithm, the near-optimal

output needs to be compared with the optimal objective value to make sure

17

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

that the ratio between them is within the approximation ratio. However in

reality, for a specific minimization problem, we have no idea about what its

optimal objective value is, or how to find the optimum in polynomial time.

Thus, we try to find a lower and an upper bound for the optimal solution of the

problem instead of finding the optimum itself and relate the approximate near-

optimal output to these bounds. We will show how to chose such bounds for

the approximation scheme for our TWET problem in Chapter 3 and Chapter

4.

In our TWET problem, the input is the number of the jobs n, each job’s

weight wj and processing time pj, j = 1, 2, . . . , n and the K distinct due dates

d1 < d2 < · · · < dK . If the enumeration method is used, we need to evaluate

all the possible n! sequences to find the optimal schedule. We can also use dy-

namic programming in this case. It is typically more efficient than brute-force

enumeration even though the complexity of dynamic programming grows at an

exponential rate with the increase of the problem size. The difference between

the two methods is that the dynamic programming considers certain ordering

sequences indirectly while enumeration considers all possible sequences explic-

itly. We can get the optimal using dynamic programming, but it still takes

exponential time. Thus, we need to come up with an approximation algorithm

which uses dynamic programming, but constraints the sequences (i.e. number

of states) to be polynomial.

2.2 Structural Properties in Single Machine

Scheduling

There are several special structural properties in the optimal schedule for some

scheduling problems. For example in [8], the Shortest Processing Time (SPT)

rule is used for the Minimum Mean Flow-time problem; the optimal sequence

for the Maximum Lateness problem follows the Earliest Due Date (EDD) rule;

18

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

the optimal sequence for the Minimum Total Weighted Completion Time prob-

lem and the TWT problem is in the Weighted Shortest Processing Time (WSP-

T) order. In these cases, the optimal schedule can be constructed through a

simple sorting based on these special ordering rules. These results can also be

used directly to find the solution of some practical scheduling problems in cer-

tain situations. Besides, we can also use them to understand the the optimal

schedule for other more complicated scheduling problems, such as the TWET

problem we are dealing with.

In this section, we introduce the WSPT rule since an optimal schedule

for the TWET problem is constructed from a combination of WSPT and I-

WSPT which is the inverse order of WSPT. For purpose of completion, we

include the proofs together with the lemmas. For more details, one is referred

to [6]. The minimum total weighted completion time is defined as

min
schedule of n jobs

{
n∑
j=1

wjCj} (2.2.1)

where Cj is the completion time of job Jj.

Weighted Shortest Processing Time Order

Definition 2.2.1 Given n jobs, each job Jj has a processing time pj and a

weight wj, 1 ≤ j ≤ n. The Weighted Shortest Processing Time (WSPT)

order is to sort the jobs according to the processing time per weight such that

the first job has the shortest processing time per unit of weight, the second

has the second shortest processing time per unit of weight, and so on, that is,

p1
w1
≤ p2

w2
≤ · · · ≤ pn

wn
.

We have the following lemma:

Lemma 2.2.1 The optimal schedule for the single the single machine mini-

mum total weighted completion time problem, as defined in equation (2.2.1)

follows the WSPT order.

19

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Proof. (from [6]) By contradiction.

Suppose an optimal schedule S is not in WSPT order. In this schedule, there

must be at least two adjacent jobs, Ji and Jj, with Jj following Ji, such that

pi
wi
>

pj
wj

. Assume job Ji starts at time t.

Now construct a new schedule S ′ after performing an adjacent pairwise

interchange on job Ji and Jj. In the new schedule S ′, job Jj starts at time

t and is followed by job Ji, while in the original schedule S, job Ji starts

at time t and is followed by job Jj. Every other job remains in its original

position. It’s easy to see that the total weighted completion time of the jobs

processed before jobs Ji and Jj is not affected by the interchange. Neither

is the total weighted completion time of the jobs processed after jobs Ji

and Jj. Thus the difference in the objective values of the two schedules S

and S ′ lies only in jobs Ji and Jj. Under S, the total weighted completion

time of jobs Ji and Jj is (t + pi)wi + (t + pi + pj)wj, while under S ′, it is

(t+ pj)wj + (t+ pi + pj)wi. It’s easy to verify that (t+ pj)wj + (t+ pi + pj)wi

is strictly less than (t+ pi)wi + (t+ pi + pj)wj when pi
wi
>

pj
wj

. This contradicts

the optimality and the proof is done. �

With the lemma above, we can easily get the following corollary which

is a very important structural property in minimum TWET problem with

common due date.

Corollary 2.2.1 In any optimal schedule of the minimum TWET problem

with common due date, the tardy jobs must appear in WSPT order while the

early jobs appear in inverse WSPT (I-WSPT) order.

20

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

2.3 Preemption Properties for the TWET

Problem

For the TWET problem given in Section 1.1, no preemption is allowed, i.e.,

if one job starts to be processed, we must wait until it finishes to process the

next job. If preemption is allowed, i.e, a job can be divided into pieces and

the pieces can be processed non-contiguously, it gives us a broader horizon

to investigate the structural properties of the optimum. This may help us

in future work. We say a preemption scheme is ‘allowed’ when the TWET

problem with such a preemption outputs the same optimal schedule with the

one without any preemption. In this section we will talk about what kind of

preemption can be allowed in the TWET problem.

First we give several different schemes to preempt the jobs. For each

scheme, we will give the corresponding lemma to show whether such a pre-

emption scheme is allowed in the TWET problem.

Scheme 1. The early jobs can be preempted into pieces and all pieces are

early. And the earliness of the preempted early job is defined as the

earliness of the last piece, i.e., its due date minus the completion time of

the last piece. No tardy job is preempted.

Scheme 2. No early job is preempted. Only tardy jobs can be preempted into

several pieces to be completed non-contiguously and all pieces are tardy.

The tardiness of the preempted tardy job is defined as the tardiness of

the last piece of the job, i.e., the completion time of the last piece minus

its due date.

Scheme 3. Both early and tardy jobs can be preempted. All pieces of early

jobs are early while all pieces of tardy jobs are tardy. The earliness of the

preempted early job is defined as the earliness of the first piece, i.e., its

due date minus the completion time of the first piece, while the tardiness

21

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

of the preempted tardy job is defined as the tardiness of the last piece,

i.e., the completion time of the last piece minus its due date.

Lemma 2.3.1 Scheme 1 is not allowed.

Proof. Just consider the early jobs in TWET problem. Since the earliness

of the preempted early job is defined as the earliness of the last piece, we can

cut a small piece an early job and put that small piece near the due date. For

all the early jobs, we can cut the smaller and smaller pieces repeatedly to put

near the due date (other pieces can be put before the smaller ones) to make

the total earliness smaller. For example, suppose we get an optimal schedule

S for the TWET problem with Scheme 1. For an early job, say job Ji with

processing time pi and weight wi in the optimal schedule, suppose the length

of its last piece is li, 0 < li ≤ pi. We can cut this last piece into two pieces

with one of them has length x, 0 < x < li and the other has length li − x.

We can put the piece with length x at time 0 after moving all pieces of jobs

before the last piece of Ji towards the due date. In such way, the earliness of

Ji doesn’t change while every early job before it has a smaller earliness since

they have been moved towards the due date. Thus, we have a better schedule

with smaller objective value. This contradicts the optimality. The Scheme 1

preemption is not allowed. �

Lemma 2.3.2 Scheme 2 is allowed for the TWET problem.

Proof. According to Scheme 2, the early jobs can not be preempted. Thus,

the early jobs perform the same way with the ones in TWET problem without

preemption. Just consider the tardy jobs. First, assume in an optimal

schedule S, all preempted pieces of a tardy job are in the same interval. To

simplify the proof, we assume that the preempted tardy job is job Jp and it

has only two pieces p1 and p2, while p2 is the last piece. Exchange p1 with

22

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

the block of tardy jobs between p1 and p2. After the exchanging, p1 and p2

come together to become a whole. The tardiness of every tardy job between

p1 and p2 is smaller since they have been moved earlier, while the tardiness of

Jp doesn’t change. This contradicts the optimality of schedule S. Thus there

is no preemption in the optimal schedule. Suppose in an optimal schedule

the preempted pieces of a tardy job locate in different intervals. We assume

there’re only two pieces to simplify the proof, one is in intervals Ii, denoted

as piece pi and the other is in Ij, denoted as piece pj, 1 ≤ i < j ≤ K + 1.

Denote the total weight of early jobs between pi and pj as WE and denote

the total weight of tardy jobs between pi and pj as WT . If WE > WT , we can

exchange pj and the whole block between pi and pj to get a smaller objective

value. Otherwise, we can exchange pi and the whole block between pi and

pj to get a smaller objective value. Such exchanging makes the tardy job no

preemption. Thus, in the optimal schedule, there’s no preemption for the

tardy jobs. Scheme 2 is allowed. �

Lemma 2.3.3 Scheme 3 is allowed.

Proof. From Lemma 2.3.2, the preemption in Scheme 3 is allowed for the

tardy jobs. Then for the early jobs, since the earliness of the preempted

early job is calculated as the earliness of the first piece, it is a symmetrical

mirroring of the tardiness while the tardiness of the preempted tardy job is

calculated as the tardiness of the last piece. We can follow the same proof

as in Lemma 2.3.2 to prove that the preemption for the early jobs is also

allowed. Thus, Scheme 3 is allowed. �

With the allowed preemption scheme, we can extend the original TWET

problem to the new one with some preemption. The new problem provides

more flexible structural properties from which we may benefit. We don’t use

23

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

such properties of preemption in our algorithm for the TWET problem with a

constant number of distinct due dates and polynomially related weights. Such

lemmas may be helpful for the more general TWET problem, and that’s why

we list them above.

24

Chapter 3

FPTAS for the Single Machine
TWET Problem with Common
Due Date

Kellerer and Strusevich [23] proposed an FPTAS for the single machine TWT

[22] and TWET [23] problem with a common due date. Our work is based on

and inspired by their work. Thus in this chapter, we give a brief introduction

of their work on TWT and TWET problem, and show how they use a rounding

scheme to get the FPTAS.

3.1 FPTAS for TWT Problem with Common

Due Date

3.1.1 Preliminaries

Recall the TWT problem given in Section 1.1. We consider the TWT problem

with a common due date in this chapter, that is, all the n jobs have the

same due date d. Thus, in a schedule, the tardiness for each job Jj becomes

Tj = d− Cj, j = 1, . . . , n and the objective function becomes
∑n

j=1wjTj. We

want to find a schedule to minimize the objective value. For this problem, the

job which starts before or on the due date and completes after the due date is

called a straddler. Obviously, for each schedule, there’s a specific straddler and

25

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

the jobs before it are early jobs and the jobs after it are tardy. Kellerer et al.

[22] guess the straddler at the beginning through exhaustive enumeration, i.e,

taking each job as the possible straddler. For the remaining m = n − 1 non-

straddling jobs, they first insert these jobs through a dynamic programming

process and then insert the straddler at the very end. The m non-straddling

jobs can be inserted according to the following:

1. Before inserting the jobs, all the non-straddling jobs are ordered by the

WSPT rule.

2. The first early job starts from time zero and the first tardy job starts

from the due date.

3. All the early jobs are processed as a block without intermediate idle time.

4. All the tardy jobs are processed as a block in WSPT order without

intermediate idle time.

The goal is to find the minimum weighted tardiness of the non-straddling jobs

for each chosen straddler.

3.1.2 DP for the Non-straddling Jobs

It has been proved that the tardy jobs are processed in WSPT order (see

Lemma 2.2.1) for the m non-straddling jobs. With the objective to minimize

the total weighted tardiness for m non-straddling jobs, i.e., Zm =
∑m

j=1wjTj,

it is important to decide which jobs are scheduled as early and which as tardy.

Therefore, a Boolean decision variable xj is defined for each job Jj, where

xj = 1 if job Jj is tardy and xj = 0 otherwise. Then the total weighted

tardiness for the m non-straddling jobs in a feasible schedule is given by Zm =∑m
j=1wj(

∑j−1
i=1 pixi)xj. Here “feasible” means that the total processing time

of all early jobs is no more than d, i.e.,
∑m

j=1 pj(1− xj) ≤ d.

26

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Define k as the number of jobs scheduled so far; Zk is the current value

of the objective function; Ak =
∑k

j=1 pj is the total processing time of all k

jobs; y :=
∑k

j=1 pjxj is the total processing time of the tardy jobs among the

first k jobs; W :=
∑k

j=1wjxj is the total weight of these tardy jobs.

A state of the dynamic programming (DP) is defined as (k, Zk, yk,Wk)

after the first k jobs have been inserted. The initial state is (0, Z0, y0,W0) =

(0, 0, 0, 0). For all k from 0 to m−1, the transition from a state (k, Zk, yk,Wk)

into any state (k + 1, Zk+1, yk+1,Wk+1) is defined as follows:

1. Define xk+1 = 1. Then the job Jk+1 in WSPT order is decided to be early

feasibly, i.e., Ak − yk ≤ d. Then Zk+1 = Zk and yk+1 = yk, Wk+1 = Wk.

2. Define xk+1 = 0, i.e., the job Jk+1 is processed tardy which is always

feasible. Then yk+1 = yk + pk+1, Wk+1 = Wk + wk+1 and Zk+1 = Zk +

wk+1yk+1.

The DP above generates a collection of states (m,Zm, ym,Wm) after in-

serting all m non-straddling jobs. The decision variables can be found by

backtracking and we can get the corresponding schedule for each state. Since

every transition between the states in the DP process is feasible, every state

in the form of (m,Zm, ym,Wm) is feasible as well, and corresponds to a re-

al schedule sequence of m jobs. Then the next step is to insert the chosen

straddler back to get the final schedule for all n jobs.

3.1.3 Inserting the Straddler Back

Before applying the above DP for the m non-straddling jobs, the straddler

has been guessed at the beginning. Then after we get the schedule of m

jobs, we need to insert the straddler back into every feasible schedules from

the DP. More specifically, the straddler should be processed starting from the

completion time of the last early job. The tardy block also needs to be pushed

27

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

forward to future time to make enough space to insert the straddler. Assume

that the straddler has weight w and processing time p. For each schedule Sm,

compute x = Am − ym + p− d; x is the tardiness of the straddler, and it’s the

amount of processing time by which the tardy block is pushed as well. Then

after inserting the straddler, the tardiness of all the tardy jobs in the tardy

block is increased by x. From the definition of the straddler, we only consider

that 0 < x ≤ p. The total weighted tardiness for the TWT problem with

common due date is Z = Zm+ (w+Wm)x. For every chosen straddler, we can

find a schedule with minimal Z. After considering all possible straddlers, an

optimal schedule for the TWT problem with common due date can be found.

Since the schedule Sm with minimum Zm may not give the minimal Z

from the formula Z = Zm + (w + Wm)x, all the schedules Sm after inserting

m jobs according to the DP should be considered when inserting the straddler

back.

3.1.4 Rounding Scheme

First consider the running time of the DP algorithm in Section 3.1.2. Since

each job of the m non-straddling jobs can be scheduled as either early or tardy,

the dynamic programming above will generate O(2m) = O(2n) states. This

complexity is exponential in the problem size and it is too inefficient when the

problem becomes large. Then a rounding scheme should be used to reduce

the number of states to make the number of generated states polynomial. To

reduce the number of states, it’s necessary to reduce the number of distinct

values for each variable in the state. Meanwhile, we do not want to lose much

accuracy. To do this, Kellerer et al [23] propose an FPTAS using a rounding

scheme. The complexity of the algorithm is polynomial in the problem size,

and at the same time, the solution is bounded by a factor of 1 + ε of the

optimal. The number 1 + ε is the approximation ratio. The rounding scheme

28

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

is defined as follows.

1. Find an upper bound ZUB on the optimal objective value Z∗ such that

ZUB/Z∗ ≤ 2.

2. For any ε > 0, define ZLB = 1
2
ZUB and δ = εZLB

4m
.

3. Sort all the h ≤ m distinct weights in decreasing order, i.e., wπ(1) >

wπ(2) > · · · > wπ(h). Split the interval [0, zUB

wπ(h)
] into h intervals I1 =

[0, z
UB

wπ(1)
], I2 = [z

UB

wπ(1)
, z

UB

wπ(2)
], . . . , Ih = [zUB

wπ(h−1)
, zUB

wπ(h)
]. Further divide each

interval Ij, 1 ≤ j ≤ h into subintervals Irj of length δ
wπ(j)

.

4. Store the initial state (0, 0, 0, 0). For each k, 1 ≤ k ≤ m, do the following:

(a) For each state (k, Zk, yk), round Zk up to the next multiple of δ.

Round the value of Wk up to the nearest power of (1 + ε
2
)

1
m .

(b) For the states with the same Zk, Wk and a subinterval Irj , determine

the smallest and largest value of yk that belong to Irj as ymink and

ymaxk . Store only two states(k, Zk, y
min
k) and (k, Zk, y

max
k).

From the rounded DP with the rounding scheme, the numbers of distinct

Zk, Wk and yk are rounded to polynomial to guarantee that the total number

of states is polynomial. Kellerer et al. have proved that this rounding scheme

gives an FPTAS in [22].

3.2 FPTAS for TWET with Common Due

Date

3.2.1 Preliminaries

First recall the TWET problem given in Section 1.1. We consider the TWET

problem with a common due date in this chapter, that is, all the n jobs have

the same due date d. Thus, in a schedule, for each job Jj, j = 1, 2, . . . , n, the

29

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

earliness becomes Ej = d − Cj and the tardiness becomes Tj = Cj − d. The

goal is to find a schedule to minimize the objective function
∑n

j=1wj(Ej +Tj).

For this problem, the job which starts before the due date d and finishes after

d is defined as the straddler.

If the total processing time P =
∑n

j=1 pj is greater than the common

due date d, the due date is said to be small or restrictive. Otherwise, when

P ≤ d, the due date is called large or nonrestrictive. Such a classification is

needed since the due date may influence the structure of a feasible schedule

and complexity status of the problem. Kovalyov and Kubiak [26] present an

FPTAS for the TWET problem with the nonrestrictive due date. Kellerer and

Strusevich [23] focus on the more difficult restrictive case.

For the single machine TWET problem with restrictive due date, the

optimal schedule can be sought for in two classes of schedules as demonstrated

in Property 1 of [16]. First, some job will complete exactly at time d in

an optimal schedule, i.e., it has neither earliness nor tardiness. There is no

intermediate idle time between jobs, but there may be some idle time before

the first early job. We call this class of schedules Class 1. Second, in an

optimal schedule, the early jobs are processed starting at time zero and are

followed by the straddler which starts before time d but finishes after d; then,

the straddler is followed by the tardy jobs. This class of schedules is called

Class 2. Namely, Class 1 means scheduling without a straddler while Class 2

means scheduling with a straddler. When the due date is nonrestrictive, only

Class 1 schedules exist.

For Class 1, there is no straddler which starts before time d and is com-

pleted after d. Then all the n jobs are non-straddling jobs. For Class 2, we can

guess the straddler first, and then there are n− 1 non-straddling jobs left. It’s

easy to see that any non-straddling job finishing before the due date d is early

and starting after d is tardy. Thus, the due date separates all non-straddling

30

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

jobs into two categories: early and tardy jobs. We can process these jobs

according to the following:

1. Before inserting the jobs, all the non-straddling jobs are ordered by the

WSPT rule and inserted in the schedule one by one.

2. All early jobs are processed as a block in inverse WSPT (I-WSPT) order

without intermediate idle time and complete by the due date.

3. All the tardy jobs are processed as a block in WSPT order without

intermediate idle time and start at the due date.

The goal is to find the minimum weighted earliness and tardiness of the non-

straddling jobs. And for Class 2 schedules, we need also to insert the straddler

back to get the final schedule.

3.2.2 DP for the Non-straddling Jobs

For the non-straddling jobs, it has been proved that the early jobs are pro-

cessed in inverse WSPT order and the tardy jobs are processed in WSPT

order (see Corollary 2.2.1). To minimize the total weighted earliness and tar-

diness for m non-straddling jobs, i.e., Zm =
∑m

j=1wj(Ej + Tj), it is impor-

tant to decide which jobs are scheduled as early and which as tardy. There-

fore, a Boolean decision variable xj is defined for each job Jj, where xj = 1

if job Jj is early and xj = 0 otherwise. Then the total weighted earliness

and tardiness for the m non-straddling jobs in a feasible schedule is given by

Zm =
∑m

j=1wj(
∑j−1

i=1 pixi)xj +
∑m

j=1wj(
∑j

i=1 pi(1−xi))(1−xj), which can be

written as

Zm =
∑

1≤i<j≤m

piwjxixj +
∑

1≤i<j≤m

piwj(1− xi)(1− xj) +
m∑
j=1

pjwj(1− xj)

Here “feasible” means that the total processing time of all early jobs is no

more than d, i.e.,
∑m

j=1 pjxj ≤ d. Thus, finding a best schedule for the non-

31

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

straddling m jobs reduces to the following Boolean quadratic programming

problem:

Minimize Zm =
∑

1≤i<j≤m

piwjxixj +
∑

1≤i<j≤m

piwj(1− xi)(1− xj) +
m∑
j=1

pjwj(1− xj)

(3.2.1)

Subject to
m∑
j=1

pjxj ≤ d

xj ∈ 0, 1, j = 1, 2, . . . ,m.

This is a special case of a symmetric quadratic knapsack problem and we will

show to solve a symmetric quadratic knapsack problem in the next section.

3.2.3 Symmetric Quadratic Knapsack Problem

The Symmetric Quadratic Knapsack Problem, or SQKP, is defined as follows:

Minimize Zm =
∑

1≤i<j≤m

αiβjxixj +
∑

1≤i<j≤m

αiβj(1− xi)(1− xj) +
m∑
j=1

pjwj(1− xj)

(3.2.2)

+
m∑
j=1

µjxj +
m∑
j=1

νj(1− xj) + Γ

Subject to
m∑
j=1

αjxj ≤ A

xj ∈ 0, 1, j = 1, 2, . . . ,m.

where m is the number of items, all coefficients αj, βj, µj, νj, j = 1, 2, . . . ,m,

and Γ are non-negative integers.

Because both the linear and quadratic parts of the objective function

are divided into two parts, one depending on xj, and the other depending on

(1 − xj), this problem is called symmetric. Notice that the coefficients αj in

the linear constraint are the same as in the quadratic terms of the objective

function. We can view αj as the weight of item j, 1 ≤ j ≤ m, i.e., xj = 1

32

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

means that item j is put into the knapsack, while xj = 0 means that this item

is not placed into the knapsack. The value A is the capacity of the knapsack.

In [24], a dynamic programming (DP) algorithm has been presented for

the SQKP. The items are scanned in their numbering order and the corre-

sponding decision variables xj, 1 ≤ j ≤ m are given either the value of 1 (the

item is put into the knapsack) or 0 (the item isn’t put into the knapsack).

Define k as the number of items processed so far; Zk is the current value of

the objective function; y :=
∑k

j=1 αjxj is the total weight of the items put into

the knapsack. Also compute the values Ak =
∑k

j=1 αj, k = 1, 2, . . . ,m which

is the total weight of all the k jobs.

The state of the dynamic programming is defined as (k, Zk, yk) after the

first k items have been placed. The initial state is (0, Z0, y0) = (0, 0, 0). For

all k from 0 to m − 1, the transition from a state (k, Zk, yk) into any state

(k + 1, Zk+1, yk+1) by assigning the next variable xk+1 is defined as follows:

1. Define xk+1 = 1, i.e., the item k + 1 can be placed into the knapsack

feasibly, i.e., yk + αk+1 ≤ A. Then Zk+1 = Zk + βk+1yk + µk+1 and

yk+1 = yk + αk+1.

2. Define xk+1 = 0, i.e., the item k+1 is not put into the knapsack which is

always feasible. Then Zk+1 = Zk + βk+1(Ak − yk) + νk+1 and yk+1 = yk.

The DP above outputs a collection of states (m,Zm, ym) after assigning

all m items. The decision variables can be found by backtracking and we can

get the corresponding schedule for each state. Similarly, a dual DP is needed

with the state form of (k, Zk, ỹk) to design an FPTAS, where k and Zk have

the same meaning as above, while ỹk = Ak−yk, which is the total weight of the

items not put into the knapsack. This dual DP follows the similar transition

between states as the above DP. In the next section we show a rounding scheme

applied to the DP to keep a polynomial number of states.

33

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

3.2.4 Rounding Scheme

Similarly to the DP in Section 3.1.4, the dynamic programming above also

generates O(2m) = O(2n) states. We need to use the rounding scheme to

reduce the number of states. The number of distinct values for each variable

in the state should be reduced while no much accuracy is lost. Kellerer et

al. [23] propose an FPTAS using a rounding scheme. The complexity of the

algorithm is polynomial, and the solution is bounded by the approximation

ratio 1 + ε of the optimal. The rounding scheme works as follows:

1. Find an upper bound ZUB on the optimal objective value Z∗ such that

ZUB/Z∗ ≤ ρ. For any ε > 0, define ZLB = 1
ρ
ZUB and δ = εZLB

2m
.

2. Sort all the h ≤ m distinct weights in decreasing order, i.e., wπ(1) >

wπ(2) > · · · > wπ(h). Split the interval [0, zUB

wπ(h)
] into h intervals I1 =

[0, z
UB

wπ(1)
], I2 = [z

UB

wπ(1)
, z

UB

wπ(2)
], . . . , Ih = [zUB

wπ(h−1)
, zUB

wπ(h)
]. Further divide each

interval Ij, 1 ≤ j ≤ h into subintervals Irj of length δ
wπ(j)

.

3. For each k, 1 ≤ k ≤ m, do the following:

(a) For each state (k, Zk, yk), round Zk up to the next multiple of

δ. For the states with the same Zk and a subinterval Irj , de-

termine the largest and smallest values of yk and store only two

states(k, Zk, y
min
k) and (k, Zk, y

max
k).

(b) For each dual state (k, Zk, ỹk), round Zk up to the next multiple of

δ. Similarly, for the states with the same Zk and a subinterval Irj ,

store only two states(k, Zk, ỹk
min) and (k, Zk, ỹk

max).

(c) For each state (k, Zk, yk) stored in Step 3(a), store the dual state

(k, Zk, ỹk) additionally where ỹk = Ak − yk. Similarly, for each

dual state (k, Zk, ỹk) stored in Step 3(b), store the state (k, Zk, yk)

additionally where yk = Ak − ỹk.

34

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

According to the rounding scheme, distinct Zk, yk and ỹk are rounded to a

polynomial number to guarantee that the total number of states is polynomial.

In [23], Kellerer et al. have proved that this rounding scheme gives an FPTAS

when ρ is a constant.

Compare the TWET problem with a common due date in formula (3.2.1)

and the problem SQKP in formula (3.2.2). We observe that the former problem

is a special case of the latter with:

α = pj, β = wj, µj = 0, νj = wjpj, j = 1, 2, . . . , n, A = d, Γ = 0.

Thus, we can use the above DP and rounding scheme to solve the TWET

problem. Kellerer et al. [23] also have shown a constant-ratio approximation

algorithm. Here we skip that part and details can be found in section 4 of [23].

The above rounding scheme gives an FPTAS for the TWET problem with a

common due date.

3.2.5 Scheduling Without a Straddler

For Class 1 schedule defined in Section 3.1.1, since there’s no straddler, all n

jobs are non-straddling jobs. It’s easy to see that the above DP with m = n

can be used directly to get the optimal solution which corresponds to the

smallest value of Zm among all found states of the form (m,Zm, ym). Moreover,

applying the DP with the rounding scheme above, an FPTAS can be developed

to get an approximation solution with a ratio 1 + ε.

3.2.6 Scheduling With a Straddler

Recall that we have guessed a straddler for Class 2 schedule in Section 3.2.1.

Through exhaustive enumeration, we select every job from all the n jobs as a

possible straddler. More specifically, the straddler is processed before the due

date d and is completed after d. Besides, there’s no idle time before the first

early job after inserting the straddler. Suppose the straddler has weight w and

35

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

processing time p. Then after inserting the remaining m = n − 1 according

to the DP in Section 3.2.2, the cases either ym = d or ym + p ≤ d must

be ignored since the chosen job cannot be inserted as a straddler. Compute

x = d−ym
p

and we only need to consider 0 < x < 1. Let W denote the total

weight of all n jobs. For the schedule corresponding to the state (n, Zm, ym),

define Wm to be the total weight of the early jobs. We can compute the total

weighted earliness and tardiness for the TWET problem with common due

date as Z = Zm +Wmpx+ (W −Wm)p(1− x).

Thus, we modify the state of the DP algorithm in Section 3.2.2 into the

form (k, Zk, yk, Vk) where k, Zk and yk have the same meaning as in the DP

algorithm, while

Vk := p
k∑
j=1

wjxj

denotes the total weight of the early jobs times the processing time of the strad-

dler. Then the transition from state (k, Zk, yk, Vk) to (k + 1, Zk+1, yk+1, Vk+1)

becomes

1. If job Jk+1 is early when yk + pk+1 ≤ d,

Zk+1 = Zk + wk+1yk, yk+1 = yk + pk+1, Vk+1 = Vk + wk+1p

2. If job Jk+1 is tardy,

Zk+1 = Zk + wk+1(Ak − yk) + wk+1pk+1, yk+1 = yk, Vk+1 = Vk

Obviously, with the final states of form (m,Zm, ym, Vm), the total objective

value is Z = Zm+(2Vm−Wp)x+(Wp−Vm) where W and x is defined above.

Since the state in DP has changed into the new one (k, Zk, yk, Vk) from

(k, Zk, yk), a new rounding scheme is needed to keep the total number of states

polynomial. We modify the Step 3(a) in the rounding scheme in Section 3.2.4

as follows: each time round up Zk and Vk for all states to the next multiple of δ.

36

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

For the states having the same value of Zk, Wk and a subinterval Irj , determine

the largest and smallest values of yk such that yk ∈ [ymink , ymaxk], then save only

two states (k, Zk, y
min
k , Vk) and (k, Zk, y

max
k , Vk). Step 3(b) is altered similarly.

With the modified rounding scheme, an FPTAS can be obtained.

Combining the Class 1 with Class 2 schedules, the solution for the TWET

problem on a single machine with a common due date is the smaller one

between the solutions of the two kinds of schedules. Thus overall, an FPTAS

has been presented to solve the problem.

37

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

38

Chapter 4

FPTAS for the Single Machine
TWET Problem with Distinct
Due Dates and Polynomially
Related Weights

Based on the work of TWET problem on the single machine with common

due date [23] and the related TWT problem with common due date [22] and

constant distinct due dates [21], we analyze the structural properties of an

optimal schedule of the TWET problem with a constant number of distinct

due dates and polynomially related weights to define a schedule in which only

the non-straddling jobs are considered. We propose a dynamic programming

algorithm to obtain the abstract schedule and convert it into an FPTAS via a

rounding scheme.

4.1 Preliminaries

Recall the TWET problem with the Assumption 1.1.1 in Section 1.1. The

number K of distinct due dates with d1 < d2 < · · · < dK is a constant. And

the maximal weight wmax and the minimal weight wmin of all the n jobs is

polynomially related, i.e., wmax
wmin

= O(poly(n)).

For convenience, we also define the artificial due date d0 = 0. Then the

39

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

distinct due dates partition the time horizon into K+1 intervals Il = [dl−1, dl)

for l = 1, ..., K, and IK+1 = [dK ,∞). Besides, we group the jobs into K classes

C1, C2, ..., CK according to their due dates.

In any schedule of the n jobs, a job that finishes before or on its due date

is an early job, otherwise it is tardy. We also call any job that (i) ends at a

due date, or (ii) starts before a due date but finishes after it, a straddler. Note

that here we give a broader definition of the straddler when we treat the job

that ends at a due date as a straddler. In order to simplify the exposition in

this thesis we will assume that these straddlers are distinct, i.e., no straddler

straddles more than one due date. Thus we have K straddlers for the K due

dates. In what follows, we will assume that we have guessed the straddlers

s1, ..., sK for the K due dates. By “guessing” we mean an exhaustive enumer-

ation of all O(nK) possibilities, solving the problem for each, and outputting

the best of these solutions. Then the problem can be divided into two parts:

first calculate an optimal schedule for the remaining m = n−K jobs, and then

insert the K straddlers.

Without loss of generality, we assume that all values are integers, and

the jobs are ordered according to their Inverse Weighted Shortest Processing

Time (I-WSPT) rule, i.e., p1
w1
≥ p2

w2
≥ . . . ≥ pn

wn
. We will also assume that we

have guessed an upper bound Zub such that for the optimal value OPT we

have Zub/2 ≤ OPT ≤ Zub. This can be done by running the algorithm with

Zub = 2x, for all x = 0, 1, . . . , U , with 2U being a trivial upper bound of OPT ,

e.g. U = log(n2wmaxpmax) = O(log n+ logwmax + log pmax).

For the remaining m = n−K jobs, we start to schedule them one by one

according to the I-WSPT order. To insert a job in some interval, we need to

check if there’s enough space to insert it. Besides, we still need to check that

we can insert the straddler back in the final step to get a feasible schedule.

Thus, we come up with several feasibility checking conditions to make sure

40

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Figure 4.1: Insert job Jk as a tardy job in interval Ii

Figure 4.2: Insert job Jk as an early job in interval Ii

that the schedule will be feasible. After checking such conditions, we insert

the jobs from each due date, i.e, every time moving the existing tardy jobs

block forward to make the space for the new tardy job as shown in Figure 4.1,

or moving the existing early jobs block backward to make the space for the

new early job as Figure 4.2 shows. The following are structural properties of

an optimal schedule with an extension for K due dates from Corollary 2.2.1,

proven by simple exchange arguments:

Lemma 4.1.1 In any interval Ij, j = 1, .., K + 1, the early jobs must be pro-

cessed in Inverse WSPT (I-WSPT) order and the tardy jobs must be processed

in WSPT order.

Lemma 4.1.2 In any interval Ij, j = 1, .., K + 1, the tardy jobs start right

after straddler sj−1, and they are processed contiguously, followed possibly by

idle time, and then followed by the early jobs which are processed contiguously

and end right before sj.

41

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Since the algorithm will construct a schedule by inserting the jobs one-

by-one, for every partial schedule we define the following variables:

• yik, 1 ≤ i ≤ K+1, 1 ≤ k ≤ m : the total processing time of those (tardy)

jobs among the first k jobs, that are processed in Ii. Also y1k = 0.

• W i
k, 1 ≤ i ≤ K + 1, 1 ≤ k ≤ m : the total weight of those (tardy) jobs

among the first k jobs, that are processed in Ii. Also W 1
k = 0.

• eik, 1 ≤ i ≤ K+1, 1 ≤ k ≤ m : the total processing time of those (early)

jobs among the first k jobs, that are processed in Ii. Also eK+1
k = 0.

• V i
k , 1 ≤ i ≤ K + 1, 1 ≤ k ≤ m : the total weight of those (early) jobs

among the first k jobs, that are processed in Ii. Also V K+1
k = 0.

• Atk, 1 ≤ t ≤ K, 1 ≤ k ≤ m : the total processing time of the class Ct jobs

among the first k jobs. Notice that these quantities can be calculated in

advance.

We call the schedule for these m jobs an abstract schedule to distinguish

the final schedule for all the n jobs. In the next section we will show how to

develop a dynamic programming algorithm to get a schedule.

4.2 An Exact Dynamic Programming Algo-

rithm

In this section we present a dynamic programming (DP) algorithm that cal-

culates an optimal schedule. As mentioned above, we will leave the insertion

of the K straddlers at the very end. Let m = n − K be the number of the

rest of the jobs. The states of the DP are organized in stages, with stage k

corresponding to the insertion of the first k jobs in I-WSPT order in the sched-

ule. The transitions from states in stage k to ones in stage k + 1 correspond

42

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

to the placement of job Jk+1 in all possible K + 1 intervals (either as early

or as tardy, depending on the class of Jk+1). The method of inserting Jk+1

in interval Il is important: If Jk+1 is tardy in this interval, the job is inserted

starting exactly at due date dl−1, after we push the other tardy jobs towards

the future in order to make room for pk+1 time units; if Jk+1 is early in this

interval, the job is inserted ending exactly at due date dl, after we push the

other early jobs towards the past in order to make room for pk+1 time units.

A state in stage k of the DP stores the following tuple:

(k, Zk;V
1
k ; y2k,W

2
k , e

2
k, V

2
k ; y3k,W

3
k , e

3
k, V

3
k ; . . . ; yK+1

k ,WK+1
k , eK+1

k , V K+1
k)

where Zk is the total weighted earliness-tardiness of the first k scheduled jobs.

Note that some of the yjk,W
j
k , e

j
k, V

j
k may not exist and we don’t keep e1k. In

stage 0 there is only the state (0, 0, . . . , 0). When inserting job Jk+1 in an

interval, and in order for this transition to be feasible, there must be at least

pk+1 free space in the interval. Hence, in order to be able to check of the

feasibility of job placements, we define L
(j−1)j
k to be the free space in interval

Ij, 1 ≤ j ≤ K + 1 in stage 0 ≤ k ≤ m. Then, we have

L
(j−1)j
k =


d1 −

∑K
t=1A

t
k +

∑K+1
j=2 (yjk + ejk), j = 1

dj − dj−1 − (yjk + ejk), 2 ≤ j ≤ K
∞, j = K + 1

(4.2.1)

Let L0j
k =

∑j
l=1 L

(l−1)l
k be the free space from 0 to dj. We will also need the

following quantities:

uik =

{
0, i = 0

max{0, psi − L
(i−1)i
k + ui−1k }, 1 ≤ i ≤ K − 1

(4.2.2)

In order to check the feasibility of inserting the (k + 1)-th job Jk+1 of class Ct

in interval Ij = [dj−1, dj), we check the following two conditions:

Condition 1 Check whether L
(j−1)j
k ≥ pk+1 holds.

Condition 2 After inserting job Jk+1, check whether uik+1 ≤ L
i(i+1)
k+1 , for all

1 ≤ i ≤ K − 1.

43

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Condition 1 is used to check whether there is enough space to insert job Jk+1

in interval Ij. We will show below that the fulfillment of Condition 2 implies

that there is still enough empty space for the straddlers after inserting Jk+1.

If the placement of Jk+1 in Ij satisfies these two conditions, then it defines

a feasible transition from state (k, Zk; . . .) to state (k+1, Zk+1; . . .). The latter

state must satisfy the following:

• If Jk+1 is early, i.e., j ≤ t ≤ K, then

Zk+1 = Zk + V j
k pk+1, e

j
k+1 = ejk + pk+1, V

j
k+1 = V j

k + wk+1,

and all the other variables remain unchanged.

• If Jk+1 is tardy, i.e., 1 ≤ t ≤ (j − 1), then

Zk+1 = Zk + (W j
k + wk)pk+1, y

j
k+1 = yjk + pk+1, W

j
k+1 = W j

k + wk+1,

and all the other variables remain unchanged.

If Zk+1 > Zub, then the transition is rendered infeasible (although it satisfies

Conditions 1,2). If at some point we determine that this inequality is true

for all possible insertions of Jk+1 then we reject Zub, we replace it with a new

Zub := 2Zub, and start the algorithm from scratch.

Placement of the straddlers

After calculating the states of stage m, we insert the K straddlers. For strad-

dler sj, let xj be its part that is executed before dj. Then, given a final state

(m,Zm; . . .), we solve the following linear program:

min
K∑
j=1

(V j
mxj +W j+1

m (psj − xj)) s.t. (LP)

psj − xj + xj+1 ≤ Lj(j+1)
m 1 ≤ j ≤ K − 1

x1 ≤ L01
m

0 ≤ xj ≤ psj 1 ≤ j ≤ K

44

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Lemma 4.2.1 (LP) above has an optimal solution.

Proof. The objective is lower bounded by 0. We show that xj := psj − ujm is

a feasible solution.

Obviously 0 ≤ xj ≤ psj . By the definition of ujm we have that

xj = min{psj , L(j−1)j
m − uj−1m }, 2 ≤ j ≤ K − 1

Therefore xj ≤ L
(j−1)j
m −psj−1

+xj−1, which implies that psj−xj+xj+1 ≤ L
j(j+1)
m ,

for 1 ≤ j ≤ K − 1. Also, x1 = min{ps1 , L01
m} ≤ L01

m holds.

Every feasible and bounded minimization problem has an optimal solution. �

4.3 The FPTAS

It is obvious that the pseudo-polynomial algorithm of Section 4.2 computes an

optimal schedule. In this section we will produce an FPTAS by rounding the

states of the DP part of that algorithm (while we will use the same method

for inserting the straddlers at the end).

4.3.1 The Algorithm with Rounding Scheme

Let ε > 0 be the approximation parameter of the FPTAS. We define Zlb :=

Zub/2 and δ = εZlb
4m

. Let there be N ≤ m distinct values among wj, j =

1, 2, ...,m; we sort them in decreasing order wπ(1) > wπ(2) > ... > wπ(N). We

split the interval [0, Zub/wπ(N)] into x = d Zub

δ̂wπ(N)
e subintervals {Hi}xi=1 of length

δ̂ = δ
n2wmax

(note that the length of the last subinterval may be smaller than

δ̂).

We change the original problem P into a new problem P ′ with exactly

the same set of jobs, but with new due dates d′j, j = 1, ..., K defined as follows:

d′j = dj + (j − 1)2nδ̂, j = 1, . . . , K (4.3.3)

45

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Figure 4.3: The original due dates and intervals

Figure 4.4: The new due dates and intervals

Then we have new intervals I ′j, j = 1, ..., K + 1. The original due dates and

the new due dates are shown in Figures 4.3 and 4.4.

Similarly, we can define the free space L′ in each interval, the values

u′, and the conditions for feasible transitions exactly in the same way as in

Section 4.2. We will refer to the latter as Conditions 1’ and 2’. We will also

need to compare states S produced by the FPTAS to states S∗ produced by

the exact DP; we will use the asterisk (∗) to denote quantities that belong to

S∗, in order to distinguish them from quantities that belong to S.

The new DP algorithm with rounding scheme is given in Figure 4.5.

Note the Step 3 in the Algorithm FPTAS, for the states with the same

signature, we keep the only one with the maximal
∑K+1

j=2 (yjk+1 + ejk+1). The

reason behinds this is that we want to make a bigger free space in the first

interval since we don’t extend the due date according to equation 4.3.3. We

know that all the processing time of the k processed jobs is a specific number.

For the state with maximal
∑K+1

j=2 (yjk+1 + ejk+1) which is the total processing

time of jobs processed between the second interval to the last one among k jobs,

the state has the minimum earliness in the first interval which corresponds to

a bigger free space in the first interval.

46

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Algorithm FPTAS

Step 1. Order all m jobs in I-WSPT order. The initial state is (0, 0, ..., 0).

Step 2. Each state in stage 1 ≤ k < m

(k, Zk; y
1
k,W

1
k , V

1
k ; y2k,W

2
k , e

2
k, V

2
k ; . . . ; yK+1

k ,WK+1
k , eK+1

k , V K+1
k)

will generate at most K + 1 new states (feasible transitions), one
for each placement of job Jk+1 to interval Ij, j = 1, . . . , K + 1. In
these new states, we round Zk+1 up to the next multiple of δ (hence

Zk+1 takes at most Zub

δ
= O(n

ε
) distinct values), and W j

k+1 and V j
k+1

up to the nearest power of (1 + ε
2m

)1/m (hence W j
k+1 and V j

k+1 takes
O(n2 logW/ε) distinct values, where W is the total weight of the m
jobs).

Step 3. For each state produced in Step 2, the values y1k+1, y
2
k+1, e

2
k+1, . . . ,

yK+1
k+1 , eK+1

k+1 fall in subintervals Hi; call the tuple of these subintervals
the signature of the state. We group together the states that have
the same values of Zk+1,W

1
k+1, V

1
k+1, . . . ,W

K+1
k+1 , V

K+1
k+1 and the same

signature. From each group, we keep only the state that maximizes∑K+1
j=2 (yjk+1 + ejk+1); all the transitions going to the group states we

discard become transitions to the state we keep.

Figure 4.5: Algorithm FPTAS

4.3.2 Proof of Near Optimality

With the above rounding scheme, we are going to show that an optimal sched-

ule is included among the generated schedules and a schedule (may be different

from the optimal one) which produces an objective value bounded by 1 + ε

approximation ratio is also included.

Lemma 4.3.1 Let {S∗k}mk=0 be the sequence of states produced by the optimal

placement of jobs in the exact DP of Section 4.2. Then the same sequence of

placements is feasible for Algorithm FPTAS, and the sequence of states {Sk}mk=0

47

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

produced satisfies

Zk ≤ Z∗k +
kε

2m
Z∗k + kδ, ∀k. (4.3.4)

Proof. We use induction. For 0 ≤ k ≤ m, the inductive hypothesis for step

k, in addition to (4.3.4), contains the following:

K+1∑
j=2

(yjk + ejk) ≥
K+1∑
j=2

(yj∗k + ej∗k) (I)

(yjk + ejk)− (yj∗k + ej∗k) ≤ 2kδ̂, 2 ≤ j ≤ K + 1 (II)

W j∗
k ≤ W j

k ≤ W j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (III)

V j∗
k ≤ V j

k ≤ V j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (IV)

The placement of job Jk+1 going from S∗k to S∗k+1 is also feasible going from Sk to Sk+1.
(V)

where yjk, e
j
k, W

j
k , V j

k are from the state Sk of P ′, and yjk, e
j
k, W

j∗
k , V j∗

k are

from the state S∗k of P as described in the lemma.

In order to avoid cluttering our notation, below we use L, u instead of L′,

u′ for problem P ′, and use L∗, u∗ instead of L, u stand for the corresponding

variables for problem P .

For the base case (k = 0), first notice that (4.3.4), (I), (II), (III), (IV),

(V) hold trivially.

1. First we prove that (I), (II) and (V). Suppose that the optimal sequence

places the first job J1 in interval It. We first observe that Conditions 1,

2 must hold for S∗0 :

L
(t−1)t∗
0 ≥ p1 (4.3.5)

L
j(j+1)∗
1 ≥ uj∗1 ,∀ j = 1, ..., K − 1 (4.3.6)

From the definition of L0 we can easily prove that

L
(j−1)j
0 ≥ L

(j−1)j∗
0 , j = 1, ..., K + 1 (4.3.7)

48

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

and therefore

L
(t−1)t
0 ≥ L

(t−1)t∗
0

(4.3.5)

≥ p1

and Condition 1’ holds. To check whether Condition 2’ holds, first note

that since only J1 has been inserted, there’s no rounding happening in

Step 3 of Algorithm FPTAS after inserting J1. Thus (4.3.7) implies

L
(j−1)j
1 ≥ L

(j−1)j∗
1 , j = 1, ..., K + 1. (4.3.8)

By definition, u01 = 0 = u0∗1 , and the repeated application of (4.3.8) gives

uj1 ≤ uj∗1 ,∀ j = 1, ..., K − 1. (4.3.9)

Combining (4.3.6), (4.3.8) and (4.3.9),

L
j(j+1)
1 ≥ L

j(j+1)∗
1 ≥ uj∗1 ≥ uj1, j = 1, ..., K − 1

and Condition 2’ holds, as well. Hence it is feasible to insert J1 in I ′t.

We assume that the inductive hypothesis is true up to the placement of

job Jk, 1 ≤ k ≤ m− 1.

For inductive step k + 1, suppose the optimal DP sequence places Jk+1

in interval It. Conditions 1 & 2 imply

L
(t−1)t∗
k ≥ pk+1 (4.3.10)

L
j(j+1)∗
k+1 ≥ uj∗k+1, j = 1, ..., K − 1. (4.3.11)

Then (since also L
K(K+1)
k =∞ = L

K(K+1)∗
k)

L
(j−1)j
k

(I)

≥ L
(j−1)j∗
k , j = 1, ..., K + 1 (4.3.12)

(4.3.10) and (4.3.12) imply that Condition 1’ holds.

Let y′jk+1 and e′jk+1 be the tardiness and earliness after inserting Jk+1 in

I ′t but before the rounding according to Step 3 of the algorithm. From

Step 2, we know that

y′
t
k+1 + e′

t
k+1 = ytk + etk + pk+1

49

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

y′
j
k+1 + e′

j
k+1 = yjk + ejk, j = 2, ..., K + 1 & j 6= t

K+1∑
j=2

(y′
j
k+1 + e′

j
k+1) =

K+1∑
j=2

(yjk + ejk) + pk+1

and similarly for the optimal DP. Therefore

K+1∑
j=2

(y′
j
k+1 + e′

j
k+1)−

K+1∑
j=2

(yj∗k+1 + ej∗k+1) =
K+1∑
j=2

(yjk + ejk)−
K+1∑
j=2

(yj∗k + ej∗k)
(I)

≥ 0

(4.3.13)

(y′
j
k+1 + e′

j
k+1)− (yj∗k+1 + ej∗k+1) = (yjk + ejk)− (yj∗k + ej∗k)

(II)

≤ 2kδ̂ (4.3.14)

Suppose the state S ′k+1 with values y′jk+1 and e′jk+1 produced in Step

2 has signature (H1, H2,). According to Step 3, of all the states

with the same signature, we keep only state Sk+1 with the maximum∑K+1
j=2 (y′jk+1 + e′jk+1). Let the tardiness and earliness of Sk+1 be yjk+1 and

ejk+1, ∀j. Then

K+1∑
j=2

(yjk+1 + ejk+1) ≥
K+1∑
j=2

(y′
j
k+1 + e′

j
k+1)

(4.3.13)

≥
K+1∑
j=2

(yj∗k+1 + ej∗k+1). (4.3.15)

Since state Sk+1with yjk+1, e
j
k+1 and state S ′k+1 with y′jk+1, e

′j
k+1 have the

same signature (H1, H2,) and each H i interval has length δ̂, we have

|yjk+1 − y
′j
k+1| ≤ δ̂

|ejk+1 − e
′j
k+1| ≤ δ̂

and, therefore,

(yjk+1 + ejk+1)− (yj∗k+1 + ej∗k+1) ≤ (y′
j
k+1 + e′

j
k+1)− (yj∗k+1 + ej∗k+1) + 2δ̂

(4.3.14)

≤ 2(k + 1)δ̂

Up to now, we have proved that the two inequalities (I),(II) hold after

inserting Jk+1.

From the definitions and (4.3.15) it is easy to see that

L
(j−1)j
k+1 ≥ L

(j−1)j∗
k+1 , j = 1, ..., K + 1 (4.3.16)

50

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

and this, in turn, implies that

ujk+1 ≤ uj∗k+1,∀ j = 1, ..., K − 1 (4.3.17)

(4.3.11),(4.3.16),(4.3.17) show that

L
j(j+1)
k+1 ≥ L

j(j+1)∗
k+1 ≥ uj∗k+1 ≥ ujk+1, ∀ j = 1, ..., K − 1

and Condition 2’ also holds. Hence inserting job Jk+1 in I ′t is a feasible

transition for Sk.

2. Now we prove that (III) and (IV) hold after inserting the Jk+1 using the

inductive hypothesis. Suppose they hold after inserting k jobs, i.e.

W j∗
k ≤ W j

k ≤ W j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (4.3.18)

V j∗
k ≤ V j

k ≤ V j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (4.3.19)

For the job Jk+1, suppose it is inserted in It as a tardy job in the optimal

sequence. Then from the above proof, it can also be inserted as a tardy

job in interval It from the new problem. According to the optimal DP:

W t∗
k+1 = W t∗

k + wk+1 and W j∗
k+1 = W j∗

k , j = 1, ..., K + 1 and j 6= t.

Let W ′j
k+1, j = 1, ..., K + 1 be the weights for P ′ after inserting Jk+1

but before the rounding of Step 3. Then, W ′t
k+1 = W t

k + wk+1 and

W ′j
k+1 = W j

k , j = 1, ..., K + 1, j 6= t. According to the rounding up of

W ′
j , we have

W t
k+1 ≥ W ′t

k+1 = W t
k + wk+1

(4.3.18)

≥ W t∗
k + wk+1 = W t∗

k+1

W j
k+1 ≥ W ′j

k+1 = W j
k

(4.3.18)

≥ W j∗
k = W j∗

k+1, j = 1, ...K & j 6= t

W t
k+1 ≤ W ′t

k+1(1 +
ε

2m
)

1
m

= (W t
k + wk+1)(1 +

ε

2m
)

1
m

51

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

(4.3.18)

≤ (W t∗
k (1 +

ε

2m
)
k
m + wk+1)(1 +

ε

2m
)

1
m

≤ (W t∗
k (1 +

ε

2m
)
k
m + wk+1(1 +

ε

2m
)
k
m)(1 +

ε

2m
)

1
m

= (W t∗
k + wk+1)(1 +

ε

2m
)
k+1
m

= W t∗
k+1(1 +

ε

2m
)
k+1
m

W j
k+1 ≤ W ′j

k+1(1 +
ε

2m
)

1
m

= W j
k (1 +

ε

2m
)

1
m

4.3.18

≤ W j∗
k (1 +

ε

2m
)
k
m (1 +

ε

2m
)

1
m

= W j∗
k+1(1 +

ε

2m
)
k+1
m , j = 1, ...K & j 6= t

And this implies:

W j∗
k+1 ≤ W j

k+1 ≤ W j∗
k+1(1 +

ε

2m
)
k+1
m , j = 1, ..., K + 1

So (III) is proved when Jk+1 is inserted tardy. When Jk+1 is inserted

early, all Wk+1s remain the same with Wk. We can easily prove (III)

holds. Thus, (III) is proved. Similarly, we can prove (IV).

3. It remains to prove (4.3.4). According to step 1, after inserting the first

job, the possible difference between Zk and Z∗k does not exceed δ due

to the rounding of the objective function. Then (4.3.4) holds for k = 1.

According to the inductive hypotheses, we have

Zk ≤ Z∗k +
kε

2m
Z∗k + kδ (4.3.20)

We distinguish between the cases of Jk+1 being inserted tardy or early.

Assume that it is true up to the placement of job Jk, 1 ≤ k ≤ m− 1. If

Jk+1 is inserted tardy, and by using (4.3.4) and (III) from the inductive

hypothesis, we get

Zk+1 ≤ Zk + (W j
k + wk+1)pk+1 + δ

52

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

≤ Z∗k +
kε

2m
Z∗k + kδ + (W j∗

k (1 +
ε

2m
)
k
m + wk+1)pk+1 + δ

≤ Z∗k + (W j∗
k + wk+1)pk+1 +

kε

2m
Z∗k +

ε

2m
W j∗
k pk+1 + (k + 1)δ

≤ Z∗k+1 +
kε

2m
Z∗k+1 +

ε

2m
Z∗k+1 + (k + 1)δ

where the first inequality takes into account the increase of Zk+1 by at

most δ due to its rounding in Step 2, and the last inequality is due to

the placement of Jk+1 as tardy in sequence {S∗k} as well.

The case of Js+1 being inserted early is treated in exactly the same way.

The proof is done. �

In what follows we concentrate on the last elements S∗m, Sm of the two

sequences in the statement of Lemma 4.3.1. Equation (4.3.4) for k := m

implies

Zm ≤ Z∗m +
ε

2
Z∗m +m

εZlb
4m

(4.3.21)

≤ (1 +
3ε

4
)Z∗m

Note that Zm in (4.3.21) is the objective value in P ′ without the guessed

straddlers. We now study the effect on this value after inserting the straddlers.

Let LP ∗, LP be the two versions of (LP) we get using the data of S∗m and

Sm respectively. Let x∗, R∗ and x,R be the solutions and objective values for

LP ∗ and LP respectively (which we know that exist, since Conditions 2 and

2’ are satisfied from Lemma 4.3.1). Then, after inserting the straddlers, the

final schedule objective values are Z ′ = Zm + R for P ′ and Z∗ = Z∗m + R∗ for

P . Let Zextra be the increase of the objective value when we go from P ′ back

to P by moving the due dates d′ back to the original d.1 Let Z = Z ′+Zextra =

Zm +R + Zextra be the objective value of the schedule we output.

1We move only the due dates, not the jobs in the schedule, even if we can do the latter
to our benefit.

53

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Lemma 4.3.2 R ≤ (1 + ε
2m

)R∗.

Proof. First note that the proof of Lemma 4.3.1 also proves (inductively)

equation (4.3.12). This implies that x∗ is also feasible for LP . Therefore

R ≤
K∑
j=1

(V j
mx
∗
j + (wsj +W (j+1)

m)(psj − x∗j))

(III)(IV)

≤
K∑
j=1

((1 +
ε

2m
)V j∗

m x∗j + (wsj + (1 +
ε

2m
)W (j+1)∗

m)(psj − x∗j))

≤ (1 +
ε

2m
)R∗

The proof is done. �

We know that

d′j − dj ≤ d′K − dK = (K − 1)nδ̂, j = 2, ..., K.

So the maximum possible extra increase of the objective going from P ′ to P

is:

Zextra ≤ W (K − 1)nδ̂ ≤ nwmax(K − 1)nδ̂ ≤ K
εZlb
4m
≤ ε

4
Z∗ (4.3.22)

Then (4.3.21), Lemma 4.3.2, (4.3.22) imply

Z = Zm +R + Zextra (4.3.23)

≤ (1 +
3ε

4
)Z∗m + (1 +

ε

2m
)R∗ +

ε

4
Z∗

≤ (1 + ε)Z∗

and our algorithm is an approximation scheme with the approximation ratio

1 + ε.

4.3.3 Complexity of the Rounding Algorithm

We have proved that the algorithm outputs an approximate solution with

approximation ratio 1 + ε. Then in this section we will show the complexity

of the rounding algorithm is polynomial in the problem size.

54

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Lemma 4.3.3 The algorithm runs in polynomial time.

Proof.First we calculate the maximum number of states produced by Algo-

rithm FPTAS. We have at most O(n) distinct values for k, O(n
ε
) distinct values

for Zk,
m logW

log(1 + ε
2m

)
= O(

n2

ε
logW)

distinct values for Wk, Vk. Also, there are at most

Zub

wπ(N)

δ̂
≤

Zub

wmin

δ̂
=
n2wmaxZ

ub

δwmin
= O(

n3

ε

wmax
wmin

)

distinct intervals where yk, ek fall in. Therefore, for the same

Zk,W
1
k , V

1
k , ...,W

K+1
k , V K+1

k , we have O((n
3

ε
wmax
wmin

)2K) states, and the total num-

ber of states is upper-bounded by

O

(
n2

ε

(
n5

ε2
logW

wmax
wmin

)2K
)

If TLP is the time needed to solve (LP), and considering that there are O(nK)

possible guesses for the K straddlers, and O(log n+logwmax+log pmax) guesses

for Zub, the running time for our algorithm is upper-bounded by

O

((
n2

ε

(
n5wmax logW

ε2wmin

)2K

+ TLP

)
nK(log n+ logwmax + log pmax)

)
which is polynomial on n and 1/ε due to Assumption 1.1.1. �

From Section 4.3.2 and Section 4.3.3, we have shown the FPTAS for the

minimum TWET problem with constant number of due dates and polynomi-

ally related weights.

4.4 A Simpler Rounding Scheme

4.4.1 A New Dynamic Programming

In Section 4.2 above, we define the state in the DP as

(k, Zk;V
1
k ; y2k,W

2
k , e

2
k, V

2
k ; . . . ; yK+1

k ,WK+1
k , eK+1

k , V K+1
k)

55

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Notice that we don’t keep the earliness and tardiness in the first interval, i.e,

e1k and y1k are not kept in the state. We use the summation of the earliness

and tardiness in all the other intervals to calculate the free space in the first

interval according to equation 4.2.1. This makes us consider the first interval

as a special one when doing the rounding scheme. Such a special consideration

has made the FPTAS quite complicated. Therefore, to simplify the rounding

scheme and the corresponding FPTAS, we can keep the earliness and tardiness

information in the first interval and the new state in stage k of the dynamic

programming becomes

(k, Zk; y
1
k,W

1
k , e

1
k, V

1
k ; y2k,W

2
k , e

2
k, V

2
k ; . . . ; yK+1

k ,WK+1
k , eK+1

k , V K+1
k)

where k, Zk, yk, Wk, ek and Vk have the same meaning with the DP in Section

4.2. Notice that y1k = W 1
k = eK+1

k = V K+1
k = 0 since no job is tardy in the first

interval and no job is early in the last interval.

The m = n−K non-straddling jobs are sorted in the I-WSPT order and

will be processed the same way as the DP in Section 4.2. Similarly, we define

L
(j−1)j
k to be the free space in interval Ij, 1 ≤ j ≤ K + 1 in stage 0 ≤ k ≤ m.

Then, we have

L
(j−1)j
k =

{
dj − dj−1 − (yjk + ejk), 1 ≤ j ≤ K
∞, j = K + 1

(4.4.1)

Notice that since we keep the earliness and tardiness in the first interval,

we can calculate the free space in the intervals using the same formula for

1 ≤ j ≤ K, while in equation 4.2.1 we need a special formula to calculate L01
k .

By replacing the free space L
(j−1)j
k defined in equation 4.2.1 in Section

4.2 with the new one given in equation 4.4.1, the quantities uik and the two

conditions needed to check the feasibility of inserting the job are defined the

same way as those in Section 4.2.

With the two feasibility conditions, we follow the same transition from

state (k, Zk; . . .) to state (k + 1, Zk+1; . . .) as that in Section 4.2.

56

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Similarly, if at some point Zk+1 > Zub is true for all possible insertions

of Jk+1 then we reject Zub, we replace it with a new Zub := 2Zub, and start

the algorithm from scratch.

Placement of the straddlers

Similarly to the insertion of straddlers in Section 4.2, we need to insert the

K straddlers after calculating the states of stage m through a linear problem.

The new linear problem is the same with (LP) except replacing L
j(j+1)
m with

the one in equation (4.4.1). It is quite straightforward that the new linear

problem also has an optimal solution using a similar proof to Lemma 4.2.1.

4.4.2 The New FPTAS

The DP in Section 4.4.1 computes an optimal schedule in pseudo-polynomial

time. In this section we will use a new simpler rounding scheme to produce

an FPTAS for the new DP in Section 4.4.1.

First, let ε > 0 be the approximation parameter of the FPTAS. Define

Zlb := Zub/2 and δ = εZlb
4m

. The interval [0, Zub/wmin] is divided into x =

d Zub

δ̂wmin
e subintervals {Hi}xi=1 of length δ̂ = δ

n2wmax
(note that the length of the

last subinterval may be smaller than δ̂). These actions are the same with those

in Section 4.3.

Different from Section 4.3, we change the original problem P into a new

problem P ′ with exactly the same set of jobs, but with new due dates d′j, j =

1, ..., K defined as follows:

d′j = dj + 2jnδ̂, j = 1, . . . , K (4.4.2)

Then we have new intervals I ′j, j = 1, ..., K + 1. Obviously, we also extend the

first interval, while the due date d′1 = d1 in equation 4.3.3.

From now on, we use Condition 1 and Condition 2 to stand for the

feasibility checking conditions described in Section 4.4.1 with the new L given

57

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

in equation 4.4.1. Similarly, we can define the free space L′ in each interval,

the values u′, and the conditions for feasible transitions exactly in the same

way as in Section 4.4.1 using the new due dates. We will also refer to the latter

as Conditions 1’ and 2’. We will also need to compare states S produced by

the FPTAS to states S∗ produced by the exact DP; we will use the asterisk

(∗) to denote quantities that belong to S∗, in order to distinguish them from

quantities that belong to S.

The new simpler DP algorithm with rounding scheme is the following:

Simpler Algorithm FPTAS

Step 1’. Order all m jobs in I-WSPT order. The initial state is (0, 0, ..., 0).

Step 2’. Each state in stage 0 ≤ k ≤ m

(k, Zk; y
1
k,W

1
k , e

1
k, V

1
k ; y2k,W

2
k , e

2
k, V

2
k ; . . . ; yK+1

k ,WK+1
k , eK+1

k , V K+1
k)

will generate at most K + 1 new states (feasible transitions), one for
each placement of job Jk+1 to interval Ij, j = 1, . . . , K + 1. In these
new states, we round up Zk+1, W

j
k+1 and V j

k+1 the same way as in
Step 2 in Figure 4.5.

Step 3’. For each state produced in Step 2’, the values y1k+1, e
1
k+1, y

2
k+1,

e2k+1, . . ., y
K+1
k+1 , eK+1

k+1 fall in subintervals Hi; call the tuple of these
subintervals the signature of the state. We group together the states
that have the same values of Zk+1,W

1
k+1, V

1
k+1, . . . ,W

K+1
k+1 , V

K+1
k+1 and

the same signature. From each group, we randomly pick a state as
a representative and keep it; all the transitions going to the group
states we discard become transitions to the state we keep.

Figure 4.6: The Simpler FPTAS Algorithm

Notice that the big difference between this new DP with a rounding

scheme and the one in Section 4.3.1 lies in Step 3’. Different from Step 3 in

58

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

Figure 4.5 in which we keep only the state that maximizes
∑K+1

j=2 (yjk+1 + ejk+1)

for the states with the same signature, in the new Step 3’ we keep a random

one among the states with the same signature. Since we also extend the first

interval according to equation 4.4.2, we don’t need to keep the state which

maximizes
∑K+1

j=2 (yjk+1+ejk+1) to make more space in the first interval and just

pick a random one. Similarly, we have the following new lemma to guarantee

the approximation ratio which is similar to Lemma 4.3.1 in Section 4.3.2.

Lemma 4.4.1 Let {S∗k}mk=0 be the sequence of states produced by the optimal

placement of jobs in the new exact DP of Section 4.4.1. Then the same se-

quence of placements is also feasible for Algorithm FPTAS, and the sequence

of states {Sk}mk=0 produced satisfies

Zk ≤ Z∗k +
kε

2m
Z∗k + kδ, ∀k. (4.4.3)

Proof. Using induction.

For 0 ≤ k ≤ m, in addition to (4.3.4), the following four inductive

hypothesis also hold for step k:

(yjk + ejk)− (yj∗k + ej∗k) ≤ 2kδ̂, 1 ≤ j ≤ K + 1 (i)

W j∗
k ≤ W j

k ≤ W j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (ii)

V j∗
k ≤ V j

k ≤ V j∗
k (1 +

ε

2m
)
k
m , 1 ≤ j ≤ K + 1 (iii)

A feasible placement of job Jk+1 from S∗k to S∗k+1 is also feasible from Sk to Sk+1.
(iv)

For convinience, below we use L, u instead of L′, u′.

For the base case (k = 0), first notice that (4.4.3),(i), (ii),(iii),(iv) hold

trivially.

We assume that the inductive hypothesis is true up to the placement of

job Jk, 0 ≤ k ≤ m− 1.

59

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

1. First we will prove (i): For inductive step k+ 1, suppose the optimal DP

sequence places Jk+1 in interval It. Conditions 1 & 2 imply

L
(t−1)t∗
k ≥ pk+1 (4.4.4)

L
j(j+1)∗
k+1 ≥ uj∗k+1, j = 1, ..., K − 1. (4.4.5)

Let y′jk+1 and e′jk+1 be the tardiness and earliness after inserting Jk+1 in

I ′t but before the rounding according to Step 3’ of the algorithm. After

Step 2’, we know that

y′
t
k+1 + e′

t
k+1 = ytk + etk + pk+1

y′
j
k+1 + e′

j
k+1 = yjk + ejk, j = 1, ..., K + 1 & j 6= t

and similarly for the optimal DP. Therefore

(y′
j
k+1 + e′

j
k+1)− (yj∗k+1 + ej∗k+1) = (yjk + ejk)− (yj∗k + ej∗k)

(i)

≤ 2kδ̂ (4.4.6)

Since state Sk+1with yjk+1, e
j
k+1 and state S ′k+1 with y′jk+1, e

′j
k+1 have the

same signature (H1, H2,) and each H i interval has length δ̂, we have

|yjk+1 − y
′j
k+1| ≤ δ̂, |ejk+1 − e

′j
k+1| ≤ δ̂

and, therefore,

(yjk+1 + ejk+1)− (yj∗k+1 + ej∗k+1) ≤ (y′
j
k+1 + e′

j
k+1)− (yj∗k+1 + ej∗k+1) + 2δ̂

(4.4.6)

≤ 2(k + 1)δ̂ (4.4.7)

So the inequalities (i) holds after inserting Jk+1. Thus it hold ∀j ∈

[1, K + 1], k ∈ [0,m].

2. Combined with inequality (4.4.1), it is easy to see that

L
(j−1)j
k − L(j−1)j∗

k = (d′j − d′j−1 − y
j
k − e

j
k)− (dj − dj−1 − yj∗k − e

j∗
k)

= 2nδ̂ − [(yjk + ejk)− (yj∗k + ej∗k)] ≥ 0 j = 1, 2...K + 1

60

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

which implies that L
(j−1)j
k ≥ L

(j−1)j∗
k

(4.4.4)

≥ pk+1, and Condition 1’ holds.

and similarly

L
(j−1)j
k+1 ≥ L

(j−1)j∗
k+1 (4.4.8)

Here we assert that uj∗k+1 ≥ ujk+1, j = 0, 1, 2...K.

The assertion is trivial when j = 0. Suppose it is true for some j, where

j ≥ 0, then

uj+1
k+1 = max{0, psj+1

− Lj(j+1)
k+1 + ujk+1}

u
(j+1)∗
k+1 = max{0, psj+1

− Lj(j+1)∗
k+1 + uj∗k+1}

since L
j(j+1)∗
k+1 ≤ L

j(j+1)
k+1 , and uj∗k+1 ≥ ujk+1, thus u

(j+1)∗
k+1 ≥ u

(j+1)
k+1 holds.

So,

uj∗k+1 ≥ ujk+1,∀j = 0, 1, ..., K (4.4.9)

(4.4.5),(4.4.8),(4.4.9) show that

L
j(j+1)
k+1 ≥ L

j(j+1)∗
k+1 ≥ uj∗k+1 ≥ ujk+1, for all j = 1, 2..., K − 1

which means that Condition 2’ also holds. Hence inserting job Jk+1 in

I ′t is a feasible placement for Sk, and (iv) is proven.

3. Using the inductive hypothesis, it is easy to see that (ii) and (iii) hold

after Step 2’ using the same way to prove equation (III) and (IV) in

Lemma 4.3.1.

4. It remains to prove (4.4.3). We distinguish between the cases of Jk+1

being inserted tardy or early.

If Jk+1 is inserted tardy, and by using (4.4.3) and (ii) from the inductive

hypothesis, we get

Zk+1 ≤ Zk + (W j
k + wk+1)pk+1 + δ

61

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

≤ Z∗k +
kε

2m
Z∗k + kδ + (W j∗

k (1 +
ε

2m
)
k
m + wk+1)pk+1 + δ

≤ Z∗k + (W j∗
k + wk+1)pk+1 +

kε

2m
Z∗k +

ε

2m
W j∗
k pk+1 + (k + 1)δ

≤ Z∗k+1 +
kε

2m
Z∗k+1 +

ε

2m
Z∗k+1 + (k + 1)δ

where the first inequality takes into account the increase of Zk+1 by at

most δ due to its rounding in Step 2’, and the last inequality is due to

the placement of Jk+1 as tardy in sequence {S∗k} as well.

The case of Js+1 being inserted early is treated in exactly the same way.

Then (4.4.3) is proven.

The proof is done. �

Concentrating on the last elements S∗m, Sm of the two sequences in the state-

ment of Lemma 4.4.1 above, and following similar steps to insert the straddlers

back, we can prove that the final output Z ≤ (1 + ε)Z∗ where Z∗ is the op-

timal solution for the original problem. The new DP does not increase the

complexity of the algorithm. According to Lemma 4.3.3, the new DP also

runs in polynomial time.

Therefore, the new DP gives an FPTAS for the TWET problem with a

constant number of distinct due dates and polynomially related weights.

4.4.3 General Straddlers

Remember that for the FPTAS in Figure 4.5 and the new one in Figure 4.6,

we have guessed K straddlers for the K distinct due dates. Here there is

the assumption that each straddler just straddles one due date. We show

that our algorithm can be easily extended to the case where some straddler

straddles many due dates. If there is one straddler which straddles more than

one due date, denoted as Smany, we guess the number of consecutive due dates

it straddles; then we guess the due dates positions for Smany; at last we guess

62

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

a job as Smany. We also guess the other straddlers for other due dates. Since

Smany straddles due dates from di to dj, 1 ≤ i < j ≤ K, no other jobs can be

inserted between times di and dj. We can add such a condition for the DP to

reduce the number of states. We insert the non-straddling jobs using the DP.

Finally, we re-insert these straddlers back. If there are many straddlers which

straddle many due dates, we apply exhaustive enumeration to guess all of them

and the due dates they straddle. For each of them, we add the condition that

no jobs can be inserted between the two due dates it straddles. When K is

a constant, the number of such combinations of straddlers is still polynomial.

Then following the same rounding scheme, we can also get an FPTAS.

63

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

64

Chapter 5

Conclusions and Open
Questions

5.1 Conclusion

In this thesis, for the minimum total weighted earliness and tardiness problem

with a constant number of distinct due dates and polynomially related weights,

we have presented a pseudo-polynomial time dynamic programming algorithm

to solve it and then changed it into an FPTAS through a rounding scheme.

We notice that the straddlers play special roles in the schedule. They

separate the early and tardy jobs and all the non-straddling jobs become either

early or tardy. Through exhaustive enumeration, we guess all possible combi-

nations of the straddlers from all the n job. For each guessing, we use dynamic

programming to get a partial schedule of all the remaining non-straddling jobs.

Before the insertion of the non-straddling jobs, we order them in the I-WSPT

order because of the structural properties of the optimal schedule of the TWET

problem.

For each non-straddling job, we try to insert it into all the intervals. It

is a tardy job when it’s inserted in the intervals after its due date, otherwise

it will be an early job. We reduce the number of states by keeping only the

feasible states. Thus, we come up with two feasibility checking conditions.

One is to check if there’s enough space in some interval to insert a job in.

65

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

The other one is to check if there is enough space to insert all the straddlers

after inserting the job. With these two conditions, we start to insert the jobs

one by one while keeping all the states feasible. After the insertion of all the

non-straddling jobs, we insert the straddlers back to get the final schedule.

To make the running time of the algorithm polynomial, we need to apply

a rounding scheme to reduce the number of states. Compared with the TWT

problem with constant number of distinct due dates in [21], no preemption is

allowed in our TWET problem. Thus, here we increase the due dates a little

bit to get a new problem. In the new problem, the free space in each interval

becomes larger and thus the preemption can be avoided. We apply a rounding

scheme for the DP for the new problem with new due dates, and insert the

straddlers back. Eventually, we move the due dates back to get the solution

for the original TWET problem. In such a way, an FPTAS has been developed

to solve our problem. We have shown two different ways to increase the due

dates and they influence the rounding scheme. Thus, we give two FPTAS with

two different rounding schemes according to the two increases in due dates.

One is in Section 4.3 and a simpler version is given in Section 4.4.

5.2 Open Questions

Although, in reality, many practical problems belong to the TWET problem

with a constant number of due dates and polynomially related weights we are

focusing on, we still need to consider the more general cases, like the TWET

with arbitrary number of distinct due dates, or with arbitrary weights, or

with non-symmetric weights, or even their combinations. Such problems are

still open. We know that for the TWET problem with a constant number of

distinct due dates and arbitrary weights, we can use the DP in Section 4.2 to

get an optimal solution in pseudo-polynomial time. How to design an FPTAS

is open for future work.

66

Bibliography

[1] T.S. Abdul-Razaq and C.N. Potts. Dynamic programming state-space

relaxation for single-machine scheduling. In Journal of the Operational

Research Society, pp. 141–152, 1988.

[2] T.S. Abdul-Razaq, C.N. Potts and L.N. Van Wassenhove. A survey of al-

gorithms for the single machine total weighted tardiness scheduling prob-

lem. In Discrete Applied Mathematics, Vol. 26(2), pp. 235–253, 1990.

[3] M.S. Akturk and M.B. Yildirim. A new lower bounding scheme for the

total weighted tardiness problem. In Computers and Operations Research,

Vol. 25(4), pp. 265–278, 1998.

[4] E.M. Arkin and R.O. Roundy. Weighted-tardiness scheduling on paral-

lel machines with proportional weights. In Computers and Operations

Research, Vol. 39(1), pp. 64–81, 1991.

[5] P. Babu, L. Peridy and E. Pinson. A branch and bound algorithm to

minimize total weighted tardiness on a single processor. In Annals of

Operations Research, Vol. 129(1-4), pp. 33–46, 2004.

[6] K.R. Baker. Introduction to sequencing and scheduling. Wiley, NY, 1974.

[7] K.R. Baker and G.D. Scudder. Sequencing with earliness and tardiness

penalties: a review. In Operations Research, Vol. 38(1), pp. 22–36, 1990.

[8] P. Brucker. Scheduling algorithms. Springer, 2007.

67

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

[9] T.C.E. Cheng, C.T. Ng, J.J. Yuan and Z. Liu. Single machine scheduling

to minimize total weighted tardiness. In European Journal of Operational

Research, Vol. 165(2), pp. 423–443, 2005.

[10] R.K. Congram, C.N. Potts and S.L. Van De Velde. An iterated dynasearch

algorithm for the single-machine total weighted tardiness scheduling prob-

lem. In INFORMS Journal on Computing, Vol. 14(1), pp. 52–67, 2002.

[11] S.E. Elmaghraby. The one machine sequencing problem with delay costs.

In Journal of Industrial Engineering, Vol. 19, pp. 105–108, 1968.

[12] H. Emmons. One-machine sequencing to minimize certain functions of

job tardiness. In Operations Research, Vol. 17(4), pp. 701–715, 1969.

[13] M.R. Garey, R.E. Tarjan, and G.T. Wilfong. One-processor scheduling

with symmetric earliness and tardiness penalties. In Mathematics of Op-

erations Research, Vol. 13, pp. 330–348, 1988.

[14] V. Gordon, J. Proth and C. Chu. A survey of the state-of-the-art of com-

mon due date assignment and scheduling research. In European Journal

of Operational Research, Vol. 139(1), pp. 1–25, 2002.

[15] R. Hassin and M. Shani. Machine scheduling with earliness, tardiness and

non-execution penalties. In Computers and Operations Research vol. 32,

pp. 683–705, 2005.

[16] N.G. Hall and M.E. Posner. Earliness-tardiness scheduling problems I:

Weighted deviation of completion times about a common due-date. In

Operations Research, Vol. 39(5), pp. 836–846, 1991.

[17] N.G. Hall, W. Kubiak, and S.P. Sethi. Earliness–tardiness scheduling

problems, II: deviation of completion times about a restrictive common

due date. In Operations Research, Vol. 39(5), pp. 847–856, 1991.

68

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

[18] J.A. Hoogeveen. Multicriteria scheduling. In European Journal of Oper-

ational Research, Vol. 167, pp. 592–623, 2005.

[19] P.A. Huegler and F.J. Vasko. A performance comparison of heuristics

for the total weighted tardiness problem. In Computers and Industrial

Engineering, Vol. 32(4), pp. 753–767, 1997.

[20] I. Kacem. Fully polynomial time approximation scheme for the total

weighted tardiness minimization with a common due date. In Discrete

Applied Mathematics, Vol. 158, pp. 1035–1040, 2010.

[21] G. Karakostas, S. Kolliopoulos and J. Wang. An FPTAS for the minimum

total weighted tardiness problem with a fixed number of distinct due

dates. In Computing and Combinatorics, pp. 238–248, 2009.

[22] H. Kellerer and V.A. Strusevich. A fully polynomial approximation

scheme for the single machine weighted total tardiness problem with a

common due date. In Theoretical Computer Science, Vol. 369(1), pp.

230–238, 2006.

[23] H. Kellerer and V.A. Strusevich. Minimizing total weighted earliness-

tardiness on a single machine around a small common due date: an FP-

TAS using quadratic knapsack. In International Journal of Foundations

of Computer Science, pp. 357–383, 2009.

[24] H. Kellerer and V.A. Strusevich. Fully polynomial approximation schemes

for a symmetric quadratic knapsack problem and its scheduling applica-

tions. In Algorithmica, Vol. 57(4), pp. 769–795, 2010.

[25] S.G. Kolliopoulos and G. Steiner. Approximation algorithms for mini-

mizing the total weighted tardiness on a single machine. In Theoretical

Computer Science, Vol. 355(3), pp. 261–273, 2006.

69

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

[26] M.Y. Kovalyov and W. Kubiak. A fully polynomial approximation scheme

for the weighted earliness-tardiness problem. In Operations Research, Vol.

47, pp. 757–761, 1999.

[27] E.L. Lawler. A pseudopolynomial algorithm for sequencing jobs to min-

imize total tardiness. In Annals of Discrete Mathematics, Vol. 1, pp.

331-342, 1977.

[28] E.L. Lawler. A fully polynomial approximation scheme for the total tar-

diness problem. In Operations Research Letters, Vol. 1(6), pp. 207-208,

1982.

[29] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Bruker. Complexity of machine

scheduling problems. In Econometric Institute of the Erasmus University,

1977.

[30] J.Y.T. Leung. Handbook of scheduling: algorithms, models, and perfor-

mance analysis. Chapman & Hall/CRC, Vol. 1, 2004.

[31] J.C. Picard and M. Queyranne. The time-dependent traveling sales-

man problem and its application to the tardiness problem in one-machine

scheduling. In Operations Research, Vol. 26(1), pp. 86–110, 1978.

[32] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer,

2012.

[33] J.C. Picard and M. Queyranne. A branch and bound algorithm for the

total weighted tardiness problem. In Operations Research, Vol. 33(2), pp.

363–377, 1985.

[34] R.M.V. Rachamadugu. Technical Note - Note on the Weighted Tardiness

Problem. In Operations Research, Vol. 35(3), pp. 450-452, 1987.

70

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

[35] L. Schrage and K.R. Baker. Dynamic programming solution of sequencing

problems with precedence constraints. In Operations Research, Vol. 26(3),

pp. 444-449, 1978.

[36] J. Shwimer. On the N-job one-machine, sequence-independent scheduling

problem with tardiness penalties: A branch-bound solution. In Manage-

ment Science, Vol. 18(6), pp. B–301, 1972.

[37] M. Müller-Hannemann and A. Sonnikow. Non-approximability of just-

in-time scheduling. In Journal of Scheduling, Vol. 12(5), pp. 555–562,

2009.

[38] P.S. Sundararaghavan, and M.U. Ahmed. Minimizing the sum of abso-

lute lateness in single-machine and multimachine scheduling. In Naval

Research Logistics Quarterly, Vol. 31(2), pp. 325–333, 1984.

[39] S. Verma and D. Dessouky. Single-machine scheduling of unit-time job-

s with earliness and tardiness penalties. In Mathematics of Operations

Research, Vol. 23, pp. 930–943, 1998.

[40] V.V. Vazirani. Approximation algorithms. Springer, 2004.

71

M.Sc. Thesis - Jingjing Huang - McMaster - Computing and Software

72

