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Abstract

The problem of multiple target tracking (MTT) is a major area that occurs in a va-

riety of real world systems. The problem involves the detection and estimation of an

unknown number of targets within a defined scenario space given a sequence of noisy,

incomplete measurements. The classic approach to MTT performs data association

between individual measurements and the estimated objects, then applying standard

single target estimation methods on each set of track measurements. However, the

measurement-to-track data association step is a computationally complex problem

and commonly a main source of runtime performance issues in these algorithms.

More recently, a series of algorithms based on Random Finite Set (RFS) theory, that

do not require data association, have been introduced. These algorithms recursively

propagate a function that estimates the entire multitarget state. This function can

be used to estimate both the number and values of the multitarget states. This thesis

addresses some of the main issues involved with the RFS based methodology. It will

also derive key extensions to improve various RFS based filters in order to enhance

them for use in more diverse situations.

The first contribution is toward the well known track continuity issue in the Probabil-

ity Hypothesis Density (PHD) filter. A solution of separating the PHD surface into
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partitions that represent the individual state estimates both spatially and propor-

tionally is described. The partitions are labeled and tracked over several time steps

to form continuous track estimates. This theory is denoted as the Weight Partitioned

PHD filter and multiple variants of the filter are presented.

Next, a key extension to the Multitarget Multi-Bernoulli (MeMBer) filter is derived.

The extension allows for the tracking of manoeuvring targets with the MeMBer fil-

ter. A model likelihood vector is incorporated into the filter framework to estimate

the probability of each motion model. Implementations in the standard linear and

non-linear instances of the filter are computed.

Finally, a new linear variant of the multitarget intensity filter (iFilter) is presented.

This new approach based on a Gaussian Mixture approximation provides a simpler,

more efficient manner of performing multitarget tracking using the iFilter. Alternate

extensions of the approach for non-linear systems are also indicated.

Each of the new algorithms presented are validated on simulated scenario data using

a collection of standard multitarget tracking metrics. In each case, the methods con-

tribute or improve on one or more of the aspects of applying multitarget tracking in

a real world setting.
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Notation and Abbreviations

Abbreviations

CB Cardinality Balanced

FISST Finite Set Statistics

GM Gaussian Mixture

iFilter Intensity Filter

IMM Interacting Multiple Model

JPDA Joint Probabilistic Data Association

KF Kalman Filter

LM Linear Multitarget

MeMBer Multitarget Multi-Bernoulli

MHT Multiple Hypothesis Tracking

NN Nearest Neighbour

OOSM Out Of Sequence Measurements
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PF Particle Filter

pdf probability density function

PHD Probability Hypothesis Density

RFS Random Finite Set

SIR Sequence Important Resampling

SIS Sequence Importance Sampling

SMC Sequential Monte Carlo

TBD Track Before Detect

WPPHD Weight Partitioned Probability Hypothesis Density

Notation

µ
(i,j)
k Association factor between the i-th particle and j-th partition

Bk RFS of new (birth) elements at time k

r
(j)
k Probability of existance of the j-th Bernoulli set at time k

ϕ Clutter space

Pk Estimate covariance matrix at time k

δα(x) Dirac delta function
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x̂k Estimate vector at time k

Kk RFS of false measurements at time k

N (x;m,P ) Multivariate Gaussian normal pdfover x with mean m and covariance

P

q
(i)
k (zj) Measurement likelihood of zj with the i-th component of a GM at

time k

π
(i)
k Model (regime) ID value of the i-th particle at time k

α
(i,j)
k Probability of transitioning from model i to model j at time k

Θk(x) RFS of the measurement on element x at time k

Nx
k Estimated number of targets fomr the iFilter at time k

x
(i)
k State of i-th particle at time k

Ψ
ϕ|ϕ
k Probability of remaining in the clutter space at time k

Ψ
X|ϕ
k Probability of transitioning from clutter space to target space (birth)

at time k

Dk(x) First order moment (PHD) of multitarget pdf

Ψ
ϕ|X
k Probability of transitioning from target space to clutter space (death)

at time k

Ψ
X|X
k Probability of remaining in the target space (survival) at time k

xk State vector at time k
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σ Standard deviation

Sk (x) RFS of the survival of element x between time k − 1 ands k

ω
(i)
k Weight of i-th particle at time k

X Target space
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Chapter 1

Introduction and Problem

Statement

In this chapter, an introduction to the topic of target tracking will be described.

As well, the outstanding issues associated with multitarget tracking that will be ad-

dressed in this thesis will be introduced. This will begin with a general overview of

target tracking, starting with single target estimation. Next, some of the complex-

ities involved in multiple target tracking, including the data association issue, will

be examined. This will include a review of some of the classic, association based,

approaches to the problem. Next, the theory of Random Finite Sets (RFS) as a solu-

tion for multiple target tracking, which does not require explicit enumeration of the

measurement-to-track associations, will be introduced. Specifically, three RFS based

target tracking algorithms, will be examined: the Probability Hypothesis Density

(PHD) filter, the Multitarget Multi-Bernoulli (MeMBer) filter and the Intensity filter

(iFilter). Finally, the contributions of this thesis, which is the enhancement of each

of the aforementioned filters, will be described. The publications that have resulted
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from this research will also be noted.

1.1 Target Tracking

The area of target tracking is a large and complex problem that is prevalent in a

vast and diverse collection of real world systems (Blackman and Popoli, 1999). The

problem involves the detection, estimation, prediction, classification, grouping, man-

agement and monitoring of one or more objects over time based on a collection of

noisy, incomplete measurements (Bar-Shalom and Li, 1995). The area of target track-

ing has been a large and important area of study for several decades.

In its simplest form, target tracking can be represented as the single target esti-

mation (filtering) case. The problem involves the estimation of a target state, within

a dynamic system, based on a sequence of noisy measurements (Bar-Shalom et al.,

2002). Consider a sequence of object states {xk} where k = 1, 2, . . . indexes the se-

quence of time steps t0, t1, . . . , tk, . . .. Typically, the state is a vector xk ∈ Rnx where

nx is the dimension of the state vector. The state xk is composed of target state and

dynamics parameters. For example, a state vector representing a target moving in a

2-dimensional space could be represented as follows:

xk =

[
xk ẋk yk ẏk

]T
(1.1)

where (xk, yk) represents the state location in the xy-plane and (ẋk, ẏk) its velocity.

2
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The system dynamics and measurement relationships can be described mathemati-

cally as follows:

xk = fk(xk−1, νk) (1.2)

zk = hk(xk, ωk) (1.3)

where fk(·) is the state motion dynamics at time k and νk is a random noise vec-

tor. Also, zk is the measurement at time k and is typically a vector zk ∈ Rnz where

nz ≤ nx. The measurement is related to the state via the measurement transforma-

tion function hk(·) where ωk is a random noise vector.

The simplest case of the single target tracking problem described above is the

linear Gaussian system. In this case, both the target motion and measurement trans-

formation functions are linear functions Fk, Hk and both of the noise vectors νk, ωk

are zero mean Gaussian distributed. The linear Gaussian system is defined as follows:

xk = Fkxk−1 + νk (1.4)

zk = Hkxk + ωk (1.5)

where νk ∼ N (0, Qk)

and ωk ∼ N (0, Rk)

where Qk and Rk are known as the transformation and measurement noise covariance

matrices respectively.

3
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1.1.1 Kalman Filter

When the tracking problem is described as in (1.4) and (1.5) above, an optimal

estimate of the state value can be obtained (Bar-Shalom et al., 2002). The recursive

method that can obtain this estimate is the well-known Kalman Filter (KF). The

KF computes the least squared optimal estimate of the state at each time step by

representing the state probability density function (pdf) by a Gaussian with mean x̂k

and covariance Pk. It can recursively propagate this estimate forward using a 2 step

procedure. The first step involves predicting the estimate forward using the following

equations:

x̂k|k−1 = Fkx̂k−1 (1.6)

Pk|k−1 = FkPk−1Fk
T +Qk (1.7)

The second step involves updating the predicted state and covariance with the mea-

surement zk as follows:

x̂k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
(1.8)

Pk = [I −KkHk]Pk|k−1 (1.9)

Kk = Pk|k−1Hk
T [Sk]

−1 (1.10)

Sk = HkPk|k−1Hk
T +Rk (1.11)

1.1.2 Particle Filter

When the linear conditions necessary in order to use the KF are not met, other

approaches, that are sub-optimal, can be applied. One such technique is known as the

4
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particle filter (Gordon et al., 1993). The particle filter (PF) is based on a Sequential

Monte Carlo (SMC) approximation of the state pdf. The state pdf is approximated

by a set of weighted states, known as particles, using a weighted sum of Dirac delta

functions. The approximation is as follows:

pk(x) ∼
{
x
(i)
k , ω

(i)
k

}Lk

i=1
(1.12)

pk(x) =

Lk∑
i=1

ω
(i)
k δ

x
(i)
k
(x) (1.13)

where

Lk∑
i=1

ω
(i)
k = 1

This set of particles can be recursively propagated, similar to the KF. It is first

predicted forward, then updated with a measurement in order to derive the estimate

at each time step. First, for the prediction step, a new set of particles is sampled

based on the previous set as follows:

x
(i)
k|k−1 ∼ q

(
xk

∣∣∣x(i)
k−1

)
(1.14)

ω
(i)
k|k−1 =

p
(
x
(i)
k|k−1

∣∣∣x(i)
k−1

)
q
(
x
(i)
k|k−1

∣∣∣x(i)
k−1

)ω(i)
k−1 (1.15)

for i = 1, . . . , Lk−1

where q
(∣∣∣x(i)

k−1

)
is a known, proposal distribution and p

(
x
(i)
k|k−1

∣∣∣x(i)
k−1

)
is the proba-

bility of a particle state at time k, given its value at time k − 1. Next, the particle

5
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set is updated based on a measurement z as follows:

x
(i)
k = x

(i)
k−1 (1.16)

ω
(i)
k

∗
= p
(
z
∣∣∣x(i)

k

)
ω
(i)
k|k−1 (1.17)

ω
(i)
k = ω

(i)
k

∗/ Lk∑
i=1

ω
(i)
k

∗
(1.18)

for i = 1, . . . , Lk

where p
(
z
∣∣∣x(i)

k

)
is the measurement likelihood function. Note that the particle weights

are normalized at each time step. This method is known as the Sequence Importance

Sampling (SIS) particle filter (Ristic et al., 2004).

After several iterations of a SIS particle filter, the majority of the weight in the

particle set will typically lie in only a few particles. This problem is known as particle

degradation (Ristic et al., 2004). In this case, the particle set will not be a diverse

representation of the state pdf since only a small number of the particles will be rel-

evant in the approximation. In order to avoid this, the particle set can be resampled

after a recursion of the filter. Resampling the particle set redistributes the weights

more evenly. This technique is known as the Sequence Important Resampling (SIR)

particle filter (Gordon et al., 1993).

6
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1.1.3 Multiple Model Tracking

In most real world scenarios, targets do not manoeuvre under a single motion model

for the entire course of observation (Li and Jilkov, 2003; Li and Bar-Shalom, 1993).

Most targets travel under a sequence of single motion patterns for short periods of

time known as legs. In order to adapt to the possible change in motion pattern, single

target tracking algorithms must be augmented in 2 ways. They must be able to oper-

ate with more than a single motion model. As well, they must interpret which of the

models a target is currently operating under and when it might change between them.

Several methods have been derived to try to accomodate multiple models within

the context of target tracking (Li and Jilkov, 2005). One approach for enabling

multiple models is the Jump Markov (JM) model approach. In the JM approach a

target is able to switch between models at each iteration based on a Markov Chain (on

the current model) (Li et al., 1999). A target is assigned a probability of operating

under each of the possible motion models. At each time step these probabilities are

updated based on the available parameters. In a linear JM approach, the probability

of transitioning between models is constant and this results in a state transition

matrix. The most well know of these methods is the Interacting Multiple Model

(IMM) method (Blom, 1984).

7
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1.2 Multitarget Tracking

The area of multiple target tracking is much more complex than the single target case.

Multiple target tracking involves the estimation of a number of objects, typically un-

known, in a given scenario space based on a collection of measurements (Bar-Shalom

and Li, 1995). The targets are often free to enter and exit the scenario over the course

of the observation period, making the number of targets a dynamic value. This gives

rise to the scenario space having a probability of target birth and survival, pB(x)

and pS(x), respectively. However, the real added difficulty in multitarget tracking

lies within the measurement sets. First, the target measurements may also be absent

from the measurement set, as a target probability of detection function pD(x) exists.

As well, the target measurement value be affected by random noise, as in the single

target case. Also, the measurement set may contain any number of clutter generated

measurements known as false alarms. The number of false alarms is typically Poisson

distributed with mean λ and the false measurements are spatially distributed based

on a probability of false alarm pFA(z). The source of each of the individual measure-

ments within the measurement set is not generally known.

The most complex aspect of multiple target tracking is the incompleteness of each

measurement’s source (Bar-Shalom and Fortmann, 1988). Once each of the mea-

surements are associated with either individual targets or determined to be clutter,

the individual target estimates can be generated by simply applying a single target

tracking technique, as described in Section 1.1, to each sequence of measurements.

However, the measurement source information is not typically available and must

be computed manually. This is often the most complex and difficult portion of the

8
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multiple target tracking algorithm. A wide variety of techniques have been compiled

in an attempt to solve this issue, however, there is no one agreed upon best solution.

1.2.1 Classic Methods

The solution to the mutliple target tracking problem has been addressed using a

variety of approaches. The classic technique is to perform measurement-to-track

association to relate sequences of measurements to a target estimate, or track (Reid,

1979; Blackman, 1986). This has been done using a variety of techniques, the most

common of which are described here. The simplest method is the Nearest Neighbor

(NN) algorithm that associates each measurement with its closest track (Bar-Shalom

and Li, 1995). Another methodology is the Joint Probabilistic Data Association

(JPDA) (Fortmann et al., 1980) that uses the probability of association between the

measurement and a known number of targets to compute the target estimates. Finally,

the Multiple Hypothesis Tracking (MHT) technique (Reid, 1979) builds hypotheses

of concrete measurement-to-track association possibilities over time and determines

which of the hypotheses is the most likely.

1.3 Random Finite Set Based Methods

More recently, a different approach to the multitarget tracking problem has been in-

troduced, known as Random Finite Set (RFS) theory (Goodman et al., 1997). In this

theory sets are treated as having a random cardinality of finite size and the values

within the set are also random variables. Using RFS theory, a framework of statistical

paradigms known as Finite Set Statistics (FISST) can be derived that can be used to
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perform multitarget estimation (Mahler, 2007b). This method treats both the multi-

target state sets as well as the measurement sets as RFS within their respective spaces.

These sets evolve in both cardinality as well as element values over time. By forming

a relationship between these random sets based on the multitarget tracking model,

FISST can be used to derive a full family of multitarget tracking filters (Mahler, 2001).

The multitarget framework is modeled under the RFS concept in two aspects,

the random state sets and the random measurement sets. First, the random finite

sequence of multitarget state sets, Xk, are recursively related as follows:

Xk =

 ∪
x∈Xk−1

Sk (x)

 ∪ Bk (1.19)

where Sk (x) is the random set of the target element x ∈ Xk that either survives

between time k − 1 and k and has a new random value or disappears from the set.

The set Bk is an RFS of the new targets that appear between time steps. Next, the

random finite measurement sets Zk are related to the state sets as follows:

Zk =

[ ∪
x∈Xk

Θk(x)

]
∪ Kk (1.20)

where Θk(x) is the random set of a noisy measurement of the target x ∈ Xk if de-

tected, or empty if the detection is missed. The set Kk is the RFS containing the

false, clutter based measurements at time k.

A much different approach to multitarget tracking can be formed by applying

FISST to the RFS configuration of the multitarget tracking problem. Instead of

10



Ph.D. Thesis - Darcy Dunne McMaster - Electrical Engineering

making associations between measurement and tracks, then applying single target

filter on each element, the paradigm of single target tracking is applied to an estimate

of the full multitarget state as a whole. The entirety of the multitarget state, Xk,

including all the elements within, is estimated using a single function. This function

can then be predicted forward in time and updated using the full measurement set

Zk without individually associating between the individual elements within. Once

an overall estimate of the multitarget state is produced, the number of elements

along with their likely locations can be extracted from this multitarget state intensity

function. A number of multitarget filtering algorithms that are based on RFS and

FISST have been derived (Mahler, 2003; Vo et al., 2009; Streit and Stone, 2008).

1.3.1 Probability Hypothesis Density Filter

PHD Theory

The PHD is an approximation the first order moment of the multitarget Bayes proba-

bility density function. The PHD function is defined on the state space and informally

provides the likelihood of a given state being in the multitarget solution set. As such,

it also gives the estimated mean density (size) of the multitarget solution set when

integrated over any region of the state space. These two properties allow for the PHD

function to estimate both the number of estimates as well as the most likely loca-

tions of these elements in the multitarget solution set. The first multitarget moment

11
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(PHD) is defined as follows:

DΞ(x) =

∫
δX(x) · fΞ(X) δ(X) (1.21)

where δX(x) =
∑
v∈X

δv(x)

where fΞ(X) is the multitarget pdf over the finite solution set Ξ and δ is the Dirac

delta function.

The PHD is not an actual probability density function as it does not necessarily

integrate to 1, but at each point x ∈ X it can be interpreted as the zero probability

event that each state is an element of the solution set Pr[x ∈ Ξ] (Mahler, 2003). Thus

the integral over any given region of state space is the expected number of elements

in that region. That is,

DΞ(x) = Pr[x ∈ Ξ] (1.22)

and E [|S ∩ Ξ|] =
∫
S

DΞ(x) dx (1.23)

Similar to the Kalman Filter for single target filtering, the PHD can be recursively

predicted forward in time and updated with a multitarget measurement set. The PHD

recursive prediction equation is given in (Mahler, 2007b) as follows:

Dk|k
(
x|Z(k−1)

)
= bk|k−1(x)+∫

Fk|k−1(x|y) ·Dk−1|k−1

(
y|Z(k−1)

)
dy (1.24)

where Fk|k−1(x|y) = pS(y) · fk|k−1(x|y) (1.25)
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Here bk+|k−1(x) represents the target birth intensity, fk|k−1(x|y) is the single target

transition likelihood and pS(y) is the target survival probability. Models for target

spawning may also be included however they are not considered in the scope of this

work.

The PHD update equation using the measurement set Zk is given in (Mahler,

2007b) as follows:

Dk|k
(
x|Z(k)

)
=

(
1− pD(x) +

∑
z∈Zk

pD(x)Lz(x)

λc(z) +Dk|k−1 [pDLz]

)
Dk|k−1

(
x|Z(k)

)
(1.26)

where Dk|k−1 [pDLz] =

∫
pD(x)Lz(x)Dk|k−1

(
x|Z(k)

)
dx

and Lz(x) = fk(z|x)

Here fk(z|x) is the measurement likelihood function, c(z) is the false alarm noise dis-

tribution function with a mean number of λ false alarms per scan and pD(x) is the

probability of target detection.

The two most popular implementations of the PHD filter are the Sequential Monte

Carlo PHD (SMC-PHD) filter (Vo et al., 2005) and the Gaussian Mixture PHD (GM-

PHD) filter (Vo and Ma, 2006). This thesis utilizes both variants in the implemen-

tation of Weight Partitioned PHD (WPPHD) filters thus the details of the both are

outlined in the following sections.
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1.3.2 SMC-PHD Filter

The SMC-PHD filter is a particle based, discrete approximation of the PHD sur-

face. It approximates the PHD function Dk

(
x|Zk

)
using a set of weighted points{

x
(i)
k , ω

(i)
k

}Lk

i=1
similar to that used in a particle filter as follows:

Dk

(
x|Z(k)

) ∼= Lk∑
i=1

ω
(i)
k δ

x
(i)
k
(x) (1.27)

where Lk is the number of particles used in the approximation and the weights are

scalar values, ω
(i)
k ∈ R.

The above equation (1.27) is only an approximation to the actual PHD equation,

however it has been shown in (Clark and Bell, 2006) that the approximation con-

verges to the actual function. The SMC-PHD allows for non-linear state transition

functions and measurement models. It is typically considered to be more computa-

tionally intensive than the GM-PHD filter.

When the PHD function is approximated as in (1.27) the standard PHD prediction

operation given in (1.24) can be performed as follows:

x
(i)
k|k−1 ∼

 qk

(
·
∣∣∣x(i)

k−1|k−1, Zk

)
for i = 1, . . . , Lk−1

pk

(
·
∣∣∣Zk

)
for i = Lk−1 + 1, . . . , Lk

(1.28)

ω
(i)
k|k−1 =


fk|k−1

(
x
(i)
k|k−1

|x(i)
k−1|k−1

)
pS

(
x
(i)
k−1|k−1

)
qk

(
x
(i)
k|k−1

,Zk

) ω
(i)
k−1|k for i = 1, . . . , Lk−1

bk

(
x
(i)
k|k−1

)
Mkpk

(
x
(i)
k|k−1

|Zk

) for i = Lk−1 + 1, . . . , Lk

(1.29)
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where qk and pk are proposal densities often chosen as the transition probability

qk = fk(xk|xk−1) and normalized birth density pk = bk(x)/
∫
bk(x), respectively. The

number of particles is Lk = Lk−1+Mk with Mk as the number of new particles added

at time k.

The PHD update recursion (1.26) can also be performed using the following equa-

tions:

x
(i)
k|k = x

(i)
k|k−1 (1.30)

ω
(i)
k|k =

(1− pD

(
x
(i)
k|k

))
+
∑
z∈Zk

pD

(
x
(i)
k|k

)
fk

(
z|x(i)

k|k

)
κk(z) + Ck(z)

ω(i)
k|k−1 (1.31)

for i = 1, . . . , Lk

where Ck(z) =

Lk∑
i=1

pD

(
x
(i)
k|k

)
fk

(
z|x(i)

k|k

)
ω
(i)
k|k−1

and κk(z) = λck(z)

1.3.3 GM-PHD Filter

The Gaussian Mixture PHD (GM-PHD) uses a Gaussian Mixture
{
m

(i)
k , P

(i)
k , ω

(i)
k

}N

i=1

to approximate the first order multi-target moment of the multitarget Bayes filter.

The approximation is a Gaussian summation defined as follows:

Dk

(
x|Zk

) ∼= Jk∑
i=1

ω
(i)
k · N

(
x;m

(i)
k , P

(i)
k

)
(1.32)
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where Jk is the number of Gaussian components in the approximation. In (Clark

and Bell, 2006), this approximation has been shown to converge to the actual PHD

function as the number of Gaussian components goes to infinity.

Since the approximation is a Gaussian Mixture, the PHD prediction and update

operations of (1.24) and (1.26) can be performed exactly on the GM components,

provided the transition and measurement equations are linear (or linear approxima-

tions) as well, the probability of target survival and detection must both be constant.

Given a GM approximation as defined in (1.32) (but at time k − 1) the PHD

prediction operation described in (1.24) may be computed analytically using the fol-

lowing equations. First, the existing GM components are predicted forward using the

following equations:

ω
(i)
k|k−1 = pS ω

(i)
k−1 (1.33)

m
(i)
k|k−1 = Fk−1m

(i)
k−1 (1.34)

P
(i)
k|k−1 = Fk−1P

(i)
k−1Fk−1

T +Qk−1 (1.35)

for i = 1, . . . , Jk−1

where pS is the probability of survival, Fk−1 is the linear state transition (approxima-

tion) and Qk−1 is the transitional process noise.
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Then finally, the following GM components for the birth intensity are added:

ω
(Jk−1+j)

k|k−1 = ω
(j)
Γ (1.36)

m
(Jk−1+j)

k|k−1 = m
(j)
Γ (1.37)

P
(Jk−1+j)

k|k−1 = P
(j)
Γ (1.38)

for j = 1, . . . , JΓ

where
{
ω
(j)
Γ ,m

(j)
Γ , P

(j)
Γ

}JΓ

j=1
is a GM set that represents the PHD birth intensity.

A predicted GM approximation can then be updated with a set of measurements

Zk exactly. The existing GM components are first treated under the assumption of a

missed detection using the following equations:

ω
(i)
k|k = (1− pD)ω

(i)
k|k−1 (1.39)

m
(i)
k|k = m

(i)
k|k−1 (1.40)

P
(i)
k|k = P

(i)
k|k−1 (1.41)

for i = 1, . . . , Jk|k−1

where pD is the probability of target detection. As well, each GM component is

individually updated with each measurement from the set Zk using the following
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equations:

ω
(i,zj)

k|k
∗
= pDq

(i)
k (zj) ω

(i)
k|k−1 (1.42)

m
(i,zj)

k|k = m
(i)
k|k−1 +K

(i)
k

(
zj −H

(j)
k m

(i)
k|k−1

)
(1.43)

P
(i,zj)

k|k =
[
I −K

(i)
k H

(j)
k

]
P

(i)
k|k−1 (1.44)

ω
(i,zj)

k|k =
ω
(i,zj)

k|k
∗

κ(zj) +
∑Jk|k−1

i=1 ω
(i,zj)

k|k
∗ (1.45)

where K
(i)
k = P

(i)
k|k−1H

(j)
k

T
[
S
(i)
k

]−1

(1.46)

S
(i)
k = H

(j)
k P

(i)
k|k−1H

(j)
k

T
+R

(j)
k (1.47)

and q
(i)
k (zj) = N

(
zj;H

(j)
k m

(i)
k|k−1, S

(i)
k

)
(1.48)

for i = 1, . . . , Jk|k−1 and j = 1, . . . , |Zk|

where H
(j)
k is the state to measurement transform matrix (approximation), R

(j)
k is the

measurement uncertainty covariance matrix and κ(zj) is the clutter intensity at the

point of the jth measurement.

Following the above equations, the number of components in the GM will increase

exponentially over time. This is computationally infeasible in most real time tracking

systems. In order to reduce the computational load, component deletion and merging

operations are used to reduce the number of components at each time step. Gaussian

components whose weights fall below a deletion threshold are removed from the esti-

mate completely and Gaussian components that are spatially similar can be merged

(averaged) together and their weights combined.
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Beyond the standard GM and SMC implementations of the PHD filter, several

other implementations have been derived (Ristic et al., 2010a). These include the

Cardinalized PHD filter (Mahler, 2007a), which also propogates an estimate of the

cardinality density along with the first order moment. As well, there have been phys-

ical space approaches taken to the PHD derivation (Erdinc et al., 2006, 2009).

1.3.4 Multitarget Multi-Bernoulli Filter

MeMBer Filter Basics

A Bernoulli Random Finite Set (BRFS) is a random finite set that can be either a

singleton {x} with probability r or the empty set ∅ with probability (1 − r). If it

is the singleton set {x} then the value of x itself is distributed according to the pdf

p(x). Thus a BRFS can be represented by the pairing
(
r, p(x)

)
.

This definition can be extended to include random finite sets with cardinality

greater than one by representing them as the union of a finite number of independent

singleton BRFS. These unions are referred to as multi-Bernoulli Random Finite Sets

(MBRFS):

X =
{
x(1), . . . , x(M)

}
=

M∪
i=1

{
x(j)
}M
j=1

=
M∪
j=1

X(j) (1.49)

where each X(j) is represented by the Bernoulli set

(
r(j), p(j)(x)

)
.
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An MBRFS also describes a multitarget probability distribution f onX as follows:

f(X) ∼
{(

r(j), p(j)(x)
)}M

j=1
(1.50)

where f(∅) =
M∏
j=1

(
1− r(j)

)
(1.51)

and f({x1, . . . , xn}) = f(∅)
∑
ji

n∏
i=1

r(ji)p(ji)
(
x(i)
)

1− r(ji)
(1.52)

for 1 ≤ j1 ̸= . . . ̸= jn ≤M

The expected cardinality of the multitarget solution set can be estimated using

the following:

N̂MEAN = E [|X|] =
M∑
j=1

r(j) (1.53)

The most likely (mode) cardinality of the multitarget solution set can also be

determined using the following:

N̂MAX = argmaxn{pn} (1.54)

where pn = Pr[|X| = n]

=


∏M

j=1

(
1− r(j)

)
n = 0

1
n

∑n
i=1 (−1)i−1pn−iT (n) n > 0

(1.55)

and T (n) =
M∑
j=1

(
r(j)

1− r(j)

)n

(1.56)
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MeMBer Filter Prediction

Assume we have the following MBRFS at time k − 1:

Xk−1 =
{(

r
(j)
k−1, p

(j)
k−1(x)

)}Mk−1

j=1
(1.57)

The MBRFS can be predicted forward in time and forms a new MBRFS that is

the union of the following two sets:

Xk|k−1 =
{(

r
(j)
k|k−1, p

(j)
k|k−1(x)

)}Mk−1

j=1
∪
{(

r
(j)
Bk
, p

(j)
Bk
(x)
)}MBk

j=1
(1.58)

Here the first set
{(

r
(j)
k|k−1, p

(j)
k|k−1(x)

)}Mk−1

j=1
is formed from the predicting the BRFS in

(1.57) ahead to time step k. The parameters of the predicted BRFS can be computed

as follows:

r
(j)
k|k−1 = r

(j)
k−1

⟨
p
(j)
k−1, pS

⟩
(1.59)

p
(j)
k|k−1(x) =

⟨
fk|k−1(x|·) , p(j)k−1pS

⟩
⟨
p
(j)
k−1, pS

⟩ (1.60)

where pS is the probability of survival and fk|k−1(·|x) is the single target transition

pdf between time steps (k − 1) and k. Also, here and throughout the thesis the no-

tation ⟨·, ·⟩ represents the integral of the product of the two functions over the state

variable as follows ⟨v, h⟩ =
∫
v (y)h (y)dy.

The second set
{(

r
(j)
Bk
, p

(j)
Bk
(x)
)}MBk

j=1
is an MBRFS approximation of the RFS mul-

titarget births at time k and the values of
(
r
(j)
Bk
, p

(j)
Bk
(x)
)

are typically determined
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based on the parameters of the scenario birth model.

MeMBer Filter Update

Assume we have a predicted MBRFS at time k|k − 1 in the form of (1.57). This

MBRFS can be updated using a set of measurements Zk to form a new MBRFS as

the union of the following sets:

Xk =
{(

r
(j)
k , p

(j)
k (x)

)}Mk|k−1

j=1
∪ {(rk(z), pk(x|z))}z∈Zk

(1.61)

Here the first set
{(

r
(j)
k , p

(j)
k (x)

)}Mk|k−1

j=1
is created from the set of undetected (legacy)

MBRFS at time step k|k − 1. They are formed using the following equations:

r
(j)
k =

1−
⟨
p
(j)
k|k−1, pD

⟩
1− r

(j)
k|k−1

⟨
p
(j)
k|k−1, pD

⟩r(j)k|k−1 (1.62)

p
(j)
k (x) =

1− pD

1−
⟨
p
(j)
k|k−1, pD

⟩p(j)k|k−1(x) (1.63)

The second set {(rk(z), pk(x|z))}z∈Zk
is an MBRFS where each BRFS is formed by

a measurement z from Zk using the entire MBRFS at time step k|k − 1. Each new
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BRFS is created using the following equations:

rk(z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩
κk(z) +

∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩ (1.64)

pk(x|z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

p
(j)
k|k−1

(x)Ψk,z(x)

1−r
(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩
∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩ (1.65)

where Ψk,z(x) = gk(z|x) pD(x)

Here Zk is the set of measurements, gk(z|x) is the single target measurement likelihood

function given state x, pD(x) is the probability of target detection and κk(z) is the

Poisson clutter intensity, all at time k.

1.3.5 Cardinality Balanced MeMBer Filter

The original MeMBer filter update equations described in (1.62)–(1.65) were derived

in (Mahler, 2007b), however, it has since been shown in (Vo et al., 2009) that the

original update equations in (Mahler, 2007b) introduce a bias in the estimated number

of targets. An alternative MeMBer recursion that reduces this bias was derived in (Vo

et al., 2009) using suggested replacements for the update equations (1.64) and (1.65).

The replacement equations form what is referred to as the Cardinality Balanced

MeMBer (CBMeMBer) filter that provides an unbiased estimate of the multitarget

set’s cardinality (Vo et al., 2009). The replacement equations for (1.64) and (1.65)
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are given in (1.66) and (1.67) below:

rk(z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

(
1−r

(j)
k|k−1

)⟨
p
(j)
k|k−1

,Ψk,z

⟩
(
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩)2

κk(z) +
∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩ (1.66)

pk(x|z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

1−r
(j)
k|k−1

p
(j)
k|k−1(x)Ψk,z(x)∑Mk|k−1

j=1

r
(j)
k|k−1

1−r
(j)
k|k−1

⟨
p
(j)
k|k−1,Ψk,z

⟩ (1.67)

CBMeMBer Filter Tracking

The CBMeMBer filter can be utilized as a full multitarget tracking solution with the

inclusion of a unique track label for each of the BRFS in the MBRFS. This gives a

track table that represents both the underlying existence likelihoods as well as their

state pdfs. An MBRFS track table is defined as follows:

Tk =
{(

r
(1)
k , p

(1)
k (x) , l

(1)
k

)
, . . . ,

(
r
(Mk)
k , p

(Mk)
k (x) , l

(Mk)
k

)}
(1.68)

where l
(j)
k is the track label, r

(j)
k is the probability of the track existence and p

(j)
k (x) is

the pdf of the track. Also, Mk is the total number of tracks at time k.

These track parameters are predicted forward and updated using the standard

MBRFS equations. Labels are maintained over time to give track continuity. Typi-

cally, the legacy tracks (predicted and missed detections) retain their labels from the

previous time step and new tracks (formed from birth or measurements) are assigned

new, unique IDs.
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Tracks may be confirmed and reported based on their likelihoods. The number of

tracks to report can be determined using either (1.53) or (1.54) and the most likely

tracks chosen. As well, track reporting can be done by reporting all those whose

likelihoods exceed a given report threshold Nreport. Tracks states are reported by the

individual BRFS pdfs.

CBMeMBer Filter Maintenance

Based on the CBMeMBer filter prediction and update operations, the number of

MBRFS (tracks) grows at each time step. This is impractical in most real time track-

ing systems, thus some mechanisms are used to keep the number of tracks in the track

table at a reasonable level. It is suggested in (Mahler, 2007b) to use both pruning

and merging to limit the total number of BRFS in the MBRFS estimate.

The first step of MBRFS maintenance is the method of pruning (or deletion). It

simply consists of the removal of the BRFS that have a likelihood r
(j)
k below a chosen

deletion threshold NDEL. As well, a threshold limiting the total number of BRFS

in an MBRFS estimate NBRFSmax can be set where only the most likely BRFS are

retained at each time step.

The second step of MBRFS maintenance, known as merging, is somewhat more

complicated. As given in (Mahler, 2007b), the condition for two BRFS
(
r
(i)
k , p

(i)
k (x)

)
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and
(
r
(j)
k , p

(j)
k (x)

)
to be merged are as follows:

r
(i)
k + r

(j)
k < 1 (1.69)

Nmerge < pi,j =

∫
p
(i)
k (x) · p

(j)
k (x)dx ≤ 1 (1.70)

where Nmerge is a chosen merge threshold.

The merged BRFS
(
r
(l)
k , p

(l)
k (x)

)
is then formed using the following equations:

r
(l)
k = r

(i)
k + r

(j)
k (1.71)

p
(l)
k (x) =

p
(i)
k (x) · p

(j)
k (x)

pi,j
(1.72)

where pi,j is the merging value described in (1.70).

1.3.6 SMC-CBMeMBer Filter

The Sequential Monte-Carlo CBMeMBer (SMC-CBMeMBer) filter is a discrete ap-

proximation of the multi-Bernoulli set using several sets of weighted states (or par-

ticles) (Vo et al., 2009; Yin and Zhang, 2010). Each individual Bernoulli set is ap-

proximated with its own set of weighted particles. The multi-Bernoulli RFS given in
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(1.50) would be represented as follows:

fk(X) ∼
{(

r
(j)
k , p

(j)
k (x)

)}Mk

j=1
(1.73)

∼

{
r
(j)
k ,
{
x
(i,j)
k , ω

(i,j)
k

}L
(j)
k

i=1

}Mk

j=1

(1.74)

where p
(j)
k ∼

{
x
(i,j)
k , ω

(i,j)
k

}L
(j)
k

i=1
(1.75)

⇒ p
(j)
k (x) =

L
(j)
k∑

i=1

ω
(i,j)
k δ

x
(i,j)
k

(x) (1.76)

This SMC estimate of the MBRFS can be predicted and updated following the equa-

tions of the CBMeMBer filter. The details of the SMC-CBMeMBer operations are

omitted for brevity as similar details are given for the SMC-MM-CBMeMBer below.

Details of the SMC-CBMeMBer filter derivation and steps can be found in (Vo et al.,

2009).

1.3.7 GM-CBMeMBer Filter

The Gaussian Mixture CBMeMBer filter (GM-CBMeMBer) is a closed form approx-

imation solution to the CBMeMBer filter prediction and update recursion equations.

The solution is based on a Gaussian Mixture approximation of the MBRFS represen-

tation of a multitarget pdf. That is,

fk(X) ∼
{(

r
(j)
k , p

(j)
k (x)

)}Mk

j=1
(1.77)

=

{
r
(j)
k ,
{
ω
(i,j)
k ,m

(i,j)
k , P

(i,j)
k

}J
(j)
k

i=1

}Mk

j=1

(1.78)
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Here, each BRFS pdf p
(j)
k (x) is approximated by a Gaussian Mixture,{

ω
(i,j)
k ,m

(i,j)
k , P

(i,j)
k

}J
(j)
k

i=1
, as follows:

p
(j)
k (x) =

J
(j)
k∑
i=1

ω
(i,j)
k N

(
x;m

(i,j)
k , P

(i,j)
k

)
(1.79)

The solution is limited to a class of linear Gaussian multitarget tracking models

where the main components of the model, such as state transition and observation, are

linear Gaussian. The target birth models BRFS must each be a Gaussian Mixture

model. As well, target parameters for state survival and detection are each state

independent.

The predicted and update equations of the CBMeMBer filter can be applied to a

GM-MBRFS as defined above when under the stated conditions. The details of these

GM-CBMeMBer operations are again not given here but similar details are given for

the GM-MM-CBMeMBer below. Details of the GM-CBMeMBer filter derivation can

be found in (Vo et al., 2009).

The GM-CBMeMBer implementation can also be extended to implement non-

linear motion and measurement models. The Extended Kalman Filter (EKF) or the

Unscented Kalman Filter (UKF) can used as the mechanism for estimate propagation

and measurement conversion in CBMeMBer filter prediction and update equations,

respectively.
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1.3.8 Intensity Filter

The intensity filter is a multiple target filtering solution based on the Poisson Point

Processes (Streit and Stone, 2008). It has been shown to be a generalized form of the

PHD filter (Streit, 2009), as the PHD can be interpreted as the intensity function of

a PPP. Previously, a non-linear implementation of the iFilter has been implemented

using a Sequential Monte Carlo (SMC) approximation of the intensity set (Schikora

et al., 2011). As well, a mulitple sensor version has been derived (Streit, 2008).

Poisson Point Processes

The theory of PPP, which has been used to solve a diverse variety of problems, forms

the basis of the iFilter. Only the basics of PPP theory are needed to derive intensity

filters. Further details of PPP theory can be found in (Kingman, 1993) and (Streit,

2010). A PPP is a stochastic process that can be represented by a non-negative

intensity function g(s) over the set S where:

∫
S

g(s) <∞ (1.80)

The PPP is said to be homogenous on S when the function is constant over all

of S. Given a PPP g(s) as above, a single realization consists of a finite number

and locations of a set of points in S. These realizations can be sampled in a two

step procedure. First, the number of points is sampled from the discrete Poisson
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cardinality distribution.

Pr[n] = exp

(
−
∫
S

g(s) ds

)
(g(s) ds)n

n!
(1.81)

Note that the expected number of points is:

E(n) =

∫
S

g(s) ds (1.82)

Next the points are independently sampled from a probability density function (pdf)

defined as the normalized intensity function as follows:

pg(s) =
g(s)∫

S
g(s) ds

(1.83)

The total set of possible realizations of the PPP is as follows:

E(S) = {(0)} ∪ {(n, {x1, . . . , xn}) ;xi ∈ S}∞n=1 (1.84)

The probability of each realization ξ = (n, {x1, . . . , xn}) ∈ E(S) can be computed as

follows:

p(ξ) =
exp

(
−
∫
S
g(s) ds

)
n!

m∏
j=1

g(xj) n > 0 (1.85)

p(ξ) = exp

(
−
∫
S

g(s) ds

)
n = 0 (1.86)

Two PPP, g and h on S, are linearly superimposed if two independent realizations

(n, {x1, . . . , xn}) and (m, {y1, . . . , ym}) are combined to form the single event

(n+m, {x1, . . . , xn, y1, . . . , ym}). A PPP in which the same event is probabilistically
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equivalent event can also be formed by superimposing the two indidivdual PPPs. This

results in a PPP whose intensity is the sum of the two individual intensity functions.

iFilter Basics

Multitarget tracking can be modeled as the sequence of two PPP. Consider a set of

discrete time steps t0, t1, . . . , tk. First, the sequence of multitarget states is approxi-

mated by a sequence of PPP X0, X1, . . . , Xk. Under this approximation, the sequence

of possible measurements also becomes a PPP. The realization of this PPP sequence is

the sequence of received measurements Z1, . . . , Zk. Also, the multitarget state space

is an augmented space S+ = S ∪ Sϕ where Sϕ is the null or clutter target space and

S is the state space of targets, typically S ⊆ ℜn. This augmented state models both

the targets states and the measurement clutter space simultaneously.

The basis for the iFilter is formulated using these two PPP. Consider the PPP

at time k − 1 denoted as Xk−1. This PPP can be represented by its intensity func-

tion fk−1(x). By definition the expected number of targets at this time step can be

computed using (1.82) and the target locations estimated by sampling the pdf (1.83)

where g = fk−1 in both equations. As well, the intensity of the clutter space is rep-

resented by an intensity function fk−1(ϕ). In many implementations this intensity

function is defined as a homogenous PPP (Schikora et al., 2011) and only the overall

intensity volume is maintained. These intensities can then be predicted and updated

recursively to form the iFilter. Each iteration of this recursion can be broken down

into the several steps.
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First, the state space filter intensity is predicted forward to time step k. This is

done by applying the transformations of survival fitting and target motion to each

realization of the PPP. Second, the predicted measurement intensities are computed

for each of the two intensities. This includes the probability of detection and measure-

ment transformation of each realization in each of the PPP. Finally, both intensities

are updated using the set of measurements Zk received at time k.

1.3.9 SMC-iFilter

The Sequential Monte Carlo (SMC) based implementation of the iFilter (SMC-iFilter)

was derived in (Schikora et al., 2011). The SMC-iFilter is formulated by approximat-

ing the target space intensity function by a set of weighted particles.

fk(x) ∼
{
x
(i)
k , ω

(i)
k

}Lk

i=1
(1.87)

fk(x) =

Lk∑
i=1

ω
(i)
k δ

x
(i)
k
(x) (1.88)

where δα(x) = δ(x− α) is the Dirac delta function and the weights are scalar values,

ω
(i)
k ∈ R. The number of targets can be computed as follows:

fk(x) =

Lk∑
i=1

ω
(i)
k (1.89)

and the state estimates can be sampled by using a point clustering technique.

In (Schikora et al., 2011), the intensity function of the clutter space is set as a ho-

mogenous PPP and only the total clutter intensity, f(ϕ), is measured over time. These
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intensity functions are predicted and updated following the steps outlined above. This

is done mainly using techniques similar to those in the particle filter prediction and

update equations (Ristic et al., 2004). The particle set is resampled for maintenance

at each time step. The number of targets and the individual target state estimates

can then be extracted using techniques similar to those used in SMC implementations

of the PHD filter (Vo et al., 2005). For brevity, the details of each of these steps of

the SMC-iFilter are not given in this chapter but can be found in (Schikora et al.,

2011).

1.4 Contributions

1.4.1 Motivation

Most multitarget tracking systems in use today still use a classical, association based

technique such as MTT, JDPA and even NN. One of the main reasons for this is

the maturity of the association based algorithms. Since these techniques have been

in place for several decades there has been ample amount of research performed in

order to extend, enhance and optimize the association based methodology. Some of

the important aspects to multiple target tracking which have been addressed in the

classic methods are track smoothing, maneuvering targets, track continuity, computa-

tional optimization in linear conditions, multiple sensors, track before detect (TBD),

extended (grouped) targets, dim targets, classification, out of sequence measurements

(OOSM) and clutter estimation. The classical techniques have also been successfully

applied to a wide variety of multitarget tracking cases involving various sensors suites

and targets sets. Some of these scenarios include bearings only multitarget tracking,
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multistatic tracking, tracking air targets, tracking multiple ground targets, low power

radar tracking and many more.

The idea of using RFS based techniques for multitarget tracking is still a fairly,

new concept. The RFS based methods described above have only recently been de-

rived. Very few, if any, have been implemented in actual live, real world tracking

systems. One of the main reason for this is that they lack the dynamic and robust

enhancements which have been incorporated into the association based methods. As

well, the RFS based methods have not yet been proven viable on a diverse set of

scenarios in comparison to the classic methods. This is not because of a lack of capa-

bility or research but more due to their younger maturity levels and lack of exposure.

Its clear from the current research that there are several advantages to using RFS

techniques to perform multiple target tracking. In order to facilitate their transition

from simple theoretical solutions into full, robust target tracking algorithms capable

of being used in actual tracking systems, there is a large amount of technical capa-

bilities and enhancements which must be derived. Some of the enhancements have

begun to be dervied for some of the RFS implmentations (Mahler et al., 2012; Vo

et al., 2011; Punithakumar et al., 2005; Nadarajah et al., 2011). The RFS based

method have begun to be validated in a variety of multitarget tracking scenarios (Vo

et al., 2010; Tobias and Lanterman, 2004; Tobias, 2006). These new improvements

will make the RFS family of algorithms a more suitable choice for implementation in

a real world multitarget tracking system.
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1.4.2 Problem Statement

In this chapter, three different RFS based multitarget tracking techniques have been

presented. While each has been shown to be a viable multitarget tracking filter under

some basic conditions, each filter is individually lacking some capabilities which are

required in most real world tracking systems. The PHD filter, in its most basic form,

only gives an estimate of the current multitarget state. Its does not relate the indi-

vidual element over multiple scans. This is known as the track continuity issue. The

MeMBer filter has previous only been derived to handle targets which travel under

a single motion model throughout the surveillance time and do not manoeurve. The

iFilter has only been derived using a Monte Carlo approximation, which is typically

computationally intensive and only required under highly non-linear conditions. Each

of these issues and deficiencies restrict the usage and flexibility of these methods as

viable algorithms for many multitarget tracking systems and they will be addressed

in this thesis in order to enhance each filter.

1.4.3 Contributions

This thesis advances the research and capabilities of several RFS based tracking tech-

niques. Specifically, it contributes three distinct improvements to the three individual

RFS based filtering algorithms described in Section 1.3. Each contribution improves

an important aspect of multitarget tracking and makes the filter more suitable for

use in more complex tracking problems. The first contribution is the improvement of

the track continuity issue in the PHD filter via the introduction of the Weight Parti-

tioned PHD filter. The second contribution is the extension of the MeMBer filter for
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tracking maneuvering targets. The third contribution is the derivation of a Gaussian

Mixture based implementation of the iFilter.

Weight Partitioned PHD Filter

In Chapter 2, the track continuity issue of the PHD filter will be addressed by in-

troducing the Weight Partitioned PHD filter. The WPPHD filter decomposes the

original PHD surface into subsurfaces (or partitions) that represent the PHD of the

individual singleton values of the multitarget state estimate. Each partition is created

using both spatial and weight based criteria so that it is representative of a single

target. These partitions are typically formed by assigning a portion of the weight of

the components supporting the PHD surface to each of the partitions. These portions

are held in a vector with each component and can transferred as part of the PHD

recursion. This allows the partitions and their associated tracks to be continually

measured over time. Each partition is also assigned a unique label associating it with

a track. Two distinct implementations of the PHD filter are derived. The first is an

SMC based method that uses the CLEAN algorithm to distribute particle weights

amongst partitions in the SMC-PHD filter. The second uses the Linear Multitarget

(LM) procedure to assign Gaussian components to each partition in the GM-PHD fil-

ter. Both of the methods are validated with a series of standard multitarget tracking

metrics using a simulated data scenario.
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MeMBer filter for Manouevring Targets

In Chapter 3, a new MeMBer filter recursion for tracking multiple targets, each

traveling under multiple motion models, will be introduced. The multiple model CB-

MeMBer (MM-CBMeMBer) filter presented here uses Jump Markov Models (JMM)

to extend the standard CBMeMBer recursion to allow each target to transition under

multiple motion models. This extension is implemented using both the SMC and GM

based CBMeMBer approximations. The recursive prediction and update equations

are presented for both implementations. Also, due to their design, each MM impl-

mentation is also able to estimate the likelihood of each motion model a target is

currently travelling under. Each multiple model implementation is validated against

its respective standard CBMeMBer implementation, as well as against each other

This validation is done using a simulated scenario containing multiple manoeuvering

targets. A variety of metrics, including estimate accuracy, model detection capability

and algorithm computational efficiency are used for performance evaluation. The new

method is shown to improve results in several metrics with only a minor increase in

computational complexity.

Gaussian Mixture Intensity Filter

In Chapter 4, a new Gaussian Mixture based implementation of the iFilter (GM-

iFilter) will be presented. It is derived similar to the SMC-iFilter, but instead uses

a weighted GM to approximate the target intensity function. The performance of

the new filter is demonstrated against a standard GM-PHD filter using a simulated

tracking scenario. Metrics used for comparison include cardinality estimates, overall

tracking accuracy as well as computational complexity. The results show that the
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new GM-iFilter gives a better cardinality estimate and a better overall filter accuracy

without any increase in computational requirements.

1.4.4 Publications

The following publications have resulted from the research done during this thesis.

Journal Papers

Published

• Gadsden, S., Habibi, S., Dunne, D., and Kirubarajan, T. (2012). Nonlinear

estimation techniques applied on target tracking problems. Journal of Dynamic

Systems, Measurement, and Control, 134(5), 054501

Conditionally Accepted

• Dunne, D., Chen, X., and Kirubarajan, T. (2012). Weight partitioned probabil-

ity hypothesis density filters for multitarget tracking. Under 2nd Review with

Signal Processing

• Dunne, D. and Kirubarajan, T. (2012b). Multiple model multi-bernoulli filters

for manoeuvering targets. Accepted in IEEE Transactions on Aerospace and

Electronic Systems

In Preparation

• Dunne, D. and Kirubarajan, T. (2013). Gaussian mixture intensity filter. To

be submitted to IEEE Transactions on Aerospace and Electronic Systems
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Conferences Papers

• Dunne, D., Ratnasingham, T., Lang, T., and Kirubarajan, T. (2009). SMC-

PHD-based multi-target tracking with reduced peak extraction. In Proc. SPIE

7445-Signal Processing, Sensor Fusion, and Target Recognition XX

• Dunne, D. and Kirubarajan, T. (2012a). MeMBer filter for manoeuvring targets.

In Proceedings of SPIE Vol. 8392: Signal Processing, Sensor Fusion, and Target

Recognition XXI

• Dunne, D. and Kirubarajan, T. (2011). Weight partitioned probability hy-

pothesis density filters. In Proceedings of the 14th International Conference on

Information Fusion (FUSION) 2011, pages 1–8

• Gadsden, S., Dunne, D., Habibi, S., and Kirubarajan, T. (2011b). Combined

particle and smooth variable structure filtering for nonlinear estimation prob-

lems. In Information Fusion (FUSION), 2011 Proceedings of the 14th Interna-

tional Conference on, pages 1 –8

• Gadsden, S., Dunne, D., Tharmarasa, R., Habibi, S., and Kirubarajan, T.

(2011a). Application of the smooth variable structure filter to a multi-target

tracking problem. In Proceedings of SPIE Vol. 8050: Signal Processing, Sensor

Fusion, and Target Recognition XX

• Gadsden, S., Dunne, D., Habibi, S., and Kirubarajan, T. (2009). Comparison of

extended and unscented Kalman, particle, and smooth variable structure filters

on a bearing-only target tracking problem. In Proceedings of SPIE Vol. 7445:

Signal and Data Processing of Small Targets

• McDonald, M., Dunne, D., Damini, A., and Kirubarajan, T. (2009). Event-

based characterization and simulation of sea clutter. In Proceedings of SPIE
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7445: Signal and Data Processing of Small Targets
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Chapter 2

Weight Partitioned Probability

Hypothesis Density Filter

2.1 Introduction

The PHD filter provides an estimate of the number of elements present as well as a

multimodal surface with the most likely locations of those elements. The states are

typically estimated based on spatial qualities (choosing higher or spaced peaks) of

the PHD surface and do not necessarily consider the weight of the elements being

extracted (Clark and Bell, 2007)(Panta et al., 2006)(Erdinc et al., 2005). If the peaks

extracted from the PHD surface are estimates of individual targets, the total weight

(volume) of each estimate should be representative of an individual target as well.

Several solutions exist for determining track continuity in PHD filters. One so-

lution is to determine the track continuity external to the PHD framework. This is

most typically accomplished by treating elements of the multitarget estimates from
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the PHD filter as measurement inputs into another multitarget filter mechanism, such

as MHT or JPDA (Lin et al., 2004)(Panta et al., 2007)(Wang et al., 2008). Here, the

PHD filter essentially acts as a decluttering tool for the external filter. The data

association problem, which is so graciously circumvented in the PHD filter, is simply

moved outside the framework into an external algorithm, albeit with reduced com-

plexity.

Another method that is used to provide track continuity with the PHD filter is

commonly referred to as track labeling. This method applies discrete track labels to

various portions of the PHD surface to identify them with an individual state ele-

ment. These labels are propagated and maintained over time to continually monitor

estimates. Labeling is accomplished in the two implementations of the PHD filter

described by assigning the labels to individual particles in the SMC-PHD (Clark and

Bell, 2005) and the Gaussian components in the GM-PHD filters (Panta et al., 2006)

respectively. A variety of ad-hoc track labeling maintenance schemes are used in each

to determine how the labels are propagated, updated and extracted from the filter

estimates (Clark and Bell, 2007)(Wood et al., 2010).

This chapter introduces a new variant of the PHD labeling technique. It parti-

tions the PHD surface based on both weight and spatial characteristics into portions

that represent the individual singleton elements making up the estimate of the mul-

titarget solution set. These partitions can be assigned labels and propagated over

time to obtain a continuous target estimate through consecutive PHD steps. This

provides a solution to the PHD track continuity problem. This method is applied
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and demonstrated using two unique implementations. The new techniques are com-

pared to currently known PHD track labeling solutions. The method aims to reduce

track fragmentation and increase track continuity versus previous labeling methods

used with the PHD filter. The partitioning in the SMC implementation is computed

using a new extension to the image decluttering algorithm known as CLEAN, which

will also be described in this chapter. The partitioning for the GM implementation

will be handled using Linear Multitarget (LM) assignment to update partition label

likelihoods. This chapter further expands upon the ideas and implementations given

in (Dunne and Kirubarajan, 2011).

This chapter is outlined as follows. First the WPPHD concept and theory are

introduced in Section 2.2. Next, the SMC implementation (including the CLEAN

algorithm) is given in Section 2.3. The GM implementation is then introduced in

Section 2.4. In Section 2.5 both implementations are demonstrated on a simulated

multitarget tracking scenario.

2.2 Weight Partitioned PHD Filter

The PHD filter provides a single function that represents the density of all targets col-

lectively within the solution set. These targets must be individually extracted from

this function, however they are predicted and updated collectively, an entire state

intensity estimate using the PHD equations (1.24) and (1.26). The proposed Weight

Partitioned PHD filter extracts individual partitions representing targets based on

both weight and spatial characteristics. The estimates can easily generate an esti-

mate of an individual target’s probability density function. The partitions are also
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uniquely labeled so they may be identified and maintained as the PHD estimate is

propagated over time.

2.2.1 WPPHD Basics

The multitarget solution or estimate set can be written as the union of the individual

singleton elements in that set. That is,

X̂ = {x̂1, . . . , x̂n} =
n∪

j=1

{x̂j} (2.1)

The proposed Weight Partitioned PHD filter attempts to partition the PHD sur-

face such that each partition represents the PHD of each of the singletons {x̂i} in the

multitarget set estimate. The PHD of a union of independent sets is the sum of the

PHD’s of the individual sets. In the WPPHD filter, the PHD surface is decomposed

into the sum of the PHD functions of the singleton sets of individual elements of the

multitarget estimate. That is,

D(x) =
n̂∑

j=1

D(j)(x) (2.2)

where here D(j)(x) is the PHD partition for the singleton X(j) = {xj}.

Since each partition D(j)(x) represents the PHD of a singleton set and is itself

a PHD surface, the expected volume of each individual partition is expected to be
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unity. Then,

N̂ (j)=

∫
D(j)(x) ≈ 1 (2.3)

where N̂=

∫
D (x) =

∫ n̂∑
j=1

D(j)(x) dx (2.4)

=
n̂∑

j=1

∫
D(j)(x) dx =

n̂∑
j=1

N̂ (j) (2.5)

Also, since the partition of the PHD represents a singleton, the probability dis-

tribution function of the individual set element can be estimated from the partition

PHD function as follows:

D(j)(x) ≈ Pr
[
X(j) = x

]
(2.6)

Pr
[
X(j) = x

]
≈ p(j)(x) = D(j)(x)

/∫
D(j)(x) dx (2.7)

Each of the partitions represents an individual element (singleton) of the mul-

tistate estimate set. In order to maintain an estimate of an individual object over

time, each partition is assigned a unique ID that is propagated along with the PHD

surface over time. This enables the changes in each partition to be monitored over

time and easily extracted at the following time step. New partitions may be added

to the WPPHD in both the predictions and update stages.
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Partition Maintenance

Labeling is a popular method of distinguishing individual objects within the entire

PHD estimate (Clark and Bell, 2007)(Panta et al., 2006). Labels are applied to vari-

ous portions of the PHD surface, which essentially partitions the surface into smaller

individual PHD functions. Since the PHD surface is the sum of the individual parti-

tions, propagating the entire surface forward in time while keeping the labels intact

will result in a partitioned PHD surface where each partition is its predicted and

updated predecessor.

In most common implementations (Clark and Bell, 2007)(Lin et al., 2006)(Zhu

et al., 2011), the labels are added and maintained based on information such as their

spatial proximity to other labels (clustering in the SMC-PHD filter and merging in

the GM-PHD filter) (Clark and Bell, 2007)(Panta et al., 2006). However, it is also

important to consider the total weight each individual partition forms. Most impor-

tantly, if the purpose of each partition is to identify individual targets then the total

weight of each partition should also be representative of such a target. For instance,

if a labeled partition has a total weight close to 2 then it is likely representative of

two actual targets and should be split into smaller partitions with weights closer to

1. As well, extremely low weighted partitions (near 0) do not contain enough weight

to accurately represent a single target and should not be reported as a track or even

removed from the estimation process.

In order to ensure each partition correctly identifies an individual target, it must

be maintained after each measurement update step. In order to accomplish this,
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partition maintenance operations are introduced to remove low weighted estimates

as well as break down larger partitions that are representative of multiple estimates.

First, low weighted partitions whose total expected number of elements is below a

certain deletion threshold N̂ (j) ≤ Ndel ∼ 0 are removed and their weights redis-

tributed amongst the other surviving partitions. Next, any partitions that have an

estimated number of targets greater than 1 are split into the appropriate number of

sub-partitions. The partition splitting rule is implemented using a threshold Nsplit. If

N̂ (j) ≥ Nsplit then the partition j is split into Ñ (j) = round(N̂ (j)) separate partitions.

Finally only partitions whose weight represents an individual target are reported in

the multitarget estimate set. This is accomplished by only reporting the tracks from

partitions whose weight exceed a reporting threshold
(
N̂ (j) ≥ Nrep

)
.

2.3 SMC-WPPHD

2.3.1 SMC-WPPHD Basics

The WPPHD filter can be implemented using an SMC-PHD filter. One method of

doing so is by extending each weighted particle to include a vector µ, which describes

the probability that a particle (state) is mapped to each current partition. That is,

{
x
(i)
k , ω

(i)
k , µ

(i)
k

}Lk

i=1
(2.8)

Here, µ
(i)
k is a vector of size Tk where Tk is the number of current partitions. Each

element µ
(i,j)
k of µ

(i)
k represents the probability the individual estimate indexed by j
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exists at the point x
(i)
k . It is the proportion of particle i’s weight which is allocated

to partition j. That is,

µ
(i,j)
k = Pr

[
X

(j)
k = x

(i)
k |x

(i)
k ∈ X

]
(2.9)

where here X
(j)
k is the j-th partition representing the singleton set

{
x
(j)
k

}
and x

(j)
k

is a random variable in the state space X. Since the entire weight of each particle

weight must map to one of the current partitions, we have

Tk∑
j=1

µ
(i,j)
k = 1 for i = 1, . . . , Lk (2.10)

Thus the set of vectors
{
µ
(i)
k

}Lk

i=1
partitions the SMC-PHD estimate

{
x
(i)
k , ω

(i)
k

}Lk

i=1

into individual SMC-PHDs of the singleton sets
{
x
(j)
k

}
that are determined as follows:

D
(j)
k (x) ∼

Lk∑
i=1

µ
(i,j)
k ω

(i)
k δ

x
(i)
k
(x) j = 1, . . . , Tk (2.11)

Accordingly, the total weight of an individual partition N
(j)
k can be determined

using the following:

N
(j)
k =

Lk∑
i=1

µ
(i,j)
k ω

(i)
k j = 1, . . . , Tk (2.12)

To predict the elements of the SMC-WPPHD forward, the particles states and

weights use the same equations (1.28) and (1.29) as the standard SMC-PHD filter.

This includes new particles that are added for targets birth. These new particles (and

weights) form a new, uniquely labeled partition of the PHD surface. New association

vectors are formed for the new particles with no association to previous partitions and
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complete association to the new birth partition. The association vectors of the existing

particles are passed forward with their respective particle states and weights. They

are then extended in size to include the new partition but are given no association

weight to the new partition. This allows each particle to retain its association with

each of the partitions from the previous timestep.

µ
(i)
k|k−1 =



[
µ
(i,1)
k−1|k−1, , µ

(i,Tk−1)

k−1|k−1 0
]

for i = 1, . . . , Lk−10, . . . , 0︸ ︷︷ ︸
Tk−1 times

1

 for i = Lk−1 + 1, . . . , Lk

(2.13)

Similarly, the update step of SMC-WPPHD also uses the same update equations

(1.30) and (1.31) as the SMC-PHD filter. The association vectors are simply kept

the same as after the prediction step. They are instead updated during the partition

maintenance step:

µ
(i)
k|k = µ

(i)
k|k−1 for i = 1, . . . , Lk (2.14)

After prediction and measurement updates have been performed on the extended

particle set, the weights of the existing partitions are computed as in (2.12) above.

Once the new partition weights are computed it is important to maintain the par-

titions so to assure they are each still representative of singleton sets. This process

follows the logic of partition deletion and splitting as outlined above in section 2.2.1.

Partitions with total weight below the delete threshold Ndel are removed and their

weights redistributed amongst the surviving partitions. Then any partitions whose

total weight is above the splitting threshold Nsplit are each repartitioned into the

appropriate number of sub-partitions whose individual weights better approximate a

singleton set. Any new partitions are given new unique labels to identify them as
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separate elements in the multitarget estimate. The steps for the maintenance of the

SMC-WPPHD are given in Algorithm 1.

Algorithm 1 SMC-WPPHD Maintenance

for j = 1 . . . Tk do
N

(j)
k =

∑Lk

i=1 µ
(i,j)
k ω

(i)
k j = 1, . . . , Tk {Compute the weight of each partition}

if N
(j)
k < Ndel then

µ
(i,j)
k = 0 ∀i {Delete low weighted partitions}

end if
if N

(j)
k > Nsplit then

REPARTITION
({

x
(i)
k , µ

(i,j)
k · ω(i)

k

}
, round(N

(j)
k )
)
{Split any high weighted

partitions}
end if

end for

There are several methods that are traditionally used to extract states from a

PHD filter, or in the case of the WPPHD, a partition. For most methods the first

step is determining the number of states to extract using the PHD estimate of the

number elements contained in the surface. Once the appropriate number of elements

is determined the peaks or states extracted based on the spatial characteristics of

the PHD surface. Some techniques that are used in the SMC-PHD filter context

are Gaussian Mixture approximation via Expectation Maximization (Clark and Bell,

2007) or various means of clustering (Dunne et al., 2009)(Punithakumar et al., 2008).

The majority of these methods choose the peaks and estimates based on spatial char-

acteristics of the PHD surface but do not necessarily consider the total size or weight

of the peaks such that they accurately represents an individual target. One interesting

technique of PHD state extraction that has been touched upon often the literature is

the CLEAN method.
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2.3.2 CLEAN Algorithm

The CLEAN algorithm (Bose et al., 2002)(Högbom, 1974) is an image decluttering

algorithm that can be used to extract individual estimates from a multi-state estimate

surface. Originating in the domain of astronomy, CLEAN algorithms are a class

of deconvolution algorithms that extract multiple objects from noisy images. The

attraction of CLEAN algorithms is that both the spatial characteristics as well as the

size of the peaks are taken into consideration. The pseudo code for the basic CLEAN

algorithm is described in Algorithm 2.

Algorithm 2 Basic CLEAN

k ← 0 {Let s0(x) represent the original noisy image}
while Targets remain in the noisy image sk(x) do
xk ← maxx sk(x) {Identify brightest point in image}
pk(x)← p0(x− xk) {Create typical image at max point}
sk+1(x)← sk(x)− pk(x) {Remove target from noisy image}

end while
Pk ← {pk(x)} {Denotes the set of target peaks}

Recently, the class of CLEAN algorithms has generated interest for extracting

peaks from SMC-PHD filters (Tobias, 2006)(Tobias and Lanterman, 2008)(Tang and

Wei, 2010). The particular sub-class of CLEAN algorithms that had been applied

to SMC-PHD state extraction is the sequential CLEAN algorithm where peaks are

individually chosen and their weights removed (subtracted) from the PHD surface in

sequence (Tobias and Lanterman, 2004). Each subsequent peak is then chosen from

the cluttered image with the previous peak removed until all peaks are extracted.(Bose
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et al., 2002)

2.3.3 CLEAN-SMC-WPPHD

The proposed partitioning procedure in the WPPHD aims to break down the PHD

surface into pieces that represent individual targets. As such, the CLEAN algorithm

is the perfect candidate to repartition sets into smaller portions in the SMC-WPPHD

filter. The procedure is similar to the CLEAN algorithm for the SMC-PHD filter,

however the portions of particle weights that are extracted for each peak are reported

in order to track the amount of weight each particle contributes to each partition.

The CLEAN algorithm used in this chapter for partitioning in the SMC-WPPHD

filter is described in full detail in Algorithm 3. The resulting filter is denoted the

CLEAN-SMC-WPPHD.

The corresponding equations for pdfs of SMC-WPPHD partition elements p
(j)
k (x)

along with their Gaussian approximations with mean m
(j)
k and covariance P

(j)
k are

computed as follows:

p
(j)
k (x) ∼=

∑Lk

i=1 δx(i)
k
(x)∑Lk

i=1 µ
(i,j)
k ω

(i)
k

(2.15)

m
(j)
k =

∑Lk

i=1 µ
(i,j)
k ω

(i)
k x

(i)
k∑Lk

i=1 µ
(i,j)
k ω

(i)
k

(2.16)

P
(j)
k =

∑Lk

i=1

∑Lk

i=1

(
x
(i)
k −m

(j)
k

)(
x
(i)
k −m

(j)
k

)′
∑Lk

i=1 µ
(i,j)
k ω

(i)
k

(2.17)

for j = 1, . . . , Tk
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Algorithm 3 CLEAN-SMC-WPPHD Partitioning

P0 = diag
[
σ2
x0
, σ2

ẋ0
, σ2

y0
, σ2

ẏ0
,
]
{Set neighborhood to initial target neighborhood

covariance}
Nk = round

(∑Lk

i=1 ω
(i)
k

)
{Compute number of targets}

Wk =
(∑Lk

i=1 ω
(i)
k

)/
Nk {Compute weight of each of target}

for j = 1 toNk do

xiMAX
where iMAX = argi max

{
ω
(i)
k

}
{Find largest weighted particle}

σ(i,j) =
(
x
(i)
k − xiMAX

)T
P0

−1
(
x
(i)
k − xiMAX

)
{Compute Mahalanobis between

each particle and initial target estimate}
for l = 0 toMaxIterations do
∆l =

{
x
(i)
k

∣∣σ(i,j) ≤ l
}
{Find particles in neighborhood of max}

WNhood ←
∑

i∈∆l
ω
(i)
k {Compute weight of neighborhood}

if WNhood ≥ Wk then

Pj =
{
x
(i)
k , ω

(i,j)
k

}
where ω

(i,j)
k = ω

(i)
k ·

Wk

WNhood
{Peak j to be returned}

ω
(i)
k = ω

(i)
k − ω

(i,j)
k , i ∈ ∆l {Extract peak from particle set}

end if
end for

end for
µ
(i,j)
k = ω

(i,j)
k /

∑Nk

j=1 ω
(i,j)
k {Compute the weight proportion contributed to each

partition}
µ
(i)
k =

[
µ
(i,j)
k

]Nk

j=1
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2.4 LM-GM-WPPHD

In order to show the versatility of implementations of the WPPHD framework, a

completely different approach is taken for the implementation of the WPPHD with

the GM-PHD filter. In the proposed GM method, the GMPHD function is also de-

composed into several partitions where each partition still represents a possible track.

Here, a single Gaussian component in the GM-PHD filter cannot be interpreted as

a single point in the state space because a Gaussian component already has a mean

and covariance. Thus, each Gaussian component can only belong to a single par-

tition, however, each partition can be composed of several Gaussian components.

Besides the usual GMPHD filter update, the probability that the ith partition repre-

sents a true currently existing target is also recursively updated, using an algorithm

based on the Linear Multitarget processing approximation proposed in (Musicki and

La Scala, 2008). In LM processing approximation, when processing target i, those

possible detections generated by targets other than i are treated as additional clutter

measurements. The clutter intensity value used in the LM processing is increased ac-

cordingly, so the enumeration of the joint measurement–to–track assignment becomes

unnecessary.

In the proposed method, denoted the LM-GM-WPPHD filter, the PHD func-

tion has been decomposed into N partitions {S1, · · · , SN} where N is the estimated

number of targets, as in the WPPHD filter. The random event that the ith partition

represents a currently existing target is represented by χi. The probability that parti-

tion Si represents a currently existing target is P (χ(i)). For partition Si, it contains ni

Gaussian components {N (i)
1 , · · · ,N (i)

ni } with corresponding weights {w(i)
1 , · · · , w(i)

ni }.
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For Gaussian components N (i)
j , it has mean vector µ

(i)
j and covariance matrix Σ

(i)
j .

The PHD function has the form

D(x) =
N∑
i=1

ni∑
j=1

w
(i)
j N

(i)
j (x;µ

(i)
j ,Σ

(i)
j ) (2.18)

Assume at time k, after the PHD prediction step, the predicted PHD function is

Dk|k−1(x) =
N∑
i=1

ni∑
j=1

w
(i)
j (k|k − 1)N (i)

j (x;µ
(i)
j (k|k − 1),Σ

(i)
j (k|k − 1)) (2.19)

Also at time k, after the Markov chain one propagation of the probability of target

existence (Musicki and La Scala, 2008), the probability that partition Si represents a

true target existing at time k is Pk|k−1(χ
(i)), i = 1, · · · , N . At time k, the measure-

ment set is Zk = {z1, z2, · · · , zNk
}. In the following, the output from the GM-PHD

filter and Pk|k−1(χi), i = 1, · · · , N will be used to calculate the posterior probability

Pk|k(χ
(i)), i = 1, · · · , N .

From the measurement update step of the GM-PHD filter, q
(i)
j (z), the predicted

measurement probability density function (pdf) for Gaussian component

N (i)
j (x;µ

(i)
j (k|k − 1),Σ

(i)
j (k|k − 1)) can be obtained as in (Vo and Ma, 2006). Then,

in this chapter, the following approximation is used to calculate the predicted mea-

surement pdf of partition Si, which is denoted as f (i)(z).

f (i)(z) =

∑ni

j=1 w
(i)
j q

(i)
j (z)∑ni

j=1w
(i)
j

(2.20)

Note, the numerator in (2.20) has already been calculated in the GM-PHD update
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step (see (1.48)), so it is possible to reuse the results in the GM-PHD filter. Further-

more, it is easy to prove that f (i)(z) is a proper measurement pdf, i.e., f (i)(z) ≥ 0

and
∫
f (i)(z)dz = 1.

Define ρ(i)(z) as the predicted intensity function of measurements that originated

from clutter or Gaussian components belonging to partitions other than Si. The

intensity function ρ(i)(z) is given by

ρ(i)(z) = λ(z) +
N∑

e=1,e̸=i

ne∑
j=1

w
(e)
j q

(e)
j (z) (2.21)

where λ(z) is the clutter intensity function. Note, that (2.21) can also be obtained

by reusing the intermediate result in the GM-PHD filter update step.

Using (2.21), (2.20) and the Linear Multitarget processing approximation (Musicki

and La Scala, 2008), the prior probability that measurement zj ∈ Zk is associated

with the target represented by partition Si can be calculated as

Pk|k−1(χ
(i)
j ) ≈ P

(i)
D

f (i)(zj)

ρ(i)(zj)∑Nk

r=1
f (i)(zr)

ρ(i)(zr)

(2.22)

where P
(i)
D is the detection probability for the possible target represented by partition

Si. From (2.20), (2.22) and using the LM processing approximation again, the value

of the priori scatter measurement intensity for measurement zj, which will be used to

56



Ph.D. Thesis - Darcy Dunne McMaster - Electrical Engineering

update the probability of χi, is then given by

ρ̃(i)(zj) = λ(zj) +
N∑

τ=1,τ ̸=i

f (τ)(zj)
Pk|k−1(χ

(τ))

1− Pk|k−1(χ(τ))
(2.23)

According to LM approximations, the above equation gives an approximated value

of the intensity function at measurement point zj, conditional on zj being a clutter

or generated by some target other than the one represented by partition Si. It is

this term that provides the coupling between the updates for Pk|k(χi), i = 1, · · · , N .

Also it should be noted that (2.21) and (2.23) are hugely different. Equation (2.21)

counters the fact that besides being a clutter, z can be a measurement caused by

Gaussian components other than those associated with partition Si. On the other

hand, equation (2.23) handles the possibility that measurement zj can be a clutter or

a measurement generated by targets other than the one represented by Si. Equations

(2.21) is implicitly based on the Poisson point process assumption for the prior target

random finite set, while (2.23) is based on the LM processing approximation.

From (2.23), (2.20) and the LM processing approximation used to derive (28) in

(Musicki and La Scala, 2008), the posterior probability that the Gaussian component

N (i)
j (x;µ

(i)
j (k|k − 1)(0),Σ

(i)
j (k|k − 1)(0)), which is the Gaussian component obtained

from N (i)
j (x;µ

(i)
j (k|k− 1),Σ

(i)
j (k|k− 1)) by assuming that there is a missed detection,

represents a track existing at time k is given by

Pk|k(χ
(i), χ

(i)
j (0)) = ϵ(i) · 1− P

(i)
D

1− δ(i)Pk|k−1(χ(i))
w

(i)
j (k|k − 1) (2.24)

From (2.23), (2.20) and the LM processing approximation used to derive (29) in
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(Musicki and La Scala, 2008), the posterior probability that the Gaussian component

N (i)
j (x;µ

(i)
j (k|k−1)(zr),Σ(i)

j (k|k−1)(zr)) (zr ∈ Zk), which is the Gaussian component

obtained by the GM-PHD filter using N (i)
j (x;µ

(i)
j (k|k − 1),Σ

(i)
j (k|k − 1)) and zr ,

represents a track existing at time k is given by

Pk|k(χ
(i), χ

(i)
j (zr)) = ϵ(i) · P

(i)
D

1− δ(i)Pk|k−1(χ(i))
·
w

(i)
j (k|k − 1)q

(i)
j (zr)

ρ̃(i)(zr)
(2.25)

Because j = 1, 2, . . . , ni the events that Gaussian component

N (i)
j (x;µ

(i)
j (k|k − 1)(z),Σ

(i)
j (k|k − 1)(z)) represents a track at time k are mutually

exclusive, there is

Pk|k(χ
(i)) =

ni∑
j=1

(
Pk|k(χ

(i), χ
(i)
j (0)) +

∑
zr∈Zk

Pk|k(χ
(i), χ

(i)
j (zr))

)
(2.26)

The posterior probability that the track represented by partition Si terminates at

time k is then

Pk|k(χ̄
(i)) =

1− Pk|k−1(χ
(i))

1− δ(i)Pk|k−1(χ(i))
(2.27)

In (2.24), (2.25) and (2.27) the terms ϵ(i) and δ(i) are computed as follows:

ϵ(i) =
Pk|k−1(χ

(i))∑ni

j=1w
(i)
j (k|k − 1)

(2.28)

δ(i) = P
(i)
D

(
1−

∑
zr∈Zk

f (i)(zr)

ρ̃(i)(zr)

)
(2.29)

The term ϵ(i) is used to balance the cardinality. From the definition of the PHD func-

tion, the prior expected number of targets associated with Si is
∑ni

j=1w
(i)
j (k|k − 1).

On the other hand, for the target represented by partition Si with prior probability
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Pk|k−1(χ
(i)), its expected number of target is 0 · (1− Pk|k−1(χ

(i))) + 1 · Pk|k−1(χ
(i)) =

Pk|k−1(χ
(i)). To compensate for the difference between the above two expectations,

ϵ(i) is introduced. The term δ(i) and its equation are the same as the one given by

(14) in (Musicki and La Scala, 2008).

In the following we will show that (2.26) and (2.27) define a probability measure,

as long as Pk|k−1(χ
(i)) ∈ [0, 1].

Proof. First, it is obvious that as long as Pk|k−1(χ
(i)) ∈ [0, 1], Pk|k(χ

(i)) and Pk|k(χ̄
(i)),

calculated from (2.26) and (2.27), are no smaller than 0.

Now we only need to prove that Pk|k(χ
(i)) + Pk|k(χ̄

(i)) = 1.

Pk|k(χ
(i)) + Pk|k(χ̄

(i))

=

ni∑
j=1

ϵ(i) · 1− P
(i)
D

1− δ(i)Pk|k−1(χ(i))
w

(i)
j (k|k − 1)

+

ni∑
j=1

∑
zr∈Zk

ϵ(i) · P
(i)
D

1− δ(i)Pk|k−1(χ(i))
·
w

(i)
j (k|k − 1)q

(i)
j (zr)

ρ̃(i)(zr)
+

1− Pk|k−1(χ
(i))

1− δ(i)Pk|k−1(χ(i))

=

ni∑
j=1

Pk|k−1(χ
(i))∑ni

t=1w
(i)
t (k|k − 1)

· 1− P
(i)
D

1− δ(i)Pk|k−1(χ(i))
w

(i)
j (k|k − 1)

+
∑
zr∈Zk

ni∑
j=1

Pk|k−1(χ
(i))∑ni

t=1w
(i)
t (k|k − 1)

· P
(i)
D

1− δ(i)Pk|k−1(χ(i))
·
w

(i)
j (k|k − 1)q

(i)
j (zr)

ρ̃(i)(zr)

+
1− Pk|k−1(χ

(i))

1− δ(i)Pk|k−1(χ(i))

=
Pk|k−1(χ

(i))(1− P
(i)
D )

1− δ(i)Pk|k−1(χ(i))
+

Pk|k−1(χ
(i))P

(i)
D

1− δ(i)Pk|k−1(χ(i))

∑
zr∈Zk

∑ni

j=1w
(i)
j (k|k − 1)q

(i)
j (zr)∑ni

t=1w
(i)
t (k|k − 1)

1

ρ̃(i)(zr)

+
1− Pk|k−1(χ

(i))

1− δ(i)Pk|k−1(χ(i))

(2.30)
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From (2.20), the above becomes

Pk|k(χ
(i)) + Pk|k(χ̄

(i))

=
Pk|k−1(χ

(i))(1− P
(i)
D )

1− δ(i)Pk|k−1(χ(i))
+

Pk|k−1(χ
(i))P

(i)
D

1− δ(i)Pk|k−1(χ(i))
· · ·

· · ·
∑
zr∈Zk

f (i)(zr)
1

ρ̃(i)(zr)
+

1− Pk|k−1(χ
(i))

1− δ(i)Pk|k−1(χ(i))

Then, we use (2.29) to replace the term
∑
zr∈Zk

f (i)(zr)
1

ρ̃(i)(zr)
in the above equation

and get

=
Pk|k−1(χ

(i))(1− P
(i)
D )

1− δ(i)Pk|k−1(χ(i))
+

Pk|k−1(χ
(i))P

(i)
D

1− δ(i)Pk|k−1(χ(i))

(
1− δ(i)

P
(i)
D

)
+

1− Pk|k−1(χ
(i))

1− δ(i)Pk|k−1(χ(i))

=
Pk|k−1(χ

(i))(1− P
(i)
D ) + Pk|k−1(χ

(i))P
(i)
D − Pk|k−1(χ

(i))δ(i) + 1− Pk|k−1(χ
(i))

1− δ(i)Pk|k−1(χ(i))

= 1

(2.31)

2.5 Simulations

2.5.1 Scenario

The performance of the each of the WPPHD based implementations is demonstrated

using the following simulated example. Each implementation is compared to a stan-

dard PHD filter counterpart using a known track continuity solution. Consider the

two dimensional multitarget scenario consisting of four targets as shown in Figure

2.1. Each target appears and vanishes in the scenario space at different points in time
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throughout the simulation. Initial target values are given in Table 2.1. The measure-

ments consist of the target xy-coordinate values with additive Gaussian white noise.

The noise has a standard deviation of σx = 1m which is independent in each dimen-

sion. The sensor generates a measurement for each target with a constant probability

of pD = 0.98. It also generates a Poisson random number of false measurements at

each time step with mean λ = 1. The spatial distribution, c(z), of these false alarms is

uniform throughout the measurement space. The scenario consists of 35 measurement

scans, each at a constant T = 1s time interval. The scenario contains several difficult

aspects of multitarget tracking such as crossing targets as well as nearby target births.
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Figure 2.1: Four Target 2-D Scenario

Each WPPHD implementation (CLEAN-SMC-WPPHD and LM-GM-WPPHD)

was run against their respective, standard SMC-PHD and GM-PHD filter counter-

parts. Each used a simple track continuity mechanism similar to those found in

literature. The standard SMC-PHD implementation used a simple particle labeling
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Table 2.1: Initial States of Targets in Simulation
Position (m) Velocity (m/s) Starting Time (scan)

Target 1 (−32, 25) (1.4, −0.5) 2
Target 2 (32, 25) (−1.4, −0.5) 2
Target 3 (−25, 35) (1.4, −2) 7
Target 4 (25, 35) (−1.4, −2) 7

and k-means clustering mechanism (Clark and Bell, 2007). The standard GM-PHD

implementation used a Gaussian component labeling and 1D update tree mechanism

(Pasha et al., 2006). All four filters were configured and run against the above de-

scribed 2D scenario for 100 Monte Carlo runs.

The common scenario parameters (pD, λ, etc.) were assumed to be known and

set to their actual values in all four filters. The target birth density was set to be

a Gaussian mixture of five Gaussian components. The components were located in

each quadrant at [±25, 0,±, 25, 0] as well as one at the origin. Each Gaussian compo-

nent had a covariance of diag
[
σ2
x0
, σ2

ẋ0
, σ2

x0
, σ2

ẋ0

]
where σx0 = 10m and σẋ0 = 1.5m/s

respectively. The birth density weight for each component was set to be 0.03 for

a total birth weight of 0.15. The probability of target survival throughout the sce-

nario was pS = 0.95 and targets were modeled with nearly constant velocity linear

motion with process noise factor 0.001m2/s3. The number of particles used per tar-

get in the SMC implementations for both newborn objects and in resampling was

1000. The partition threshold values for the CLEAN-SMC-WPPHD filter were set at

Ndel = 0.2, Nsplit = 1.5 and Nrep = 0.5, respectively.
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2.5.2 Metrics

A series of metrics were collected during the simulation in order to evaluate the per-

formance of the WPPHD implementations against their standard PHD filter coun-

terparts, as well as each other. For overall state estimation accuracy, there are a

variety of multitarget tracking metrics that could be used such as the Hausdorff met-

ric (El-Fallah et al., 2001) or the Wasserstein Multitarget Miss Distance (Hoffman and

Mahler, 2004). Recently, the Optimal Subpattern Assignment (OSPA) metric was in-

troduced and demonstrated as a consistent metric for multitarget tracker performance

evaluation (Schuhmacher et al., 2008). As with the previous metrics mentioned, it

considers both the distance between the individual elements as well as the difference

in set cardinalities. The OSPA metric for use as a multitarget tracker evaluator is

described in detail in (Ristic et al., 2010b), however the basic equations are defined

as follows:

d̄(c)p (X, Y ) =

(
1

n

(
min
π∈Πk

m∑
i=1

d(c)
(
xi, yπ(i)

)p
+ cp (n−m)

)) 1
p

(2.32)

where d(c)(x, y) = min {c, ∥x− y∥} and Πk is the set of permutations of the set

{1, . . . , k}. Also note that in general p ≥ 1, c > 0, |X| = m and |Y | = n.

The track continuity can be measured using a variety of metrics. Both metrics

used here are chosen from a collection proposed by the Multistatic Tracking Working

Group (MSTWG) in (Coraluppi et al., 2006). The metrics are used by the working

group to benchmark multistatic tracking algorithms, however, the metrics are tech-

nically applicable as metrics for any multitarget tracking algorithm. A simple metric
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that appeals to measuring continuity is the mean track fragmentation rate (mTFR).

It can be computed simply as the ratio between the number of true targets NTT and

the total number of tracks generated NT . Then,

TFR =
NTT

NT

(2.33)

The second MSTWG metric used is the track probability of detection, also known

as the overall track completeness metric. It gives the percentage of time which the

true targets have an associated track estimate. It can be computed as the ratio of

the total duration of tracks associated with true targets and the total duration of all

true targets. The computation is as follows:

TPD =

∑NT

i=1 Ti∑NTT

j=1 TT j

(2.34)

where Ti is the total duration which track i is associated with a true target and TT j

is the total duration of true target j in the scenario.

2.5.3 Results

Track results generated by the CLEAN-SMC-WPPHD during one of the 100 Monte

Carlo runs are shown in Figure 2.2. The tracks are overlayed against the true target

trajectories for the entire trial. The Figure shows that the filter produces estimates

that accurately estimate individual truth objects for the majority of scans. The

number of false tracks remains low and the amount of track breakage is minimal with

the exception of a few areas.
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Figure 2.2: Sample CLEAN-SMC-WPPHD Track Results

The track results generated by the GM-WPPHD filter during one of the Monte

Carlo runs of are shown in Figure 2.3. It shows highly accurate track results through-

out the entire scenario. The tracks generated by the GM-WPPHD appear near the

true target locations and consistently follow the actual target trajectories.
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Figure 2.3: Sample LM-GM-WPPHD Track Results
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The mean values over the full set of Monte Carlo runs for the OSPA distances at

each scan are plotted for all filters in Figure 2.4. The metric values were generated

using the OSPA parameters p = 2 and c = 10. The mean OSPA value over the

entire scenario is also given for each filter in last row of Table 2.2. From the results

it can be seen that the new WPPHD methods are effective in accurately measuring

the cardinality and states of the multitarget scenario. The CLEAN-SMC-WPPHD is

more accurate than its standard counterpart near track initialization while the tracks

are closely separated. However, it is less accurate later in the scenario when the

tracks diverge. On average, over the entire scenario, the standard SMC method is

only slightly more accurate than the WPPHD based method. The LM-GM-WPPHD

is nearly always more accurate than its standard GM-PHD counterpart throughout

the scenario. The overall average OSPA value over the course of the entire scenario

is significantly lower than the standard GM-PHD.
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Figure 2.4: Mean OSPA Distance

The mean track fragmentation rate and track completeness metric values for all of
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the filters are shown in Table 2.2. The track fragmentation rate of the CLEAN-SMC-

WPPHD filter is slightly improved compared to the standard SMC-PHD implemen-

tation. However, the LM-GM-WPPHD filter track continuity is much improved over

the standard GM-PHD counterpart. The track probability of detection is slightly im-

proved in both WPPHD methods when compared to their respective standard PHD

counterparts.

Table 2.2: Track Results Comparison
Ideal Values GM-WPPHD GM-PHD SMC-WPPHD SMC-PHD

TPD 1 (MAX) 0.844 0.799 0.637 0.635
TFR 1 (MIN) 3.79 6.00 5.25 7.96
OSPA 0 (MIN) 0.989 1.71 3.39 2.92

The computational load of each algorithm was also monitored throughout each

simulation. The mean processing time for a single scan is given in seconds for each

of the filters in Table 2.3. The mean run time of the SMC based methods are much

higher than the GM based filters, which is typical. The more important observation

is that both of the standard PHD filters operate more efficiently than their WPPHD

based counterpart. However, this increase is not very significant and may be an

acceptable cost in order to gain the improvements provided by the WPPHD in other

metrics.

Table 2.3: Mean Filter Iteration Times
Filter Mean (sec)

SMC-PHD 2.77
SMC-WPPHD 3.58

GM-PHD 0.104
GM-WPPHD 0.204
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Chapter 3

Multiple Model Multi-Bernoulli

Filter

3.1 Introduction

This chapter will derive and demonstrate an RFS based solution for tracking ma-

noeuvring targets using the CBMeMBer filter. This is accomplished by using the

methods used in classical multiple model filtering methods mainly by extending the

CBMeMBer filter framework derived in (Vo et al., 2009) to allow for multiple Jump

Markov Models similar to the approach used in (Pasha et al., 2006). The target state

is extended to include a finite-valued random state variable representing the motion

state model that the target is currently traveling under. This forms a multiple model

Bernoulli singleton set and, by extension, a full multiple model multi-Bernoulli set

that approximates a full multiple model, multitarget probability distribution func-

tion (pdf). This new MM parameter is incorporated into the RFS framework to form

general multiple model prediction and update recursions of the generic CBMeMBer
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equations. This is similar to the incorporation of the MM state in other RFS methods

such as the PHD filter (Punithakumar et al., 2008; Pasha et al., 2009).

Once a general MM-CBMeMBer framework is established, derivations of the GM

and SMC CBMeMBer implementations are presented. First, an SMC based approx-

imation of the MM-CBMeMBer filter is derived by extending each weighted particle

state to include the motion model state parameter. Using this extension a full set of

SMC based prediction and update equations are derived with details. Next, an exact

derivation of the MM-CBMeMBer filter prediction and recursion operations is given

using a GM approximation to the multiple model multi-Bernoulli set. This is done

by extending each Gaussian component with a model state parameter.

Simulations are used to demonstrate that both of these implementations produce

more accurate estimates than their single model CBMeMBer counterparts in terms of

both cardinality and overall multitarget tracking estimate. The simulations also show

that these improvements are accomplished with only a marginal increase in computa-

tional time for the MM extended versions. Finally, and perhaps more importantly, the

simulations are used to show that each of MM-CBMeMBer implementations can be

successfully used to accurately estimate the motion model which a target is currently

traveling under. This is a capability that is not available in single model CBMeMBer

implementations.

In this chapter, the multiple model implementation of the CBMeMBer filter is

derived in Section 3.2 including details for both the SMC and GM approximations.
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These new filters are then validated against their basic counterparts, as well as each

other, using a variety of multitarget tracking metrics in Section 3.3.

3.2 MM-CBMeMBer Filtering

3.2.1 Multiple Model Basics

A variety of approaches have been proposed to handle modeling manoeuvring targets

(Bar-Shalom et al., 2002; Blackman and Popoli, 1999). However, one approach that

has been proven effective is the linear Jump Markov (JM) model (Bar-Shalom et al.,

2002; Pasha et al., 2006; Punithakumar et al., 2008). Under a JM modeled system,

target motion models switch under a Markov Chain (based solely on its prior state).

Consider the discrete, finite set of motion models {1, . . . , Nπ}. In a linear JM system

the probability of transitioning between each of these models is constant. This forms

a matrix Πk =
[
α
(m,n)
k

]
1≤m,n≤Nπ

known as the regime transition matrix, where each

element of the matrix represents the probability of transitioning between two models.

That is,

α
(m,n)
k = fk(πk = n|πk−1 = m) (3.1)

To implement multiple model tracking using a JM approach, the random state

variable is then extended to include the discrete state variable corresponding to the

motion model. That is, x̃ = (x, π). The pdf of the extended random state is connected

to the basic state pdf by parameterizing over the discrete model variable. Thus,

p(x) =

∫
Π

p(x, π) dπ =
Nπ∑
l=1

p(π = l) p
(
x
∣∣∣π = l

)
(3.2)
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The JM method of extending the random state to include the target motion model

alters the standard target stochastic model as well. The basic state transition and

measurement likelihood models become dependent on the motion model π value.

Thus,

f
(
xk, πk

∣∣∣xk−1, πk−1

)
= p
(
πk

∣∣∣πk−1

)
fπk

(xk|xk−1, πk−1) (3.3)

g
(
z
∣∣∣xk, πk

)
= gπk

(z|xk) (3.4)

Note that while the measurement likelihood function can, in general, be dependent

on the jump Markov variable, it is typically independent of the targets motion model

state. Thus, for simplicity, the motion independent version gk(z|xk) is used through-

out this chapter. State birth intensities are also augmented to include initial state

model likelihoods as

pB(x, π) = pπ(x) pB(x) (3.5)

The JMS technique for performing multiple model target tracking has previously

been applied to Random Finite Set based filters (Pasha et al., 2006; Punithakumar

et al., 2008). These techniques were specifically applied for the use with the Proba-

bility Hypothesis Density (PHD) filter.

3.2.2 MM-CBMeMBer Filter

Using techniques similar to those used in (Pasha et al., 2006; Punithakumar et al.,

2008), the CBMeMBer filter can be extended to implement multiple model tracking.

This is accomplished by extending the traditional Bernoulli RFS state variable to

include the discrete random variable representing the motion model the singleton is
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operating under. Then,

(X,Π) =
{
(x, π)(1), . . . , (x, π)(M)

}
(3.6)

=
M∪
j=1

{
(x, π)(j)

}
=

M∪
i=1

(X,Π)(j) (3.7)

Here each singleton (X,Π)(j) is represented by the Bernoulli set

(
r(j), p(j)(x, π)

)
.

We refer to this as a multiple model BRFS (MM-BRFS) and the collection as an

MM-MBRFS.

Thus, we have the following MM-MBRFS representation of the multitarget pdf at

time k:

fk(X,Π) ∼
{(

r
(j)
k , p

(j)
k (x, π)

)}Mk

j=1
(3.8)

Similar to the standard CBMeMBer filter equations, an MM-MBRFS can be pre-

dicted and updated over several time steps to form a recursive filter. This filter can

be appropriately named the Multiple Model CBMeMBer (MM-CBMeMBer) filter.

MM-CBMeMBer Filter Prediction

The prediction operation of the MM-CBMeMBer filter is very similar to the standard

CBMeMBer prediction operations. A predicted MM-MBRFS given in (3.8) at time

k − 1 can be predicted forward to approximate the multitarget pdf fk|k−1(X,Π) as
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the union of two MM-MBRFS sets as follows:

fk|k−1(X,Π) ∼
{(

r
(j)
k|k−1, p

(j)
k|k−1(x, π)

)}Mk−1

j=1
∪ · · ·

· · ·
{(

r
(j)
Bk
, p

(j)
Bk
(x, π)

)}MBk

j=1
(3.9)

The predicted (legacy) MM-BRFS can be computed using equations similar to

the basic CBMeMBer filter prediction equations described in (1.59) and (1.60) but

extended to include the MM variable. The single model stochastic equations are

replaced with the model specific transition equations outlined in Section 3.2.1. The

new MM-CBMeMBer prediction equations can be defined as follows:

r
(j)
k|k−1 = r

(j)
k−1

⟨
p
(j)
k−1, pS

⟩
(3.10)

p
(j)
k|k−1(x, π) =

⟨
fk|k−1(x, π|·) , p(j)k−1pS

⟩
⟨
p
(j)
k−1, pS

⟩ (3.11)

Here it is important to recall that the notation ⟨·, ·⟩ refers to the integral over the

full state variable, which here includes the summation over the model state variable

as follows:

⟨v, h⟩ =
∫
(X,Π)

v(x, π)h(x, π) dxdπ (3.12)

=

∫
X

∫
Π

v(x, π)h(x, π) dπ dx (3.13)

=
∑
π

∫
X

v(x|π)h(x|π) dx (3.14)

The birth MM-MBRFS
{(

r
(j)
Bk
, p

(j)
Bk
(x, π)

)}MBk

j=1
is similar to that described in
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(1.58), however, it also considers the initial model state likelihoods.

MM-CBMeMBer Filter Update

The update operation of the MM-CBMeMBer filter is also quite similar to the stan-

dard CBMeMBer update operation. An MM-MBRFS given in (3.8) at time k|k − 1

has the posterior multitarget pdf fk(X,Π) defined as the union of two MM-MBRFS

sets as follows:

fk(X,Π) ∼
{(

r
(j)
k , p

(j)
k (x, π)

)}Mk|k−1

j=1
∪ {(rk(z), pk(x, π|z))}z∈Zk

(3.15)

The equations used to describe the update MM-BRFS sets described in (3.15) are

similar to the standard CBMeMBer update equations described in (1.62)–(1.65) but

are extended to take into account the multiple model parameters. First, the missed

detection update equations are defined similar to those outlined in (1.62) and (1.63):

r
(j)
k =

1−
⟨
p
(j)
k|k−1, pD

⟩
1− r

(j)
k|k−1

⟨
p
(j)
k|k−1, pD

⟩r(j)k|k−1 (3.16)

p
(j)
k (x, π) =

1− pD(x, π)

1−
⟨
p
(j)
k|k−1, pD

⟩p(j)k|k−1(x, π) (3.17)

Finally, the equations for creating the new measurement based MM-BRFS in

(3.15) are also similar to those described in (1.66) and (1.67). However, here the

single target measurement likelihood function gk(z|x) can be replaced with a model
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specific measurement likelihood function gk(z|x, π) (if it differs for each model):

πk(z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩
κk(z) +

∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩ (3.18)

pk(x, π|z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

p
(j)
k|k−1

(x,π)Ψk,z(x,π)

1−r
(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩
∑Mk|k−1

j=1

r
(j)
k|k−1

⟨
p
(j)
k|k−1

,Ψk,z

⟩
1−r

(j)
k|k−1

⟨
p
(j)
k|k−1

,pD

⟩ (3.19)

where Ψk,z(x, π) = gk(z|x, π) pD(x, π)

The above definitions of the MM-CBMeMBer equations are based on the stan-

dard CBMeMBer filter’s update equations. The key enhancement to the standard

CBMeMBer filter is the addition of the motion state variable. By distributing over

and applying specific motion transition and measurement update equations in the

prediction and update steps respectively the uncertainly of the targets motion is cap-

tured and estimated. The base derivation, as well as any implementation specific

derivations that may proceed, follow similarly for the CBMeMBer filter’s equation.

Using these new MM update equations forms the MM-CBMeMBer filter and its re-

spective implementations.

3.2.3 SMC-MM-CBMeMBer Filter

The MM-CBMeMBer filter described above can be implemented using a particle based

approximation with an extension to the SMC-CBMeMBer approximation of the stan-

dard CBMeMBer filter. The extension involves the addition of a model identification
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variable along with each particles state-weight pairing. This model parameter is a

discrete representation of the current particle states model. The extended particle

set is described as follows:

(Xk,Πk) =
{(

r
(j)
k , p

(j)
k (x, π)

)}Mk

j=1
(3.20)

∼

{(
r
(j)
k ,
{(

x
(i,j)
k , π

(i,j)
k , ω

(i,j)
k

)}L
(j)
k

i=1

)}Mk

j=1

(3.21)

This forms an approximation to the MM extended BRFS pdf in (3.8) that is similar

to the SMC approximation given in (1.76) as follows:

p
(j)
k (x, π) =

L
(j)
k∑

i=1

ω
(i,j)
k δ

x
(i,j)
k ,π

(i,j)
k

(x, π) (3.22)

SMC-MM-CBMeMBer Filter Predict

The regime extended particle set described in (3.21) can be predicted forward us-

ing the MM-CBMeMBer prediction equations stated in section (3.2.2) under an SMC

implementation. These equations are similar to the standard SMC-CBMeMBer equa-

tions described in (Vo et al., 2009), however, taking into account the additional regime

conditioned particle state using equations similar to those first outlined in (Ristic

et al., 2004). The derivation of the key elements of the standard MM-MeMBer pre-

dict equations can be found in Appendix B.1.
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First, the predicted MMBRFS can be described as follows:

r
(j)
k|k−1 = r

(j)
k−1

L
(j)
k∑

i=1

pS

(
x
(i,j)
k−1, π

(i,j)
k−1

)
ω
(i,j)
k−1 (3.23)

p
(j)
k|k−1(x, π) =

L
(j)
k∑

i=1

ω
(i,j)
k|k−1δx(i,j)

k ,π
(i,j)
k

(x, π) (3.24)

where

π
(i,j)
k ∼ qΠ

(
·
∣∣∣π(i,j)

k−1

)
(3.25)

x
(i,j)
k|k−1 ∼ qX

(
·
∣∣∣x(i,j)

k−1, π
(i,j)
k

)
ω̃
(i,j)
k|k−1 =
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(
π
(i,j)
k

∣∣∣π(i,j)
k−1

)
f
(
x
(i,j)
k

∣∣∣x(i,j)
k−1, π

(i,j)
k

)
pS

(
x
(i,j)
k−1, π

(i,j)
k−1

)
qΠ

(
π
(i,j)
k

∣∣∣π(i,j)
k−1

)
qX

(
x
(i,j)
k

∣∣∣x(i,j)
k−1, π

(i,j)
k−1 , π

(i,j)
k

) ω
(i,j)
k−1 (3.26)

ω
(i,j)
k|k−1 = ω̃

(i,j)
k|k−1

/ L
(j)
k−1∑
i=1

ω̃
(i,j)
k|k−1 (3.27)

for i = 1, . . . , L
(j)
k−1 and j = 1, . . . ,Mk−1

where qX , qΠ are the state and motion model importance sampling distributions re-

spectively. The key difference in these equations to those in the standard CBMeMBer

filter found in (Vo et al., 2009) is the sampling of the motion model in (3.25) and its

application in the computation of the weight in (3.26). Next, a multiple model SMC
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approximation to the MM-MBRFS birth set is generated as follows:

r
(j)
Bk

=

∫
X,Π

bk(x, π) dx dπ (3.28)

p
(j)
Bk
(x, π) =

L
(j)
Bk∑

i=1

ω
(i,j)
Bk

δ
x
(i,j)
Bk

,π
(i,j)
Bk

(x, π) (3.29)

where π
(i,j)
Bk
∼ bk(·) (3.30)

x
(i,j)
Bk
∼ bk

(
·
∣∣∣Zk

)
(3.31)

ω̃
(i,j)
Bk

=
pBk

(
x
(i,j)
Bk

, π
(i,j)
Bk

)
b
(
x
(i,j)
Bk

, π
(i,j)
Bk

∣∣∣Zk

) (3.32)

ω
(i,j)
Bk

= ω̃
(i,j)
Bk

/ L
(j)
Bk∑

i=1

ω̃
(i,j)
Bk

(3.33)

for i = 1, . . . , L
(j)
Bk

and j = 1, . . . ,MBk

where b(·) is the birth distribution and is used for sampling both the state space

(3.31) and the motion model (3.30).

SMC-MM-CBMeMBer Filter Update

To update an SMC-MM-CBMeMBer filter approximation, the equations given in Sec-

tion 3.2.2 are implemented in an SMC context, similar to the process for the standard

SMC-CBMeMBer implementation update equations given in (Vo et al., 2009). The

single target measurement likelihood function gk(z|x) can be replaced with a model-

specific measurement likelihood function if it differs for each model. The operations

for the update step are similar to those for a basic regime conditioned particle filter
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as in (Ristic et al., 2004), however, under an RFS context, similar to that found in

(Punithakumar et al., 2008). Note, that there is no extra update step for the regime

(model) state of the MBRFS. More details regarding the derivation of some key el-

ements of the standard MM-MeMBer update equations in the SMC context can be

found in Appendix B.1.

Consider an SMC-MM-MBRFS approximation as given in (3.21). The updated

MM-MBRFS in (3.15) can be described as follows. First, the legacy (missed detection)

MM-MBRFS are determined as follows:

r
(j)
k = r

(j)
k|k−1

1− ρ
(j)
k

1− r
(j)
k|k−1ρ

(j)
k

(3.34)

p
(j)
k (x, π) =

L
(j)
k|k−1∑
i=1

ω
(i,j)
k δ

x
(i,j)
k ,π

(i,j)
k

(x, π) (3.35)

where ρ
(j)
k =

L
(j)
k|k−1∑
i=1

ω
(i,j)
k|k−1pD

(
x
(i,j)
k|k−1, π

(i,j)
k|k−1

)
(3.36)

ω̃
(i,j)
k = ω

(i,j)
k|k−1

(
1− pD

(
x
(i,j)
k|k−1, π

(i,j)
k|k−1
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(3.37)

ω
(i,j)
k = ω̃

(i,j)
k

/ L
(j)
k|k−1∑
i=1

ω̃
(i,j)
k (3.38)

for i = 1, . . . , L
(j)
k|k−1 and j = 1, . . . ,Mk|k−1

Here the key difference versus the standard GM-CBMeMBer described in (Vo et al.,

2009) is the application of both the state space and motion model state to a particles
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probability of detection. Next, each measurement z ∈ Zk generates and SMC-MM-

MBRFS as follows:

rk(z) =

∑Mk|k−1

j=1

r
(j)
k|k−1

(
1−r

(j)
k|k−1

)
ρ
(j)
k (z)(

1−r
(j)
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ρ
(j)
k (z)

)2
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r
(j)
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ρ
(j)
k (z)

1−r
(j)
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ρ
(j)
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(3.39)
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k δ
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(i,j)
k|k−1

)
(3.41)
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k (z) = ω

(i,j)
k|k−1
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(j)
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(
x
(i,j)
k|k−1, π

(i,j)
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ω
(i,j)
k (z) = ω̃

(i,j)
k (z)

/Mk|k−1∑
j=1

L
(j)
k|k−1∑
i=1

ω̃
(i,j)
k (z) (3.43)

for i = 1, . . . , L
(j)
k|k−1 and z ∈ Zk

Here the MM-CBMeMBer differs from the standard implementation in the usage of a

model based target likelihood function Ψz(x, π) in the updated weight computations

in (3.41) and (3.42).

3.2.4 GM-MM-CBMeMBer Filter

The GM-CBMeMBer filter may be extended to perform multiple model filtering.

Essentially, each GM component is extended to include a model parameter that esti-

mates the model which that component is currently operating under. A Jump Markov
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(JM) model (Bar-Shalom et al., 2002) may then be applied to allow for model switch-

ing parameters to be modeled at each prediction step. This is similar to the manner in

which the GM-PHD filter is extended to allow for linear JM model (LJM) in (Pasha

et al., 2006). The Gaussian Mixture Multiple Model MBRFS (GM-MM-MBRFS) is

described as follows:

(Xk,Πk) =
{(

r
(j)
k , p

(j)
k (x, π)

)}Mk

j=1
(3.44)

∼

{
r
(j)
k ,
{(

m
(i,j)
k , P

(i,j)
k , π

(i,j)
k , ω

(i,j)
k

)}L
(j)
k

i=1

}Mk

j=1

(3.45)

p
(j)
k (x, π) =

L
(j)
k∑

i=1

ω
(i)
k (π)N

(
x;m

(i,j)
k (π), P

(i,j)
k (π)

)
(3.46)

GM-MM-CBMeMBer Filter Prediction

The GM-MM-CBMeMBer prediction operations are performed by following the MM

specific update operations described in (3.10) and (3.11). The GM-MM-BRFS as

described in (3.45) at time k − 1 can be predicted forward to time k. First, the

predicted GM-MM-BRFS described in (3.9) is computed as follows:

r
(j)
k|k−1 = r

(j)
k−1

Nπ∑
πk−1=1

M
(j)
k∑

i=1

pS(π)ω
(i)
k|k−1(πk−1) (3.47)
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(j)
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Nπ∑
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M
(j)
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(i)
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(3.48)
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where ω
(i)
k|k−1(πk|πk−1) = p

(
πk

∣∣∣πk−1

)
pS(πk−1)ω

(i)
k|k−1 (3.49)

m
(i)
k|k−1(πk|πk−1) = Fk−1(πk−1)m

(j)
k−1(πk−1) (3.50)

P
(i)
k|k−1(πk|πk−1) = Fk−1(πk−1)P

(j)
k−1(πk−1)Fk−1(πk−1)

T · · ·

· · ·+Qk−1(π) (3.51)

for i = 1, . . . , L
(j)
k−1 and j = 1, . . . ,M

(j)
k−1

where Fk−1(π) is the linear state transition matrix under motion model π and similarly

Qk−1(π) is the process noise matrix for the same motion model. Also, pS(π) denotes

the regime specific probability of survival. However, in most cases, this parameter

is regime independent as well (i.e. pS(π) = pS). The key extension here versus the

standard CBMeMBer described in (Vo et al., 2009) is the inclusion of the model

parameter in the each target motion parameters, especially the usage of the motion

transition probability p
(
πk

∣∣∣πk−1

)
added in (3.49). Further, details of the derivation

of key elements of the base MM-MeMBer prediction equations can be found in Ap-

pendix B.2.

The set of new birth BRFS
{(

r
(j)
Bk
, p

(j)
Bk
(x, π)

)}MBk

j=1
is formed using multiple model

GM approximations to the birth set pdfs as follows:

p
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(3.52)

where m
(i,j)
Bk

(π), P
(i,j)
Bk

(π) and ω
(i,j)
Bk

represent the GM approximation to the pdfs of the

multiple model birth RFS.
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GM-MM-CBMeMBer Filter Update

Again, the GM-MM-CBMeMBer filter version of the equations given in section 3.2.2

are derived similar to the basic GM-CBMeMBer update equations outlined in (Vo

et al., 2009). First, the legacy (missed detection) GM-MM-MBRFS are updated with

a missed detection in the same manner as the standard GM-CBMeMBer:

r
(j)
k =

1− pD(π)

1− r
(j)
k|k−1pD(π)

r
(j)
k|k−1 (3.53)

p
(j)
k (x, π) = p

(j)
k|k−1(x, π) (3.54)

for j = 1, . . . ,M
(j)
k|k−1

Here the key improvement on the standard CBMeMBer filter is the inclusion of the

motion model parameter in the computation of the targets probability of detection.
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Finally, each measurement z ∈ Zk generates a new GM-MM-MBRFS using the fol-

lowing equations:

rk(z) =

∑Mk|k−1

j=1

r
(j)
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where υ(i)(z) = pD(π)
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S
(i,j)
k = HP

(i,j)
k|k−1H

T +R (3.61)

for i = 1, . . . , L
(j)
k|k−1 and j = 1, . . . ,M

(j)
k|k−1

The main difference between GM-MM-CBMeMBer update equations and those of

the standard GM-CBMeMBer filter is the use of model specific probability of detec-

tion parameter pD(π). However, in most tracking cases the detection probability is

independent of the model (i.e. pD(π) = pD), making the equations the same through-

out. Also, the measurement likelihood model can be extended to include the model

specific a parameters Hπ, Rπ. More detailed derivations of the MM-MeMBer update
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equation in the GM context can be found in Appendix B.2.

3.3 Simulation

3.3.1 Scenario

In order to test the viability and performance of the algorithms described above, each

MM-CBMeMBer implementation is demonstrated using a simulated scenario. Con-

sider a two dimensional scenario space of size 2000m in each dimension. The scenario

consists of four manoeuvring targets as shown in Figure 3.1. The targets undergo a

variety of motion patterns throughout the scenario so as to thoroughly test the abil-

ity of the techniques to track and detect all types of manoeuvres. Linear positional

measurements are generated using a single sensor that monitors the entire scenario

space at a time interval of T = 1s. The target measurements have additive Gaussian

noise with standard deviation σ2
x = 10m2 independent in each direction. Targets were

detected based on a uniform and model independent probability of pD = 0.95. The

sensor also generated a number of false measurements with density λc = 2.5×10−6m−2

and a uniform spatial distribution over the entire scenario space. The entire scenario

consists of 60 time intervals. Included in the scenario were several elements consid-

ered to be difficult multi-target tracking aspects such as multiple targets appearing

within sequential time intervals as well as crossing (closely spaced) targets.
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Figure 3.1: 2-D scenario containing four targets

3.3.2 Filter Configuration

Each MM-CBMeMBer filter was configured to operate using as many common param-

eters as possible, with essentially only the implementation specific parameters varying.

The filters were also configured to use the correct scenario parameter values wherever

possible. These parameters include pD, and pFA as defined above as well as proba-

bility of target survival (pS = 0.95) and clutter intensity (κ(z) = V · λc = 10). Each

filter utilized a birth RFS approximation based on five Gaussian distributions means

located at (0, 0) , (−500,−500) , (−500, 500) , (500,−500) , (500, 500) in the scenario

space (each with (0, 0) as the mean velocity components). Each Gaussian component

had a diagonal covariance with σ2
x = 2002m2 and σ2

ẋ = 602m2/s2 as the position and

velocity covariance components, respectively. The CBMeMBer birth intensity totaled

rBIRTH = 0.08, which was equally distributed amongst five birth BRFS, each con-

structed using one of the five Gaussian birth components described above. As well,

each MM-CBMeMBer filter shared common maintenance and reporting parameters

such as a BRFS deletion threshold of NDEL = 0.1 and maximum number of BRFS in

the MBRFS estimate of NBRFSMAX
= 100.
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For the individual filter parameters, the particle based CBMeMBer filters had the

specific parameters of number of particle per BRFS estimate set to NPPT = 100 along

with a minimum of 30 particles for each BRFS estimate. The resampling threshold

for each BRFS was set to NRESAMPLE = 0.75. For the GM based CBMeMBer filters,

the GM deletion threshold parameter was set to NGM DELETE = 10−5 and the GM

merging threshold was set to NGM MERGE = 4. The maximum number of GM per

BRFS was also set to NGMPT = 100.

For the MM specific parameters, a three model configuration using two specific

types of linear static motion models were used. A single nearly constant velocity

(NCV) motion model defined in (3.63) with qNCV = 0.016m2/s as well as two constant,

fixed turn-rate (CT) model with values θ = ±π/10, qCT = 0.0016m2/s described in

87



Ph.D. Thesis - Darcy Dunne McMaster - Electrical Engineering

(3.64).

FNCV =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


, (3.62)

QNCV = qNCV



T 3

3
T 2

2
0 0

T 2

2
T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2
T


(3.63)

FCT =



1 sin θT
θ

0 −1−cos θT
θ

0 cos θT 0 − sin θT

0 1−cos θT
θ

1 sin θT
θ

0 sin θT 0 cos θT


, (3.64)

QCT = qCT



T 4

4
T 3

2
0 0

T 3

2
T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2
T 2


(3.65)

Note that the CT model given in (3.64) is linear when the turn rate variable θ is a

fixed value. These models were given initial probabilities [0.5 0.25 0.25] and model
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switching was done under transition matrix given in (3.66).

Πk =


0.2 0.2 0.2

0.4 0.8 0

0.4 0 0.8

 (3.66)

3.3.3 Metrics

The performance of each MM-CBMeMBer filter implementation (i.e. SMC and GM)

was measured against their respective single motion model based implementation,

using the single NCV motion model as described in (3.63). As well, the two MM

implementations were compared against each other in order to determine what con-

ditions are optimal for various MM-CBMeMBer tracking metrics. The filters were

measured in several different multi-target tracking aspects including: target detec-

tion (cardinality accuracy), target localization (estimate location accuracy) and filter

computational complexity. As well, each of the MM implementations was measured

for its effectiveness in model (likelihood) detection.

The cardinality estimates reported by each filter were based on the most likely

number of targets reported by each CBMeMBer filter at each scan. To measure target

localization accuracy, the Optimal Subpattern Assignment (OSPA) metric was used

(Schuhmacher et al., 2008). The OSPA is a metric for measuring overall tracking

performance of a multitarget tracking algorithm. It considers both the cardinality of

the multi-object estimate versus the true number of objects as well as the accuracy

of those estimates. The OSPA is described in detail in (Ristic et al., 2010b), however

the basic equations are defined in Chapter 1 equation (2.32)
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Finally, the model detection accuracy of each MM-CBMeMBer filter was also

measured. The likelihood of an MM-CBMeMBer estimate being in each model was

determined by computing the normalized weighted sum of the BRFS components

(either GMs or particles) for each of the regimes as described in (3.67). At each

time step, individual track estimates were associated to truth objects using multi-

dimensional assignment. Once the object is assigned to a given target, the likelihood

of targets motion models can be measured using the following equation:

Pr[π = m] =
∑
i∈Πm

ω
(i)
k (3.67)

where Πm =
{
i|π(i)

k = m
}

(3.68)

3.3.4 Results

The described scenario was processed using each of the MM-CBMeMBer implemen-

tations, as well as their basic single motion model equivalents, for 100 Monte Carlo

runs. The mean cardinality results over all Monte Carlo runs of each filter are plotted

against the actual scenario cardinality in Fig. 3.2. The plot shows that all imple-

mentations of the CBMeMBer filter are effective at determining the actual number

of targets, with the GM implementations slightly improved compared to the SMC

based implementations. Also, each MM-CBMeMBer implementation gives a slightly

more accurate cardinality estimate than its single model counterpart.

The overall filter accuracy and performance metric, the OSPA, was also computed

for each filter over all Monte Carlo runs. The mean OSPA values are plotted over

time in Fig. 3.3. The key observation is that for the majority of the simulation
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Figure 3.2: Mean filter cardinality estimates

the MM version of both the SMC and GM implementations perform at the same

level or better than their single model counterpart. It is interesting to observe that

at certain portions the single model implementations slightly outperform the MM

implementations. This can typically occur during instances where the majority of

targets are undergoing NCV motion. Here the single target filters correctly match

the model while false alarms can cause the MM filters to incorrectly interpret a

manoeuvre which is a common issue with many MM filters.
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Figure 3.3: Mean OSPA values
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The filter complexity was measured by recording the computational time of each

time step of the filtering algorithms. The mean and standard deviation of the run

time for each filter iteration (a single prediction and update step) in seconds is re-

ported in Table 3.1. First, note that the SMC implementations take significantly

more time to compute than the GM implementations, which is expected. It should

also be noted that, as expected, the MM-CBMeMBer implementations require more

computational time than their respective single model counterparts. However, the in-

crease in computational time is minimal for each implementation. This is somewhat

counterintuitive to the theoretical reasoning. The number of the Gaussian compo-

nents in the GM-BRFS generated after each iteration of the GM-MM-CBMeMBer

filter increases proportional to the total number of motion models. Also, the num-

ber of particles needed to effectively estimate the state of each SMC-BRFS increases

proportional to the number of models (due to the curse of dimensionality (Daum and

Huang, 2003)). The fact that this increase in computational time is only marginal

can mainly be attributed to the efficient use of pruning and trimming operations in

the CBMeMBer filter methods. At each iteration, the number of elements (parti-

cles or GM components) are effectively managed by resampling and pruning/merging

operations respectively. By using the same filter maintenance parameters as their

single model counterparts, the MM filters performs in nearly the same time at each

iteration, save some extra work required for the additional maintenance effort.

Finally, the model detection accuracy of the MM-CBMeMBer implementations

was measured as described above. The results are plotted for two of the four targets

in Fig. 3.4 and Fig. 3.5 below. Target 1 is the one traveling in the S-shaped pattern
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Table 3.1: Filter mean computational times in seconds
Filter Mean (sec) Std. Dev. (sec)

SMC-CBMeMBer 5.1162 0.1657
SMC-MM-CBMeMBer 5.2342 0.1547

GM-CBMeMBer 0.3191 0.0278
GM-MM-CBMeMBer 0.4101 0.0395

starting from the lower left quadrant and traveling to the upper left. Target 3 is the

one that completes the α-shaped manoeuvre in the right quadrant.
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Figure 3.4: Target 1 model probabilities

The results in Fig. 3.4 and Fig. 3.5 show that the MM-CBMeMBer implemen-

tations are successfully able to detect when the targets switch motion patterns and

begin to manoeuvre. The most evident case of this is shown for target 1 in Figure 3.4.

The likelihood of model 2 (counter-clockwise turn) increases near scan 15 when the

target is making its counter-clockwise manoeuvre. Similarly, when the likelihood of

model 3 (clockwise turn) increases near scan 40 when target 1 is making a clockwise

manoeuvre. As well, in Figure 3.5, the clockwise turn model of target 3 becomes

much more likely during scans 25–40 when the target is performing its manoeurve.
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Figure 3.5: Target 3 model probabilities
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Chapter 4

Gaussian Mixture Intensity Filter

This chapter will derive and demonstrate a Gaussian Mixture based implementation

of the Intensity filter. This is accomplished by approximating the target intensity

function using a weighted GM. The clutter intensity space is modeled by a GM that

nearly approximates a uniform background, along with a clutter intensity value. This

GM contains equally weighted Gaussian components that cover the scenario space

evenly and are unaltered throughout the scenario. The basic prediction and update

operations of the iFilter can then be determined for both the target and clutter func-

tions. This is done similar to the SMC based implementation of the iFilter.

A simulated multi-target scenario is used to demonstrate the iFilter’s tracking per-

formance. Several metrics are collected and compared to quantify the performance

of the new filter versus that of the standard GM-PHD filter. The results show that

the GM-iFilter provides a more accurate estimate of cardinality and better overall

tracking performance, with no additional cost to computational complexity.
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The outline of this chapter is as follows. First, the new GM based implementation

of the iFilter is introduced in Section 4.1. The new GM-iFilter is evaluated versus a

standard GM-PHD filter in Section 4.2.

4.1 GM-iFilter

In order to implement a Gaussian Mixture based version of the iFilter, first the target

intensity is approximated by a weighted Gaussian Mixture.

fk(x) ∼
{(

m
(i)
k , P

(i)
k , ω

(i)
k

)}Nx
k

i=1
(4.1)

fk(x) =

Nx
k∑

i=1

ω
(i)
k N

(
x;m

(i)
k , P

(i)
k

)
(4.2)

In the SMC implementation of the iFilter, the clutter space is simply modeled as clut-

ter intensity level (Schikora et al., 2011). The actual clutter distribution is assumed

as uniform over the scenario space at each iteration of the filter. A similar model can

be achieved for GM-iFilter. First, the clutter intensity is modeled by single value,

fϕ
k , representing the number of clutter targets at time k. The clutter space is set to a

static Gaussian Mixture that approximates a uniform distribution. This can be done

by arranging a set of equally weighted Gaussian components in a grid that evenly

covers the scenario space. As with the homogeneous clutter space in the SMC-iFilter

implementation, this distribution does not change at any iteration of the filter. In

other words, the Gaussian component values of mean, covariance and weight remain

the same and only the overall clutter intensity changes. The GM-iFilter can be pre-

dicted and updated through the core iFilter operations, as desceribed in Section 1.3.8,

by following some basic GM based techniques.
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4.1.1 Predict Targets

First, the predicted target set at the next time step is formed from the union of two

sets, the set of previous targets transitioned forward and the set of new targets. That

is,

fk|k−1(x) ∼
{(

m
(i)
k|k−1, P

(i)
k|k−1, ω

(i)
k|k−1

)}Nx
k−1

i=1
∪
{(

m
(i)
Bk
, P

(i)
Bk
, ω

(i)
Bk

)}NBk

i=1
(4.3)

The set
{(

m
(i)
k|k−1, P

(i)
k|k−1, ω

(i)
k|k−1

)}Nx
k−1

i=1
represents the predicted targets that remain

in the target space. It is computed as follows:

ω
(i)
k|k−1 = Ψ

X|X
k ω

(i)
k|k−1 (4.4)

m
(i)
k|k−1 = Fk−1m

(i)
k−1 (4.5)

P
(i)
k|k−1 = Fk−1P

(i)
k−1Fk−1

T +Qk−1 (4.6)

for i = 1, . . . , Nx
k−1

where Fk−1 is the linear state transition matrix and Qk−1 is the process noise matrix.

Also, Ψ
X|X
k is the probability of target survival and its value is constant accross the

target space. This is similar to other Gaussian based implementations of filters, such

as the GM-PHD (Vo and Ma, 2006) and the GM-MeMBer (Vo et al., 2009).

The set of new targets is the set of clutter targets that have transitioned to the

target space. The Gaussian components that represent this set are those in the static

Gaussian Mixture representing the clutter space. Only the component target weights

are adjusted, so the sum of components represents the expected number of new targets
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from clutter. Then,

ω
(i)
Bk

= Ψ
X|ϕ
k · fϕ

k−1/N
Bk (4.7)

where Ψ
X|ϕ
k is the probability of a target transitioning from clutter into target space

(target birth) and is again constant.

4.1.2 Predict Clutter

To predict the clutter intensity forward to time k, the intensity of newly absent

targets, as well as current clutter objects, are predicted forward. Then,

fϕ
k|k−1 = bk(ϕ) + dk(ϕ) (4.8)

where bk(ϕ) = Ψ
ϕ|ϕ
k · f

ϕ
k−1 (4.9)

and dk(ϕ) = Ψ
ϕ|X
k ·

Nx
k−1∑
i=1

ω
(i)
k (4.10)

where Ψ
ϕ|ϕ
k is the probability of no target presence (target remains in clutter) and

Ψ
ϕ|X
k is the probability of a target transitioning to clutter space (target death). Both

these values are constant throughout the scenario space.
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4.1.3 Predict Measurement Intensity

The predicted measurement intensity, λk(zk), can be determined for each measure-

ment zk ∈ Zk as follows:

λk(zk) = νk(zk) + κk(zk) (4.11)

where νk(zk) = pDk (x) ·
Nx

k|k−1∑
i=1

ω
(i)
k|k−1 (4.12)

κk(zk) = pDk (ϕ) f
ϕ
k|k−1

Nx
k|k−1∑
i=1

N
(
zk;Hkm

(i)
k|k−1, S

(i)
k

)
(4.13)

and S
(i)
k = HkP

(i)
k|k−1Hk

T +Rk (4.14)

In the above, Hk is the measurement transformation matrix and Rk is the measure-

ment covariance matrix. Also, pDk (x) and pDk (ϕ) are the probability of detection of a

target and of detection of clutter, respectively. Both values are constant across the

scenario space.

4.1.4 Update Target Intensity

The GM-iFilter target intensity can be updated using a set of measurements Zk. The

updated set is represented by the following Gaussian Mixture:

{(
m

(i,j)
k , P

(i,j)
k , ω

(i,j)
k

)
|i = 1, . . . , Nx

k|k−1 and j = 0, 1, . . . , |Zk|
}

(4.15)
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where the values of the Gaussian mixture components are computed as follows:

ω
(i,j)
k =

N
(
z
(j)
k ;Hkm

(i)
k|k−1,m

(i)
k|k−1

)
λk

(
zjk
) ω

(i)
k|k−1 (4.16)

m
(i,j)
k = m

(i)
k|k−1 +K

(i,j)
k

(
z
(j)
k −Hkm

(i)
k|k−1

)
(4.17)

P
(i,j)
k =

[
I −K

(i,j)
k Hk

]
P

(i,j)
k|k−1 (4.18)

K
(i,j)
k = P

(i)
k|k−1Hk

T
[
S
(i,j)
k

]−1

(4.19)

S
(i,j)
k = HkP

(i)
k|k−1Hk

T +Rk (4.20)

for i = 1, . . . , Nx
k|k−1 and j = 1, . . . , |Zk|

Also, when j = 0 we update each Gaussian component with a missed detection as

follows:

ω
(i,0)
k =

(
1− pDk (x)

)
ω
(i)
k|k−1 (4.21)

m
(i,0)
k = m

(i)
k|k−1 (4.22)

P
(i,0)
k = P

(i)
k|k−1 (4.23)

for i = 1, . . . , Nx
k|k−1

where pDk (x) is again the constant probability of target detection.

4.1.5 Update Hypothesis Intensity

The clutter intensity value can be updated using the following equation:

fϕ
k =

[(
1− pDk (ϕ)

)
+ pDk (ϕ)

∑
zk∈Zk

pk(zk|ϕ)
λk(zk)

]
fϕ
k|k−1 (4.24)
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where pDk (zk|ϕ) is the probability of the measurement zk given it is a clutter detection.

4.1.6 Gaussian Mixture Maintenance

Based on the equations given throughout Sections 4.1.1–4.1.5, the number of Gaussian

components in the GM approximation of the target space intensity increases at each

iteration of the GM-iFilter. This becomes computationally expensive and eventually

intractable over time. Therefore, the number of components must be reduced. The

Gaussian Mixture is pruned using minimum weight thresholds, component merge

operations as well as a maximum number of components threshold, similar to those

used in the GM-PHD and GM-MeMBer filters (Vo and Ma, 2006; Vo et al., 2009).

First, the set of Gaussian components whose weights fall below a deletion threshold,

Tdel, are removed from the Gaussian Mixture. Next, pairs of Gaussian components

are compared using their statistical distance and similar components, whose distance

is below the merge threshold, Tmerge, are combined. Finally, only the NGMMAX
highest

weighted Gaussian components are kept as part of the Gaussian Mixture estimate.

4.1.7 State Extraction

At each step of the GM-iFilter a multitarget state estimate can be formed by choosing

a random realization of the PPP represented by the GM intensity function of the state

space fk(x). This is accomplished by first estimating the number of targets Nk using

(1.82) and setting g(s) = fk(x). This reduces the estimate of number of targets to

the sum of the components weights, just as in (1.89). Next, each of the Nk individual

states are estimated by choosing points from the pdf described in (1.83) with, again,

g(s) = fk(x). This can be done by choosing the mean and covariance of the Nk
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highest weighted Gaussian components to form the individual target estimates.

4.1.8 GM-iFilter Extensions

Along with a standard Gaussian Mixture implementation given above, several other

extension of the iFilter can also be derived using the same framework. This can be

accomplished by replacing the Kalman filter prediction equations in (4.4)–(4.6) and

update equations in (4.16)–(4.18) with those from either the Extended Kalman Filter

(EKF) (Anderson and Moore, 2005)(Jazwinski, 1970) or the Unscented Kalman Filter

(UKF) (Julier and Uhlmann, 2004)(Julier and Uhlmann, 1997). This accomplished

in a similar manner to the EKF and UKF extension proposed for the GM-PHD (Vo

and Ma, 2006) and GM-MeMBer filters (Vo et al., 2009). These new versions are

denoted the EKF-iFilter and UKF-iFilter respectively. For brevity, the details of

these extensions are not given in this chapter.

4.2 Simulations

4.2.1 Scenario

In order to test the performance of the GM-iFilter, it is tested against a standard

GM-PHD filter using a simulated scenario. Consider a two dimensional scenario space

of size 100m in each dimension. The scenario contains two crossing targets moving

under a near constant velocity motion pattern that each appear and disappear during

the simulation. Linear measurements are generated at a time interval of t = 1s

for 100s. Each target generates a measurement with uniform, state independent

probability of pD = 0.95 and each target measurement contains additive Gaussian
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noise with standard deviation σx = 1m in each dimension independently. The sensor

also generates false measurements with a uniform spatial distribution and density

pFA = 9 × 10−4, which translates into an average of λ = 9 false alarms per scan.

Both the target trajectories and the measurements from a single, sample run of the

scenario described are shown in Figure 4.1.
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Figure 4.1: Crossing target scenario

4.2.2 Filter Configuration

The scenario was used to run two filters, a GM-iFilter as described in this chapter

as well as a GM-PHD filter as described in (Vo and Ma, 2006). Both filters were

configured using the same set of parameters, most of which were set to match the

scenario parameters wherever possible. Aside from the scenario based parameters, the

GM maintenance parameters were set as Tdel = 10−3 Tmerge = 22 and NGMMAX
= 1000

for both filters. The specific parameters of the GM-iFilter set are described in Table

4.1. The unknown clutter space in the GM-iFilter was modeled using a grid that

spanned the scenario space. The grid was formed as a Gaussian mixture with means
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Table 4.1: GM-iFilter Parameter Values
Parameter Value

Ψ
X|X
k 0.99

Ψ
ϕ|X
k 0.02

Ψ
X|ϕ
k 0.02

Ψ
ϕ|ϕ
k 0.99

pDk (x) 0.95
pDk (ϕ) 0.5

set in a grid along with equal weights and covariances as follows:

f(ϕ) ∼
{(

ωϕ, [10i, 0, 10j, 0]
T , Pϕ

)
|i, j = −5,−4, . . . , 4, 5

}
(4.25)

where ωϕ =
1

112
(4.26)

and Pϕ =



102 0 0 0

0 1.52 0 0

0 0 102 0

0 0 0 1.52


(4.27)

The same Gaussian mixture was also used as the birth intensity for the GM-PHD

filter, but with a total birth weight of 0.02, (i.e. ωB = 0.02/112). Both filters were

run over 100 Monte Carlo runs of the scenario.

4.2.3 Metrics

In order to analyze the performance of the GM-iFilter versus the standard GM-PHD

filter, a variety of metrics are used. The first metric is the cardinality estimate as

reported by each of the filters. The second metric used is the Optimal Subpattern

Assignment (OSPA) metric (Schuhmacher et al., 2008). The OSPA metric is used
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for measuring the overall multitarget estimation accuracy. It encompasses both the

cardinality as well as the individual estimate accuracy of the estimate target set versus

the true target set. Further details of the OSPA metric can be in found in (Ristic

et al., 2010b), however the basic equations are defined as follows:

d̄(c)p (X, Y ) =

(
1

n

(
min
π∈Πk

m∑
i=1

d(c)
(
xi, yπ(i)

)p
+ cp (n−m)

)) 1
p

(4.28)

where d(c)(x, y) = min {c, ∥x− y∥} and Πk is the set of permutations of the set

{1, . . . , k}. Also note that in general p ≥ 1, c > 0, |X| = m and |Y | = n. In this

simulation, the OSPA configuration values of c = 20, p = 1 were used. Finally, the

computational complexity of the filter are measured by computing the total run time

of each of the filters.

4.2.4 Results

The scenario described above was processed using each of the filters for 100 Monte

Carlo runs. The metric results are described in this section. First, the mean car-

dinality results of each of the filters are plotted against the true target cardinality

in Figure 4.2. As seen in the Figure, the GM-PHD filter initially provides a more

accurate estimate of cardinality. However, the GM-iFilter eventaully provides a more

accurate estimate of the scenario cardinality than the GM-PHD filter for the remain-

der of the scenario. The mean GM-iFilter cardinality value is an accurate estimate

of the true cardinality, while the mean GM-PHD filter cardinality estimate is slightly

higher than the true value. This indicates that the GM-PHD filter provides additional

or spurious track estimates more often than the GM-iFilter.
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Figure 4.2: Mean filter cardinality estimates

The mean OSPA results for each filter over all Monte Carlo runs of the above

simulation are shown in Figure 4.3. As seen in the Figure, the GM-iFilter estimates

outperforms the GM-PHD filter throughout the scenario. This is consistent with the

cardinality results given in Figure 4.2.
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Figure 4.3: OSPA Results

The complexity of each of the filters was measured using the total run time of

each of the filters. The GM-iFilter had a mean run time of 60.9s with a standard

deviation of 2.62s while the GM-PHD had a mean run time of 63.2s with a standard

deviation of 3.01s. These results show that there GM-iFilter has essentially the same
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computational requirements as the GM-PHD filter. Thus, the GM-iFilter can provide

improved tracking results without any increase in computational load.
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Chapter 5

Conclusions

This thesis contributed three important improvements to three different Random Fi-

nite Set based multitarget tracking algorithms.

The WPPHD filter was shown to be a viable method for tracking targets con-

tinually over time using the PHD framework. Partitioning a PHD surface based on

both spatial characteristics and expected target weight is both a natural and straight

forward way of identifying individual targets within the multitarget set estimate. The

resulting estimates were ensured to represent a single target in both its total weight as

well as its spatial location. The labeling of these partitions allowed for the continual

monitoring of these objects over time. Two distinct implementations, CLEAN-SMC-

WPPHD and LM-GM-WPPHD, of the WPPHD filter were shown to be functional

multitarget tracking algorithms. The CLEAN based SMC implementation was shown

to have some improved track continuity when compared to previously known basic

track continuity techniques. It also had increased accuracy for nearby track initial-

ization. However, these tracking improvements came at the expense of slightly higher
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computational time. The LM-GM implementation demonstrated an increase in track-

ing accuracy throughout the scenario. The track continuity was very much improved

and the track completeness ratio was slightly improved. These improvements came

with only a slight increase in computational time.

The MM-CBMeMBer filter was given as an extension to the Cardinality Bal-

anced Multitarget Multi-Bernoulli filter for tracking manoeuvring targets. Exten-

sions for both SMC and GM implementations were derived. Simulations showed that

each implementation was an improved option for tracking multiple manoeuvring tar-

gets against its basic counterparts. The MM-CBMeMBer implementations showed

improvement in both cardinality estimation, as well as, overall localization. Both

MM-CBMeMBer implementations showed to be capable methods for estimating the

motion model that a manoeuvring target may be traveling under. These increased

tracking benefits were accomplished with only a minor increase in the computational

requirements of the tracking algorithms.

The new Gaussian Mixture based implementation of the intensity filter for sce-

narios containing certain linear properties was derived. Other possible EKF and

UKF based extensions for non-linear motion models and measurement transforma-

tions were also suggested. Simulations show that the GM-iFilter provides improved

estimates of both cardinality and overall tracking metrics without any incurred cost

of computation.
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5.1 Future Work

There remains ample opportunity for future work in each of the methods described

in this thesis.

The idea of using weight based partitioning and monitoring of individual elements

in PHD filters is still a new concept. The algorithms and ideas described in this thesis

represent only some of the possible implementations of the WPPHD concept. The

partition and label propagation schemes described in this paper can be substituted,

extended and enhanced to provide new, possibly better, WPPHD based filtering algo-

rithms. Furthermore, other WPPHD implementations including a Gaussian Particle

(GP-PHD) based implementation of the WPPHD as well the partitioning of the Car-

dinalized PHD filter are likely possible.

The techniques outlined for the MM-CBMeMBer filter were only the basic imple-

mentations of multiple model tracking in the CBMeMBer filter. There is no doubt

room for improving the implementations and configuration of the techniques described

in this work in order to produce better overal tracking results. As well, the MM con-

cept may also be applied to other implementations of the CBMeMBer filter, such as

the Gaussian Particle implementation. The MeMBer filter is one of the less developed

and implemented filters in the FISST family. Its native design of target separation

gives it a distinct advantage over other more popular RFS based filter techniques,

such as PHD filters. With further research, the CBMeMBer filter has the possibility

of being an equally or more powerful multitarget tracking technique. Extending the

CBMeMBer filter is just one of several key advancements that can be applied to the
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CBMeMBer filter in order to make it a more viable multitarget tracking candidate.

Other MeMBer filter extensions, such as estimate smoothing, as well as analyzing

the viability of using CBMeMBer filtering in a variety of tracking environments such

as dim targets, extended targets and track before detect (TBD) are also key future

research areas for the MeMBer filter.

The iFilter is still a relative new and unexplored multitarget tracking algorithm

that is only in its infancy. Beyond the 2 basic SMC and GM based implementations,

only a small amount of research has been completed. Some of extensions that have

been explored within the other filters referenced in this thesis could also be explored

within the iFilter context. In the current implementations, the iFilter acts only as

an estimator of the multitarget state and could be extended to allow for monitoring

individual estimates continually, over multiple scans, using mechanisms similar to

those used with the PHD filter. As well, other important tracking improvements and

scenarios could be examined such as manoeuvring targets, track before detect (TBD)

and smoothing the iFilter estimate.
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Appendix A

WPPHD Derivations

The WPPHD decomposes the PHD surface into the summation of smaller distinct

PHD surfaces that represent individual targets within the surveillance area. In the

WPPHD the entire PHD surafce is predicted and updated and the summation of

the partitions are intact afterwards. This is due to the near linear-like properties of

the PHD prediction and update operations as described in (1.24) and (1.26). This

appendix demonstrates the closure and the sometimes, linearity of applying the PHD

predicition and update operation to the WPPHD summation.
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A.1 WPPHD Prediction

The prediction operation on a WPPHD summation breaks down as follows:

Dk|k−1

(
x|Z(k)

)
= bk|k−1(x) + . . .∫

Fk|k−1(x|w) ·Dk−1|k−1

(
w|Z(k−1)

)
dw (A.1)

= bk|k−1(x) + . . .∫
Fk|k−1(x|w) ·

Tk∑
j=1

D
(j)
k−1|k−1

(
w
∣∣Z(k−1)

)
dw (A.2)

= bk|k−1(x) + . . .∫ Tk∑
j=1

Fk|k−1(x|w) ·D(j)
k−1|k−1

(
w
∣∣Z(k−1)

)
dw (A.3)

= bk|k−1(x) + . . .

Tk∑
j=1

∫
Fk|k−1(x|w) ·D(j)

k−1|k−1

(
w
∣∣Z(k−1)

)
dw (A.4)

Here the PHD prediction operation is not quite linear as the addition of only a single

birth partition is included. However, the operation is closed, as the birth intensity is

itself a PHD intensity independent of any previous partitions and thus the mapping

is a summation of PHD surfaces.

113



Ph.D. Thesis - Darcy Dunne McMaster - Electrical Engineering

A.2 WPPHD Update

Dk|k
(
x|Z(k)

)
=

[
1− pD(x) + · · ·

∑
z∈Zk

pD(x) fk+1(z|x)
λc(z) +Dk|k−1 [pDLz]

]
·Dk|k−1

(
x|Z(k)

)
(A.5)

Dk|k
(
x|Z(k)

)
=

[
1− pD(x) + · · ·

∑
z∈Zk

pD(x) fk+1(z|x)
λc(z) +Dk|k−1 [pDLz]

]
·

Tk∑
j=1

D
(j)
k|k−1

(
x
∣∣Z(k)

)
(A.6)

Dk|k
(
x|Z(k)

)
=

Tk∑
j=1

([
1− pD(x) + · · ·

∑
z∈sZk

pD(x) fk+1(z|x)
λc(z) +Dk|k−1 [pDLz]

]
·D(j)

k|k−1

(
x
∣∣Z(k)

))
(A.7)

Here it can be seen that the PHD update operation described in (1.26) is a completely

linear operation when performed on the WPPHD summation. Thus performing the

update operation on a summation of independent partitions can also be completed

by performing a single update step on the entire PHD surface.
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Appendix B

MM-MeMBer Derivations

This appendix will give some of the detailed derivations used in the construction of

the SMC and GM MM-MeMBer filters.

B.1 SMC-MM-MeMBer

The equations for the prediction and update of the SMC-MM-MeMBer are derived by

substituting the SMC approximation into the original MM-MeMBer prediction and

update equations given in 3.2. The derivation of the key elements of those equations

are shown.
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B.1.1 SMC-MM-MeMBer Prediction

First, the derivation of the total survival weight over all models
⟨
p
(j)
k−1, pS

⟩
is as

follows:

⟨
p
(j)
k−1, pS

⟩
(B.8)

=
∑

πk−1∈Πk−1

∫
Xk−1

p
(j)
k−1(xk−1, πk−1) pS(xk−1, πk−1) dxk−1 (B.9)

=
∑

πk−1∈Πk−1

∫
Xk−1

pS(xk−1, πk−1)

L
(j)
k−1∑
i=1

ω
(i,j)
k−1δx(i,j)

k−1 ,π
(i,j)
k−1

(xk−1, πk−1) dxk−1 (B.10)

=

L
(j)
k−1∑
i=1

∑
πk−1∈Πk−1

∫
Xk−1

pS(xk−1, πk−1)ω
(i,j)
k−1δx(i,j)

k−1 ,π
(i,j)
k−1

(xk−1, πk−1) dxk−1 (B.11)

=

L
(j)
k−1∑
i=1

pS

(
x
(i,j)
k−1, π

(i,j)
k−1

)
ω
(i,j)
k−1 (B.12)

Next, the derivation of the multiple model target prediction integration
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⟨
fk|k−1(x, π|·) , p(j)k−1pS

⟩
is as follows:

⟨
fk|k−1(x, π|·) , p(j)k−1pS

⟩
(B.13)

=
∑

πk−1∈Π

∫
Xk−1

p
(
π
∣∣∣πk−1

)
fk|k−1(x|π, xk−1, πk−1) p

(j)
k−1(xk−1, πk−1) pS(xk−1, πk−1) dxk−1

(B.14)

=
∑

πk−1∈Π

∫
Xk−1

p
(
π
∣∣∣πk−1

)
fk|k−1(x|π, xk−1, πk−1) pS(xk−1, πk−1) · · ·

· · ·
L
(j)
k−1∑
i=1

ω
(i,j)
k−1δx(i,j)

k−1π
(i,j)
k−1

(x, π) dxk−1 (B.15)

=

L
(j)
k−1∑
i=1

∑
πk−1∈Π

∫
Xk−1

p
(
π
∣∣∣πk−1

)
fk|k−1(x|π, xk−1, πk−1) pS(xk−1, πk−1) · · ·

· · ·ω(i,j)
k−1δx(i,j)

k−1π
(i,j)
k−1

(x, π) dxk−1 (B.16)

=

L
(j)
k−1∑
i=1

p
(
π
∣∣∣π(i,j)

k−1

)
fk|k−1

(
x|π, x(i,j)

k−1π
(i,j)
k−1

)
pS

(
x
(i,j)
k−1π

(i,j)
k−1

)
ω
(i,j)
k−1 (B.17)

where π
(i,j)
k|k−1 ∼

 qπ

(
·|π(i)

k−1

)
i = 1, . . . , Lk−1

βπ(·) i = Lk−1 + 1, . . . , Lk−1 + Jk

(B.18)

for j = 1, . . . ,Mk−1

B.1.2 SMC-MM-MeMBer Update

The update equation of the MM-MeMBer filter contains the multiple model total mea-

surement intensity value
⟨
p
(j)
k|k−1,Ψk,z

⟩
. The SMC implementation of this integration
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is derived as follows:

⟨
p
(j)
k|k−1,Ψk,z

⟩
(B.19)

=
∑

πk|k−1∈Πk|k−1

∫
Xk|k−1

p
(j)
k|k−1

(
xk|k−1, πk|k−1

)
, pD
(
xk|k−1, πk|k−1

)
dxk|k−1 (B.20)

=
∑

πk|k−1∈Πk|k−1

∫
Xk|k−1

pD
(
xk|k−1, πk|k−1

) L
(j)
k|k−1∑
i=1

ω
(i,j)
k|k−1δx(i,j)

k|k−1
,πk|k−1

(
x, πk|k−1
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dxk|k−1

(B.21)

=
∑

πk|k−1∈Πk|k−1

L
(j)
k|k−1∑
i=1

∫
Xk|k−1

pD
(
xk|k−1, πk|k−1

)
ω
(i,j)
k|k−1δx(i,j)

k|k−1
,π

(i,j)
k|k−1

(
x, πk|k−1

)
dxk|k−1

(B.22)

=
∑

πk|k−1∈Πk|k−1

L
(j)
k|k−1∑
i=1

pD

(
x
(i,j)
k|k−1, π

(i,j)
k|k−1

)
ω
(i,j)
k|k−1 (B.23)

B.2 GM-MM-MeMBer

The equations for the prediction and update of the GM-MM-MeMBer are derived

similar to those of the SMC implementations. A GM approximation is substituted

into the original MM-MeMBer prediction and update equations given in 3.2. The key

derivations are given here.

B.2.1 GM-MM-MeMBer Predict

The following multiple model GM derivations are used to derive the prediction equa-

tions in (3.47)−(3.51). First, the total target survival intensity
⟨
p
(j)
k−1, pS

⟩
is computed
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as follows:

⟨
p
(j)
k−1, pS

⟩
(B.24)

=
∑

πk−1∈Π

∫
Xk−1

p
(j)
k−1(xk−1, πk−1) pS(xk−1, πk−1) dxk−1 (B.25)

=
∑

πk−1∈Π

∫
Xk−1

pS(πk−1)

M
(j)
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ω
(i,j)
k−1(πk−1)N

(
xk−1;m

(i,j)
k−1(πk−1), P

(i,j)
k−1 (πk−1)

)
dxk−1

(B.26)

=
∑

πk−1∈Π

M
(j)
k−1∑
i=1

pS(πk−1)ω
(i,j)
k−1(πk−1)

∫
Xk−1

N
(
xk−1;m

(i,j)
k−1(πk−1), P

(i,j)
k−1 (πk−1)

)
dxk−1

(B.27)

=
∑

πk−1∈Π

M
(j)
k−1∑
i=1

pS(πk−1)ω
(i,j)
k−1(πk−1) (B.28)
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Next, the mutliple model target prediction integral is computed as follows:

⟨
fk|k−1(xk, πk|·) , p(j)k−1pS

⟩
(B.29)

=
∑

πk−1∈Π

∫
Xk−1

p
(
πk

∣∣∣πk−1

)
fk|k−1(xk|πk, xk−1, πk−1) p

(j)
k−1(xk−1, πk−1) pS(πk−1) dxk−1

(B.30)

=
∑

πk−1∈Π

∫
Xk−1

p
(
πk

∣∣∣πk−1

)
pS(πk−1)N (xk;Fk−1(πk)xk−1, Qk−1(πk)) . . .

. . .

M
(j)
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ω
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(i,j)
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dxk−1 (B.31)

=
∑

πk−1∈Π
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(B.32)

=
∑

πk−1∈Π

M
(j)
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· · ·

· · · N
(
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(i,j)
k−1(πk−1), P

(i,j)
k−1 (πk−1)

)
(B.33)

B.2.2 GM-MM-MeMBer Update

The GM-MM-MeMBer update steps are also derived by substituting the GM-MM

approximation into the original MM-MeMBer update equations. The key derivations

are given here. The multiple model total measurement intensity
⟨
p
(j)
k|k−1,Ψk,z

⟩
is

computed as follows:
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⟨
p
(j)
k|k−1,Ψk,z

⟩
(B.34)
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)M
(j)
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qk(z)ω
(i,j)
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where qk(z) = N
(
z;Hk(πk|k−1), Hk(πk|k−1)P

(i,j)
k Hk(πk|k−1)

T +Rk(πk|k−1)
)
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