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Abstract 

Cigarette smoking is a lifestyle behaviour associated with adverse reproductive health 

effects including premature exhaustion of the follicle population and premature 

menopause; however, the mechanisms mediating its effects on follicle loss are largely 

unexplored. Therefore, this thesis was undertaken to examine the effect of cigarette 

smoke, at concentrations representative of human exposure, on follicle loss in mouse 

ovaries and determine the underlying mechanisms mediating their loss. Cigarette smoke 

contains over 4,000 chemicals, many of which are involved in reactive oxygen species 

(ROS) generation and oxidative stress, which can lead to cell death. In the first study, we 

hypothesized that follicles exposed to cigarette smoke would be lost via apoptosis in a 

selective stage-dependent manner. Although apoptosis is a cell death pathway through 

which follicles are thought to die, the studies herein found no changes in apoptosis 

markers, despite increased follicle loss. Given these findings, we hypothesized that an 

alternative cell death mechanism was responsible for cigarette smoke-induced follicle 

loss. At the time, the relevance of autophagy, a novel ovarian cell death pathway, to 

granulosa cell death and toxicant-induced changes in ovarian function were unknown. 

Consistent with our earlier findings, we confirmed that apoptosis was not increased in 

treated ovaries, and further demonstrated increased oxidative stress, decreased 

antioxidant expression, and autophagy in treated ovaries. Finally, to further explore the 

mechanism controlling smoke-induced ovarian follicle loss, we tested the hypothesis that 

cigarette smoke exposure results in dysregulation of mitochondrial repair mechanisms, 

leading to follicle loss via autophagy-mediated granulosa cell death. Indeed, we 
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demonstrated that cigarette smoke exposure activates the autophagy cascade and alters 

mitochondrial dynamics. Taken together, these studies provide evidence that cigarette 

smoke causes significant follicle loss, a decrease in the cell’s ability to cope with the 

production of ROS causing mitochondrial repair mechanisms to dysfunction, leading to 

autophagy-mediated follicle loss.  
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Chapter 1 

Introduction 

Infertility affects millions worldwide. Although numerous sources of infertility have been 

identified, many otherwise healthy couples of childbearing age experience infertility for 

unknown reasons. Infertility is defined as the inability to achieve a clinical pregnancy 

following 12 or more months of regular unprotected sexual intercourse [1;2]. Premature 

follicle loss has been identified as a possible causative factor for infertility, which has 

been linked with exposure to environmental toxicants. However, the mechanisms of 

action are not known. Cigarette smoke, in particular, has been found to affect both male 

and female fertility via adverse effects on testicular function, uterine receptivity and 

ovarian function. In women, cigarette smoke is a documented reproductive toxicant that 

depletes ovarian follicle reserve and impairs uterine receptivity [3]. Delayed conception 

[4;5], decreased success in assisted reproductive technologies [6;7] and premature 

ovarian failure [8] have all been reported in female smokers compared with non-smokers. 

Smoking cessation programs have proven ineffective for some and damage may already 

be done in those that begin smoking as teenagers and young adults. Therefore, it is 

imperative that the mechanisms of action underlying the toxic effects of cigarette smoke 

on fertility are elucidated.  
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1.1 Infertility 

1.1.1 Prevalence 

Worldwide, infertility touches the lives of approximately 15% of reproductive-aged 

couples [9;10]. In the United States alone, approximately 6.1 million (~10%) American 

women between the ages of 15 and 44 experience infertility (Centers for Disease Control 

and Prevention). Similar numbers are seen in Canada, where the prevalence of women 

experiencing infertility is on the rise, up from 7% in 1992 to 13.7% in 2010 [10]. 

1.1.2 Impact 

Infertility can have multiple health effects on a couple. The emotional, psychological, 

financial and health consequences of infertility are well-documented. According to the 

Harvard Mental Health Letter [11], the grief associated with infertility exacts a 

psychological toll, often similar to that of a person mourning the loss of a family member. 

For women, the inability to become pregnant is often coupled with feelings of guilt and 

inadequacy given the “natural” role of woman as child-bearer instilled at an early age [1]. 

Couples experiencing infertility often withdraw from social situations involving children 

and/or friends with children to insulate themselves from the heartache associated with 

remaining childless [11]. Additionally, the financial burden that fertility treatments place 

on a couple is significant. In the US, between $4 and 6 billion is spent annually on 

infertility treatments (extrapolated from data obtained in [12]). 
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1.1.3 Aetiology 

Infertility is rooted in a number of different causes, many of which are physiological or 

due to lifestyle factors but others remain unexplained. Of the many different aetiologies 

of infertility, male factor infertility is indicated in approximately one third of cases, the 

remaining two thirds being diagnosed as female factor or unexplained infertility [2]. In 

ten to twenty percent of cases, both male and female factors are identified [2]. In 30% of 

cases where female infertility is the cause, anovulation (where the oocyte is not released 

from the ovary) is the underlying cause. In the remaining cases, tubal obstruction, pelvic 

pathologies and immunologic factors make up the majority of cases with unexplained 

infertility accounting for between 10 and 20% of cases [2;11]. 

 

The physiological factors implicated in infertility include disorders of the ovary, thyroid 

and pituitary glands, and various pathologies of the pelvic region. Ovarian disorders 

contributing to infertility include polycystic ovary syndrome (PCOS), advanced maternal 

age and premature ovarian failure (POF). PCOS is a condition that typically presents with 

multiple small cysts in the ovaries, abnormally high levels of androgens, irregular 

menstrual cycles and hirsutism (excessive hair growth in areas where hair growth does 

not normally occur) [13]. It is the most common cause of anovulatory infertility.  

 

Although there is no strict definition of what constitutes advanced maternal age, it is 

generally accepted that infertility becomes more pronounced after age 35. The ovary is 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

4 
 

endowed with a finite number of eggs at birth and this number gradually declines during 

the reproductive lifespan of every woman. As a woman ages, the number of eggs she 

possesses declines at a predictable rate (Figure 1) and after age 35, this rate accelerates 

until the pool of quiescent follicles (those housing the least developed oocytes) is 

exhausted at menopause [14]. As such, the older the woman, the fewer follicles left in the 

ovary and therefore the lower the chance of becoming pregnant. Conversely, POF refers 

to the exhaustion of the ovarian reserve of follicles coupled with elevated gonadotropin 

(Gn) levels earlier than would be expected based on chronological age [15;16]. POF can 

occur as a result of a number of insults to the body including chromosomal disorders, 

autoimmune disorders, radiation or chemotherapy and a number of chemical exposures, 

including cigarette smoke [15-19]. 

 
Figure 1: The Wallace-Kelsey model of ovarian reserve. 

The model for the establishment of the non-growing follicle population from conception 

through the subsequent decline until age at menopause. The figure shows the dataset (n = 

325), the model, the 95% prediction limits of the model, and the 95% confidence interval 

for the model. Adapted from [14]. 
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Finally, lifestyle factors affecting fertility include, but are not restricted to, delayed family 

planning for the pursuit of education and career ambitions, obesity, excessive exercise, 

caffeine and alcohol consumption, exposure to environmental toxicants, and cigarette 

smoking. In recent decades, couples have been opting to postpone starting a family until 

later in their reproductive years, a time when natural fertility is in a steady decline. 

Increasing numbers of women pursuing higher education and career ambitions are 

common reasons in women’s decision to delay starting a family [19;20]. The association 

between the exhaustion of ovarian follicle reserve and age has been well-documented. 

Consequently, many of these women are faced with unexpected problems related to a 

reduced ovarian reserve, often resulting in the need to employ the use of artificial 

reproductive technologies. Obesity has also been linked to infertility irrespective of 

ovulatory function; although its role in infertility has not been clearly elucidated. At the 

other end of the spectrum, excessive exercise and weight loss has been suggested to alter 

the height to weight ratio and the critical fat mass necessary to initiate ovulatory cycles is 

not met in women who engage in strenuous exercise and maintain a low body mass index 

(BMI) [21-26]. Finally, excessive caffeine and alcohol consumption as well as drug use 

and exposure to cigarette smoke have also been linked with decreased rates of pregnancy 

and increased adverse fetal effects [27;28]. Of the documented causes of infertility, I have 

chosen cigarette smoke as the model toxicant for my studies in part because it is 

associated with dysfunction of every part of the female reproductive tract but also 

because there is an element of choice and thus it is a potentially modifiable cause of 

infertility. 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

6 
 

1.2 Cigarette Smoking 

Cigarette smoking is the single most preventable cause of death in our society. The 

adverse health effects of smoking are vast and include aneurysm, cardiovascular disease, 

stroke, cancer, and chronic obstructive pulmonary disease, to name but a few. Of the top 

ten leading causes of death in high income countries worldwide, smoking-related diseases 

occupy the top three spots [29]. This is true in both the US and Canada, according to the 

Centers for Disease Control and Prevention and Statistics Canada, respectively [30;31]. 

1.2.1 Prevalence 

Although fewer Canadians are smoking today, a survey on tobacco use in Canada 

revealed that 14% of households reported that at least one person smoked inside the home 

daily [32]. In the Canadian Tobacco Use Monitoring Survey, 17% of female respondents 

report being current smokers, consuming an average of 13.8 cigarettes/day [32]. 

Alarmingly young women in their reproductive prime are the fastest growing population 

of smokers. In Canada, 18.5% of girls aged 18-19 smoke [33] and in southwestern 

Ontario, 36.2% of teenage girls smoke [34]. This population has historically been the 

most at risk for taking up smoking and the number of active smokers in this age group 

continues to be high despite aggressive anti-smoking campaigns and implementation of 

warning label legislation, suggesting that our current approaches are not effective in this 

population. What is perhaps most troubling about this is that these are the women who, in 

ten to fifteen years, will be populating fertility clinics. 
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1.2.2 Impact on Fertility 

Cigarette smoking is a documented reproductive toxicant that has been correlated with 

earlier age at menopause and ovarian follicle loss. It is well documented that smoking 

depletes ovarian follicle reserve and impairs uterine receptivity [3]. Smokers report a 

longer time to pregnancy, often require higher doses of Gn during ovarian stimulation 

protocols, have fewer oocytes retrieved, lower implantation rates and undergo on average 

twice as many in vitro fertilization (IVF) cycles before conceiving than do non-smokers 

[3;35-37]. Table 1 summarizes many of the adverse effects that have been reported in 

female smokers compared with non-smokers. While most of these adverse effects have 

been confirmed by multiple studies, others report conflicting outcomes with respect to 

fertilization. Based on population studies, there is a significant correlation between 

number of cigarettes smoked daily and decreased fertility, and ex-smokers have similar 

levels of fertility relative to non-smokers [37;38]. While cigarette smoking has been 

attributed to causing adverse effects on female reproductive function, including ovarian 

follicle loss, the underlying mechanisms regulating these phenomena are unknown.  
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Table 1: Clinical effects of cigarette smoke on reproductive function. 

Adverse Effects Reported by 

Smokers 
Reference 

Fewer healthy oocytes retrieved [39-41] 

↓ Fecundability [42] 

↓ Ovarian sensitivity [43] 

↓ Ovarian reserve [44;45] 

↓ Implantation rates [28] 

Delayed conception [46] 

↑ Ectopic pregnancy [47;48] 

↑,↓or ↔ Fertilization [40;41;47;48] 

↓ Pregnancy rates [28;47] 

↓ Uterine receptivity [3] 

Early placentation defects [46;49] 

↑ Spontaneous abortion [47] 

In utero growth restriction [50] 

↑ Still birth [51] 

↑ Preterm birth [46] 

↓ Live birth rate [39;47] 

Low birth weight [46;51] 

↑ Infant death [51] 

Shorter menstrual cycle [52] 

Premature ovarian failure [53] 

 

Young women in their reproductive prime are the fastest growing population of smokers. 

This trend, coupled with the fact that many women are choosing to postpone starting their 

families until after education and career ambitions are achieved [54], an increased 

demand for IVF services is occurring. In earlier animal studies, benzo(a)pyrene (BaP), a 

constituent of cigarette smoke, was found to selectively destroy the follicles in the resting 

pool [55]. This finding led the researchers to hypothesize that a similar exhaustion of the 

resting pool was occurring in women who smoke, leading to premature menopause. 

Studies have revealed that women exposed to cigarette smoke (whether it was 

mainstream or sidestream smoke) had greatly decreased implantation rates (12-12.6% for 

those exposed to cigarette smoke vs. 25% for non-smokers) and pregnancy rates (19.4-
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20% for those exposed to cigarette smoke vs. 48.3% for non-smokers) [28]. Our 

laboratory has also found that BaP is detectable in the serum and follicular fluid of 

women who smoke or are exposed to cigarette smoke and that treatment with BaP 

impairs cumulus expansion in isolated rat and mouse follicle culture experiments [56-58]. 

 

Cigarette smoking is widely accepted to have a negative effect on fertility and is 

associated with decreased fecundity. The cause of this decreased fertility and shortened 

reproductive lifespan, however, is not known. The fundamentally accepted dogma is that 

cigarette smoke exposure causes the production of reactive oxygen species (ROS), 

leading to mitochondrial stress and ultimately cell death via apoptosis. It is thought that a 

stage-dependent destruction of primordial follicles occurs thereby decreasing the ovarian 

reserve, ultimately shortening reproductive life [3;59]. Targeted primordial follicle 

destruction is considered to be the most devastating effect of cigarette smoking on 

reproductive function, the effects of which are not detected until years after the exposure, 

often after ovarian failure is well established [60]. Numerous studies have shown that 

exposure to environmental toxicants results in the destruction of the follicle population in 

a stage-specific manner [56;61-68]. While premature follicle loss has been identified as a 

causative factor for infertility, the mechanisms underlying this follicle loss are not well-

understood. Of the numerous environmental toxicants and lifestyle factors known to 

affect fertility and ovarian function studied to date, cigarette smoking may perhaps be the 

single most clinically-relevant and preventable toxic exposure in women, making it an 

ideal target for infertility prevention [27].  
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1.3  The Ovary 

The ovary is a complex and plastic organ whose function is to produce fertilizable 

oocytes and to produce and secrete the steroid hormones required to ready the female 

reproductive tract for fertilization of an oocyte and the establishment of a successful 

pregnancy [69;70]. During fetal development (in humans), or shortly after birth (in mice), 

the ovaries are endowed with millions of germ cells enveloped by pre-granulosa cells. 

Barring the existence of ovarian stem cells [71-79], the existence of which is hotly 

debated, this finite number of primordial follicles is the entire complement of gametes the 

ovaries will ever possess. By birth, only about 1 million of these follicles remain [80], the 

vast majority of which will be lost through a process known as atresia. This number will 

gradually decrease during childhood until the onset of puberty, when approximately 

500,000 follicles remain in the primordial follicle pool. Of the estimated 500,000 follicles 

present at menarche, only about 400 of these will reach the pre-ovulatory stage and be 

ovulated [70;81] prior to exhaustion of the ovarian follicle reserve and menopause. The 

ovarian reserve is the number of primordial follicles remaining in the ovary that have not 

yet been selected to mature [54;80;82]. This process is tightly regulated and can easily be 

disrupted by outside influences.  

1.3.1 Function 

The ovary is a dynamic organ that, with each cycle, undergoes extensive cell 

proliferation, inflammation, tissue remodelling, angiogenesis, and removal of damaged 

cells or cells whose function is no longer needed. During each cycle, follicles are selected 
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to leave the resting pool and enter the growing pool of follicles through the process of 

folliculogenesis (Figure 2). A follicle consists of a meiotically-arrested oocyte surrounded 

by one or more layers of somatic cells called granulosa cells whose function is to support 

the growth of the oocyte throughout its development. Follicles progress through 

development from the primordial follicle stage, the most immature stage, through to the 

Graafian follicle, resulting in ovulation. At ovulation, the oocyte is released from the 

follicle into the Fallopian tube where it will make its way into the uterus. Following 

ovulation, the granulosa cells remaining in the ovary will form the corpus luteum, a 

structure of luteinized cells that produce progesterone and, in the event of fertilization 

and implantation, will nourish the embryo until the placenta is fully functional. In the 

absence of fertilization, the corpus luteum regresses and is reabsorbed by the ovarian 

stroma and another cycle of follicle maturation will ensue. The process of follicular 

maturation, ovulation and resorption occurs up to 400 times in a woman’s reproductive 

lifespan prior to the cessation of ovarian function at menopause [70;81]. In the ovary, 

tightly controlled follicle development is essential in maintaining fertility. 

1.3.2 Ovarian Failure 

Ovarian failure, or menopause, begins 5-10 years prior to the onset of amenorrhea or 

cessation of menses and typically occurs when there are fewer than 1,000 follicles 

remaining in the ovary. In the years leading up to the menopause (typically defined as 12 

months of anovulation), changes in numerous parameters make it possible to identify 

when menopause is imminent. First, menstrual cycle length, although already variable 
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within healthy young women with demonstrated fertility varies dramatically with 

bleeding irregularities and wide ranges in the length of the follicular phase [83]. 

Additional measures currently used to identify impending ovarian failure include the 

biophysical parameter, antral follicle count (AFC), and biochemical parameters, which 

include serum follicle stimulating hormone (FSH), estradiol (E2), luteinizing hormone 

(LH) and inhibin B levels [61;84-90]. These markers are cycle-dependent and subject to 

variability depending on the stage of the cycle in which they are measured [90]. In recent 

years, another hormone, anti-Müllerian hormone (AMH) has been correlated with 

predicting impending ovarian failure. Unlike other markers of reproductive aging, AMH 

shows a decline in circulating levels long before there are other signs of impending 

ovarian failure [61;85;86;88;91]. According to some, AMH concentration is a reliable 

indicator of the ovarian reserve in aging women, correlating positively with AFC and 

inhibin B levels [86;87;91-93]; however, changes in serum AMH concentration are not a 

direct measure of the ovarian reserve but are reflective of the number of follicles in the 

growing pool. 

1.3.3 Folliculogenesis 

The basic functional unit of the ovary is the follicle. It consists of an oocyte surrounded 

by granulosa and theca cells. Follicular growth, or folliculogenesis, can be divided into 

three discrete stages based chiefly on follicle maturity and its responsiveness to 

gonadotropins: 1) Gn-independent (primordial, primary, and small secondary stage 

follicles), 2) Gn-responsive (pre-antral to early antral stage follicles), and 3) Gn-
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dependent (large antral stage follicles) [94;95]. The selection of primordial follicles for 

recruitment into the growing pool of follicles is not well-understood owing primarily to 

the fact that isolation of these very small follicles is technically difficult. What is known 

is that primordial follicle initiation is under inhibitory control from larger follicles, 

although it is as yet unclear whether there is one or multiple factors acting in an 

inhibitory fashion to control follicle recruitment [95]. One of the most likely candidates 

for this factor is AMH, which is expressed in early stage follicles and has been identified 

as an inhibitory factor in follicle recruitment [96]. Like other members of the 

transforming growth factor beta (TGFβ) superfamily, AMH acts through a signalling 

pathway consisting of two serine/threonine kinase single membrane spanning receptors, 

type I and type II. The type II receptor imparts ligand binding specificity, while the type I 

receptor is activated upon binding with the type II receptor and subsequently mediates the 

downstream signalling of Smad proteins. AMH plays an inhibitory role in two critical 

selection stages of follicle development: it prevents recruitment of primordial follicles 

from the resting pool [97] and it decreases the responsiveness of preantral follicles to 

FSH [69;82;89;93;96;98-100]. AMH administration in vitro reduces the number of 

growing follicles by a factor of two [97], while deletion of the Amh gene results in 

premature depletion of the primordial follicle pool altogether [101]. AMH is expressed in 

follicles that have been selected for development from the primordial follicle pool and 

continues to be expressed in healthy growing follicles until such time as they are large 

enough to be selected for dominance by FSH. Expression of AMH in granulosa cells 

decreases the sensitivity of the follicle to FSH stimulation such that healthy growing 
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follicles expressing less AMH are more responsive to FSH stimulation and become 

selected for dominance [99]. 

 

Once they have entered the growing pool, follicles begin to express and respond to a 

variety of growth factors, most of which are intraovarian regulators including growth 

factors, cytokines and steroids. Each individual component of the follicle, the oocyte, 

granulosa and theca cells all express and respond to different factors, which can act in an 

autocrine and/or paracrine fashion, depending on the expression of receptors present in 

the cell membrane. Table 2 summarizes the growth factors involved in follicle 

recruitment, development and ovulation and the species in which they have been 

identified and characterized. Beginning at the primary follicle stage, the oocyte begins to 

express and secrete growth and differentiation factor (GDF) 9, bone morphogenetic 

protein (BMP) 6, BMP15, and oocyte specific protein (OOSP) 1 [98]. GDF9 is a member 

of the TGFβ superfamily, as are BMP15 (GDF9B) and activin. GDF9 is only expressed in 

the oocytes of follicles [102-104] in mammalian ovaries. GDF9 mRNA and protein are 

detectable in the oocyte at all stages of folliculogenesis, with the exception of primordial 

follicles [103;105;106]. Like AMH, GDF9 signals through a serine/threonine kinase 

signalling cascade that is mediated by type I and type II receptors. GDF9 is known to 

signal through the BMP/GDF pathway, binding to bone morphogenetic protein receptor II 

(BMPRII) [104]. BMPRII, along with a number of type I receptors, are present in the cell 

membranes of granulosa cells. The known functions of GDF9 are many: promotion of 

granulosa cell proliferation [104;107], cumulus expansion [102;104;107], preantral 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

15 
 

follicle growth [104;106;107], and suppression of FSH-induced LH receptor content 

[102;107]. While GDF9 is expressed in and secreted by the oocyte, its actions are on the 

granulosa cells surrounding the oocyte. GDF9 has been implicated in stimulating the 

growth of granulosa cells [105;108], particularly in establishing the characteristic 

properties of cumulus and mural granulosa cells dependent upon their distance from the 

oocyte [109]. It has been shown to be essential in the development of follicles past the 

primordial stage. Mice lacking the gene are sterile and have ovaries that contain follicles 

arrested at the primary stage [102;104-107;110], often with oocytes that are much larger 

than those normally found in the primary follicles of wild type (WT) mice [106]. Despite 

knowing what processes GDF9 is involved in, few downstream targets of GDF9 have 

been elucidated. To date, GDF9 is known to regulate Has2 and Cox2, genes involved in 

late follicle development and ovulation [106]. It is unlikely that these are the only targets 

of GDF9 function. Numerous studies have shown that communication between the 

oocyte and granulosa cells is important for the proper growth of the follicle. Cumulus 

expansion, for example, will not occur in the absence of an oocyte. Another study points 

to the oocyte as a regulator of Amh expression in granulosa cells [98]. In this study, the 

oocyte was required to enhance expression of Amh, suggesting that the oocyte must 

secrete a factor that works to regulate Amh gene expression. In fetal ovaries exposed to 

gamma radiation, most of the follicles present were at the primary stage lacking any Amh 

or BmprII gene expression, but with robust Gdf9 expression [111], suggesting a lack of 

communication between the oocyte and granulosa cells.  
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BMP15 is also expressed by the oocyte and is a potent regulator of granulosa cell 

proliferation and differentiation and a modulator of FSH action [112], although BMP15 

itself is FSH-independent. BMP15, like GDF9, has been detected in the oocytes of all 

stages of follicle development; but unlike GDF9, its expression is detectable in primordial 

follicles, suggesting a role in inhibition of follicle recruitment as well as in growth and 

development [112]. As with most members of the TGFβ superfamily, BMP15 also signals 

through the serine/threonine kinase receptor complex. In the case of BMP15, it has been 

shown to signal through the BMPRIB type I receptor [113], which is found on both 

oocyte and granulosa cell membranes [114]. Studies in sheep and mice have helped to 

elucidate the role of BMP15 in the ovary and regulation of fertility. While both BMP15 

and GDF9 have been identified as being essential for normal follicular development in 

numerous lines of sheep [110;112;115], BMP15 was shown not to be essential in mice, as 

knockout mice are fertile only exhibiting signs of subfertility with ovulation and oocyte 

fertilization being impaired [116;117]. It has been further shown that terminal oocyte-

cumulus maturation is impaired in these mice, thus impairing fertilization [116;117]. In 

sheep, inactivation of both Bmp15 genes results in sterility and primary ovarian 

insufficiency [115;118]; however, when only one Bmp15 gene is mutated, ewes are fertile 

and have increased ovulation rates leading to accelerated ovarian follicle depletion and a 

higher incidence of twin and triplet births [118]. Finally, BMP15 appears to act along 

with GDF9 in promoting granulosa cell proliferation [112;119] and regulating 

steroidogenesis, with GDF9 interfering with human chorionic gonadotropin binding [102] 

and BMP15 suppressing the gene expression of the FSH receptor [120]. 
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The transition from pre-antral to early antral follicle marks the Gn-responsive stage [94]. 

At this stage of development, the follicle does not require the presence of gonadotropins 

to grow but the presence of FSH is stimulatory [94] and influences the rate of pre-antral 

follicle development [95]. The pituitary gonadotropins, FSH and LH, are released and 

exert their effects on ovarian somatic cells via their respective cell membrane-bound 

receptors. FSH receptors are expressed in the membranes of granulosa cells of growing 

follicles beginning at the primary stage and continue through to the pre-ovulatory follicle 

[121]. Meanwhile, LH receptors can be found in the membranes of theca interna cells of 

antral through pre-ovulatory follicles and in the membranes of granulosa cells of large 

estrogenic antral follicles [122;123]. The transition from Gn-responsive to Gn-dependent 

occurs somewhere during antral follicle growth; however, definitive evidence of when 

this occurs is not available and the mechanistic steps involved is unresolved. In vitro 

studies showed that sheep antral follicles with larger diameters are more capable of 

growth in the presence of physiological FSH concentrations than are smaller diameter 

follicles [124], a time corresponding to the detection of LH receptor expression in these 

follicles [121]. 
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Figure 2: Folliculogenesis. 

Primordial follicles are recruited from the resting pool of follicles into the growing pool 

to become primary follicles. At this stage, the follicles are in the Gn-independent stage of 

development. Growing follicles require the presence of various growth factors (many of 

which they themselves produce) to stimulate proliferation of granulosa cells. These 

growth factors include GDF9, BMP15, and OOSP1. Once a follicle develops into a pre-

antral follicle, it becomes Gn-responsive, and one follicle is selected for dominance by 

FSH. Finally, at the antral follicle stage, the Gn-dependent stage of follicle development, 

the follicle continues its development becoming a pre-ovulatory follicle. AMH is 

expressed by follicles selected for development and continues to be expressed by healthy 

growing follicles until they are large enough to be selected for dominance or become 

atretic. AMH plays a critical role at two stages of folliculogenesis: at the primordial 

stage, it inhibits follicle recruitment and at the pre-antral stage, inhibits FSH-

responsiveness. Thus, pre-antral follicles expressing less AMH are more responsive to 

FSH and more likely to be selected for dominance over ones expressing more AMH. 

Reprinted and modified from [125], with permission from Elsevier. 

 

Finally, the Gn-dependent stage of folliculogenesis indicates the stage of development 

controlled primarily by the pituitary hormones combined with the expression of the 
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growth factors that modulate their action. FSH acts to stimulate follicle growth and 

differentiation while pulsatile secretion of LH is crucial in the final maturation and 

ovulation of oocytes from antral follicles [81]. In studies where FSH expression was 

suppressed, the rapid atresia of ovulatory sized follicles was evident irrespective of the 

method through which FSH was suppressed [126-128]. Conversely, when FSH was 

present, follicle growth could be stimulated in hypogonadotropic ewes and GnRH-agonist 

suppressed cattle infused with FSH saw an increase in mRNA expression of 

developmental markers for follicle development seen in normal animals [95]. Studies 

using transgenic mice showed that LH is important in antral follicle development [129] 

but that too much LH is deleterious to their development [130]. Additionally, LH 

indirectly exerts control over follicle development by directing estrogen secretion in the 

ovary and thereby influencing the level of pituitary FSH release [127]. As a whole, these 

studies suggest that the selection and development of ovulatory follicles is governed by 

both FSH and LH. 

 

As with early follicle developmental stages, the Gn-dependent stage relies on oocyte- and 

granulosa cell-secreted growth factors, expressed at specific times of folliculogenesis to 

bring the follicle to an ovulatory size. These are the same factors that are important in 

early follicle development and include inhibin, activin, GDF9, BMP15, BMP6, and 

newborn ovary homeobox (NOBOX). Both inhibins A and B are produced and secreted 

by the dominant follicle and work to inhibit FSH secretion by the pituitary [83]. In 

humans, inhibin A is secreted in the follicular phase and is LH-dependent and positively 
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correlated with estradiol, inhibin B peaks five days post menses onset and thus reflects 

the growing follicles in response to FSH [83]. Consequently, inhibin B is often used as a 

marker for the number and health of Gn-dependent follicles; however, since its 

expression is cycle-stage dependent, it is not an ideal marker for ovarian follicle estimates 

[90]. Activin, on the other hand, works to stimulate FSH secretion by the pituitary [131]. 

The oocyte and surrounding granulosa cells rely on an intricate network of intracellular 

gap junctions, both between granulosa cells and the oocyte and between adjacent 

granulosa cells, to link these cells to one another during development and allow for the 

passage of signals to and from the oocyte. Numerous studies have shown that intact gap 

junctions between the oocyte and granulosa cells are essential for oocyte growth and 

importantly, that intact gap junctions between granulosa cells are equally important in 

producing ovulation sized oocytes capable of fertilization [109;132-138]. While cigarette 

smoke has been found to affect the expression of a number of the growth factors 

discussed above and summarized in table 2, the canonical pathway through which 

follicles have been shown to be lost is apoptosis-mediated atresia. Therefore, follicle loss 

was examined in our mice.  
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Table 2: Growth factors needed for folliculogenesis. 

Growth 

Factor 

Cell Type 

Produced By 
Function 

Species Studied 

In To Date 
Reference 

Activins 
Granulosa and 

theca cells 

Granulosa cell proliferation, follicle 

survival and prevention of premature 

luteinisation, promote pituitary FSH 

release, ovarian steroidogenesis 

Mouse, zebrafish, 

cattle, human, rat, 

sheep, goat, chicken 

[131;139-146] 

AMH 

Granulosa cells 

of healthy 

growing 

follicles 

Inhibits follicle recruitment from resting 

pool, decreases responsiveness of 

preantral follicles to FSH 

Mouse, human, 

cattle, rat, goat, 

sheep, chicken 

[69;70;80;91;93;

96;97;99;100;147

-151] 

BMP15 Oocyte 
Granulosa cell proliferation, COC 

integrity 

Mouse, sheep, goat, 

zebrafish, cattle, 

pig, chicken 

[70;105;106;110;

112-

117;120;125;152-

159] 

BMP2 Granulosa cells 

Granulosa cell proliferation, follicle 

survival and prevention of premature 

luteinisation 

Mouse, pigs, 

chicken, cattle, 

sheep, rat, human 

[160-167] 

BMP4 

Oocytes, 

granulosa and 

theca cells 

Primordial to primary follicle 

recruitment; suppresses progesterone 

production in granulosa cells 

Mouse, zebrafish, 

cattle, rat, sheep, 

human 

[160;161;168-

172] 

BMP5 Granulosa cells 

Granulosa cell proliferation, follicle 

survival and prevention of premature 

luteinisation 

Rat [173] 

BMP6 
Oocyte, 

Granulosa cells 

Granulosa cell proliferation, follicle 

survival and prevention of premature 

luteinisation, alters AMH gene expression 

Mouse, pig, 

chicken, zebrafish, 

cattle, sheep, 

human, rat 

[153;160;161;163

;165;174-178] 

BMP7 
Granulosa and 

theca cells 

Primordial to primary follicle 

recruitment, granulosa cell proliferation, 

follicle survival and prevention of 

premature luteinisation 

Mouse, human, rat, 

sheep, cattle 

[161;170;178-

181] 

Estrogen 

(Estradiol) 
Granulosa cells 

Antrum formation, AMH repression, 

follicle maturation and rupture during 

ovulation 

Mouse, chicken, 

human, reptile, rat, 

cattle, sheep, goat, 

pig 

[123;151;182-

193] 

GDF9 Oocyte 

Proliferation of granulosa cells, COC 

integrity and expansion, preantral follicle 

growth, suppression of FSH-induced LH 

receptor content 

Mouse, sheep, rat, 

goat, zebrafish, 

buffalo, cattle, pig, 

chicken 

[70;106;108;116;

119;125;152;153;

155-

160;194;195] 

Inhibins 
Granulosa and 

theca cells 

Inhibit pituitary FSH release, ovarian 

steroidogenesis 

Mouse, goat, sheep, 

cattle, zebrafish, 

human, chicken 

[126;140;141;143

;144;194;196;197

] 

KIT 
Oocyte, stromal 

cells 

Primordial follicle recruitment (some 

species), follicle growth and survival, 

theca cell development 

Mouse, pig, rat, 

cattle, humans, 

rabbit 

[152;198-202] 

KITL 
Oocyte, stromal 

cells 

Primordial follicle recruitment (some 

species), follicle growth and survival 

Mouse, pig, rat, 

humans, cattle, 

rabbit 

[151;152;198;199

;202-204] 

NOBOX Oocyte 

Transcription factor that regulates 

numerous germ-cell specific genes, 

Inhibits primordial recruitment 

Mouse, human, 

cattle 
[205-208] 
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1.3.4 Follicle Atresia 

Given that the ovary begins with several million follicles, only approximately 400 of 

which will be ovulated in the reproductive lifespan of a woman, the vast majority of 

follicles will undergo atresia, a process of follicle loss, most often through a form of 

programmed cell death called apoptosis. Like all somatic cells, granulosa cells must 

progress through the phases of the cell cycle in order to proliferate. The cell cycle is 

comprised of four distinct phases: gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M) 

[209]. When cells are not dividing, they are found in a quiescent state known as G0, and 

are not considered a part of the cell cycle (Figure 3). During the first gap phase, the cell 

readies itself for replication. During S phase, DNA replication occurs. During the second 

gap phase, the cell ensures that there is no DNA damage and that it is fully replicated 

prior to entering M phase, progression into this phase is dependent upon cyclin B-

dependent kinase [209]. During M phase, nuclear chromosomal separation and 

cytokinesis (cytoplasmic division) occur. M phase is further broken down into four 

phases: prophase, metaphase, anaphase and telophase. During prophase, chromatin begins 

to condense and centrioles begin migrating to opposite ends of the cell and send out 

spindle fibres that will attach to the centromeres of the chromosomes. In metaphase, 

chromosomes begin to align themselves along the midline of the cell nucleus (metaphase 

plate); helping to ensure each daughter cell will receive an equal number of 

chromosomes. During anaphase, paired chromosomes separate at the kinetochores and 

move to opposite ends of the nucleus. Finally, in telophase, new membranes form around 

the two daughter nuclei and the partitioning of the cell begins, chromosomes de-condense 
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and cytokinesis occurs [210;211]. DNA damage checkpoints exist within G1, S and G2 

phases while G2 possesses additional unreplicated DNA checkpoint and M phase 

possesses both a spindle assembly and chromosome segregation checkpoint. At any of 

these checkpoints, if there is damage detected, or if the environment does not favour 

replication, the cell can halt its progress through the cell cycle. The G1/S boundary 

however, appears to be the point particularly susceptible to apoptosis and this checkpoint 

is often referred to as the restriction point and cells exposed prior to this checkpoint are 

vulnerable to perturbation while cells exposed after this checkpoint are not susceptible in 

that particular division [209]. Of the cells present in the follicle, granulosa cells, 

specifically those proliferating and in the G1/S phase transition, have been shown to be 

more susceptible to apoptosis than those that are resting in early G1 phase [183;212]. This 

finding would help to explain why many reproductive toxicants have been found to 

selectively target growing follicles and why their method of follicle loss is apoptosis. 

However, the vast majority of these studies have utilized animal models with doses far 

higher than would be considered environmentally relevant to humans outside of 

occupational exposures. Therefore, studies are necessary to determine if these toxicants, 

at concentrations representative of human exposure, activate the apoptotic pathway of 

programmed cell death or if other mechanisms are responsible for follicle loss. 
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Figure 3: The cell cycle. 

The cell cycle is comprised of four distinct phases: gap 1 (G1), synthesis (S), gap 2 (G2) 

and mitosis (M). Non-dividing cells are outside the cell cycle in what is referred to as G0. 

During G1, the cell readies itself for replication and ensures that the environment in which 

the cell is currently is suitable for cell division. During S phase, DNA replication occurs. 

During G2, the cell ensures that it is fully replicated and that it is free of DNA damage. 

During M phase, chromosomal separation and cytokinesis (cytoplasmic division) occur. 

M phase is further divided into four stages: prophase, metaphase, anaphase and telophase.  

 

1.4 Lessons Learned from Environmental Toxicants 

A variety of toxicants increase follicle loss and are lethal to embryos; however, the 

mechanism of action is unknown. In women, menopause represents the end of 

reproductive life [69;80], and exposure to chemicals that have the capacity to shorten that 

window are of particular interest. Postmenopausal women are at greater risk for 

developing cardiovascular disease, Alzheimer’s disease and osteoporosis [18]; thus, 
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chemicals that have the capacity to exhaust the ovarian reserve and induce early 

menopause can have serious health consequences. The association between the 

exhaustion of the ovarian follicle reserve and environmental toxicant exposure has been 

well-documented. A variety of environmental toxicants have a negative effect on fertility 

and ovarian function. A literature search of environmental toxicants and the ovary 

quickly reveals that the mode of toxicant-induced infertility varies depending on the 

environmental toxicant studied; while some disrupt signalling, others increase follicle 

atresia thereby depleting the follicle pool prematurely. Animal models have confirmed 

that environmental toxicants destroy follicles in a stage-specific manner. For example, 

exposure to certain polychlorinated biphenyls (PCBs) results in the destruction of 

growing follicles [213;214]. Phthalates, used as plasticisers and known endocrine 

disruptors, have been linked with antral follicle atresia in rodents [212;215], while 4-

vinylcyclohexene diepoxide (VCD), a metabolite of 4-vinylcyclohexene (VCH) and a 

solvent used in industry, induces apoptosis in primordial and primary follicles [19;62;63]. 

Trichloroethylene (TCE), a chlorinated hydrocarbon used in industrial solvents, decreases 

oocyte fertilizability in mice and increases protein carbonyl formation in rats [18]. When 

testing whether the ovary was capable of metabolizing TCE or if the parent compound 

was responsible for adverse outcomes, investigators found that in vitro treatment with the 

metabolite of TCE elicited the same response as the parent compound did in vivo [216]. 

This finding indicated that the reproductive toxicity of TCE is due to its metabolism and 

bioactivation within the ovary. 7,12-dimethylbenz[a]anthracene (DMBA), a member of 

the polycyclic aromatic hydrocarbon (PAH) group and constituent of cigarette smoke, 
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destroys all follicle types in the ovaries of mice and rats dose-dependently [217], while 

another PAH and cigarette smoke constituent, BaP selectively targets and depletes the 

primordial follicle pool [218;219]. As these studies illustrate, each chemical elicits a 

distinct response from the ovary. Additionally, some toxicants may be bioactivated by an 

enzyme (i.e.: whereas glutathione (GSH) conjugation catalyzed by glutathione S-

transferase (GST) represents bioactivation in the presence of VCH, detoxification occurs 

when VCD or DMBA is the toxicant encountered [18]). Despite the diversity of 

environmental toxicants that have been shown to elicit adverse effects on ovarian 

function in animal models, there are few studies that show effects on the human 

population. Moreover, the decrease in fertility seen in these animal studies was due to 

toxicological levels of these toxicants [62-66;220;221], high dose exposures that have 

debatable relevance to human exposure. Therefore, more studies evaluating lower doses 

and more sensitive end points are needed to determine if these toxicants induce selective 

stage-dependent destruction of ovarian follicles at concentrations representative of human 

exposure.  

1.5 Apoptosis 

Cells generally die through one of at least three distinct processes, those being necrosis, 

terminal differentiation leading to cell death, and apoptosis. Although all three 

mechanisms are important, apoptosis is thought to be the main route of follicle atresia in 

the mammalian ovary [222-228]. Apoptosis is a genetically determined and biologically 

functional means of cell death and is essential under both normal and pathologic 
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conditions. It depletes the resting pool of follicles by roughly two thirds before birth 

[229] and is the primary mechanism through which atretic follicles die. Given that the 

majority of environmental toxicant studies to date showed apoptosis as the mechanism of 

cell death and that Mattison and colleagues [230] found that the primordial and primary 

follicles of mice exposed to aryl hydrocarbon receptor (AhR) ligands (several of which 

are found in cigarette smoke) were rapidly depleted and that these ovotoxic effects could 

be prevented in the presence of AhR antagonists [231], we hypothesized that a similar 

phenomenon was occurring in cigarette smoke-exposed ovaries. 

 

The morphological manifestations of programmed cell death are distinct from those of 

necrosis, the passive death of a cell brought on by infection, injury or disease. Necrotic 

cells exhibit signs of inflammation, cell and organelle swelling, adenosine triphosphate 

(ATP) loss, membrane damage and ultimately cell lysis [232]. Apoptotic cells have 

hallmark features distinct from necrosis which include nuclear chromatin condensation, 

formation of apoptotic bodies, DNA fragmentation (detectable by gel electrophoresis as a 

classical laddering pattern or by TUNEL staining) and cytoplasmic vacuolization [233]. 

Apoptosis is a non-traumatic mechanism of removing unneeded cells and occurs in all 

tissues of the body. Unlike necrosis, apoptosis is a “silent” form of cell death, being 

physiologically undetected by the organism but requires energy from the cell and results 

in changes in biochemical and molecular markers that can be measured to assess the 

degree and location of apoptosis occurring in response to a cellular assault [19]. 
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Apoptosis can occur via two major mechanistic pathways, the extrinsic death receptor 

pathway or the intrinsic mitochondrial pathway (Figure 4). Each pathway involves the 

activation and recruitment of different factors, but both ultimately involve the 

mitochondria in the execution of cell death. While the extrinsic pathway relies on the 

binding of a death ligand to a death receptor to produce caspase 8 and begin the cascade 

of events that lead to cell death, the intrinsic pathway, as its name suggests, is initiated by 

internal signals such as DNA damage, defective cell cycles, hypoxia, loss of cell survival 

factors or other types of cellular stress [234]. The release of pro-apoptotic proteins results 

in activation of caspases from within the mitochondria, triggering apoptosis. The intrinsic 

pathway hinges on a delicate balance of pro-apoptotic and pro-survival members of the 

BCL2 family whose role is to regulate the permeability of the mitochondrial membrane 

[235]. 

 

In mammals, the BCL2 family of proto-oncogenes is associated with apoptosis. The 

BCL2 family, which contains multiple α–helical segments known as BCL2 homology 

domains (BH1-4) [236-238], contain several proteins that are pro-apoptotic and others 

that are anti-apoptotic. The pro-survival proteins of the BCL2 family contain all 4 BH 

domains, while the death-inducing members only contain 2 or 3 of the domains (BH1-3). 

The mammalian pro-apoptotic proteins are: BAX, BAK, BOK/MTD, and BCLXS. There 

is a sub-group of pro-apoptotic proteins which contain only the BH3 domain; they are: 

BID, BAD, BIK/NBK, BLK, HRK, BIM/BOD, NIP3, and NIX/BNIP3 [239;240]. To 

date, the mammalian pro-survival proteins identified in the BCL2 family are: BCL2, 
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BCL2L1, BCLW, MCL-1, A1/BFL-1, BOO/DIVA, and NR-13 [241;242]. This family of 

proteins function upstream of irreparable cellular damage with much of their function 

focused on the mitochondria. Apoptosis occurs via two pathways (the extrinsic, or death 

receptor-mediated, and the intrinsic, or mitochondrial), that ultimately converge, resulting 

in the death of the cell. BAX, BAK, BCL2, BCL2L1 (BCLXL), MCL1 and BAD have all 

been detected in the ovary. 

  



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

30 
 

 

 
Figure 4: The apoptosis pathways. 

Cells can undergo apoptosis via two discrete pathways: the extrinsic (death-receptor) 

pathway or the intrinsic (mitochondrial) pathway. In the extrinsic pathway, death can be 

induced by the binding of ligands to their receptors on the cell surface. The receptor’s 

death domain is then bound by an adaptor, which serves to recruit the pro form of the 

initiator caspase for subsequent activation. This induces caspase 3 activation. Caspase 3 

cleaves its substrate, the inhibitor of caspase-activated DNase (ICAD), which is released 

to enter the nucleus and cleaves DNA resulting in apoptosis of the cell. Caspase 8 cleaves 

BID, resulting in a truncated form (tBID) that, upon dimerization of BAX or BAD, 

causes the release of cytochrome c from mitochondria through the potential alteration of 

mitochondrial membrane permeability. BCL2 inhibits the release of cytochrome c and 

AIF into the cytoplasm. In the cytosol, cytochrome c binds to apoptosis protease 

activating factor (APAF1), forming the apoptosome, which converts pro-caspase 9 to 

caspase 9. This results in activation of downstream effector caspases. Smac/DIABLO 

binds to inhibitors of apoptosis proteins (IAPs) and prevents them from inhibiting the 

activation of caspases 3 and 9. In the intrinsic pathway, death is induced by direct signals 

from within the cell, bypassing the need to activate membrane-bound death receptors. 

These signals alter the balance of pro-apoptotic and anti-apoptotic signalling molecules 

(namely BAX, BID, and BCL2) in favour of apoptosis. Mitochondrial membrane 

permeability is altered when BAX and BID insert themselves into the membrane pores, 

leading to cytochrome c release and subsequent activation of caspase 9 and death. This 

figure was reprinted from [243] and used with permission. 
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Inhibitor of apoptosis proteins (IAPs) are a conserved family of proteins, which have 

been found in yeast, insects, worms, viruses and vertebrates that, as their name suggests, 

protect against apoptosis [244]. IAPs contain one or more baculovirus IAP repeat (BIR) 

domains, zinc-binding folds, and are involved in various cellular functions, including 

regulation of cell cycle and intracellular signal transduction [244-246]. IAPs are known to 

regulate apoptosis, being induced by an assortment of death-inducing stimuli. To date, the 

known members of the mammalian IAP family are X-linked IAP (XIAP), cellular IAP 1 

(cIAP1), cIAP2, Apollon, neuronal apoptosis inhibitory protein (NAIP), BIR repeat 

containing ubiquitin-conjugating enzyme (BRUCE), Livin and Survivin (also known as 

mouse TIAP) [247-250]. The predominant function of several IAPs is the regulation of 

apoptosis. Survivin, which is a nuclear protein expressed primarily during the G2-M 

phase of the cell cycle [244;250], attenuates the activity of caspase 3, while XIAP, a 

mainly cytoplasmic protein, is a potent and direct inhibitor of caspases 3, 7 and 9 [251] 

and is involved in the prevention of Fas-mediated apoptosis [244;248] (part of the 

extrinsic or receptor-mediated apoptotic pathway). cIAP1 and cIAP2 which have also 

been implicated in the extrinsic apoptotic pathway, bind to and inhibit the function of 

tumor necrosis factor receptor (TNFR) 1 and 2 through their interaction with TNF 

Receptor Associated Factors (TRAFs) [244].  

 

Several IAP family members are expressed in the ovary. These include Survivin 

[250;252;253], XIAP [246], cIAP1 [250] and cIAP2 [254]. cIAP1 is thought to play a 

role in the cell cycle, along with Survivin, based on its being found in concentrations at 
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the midbody of cells in telophase [244]. Survivin, likewise, is hypothesized to inhibit a 

default apoptotic cascade initiated during mitosis by means of its α-helix coiled-coil 

domain binding to mitotic spindle microtubules [250]. From previous studies, we know 

that Survivin acts as a bifunctional protein regulating both the cell cycle and inhibition of 

apoptosis in granulosa cells [252]. Similarly, mRNA and protein expression of XIAP is 

reduced to trace or negative levels in the granulosa cells of atretic follicles but has a 

robust expression in healthy follicles [246]. cIAP1 [250], cIAP2 [255] and BCLXL [255] 

have all been identified as playing a role in the suppression of granulosa cell death in the 

mammalian ovary. 

1.5.1 The Extrinsic Pathway 

The death receptor pathway involves signals arising from outside the cell. Death 

receptors (FAS, TNF-R1 or TNF-R2) bind their ligand (FASL or TNF ), initiating the 

transmission of death signals via cytoplasmic death domains (FADD) [233;256;257]. 

Death domains in turn recruit the pro form of the initiator caspase 8 for subsequent 

activation. This induces activation of pro-caspase 3, initiating the caspase cascade, 

leading to cell death. This process is regulated by FLICE-inhibitory protein (FLIP), 

which contains two death effector domains (DED) and an inactive caspase domain, which 

binds FADD and caspase 8, preventing death receptor-mediated apoptosis [258]. Caspase 

3 (CASP3) cleaves its substrate, the inhibitor of caspase-activated DNase (ICAD), which 

is released to enter the nucleus and cleaves DNA resulting in apoptosis of the cell. In 

addition caspase 8 cleaves BID protein, resulting in a truncated BID (tBID) that, upon 
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dimerization with BAX or BAD, causes the release of cytochrome c from mitochondria 

through the potential alteration of mitochondrial membrane permeability. Anti-apoptotic 

BCL2, on the other hand, inhibits the release of cytochrome c and AIF into the cytoplasm 

by binding to BAX and preventing it from inserting itself into the mitochondrial 

membrane. The presence of cytochrome c in the cytosol causes apoptotic protease 

activating factor-1 (APAF1) to release HSP90 and bind to cytochrome c, forming the 

apoptosome. Binding in the presence of ATP induces the oligomerization of APAF1 and 

the subsequent recruitment and activation of pro-Caspase 9 [233]. This results in 

activation of downstream effector caspases. Smac/DIABLO, which is also released from 

the mitochondria upon membrane permeability changes, binds to inhibitors of apoptosis 

proteins and prevents them from inhibiting the activation of caspases 3 and 9. 

1.5.2 The Intrinsic Pathway 

As previously explained and shown in figure 4, the intrinsic or mitochondrial pathway of 

apoptosis begins with death signals arising from within the cell which signal the pro-

apoptotic BCL2 proteins (especially BAX or BID) to translocate to the mitochondrial 

membrane, where they insert themselves into the pores of the mitochondrial membrane, 

altering its permeability via changes in membrane potential thereby allowing the release 

of cytochrome c into the cytosol [233;259;260], resulting in a collapse of the 

mitochondrial membrane potential and halting of ATP synthesis, thus initiating the 

apoptosome, which mediates the activation of the caspase cascade via CASP3 activation. 

The mitochondrial membrane potential (MMP) is generated by the respiratory chain as it 
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pumps protons to the intermembrane space and must be maintained within a relatively 

narrow range (150-180 mV) to maintain ATP production and mitochondrial energetic 

capacity [261]. Because the pumping of protons to the intermembrane space and their 

subsequent re-entry into the inner membrane energizes the conversion of adenosine 

diphosphate (ADP) to ATP, even small changes in MMP can have dramatic effects on the 

energy-producing capacity of the mitochondrion. For example, a 14 mV decrease in 

MMP results in a 10-fold decrease in the ATP/ADP ratio [261]. 

1.5.3 Apoptosis in the Ovary 

Numerous animal studies have employed the use of environmental toxicants from 

different chemical families to induce ovarian follicle loss and the overwhelming majority 

of these studies have concluded that the mechanism by which follicles are lost is via 

apoptosis irrespective of the follicle population specifically targeted 

[53;62;63;66;213;214;217-219;229;231;262-268]. Primordial follicle destruction is 

considered to be the most disastrous, as the effects of which are not detected until years 

after the exposure, often after ovarian failure is well established. The loss of follicles 

appears to be primarily due to apoptosis of the granulosa cells of the follicles. The 

mechanisms of follicular apoptosis are not completely understood and appear to involve 

both intrinsic and extrinsic pathways, depending on the apoptotic stimulus received. 

 

In mice, maternal exposure to high doses of the PAHs, BaP and 7,12-

dimethylbenz[a]anthracene (DMBA;1 mg/Kg each/week for six weeks) significantly 
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depleted primordial follicle numbers via increased expression of BAX which, in a 

subsequent experiment was shown to involve induction of the harakiri gene, which codes 

for a BCL2 interacting protein [269]. Unlike the results above, treatment of pregnant 

mice with high concentrations of BaP and DMBA (1 mg/Kg each/week for six weeks) 

inhibited apoptosis in the murine placenta [270]. In this study, treatments increased FASL 

and XIAP expression but decreased BAX and apoptosis in the placenta, suggesting tissue 

specificity. Therefore, the AhR mediated effects on apoptosis are also target tissue-

dependent. Others still have found that the dose and duration of exposure play a part in 

follicle demise. In a time-course study in rats, it was found that an acute exposure of a 

high dose of VCD was not sufficient to elicit follicle death but was in fact protective 

against atresia while repeated daily doses of a lower dose resulted in significant atresia 

and activation of the oxidative stress response as measured by superoxide dismutase 

(SOD) 2 expression in small but not large follicles demonstrating that not only do 

toxicants specifically target follicle populations, but do so in a dose- and time-dependent 

manner [19].   

1.5.4 Oxidative Stress 

Mitochondria are the powerhouse of the cell. They are the organelle in which cellular 

respiration, the Krebs cycle and fatty acid oxidation occur. The transformation of energy 

from glucose to ATP is achieved through a series of redox reactions. During cellular 

respiration, mitochondria produce ROS in the form of superoxide (O2˙
-
), hydrogen 

peroxide (H2O2) and hydroxyl free radicals (OH˙
-
) (Figure 5). Under physiological 
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conditions, these by-products serve as signals in such processes as growth, hormone 

synthesis and inflammation. However, their overproduction is deleterious to cells leading 

to DNA, protein and lipid damage that ultimately result in pathological processes and 

death, if unmitigated. The cell possesses several defense mechanisms capable of 

mediating ROS to prevent cellular damage. These include the mitochondrial ROS-

detoxifying enzymes superoxide dismutase, glutathione peroxidase, glutathione 

reductase, and catalase. In healthy cells, ROS oxidize factors in numerous pathways. For 

example, certain genes such as p53, serve to aide in upregulation of antioxidant genes to 

reduce ROS levels [271]. 

 

Figure 5: Endogenous ROS generation. 
During normal cellular respiration, ROS are generated in the form of superoxide (O2˙

-
), 

hydrogen peroxide (H2O2) and hydroxyl free radicals (OH˙
-
). In small concentrations, 

they play various roles in physiological processes and their detoxification is mediated by 

antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and 

glutathione reductase). When produced in excess, however, ROS can interfere with 

normal cell function and potentially lead to cell death. 

 

Reactive oxygen species have been found to be important in many physiological 

processes in the female reproductive tract: playing roles in hormone signalling, 
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steroidogenesis, ovulation and pregnancy. When produced in physiological 

concentrations, ROS are beneficial to follicle development and ovulation, as evidenced 

by the changes in O2˙
-
 levels leading up to ovulation where it is thought to play a role in 

the breakdown of follicular walls allowing for the extrusion of the cumulus-oocyte 

complex at ovulation [272]. Additionally, oxidant production rises as the number of 

granulosa cells increases in the growing follicle, owing to the increased cell metabolism 

associated with differentiation [273]. Moreover, during embryonic development, ROS act 

in a physiological manner in the activation of apoptotic cell death in interdigital regions, 

leading to appropriate digit formation [274]. Oocytes possess the most mitochondria of 

all the cells in the body due to their high energy demands [275]. As such, they are capable 

of producing a large amount of ROS as a by-product of mitochondrial electron transport 

chain (ETC) function. They also produce the requisite ROS detoxifying enzymes to 

counterbalance this production. If this delicate balance is disrupted, oxidative stress 

results in the oocyte and can lead to the death of the oocyte [275].  

 

Oxidative stress is the term used to describe what happens when ROS generation 

overwhelms the in situ antioxidant mechanisms. Studies have identified caspase 

activation and catalase activity as being essential to ROS mediation, the blockage of 

which leads to accumulation of ROS, oxidative stress and ultimately cell death [276-278]. 

Occasionally, mitochondrial proteins can become misfolded or damaged resulting in 

aggregates [275;279]. Under homeostatic conditions, the mitochondria have the ability to 

identify and remove these aggregated proteins; however, under cell stress conditions, they 
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accumulate and the mitochondrion must fuse with healthy mitochondria to maintain 

mitochondrial DNA (mtDNA) integrity and repair, the failure of which results in 

mitochondrial degradation. Excessive mitochondrial degradation has been linked to a 

number of neurodegenerative [275;280] and metabolic [261;281-284] diseases.  

 

In addition to physiological sources, several environmental contaminants can induce ROS 

production and oxidative stress (Figure 6) including carbon monoxide (CO), arsenic, 

dioxins, VCH and its metabolite, ultraviolet (UV) radiation, pesticides and cigarette 

smoke, many of its constituents being oxidants and free radicals which result in the 

formation of oxidized bases including 8-hydroxy-2’-deoxyguanosine (8-OHdG), an 

oxidized nucleoside of DNA and a classical biomarker of oxidative DNA damage [285-

292]. CO results in the production of superoxide and the hydroxyl radical, even at low 

concentrations. However, these low concentrations have a physiological role to play in 

multiple signalling pathways including angiogenesis, heme oxidation, and vascular 

remodelling, whereas in high concentrations or following accidental exposure, CO can 

have detrimental effects on the mitochondrial ETC [285] culminating in death of the cell. 

Studies in multiple cell lines have shown that arsenic can induce superoxide and H2O2 

production as well as increase the expression of antioxidant enzymes including SOD and 

catalase [289]. Similarly, UV radiation, especially UVB, has been associated with 

inducing lipid and protein oxidation in the plasma membrane of epidermal cells and in 

the production of H2O2 which can indirectly activate cell growth pathways leading to the 

tumor process [287]. Exposure to cigarette smoke, which contains a number of oxidants 
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and free radicals, induces oxidative stress [40;292-296]. In addition, many of these 

studies point to the importance of cigarette smoking, its constituents, the production of 

ROS and oxidative stress in the reproductive tract [3;40;44;292;297]. Specifically, 

exposure to cigarette smoke resulted in significant oxidative damage in oocytes and 

decreased blastocyst formation [298]. While BaP results in smaller ovaries [297] in 

addition to retarding the development of follicles in vitro [57;58;299;300]. 

 

Figure 6: Mechanisms of ROS generation by environmental toxicants. 
Exposure to environmental toxicants (i.e.: BaP) induces changes in the equilibrium of the 

cell’s anti-oxidants and reactive oxygen species by different interconnected mechanisms. 

(1) Environmental toxicants can generate ROS directly via targeting of the mitochondria. 

ROS can further deplete antioxidant defenses leading to increased oxidative stress. (2) 

Environmental toxicants can directly deplete the cellular antioxidant defenses (i.e.: 

vinylcyclohexidene induces the depletion of intracellular GSH via direct conjugation 

catalyzed by GST). Depletion of these antioxidant defenses facilitates the accumulation 

of ROS. (3) Environmental toxicants have also been reported to induce oxidative stress 

by mediating a variety of redox reactions and/or through different metabolic pathways 

(i.e.: CYP1A1-mediated metabolism of BaP), which can in turn promote mitochondrial 

damage, ROS formation and depletion of antioxidant molecules in the cell. Reprinted 

from [301] with permission from Elsevier. 
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1.6 Adaptive Responses to Stress 

Organisms react to changes in their environment by either increasing or decreasing 

protein production. Although the systematic mechanisms of adaptation to changes in an 

organism’s environment are well-known [302], the molecular and genetic mechanisms 

are less well-known. 

1.6.1 Heat Shock Proteins 

The heat shock response, one mechanism of stress adaption employed by living 

organisms is mediated by a common set of proteins known as heat shock proteins (HSPs) 

whose expression pattern is conserved almost universally [302]. Heat shock proteins are 

cellular components that have been found in nearly all organisms studied to date, both 

prokaryotic and eukaryotic alike [303;304]. However, despite extensive research, the 

functional significance of heat shock proteins is not wholly understood. Heat shock 

proteins, first discovered in chromosomal puffs of salivary glands of Drosophila in 1962, 

are involved in a complex cascade of events that make up the heat shock response, a 

cellular survival mechanism important for cells to survive the onslaught of environmental 

stresses in the course of an organism’s lifespan. 

 

Although some HSPs are expressed constitutively within the cell under normal 

physiological conditions, others are only expressed upon stress conditions [302;305]. 

Those expressed under normal conditions in the cell are differentially expressed both 

spatially and temporally and are mediated at the level of mRNA synthesis, stability and 
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translational efficiency and posttranslational modifications [302]. It is generally accepted 

that these proteins act as molecular chaperones, maintaining other proteins in a folding-

competent state and preventing the aggregation of damaged or denatured proteins [306], 

while remaining separate from the final functional structures they help to form [305;307]. 

Heat shock proteins are key participants in RNA translation, DNA replication, protein 

folding and translocation through the endoplasmic reticulum (ER) and mitochondrial 

membranes, cell signalling and protection at higher temperatures [302;307;308]. 

 

To date, nearly every organism studied has been found to possess HSP genes that are 

expressed in response to elevated temperature or other stressors such as exposure to 

ethanol, heavy metal ions or cigarette smoke [309-311]. Certain physiological stresses 

such as oxidative stress, fever, and inflammation can induce hsp gene expression as can 

non-pathological conditions such as growth factors, development, and differentiation 

[309;312;313]. HSPs are classified based on their molecular weights and comprise three 

main families: the high molecular weight HSP90s, the HSP70s and the small HSPs 

(sHSPs). Transcription of hsp genes is mediated by the heat shock element (HSE) found 

in the 5' upstream region of these genes and interacts with a transcription activating factor 

termed a heat shock factor (HSF). Members of the sHSPs, the least conserved of the heat 

shock protein families, are stress-inducible molecular chaperones that range in size from 

12 to 43 kDa [314-317]. In their role as molecular chaperones, sHSPs bind to unfolded 

proteins and maintain their target protein in a soluble and folding-competent state so that 

once the stressor is removed, they can be refolded to their native state by other 
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chaperones, including HSP40 and HSP70 [315-317]. sHSPs aid in a number of biological 

processes including modulation of redox parameters, cell proliferation and differentiation, 

and actin polymerization [314;316;317]. Additionally, it has been demonstrated in a 

number of cultured cell systems that a sub-lethal heat shock can confer tolerance to other 

stresses that would otherwise prove to be toxic [318;319]. Finally, sHSP synthesis or 

mutations have been associated with a variety of diseases including estrogen-dependent 

cancers (i.e.: breast), muscle myopathy, multiple sclerosis, and various neuropathologies 

[315;320-323]. 

 

HSP25, a member of the sHSP family, was first discovered as HSP27 in the cytosol of 

human breast cancer cells following estradiol stimulation [324]. In this context, it plays a 

role as an estrogen-regulated protein. Murine HSP25 is related to human HSP27. In 

normal adult mice, Hsp25 and its protein occur in various organs including the skeletal 

muscle, heart, aorta, stomach, intestine, lung, urinary bladder, eye, pancreas, kidney, 

thymus, testis, uterus and ovary [320;325-330]. In the ovary, it is constitutively present in 

unfertilized eggs, coinciding with its housekeeping role, and induced by zygotic gene 

activation at the 2-cell stage, a stage critical for embryonic development. Mouse Hsp25 is 

seen in post-implantation embryo back muscles, neurons of the spinal cord and purkinje 

cells during embryogenesis [331]. The expression pattern indicates that Hsp25 is 

involved in development and differentiation of pre-implantation embryos and oocyte 

maturation [332]. Additionally, HSP25 protein is translocated to the nucleus upon 

chronic heat shock, the functional significance of this translocation is not known at 
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present. Work conducted by Arrigo suggests that disruption of  sodium active transport, 

resulting in the failure of HSP25 to be redistributed following the return to physiologic 

conditions, may be the underlying cause of oocyte death following chronic heat shock 

[333]. In addition to heat shock experiments, it has been shown that HSP25 expression 

patterns are affected by exposure to toxicants including acetaminophen [334], arsenic 

[335], cadmium [335], cisplatin [336], schisandrin B [337] and trichloroethylene [338]. 

HSP25 is both constitutively present and heat-inducible in the mouse oocyte. The 

presence of HSP25 in the ovary, its role in protecting tissues under stress, and its 

response to toxicant exposure make it a good candidate protein for study in the context of 

cigarette smoke-induced ovarian follicle loss. 

1.6.2 Autophagy 

Autophagy is an evolutionarily conserved mechanism in eukaryotes through which 

damaged organelles and long-lived proteins are degraded by lysosomal enzymes [339-

341]. Autophagy literally translates to “self-eating” and was first discovered over half a 

century ago. Since then, 35 autophagy-related (Atg) genes have been identified in yeast, 

many of which have homologues in humans. Classically considered a mechanism of 

survival, autophagy involves the cytoplasmic sequestering of cellular debris, long-lived 

proteins and superfluous organelles in double-membrane vesicles termed 

autophagosomes which then fuse with lysosomes, becoming autophagolysosomes, for 

degradation of their contents and release into the cytoplasm for the building of new 

macromolecules and for energy production. 
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Autophagy is characterized into three types based on morphological characteristics 

exhibited: macroautophagy, microautophagy, and chaperone-mediated autophagy. During 

macroautophagy (the focus of our study and hereafter referred to as simply autophagy), 

damaged proteins and organelles are engulfed in double membrane-bound vesicles 

(autophagosomes) and delivered to lysosomes for constitutive degradation within the 

autophagolysosome. Autophagy can be either bulk (non-specific) or selective. Selective 

autophagy occurs when specific cargo is targeted for autophagosomal degradation. To 

date, there have been five different types of selective autophagy identified: xenophagy 

(pathogens), aggrephagy (protein aggregates), pexophagy (peroxisomes), glycophagy 

(glycogen) and mitophagy (mitochondria) [342]; each of these employing the use of a 

subset of Atg genes, some of them unique only to that type of autophagy. 

 

Autophagy can be broken down into four distinct steps: initiation, nucleation, elongation 

and closing, and degradation [343], each of which involves different molecular 

mediators. Briefly, autophagy is induced in response to various stresses, including 

nutrient starvation, oxidative stress or genotoxic agents, leading to initiation which 

depends on the ULK1 complex, followed by activation of the Beclin 1-Vps34/15-Atg14L 

complex and membrane nucleation [341-346]. Although a number of additional proteins 

are involved in the autophagy cascade, the Atg genes comprise the core machinery for 

membrane nucleation and expansion (Figure 7). Beclin 1 (BECN1/Atg6) is essential for 

the progression of membrane nucleation but is inhibited by BCL2 [345;347]. Following 
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nucleation, two ubiquitin-like proteins, Atg12 and microtubule-associated protein 1 light 

chain 3 (Map1lc3), along with their conjugation complexes, help to form the 

autophagosomes [342;343;347]. Specifically, Atg12 is activated by Atg7 and conjugated 

to Atg5 by Atg10 while Map1lc3 (hereafter referred to as LC3), which is present in its 

inactive form in the cytoplasm as LC3-I, is activated by Atg7 and conjugated to 

phosphatidylethanolamine (PE) by Atg3 with the help of the Atg12-Atg5 complex 

[342;343]. Once LC3 has been activated to LC3-II, it is recruited to the membrane of the 

autophagosome and facilitates transport to and organelle sequestration within the 

autophagosome. LC3-II can be localised to the autophagosome membrane and therefore 

serves as a marker for autophagosome formation and degradation [345]. 
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Figure 7: The autophagy pathway. 

Initiation, nucleation and elongation steps of the autophagy cascade are shown in this 

schematic. During the initiation step, the ULK1 complex is required and is negatively 

regulated by the mammalian target of rapamycin (mTOR) which is in turn inhibited by 

nutrient starvation. Following initiation, membrane nucleation occurs via the activation 

and concerted actions of the Beclin1-Vps34/15-Atg14L complex. This step can be 

inhibited by the binding of Bcl2 to Beclin1, preventing it from forming the complex 

necessary to initiate nucleation. Finally, membrane elongation occurs following Atg12-

Atg5 complex conjugation and subsequent conjugation and activation of LC3 by 

phosphatidylethanolamine. This figure was reprinted from [346] with permission. 

 

1.6.2.1 Autophagy as a Cell Survival Mechanism 

Autophagy is widely accepted as a survival mechanism employed by cells under 

unfavourable conditions, most notably nutrient and oxygen deprivation, to supply the cell 

with much-needed energy to survive in the absence of external nutrient or oxygen 

availability. Autophagy occurs at a basal level in the cell but is stress-inducible. As such, 

autophagy operates as a bulk degradation system where autophagosomes form around a 
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portion of the cytoplasm and enclose contents which can be used as energy sources until 

the stressor is removed. Under starvation conditions, H2O2 was found to be critical for 

formation of autophagosomes and subsequent autophagic degradation, a process central 

to survival of cells experiencing nutrient deprivation [278]. Despite the fact that the 

origin of the autophagosomal membrane is as yet unidentified, multiple groups have 

argued that it originates from a variety of candidates including the ER, plasma membrane, 

mitochondria and lastly de novo formation [346;348]; however, the origin (or origins) 

remains unresolved.  

1.6.2.2 Autophagy as a Cell Death Response 

Autophagy has conventionally been recognized as a cell survival mechanism, designed to 

protect the cell from assaults on homeostasis, but recent evidence has implicated 

autophagy in cell death. The role of autophagy in cell death is controversial, but several 

lines of evidence point to its being central to inducing cell death under certain conditions 

including, but not exclusive to, arsenic trioxide (As2O3) treatment [349;350], inhibition of 

mitochondrial ETC in transformed and cancer cell lines [276], and inhibition of apoptosis 

in mouse embryonic fibroblasts (MEFs) by knockout of central pro-apoptosis genes Bax 

and Bak [351]. In the case of apoptosis inhibition, prolonged autophagy can lead to cell 

death [352]. Specifically, mice deficient in both Bax and Bak, pro-apoptosis genes, are 

completely resistant to apoptosis yet programmed cell death proceeds in a normal manner 

with the appearance of autophagosomes and autolysosomes [351]. Non-apoptotic cell 

death in these mice was dependent on the autophagic proteins ATG5 and BECN1.  
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Mechanisms regulating cross-talk between apoptosis and autophagy are unclear; 

however, emerging studies have identified autophagy as an important alternative cell 

death pathway in mammalian cells, including human and rodent granulosa cells 

[353;354]. Despite this, the relevance of autophagy to granulosa cell death and toxicant-

induced changes in ovarian function are unexplored. It is noteworthy that BCL2 appears 

at the interface between apoptosis and autophagy. BCL2 is a key regulatory protein 

common to both apoptosis and autophagy pathways that inhibits apoptosis via blocking 

of BAX in apoptosis and Beclin 1 in autophagy. Disassociation of Beclin 1 from 

BCL2/BCL2L1 in the ER but not mitochondria is a key driver of autophagy. In human 

granulosa cells, unchecked oxidative stress led to increased expression of lectin-like 

oxidized low-density receptor (Lox1), a scavenger receptor and membrane glycoprotein 

that is activated by oxidized low-density lipoprotein [353]. Treatment of malignant 

gliomas with low levels of As2O3, a metabolic toxin, resulted in BNIP3-regulated 

autophagic cell death [349;350]. Likewise, treatment of either transformed or cancer cell 

lines with the mitochondrial ETC inhibitors, rotenone or trifluoroacetone, induced 

expression of several autophagy genes and increased autophagic cell death which could 

be inhibited by overexpression of SOD2 [276]. 

 

Several distinct lines of evidence lead us to believe that cigarette smoke exposure can 

activate the autophagic pathway of cell death and play an important role in primordial 

follicle loss. Specifically, recent studies have demonstrated that cigarette smoke increases 
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autophagy-mediated cell death in lung cells from patients with chronic obstructive 

pulmonary disease [355;356]. Moreover, cigarette smoke extract (CSE) increased 

processing of LC3-I to LC3-II and increased autophagy in cultures of human bronchial 

epithelial cells [357]. Likewise, CSE treatment induced autophagy in lung epithelial cells, 

macrophages and fibroblasts [355]. Cigarette smoke is a complex mixture of several 

thousand chemical compounds, many of which are oxidants or free radicals that are 

inducers of oxidative stress. Cigarette smoke also contains a number of AhR agonists, the 

activation of which leads to induction of cytochrome P450, which is involved in the 

generation of ROS [294]. Oxidative stress and the production of ROS can lead to 

apoptosis and autophagy [294], both processes which are mitochondrially-mediated. 

1.6.3 Mitochondria 

Mitochondria are organelles that arose from an alpha-proteobacterium engulfed by a 

eukaryotic ancestor [358;359]. Mitochondria have retained some of their bacterial 

predecessor’s characteristics, including a circular genome that through evolution has been 

reduced via gene transfer to the nucleus [359] and loss of redundant genes and is now the 

mtDNA seen in extant mitochondria. Although much of the DNA encoding 

mitochondrial proteins is actually found in the cell nucleus where it is transcribed and 

translated and only transported to the mitochondria post-translationally, the mitochondrial 

genome codes for a number of genes essential for the machinery of cell respiration, 

including ATPases and cyclooxygenase (COX) enzymes [243]. Mitochondria are also 

endowed with two functionally discrete lipid bilayer membranes: the inner (IM) and outer 
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(OM) membranes. These membranes encapsulate the inner membrane space and the 

matrix [359-361]. Mitochondria were first described in the 1840s, and between then and 

the early 1980s, mitochondria were thought to be independent structures randomly 

distributed throughout the cytosol whose primary role was to provide energy in the form 

of ATP to the cell. However, the advancement of live cell imaging allowed researchers to 

observe mitochondria in a completely new way which led to the discovery that 

mitochondria are in fact dynamic organelles which not only communicate extensively 

with one another, but actually exist within an interconnected reticulum or network that is 

continually reshaped through the tightly orchestrated and ongoing process of fission and 

fusion [362-364]. This state of change allows the mitochondria to move, enlarge and 

contract in response to the ever-changing energy requirements of the cell. 

 

Mitochondria are essential to survival. Their primary function is that of supplying 

metabolic energy through oxidative phosphorylation (OXPHOS) [363]. In addition, 

mitochondria are key regulators of catabolic and anabolic reactions including the Krebs 

cycle and fatty acid oxidation as well as of apoptosis and aging [359-361;363;365]. 

Because every cell differs in its energy requirements, the state of the mitochondrial 

network is highly variable and critically depends on the individual physiological status of 

the cell. Consequently, metabolically active cells favour the generation of interconnected 

mitochondria while inactive cells possess multiple morphologically and functionally 

distinct small, short rods [363]. In healthy cells, mitochondria are found in a variety of 

shapes ranging from the classically-conveyed solitary bean-shaped organelle to long, 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

51 
 

interconnected tubules depending on the energy requirements of the cell. Their 

morphology is reliant upon the balance between the diametrically opposed apparatuses 

responsible for the fission and fusion of mitochondrial membranes.  

 

Fission and fusion are opposing processes whose strict balance is essential for 

maintaining proper mitochondrial content in daughter cells and as a mitochondrial quality 

control mechanism by allowing repair of damaged mitochondria [261;281;282;358;366]. 

Thus unbalanced fission leads to mitochondrial fragmentation and abundance of 

individual mitochondria while unbalanced fusion leads to tubulation. Fission and fusion 

are regulated by a family of evolutionarily conserved large multi-domain guanosine 

triphosphatases (GTPases): two outer and one inner membrane proteins, mitofusins 1 and 

2 (MFN1 and 2) and optic atrophy protein 1 (OPA1), respectively [280;367] (Figure 8). 

In yeast, there exists only one mitofusin (Mfn), whereas is mammals, there are two. This 

is due to a suspected gene duplication event somewhere in its evolution [358]. However, 

studies have shown they are not functionally redundant [368;369]. 

 

During fission, protein kinase A activates PTEN-induced kinase-1 (PINK1), a 

mitochondrially-targeted serine/threonine kinase which contains an N-terminal 

mitochondrial localization signal [370], which phosphorylates Parkin, an E3 ubiquitin-

protein ligase, and causes its translocation from the cytosol to damaged mitochondria 

where it promotes ubiquitination and degradation of the central fusion proteins MFN1 

and MFN2 [371-373]. Numerous studies have been conducted in Pink1 and Parkin 
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knockout models to determine their role in the fission process. Because loss-of-function 

mutations in either Pink1 or Parkin are the foremost cause of hereditary early-onset 

Parkinson’s disease, they have generated considerable interest in the research community. 

As such, it is now known that loss of Pink1 and Parkin results in enlarged and swollen 

mitochondria and Parkin (at least) is essential for turnover of damaged mitochondria 

[374], that Parkin acts downstream of PINK1 in a common pathway [280] and that 

although their mutation results in early-onset Parkinson’s, rodent models fail to 

recapitulate the dramatic phenotype of dopamine neuron loss seen in humans with Pink1 

or Parkin mutations [375], suggesting that in rodents at least, another factor plays a 

compensatory role. In addition to PINK1 and Parkin, dynamin-related protein-1 (Drp-1), 

a cytosolic GTPase, plays a key role in mitochondrial fission. Drp-1 translocates from the 

cytosol to mitochondria where it is believed to bind with fission receptors on the outer 

membrane [376]. Once bound, Drp-1 forms helical structures around the mitochondria 

resulting in constriction sites at which fragmentation is thought to occur [359]. Unlike 

Pink1 and Parkin, Drp-1 appears to be obligatory to proper fission. Viability in Pink1 or 

Parkin mutants with a single copy of Drp-1 also removed is dramatically reduced [280]. 

Further evidence of Drp-1’s importance is that, like Opa1 and Mfn, it is conserved from 

yeast to mammals whereas Pink1 and Parkin are only found in metazoans. 

 

Less is known about the precise mechanics of mitochondrial fusion, but it is proposed 

that fusion with other mitochondria within the reticulum is vital for exchange of inner 

membrane space and matrix contents as well as diluting of any mtDNA mutations 
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between mitochondria [359] and this must be done by joining both the OM and IM of 

adjacent mitochondria without leakage of their contents into the cytosol. Major fusion 

events are mediated by OPA1, MFN1 and MFN2, which drive mitochondrial elongation, 

increased cristae density, and maintenance of ATP output [377;378] to sustain cell 

viability. OPA1 encodes a 96 amino acid GTPase that is associated with sequestration of 

cytochrome c in the mitochondria and regulation of mitochondrial fusion. OPA1 directs 

the fusing of the IMs. Additionally, studies have shown that not only is OPA1 required 

for IM fusion [360], but so is normal membrane potential [283;366;379]. MFN1 and 

MFN2 are outer membrane proteins that act as anti-apoptotic GTPases to protect the cell 

from apoptotic stimuli [380;381]. Similar to OPA1, MFN1 and 2 direct the fusion of the 

OMs. The mitofusins orchestrate both the tethering of adjacent mitochondria (through 

homo- or hetero-oligomers of their coiled-coiled domains) and the fusing of the 

membranes with the help of GTP hydrolysis [368;382]. Dysregulation of mitochondrial 

dynamics and inhibition of mitochondrial fusion has been documented in 

neurodegenerative diseases [383-387]; however, changes in mitochondrial dynamics have 

not been explored in granulosa cells previously.  
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Figure 8: Mitochondrial fission and fusion. 

During fission, PKA activates PINK1, which in turn phosphorylates and activates Parkin. 

Parkin then translocates to the mitochondria where it serves to mediate ubiquitination of 

the mitofusin proteins, MFN1 and MFN2, targeting them for destruction. At the same 

time, Drp-1 binds to hFis on the membrane of the mitochondria, forming helical 

structures around the mitochondria, resulting in constriction and fragmentation. During 

fusion, the outer membrane proteins MFN1 and MFN2 are required to form connection 

points between adjacent mitochondria for fusion of those membranes. Similarly, OPA1 

on the inner membrane is required for the fusion of the IM, along with normal 

mitochondrial membrane potential. These factors serve to drive elongation of 

mitochondria, increase cristae density and maintain ATP output. 

  



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

55 
 

In addition to fission and fusion, the mitochondria employ several quality control 

mechanisms for maintenance of appropriate protein folding and organelle function. First, 

the proteolytic system within the mitochondrial IM serves to degrade unfolded membrane 

proteins. Next, the lysosome within the cytosol accepts transport of vesicles containing 

proteins from the mitochondria for degradation. And finally, the proteasome is used as a 

processing point for misfolded IM and OM proteins [365]. However, these quality control 

systems are not adequate for disposal of large cargo, namely entire mitochondria that 

have been irreparably damaged and cannot fuse with the reticulum to mediate repair. To 

combat this, a specialized form of autophagy has evolved that targets damaged or 

superfluous mitochondria for autophagosomal degradation, termed mitophagy [365]. It is 

believed that the machinery chiefly responsible for fission is also central to tagging 

mitochondria for mitophagy. Specifically, Parkin, through its ubiquitination of the MFNs 

could potentially fulfill its role both as an anti-fusion protein (by inactivating the Mfn 

profusion function) and as a pro-mitophagy protein (by mediating Mfn ubiquitination 

thereby tagging the mitochondria in which the ubiquitinated Mfn resides for destruction 

by autophagosomal engulfment and degradation) [388-391]. 
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1.7 Rationale for studies completed herein 

1.7.1 Rationale 

Cigarette smoke is a documented reproductive toxicant, with women who smoke 

reporting shorter menstrual cycles, longer times to pregnancy and earlier age at 

menopause compared to non-smokers, suggesting an adverse effect of cigarette smoke on 

ovarian follicles. Despite this, the molecular mechanisms regulating its effects on the 

ovary are ill-defined. Therefore, the purpose of this thesis was to investigate the 

mechanisms underlying ovarian follicle loss following cigarette smoke exposure. The 

panoptic hypothesis for the studies contained herein was that cigarette smoke causes 

primordial follicle death via apoptosis leading to shortened reproductive lifespan. Each of 

the individual studies had its own specific hypothesis and was conducted in a sequential 

manner, each building on the outcomes of the former. The specific aims below outline in 

detail the explicit hypothesis and underlying rationale for each objective. Collectively, 

these studies enhance our understanding of the molecular mechanisms regulating 

cigarette smoke-induced ovarian follicle loss and identify a novel mechanism of ovarian 

follicle loss that may potentially be important in identifying novel therapeutic targets for 

fertility preservation in women exposed to this and other ovarian toxicants.  

1.7.2 Specific Aim 1 

The first objective of this PhD was to determine the effects of cigarette smoke exposure 

on the ovary and the length of exposure necessary to cause significant follicle loss using a 

mouse model of cigarette smoke exposure. It is well-documented that women who smoke 
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encounter difficulties achieving and maintaining pregnancy, decreased success with 

assisted reproductive technologies and experience earlier age at menopause compared to 

women who have never smoked. Additionally, studies using environmental toxicants 

have shown that ovarian follicle loss is stage-specific and time- and dose-dependent. Our 

model of cigarette smoke exposure employs a single dose; however, the duration of 

exposure is adjustable. Therefore, I hypothesized that cigarette smoke, like other 

reproductive toxicants, would cause ovarian follicle loss in a stage-specific and time-

dependent manner.  

1.7.3 Specific Aim 2 

The second objective of this PhD was to measure the effects of cigarette smoke exposure 

on changes in markers of reactive oxygen species and oxidative stress and determine the 

underlying mechanism driving cigarette smoke-induced ovarian follicle loss. Results 

from the first study made it clear that cigarette smoke exposure resulted in significant 

follicle loss. Data from other landmark studies in the field of toxicology pointed to 

apoptosis as the mechanism by which follicles are lost, preceded by increased oxidative 

stress and subsequent exhaustion of the follicle pool. Cigarette smoke contains numerous 

oxidants and free radicals, as well as chemicals capable of inducing oxidative damage. 

Furthermore, mitochondria are particularly susceptible to damage by reactive oxygen 

species and can initiate apoptosis following oxidative stress. Therefore, I hypothesized 

that exposure to cigarette smoke would result in oxidative stress coupled with decreased 
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growth support for the growing follicles and subsequent activation of the mitochondria-

mediated apoptosis pathway.  

1.7.4 Specific Aim 3 

Results from the first two studies showed that although cigarette smoke exposure causes 

significant follicle loss and oxidative stress, apoptosis is not the mechanism by which this 

loss is occurring. One finding in particular pointed to a potential mechanism by which 

ovarian follicle loss was occurring. Therefore, the third and final objective of this PhD 

was to measure the effects of cigarette smoke exposure on the expression levels of 

mitochondrial repair mechanisms and of members of a novel alternative ovarian cell 

death pathway, the autophagy pathway. I hypothesized that cigarette smoke exposure 

would result in dysregulation of mitochondrial dynamics leading to an increase in the 

expression of pro-autophagy cascade members culminating in the death of granulosa cells 

leading to ovarian follicle loss. 
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Chapter 2 

Cigarette smoke causes follicle loss in mice ovaries at concentrations 

representative of human exposure 

Mulligan Tuttle, AM., Stämpfli, M., and Foster WG. 

This article appeared in Human Reproduction, 2009; 24: 1452-59. 

2.1 Abstract 

Background: Cigarette smoke is a documented reproductive toxicant associated with 

infertility and ovarian failure. However, the underlying mechanism(s) regulating the toxic 

effects of cigarette smoke are unknown. Therefore, we tested the hypothesis that 

mainstream cigarette smoke and a cigarette smoke constituent, Benzo(a)pyrene (BaP) 

induce apoptosis in ovarian follicles. 

Methods: Mice were exposed to mainstream cigarette smoke and the ovaries were 

analysed for follicle loss and markers of apoptosis (TUNEL, CASP3, CASP8, BAX, 

BCL2, FAS and FASL). Isolated ovaries from female pups were cultured in media 

containing increasing concentrations of BaP (1-10000 ng・ml
-1

) and markers of 

apoptosis were quantified. 

Results: Cigarette smoke exposure induced a significant reduction in the number of 

primordial follicles, but not growing or antral follicles compared to controls. Mainstream 

cigarette smoke exposure had no effect on any marker of apoptosis measured. Exposure 
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of ovaries to BaP in vitro resulted in a decrease in the pro-survival marker BCL2, but no 

increase in apoptosis. 

Conclusions: Our data suggest that cigarette smoke-induced follicle loss is not mediated 

via BaP-induced apoptosis. 

2.2 Introduction 

Cigarette smoke is a documented reproductive toxicant that depletes ovarian follicle 

reserve and impairs uterine receptivity (Soares, Simon et al., 2007). Delayed conception 

(Jick and Porter, 1977; Hughes and Brennan, 1996), decreased success in assisted 

reproductive technologies (Neal, Hughes et al., 2005; Klonoff-Cohen, 2005) and 

premature ovarian failure (Baird, Hooven et al., 2005) have all been reported in female 

smokers compared to non-smokers. While fewer Canadians are smoking today, a survey 

on tobacco use in Canada revealed that 14% of households reported at least one person 

who smoked inside the home daily (Health Canada, 2006). In the Canadian Tobacco Use 

Monitoring Survey, 17% of female respondents report being current smokers, consuming 

an average of 13.8 cigarettes/day (Health Canada, 2006). What is perhaps more troubling 

is that young women, aged 15-19, in their reproductive prime is the fastest growing 

population of smokers. In south-western Ontario alone, 36.2% of teenage girls smoke 

(Cohen, Evers et al., 2003) and 33% of girls are regular smokers by the age of 15, 

according to a British study (Augood, Duckitt et al., 1998). Therefore, it is imperative 

that we determine the mechanisms of action that explain the toxic effects of cigarette 

smoke on fertility. 
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Studies conducted in our laboratory have revealed that women exposed to cigarette 

smoke had greatly decreased pregnancy rates (Neal, Hughes et al., 2005). We have also 

found that BaP is detectable in the serum and follicular fluid of women who smoke or are 

exposed to cigarette smoke and that treatment with BaP impairs cumulus expansion in 

isolated rat follicle culture experiments (Neal, Zhu et al., 2008; Neal, Zhu et al., 2007). 

 

Targeted primordial follicle destruction is considered to be the most devastating effect of 

cigarette smoking on reproductive function, the effects of which are not detected until 

years after the exposure, often after ovarian failure is well established (Cortvrindt and 

Smitz, 2002). Premature follicle loss has been identified as a possible causative factor for 

infertility. A variety of toxicants increase follicle loss and are lethal to embryos; however, 

the mechanism of action is unknown. Previous studies have revealed that of the more 

than 4000 chemicals present in cigarette smoke, levels of PAHs, especially 

Benzo(a)pyrene, are present in levels 10-fold higher in sidestream than mainstream 

smoke (Lodovici, Akpan et al., 2004). Benzo(a)pyrene (BaP), a member of the PAH 

family, a class of compounds formed by the incomplete combustion of fossil fuels and 

organic matter (Sagredo, Ovrebo et al., 2006), is a ubiquitous environmental pollutant 

that possesses potent mutagenic properties. BaP is known to cause the formation of DNA 

adducts and is primarily activated by P450 enzymes, most notably CYP1A1 and 

CYP1B1, which are regulated by the Aryl hydrocarbon receptor (AhR) pathway. Upon 

exposure to BaP, the AhR is bound by BaP and translocates to the nucleus where it binds 

the aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptionally activates 
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genes containing the xenobiotic response element (XRE) in their promoter regions 

(Sagredo, Ovrebo et al., 2006). Ovarian follicles of women exposed to cigarette smoke 

have detectable levels of BaP in the serum and follicular fluid (Neal, Zhu et al., 2007). 

The follicles are also known to express the AhR (Thompson, Bourguet et al., 2005) and 

are susceptible to BaP exposure. 

 

Numerous studies have shown that exposure to environmental toxicants (ETs) results in 

the destruction of the follicle population, frequently in a stage-specific manner 

(Desmeules and Devine, 2006; Devine, Sipes et al., 2004; Devine, Sipes et al., 2002; 

Mayer, Pearsall et al., 2002;Neal, Zhu et al., 2008;Jurisicova, Taniuchi et al., 2007b). 

BaP has been shown to selectively target and deplete the primordial follicle pool 

(Mattison, White et al., 1980; Mattison and Nightingale, 1982). Similarly, VCD, a 

metabolite of 4-vinylcyclohexene and a solvent used in industry, induces apoptosis in 

primordial and primary follicles (Devine, Sipes et al., 2004; Devine, Sipes et al., 2002), 

whereas exposure to dioxin-like PCBs results in the destruction of growing follicles 

(Muller, Hobson et al., 1978; Pocar, Brevini et al., 2006), and exposure to high 

concentrations of non-dioxin-like PCBs, namely PCB 126 and PCB 153, results in the 

increased secretion of estradiol from granulosa cells and the subsequent attenuation of 

atretic follicle elimination (Gregoraszczuk, Sowa et al., 2003). Despite the diversity of 

ETs shown to elicit adverse effects on ovarian function in animal models, few studies 

show effects in the human populations. Moreover, the decreased primary follicle numbers 

observed have been due to toxicological levels of these toxicants (Devine, Sipes et al., 
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2004; Devine, Sipes et al., 2002; Mayer, Pearsall et al., 2002; Desmeules and Devine, 

2006; Jurisicova, Taniuchi et al., 2007b; Devine, Sipes et al., 2001; Takai, Canning et al., 

2003), high dose exposures that have debatable relevance to human exposure. Therefore, 

experiments were designed to determine if cigarette smoke, at concentrations 

representative of human exposure, induces selective stage-dependent destruction of 

primordial and primary follicles in mouse ovaries. 

2.3 Materials and Methods 

2.3.1 Mice for in vivo studies 

The ovarian effects of cigarette smoke exposure was studied in female C57BL/6 mice (6-

8 weeks old) obtained from Charles River Laboratories (Montreal, PQ, Canada). Mice 

were maintained in polycarbonate cages with a 12-hour light-dark cycle and unlimited 

access to food and tap water. All animal work described in this study was conducted 

using protocols approved by the McMaster University Animal Research Ethics Board and 

follows CCAC guidelines for the use of animals in research. 

2.3.2 Cigarette Smoke Exposure 

Mice (n=5) were exposed to nose-only exposure whereby female mice were placed in 

individual exposure chambers (9 x 3 x 3 cm
3
) and were exposed to two cigarettes daily 

(1R3 reference cigarettes; Tobacco and Health Research Institute, University of 

Kentucky) as described previously (Hautamaki, Kobayashi et al., 1997). Cigarette smoke 

was delivered into the exposure chambers at a rate of 0.08 L・min
-1

, 1 puff (20 mL) per 
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52 s. In an initial 2 week lead-up period, mice were exposed to one cigarette in the first 

week and to two cigarettes in the second week. Animals were then exposed 5 days per 

week for a total of 8 weeks, including the 2 week lead-up period. To control for handling, 

groups of mice were placed in restrainers only and exposed to room air (sham exposure, 

n=5). Mice were euthanised at the end of the 8 week exposure by exsanguination and 

ovaries were collected and placed in Hanks’ Balanced Salt Solution (HBSS; Sigma 

Aldrich) prior to processing. 

2.3.3 Histology and Immunohistochemistry 

Ovaries were fixed for standard histology. Serial sections, at 4 μm thickness, were stained 

with haematoxylin and eosin and follicle counts were carried out as outlined below. To 

determine the cellular localization of the active apoptotic pathways, 

immunohistochemical staining was performed. Terminal deoxynucleotidyl transferase 

dUTP nick end labelling (TUNEL) was conducted on serial sections to determine if 

increased apoptosis occurred in treated versus control ovaries. Immunohistochemical 

staining for BAX (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), BCL2 (Santa Cruz), 

CASP3 (Santa Cruz), CASP8 (Abcam, Cambridge, MA), FAS (Santa Cruz) and FASL 

(Santa Cruz) was carried out. Briefly, following rehydration, endogenous peroxidase 

activity was quenched and antigen retrieval was carried out using citrate buffer (pH 3.0) 

at 37
o
C for 30 minutes. Sections were blocked with goat serum (for rabbit primary 

antibodies) or horse serum (for mouse primary antibodies). Avidin/biotin blocking was 

carried out prior to incubation with primary antibody (1:100) for 24h at 4
o
C. 
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Immunohistochemical targets were localized using diaminobenzidine (DAB; 0.25 

mg・mL
-1

 w/v; Sigma Aldrich) in PBS and counterstained using Harris’ haematoxylin 

(Sigma Aldrich). Sections were dehydrated and cover slips were mounted using 

Permount. Slides were examined using an Olympus IX81 microscope at 20× and 40× 

magnification and images were captured using Image Pro AMS (Media Cybernetics, 

Silver Spring, MD, USA). 

2.3.4 Ovarian volume measurements 

Ovaries were sectioned and the number of sections recorded. This number was multiplied 

by the micron thickness of the sections to determine the length of each ovary. Serial 

sections were then measured at two radius points (width and length) and the mean of each 

was determined. The mean radii were then used in calculating the volume of the ovary 

along with half the length using the formula for the volume of an ellipse: (4/3) π r1 r2 r3. 

2.3.5 Follicle counts 

Primordial, transitional, growing (primary and secondary) and antral follicles were 

identified under light microscopy using a modification of Pedersen and Peters’ 

classification system (Pedersen and Peters, 1968). Briefly, primordial follicles were 

defined as having a single squamous cell layer surrounding the oocyte; transitional 

follicles as having a single cell layer of granulosa cells surrounding the oocyte whereby 

half the cells were squamous and half were cuboidal; primary follicles contained a single 

layer of cuboidal granulosa cells surrounding the oocyte; secondary follicles were any 

oocyte surrounded by two or more complete layers of granulosa cells but lacking an 
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antrum; and antral follicles were any oocyte surrounded by two or more complete layers 

of granulosa cells and having an antrum. Only follicles with a visible nucleus were 

counted. Every tenth section was counted from serially sectioned ovaries. 

2.3.6 TUNEL staining 

Serial sections were deparaffinized in xylene and rehydrated in graded ethanol solutions 

followed by immersion in phosphate buffered saline. An ApopTag
®
 Plus Peroxidase In-

situ cell death detection kit (Chemicon International, Temecula, CA, USA) was used. 

Briefly, samples were treated with proteinase K and 3% H2O2, and labelled with 

digoxygenin in a humidified chamber for 30 minutes at room temperature. Samples were 

then incubated with POD-horseradish peroxidase, stained with DAB and counterstained 

with methyl green (0.5% w/v). Ovarian sections were examined using light microscopy 

as described above. 

2.3.7 DNA laddering 

DNA was extracted from whole ovaries, from either BaP-exposed or smoke-exposed and 

control animals, using the QIAamp
®
 DNA Mini kit (Qiagen Sciences, Maryland, USA). 

Briefly, samples were suspended in PBS, lysed in tissue lysis buffer and proteinase K and 

passed through a QIAamp
®
 Spin Column to isolate DNA from other cellular components. 

Samples were then quantified by spectrophotometry at 260 and 280 nm. DNA was 

electrophoresed on a 2% w/v agarose gel in 1X TAE buffer at 60V for 1 hour. Gels were 

examined using the Epi Chem II Darkroom (UVP Bioimaging Systems, Upland, CA, 

USA). 
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2.3.8 Western blotting  

Protein expression was measured in whole ovarian homogenates of either BaP-exposed 

ovaries or smoke-exposed and control animals. Protein was extracted from the whole 

ovaries using RIPA lysis buffer (2 mM v/v EDTA, 1% v/v Triton X-100, 0.1% w/v SDS, 

150 mM NaCl, 0.5% w/v sodium deoxycholate), with phenylmethanesulphonyl fluoride 

(PMSF; 1mM; Sigma Aldrich) and Complete Mini EDTA-free protease inhibitors (Roche 

Applied Science, Laval, PQ). For Western blots, 10-20 μg of protein was loaded. SDS-

PAGE was carried out with 12% acrylamide gels using a Mini-Protean II system 

(BioRad, Mississauga, ON) and then electro-transferred to polyvinylidene difluoride 

(PVDF) blotting membrane (BioRad Laboratories, Hercules, CA). Membranes were 

blocked overnight with 5 % w/v skim milk in TBS-T (TBS, 0.5% v/v Tween-20) at 4
o
C 

and incubated for 16 h at 4
o
C in primary antibody on a rocking platform. A loading 

control antibody was used. The following antibodies were used for this study (all rabbit 

polyclonal except BCL2, Na
+
/K

+
-ATPase and α-Tubulin): BAX (1:800; 23 kDa), BCL2 

(1:1000; mouse monoclonal; 26 kDa), Active CASP3 (1:2000; 17 kDa; Abcam), CASP3 

(1:1000; antibody reacts with both the inactive [35 kDa] and the active [17 kDa] forms), 

CASP8 (1:5,000; antibody reacts with both the inactive [55kDa] and the active [17 kDa] 

forms), FAS (1:200; 50 kDa), FASL (1:1000; antibody reacts with both the membrane 

bound form [40 kDa] and the soluble form [26 kDa]), Na
+
/K

+
-ATPase (1:5000; mouse 

monoclonal; 112 kDa; Abcam) and α-Tubulin (1:5000; mouse monoclonal; 55 kDa; 

Abcam). Following washing with TBS-T, blots were incubated with horseradish 

peroxidase-conjugated secondary anti-rabbit IgG (1:4000; Santa Cruz) or anti-mouse IgG 
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(1:4000; Amersham Biosciences, Piscataway, NJ) antibodies for 1 h at room temperature 

on a rocking platform. Blots were washed thoroughly in TBS-T, followed by TBS 

whereupon reactive protein was detected using ECL-plus chemiluminescence substrate 

(Amersham Biosciences) and Bioflex X-ray film (Clonex Corporation, Markham, ON). 

Densitometric analysis of immunoblots was performed using ImageJ 1.37v software; all 

proteins were quantified relative to the loading control. 

2.3.9 Mice for in vitro studies 

To evaluate the effect of BaP on the mechanisms underlying ovarian follicle loss, cultures 

of 4 day old ovaries were employed. Briefly, male and female C57BL/6 mice (6 weeks 

old) were used to generate a breeding colony. A male was placed in the cage with two 

females for breeding. Vaginal smears were examined daily for the presence of sperm and 

post coital day one was assigned to the day a sperm plug was detected. Pups at 4 days 

postpartum were used for the in vitro ovarian organ culture studies described below. 

2.3.10 Ovarian organ cultures  

Newborn mice were collected on post natal day 4. Mice were euthanised by cervical 

dislocation and ovaries were excised using a dissecting scope to ensure all ovarian tissue 

was collected. Ovaries were cultured in 2 mL of Waymouth medium 752/1 supplemented 

with 0.23 mM pyruvic acid, 50 mg・L
-1

 streptomycin sulphate, 75 mg・L
-1

 penicillin G, 

3 mg・mL
-1

 BSA, and 10% fetal bovine serum. Treatments with BaP (1-10,000 ng・ml
-1

 

w/v; Sigma Aldrich, Oakville, ON; n=5), vehicle control (n=5) or serum-free media (n=5) 
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were carried out on day 1 of culture for 6, 12 or 24 hours. The ovaries were incubated at 

37
o
C and infused with a 5% CO2:95% air gas mixture. The media was replaced every two 

days. Ovaries were collected at the end of day 15 and fixed for IHC, TUNEL or frozen 

for protein extraction. 

2.3.11 Statistical analysis  

All statistical analyses were performed using SigmaStat (v.3.1, SPSS, Chicago, IL). 

Results are expressed as mean ± SEM. Data were checked for normality and equal 

variance and treatment effects were tested using t-test. A p ≤ 0.05 was considered 

significant. 

2.4 Results 

2.4.1 General health of animals exposed to cigarette smoke  

Animals were assessed at necropsy for changes in general health. Treatment had no effect 

on the general health of the mice, as shown by absence of signs of lacrimation, porphyria, 

or changes in body weight. 

2.4.2 Cotinine levels in cigarette smoke exposed mice  

Mice exposed to cigarette smoke for four days had serum cotinine levels that were 220-

fold higher compared to controls (Mean control = 0.5 ± 0.1 ng/mL, mean smoke exposed 

group = 118.9 ± 15.4 ng/mL). Mice normally have a 4-5 day estrus cycle, therefore an 8 

week exposure would be the equivalent of approximately 11-14 cycles, the human 

equivalent of one year of uninterrupted menstrual cycles; in addition, the proposed dose 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

70 
 

is representative of a pack a day habit in humans, as previously determined by serum 

cotinine levels measured in mice exposed to this regimen. 

2.4.3 Effects of cigarette smoke exposure on ovarian volume  

At necropsy, gross inspection of ovaries revealed a difference in the size of cigarette 

smoke exposed ovaries compared to those from age-matched sham controls (Fig. 1a). The 

ovarian volume of exposed mice was 20% smaller compared to sham exposed mice, 

although the difference was not statistically significant (p = 0.094) (Fig. 1b). 

2.4.4 Effects of cigarette smoke exposure on ovarian follicle numbers 

Microscopic evaluation of ovarian sections revealed significant reductions in the number 

of follicles in different stages of development in ovaries of mice exposed to cigarette 

smoke for 8 weeks compared to the sham exposed mice. Specifically, smoke-exposed 

ovaries had significantly fewer follicles than sham exposed ovaries (Fig. 2a). When the 

follicle numbers were further separated into follicle stage, it was evident that the 

primordial pool of follicles was being selectively targeted for depletion (p=0.01; Fig. 2b). 

There were also significantly (p=0.04) fewer follicles in the transitional stage (the stage 

between the resting primordial pool of follicles and the primary follicles in the growing 

pool) compared to sham exposed mice (Fig. 2b). However, when normalized to the total 

number of follicles, there was a significantly (p=0.03) greater percentage (7.8%) of 

follicles in the transitional pool of follicles of cigarette smoke-exposed mice relative to 

controls (Fig. 2c). Taken together, contrary to the larger proportion of follicles in the 
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transitional pool of smoke exposed mice compared to controls, there were no significant 

differences in the number of primary, secondary or antral follicles. 

2.4.5 Cell death markers in response to cigarette smoke exposure 

Treatment with eight week cigarette smoke exposure did not result in an increase in 

apoptosis, as determined by TUNEL staining. There was no difference in the number of 

positively staining follicles between groups (Fig. 3). Positively stained follicles were 

defined as those with 10% or greater apoptotic granulosa cells. There were also no 

statistically significant differences in the apoptosis rates for each follicle type studied 

(data not shown). To further substantiate this finding, DNA gel electrophoresis was 

conducted to determine if DNA fragmentation could be detected (Fig. 4). There was no 

difference in DNA fragmentation between ovaries of the cigarette smoke and sham 

exposed mice. Protein expression was also unchanged for pro-apoptotic markers, BAX 

and Active CASP3 (Fig. 5a and 5b). Additional markers included FAS, FASL, CASP3 

and CASP8; none showed a change in expression between treated and untreated groups 

(data not shown). However, the pro-survival factor, BCL2, was significantly (p=0.04) 

decreased in smoke-exposed ovaries compared to sham controls (Fig. 5c). 

2.4.6 In vitro exposure to Benzo(a)pyrene results in decreased BCL2 expression but 

not an increase in apoptosis 

In vitro treatment of ovaries from 4 day old pups with BaP did not result in an increase in 

expression of any of the pro-apoptotic markers tested above by Western blot analysis 

(data not shown). Additionally, DNA fragmentation was not evident in the whole 
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homogenates from ovaries treated with 1,000 ng・ml
-1

 BaP for 24h (Fig. 6). However, 

treatment of ovaries with 100 ng・ml
-1

 BaP in vitro for 6 h resulted in a decrease in 

BCL2 expression (Fig. 7a) and no overall change in BAX levels (Fig. 7b). Extending the 

treatment period to 24 h of culture with increasing concentrations of BaP produced BCL2 

and BAX protein level results consistent with the 6 h cultures (data not shown). 

2.5 Discussion 

The present study was designed to test the hypothesis that cigarette smoke exposure 

decreases the resting pool of follicles via increased apoptosis involving the BAX/CASP3 

pathway. Our study demonstrates that despite significant loss of primordial follicles 

following exposure to cigarette smoke for 8 weeks, this loss is not attributable to 

apoptosis. The results of the current study contradict previous studies that have shown 

that exposure to toxicological levels of PAHs, chemicals present in cigarette smoke, 

results in follicle loss by apoptosis (Matikainen, Toshitake et al., 2002; Matikainen, Perez 

et al., 2001b; Matikainen, Perez et al., 2001a; Borman, Christian et al., 2000). Our 

findings expand the literature by showing that physiologically relevant exposure to 

cigarette smoke does not increase the rates of apoptosis in the ovary, and by suggesting 

that there is an increased rate of follicle recruitment. 

 

Serum cotinine, a metabolic breakdown product of nicotine, was significantly higher in 

mice exposed to cigarette smoke for four days, indicating that the treatment was effective 

in delivering CS into the systems of our test animals. Similarly, ovarian volume was 
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visibly decreased in exposed mice and upon measurement, was found to be 20% smaller 

than sham exposed mice. Although this measurement was not statistically significant, it is 

similar to the effects of indol-3-carbinol and tamoxifen seen by Gao and colleagues, both 

of which caused a decrease in ovarian weight gain (Gao, Petroff et al., 2002). Conversely, 

neither VCD (Flaws, Doerr et al., 1994) nor TCDD (Shirota, Kaneko et al., 2007) 

treatment result in notable changes in ovarian weight of adult ovaries. This difference 

could be due to the different test chemicals, doses or exposure times employed. 

 

Despite the decrease in ovarian size, both groups exhibited follicles at all stages of 

development and had visible degenerating corpora lutea, as seen by microscopic 

inspection, indicating that ovulation was taking place. However, when individual follicles 

were counted, there was a significant decrease in the total number of follicles present in 

ovaries exposed to cigarette smoke. Previous work has attributed toxicant-induced follicle 

loss to apoptosis (Jurisicova, Taniuchi et al., 2007a; Matikainen, Perez et al., 2001a; 

Matikainen, Toshitake et al., 2002; Robles, Morita et al., 2000; Kim, Chung et al., 2008). 

In the study conditions explored here, however, no apparent increase in apoptosis was 

detected. TUNEL assays revealed that there was an equivalent amount of apoptosis 

occurring in smoke-exposed ovaries as was taking place in sham ovaries. In addition, 

electrophoresis gels run to examine the extent of DNA laddering failed to show an 

increase in apoptosis in any of the treatments administered, in vivo or in vitro. Finally, 

Western blot analysis of the expression of proteins previously shown to be up-regulated 

in ovaries treated with toxicants (active CASP3 (Devine, Sipes et al., 2002; Desmeules 
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and Devine, 2006), BAX, Caspase 2, CASP3, (Takai, Canning et al., 2003) and BCL2 

(Flaws, Marion et al., 2006)) were unaffected by treatments in the current study. Our 

findings suggest that a decreased growth support leading to an abbreviated estrous cycle 

and thus an enhanced rate of follicle recruitment may be the underlying cause of follicle 

demise rather than apoptosis. In previous experiments carried out in our laboratory, 

inclusion of BaP in the culture medium of in vitro isolated rat follicle culture resulted in 

the inhibition of follicle growth. BaP at 1.5 ng・ml
-1

, a concentration representative of 

levels measured in human ovarian follicular fluid, resulted in the failure of cumulus cells 

to expand compared to controls (Neal, Zhu et al., 2007). Similarly, treatment of isolated 

follicles in vitro with BaP resulted in a concentration-dependent decrease in estradiol (E2) 

concentrations in spent media. Disruption of E2 production may be responsible for the 

lack of follicle growth contributing to a shorter estrous cycle, allowing more cycles/year 

thereby aging these ovaries faster than sham ovaries. This hypothesis is supported by the 

lack of an increase in the number of growing follicles. Further support for this hypothesis 

is derived from epidemiological studies in women who smoke whose menstrual cycles 

are also shortened (Windham, Elkin et al., 1999). 

 

Contrary to the in vivo studies, in vitro dosing of 4 day old ovaries resulted in a change in 

BCL2 expression. When ovaries were incubated for 6-24h in media containing 100 

ng・ml
-1

 of BaP, expression of BCL2 was decreased, although BAX expression went 

unchanged. Despite the maintenance of BAX expression at control ovary levels, a shift in 

the BAX:BCL2 ratio was seen, resulting in an environment favouring apoptosis. This 
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change in the apoptotic ratio may account for some of the loss of these follicles in vitro, 

but it appears to be a concentration-dependent phenomenon and was only detectable at 

concentrations above 100 ng.ml
-1

, a concentration we believe to be much greater than 

those achieved in vivo. The concentration of BaP in the serum and follicular fluid of 

women who smoke (1.32 +/- 0.68 ng・ml
-1

) or are exposed to second-hand smoke (0.05 

+/- 0.01 ng・ml
-1

) is significantly lower than the concentrations at which we saw effects 

on follicle apoptosis (100 ng・ml
-1

) in this experiment. Furthermore, we have shown that 

concentrations equivalent to the levels measured in human serum and follicular fluid are 

sufficient to impair follicle expansion and survival in individual follicle culture 

experiments (Neal, Zhu et al., 2007; Neal, Zhu et al., 2008). However, it is likely that the 

difference in dose required to detect a response is related to a number of factors. First, 

individual follicles in culture are surrounded by a thecal cell layer only, whereas follicles 

in intact ovaries used in our experiments here are surrounded by stroma and other 

follicles. Additionally, the intact ovaries have a tunica surrounding the ovary, a tough 

membrane that likely obstructs BaP in the media from reaching the follicles within the 

ovary. Hence, the actual concentration of BaP capable of exerting an effect on the 

follicles within the intact ovary may be much lower than 100 ng・ml
-1

. Follicular fluid 

measurements of BaP were not conducted in this study, and as such, this hypothesis 

cannot be tested at present. Future studies will include measurement of BaP in the 

follicular fluid of intact ovaries cultured in BaP-containing media. To determine if BaP is 

reaching the ovary, future work conducted will include serum measures of BaP and 

testing for the formation of DNA adducts in the ovaries of exposed mice. 
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The findings of our study show that exposure to cigarette smoke, at exposure 

concentrations representative of human exposure, results in significant primordial follicle 

loss. This loss, however, does not appear to be due to apoptosis, as has been shown to be 

the case when toxicological levels were employed. Our data provide further support to a 

growing body of evidence that cigarette smoke is a reproductive toxicant that results in 

premature ovarian failure. 

2.6 Acknowledgements 

Funding support for this study was provided by CIHR operating grant MOP-81178 to 

WGF. The CIHR and the Ontario Women’s Health Council provided salary support for 

Dr. Foster, and Ms. Anne Mulligan Tuttle is the recipient of a CIHR Strategic Training 

Program in Tobacco Research (STPTR) scholarship and an Ashley Studentship from the 

Tobacco Council of Canada. 

  



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

77 
 

2.7 Reference List 

1. Augood C, Duckitt K, and Templeton AA (1998) Smoking and female infertility: 

a systematic review and meta-analysis. Hum Reprod, 13, 1532-1539. 

2. Baird WM, Hooven LA, and Mahadevan B (2005) Carcinogenic polycyclic 

aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol 

Mutagen, 45, 106-114. 

3. Borman SM, Christian PJ, Sipes IG, and Hoyer PB (2000) Ovotoxicity in female 

Fischer rats and B6 mice induced by low-dose exposure to three polycyclic 

aromatic hydrocarbons: comparison through calculation of an ovotoxic index. 

Toxicol Appl Pharmacol, 167, 191-198. 

4. Cohen B, Evers S, Manske S, Bercovitz K, and Edward HG (2003) Smoking, 

physical activity and breakfast consumption among secondary school students in a 

southwestern Ontario community. Can J Public Health, 94, 41-44. 

5. Cortvrindt RG and Smitz JE (2002) Follicle culture in reproductive toxicology: a 

tool for in-vitro testing of ovarian function? Hum Reprod Update, 8, 243-254. 

6. Desmeules P and Devine PJ (2006) Characterizing the ovotoxicity of 

cyclophosphamide metabolites on cultured mouse ovaries. Toxicol Sci, 90, 500-

509. 

7. Devine PJ, Sipes IG, and Hoyer PB (2004) Initiation of delayed ovotoxicity by in 

vitro and in vivo exposures of rat ovaries to 4-vinylcyclohexene diepoxide. 

Reprod Toxicol, 19, 71-77. 

8. Devine PJ, Sipes IG, and Hoyer PB (2001) Effect of 4-vinylcyclohexene 

diepoxide dosing in rats on GSH levels in liver and ovaries. Toxicol Sci, 62, 315-

320. 

9. Devine PJ, Sipes IG, Skinner MK, and Hoyer PB (2002) Characterization of a rat 

in vitro ovarian culture system to study the ovarian toxicant 4-vinylcyclohexene 

diepoxide. Toxicol Appl Pharmacol, 184, 107-115. 

10. Flaws JA, Doerr JK, Sipes IG, and Hoyer PB (1994) Destruction of preantral 

follicles in adult rats by 4-vinyl-1-cyclohexene diepoxide. Reprod Toxicol, 8, 

509-514. 

11. Flaws J, Marion S, Miller K, Christian P, Babus J, and Hoyer P (2006) Effect of 

bcl-2 overexpression in mice on ovotoxicity caused by 4-vinylcyclohexene. 

Toxicol Appl Pharmacol, 215, 1, 51-56. 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

78 
 

12. Gao X, Petroff B, Oluola O, Georg G, Terranova P, and Rozman K (2002) 

Endocrine disruption by indole-3-carbinol and tamoxifen: Blockage of ovulation. 

Toxicol Appl Pharmacol, 183, 3, 179-188. 

13. Gregoraszczuk EL, Sowa M, Kajta M, Ptak A, and Wojtowicz A (2003) Effect of 

PCB 126 and PCB 153 on incidence of apoptosis in cultured theca and granulosa 

cells collected from small, medium and large preovulatory follicles. Reprod 

Toxicol, 17, 465-471. 

14. Hautamaki RD, Kobayashi DK, Senior RM, and Shapiro SD (1997) Requirement 

for macrophage elastase for cigarette smoke-induced emphysema in mice. 

Science, 277, 2002-2004. 

15. Health Canada (2006) Canadian Tobacco Use Monitoring Survey. 

16. Hughes EG and Brennan BG (1996) Does cigarette smoking impair natural or 

assisted fecundity? Fertil Steril, 66, 679-689. 

17. Jick H and Porter J (1977) Relation between smoking and age of natural 

menopause. Report from the Boston Collaborative Drug Surveillance Program, 

Boston University Medical Center. Lancet, 1, 1354-1355. 

18. Jurisicova A, Taniuchi A, Li H, Shang Y, Antenos M, Detmar J, Xu J, Matikainen 

T, Benito HA, Nunez G et al (2007) Maternal exposure to polycyclic aromatic 

hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J Clin 

Invest, 117, 3971-3978. 

19. Kim J, Chung J-Y, Park J-E, Lee S, Kim Y-J, Cha M-S, Han M, Lee H-J, Yoo Y, 

and Kim J-M (2008) Benzo[a]pyrene induces apoptosis in RL95-2 human 

endometrial cancer cells by cytochrome P450 1A1 activation Endocrinology, 148, 

10, 5112-22. 

20. Klonoff-Cohen H (2005) Female and male lifestyle habits and IVF: what is 

known and unknown. Hum Reprod Update, 11, 179-203. 

21. Lodovici M, Akpan V, Evangelisti C, and Dolara P (2004) Sidestream tobacco 

smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J 

Appl Toxicol, 24, 4, 277-281. 

22. Matikainen T, Perez G, Jurisicova A, Pru J, Schlezinger J, Ryu H-Y, Laine J, 

Sakai T, Korsmeyer S, Casper R et al (2001a) Aromatic hydrocarbon receptor-

driven Bax gene expression is required for premature ovarian failure caused by 

biohazardous environmental chemicals. Nat Genet, 28, 4, 355-360. 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

79 
 

23. Matikainen T, Perez G, Zheng T, Kluzak T, Rueda B, Flavells R, and Tilly J 

(2001b) Caspase-3 gene knockout defines cell lineage specificity for programmed 

cell death signaling in the ovary. Endocrinology, 142, 6, 2468-2480. 

24. Matikainen T, Toshitake M, Morita Y, Perez G, Korsmeyer S, Sherr D, and Tilly 

J (2002) Ligand activation of the aromatic hydrocarbon receptor transcription 

factor drives Bax-dependent apoptosis in developing fetal ovarian germ cells. 

Endocrinology, 143, 2, 615-620. 

25. Mattison DR and Nightingale MS (1982) Oocyte destruction by polycyclic 

aromatic hydrocarbons is not linked to the inducibility of ovarian aryl 

hydrocarbon (benzo(a)pyrene) hydroxylase activity in (DBA/2N X C57BL/6N) 

F1 X DBA/2N backcross mice. Pediatr Pharmacol (New York), 2, 1, 11-21. 

26. Mattison DR, White NB, and Nightingale MR (1980) The effect of 

benzo(a)pyrene on fertility, primordial oocyte number, and ovarian response to 

pregnant mare's serum  gonadotropin. Pediatr Pharmacol (New York), 1, 2, 143-

151. 

27. Mayer LP, Pearsall NA, Christian PJ, Devine PJ, Payne CM, McCuskey MK, 

Marion SL, Sipes IG, and Hoyer PB (2002) Long-term effects of ovarian 

follicular depletion in rats by 4-vinylcyclohexene diepoxide. Reprod Toxicol, 16, 

775-781. 

28. Muller WF, Hobson W, Fuller GB, Knauf W, Coulston F, and Korte F (1978) 

Endocrine effects of chlorinated hydrocarbons in rhesus monkeys. Ecotoxicol 

Environ Saf, 2, 161-172. 

29. Neal MS, Hughes EG, Holloway AC, and Foster WG (2005) Sidestream smoking 

is equally as damaging as mainstream smoking on IVF outcomes. Hum Reprod, 

20, 2531-2535. 

30. Neal MS, Zhu J, and Foster WG (2008) Quantification of benzo[a]pyrene and 

other PAHs in the serum and follicular fluid of smokers versus non-smokers. 

Reprod Toxicol, 25, 100-106. 

31. Neal MS, Zhu J, Holloway AC, and Foster WG (2007) Follicle growth is 

inhibited by benzo-[a]-pyrene, at concentrations representative of human 

exposure, in an isolated rat follicle culture assay. Hum Reprod, 22, 961-967. 

32. Pedersen T and Peters H (1968) Proposal for a classification of oocytes and 

follicles in the mouse ovary. J Reprod Fertil, 17, 555-557. 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

80 
 

33. Pocar P, Brevini TA, Antonini S, and Gandolfi F (2006) Cellular and molecular 

mechanisms mediating the effect of polychlorinated biphenyls on oocyte in vitro 

maturation. Reprod Toxicol, 22, 242-249. 

34. Robles R, Morita Y, Mann K, Perez G, Yang S, Matikainen T, Sherr D, and Tilly 

J (2000) The aryl hydrocarbon receptor, a basic helix-loop-helix transcription 

factor of the PAS gene family, is required for normal ovarian germ cell dynamics 

in the mouse. Endocrinology, 141, 1, 450-453. 

35. Sagredo C, Ovrebo S, Haugen A, Fujii-Kuriyama Y, Baera R, Botnen I, and 

Mollerup S (2006) Quantitative analysis of benzo[a]pyrene biotransformation and 

adduct formation in Ahr knockout mice. Toxicol Lett, 167, 3, 173-182. 

36. Shirota M, Kaneko T, Okuyama M, Sakurada Y, Shirota K, and Matsuki Y (2007) 

Internal dose-effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in 

gonadotropin-primed weanling rat model. Arch Toxicol, 81, 261-269. 

37. Soares SR, Simon C, Remohi J, and Pellicer A (2007) Cigarette smoking affects 

uterine receptiveness. Hum Reprod, 22, 543-547. 

38. Takai Y, Canning J, Perez GI, Pru JK, Schlezinger JJ, Sherr DH, Kolesnick RN, 

Yuan J, Flavell RA, Korsmeyer SJ et al (2003) Bax, caspase-2, and caspase-3 are 

required for ovarian follicle loss caused by 4-vinylcyclohexene diepoxide 

exposure of female mice in vivo. Endocrinology, 144, 69-74. 

39. Thompson KE, Bourguet SM, Christian PJ, Benedict JC, Sipes IG, Flaws JA, and 

Hoyer PB (2005) Differences between rats and mice in the involvement of the 

aryl hydrocarbon receptor in 4-vinylcyclohexene diepoxide-induced ovarian 

follicle loss. Toxicol Appl Pharmacol, 203, 114-123. 

40. Windham GC, Elkin EP, Swan SH, Waller KO, and Fenster L (1999) Cigarette 

smoking and effects on menstrual function. Obstet Gynecol, 93, 59-65. 

  



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

81 
 

2.8 Figures 

 

 
  

A 

 

 

 

 

 

 

 

 

 

 

 

B 

O
v
a
ri
a
n

 v
o
lu

m
e

0

1e+7

2e+7

3e+7

4e+7

5e+7

6e+7

7e+7

Sham Smoke  

Sham SmokeSham Smoke



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

82 
 

 

 

 

 

 

 

 

 

Figure 1.  

Representative photomicrographs of H&E stained ovaries showing that (A) follicles at all 

stages of development were present in ovaries from mice with either sham (n=5) or 

cigarette smoke exposure (n=5). (B) Ovarian volume in mice exposed to cigarette smoke 

was 20% smaller compared to sham-exposed mice although statistical significance could 

not be shown. 
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Figure 2.  

The number of follicles was determined in serial sections of ovaries from sham (n=5) and 

cigarette smoke-exposed (n=5) mice. (A) The total follicle number in ovaries from 

smoke-exposed mice was significantly (* p < 0.016) lower than in sham-exposed mice. 

(B) Ovaries from smoke-exposed mice had significantly fewer primordial (* p = 0.01) 

and transitional (** p = 0.04) follicles than the sham exposure group. (C) Ovaries from 

smoke-exposed mice had a significantly (* p = 0.03) higher percentage of follicles in 

transition between the resting and growing pools than ovaries from the sham exposure 

group. Overall treatment effects were determined by t-test.  
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Figure 3.  

Representative photomicrographs of TUNEL stained ovarian sections for apoptosis. 

There was no difference in the number of apoptotic follicles in ovaries from the (A) sham 

(n=5) compared to (B) smoke-exposed (n=5) mice. 
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Figure 4.  

There was no detectable increase in apoptosis as determined by DNA laddering in ovaries 

from smoke-exposed (n=5) compared to ovaries from sham-exposed mice (n=5). Marker 

sizes are depicted in base pairs. 
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Figure 5.  

Western blot analysis of pro-apoptotic and pro-survival proteins was performed on whole 

ovary homogenates from sham (n=5) and smoke-exposed mice (n=5). Expression of (A) 

BAX and (B) Active CASP3 were unchanged in eight week exposed mice; however, (C) 

BCL2 levels were significantly decreased in exposed mice compared to age-matched 

controls (p = 0.04). 
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Figure 6.  
Representative gel of DNA laddering for apoptosis in in vitro studies. There was no 

change in apoptosis in BaP-treated ovaries (1000 ng・ml
-1

 for 24h; n=5)) compared to 

control ovaries (n=5). Marker sizes are depicted in base pairs. 
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Figure 7.  

Representative immunoblots prepared from homogenates of four day old ovaries 

demonstrating an increase in (a) BCL2 protein levels and (b) no consistent change in 

BAX protein levels following treatment with increasing concentrations of BaP (lanes 1- 6 

are 0, 1, 10, 100, 1,000 and 10,000 ng BaP/ml) for 6 h. Densitometric analysis of 

immunoblots was performed and BCL2 and BAX protein expression levels were 

quantified relative to the β-actin loading control with the corresponding results shown in 

the accompanying graphs. 
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Chapter 3 

Cigarette Smoke Exposure Leads to Follicle Loss via an Alternative 

Ovarian Cell Death Pathway in a Mouse Model 

Gannon, AM., Stämpfli, MR., and Foster, WG. 

 

This article appeared in Toxicological Sciences, 2012; 125(1): 274-84. 

3.1 Abstract 

Cigarette smoking among reproductive-aged women is increasing worldwide. Cigarette 

smoking is a lifestyle behavior associated with important adverse health effects including 

subfertility and premature ovarian failure. We previously demonstrated that cigarette 

smoke (CS) exposure in mice decreases the primordial follicle pool; however, the 

mechanism of action is largely unknown. Therefore, the present study was designed to 

elucidate the mechanisms underlying CS exposure–induced ovarian follicle loss. CS 

exposure induced a significant decrease in the relative ovarian weight and the number of 

primordial and growing follicles. Oxidative stress, as shown by increased Hsp25 and 

decreased superoxide dismutase 2 protein expression, was found in mice exposed to CS 

for 8 weeks. Exposure decreased BCL2 but failed to induce apoptosis. An increased 

number of autophagosomes in granulosa cells of ovarian follicles together with increased 

expression of Beclin 1 and microtubule-associated protein light chain 3, key regulatory 

proteins in the autophagy (Atg) pathway, was found in CS exposed mice compared with 

the control group. Taken together, our results suggest that CS exposure does not induce 

apoptosis but rather activates the Atg pathway ultimately leading to ovarian follicle loss. 
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We further postulate that Atg is a novel mechanism of toxicant-induced ovarian follicle 

loss. 

3.2 Introduction 

Of the many environmental toxicants and lifestyle factors known to affect fertility and 

ovarian function, cigarette smoking is potentially the most clinically relevant and 

preventable toxic exposure in women (Dechanet et al., 2010; Sadeu et al., 2010). 

Although cigarette smoking is declining in men, the number of women and teenage girls 

who smoke is increasing, becoming a global health issue (World Health Organization, 

2007, 2008). Approximately 250 million women worldwide are daily smokers (World 

Health Organization, 2008) and 30% of reproductive age women in the United States are 

smokers (Woodruff et al., 2011), whereas in Canada, approximately 17% of women are 

current smokers, smoking an average of 14.0 cigarettes/day (Health Canada, 2003, 2009). 

Moreover, a survey of high school students in Southwestern Ontario revealed that 36.2% 

of teenage girls smoke (Cohen et al., 2003). Regrettably, most women remain unaware of 

the adverse effects of cigarette smoking on fertility (Roth and Taylor, 2001). Our prior 

studies revealed that women exposed to cigarette smoke (CS) had decreased implantation 

(12–12.6% for those exposed to CS vs. 25% for nonsmokers) and pregnancy rates (19.4–

20% for those exposed to CS vs. 48.3% for nonsmokers) (Neal et al., 2005). Longer time-

to-pregnancy, reduced in vitro fertilization success rates, altered ovarian steroidogenesis, 

depleted ovarian reserves, impaired oocyte function and viability, and earlier mean age of 

menopause have all been documented in women who smoke versus non-smokers (Baird 
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et al., 2005; Crha et al., 2001; Curtis et al., 1997; El-Nemr et al., 1998; Freour et al., 

2008; Fuentes et al., 2010; Hughes and Brennan, 1996; Hughes et al., 1994; Jick and 

Porter, 1977; Neal et al., 2005; Rosevear et al., 1992; Rowlands et al., 1992; Sharara et 

al., 1994; Sterzik et al., 1996; Van Voorhis et al., 1996; Waylen et al., 2009; Weigert et 

al., 1999; Zenzes et al., 1995; Zenzes et al., 1997; Zenzes, 2000), each of which has 

enormous health, emotional, and financial consequences. Although it is well documented 

that cigarette smoking depletes the ovarian follicle reserve in women (Soares et al., 2007) 

and mice (Tuttle et al., 2009), the mechanism underlying ovarian follicle loss in women 

who smoke remains unknown.  

 

The ovary is a dynamic organ whose main features include steroidogenesis and cyclical 

recruitment of a cohort of follicles from the primordial pool of follicles (Knight and 

Glister, 2006; Themmen, 2005). During fetal development (in humans), or shortly after 

birth (in mice), the total lifetime supply of primordial follicles is established. The 

primordial follicle pool is gradually depleted through a repetitive process of recruitment, 

selection of a dominant follicle, and ovulation (Hillier, 2001; Knight and Glister, 2006). 

Nondominant follicles are lost through atresia, which is thought to be driven by apoptosis 

(Flaws et al., 2001; Tilly, 1998). This process is tightly regulated and can easily be 

disrupted by lifestyle and environmental toxicants. 

 

Animal studies have shown that exposure to relatively high concentrations of 

environmental toxicants, compared with human exposure, results in the destruction of the 
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follicle population, often in a stage-specific manner (Detmar et al., 2008; Devine et al., 

2002; Devine et al., 2004; Jurisicova et al., 2007; Neal et al., 2008; van Beek et al., 

2007). Although some environmental toxicants disrupt intra-ovarian signaling, others 

increase follicle atresia, thereby depleting the follicle pool prematurely. Animal models 

have confirmed that environmental toxicants destroy follicles in a stage-specific manner. 

Exposure to polychlorinated biphenyls results in the destruction of growing follicles 

(Muller et al., 1978; Pocar et al., 2006), whereas 4-vinylcyclohexene diepoxide, a 

metabolite of 4-vinylcyclohexene and a solvent used in industry, induces apoptosis in 

primordial and primary follicles (Devine et al., 2002; Devine et al., 2004). 

Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) and constituent of CS, 

also depletes the primordial follicle pool (Mattison et al., 1980; Mattison and Nightingale, 

1982). Primordial follicle destruction is considered to be the most disastrous, as the 

effects of it are not detected until years after the exposure, often after ovarian failure is 

well established (Cortvrindt and Smitz, 2002). However, the follicle destruction seen in 

these animal studies is invariably due to toxicological concentrations (Desmeules and 

Devine, 2006; Devine et al., 2001, 2002, 2004; Jurisicova et al., 2007; Mayer et al., 2002; 

Takai et al., 2003) that are not representative of human exposure. In earlier animal 

studies, BaP exposure was found to selectively destroy the follicles in the resting pool 

(Mattison and Thorgeirsson, 1978) leading to speculation that a similar exhaustion of the 

resting pool was occurring in women who smoke, culminating in premature menopause 

(Mattison and Thorgeirsson, 1978; Westhoff et al., 2000). Moreover, a prior study also 

demonstrated that a relatively high concentration of BaP (1 mg/Kg/week for 6 weeks) 
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increased the expression of the harakiri, a BCL2 interacting protein (Hrk) (Jurisicova et 

al., 2007). However, we note that aryl hydrocarbon receptor (AhR) ligand–induced 

apoptosis may be both tissue dependent and concentration dependent. Unlike the results 

above, treatment of pregnant mice with high concentrations of BaP and 7,12-

dimethylbenz[a]anthracene (DMBA) (1 mg/Kg each/week for 6 weeks) inhibited 

apoptosis in the murine placenta (Detmar et al., 2008). In this study, treatments increased 

FASL and XIAP expression but decreased BAX and apoptosis in the placenta, suggesting 

tissue specificity. Moreover, developmental exposure to the AhR ligand 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) is associated with vaginal dysmorphogenesis in 

mice through attenuated apoptosis (Gray and Ostby, 1995). 

 

Therefore, we postulate that AhR-mediated effects on apoptosis are also target tissue 

dependent. In our studies, we found a significant loss of follicles at all stages of 

development in mice exposed to CS but exposure did not activate either the intrinsic or 

the extrinsic apoptosis pathways as shown by absence of an effect on terminal 

deoxynucleotide transferase dUTP nick end labeling (TUNEL), DNA laddering, and 

activated CASP3 or CASP8 and CASP9 expression versus controls (Tuttle et al., 2009). 

Our results diverge from those of prior studies (Jurisicova et al., 2007; Matikainen et al., 

2001) using profoundly higher concentrations of BaP than are found in CS. In addition, 

treatment of 4-day-old mouse ovaries in vitro with BaP decreased BCL2 protein 

expression while BAX remained unchanged, suggesting a concentration-dependent effect 

of CS and BaP exposure on ovarian follicle loss and apoptosis (Tuttle et al., 2009). We 
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suggest that prior studies showing evidence of PAH-induced follicle destruction via BAX 

activation are phenomenological and not relevant to human health because of the high 

concentrations of BaP and DMBA used. Finally, mice lacking both the proapoptosis 

members Bax and the Bak are completely resistant to apoptosis; yet cell death proceeded 

normally with the appearance of autophagosomes and autolysosomes (Shimizu et al., 

2004). Nonapoptotic cell death in these mice was dependent on the autophagic proteins 

ATG5 and BECN1. Disassociation of BECN1 from BCL2/BCL2L1 in the endoplasmic 

reticulum (ER) but not the mitochondria is a key driver of autophagy (Atg) (Maiuri et al., 

2010). 

 

Atg is an evolutionarily conserved process in eukaryotes, which translates to ‘‘self-

eating,’’ and involves the cytoplasmic sequestering of cellular debris and organelles 

inside a double-membrane vesicle, termed an autophagosome, which is delivered to the 

lysosome for degradation (Mizushima and Levine, 2010; Szegezdi et al., 2009; Yang and 

Klionsky, 2010). Atg is a fundamental cellular process that removes long-lived proteins 

and damaged organelles (mitochondria and ER) through lysosomal degradation. Key 

regulatory steps involve induction of Atg via nutrient starvation, genotoxic agents, or 

oxidative stress (Bursch, 2001; Vilser et al., 2010), which leads to activation of Beclin 1 

and membrane nucleation. Beclin 1 is part of the class III phosphoinositide 3-kinase 

complex and is crucial for Atg but is inhibited by BCL2 (Liang et al., 1999, 2001; 

Pattingre et al., 2005). During the autophagic process, microtubule-associated protein 

light chain 3 (LC3), the mammalian homologue of yeast Atg8, is processed from LC3-I 
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to LC3-II and is involved in the sequestration of organelles in the autophagosome and can 

be found in the membrane of the autophagosome. Mechanisms regulating cross talk 

between the apoptosis and Atg pathways are unclear; however, we note that BCL2 is at 

the interface between both pathways and emerging studies have identified Atg as an 

important alternative pathway of cell death in mammalian cells including human and 

rodent granulosa cells (Choi et al., 2010; Gawriluk et al., 2011; Vilser et al., 2010). 

However, the relevance of Atg to granulosa cell death and toxicant-induced changes in 

ovarian function are completely unexplored. Hence, we hypothesized that CS exposure 

would induce ovarian follicle loss via Atg rather than apoptosis. Therefore, the present 

study was designed to elucidate the mechanism(s) underlying follicle loss following CS 

exposure. The exposure protocol used in our prior study (Tuttle et al., 2009) delivers a 

dose of CS that results in a serum cotinine (the metabolite of nicotine) concentration that 

is representative of that seen in women who smoke a pack of cigarettes per day. 

 

3.3 Materials and Methods  

3.3.1 Ethics statement  

All animal work described in this study was conducted using protocols approved by the 

McMaster University Animal Research Ethics Board and is in accordance with the 

Canadian Council for Animal Care guidelines for the use of animals in research. 
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3.3.2 Animals 

The ovarian effects of CS exposure were studied in female C57BL/6 mice (8 weeks old at 

the start of exposure) obtained from Charles River Laboratories (Montreal, PQ, Canada). 

Mice were maintained in groups of three to five mice per cage in polycarbonate cages at 

22 ± 2
o
C and 50 ± 10% relative humidity on a 12-h light-dark cycle and were provided 

with food (LabDiet; PMI Nutrition International, Saint Louis, MO) and tap water ad 

libitum throughout the experiment. 

3.3.3 CS exposure  

Mice were exposed to CS twice daily, 5 days/week for 4, 8, 9, or 17 weeks using a 

whole-body smoke exposure system (SIU-48; Promech Lab AB, Vintrie, Sweden). 

Details of the exposure protocol have been described previously (Botelho et al., 2010) 

and in Supplementary materials and methods. 

3.3.4 Histology and follicle counts 

One ovary from each mouse in each treatment group was collected for histology. Ovaries 

were processed as described in Supplementary materials and methods. Follicles were 

identified and classified under light microscopy using a modification of Pedersen and 

Peters’ classification system (Pedersen and Peters, 1968) and as described in 

Supplementary materials and methods. 
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3.3.5 Immunohistochemistry 

Immunohistochemical staining was conducted using sections from the same ovaries as 

above but not needed for follicle counts as described previously (Tuttle et al., 2009) and 

in Supplementary materials and methods. 

3.3.6 TUNEL labeling 

TUNEL was conducted using sections from the same ovaries as above but not needed for 

either follicle counts or immunohistochemistry. Apoptotic cells in the ovary were labeled 

using the ApopTag Fluorescein In Situ Apoptosis Detection Kit (Chemicon International 

S7110, Temecula, CA) as per manufacturer’s instructions and outlined briefly in 

Supplementary materials and methods. 

3.3.7 DNA damage 

DNA was extracted from smoke-exposed and control samples using a QIAmp DNA Mini 

Kit (Qiagen, Mississauga, ON) and quantified using a spectrophotometer. For procedure 

on conversion of DNA to single-stranded DNA, see Supplementary materials and 

methods. 

3.3.8 Protein carbonyl ELISA 

Samples (10 µg/ml) in 1× PBS were assayed in triplicate using the OxiSelect Protein 

Carbonyl ELISA Kit (Cell Biolabs) as per manufacturer’s instructions. See 

Supplementary materials and methods. 
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3.3.9 Glutathione assay 

Ovaries from smoke-exposed and control mice were prepared for use with the 

Glutathione Assay Kit (Cayman Chemical Company, Ann Arbor, MI) as described in 

Supplementary materials and methods. 

3.3.10 Western blot 

Protein expression was measured in whole-ovarian homogenates of smoke-exposed and 

control animals. Details of the protocol have been previously described (Tuttle et al., 

2009) and are summarized in Supplementary materials and methods. Antibodies used for 

this study are summarized in Supplementary materials and methods. 

3.3.11 Electron microscopy 

Ovaries were fixed for transmission electron microscopy (TEM) and summarized in 

Supplementary materials and methods. Autophagosomes in granulosa cells were counted 

in seven fields of view per ovary at 7500× magnification and the average number of 

autophagosomes per female per treatment group was calculated. Only granulosa cells 

with a visible nucleus were counted. Autophagosomes were counted independently by 

two observers blinded to treatment. 

3.3.12 Quantitative real-time PCR 

Total RNA was isolated from ovaries using a Qiagen RNeasy mini kit with on-column 

DNase digestion (Qiagen) as per manufacturer’s instructions. Specifics of the procedure 

are summarized in Supplementary materials and methods and primer sequences can be 
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found in Supplementary table 1. Analysis of gene expression changes were calculated 

according to the method of Livak and Schmittgen (2001) using the 2
-∆∆Ct

 method. 

3.3.13 Statistical analysis 

All statistical analyses were performed using Sigma-Stat (v.3.1, SPSS, Chicago, IL), see 

Supplementary materials and methods. 

3.4 Results 

3.4.1 General Health of Animals Exposed to CS 

Treatment with CS had no effect on the general health of the mice, as shown by absence 

of stereotypical behaviors, hunched back and signs of lacrimation, porphyria, or ruffled 

coat. CS exposure for 8 weeks resulted in whole body and relative ovarian weights that 

were significantly lower compared with sham controls (Supplementary fig. 1 A–D). CS 

exposure also resulted in significant reductions in the number of follicles in different 

stages of development in ovaries of mice exposed to CS for 4, 8, 9, and 17 weeks 

compared with the sham exposed mice (Supplementary fig. 1 E–H and fig. 2). 

 

Based on the above data, it was decided that an exposure of 8 weeks was sufficient to 

induce significant total and primordial follicle loss. Subsequently, all other experiments 

were performed on ovaries from mice exposed for this time period. 
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3.4.2 CS Exposure Results in a Stress Response and in Reactive Oxygen Species 

Damage 

Whole ovary homogenates from mice exposed to CS for 8 weeks were examined to 

determine if there was a stress response in these animals compared with sham controls. 

Expression of the small heat shock protein Hsp25 was significantly induced (p < 0.001) 

in the ovaries of mice exposed to CS (Fig. 1A). 

 

Protein expression of intracellular copper, zinc superoxide dismutase (SOD) 1, and 

mitochondrial manganese (Mn) SOD2 were measured. Although there was no significant 

change in SOD1 expression (Fig. 1B), expression of SOD2 was significantly lower (p < 

0.001) in the ovaries of smoke-exposed mice (Fig. 1C), indicating a decreased ability to 

deal with reactive oxygen species (ROS). Treatment had no effect on 8-

hydroxydeoxyguanosine (8-OHdG) (Fig. 1D), protein carbonyl formation (Fig. 1E), or 

total glutathione levels (Fig. 1F). 

3.4.3 CS Exposure Does Not Affect the Apoptotic Response in the Ovary 

There was no difference in the number of TUNEL-positive cells between the two groups 

(Figs. 2A and B). Immunohistochemical staining of sham and smoke-exposed ovaries 

using antibodies directed against BCL2 and BAX showed a marked decrease in the 

expression of the antiapoptotic BCL2 in exposed ovaries with no change in the 

expression of the proapoptotic BAX (Fig. 2C), which was quantified and confirmed by 

Western blot (Fig. 2D). Despite a significant decrease in the expression of BCL2, there 

was no increase in the expression of BAX (Fig. 2E), a proapoptotic protein, which is 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

107 
 

directly regulated by BCL2. Although the BAX:BCL2 ratio was shifted in favor of 

apoptosis (Fig. 2F), there was no other evidence of increased apoptosis. 

3.4.4 CS Exposure Induces Atg 

Ovaries from sham and smoke-exposed mice were processed for TEM to determine 

whether treatment with CS-induced Atg-mediated cell death. TEM micrographs of 

granulosa cells from the ovaries of sham and smoke-exposed mice showed normal 

mitochondria and ER (Figs. 3A and 3B). In contrast, granulosa cells from CS-exposed 

animals contained large lysosomes and pleomorphic nuclei and an abundance of 

autophagosomes (Fig. 3B). Events of the Atg cascade beginning at phagophore formation 

through to autophagolysosome development were evident in the granulosa cells of 

smoke-exposed ovaries (Figs. 3C–F). Although the same number of granulosa cells were 

examined in each treatment group (Fig. 3G), the mean number (±SEM) of 

autophagosomes per ovary was significantly greater (p < 0.001; Fig. 3H) in smoke-

exposed mice compared with controls. Real-time PCR of Becn1 and Lc3 gene expression 

was upregulated 1.46-fold (p < 0.018; Fig. 3I) and 1.49-fold (p < 0.001; Fig. 3J), 

respectively, confirming activation of the Atg pathway. 

3.5 Discussion 

Cigarette smoking is a well-documented health hazard and is potentially the most toxic 

and preventable hazard for reproductive function in women. Although CS exposure has 

been linked with earlier menopause and loss of ovarian follicles, the mechanisms 

underlying this phenomenon are unknown. Our results show that exposure to CS causes 
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primordial follicle loss and decreased numbers of all follicle populations together with 

markers of oxidative stress in the ovary but failed to induce apoptosis as shown by 

absence of an effect on TUNEL staining. Our previous study also showed that expression 

of activated CASP3, the common executioner in apoptosis, was not changed (Tuttle et al., 

2009). However, a profound increase in the number of autophagosomes in granulosa cells 

was found in ovarian sections from mice exposed to CS together with increased 

expression of Becn1 and Lc3, key regulatory proteins in the Atg cascade. Taken together, 

our results suggest that CS exposure, at exposures representative of average smokers, 

induces granulosa cell Atg and ultimately depletion of the ovarian reserve of primordial 

follicles. Our results expand the literature by demonstrating that Atg is a novel alternative 

mechanism of follicle loss in the ovary that can potentially be activated by toxicant 

exposure. The primordial follicle pool in mice was significantly lower as early as 4 weeks 

of exposure to CS. By 8 weeks, CS exposure was sufficient to induce a significant 

reduction in ovarian weight and primordial follicle numbers, which was extended to other 

follicle populations with continued exposure. 

 

In women, premature onset of menopause is characterized by the exhaustion of the 

resting pool of follicles, known as primordial follicles, resulting in anovulation, changes 

in circulating hormone levels, and cessation of menses. In the mouse, premature ovarian 

failure and primordial follicle loss can be seen in animals exposed to environmental 

toxicants (Li et al., 1995; Miller et al., 1992), including CS (Tuttle et al., 2009); however, 

as in humans, the molecular mechanisms are unknown. In the present study, CS exposure 
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had no effect on the number of apoptotic granulosa cells, a finding that is consistent with 

our previous study (Tuttle et al., 2009). Mice exposed to CS for 8 weeks had significantly 

fewer follicles, notably in the primordial follicle pool, in the absence of differences in the 

expression of active CASP3, the terminal effector enzyme of the apoptosis cascade 

(Tuttle et al., 2009). 

 

Our findings are contrary to previous studies, which show that exposure to a number of 

different ovarian toxicants result in follicle loss via apoptosis (Stacchiotti et al., 2009; 

Tabuchi et al., 2003). In one such study, BaP upregulated the expression of Hrk, a cell 

death gene activated downstream of the AhR which is involved in the regulation of the 

follicle pool in mice (Jurisicova et al., 2007). Hrk functions by facilitating apoptosis via 

sequestration of BCL2 thereby leaving BAX free to form pores in the outer mitochondrial 

membrane causing the release of additional apoptotic factors stored within (Jurisicova et 

al., 2007). We propose that the divergent results are potentially due to differences in the 

concentration of BaP used in the previous study and that present in CS, which is 

significantly lower than doses of toxicants administered in previous studies (Devine et al., 

2002; Devine et al., 2004; Jurisicova et al., 2007). Furthermore, CS is a complex mixture 

of chemical toxicants including nicotine, carbon monoxide, polyhalogenated 

hydrocarbons, and metals such as cadmium (Hoffmann and Wynder, 1986). Hence, the 

potential interactions among these chemicals at low concentrations cannot be excluded by 

the current study. 
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Experiments designed to characterize the toxic chemicals underlying activation of Atg are 

currently underway using chemical fractionation of CS. It has been previously shown that 

the mechanism, stage of follicle affected, and speed at which follicle loss occurs is both 

compound and dose specific (Hoyer et al., 2009; Pandini et al., 2009; Shirota et al., 

2007). Exposure to CS condensate, the particulate phase of CS, resulted in delayed 

follicle development and premature luteinization of follicles (Sadeu and Foster, 2011), 

whereas BaP exposure, at concentrations representative of human exposure, decreased 

steroidogenesis and anti-Müllerian hormone output of follicles (Sadeu and Foster, 2010). 

In the present study, CS exposure induced oxidative stress, as shown by a threefold 

increased expression of HSP25, a small heat shock protein that is upregulated under 

oxidative stress conditions (Stacchiotti et al., 2009). Moreover, SOD2 protein expression 

was decreased in exposed mice, which is in line with others who found that a loss of 

antioxidant activity, specifically SOD2 and glutathione, leads to oxidative damage in 

neuronal cells (Tabuchi et al., 2003). Of note, HeLa cells transfected with SOD2 siRNA 

and subsequently treated with thenoyl trifluoroacetone had elevated ROS production, 

Atg, and cell death, whereas SOD2-overexpressing cells had reduced levels of cell death 

by 45% compared with controls (Chen et al., 2007). Mice exposed to CS for 16 and 32 

weeks showed a marked increase in ROS generation in leukocytes (Talukder et al., 2011). 

In human neutrophils, exposure to CS extract resulted in tissue damage mediated by 

oxidative stress (Matthews et al., 2011). Circulating progenitor cells taken from smokers 

had a higher incidence of ROS production, lower plasma antioxidant concentration, and 

higher MnSOD protein expression and enzyme activity than those isolated from 
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nonsmoking control animals (Talukder et al., 2011). CS contains more than 4000 

chemical compounds, many of which are oxidants or free radicals that are inducers of 

oxidative stress. Many of these are also AhR agonists, the activation of which leads to 

induction of cytochrome P450, which is involved in the generation of ROS (Tagawa et 

al., 2008), which can lead to apoptosis and Atg (Tagawa et al., 2008). 

 

Several distinct lines of evidence lead us to believe that CS exposure induce oxidative/ER 

stress leading to activation of the autophagic pathway to play an important role in ovarian 

follicle loss. Oxidative stress can trigger ER stress (Borradaile et al., 2006; Brookheart et 

al., 2009; Sorensen et al., 2006), which results in activation of the unfolded protein 

response (UPR). The UPR functions to maintain cellular homeostasis and several ER 

chaperone proteins including calreticulin, glucose regulated protein 78/immunoglobulin 

binding protein, those proteins containing the amino acid sequence KDEL (Lys-Asp-Glu-

Leu), and protein disulfide isomerase mediate protein folding to stabilize nascent proteins 

and restore homeostasis (Sage et al., 2010).  The inability of chaperone proteins to restore 

homeostasis leads to increased expression of CCAAT-enhancer binding protein 

homologous protein, an indicator of ER stress and a potent inhibitor of BCL2 expression 

(Sage et al., 2010; Tagawa et al., 2008). Furthermore, induction of ER stress leads to 

phosphorylation of BCL2 by c-Jun N-terminal kinase, which targets BCL2 for 

proteasomal degradation (Szegezdi et al., 2009). Specifically, we found that CS exposure 

results in a significant decrease in BCL2 expression together with a significant increase in 

the number of autophagosomes in the granulosa cells of ovarian follicles and an increase 
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in the gene expression of two key Atg cascade mediators, Becn1 and Lc3. Although 

BCL2 is a known inhibitor of apoptosis, it is also implicated in preventing the 

progression of Atg. In the Atg pathway, BCL2 interacts with BECN1, preventing it from 

facilitating membrane nucleation of the autophagosome (Glick et al., 2010; Kaushik et 

al., 2010). In addition to serving as a mechanism to rid the cell of misfolded, long-lived 

proteins, and superfluous or damaged organelles, Atg functions as an adaptive response 

to various stresses, including oxidative stress. 

 

Mice lacking both Bax and Bak, proapoptosis members, are completely resistant to 

apoptosis; yet cell death proceeds in a normal manner with the appearance of 

autophagosomes and autolysosomes (Shimizu et al., 2004). Nonapoptotic cell death in 

these mice was dependent on the autophagic proteins ATG5 and BECN1. Disassociation 

of BECN1 from BCL2/BCL2L1 in the ER but not mitochondria is a key driver of Atg 

(Fig. 4). Taken together, we postulate that CS exposure–induced decreased expression of 

BCL2 leads to follicle loss via Atg ultimately resulting in depletion of the primordial 

follicle pool. This finding is in keeping with and extends the literature by inculpating Atg 

as a novel alternative cell death pathway in granulosa cells that can be activated by CS 

exposure. Mechanisms regulating cross talk between apoptosis and Atg are unclear; 

however, emerging studies have identified Atg as an important alternative cell death 

pathway in mammalian cells, including human and rodent granulosa cells (Choi et al., 

2010; Vilser et al., 2010). In human granulosa cells, unchecked oxidative stress led to 

increased expression of lectin-like oxidized low-density receptor1, a scavenger receptor 
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and membrane glycoprotein that is activated by oxidized low-density lipoprotein (Vilser 

et al., 2010). Furthermore, CS extract increased conversion of LC3-I to LC3-II and 

increased Atg in cultures of human bronchial epithelial cells (Kim et al., 2008). Similarly, 

CS extract treatment induced Atg in lung epithelial cells, macrophages, and fibroblasts 

(Hwang et al., 2010). Therefore, we postulate that CS exposure can induce oxidative/ER 

stress leading to Atg in granulosa cells and that this nonapoptotic cell death pathway is 

central to follicle depletion as previously demonstrated. 

 

In summary, CS exposure resulted in decreased ovarian weight and follicle numbers, 

increased oxidative stress as measured by HSP25 and SOD2 expression, and profoundly 

increased the number of autophagosomes in granulosa cells of ovarian follicles but did 

not increase granulosa cell apoptosis. Moreover, CS-induced increased expression of 

Becn1 and Lc3 further supports the hypothesis that Atg is the central underlying 

mechanism of CS-induced ovarian follicle loss. We further postulate that Atg is a novel 

pathway of follicle destruction activated by CS and potentially other environmental 

toxicants. 
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Figure 1. Oxidative stress is evident in CS-exposed ovaries.  

Western blot analysis of proteins involved in stress response and ROS mediation was 

performed on whole ovary homogenates from 8-week sham and smoke-exposed mice. 

Expression of: (A) Hsp25 protein expression; (B) SOD1 protein expression; and (C) 

SOD2 protein expression in smoke-exposed ovaries compared with sham controls. 

Densitometric analysis of Hsp25, SOD1, and SOD2 protein expression levels were 

quantified relative to the Na
+
/K

+
 ATPase (Hsp25) and b-actin (SOD1 and SOD2) loading 

controls and are shown in the graph below each corresponding blot. Sham (n = 5) and 

smoke-exposed ovaries for Hsp25 and n = 6 sham and smoke-exposed ovaries per SOD1 

and SOD2 experiment. (D) DNA damage was measured by 8-OHdG in whole ovaries of 

sham and smoke-exposed mice. (E) Protein carbonyl formation, an indication of ROS 

damage. (F) Total glutathione levels in the ovaries of sham and smoke-exposed ovaries. 

Values are expressed as the mean (± SEM). * p < 0.001. 
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Figure 2. CS exposure does not result in increased apoptosis of ovarian follicles. 

TUNEL labeling was undertaken to determine whether smoke exposure results in a 

higher incidence of apoptotic cells. (A) Representative photomicrographs of TUNEL-

labeled sham (left panel) and smoke (right panel)-exposed ovaries. TUNEL-positive cells 

appear green (fluorescein), whereas negative cells appear red (propidium iodide). (B) The 

percentage of follicles with three or more TUNEL-positive cells in smoke-exposed 

ovaries compared with sham ovaries. Follicles (n = 100) from five sham ovaries and 94 

follicles from five smoke ovaries. (C) Immunohistochemical staining of sham and smoke-

exposed ovaries showing the relative expression of BCL2 protein. Western blot analyses 

of (D) BCL2 (n = 7 sham and 6 smoke) and (E) BAX (n = 4 sham and 5 smoke) protein 

expression was performed on whole ovary homogenates from 8-week sham and smoke-

exposed mice. (E) Densitometric analyses of protein expression levels of BCL2 (D) and 

BAX (E) were quantified relative to the β-actin loading control are shown in the graph 

below each corresponding blot. * p = 0.003. (F) The ratio of BAX:BCL2 expression in 

the ovaries of sham and smoke-exposed mice. * p = 0.015. All values are expressed as 

the mean (± SEM). 
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Figure 3. Autophagosomes are present in the granulosa cells of CS-exposed ovaries. 

TEM micrographs of granulosa cells of (A) sham and (B) CS-exposed ovaries. Nuclei 

(N), mitochondria (arrows), ER (*), and autophagosomes (P) are visible within the cells 

of both treatment groups. Autophagolysosome formation in the granulosa cells of CS-

exposed ovaries can be visualized at all stages of development in the granulosa cells of 

CS-exposed ovaries. (C) Developing phagophores (open arrows). (D) Sequestering of 

organelles and cytoplasmic materials within the developing autophagosome (arrowhead) 

and autophagosomes (P). (E) An autophagosome (P). (F) An autophagolysosome (Au). 

Original magnification: 7500×. (G) The number of cells counted in each treatment group 

was not different. (H) The incidence of autophagosomes in the granulosa cells of smoke-

exposed ovaries compared with that in sham ovaries. Sham and smoke-exposed ovaries 

(n = 5). Real-time PCR of (I) Becn1 and (J) Lc3 gene expression in smoke-exposed 

ovaries compared with sham controls. Fold change relative to β-actin (Becn1) and 

glyceraldehyde 3-phosphate dehydrogenase (Lc3). Sham and smoke-exposed ovaries (n = 

6). Values are expressed as the mean (± SEM). 
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Figure 4. The Atg cascade.   

Emerging evidence suggests that Atg is a potentially important mechanism of cell death 

in the mammalian ovary. BCL2 plays a pivotal role in regulating both apoptosis and Atg, 

two distinct pathways of programmed cell death. It is an inhibitor of Beclin-1, a central 

protein in the Atg cascade. Beclin-1 expression drives membrane nucleation and leading 

to the formation of the phagophore and autophagosome. Cytoplasmic processing of LC3-

I to LC3-II regulates sequestration of damaged organelles (e.g., mitochondria and 

endoplasmic reticulum) and long-lived proteins into the autophagosome for degradation. 

LC3-II is then localized to the membrane of the fully formed autophagosomes. Fusion of 

the autophagosome with lysosomes containing digestive enzymes results in 

autophagolysosomes, which can be detected by electron microscopy. Artwork by G. 

Oomen, Glen Oomen Medical & Scientific Graphics, Guelph, ON. 
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3.10 Supplementary Data 

3.10.1 Supplementary Materials and Methods 

3.10.1.1 Cigarette smoke exposure 

3R4F reference cigarettes (Tobacco and Health Research Institute, University of 

Kentucky, Lexington, KY, USA) were utilized with filters removed. Control animals 

were placed in the restrainer for 50 minutes twice daily, 5 days a week and exposed to 

room air only. Mice were euthanized within 2 hours of the last cigarette smoke exposure 

by anaesthetization with isoflurane and exsanguination and ovaries were collected and 

weighed prior to processing. One ovary from each mouse was collected and fixed for 

histology, while the remaining ovary was snap frozen and used for protein and RNA 

isolation. 

3.10.1.2 Histology and Follicle Counts 

Ovaries were fixed in 10% (v/v) formaldehyde, washed in cold water and transferred to 

70% ethanol 24 h later. Following fixation, ovaries were dehydrated in graded ethanol 

solutions, cleared in xylene and embedded in paraffin. Serial sections (4 micron 

thickness) were prepared and mounted on glass slides, deparaffinized in xylene and 

rehydrated in graded ethanol solutions, stained with haematoxylin and eosin and follicle 

counts were carried out. Briefly, primordial follicles were defined as having a single 

squamous cell layer surrounding the oocyte; transitional follicles as having a single cell 

layer of granulosa cells surrounding the oocyte whereby half the cells were squamous and 
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half were cuboidal; primary follicles contained a single layer of cuboidal granulosa cells 

surrounding the oocyte; secondary follicles were any oocyte surrounded by two or more 

complete layers of granulosa cells but lacking an antrum; and antral follicles were any 

oocyte surrounded by two or more complete layers of granulosa cells and having an 

antrum. Only follicles with a visible nucleus in the oocyte were counted in every tenth 

section. 

3.10.1.3 Immunohistochemistry 

Following rehydration, endogenous peroxidase activity was quenched and antigen 

retrieval was carried out using citrate buffer (pH 3.0) at 37
o
C for 30 minutes. Sections 

were blocked with horse serum. Avidin/biotin blocking was carried out prior to 

incubation with primary antibody (BCL2 1:100; Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA, USA and BAX 1:100; Cell Signaling Technology, Danvers, MA, USA) was 

carried out on 4 micron thick ovarian slices for 16 hours at 4
o
C. Immunohistochemical 

targets were localized using diaminobenzidine (DAB; 0.25 mg/mL w/v; Sigma Aldrich, 

Oakville, ON) in PBS and counterstained using Harris haematoxylin (Sigma Aldrich). 

Sections were dehydrated and cover slips were mounted using Permount. Slides were 

examined using an Olympus IX81 microscope at 20X and 40X magnification and images 

were captured using Image Pro AMS (Media Cybernetics, Silver Spring, MD, USA). 

3.10.1.4 TUNEL Labelling 

Following the labelling of apoptotic cells using the ApopTag


 Fluorescein In Situ 

Apoptosis Detection Kit (Chemicon International), slides were counterstained using 
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propidium iodide. Labelled slides were stored in the dark at -20
o
C prior to being analysed 

by fluorescent microscopy using the standard Fluorescein and propidium iodide 

excitation and emission filter cubes. Ovarian follicles were randomly selected and all 

cells in the field (20× magnification) were counted. The number of healthy (red nuclei) 

and apoptotic (green nuclei) cells were counted in 90-100 follicles per treatment group by 

an observer blinded to treatment group.  

3.10.1.5 DNA Damage 

Following isolation and quantification, DNA was converted to single-stranded DNA by 

denaturing the samples at 95
o
C for 5 min followed immediately by rapidly chilling on ice. 

Samples were then digested to nucelosides by incubating the denatured DNA with 

nuclease P1 for 2 h at 37
o
C in 20 mM sodium acetate (pH 5.2) followed by 1 h incubation 

at 37
o
C with alkaline phosphatase in 100 mM Tris (pH 7.5). Samples were centrifuged 

for 5 min at 6000 x g and the supernatant used to measure DNA damage. A standard 

curve was generated and the concentration of 8-hydroxydeoxyguanosine (OHdG; ng/mL) 

was determined for each sample using the equation of the line of best fit from the 

standard curve. Oxidative DNA damage was measured using the OxiSelect
TM

 Oxidative 

DNA Damage enzyme linked immunosorbent assay (ELISA) Kit (Cell Biolabs, Inc., San 

Diego, CA) as per manufacturer’s instructions. 

3.10.1.6 Protein Carbonyl ELISA 

Protein homogenates from the ovaries of smoke-exposed and control mice were used to 

measure the quantity of protein carbonyls present as a measure of protein oxidation 
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resulting from the presence of reactive oxygen species (ROS) or secondary by-products 

of oxidative stress. Absorbance was read on a plate reader using 450 nm as the primary 

wavelength. Protein carbonyl levels (nmol/mg) were determined using the standard curve 

generated using reduced and oxidized bovine serum albumin (BSA; provided). 

3.10.1.7 Glutathione Assay 

Ovaries were homogenized in cold 50 mM MES buffer (0.4 M 2-(N-

morpholino)ethanesulphonic acid, 0.1 M phosphate, 2 mM EDTA; pH 6.0) and 

centrifuged at 10000 x g for 15 min at 4
o
C and the supernatant kept for analysis. The 

samples were deproteinated by adding an equal volume of metaphosphoric acid (MPA; 5 

g in 50 mL H2O) reagent and vortexing. Samples were left to stand at room temperature 

(RT) for 5 min followed by centrifugation at 2000 x g for 2 min. The supernatant was 

collected and 50 L of triethanolamine (TEAM; 4 M) per mL of sample was added to the 

supernatant and vortexed. Following preparation of samples using the Glutathione Assay 

Kit, absorbance was read at 405 nm using a plate reader at 5 min intervals for 30 min. 

Total glutathione concentration was determined by plotting the average absorbance of 

each sample as a function of time, determining the slope of the line and then plotting the 

slopes as a function of the concentration of total glutathione in the standard curve. The 

value of total glutathione for each sample was then calculated from their respective slopes 

using the slope vs. glutathione standard curve. Samples were assayed in triplicate for 

glutathione concentration using as per manufacturer’s instructions. 
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3.10.1.8 Western Blot 

Protein was extracted from whole ovaries using RIPA lysis buffer (2 mM v/v EDTA, 1% 

v/v Triton X-100, 0.1% w/v SDS, 150 mM NaCl, 0.5% w/v sodium deoxycholate), with 

phenylmethanesulphonyl fluoride (PMSF; 1mM; Sigma Aldrich) and Complete Mini 

EDTA-free protease inhibitors (Roche Applied Science, Laval, PQ). For Western blots, 

10-20 μg of protein was loaded. SDS-PAGE was carried out with 12% acrylamide gels 

using a Mini-Protean II system (BioRad, Mississauga, ON) and then electro-transferred to 

polyvinylidene difluoride (PVDF) blotting membrane (BioRad Laboratories, Hercules, 

CA). Membranes were blocked with 5% w/v skim milk in tris-buffered saline (TBS, 

0.5% v/v Tween-20) at 4
o
C overnight and incubated for 1 h at RT in primary antibody on 

a rocking platform. A loading control antibody was used. Following washing with TBS-

T, blots were incubated with horseradish peroxidase-conjugated secondary anti-rabbit 

IgG (1:5000; Amersham Biosciences, Piscataway, NJ) or anti-mouse IgG (1:5000; 

Amersham Biosciences) antibodies for 1 h at RT on a rocking platform. Blots were 

washed thoroughly in TBS-T, followed by TBS whereupon reactive protein was detected 

using ECL-plus chemiluminescence substrate (Amersham Biosciences) and Bioflex X-

ray film (Clonex Corporation, Markham, ON). Densitometric analysis of immunoblots 

was performed using ImageJ 1.37v software. Density was corrected for background and 

normalized to the density of the corresponding band for -Actin or Na
+
/K

+ 
ATPase. The 

data were expressed as a ratio of the optical densities of target protein to -Actin or 

Na
+
/K

+ 
ATPase (whose expression was unaffected by treatment). Antibodies used for this 

study were: intracellular copper, zinc SOD (SOD1; 17 kDa; Abcam, Cambridge, MA, 
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USA), mitochondrial manganese SOD (SOD2; 25 kDa; Abcam), Hsp27 (23 kDa; 

Abcam), Na
+
/K

+ 
ATPase (1:5000; Abcam) and -Actin (1:5000; 43 kDa). Densitometric 

analysis of immunoblots was performed using ImageJ 1.37v software. Density was 

corrected for background and normalized to the density of the corresponding band for -

Actin or Na
+
/K

+ 
ATPase. The data were expressed as a ratio of the optical densities of 

target protein to -Actin or Na
+
/K

+ 
ATPase (whose expression was unaffected by 

treatment). 

3.10.1.9 Electron Microscopy 

Ovaries were excised from sham and smoke exposed mice and fixed with 2% 

glutaraldehyde buffered in 0.1 M sodium cacodylate buffer containing 0.05% calcium 

chloride (pH 7.4) at 4
o
C. The tissue was then washed overnight in 0.1 M sodium 

cacodylate buffer containing 4% sucrose and kept in the same buffer at 4
o
C. The tissue 

blocks from six mice/treatment group were sectioned at 75 m with a Sorvall TC-2 tissue 

sectioner. The sections were postfixed in 1.5% ferrocyanide reduced osmium tetroxide 

and then dehydrated in ethanol, followed by infiltration in propylene oxide and 

embedding in Epon. Sections were analysed for the presence of autophagosomes in the 

granulosa cells. 

3.10.1.10 Quantitative Real Time PCR 

Following confirmation of RNA integrity by gel electrophoresis and spectrophotometric 

quantification, cDNA was reverse transcribed using an iScript kit (BioRad). Real time 
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PCR was performed with murine specific primers using an Applied Biosystems 7900HT 

Fast Real Time PCR System (Applied BioSystems, Foster City, CA). Control reactions 

without cDNA and a no RT control were run to verify the absence of primer dimerization 

and genomic DNA contamination, respectively. PCR amplification was carried out in a 

20 L reaction volume containing 1-5 ng of cDNA, 0.5 M each of forward and reverse 

primers and 10 L of Fast SYBR Green Master Mix (Applied Biosystems). Gene- and 

species-specific primers were designed for autophagy markers Becn1 and Lc3 using 

Primer3 and OligoAnalyzer. See Table S1 for the sequence of the forward and reverse 

primers, and amplicon lengths of the genes analysed. The PCR reactions were initiated 

with denaturation at 95
o
C for 10 min; followed by 40 amplification cycles at 95

o
C for 15 

sec and 60
o
C for 1 min. Following amplification, to confirm the presence of a single 

amplification product, PCR products were subjected to a dissociation stage and derivative 

curve analysis as well as product separation on a 4% agarose gel stained with ethidium 

bromide. Samples were run in triplicate and results were averaged. CT was calculated by 

analysis software SDS 2.2.1 (Applied Biosystems). Analysis of gene expression changes 

were calculated according to the method of Livak et al. using the 2
-ΔΔCt

 method. The 

normalized expression ratio (fold induction) was calculated by 2
-ΔΔCt

 = fold induction. 

Statistical analyses were performed using the ΔCt ± SD values. 

3.10.1.11 Statistical Analysis 

Results are expressed as mean ± standard error of the mean (SEM) unless otherwise 

stated. Data were checked for normality and equal variance by Kolmogorov-Smirnov test 
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and treatment effects were tested using a two-tailed t-test. A p ≤ 0.05 was considered 

significant. 
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3.10.2 Supplementary Figures 
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Figure S1: Cigarette smoke exposure results in smaller ovaries with fewer follicles. 
A) Smoke exposed mice were significantly smaller than sham controls (p = 0.001). B) 

Representative photomicrographs of H & E-stained ovaries of sham and smoke exposed 

mice. C) Mice exposed to sham or cigarette smoke for 8 weeks were weighed at sacrifice 

to determine whether treatment affected body weight. Ovaries from smoke exposed mice 

were significantly smaller than sham controls (p < 0.001). D) Relative ovarian weights of 

smoke exposed and sham control mice indicate that smoke exposed mice have smaller 

ovaries relative to body size (p = 0.004). n = 20 sham and 21 smoke exposed mice (A-D). 

E-H) The number of follicles was determined in serial sections of ovaries from sham and 

cigarette smoke in E) 4, F) 8, G) 9 and H) 17 week exposed mice. E) Ovaries from smoke 

exposed mice had significantly fewer primordial (p = 0.043) follicles than sham mice. F) 

Ovaries from smoke exposed mice had a significantly fewer primordial (*p = 0.016) and 

transitional (**p = 0.042) follicles than sham mice. G) Ovaries from smoke exposed mice 

had significantly fewer primordial (*p = 0.003), transitional (**p = 0.016) and primary 

(***p = 0.046) follicles than sham mice. H) Although there was a strong trend towards 

fewer primordial (p = 0.078), transitional (p = 0.087), and primary (p = 0.1) follicles, 

only the number of antral follicles present in smoke exposed mice was significantly lower 

(p = 0.016) than that found in sham mice. n = 5 mice per treatment group. All values are 

expressed as the mean (± SEM).  
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Figure S2.  

The total number of follicles contained within the ovary was significantly lower in 

ovaries exposed to cigarette smoke for 8 or 9 weeks compared to sham exposed ovaries 

(p = 0.016 and 0.007, respectively). n = 5 mice per treatment group. All values are 

expressed as the mean (± SEM).  
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Table S1.  

PCR primer pairs for semi-quantitative RT-PCR, annealing temperatures, and amplicon 

sizes.  

 

Gene Left Primer Right Primer 
Product 

Size 

% GC 

content 

Melting 

Point 

Beclin-1 CCAGCCAGGATGATGTCTAC CCCGATCAGAGTGAAGCTATT 51 55/47.2 58.1/58.42 

LC3 CACTCCCATCTCCGAAGTGTA TGCGAGGCATAAACCATGTA 72 52.38/45 60.12/60.1 
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Chapter 4 

Cigarette smoke exposure elicits increased autophagy and dysregulation 

of mitochondrial dynamics in murine granulosa cells  

Gannon, AM., Stämpfli, MR., and Foster, WG. 

 

This article appeared in Biology of Reproduction, 2013; 88(3):63, 1-11. 

 

4.1 Abstract 

Cigarette smoking is a lifestyle behavior associated with significant adverse health effects 

including subfertility and premature ovarian failure. Cigarette smoke contains a number 

of chemicals, many of which are involved in the generation of reactive oxygen species, 

which can lead to apoptosis and autophagy. Autophagy is a fundamental process that 

removes damaged organelles and proteins through lysosomal degradation. The relevance 

of autophagy to toxicant-induced changes in ovarian function is largely unexplored. 

Previously, we reported that exposure to cigarette smoke causes follicle loss, oxidative 

stress, activation of the autophagy pathway, and a decrease in manganese superoxide 

dismutase expression (which points to altered mitochondrial function). Therefore, our 

objective was to test whether cigarette smoke exposure results in the dysregulation of 

mitochondrial repair mechanisms leading to loss of follicles via autophagy-mediated 

granulosa cell death. In this study, mice were exposed to cigarette smoke or room air for 

8 weeks. The expression of genes and proteins of autophagy and mitochondrial repair 

factors were measured using quantitative real time PCR and Western blot, 
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immunohistochemistry and ELISA. Increased expression of parkin and decreased 

expression of the mitofusins suggest that cigarette smoke exposure triggers mitochondrial 

damage. Moreover, the autophagy cascade proteins, BECN1 and LC3, were up-regulated, 

while the antagonist BCL2 was down-regulated following treatment. Taken together, our 

results suggest cigarette smoke exposure induces dysfunction of mitochondrial repair 

mechanisms, leading to autophagy-mediated follicle death. 

4.2 Introduction 

Although numerous sources of infertility have been identified, many otherwise healthy 

couples of childbearing age experience infertility for unknown reasons. Premature 

exhaustion of the ovarian follicle reserve has been identified as a possible causative factor 

for infertility. Several studies have shown that exposure to environmental toxicants 

results in the destruction of the follicle population, often in a stage-specific manner [1-9]. 

Of the numerous environmental toxicants and lifestyle factors known to affect fertility 

and ovarian function studied to date, cigarette smoking may perhaps be the single most 

clinically-relevant and preventable toxic exposure in women, making it an ideal target for 

infertility prevention [10]. Cigarette smoke and its relationship to female fertility has 

been strongly associated. That smoking depletes ovarian follicle reserve and impairs 

uterine receptivity is well documented [11]. Studies conducted in our laboratory have 

revealed that women exposed to cigarette smoke had greatly decreased implantation and 

pregnancy rates [12]. We also found that benzo(a)pyrene (BaP), a polycyclic aromatic 

hydrocarbon (PAH) present in cigarette smoke and known agonist of the aryl 
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hydrocarbon receptor (AhR), is detectable in the serum and follicular fluid of women 

who smoke or are exposed to cigarette smoke and that treatment with BaP impairs 

cumulus expansion in isolated rat follicle culture experiments [5;13]. More recently, we 

reported that mice exposed to cigarette smoke have smaller ovaries and significantly 

fewer primordial follicles compared to sham controls [14].  

 

Cigarette smoke contains more than 4,000 chemical compounds, many of which are 

oxidants or free radicals that are inducers of oxidative stress. Previous studies have 

revealed that of the chemicals present in cigarette smoke, levels of PAHs, most notably 

BaP, are present in levels that are 10-fold higher in sidestream than mainstream smoke 

[15], and have been shown to lead to the production of free radicals, reactive oxygen 

species (ROS) and oxidative stress. Cigarette smoke contains a number of AhR agonists, 

the activation of which leads to induction of cytochrome P450 enzymes CYP1A1, 1A2, 

and 1B1, which are involved in the generation of ROS [16]. Oxidative stress and the 

production of ROS can lead to both apoptosis and autophagy. Several studies point to 

BCL2-associated X protein (BAX) activation as the central pathway regulating follicle 

numbers; however, emerging evidence challenges this belief and our data support an 

alternative cell death pathway as being important in regulating follicle demise. 

Destruction of developing fetal ovarian germ cells and induction of premature ovarian 

failure has been achieved in mice treated with AhR ligands which activated the intrinsic 

pathway leading to enhanced Bax expression [17-19]. However, although in vivo 

exposure to cigarette smoke decreased B cell leukemia/lymphoma 2 (BCL2) protein 
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expression, BAX protein expression remained unchanged, enhanced apoptosis was not 

evident in treated ovaries suggesting a concentration-dependent effect of cigarette smoke 

exposure on ovarian follicle loss and apoptosis [14]. Cigarette smoke exposure instead 

resulted in activation of the autophagy cascade, as evidenced by an increase in the 

number of autophagosomes and expression of key regulatory genes in the ovaries of 

exposed mice [20].  

 

Autophagy is a fundamental cellular process that was first described nearly six decades 

ago by Clark in mammalian cells by electron microscopy and later systemically 

characterized by de Duve [21-24]. Derived from the Greek for “self-eating”, autophagy is 

evolutionarily conserved from yeast to mammals. To date, approximately 35 autophagy 

genes have been identified in yeast, a number of which have mammalian homologues 

identified. These genes have been established as important regulators of both bulk and 

selective autophagy [25-27], including Beclin 1 (Becn1), microtubule-associated protein 

1 light chain 3 (Lc3) and Bcl2. Traditionally considered a stress adaptation to avoid cell 

death (as in starvation conditions), autophagy has also been implicated as an alternative 

pathway to cell demise in recent years [28-31]. Programmed cell death (PCD) type I 

demonstrates the hallmarks of apoptosis while PCD type II has been coined to describe 

cell death that demonstrates hallmarks of autophagy, namely the accumulation of 

autophagosomes. While this classification has generated considerable controversy, due 

primarily to debate over whether autophagy actually promotes cell death or if it is simply 

a reactive process upstream of PCD type I, numerous studies have shown that autophagy 
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acts independently of apoptosis to elicit cell death during development [32-34] as well as 

in response to cytotoxic [35-37] and metabolic stressors [38].  

 

Mitophagy is the selective degradation of mitochondria via autophagy. Mitochondria are 

essential energy-producing organelles that exist in a dynamic interconnected network that 

is constantly reshaped by a strictly regulated balance between fission and fusion to 

maintain proper mitochondrial content in daughter cells and allow repair of damaged 

mitochondria [39-43]. During fission, mitochondria become fragmented and are targeted 

for autophagosomal degradation by parkin (PARK2), while at the same time, the 

ubiquitination and degradation of central fusion proteins, mitofusin 1 (MFN1) and 

mitofusin 2 (MFN2) is occurring [44-46]. During apoptosis, mitochondrial cristae are 

remodeled opening their tubular junctions leading to release of pro-apoptotic factors such 

as cytochrome c, and activation of the apoptosis cascade [47;48], a process that we have 

consistently shown is not upregulated by cigarette smoke exposure [14;20]. In contrast to 

fission, key regulatory proteins in mitochondrial fusion drive mitochondrial elongation, 

increased cristae density, and maintenance of ATP output [49] to sustain cell viability. 

Thus, unopposed mitophagy results in an energy-deficient state in the affected cells 

culminating in the death of those cells.  

 

Although cigarette smoke exposure increases the number of autophagosomes [20], it is 

not known if the adverse effects are primarily mitochondrial-specific (mitophagy) or if 

multiple organelles undergo autophagy (bulk autophagy). Therefore, the objective of our 
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current study was to explore the mechanistic pathway linking cigarette smoke exposure to 

mitochondrial dysfunction and autophagy, a novel alternative cell death pathway 

important in follicle development and demise. Decreased superoxide dismutase 2 (SOD2) 

expression suggests mitochondrial damage in cigarette smoke exposed ovaries [20]. 

Fusion and elongation provides a mechanism for mitochondrial repair, a process that 

opposes autophagy [49;50]. Taken together, we postulate that cigarette smoke exposure-

induced mitochondrial dysfunction in granulosa cells leads to autophagy-mediated cell 

death, a novel alternative ovarian cell death pathway. 

4.3 Materials and Methods  

4.3.1 Ethics Statement 

All animal work described in this study was conducted using protocols approved by the 

McMaster University Animal Research Ethics Board and is in accordance with the 

Canadian Council for Animal Care guidelines for the use of animals in research.  

4.3.2 Animals 

The ovarian effects of cigarette smoke exposure was studied in female C57BL/6 mice (8 

weeks old at the start of exposure) obtained from Charles River Laboratories (Montreal, 

PQ, Canada). Mice were maintained in polycarbonate cages at 22 ± 2oC and 50 ± 10% 

relative humidity on a 12-hour light-dark cycle and were provided with food (LabDiet, 

PMI Nutrition International, Saint Louis, MO, USA) and tap water ad libitum throughout 

the experiment.  
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4.3.3 Cigarette Smoke Exposure 

Mice were exposed to cigarette smoke twice daily, 5 days a week for 8 weeks using a 

whole body smoke exposure system (SIU-48, Promech Lab AB, Vintrie, Sweden). 

Details of the exposure protocol have been described previously [51]. Briefly, cigarette 

smoke from twelve 3R4F reference cigarettes (Tobacco and Health Research Institute, 

University of Kentucky, Lexington, KY, USA) with filter removed was mixed with room 

air and delivered into the exposure chamber over a 50 minute period twice daily. Animals 

were placed in the restrainer, which was then placed in the smoke exposure box. There 

was no lead-up period required for smoke exposure; however, mice were acclimatized to 

the restrainer over a three-day period prior to commencement of the experiment. This 

acclimatization was accomplished by placing mice in the restrainer for 20 minutes on 

Day 1, for 30 minutes on Day 2, and for 50 minutes on Day 3. Following the 

acclimatization period, mice were exposed to cigarette smoke for 50 minutes twice daily, 

5 days a week for 8 weeks prior to sacrifice. Control animals were placed in the restrainer 

for 50 minutes twice daily, 5 days a week and exposed to room air only. Mice were 

euthanized at the end of the exposure by exsanguination and ovaries were collected and 

weighed prior to processing.  

4.3.4 Electron Microscopy 

Ovaries were collected and processed for electron microscopy as described previously 

[20]. Briefly, ovaries were excised and fixed with 2% glutaraldehyde buffered in 0.1M 

sodium cacodylate buffer containing 0.05% calcium chloride (pH 7.4) at 4
o
C. The tissue 

was washed in 0.1M sodium cacodylate buffer with 4% sucrose and stored at 4
o
C. Tissue 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

153 
 

blocks from six mice/treatment group were sectioned at 75 µm with a Sorvall TC-2 tissue 

sectioner and postfixed in 1.5% ferrocyanide reduced osmium tetroxide, dehydrated in 

ethanol, followed by infiltration in propylene oxide and embedded in Epon. Sections 

were analyzed for the presence of autophagosomes in the granulosa cells.  

4.3.5 Immunohistochemistry 

Ovaries were fixed in 10% (v/v) formaldehyde, washed in cold water and transferred to 

70% ethanol 24 h later. Following fixation, ovaries were dehydrated in graded ethanol 

solutions, cleared in xylene and embedded in paraffin. Serial sections (4 µm thickness) 

were prepared and mounted on glass slides, deparaffinized in xylene and rehydrated in 

graded ethanol solutions. Following rehydration, endogenous peroxidase activity was 

quenched and antigen retrieval was carried out using citrate buffer (pH 3.0) at 37
o
C for 

30 minutes. Sections were blocked with horse serum. Avidin/biotin blocking was carried 

out prior to incubation with primary antibody (BECN1 1:100; Cell Signaling, Danvers, 

MA, USA) was carried out on 4 µm thick ovarian slices for 16 hours at 4
o
C. 

Immunohistochemical targets were localized using diaminobenzidine (DAB; 0.25 mg/mL 

w/v; Sigma Aldrich, Oakville, ON, Canada) in phosphate buffered saline (PBS; 8 g/L 

NaCl w/v, 0.2 g/L w/v KCl, 1.44 g/L w/v Na3PO4, 0.24 g/L w/v KH2PO4, pH 7.4) and 

counterstained using Harris haematoxylin (Sigma Aldrich). Sections were dehydrated and 

cover slips were mounted using Permount. Slides were examined by a reader blinded to 

treatment group using an Olympus IX81 microscope and images were captured using 

Image Pro AMS (Media Cybernetics, Silver Spring, MD, USA). Positive staining cells 
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were counted using Image Pro software to identify cells within each follicle stained with 

DAB and were expressed as a percentage of granulosa cells per follicle that were positive 

for BECN1.  

4.3.6 RNA Isolation and cDNA Synthesis 

Total RNA was isolated from ovaries using a Qiagen RNeasy mini kit with on-column 

DNase digestion (Qiagen, Mississauga, ON, Canada) as per manufacturer’s instructions. 

Potential genomic DNA contamination was removed from the samples by treatment with 

RNase-free DNase (Invitrogen, Life Technologies, Burlington, ON, Canada) for 15 min 

at 37°C. Following confirmation of RNA integrity by gel electrophoresis and 

spectrophotometric quantification, cDNA was reverse transcribed using an iScript kit 

(BioRad, Mississauga, ON, Canada).  

4.3.7 Quantitative Real Time PCR 

Gene- and species-specific primers for pro-survival factor Bcl2, mitochondrial repair 

mechanism markers Parkin, Mfn1 and Mfn2 obtained from SA Biosciences (SA 

Biosciences, Qiagen, Mississauga, ON, Canada). Control reactions without cDNA and a 

no RT control were run to verify the absence of primer dimerization and genomic DNA 

contamination, respectively. PCR amplification was carried out in a 20 µL reaction 

volume containing 1-5 ng of cDNA, 0.5 µM each of forward and reverse primers and 10 

µL of Fast SYBR Green Master Mix (SA Biosciences). The PCR reactions were initiated 

with denaturation at 95
o
C for 10 min; followed by 40 amplification cycles at 95

o
C for 15 

sec and 60
o
C for 1 min. Samples were run in triplicate and results were averaged. CT was 
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calculated using the analysis software SDS 2.2.1 (Applied Biosystems, Life 

Technologies, Burlington, ON, Canada). Analysis of gene expression changes was 

calculated according to the method described by Livak and Schmittgen [52].  

4.3.8 Beclin 1 Enzyme-Linked Immunosorbent Assay 

Ovaries from mice exposed for 8 weeks to either sham or cigarette smoke were 

homogenized in 0.02 mol/L phosphate buffered saline (PBS; pH 7-7.2) and quantified 

using the Bradford method of protein quantification. Beclin 1 concentrations in ovarian 

homogenates were assayed using a commercially available enzyme-linked 

immunosorbent assay (ELISA) kit (Beclin 1 ELISA; Shanghai BlueGene Biotech CO. 

Ltd, Shanghai, China). Sample Beclin 1 concentration was calculated using a four 

parameter logistic (4-PL) curve-fit using the formula: y = min + (max-min)/(1 + 

abs(x/EC50)^Hillslope). The sensitivity in this assay is 0.1 ng/mL. Values were 

calculated and expressed as mean (± SEM).  

4.3.9 Western Blot 

Protein expression was measured in whole ovarian homogenates sham and smoke 

exposed mice as described previously [20]. Following SDS-PAGE and transfer to 

polyvinylidene difluoride (PVDF) blotting membrane (BioRad Laboratories, Hercules, 

CA, USA), membranes were blocked overnight with 5% (w/v) skim milk in tris-buffered 

saline (TBS; 8 g/L w/v NaCl, 0.2 g/L w/v KCl, 3 g/L w/v Tris base, pH 7.4,) with Tween-

20 (TBS-T; 1x TBS, 0.5% v/v Tween-20) and incubated with primary antibody. The 

following antibodies were used for this study: ACTB (1:5000; Abcam, Cambridge, MA, 
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USA), BCL2 (1:2000; Abcam), BECN1 (1:1000; Cell Signaling), GAPDH (1:5000; 

Abcam), LC3 (1:2000; Novus Biologicals, Littleton, CO, USA), MFN1 (1:2000; Sigma 

Aldrich), MFN2 (1:2000; SigmaAldrich), and PARK2 (1:1000; Cell Signaling). 

Following washing with TBS-T, blots were incubated with horseradish peroxidase-

conjugated secondary anti-rabbit IgG (1:4000; Amersham Biosciences, Piscataway, NJ, 

USA) or anti-mouse IgG (1:4000; Amersham Biosciences) antibodies for 1 hour at room 

temperature. Blots were thoroughly washed in TBS-T, followed by TBS whereupon 

reactive protein was detected using ECL-plus chemiluminescence substrate (Amersham 

Biosciences) and Bioflex X-ray film (Clonex Corporation, Markham, ON, Canada). 

Densitometric analysis of immunoblots was performed using ImageJ 1.37v software; all 

proteins were quantified relative to the loading control.  

4.3.10 Statistical analysis 

All statistical analyses were performed using SigmaStat (v.3.1, SPSS, Chicago, IL, USA). 

Results are expressed as mean ± SEM unless otherwise stated. Data were checked for 

normality and equal variance and treatment effects were tested using t-test. A p ≤ 0.05 

was considered significant. 

4.4 Results  

4.4.1 General health of animals exposed to cigarette smoke 

Treatment with cigarette smoke had no effect on the general health of the mice, as shown 

by absence of stereotypical behaviors, hunched back and signs of lacrimation, porphyria, 
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or ruffled coat. Our previous work has shown changes in whole body and relative ovarian 

weights following 8 weeks of cigarette smoke exposure [20] in the absence of any signs 

of adverse effects on the general health of the animals.  

4.4.2 Autophagosome formation is evident following cigarette smoke exposure 

Ovaries from sham and smoke exposed ovaries were collected and processed for 

transmission electron microscopy (TEM) to confirm our previous findings of 

autophagosomes in the granulosa cells of ovarian follicles treated with cigarette smoke. 

Nuclei were normal in appearance in granulosa cells from both sham and smoke exposed 

mice (Figure 1), although nuclei were displaced by autophagosomes in smoke exposed 

mice (Figure 1B). Autophagosomes were more abundant in granulosa cells of smoke 

exposed vs. controls, in keeping with our previous findings [20]. Additionally, though 

mitochondria were visible in the cytoplasm of granulosa cells from both treatment groups 

(Figure 1, arrowheads), autophagosomes located in smoke exposed ovaries were found to 

contain large, swollen organelles resembling mitochondria (Figure 1B, arrows).  

4.4.3 Cigarette smoke exposure alters immunolocalization of Beclin 1 protein 

Immunohistochemical analysis of ovaries sectioned and stained using the rabbit anti-

BECN1 antibody revealed changes in the intensity, amount and location of staining in 

treated vs. sham control ovaries. BECN1 staining was seen in all stages of follicle 

development, including primordial follicles. Low power magnification of sham and 

smoke exposed ovaries (Figure 2A and B, respectively) shows BECN1 staining in both 

treatment groups. Primordial follicles showed evidence of staining in both sham (Figure 
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2C) and smoke (Figure 2D); however, localization in the smoke exposed ovaries differed 

from that of the sham ovaries. In smoke exposed primordial follicles, the granulosa cells 

stained positive for BECN1, while in sham follicles, only the oocyte stained positively. 

This pattern did not hold true for larger follicles, however. In primary (Figure 2E and F), 

pre-antral (Figure 2G and H) and antral follicles (Figure 2I and J), staining was evident in 

the theca, granulosa cells and the oocyte in both treatment and sham follicles. However, 

those follicles in the smoke exposed ovaries had a higher percentage of positively-stained 

cells (although only significant in pre-antral follicles; Figure 2K, p = 0.008) and the 

intensity of staining was greater. Interestingly, the pattern of staining was also different. 

In the sham exposed ovaries, BECN1 staining was more punctate with less cytoplasmic 

staining, whereas in the smoke exposed mice, staining was evident in the cytoplasm and 

more diffuse than punctate in nature.  

4.4.4 Cigarette smoke exposure results in up-regulation of autophagy machinery 

Homogenates from whole ovaries were examined to determine if the genes of the 

autophagy cascade and the proteins for which they code were altered following treatment. 

Changes in gene expression, as measured by mRNA expression changes using real time 

RT-PCR, were assessed for Bcl2. While gene expression of Bcl2 was not changed, a trend 

towards down-regulation was seen (Figure 3). Protein expression of BCL2, however, was 

significantly lower in the ovaries of mice exposed to cigarette smoke (Figure 3, p = 

0.003). In keeping with gene expression data from our previous experiment [20], both 

BECN1 and LC3 proteins were significantly up-regulated in smoke exposed mice (Figure 
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4A and B, p = 0.002 and 0.037, respectively). An ELISA also revealed that BECN1 was 

more abundant in smoke-exposed mice compared to sham controls (Figure 5, p = 0.003).  

4.4.5 Mitochondrial repair mechanisms are disrupted by cigarette smoke exposure 

Gene and protein expression of three important regulators of mitochondrial repair was 

examined in the homogenates of ovaries from cigarette smoke and sham control mice. 

Significant increases in the expression of both the gene (p = 0.001) and protein (p = 

0.006) of the pro-fission marker parkin were seen following cigarette smoke exposure 

(Figure 6A and B), while expression of the genes Mfn1 and Mfn2, encoding pro-fusion 

proteins MFN1 and MFN2, (Figure 6C and E, p = 0.003 and p = 0.052, respectively) 

were decreased. In line with the gene expression changes, expression of both MFN1 and 

MFN2 was significantly down-regulated following treatment (Figure 6D and F, p < 0.001 

and p = 0.02, respectively). 

4.5 Discussion  

Our results show that cigarette smoke exposure causes over-expression of the autophagy 

proteins BECN1 and LC3 and under-expression of an autophagy inhibitor, BCL2. 

Coupled with induction of autophagy, mitochondrial dysfunction appears to occur 

following cigarette smoke exposure, as evidenced by increases in the expression of the 

pro-fission protein, PARK2 and the decreased expression of the pro-fusion proteins 

MFN1 and MFN2. These findings, together with our previous results which revealed a 

profound increase in autophagosomes in granulosa cells and over-expression of the pro-
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autophagy genes, Becn1 and Lc3 [14;20], suggest that cigarette smoke exposure induces 

mitochondrial dysfunction culminating in mitochondrial-specific autophagy.  

 

In the present study, cigarette smoke exposure results in changes in the localization and 

expression of the BECN1 protein. BECN1 was present but restricted to the oocyte in 

resting primordial follicles of sham exposed mice. In addition to the oocyte, BECN1 was 

present in both granulosa and theca cells of larger follicles. These findings are 

inconsistent with those of Gaytán et al., who found that staining was restricted to the 

theca cells of secondary, antral and pre-ovulatory follicles in the human ovary [53]; 

however, this disparity could be explained by interspecies differences as well as variation 

in the sensitivity of the antibody used. To our knowledge, there are currently no 

published studies identifying the immunolocalization pattern of BECN1 expression in 

murine ovaries. Expression of BECN1 in untreated ovaries was expected however, as 

numerous studies have identified a basal level of expression in a variety of cells including 

rat pheochromocytoma cells [54], human umbilical vein endothelial cells [55], ovarian 

follicles [53] and melanoma cells [56] and mouse ovarian [20], cortical and hippocampal 

tissues [57]. BECN1 is a key protein initiator of autophagy, a fundamental cellular 

process that constitutively eliminates damaged organelles (mitochondria and ER) and 

long-lived insoluble proteins via lysosomal degradation and is essential for survival, 

differentiation, development, and homeostasis. BECN1, a BCL2-regulated protein, is 

required for normal mammalian development [53] and is at the intersection between 

apoptosis and autophagy, suggesting a role in the interrelationship between the two 
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processes. In our study, BECN1 expression is increased following cigarette smoke 

exposure and immunohistochemical staining reveals a shift from focal to diffuse staining 

throughout the cytoplasm. Activation of the autophagy cascade begins with induction of 

BECN1 expression and membrane nucleation. Taken together we interpret these data as 

evidence that cigarette smoke exposure increases BECN1 expression leading to its wider 

distribution in the cytoplasm to sites of membrane nucleation and induction of 

autophagolysosome development.  

 

In the current study, we examined the effect of cigarette smoke exposure on the 

expression of genes and their respective proteins involved in the autophagy cascade. Of 

these, we found a significant increase in both the gene and protein expression of two pro-

autophagy cascade members, BECN1 and LC3. Moreover, while we saw no change in 

Bcl2 gene expression, an autophagy antagonist, there was a significant decrease in BCL2 

protein expression following cigarette smoke exposure. Our findings are consistent with 

those of others who have demonstrated that drugs such as etoposide and staurosporine 

(known apoptosis inducers), and cigarette smoke and its extract, induce autophagy in a 

variety of cell types and species [35;38;58-62], suggesting that although tissue and/or 

species differences exist, autophagy-mediated cell death can act as a substitute for 

apoptosis under certain conditions. Interestingly, not all treatments that elicited an 

autophagic response resulted in the same type of autophagy; to wit: while etoposide 

treatment caused death-associated autophagy in Hep3B hepatoma cells, staurosporine 

treatment in the same cells was cytoprotective [62]. Whereas our results are in keeping 
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with the above studies, Shimizu et al. have demonstrated that over-expression, rather than 

reduction in the expression of either BCL2 or BCL2-like 1 (BCL2L1; a BECN1-

interacting protein), resulted in autophagy-mediated cell death similar to that seen in their 

double Bax/Bak mutants [35]. Once again, death-associated autophagy appeared to be 

regulated differently than starvation-induced autophagy (survival). For instance, BCL2L1 

is required for regulation of BECN1 in death-associated but not starvation-induced 

autophagy and upregulation of BECN1 expression is only seen in death-associated 

autophagy [63].  

 

Emerging evidence challenges the long-held belief that BAX activation is the central 

pathway regulating follicle density and our data support the view that an alternative cell 

death pathway is important in regulating follicle demise. Mechanisms regulating cross-

talk between the apoptosis and autophagy pathways are unclear; however, we note that 

BCL2 is at the interface between both pathways and several studies have identified 

autophagy as an important alternative pathway of cell death in mammalian cells including 

human and rodent granulosa cells. We and others have shown stress-induced cell death 

often proceeds in an apoptosis-independent manner. Specifically, mice lacking both Bax 

and BCL2-antagonist/killer 1 (Bak) are completely resistant to apoptosis yet cell death 

progresses normally, the execution of which was dependent upon the induction of 

autophagy [35]. Similarly, human granulosa cells with unopposed oxidative stress 

demonstrated increased autophagy following increased expression of lectin-like oxidized 

low-density receptor (LOX-I), a scavenger receptor and membrane glycoprotein that is 
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activated by oxidized low-density lipoprotein [61;64]. During yolk removal in some fish 

species, autophagosomes containing degenerating mitochondria and other material were 

evident in follicular cells [29]. Finally, our lab reported a significant loss of follicles at all 

stages of development in mice exposed to cigarette smoke without activating either the 

intrinsic or extrinsic apoptosis pathways despite a significant reduction in the expression 

of BCL2 [14;20].  

 

We have previously shown that both cigarette smoke condensate and BaP delayed follicle 

development, decreased E2 and AMH output of follicles in isolated follicle cultures 

[13;65;66]; while cigarette smoke exposure induced oxidative stress as shown by 

increased HSP25 and decreased SOD2 expression [20] but did not induce apoptosis in 

mice [14;20] via no changes in active Caspase 3 (CASP3) expression, TUNEL staining or 

DNA laddering. The observed absence of changes in active Caspase 3, the common 

executioner in the apoptosis cascade, coupled with a lack of increased TUNEL staining in 

treated ovaries lead us to conclude that apoptosis was not upregulated following cigarette 

smoke exposure. This conclusion was further supported by our EM experiments which 

showed a distinct lack of hallmarks of apoptosis and an abundance of autophagosomes in 

various stages of maturity [20]. These findings, coupled with our present findings, 

suggest that cigarette smoke induces oxidative stress via an AhR-dependent process 

leading to dysregulation of mitochondrial dynamics, as evidenced by the observed 

increase in PARK2 expression and the decrease in MFN1 and MFN2 expression, leading 

to mitophagy and ultimately follicle demise. Overall, our findings suggest that cigarette 
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smoke exposure, representative of exposure in women who smoke a pack a day, does not 

activate the apoptosis machinery of ovarian follicles [14;20], but instead induces 

autophagy (present study and [20]), which leads to death of the granulosa cells and 

ultimately death of the follicle. Numerous studies have shown that treatment with ovarian 

toxicants results in apoptosis in the ovary [2;7;67-77]. We propose that the concentrations 

of chemicals used in those studies were significantly higher than the concentrations 

achieved in women who smoke and thus resulted in activation of the canonical apoptosis 

cell death pathway whereas our treatment initiated autophagy which in all likelihood was 

initially an adaptive response to protect follicle development and mediate oxidative stress 

caused by the cigarette smoke but which ultimately was overcome due to the chronic 

activation of the cascade and led to autophagy-mediated cell death. This hypothesis is not 

without precedent. Previous studies have shown that prolonged activation of the 

autophagy cascade, particularly non-physiological assaults (i.e.: chemotherapy), lead to 

autophagy-mediated cell death without the activation of apoptosis [78;79].  

 

Mitochondrial homeostasis is vital to the survival of cells. Mitochondria are responsible 

for the execution of a number of processes upon which cells depend to maintain 

appropriate energy levels, reduce ROS accumulation, and carry out programmed cell 

death [39]. In mouse pancreatic beta cells, metabolically stressed mitochondria, in the 

form of free fatty acids and high glucose levels, displayed elevated levels of membrane 

potential heterogeneity and increased autophagy [43;80;81]. Prior to mitophagy, 

mitochondria have been shown to depolarize and are sequestered in a pre-autophagy pool 
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[42]. These mitochondria no longer contribute to the pool of mitochondria capable of 

fusing. Mitofusins play an important role in maintaining mitochondrial integrity. In 

mouse embryonic fibroblasts, the absence of either MFN1 or MFN2 resulted in reduced 

fusion and increased numbers of fragmented mitochondria [82] and also resulted in the 

cells’ increased sensitivity to various apoptotic stimuli [83]. Interestingly, inhibition of 

autophagy (by deletion of Atg5 or silencing of Becn1) or induction of mitophagy 

(starvation-induced) both resulted in mitochondrial membrane depolarization [42], 

suggesting that changes in membrane potential are indicative of perturbations in the 

delicate balance between mitochondrial survival and elimination.  

 

Finally, in the newly fertilized oocyte, selective mitophagy has been documented 

whereby sperm mitochondria are selectively targeted for mitophagy immediately 

following fertilization [84]. The oocyte requires a large amount of energy to produce a 

mature oocyte containing the appropriate number of chromosomes and as such contains 

the most mitochondria of all the cells in the body, making the maintenance of mtDNA 

integrity and repair paramount. Hence, the proper balance between mitochondrial fission 

and fusion and its core proteins is essential to producing a viable oocyte. Numerous 

studies have also shown that in order to produce a viable oocyte, healthy granulosa cells 

are required [85-98]. Thus our findings showing increased autophagy and mitochondrial 

dysfunction in granulosa cells suggest that cigarette smoke decreases granulosa cell 

numbers via autophagy and in so doing decreasing follicle survival.  
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In summary, we have shown here that cigarette smoke exposure results in mitochondrial 

dysfunction as supported by increased expression of the pro-fission PARK2 and the 

subsequent decreased expression of its targets, pro-fusion proteins MFN1 and MFN2. 

Enhanced autophagy activity was also apparent as evidenced by the increased presence of 

autophagosomes in treated ovaries and via increases in gene and protein expression of 

BECN1, a key initiator of autophagy, and of LC3, which is responsible for sequestration 

of organelles within the autophagosome, as well as the decreased expression of the 

autophagy antagonist, BCL2. Taken together, our results suggest that cigarette smoke, in 

doses relevant to human exposure, causes mitochondrial damage and dysfunction, leading 

to enhanced autophagy activity in the granulosa cells of ovarian follicles. Although our 

results show that cigarette smoke exposure induces changes in the expression of several 

mitochondrial-specific proteins we cannot rule out potential adverse effects on other 

organelles following cigarette smoke exposure. Given that all smokers do not suffer from 

infertility, we postulate that reparative autophagy is inadequate to manage cigarette 

smoke-induced oxidative stress; the threshold needed to support follicle growth and 

oocyte development is exceeded resulting in follicle loss and sub-fertility. The number of 

young women starting smoking is growing [99], suggesting that prevention strategies are 

not effective deterrents in this population. This coupled with the addictive quality of 

nicotine, often requiring multiple attempts to quit smoking [100], implies that counseling 

women to quit is not an effective strategy when managing smoking-related infertility. 

Moreover, it is unknown if cigarette smoke-induced ovarian damage is reversible by 

smoking cessation. Therefore, the mechanistic pathway elucidated in this study is 
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important in identifying the potential targets for anti-oxidant therapies for fertility 

preservation. With mitochondrial dysfunction being implicated in a broad spectrum of 

diseases covering every aspect of medicine, our results may have far-reaching 

implications in both reproductive medicine and throughout medicine in general. 
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Figure 1: Autophagosomes are present in the granulosa cells of ovarian follicles 

exposed to cigarette smoke.  

Representative TEM micrographs of granulosa cells from growing follicles in A) sham 

and B) cigarette smoke exposed ovaries. Nuclei (N) appear normal but are displaced by 

autophagosomes (Au) in cigarette smoke exposed ovaries. Mitochondria are visible in 

both sham and smoke exposed ovaries (arrowheads) and can be visualized within an 

autophagosome (arrows) in a smoke exposed ovarian follicle. Original magnification: 

10000x.  
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Figure 2: Beclin 1 protein localization.  

Immunohistochemical staining for BECN1 in ovaries from sham and smoke exposed 

mice (A-J). Negative control, Sham (A, C, E, G and I) and Smoke (B, D, F, H and J) 

exposed. Follicles at all stages of maturity (C-D: primordial, E-F: primary, G-H: pre-

antral/secondary, I-J: antral) expressed BECN1 protein in both sham and smoke exposed 

mice. The intensity of the staining as well as the localization differed between treatment 

groups and follicle stage. Original magnifications: Negative control: 10x, A-B: 4x, C-J: 

20x. K: The percentage of BECN1 positive cells present in follicles at each stage of 

development is shown. Data were checked for normality and equal variance and 

treatment effects were tested using t-test. Values are expressed as the mean (± SEM).  
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Figure 3: Bcl2 gene and BCL2 protein expression changes following cigarette smoke 

exposure.  

Analysis of Bcl2 gene and BCL2 protein expression was performed on whole ovary 

homogenates from 8 week sham and smoke-exposed mice. The graph in the left column 

depicts gene expression changes relative to Actb control (n = 6/group). The graph and 

representative blot in the right column depict protein expression changes relative to 

ACTB loading control (n = 7 sham, 6 smoke). Data were checked for normality and equal 

variance and treatment effects were tested using t-test. Values are expressed as mean (± 

SEM). 
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Figure 4: Autophagy-related proteins are altered following cigarette smoke 

exposure.  

Analysis of A) BECN1 and B) LC3 protein expression was performed on whole ovary 

homogenates from 8 week sham and smoke-exposed mice. Protein expression was 

measured relative to ACTB loading control (A: n = 6/group; B: n = 5/group). A 

representative blot is shown for each graph. Data were checked for normality and equal 

variance and treatment effects were tested using t-test. Values are expressed as mean (± 

SEM).  
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Figure 5: Beclin 1 protein changes following cigarette smoke exposure.  

Protein expression changes measured by Western blot analysis were confirmed using a 

Beclin 1 ELISA. n = 15/group. Data were checked for normality and equal variance and 

treatment effects were tested using t-test. Values are expressed as mean (± SEM).  
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Figure 6: Dysregulation of mitochondrial repair mechanisms is evident in ovaries 

exposed to cigarette smoke exposure.  

Analysis of PARK2 (A-B), MFN1 (C-D), and MFN2 (E-F) gene and protein expression 

in whole ovary homogenates from 8 week sham and smoke-exposed mice. Gene 

expression changes (A, C, E; n = 6/group) were measured relative to Actb control and 

protein expression changes (B, D, F; n = 7 sham, 6 smoke) were measured relative to 

ACTB (PARK2) or GAPDH (MFN1 and MFN2) loading controls. Data were checked for 

normality and equal variance and treatment effects were tested using t-test. Values are 

expressed as mean (± SEM).  
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Chapter 5 

Discussion 

Cigarette smoking is a serious threat to reproductive health [4;37;48;59;392]. Women 

who smoke have reduced fertility and undergo menopause earlier than those who have 

never smoked, suggesting that cigarette smoking depletes the ovarian reserve. Despite the 

myriad associations between smoking status and infertility, relatively little is known 

about the molecular mechanisms underlying its adverse effects on the ovary. As such, the 

purpose of this thesis was to resolve the mechanism by which cigarette smoke exhausts 

the ovarian follicle population in a mouse in vivo model of cigarette smoke-induced 

ovarian follicle loss. The studies herein were undertaken with the hypothesis that 

cigarette smoke causes primordial follicle death via apoptosis leading to shortened 

reproductive lifespan. 

 

Although our original hypothesis was proven wrong, taken together, the data presented in 

this thesis provide a mechanism by which ovarian follicles are lost following cigarette 

smoke exposure. The data presented in chapter 2 illustrate in an in vivo model that 

cigarette smoke exposure does in fact diminish the ovarian follicle population and that the 

follicles most affected are those in the primordial stage. Although follicles are being lost, 

it is not through apoptosis, the canonical pathway through which follicle loss was 

previously thought to occur. While cigarette smoke indisputably reduced the follicle 
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number in mice, the mechanism through which these follicles were being lost was 

unknown, despite significant changes in the expression of a key anti-apoptotic protein, 

BCL2. The data presented in chapters 3 and 4 further support these findings and point 

instead to a novel alternative cell death pathway in the ovary, autophagy.  

 

At the time of the first and second studies, it was generally accepted that follicles exposed 

to a chemical insult died through apoptosis. As such, we set out to show that cigarette 

smoke exposure, like many other reproductive toxicants, caused ovarian follicle loss 

through apoptosis. As expected, following exposure mice in the treatment group were 

found to have significantly smaller ovaries with a diminished ovarian follicle count 

compared to age-matched controls. Unexpectedly however, treated ovaries showed no 

more evidence of apoptosis than did controls. This was true despite the significantly 

lower expression levels of the anti-apoptotic protein BCL2 in treated ovaries. Given that 

BCL2 prevents BAX (a pro-apoptotic protein) from inserting itself into the mitochondrial 

OM and creating pores through which cytochrome c can pass, it was expected that BCL2 

reduction would shift the balance in favour of apoptosis. Despite this, all tests for 

apoptosis were not different between treatment groups. In order to ensure that subtle 

changes in apoptosis were not being missed as a result of using whole ovaries and their 

homogenates for the above studies, electron microscopy was employed with hopes of 

finding evidence of increased apoptosis occurring at the sub-cellular level. Surprisingly, 

no apparent increase in apoptotic activity was taking place. Even more surprising, 

however, was the unmistakable presence of organelles associated with another cell death 
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pathway, autophagy. Autophagy has long been considered a mechanism employed by 

cells to maintain homeostasis in times of starvation or oxidative stress and so, although 

surprising, evidence of it occurring in the granulosa cells of follicles exposed to cigarette 

smoke was not altogether unexpected.  

 

Cigarette smoke is comprised of a complex mixture of chemicals, many of which are 

oxidants themselves or have the ability to cause ROS once internalized. Knowing this, the 

second study included a number of outcome measures aimed at determining how much 

oxidative damage was occurring in the ovaries of smoke exposed mice. Although there 

was no significant difference between treated and control groups for some of the 

measures (protein carbonyl formation, DNA damage and glutathione levels), there was 

evidence that the cells of treated ovaries were experiencing oxidative stress, as evidenced 

by the increased expression of the small heat shock protein, HSP25 and by the 

significantly lower levels of the antioxidant enzyme SOD2, which is produced in the 

mitochondria. Upon closer examination, mitochondria were visible in the 

autophagosomes contained within the granulosa cells of treated ovaries. Future studies 

are needed to confirm this using mitochondrial-specific markers. Taken together, these 

results suggested that there was a reduced capacity for an antioxidant defense against 

ROS production in treated ovaries. 

 

Having systematically ruled out apoptosis as the primary mechanism through which 

follicles were being lost in the first and second studies, the third study was designed to 
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further elucidate the molecular mechanism through which autophagy was activated, 

resulting in the loss of these follicles. Autophagy involves a number of different 

molecular mediators, each key in different stages of the cascade. Knowing this, we chose 

to look at Beclin 1, a key mediator involved in the initiation stage of autophagy and 

responsible for membrane nucleation, and LC3, which is involved in autophagosome 

formation and facilitation of organelle transport into autophagosomes, as markers of 

enhanced autophagy in smoke exposed ovaries. Given that mitochondria were evident 

within the autophagosomes and that SOD2 expression was significantly lower in smoke 

exposed ovaries, we hypothesized that mitochondria were being selectively targeted for 

autophagosomal degradation. These findings, coupled with the knowledge that 

mitochondria-specific autophagy, mitophagy, exists to rid the cell of damaged 

mitochondria, we set out to determine if cigarette smoke exposure was causing targeted 

damage of mitochondria. Upon completion of this study, it was evident that not only was 

cigarette smoke increasing the autophagosomal activity within the granulosa cells of 

smoke exposed ovaries (increased number of autophagosomes, decreased BCL2 

expression and increased BECN1 and LC3 expression), but it was also resulting in the 

dysfunction of mitochondrial dynamics in those cells, as seen by the disruption in the 

balance between fission (increased PARK2 expression) and fusion (decreased MFN1 and 

MFN 2 expression).  
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5.1 Proposed model of cigarette smoke-induced ovarian follicle loss 

Based on the combined studies of this thesis, I have developed a model for the 

mechanism through which cigarette smoke adversely affects ovarian follicle survival 

(Figure 9). I propose that cigarette smoke acts through one of two pathways, likely both, 

culminating in the death of granulosa cells in ovarian follicles. First, cigarette smoke acts 

directly on the mitochondria resulting in an increase in the production of ROS, which 

overwhelms the antioxidant capacity of the cell and leads to oxidative damage. The 

oxidative damage, in turn, further increases ROS production, especially in the 

mitochondria which are particularly susceptible to ROS-induced oxidative damage, 

compounding the effect. This ultimately leads to dysfunction of the mitochondria and 

decreased ability to fuse with others in the syncytium for repair, leading to increased 

fission and subsequent degradation of the mitochondria via mitophagy. In the second 

scenario, components contained within cigarette smoke, namely BaP, act through the 

AhR to activate the transcription and translation of genes involved in the metabolism of 

those same components. Metabolism of those components leads to an increase in 

intracellular ROS. An increase in ROS triggers an increase in mitochondria to produce 

antioxidants, which are quickly overwhelmed leading to oxidative damage. Again, this 

positive feedback loop leads to further enhanced ROS production and oxidative damage. 

Because mitochondria are both producers of ROS and targets of ROS, they are 

susceptible to damage and this damage leads to dysregulation of repair mechanisms in 

place to combat this damage. Consequently, an increase in fission and a decrease in 

fusion results in fewer functional mitochondria. Fewer mitochondria mean less 
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antioxidant production to combat ROS production and to provide much needed energy to 

the cell. In both scenarios, the continued exposure to cigarette smoke does not allow for 

the reparative mechanisms to overcome the damage induced, and ultimately as more and 

more mitochondria are damaged and degraded, the cell becomes energy depleted and 

dies. Autophagy of the mitochondria is likely an initial attempt at survival of the 

granulosa cells, but the system is overwhelmed by the continuous onslaught of cigarette 

smoke exposure and ultimately becomes the mechanism by which these cells die.  
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Figure 9: Proposed model of cigarette smoke-induced granulosa cell death. 

Cigarette smoke acts through one of two pathways culminating in the death of granulosa 

cells in ovarian follicles. In the first pathway, direct action of cigarette smoke on the 

mitochondria results in an increase in the production of ROS, overwhelming the 

antioxidant capacity of the cell, leading to oxidative damage. This, in turn, further 

increases ROS production, especially in the mitochondria which are particularly 

susceptible to ROS-induced oxidative damage, compounding the effect, ultimately 

leading to dysfunction of the mitochondria and decreased ability to fuse with other 

mitochondria for repair, leading to increased fission and subsequent degradation via 

mitophagy. In the second pathway, compounds within cigarette smoke, namely BaP, act 

through the AhR to activate the transcription and translation of genes (i.e.: Cyp1A1) 

involved in the metabolism of those same components, which increases intracellular 

ROS, signalling mitochondria to produce antioxidants. This defense mechanism is 

quickly overwhelmed leading to a positive feedback loop of oxidative damage and 

dysregulation of repair mechanisms in place to combat this damage resulting in fewer 

functional mitochondria. Fewer mitochondria mean less antioxidant production to combat 

ROS production and to provide much needed energy to the cell. In both scenarios, the 

continued exposure to cigarette smoke does not allow for the reparative mechanisms to 

overcome the damage induced, and ultimately as more and more mitochondria are 

damaged and degraded, the cell becomes energy depleted and dies. 
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5.2 Contribution of this thesis to our understanding of toxicant-induced 

ovarian follicle loss 

5.2.1.1 Cigarette smoke causes significant ovarian follicle loss, but not through 

apoptosis 

In chapter 2, we sought to determine if the adverse effects associated with smoking were 

due, at least in part, to ovarian follicle loss. To achieve this, we exposed mice to cigarette 

smoke for 8 weeks, at the end of which we assessed their complement of follicles both 

numerically and for markers of programmed cell death type I, apoptosis. Our key findings 

following this study were that cigarette smoke at doses representative of human exposure 

causes significant follicle loss but not via the canonical apoptosis pathway. The 

significant follicle loss in these ovaries would effectively reduce the duration of 

reproductive life. This finding is in keeping with epidemiological studies conducted by 

Windham et al., who showed that women who smoke have shorter menstrual cycles and 

by Hayatbakhsh et al., who found that smokers enter menopause at an earlier age 

compared with women who do not smoke [52;393]. However, our study extends the 

toxicology literature, which, at the time of publication, had largely reported that 

reproductive toxicants caused ovarian follicle loss via apoptosis 

[19;53;62;63;65;66;221;227;229;233;265;268;290;394-397]. Indeed, treatment of ovaries 

in different species, with different toxicants and at different doses resulted in apoptosis of 

follicles at different stages of folliculogenesis and impacted fertility to varying degrees 

ranging from subfertility to sterility. Thus, reporting that apoptosis was not taking place 

in our model was paradoxical. However, upon in depth consideration, it became clear that 

the doses where apoptosis was consistently seen were significantly higher and less 
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environmentally relevant than those we were administering, suggesting that not only did 

each toxicant elicit its response upon different cohorts of follicles, but it did so at 

toxicological levels. Specifically, VCD, a metabolite of VCH and an effective follicle 

toxicant, elicits apoptosis in small pre-antral follicles in both rat and mouse ovaries, but 

does so via different molecular pathways [265]. Whereas rat ovaries were found to 

employ the AhR in VCD-induced ovotoxicity, mice did not. Similarly, the metabolism of 

these chemicals is often species-specific. For example, in mice, VCH exposure resulted in 

a decrease in small follicles by more than 50%, but the same treatment in rats resulted in 

no discernible follicle loss [398] a difference attributed to rats’ inability to metabolize 

VCH to VCD in high enough quantities to elicit follicle loss. Moreover, the effects of 

dose and toxicant used on follicle loss was found to be essential [18;19;217]. Whereas 

VCH selectively destroys primordial follicles and requires repeated dosing for prolonged 

ovotoxicity [19], DMBA (1 mg/Kg) destroys all types of ovarian follicles in both rat and 

mouse ovaries [18;217].  

5.2.1.2 Cigarette smoke exposure results in oxidative stress 

Given that cigarette smoke constituents have been implicated in oxidative stress and its 

resultant pathology, we assessed the role of ROS and their consequent oxidative damage 

to ovarian follicle loss. While specific measures of oxidative damage (DNA measured by 

8-OHdG, protein measured by protein carbonyl formation) were not significantly 

different, indirect markers of a response to an increase in ROS were (HSP25 expression). 

Specifically, expression of the small heat shock protein HSP25 was significantly 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

198 
 

upregulated in smoke exposed ovaries, a finding consistent with several other studies 

investigating oxidative stress in other tissues [399-405]. One such study looked at the 

effect of knocking out the transcription factor partially responsible for HSP25 expression 

on mitochondrial oxidative stress in the kidney. They found that reduced expression of 

heat shock factor (HSF) 1 resulted in a down-regulation of protein expression resulting in 

increased ROS (O2
●-

) as well as increased mitochondria-specific indicators of stress 

(opening of the membrane transition pore and change in membrane potential) [405]. Two 

studies looking at induced diabetes in mice saw increased HSP25 expression in the 

hippocampus [403] and retina [404] of treated mice coincident with increases in oxidative 

stress. Similarly, doxorubicin-induced congestive heart failure also resulted in an increase 

in HSP25 expression that correlated with the increase in oxidative stress [402]. 

Interestingly, treatment with schisandrin B, an antioxidant derived from the fruit of 

Schisandra chinensis, protects against hepatotoxicity by enhancing HSP25 expression 

and activating the cytochrome P450 oxidant pathway and ROS, suggesting that its role as 

an antioxidant is dependent upon the initial upregulation of oxidant species to trigger 

cellular response pathways [399]. With respect to our studies, it is entirely plausible that a 

similar cellular response to cigarette smoke is occurring whereby the heat shock and 

oxidant responses are being activated (as evidenced by increased HSP25 expression), but 

that their prolonged upregulation overwhelms these defense mechanisms (decreased 

SOD2 expression) resulting in decreased ability to reduce the effect of the ROS 

produced. Our findings were inconsistent, however, with one study investigating the 

effects of thioacetamide-induced liver injury on the stress response and ROS generation 
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[406]. The investigators of this study found a decrease in HSP25 expression following 

treatment resulting in enhanced ROS accumulation in the liver. The observed difference 

may be due to the chemical studied, the dose or indeed the tissue-specific response. It is 

important to note that this study was performed in a conditional p38α
Δhep

 knockout 

mouse; therefore, we cannot rule out the unanticipated effects of gene knockout on liver 

response to treatment.  

 

In addition to an increase in HSP25 expression, smoke exposed ovaries had significantly 

reduced SOD2 expression, suggesting an increase in mitochondrial damage and a 

subsequent decreased capacity to combat ROS. SOD2 is the anti-super oxide enzyme 

produced by mitochondria. Finding its levels lower in our smoke exposed ovaries was at 

first surprising, having expected an enhanced level concomitant with increased ROS. 

However, our findings were in line with others who demonstrated that prolonged 

exposure to pro-oxidants resulted in a decrease in SOD2 expression despite increases in 

ROS and oxidative damage [276;407]. Still others reported that cigarette smoking and 

exposure to cigarette smoke extract (CSE) resulted in increased oxidative stress and 

enhanced circulating SOD2 levels [293;408], suggesting that there are differences in 

response to similar substances within different tissues and when comparing in vitro vs. in 

vivo models. Taken together, these conflicting results show that response to oxidants and 

ROS production differs depending on chemical tested, dose, route of exposure, model 

system used, tissue tested and duration of experiment. Thus, direct comparison of results 

is complicated and should be made with caution. 
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5.2.1.3 Evidence of profound autophagy in granulosa cells of cigarette smoke 

exposed ovaries 

In chapter 3, after having effectively ruled out apoptosis as the cause of ovarian follicle 

loss using molecular markers, we turned to electron microscopy thinking that subtle 

changes in apoptosis were potentially taking place that were being masked by using 

whole ovary homogenates to measure gene and protein expression. To our surprise, we 

found evidence of an entirely different phenomenon occurring – autophagy. The presence 

of numerous double-membrane-bound vesicles was striking in the smoke exposed 

ovaries. EM is considered the gold standard for identifying autophagosomes and thus the 

occurrence of autophagy [409]. However, we used RNA extracted from whole ovaries in 

treated and control groups to assess the expression levels of two genes involved in 

autophagy to confirm our findings [345]. Expression of both genes, Becn1 and Lc3 was 

significantly higher in smoke vs. sham ovaries. Interestingly, a finding from our first 

study whose significance had perplexed us suddenly became clear. Cigarette smoke 

exposure resulted in significantly lower expression of BCL2. At the time, we expected its 

decrease to result in enhanced apoptosis owing to its association with BAX; however, 

BCL2 also plays a pivotal role in inhibiting the progression of autophagy [351;410;411]. 

These results meant that our treatment was activating a previously unreported mechanism 

of toxicant-induced ovarian follicle loss, thereby highlighting a novel alternative cell 

death pathway in the ovary.  

 

We further investigated the change in expression of molecular markers of autophagy in 

chapter 4. In addition to profound autophagosome formation in the granulosa cells of 
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cigarette smoke exposed ovaries, the gene and protein expression of the anti-autophagic 

BCL2 and of the pro-autophagic BECN1 and LC3 were assessed. In keeping with our 

previous findings, BCL2 protein expression was significantly lower while both the gene 

and protein expression of both BECN1 and LC3 were significantly higher in smoke 

exposed ovaries. Autophagy has long been considered a survival mechanism employed 

by cells to maintain homeostasis in times of oxygen or nutrient deprivation. However, in 

recent years, numerous studies have emerged highlighting its role as a cell death 

mechanism. Our findings are in line with the latter role of autophagy and are in keeping 

with others who have also shown autophagy increases cell death irrespective of enhanced 

apoptosis [276;277;349;350;355;391;412-422]. Autophagy has been shown to mediate 

cell death most often, although not exclusively, in the event of non-physiological assaults 

to the cell. These include arsenite [412;414;415], arsenic trioxide [350], 2-

methoxyestradiol [416], etoposide [410], H2O2 [416] and cigarette smoke [355;417;421]. 

Thus, our findings emphasize the role of autophagy as a cell death pathway, and confirm 

its role in ovarian follicle loss. 

5.2.1.4 Mitochondrial dysfunction is evident in cigarette smoke exposed ovaries 

Finally, in addition to showing that autophagy is important in cigarette smoke exposed 

ovaries, we demonstrated that mitochondrial dynamics were disrupted in cigarette smoke 

exposed ovaries, potentially leading to mitochondria-specific autophagy and granulosa 

cell death. Specifically, cigarette smoke exposed ovaries had significantly higher PARK2 

gene and protein expression concurrent with significantly lower MFN1 gene and protein 



PhD Thesis – A.M. Gannon McMaster University – Medical Sciences 

202 
 

and MFN2 protein expression. These changes in the homeostatic balance of the proteins 

necessary to maintain appropriate levels of mitochondrial fission and fusion occurring 

within the cell indicate a shift towards fission and mitochondrial loss 

[243;358;365;370;423;424]. Mitochondria are continually fusing with one another, 

elongating and undergoing fission in a tightly choreographed ballet that maintains 

appropriate mtDNA content, helps mitigate mitochondrial damage and increases ATP 

output [261;358;366;379;425]. Our findings here, coupled with the decreased SOD2 

expression seen in chapter 3 point to a dysregulation of the mitochondrial dynamics in 

cigarette smoke exposed ovaries. Given that other laboratories have reported increased 

autophagy following toxicant exposure, our results may provide insight into the 

dysfunction within the cell precipitating autophagy [379]. To wit, mitochondria can be 

specifically targeted for autophagy through mitophagy and increased mitophagy 

ultimately results in death of the cell if left unchecked. Therefore, evaluating markers of 

mitochondrial dysfunction could shed light on the molecular events of cells exposed to 

various chemicals and potentially lead to therapeutic interventions to reduce cell death.  

5.3 Strengths of the thesis 

There are a number of strengths to the animal model chosen to investigate the effects of 

cigarette smoke exposure on the ovary in humans. Careful consideration must always be 

given when choosing how best to study a human phenomenon in another species. 
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5.3.1 in vitro vs. in vivo model 

Utilizing an in vivo model instead of an in vitro model is one of the primary strengths of 

this thesis. While in vitro models lend themselves well to large sample sizes and multiple 

replicates at a lower cost (both monetarily and in time), they lack the complexity of 

multiple organ system involvement obtainable in an in vivo model. For example, although 

it has been shown that the ovary possesses the necessary enzymes to metabolize cigarette 

smoke constituents [426-429], we cannot rule out the involvement of liver metabolism 

and subsequent transport of reactive metabolites through the bloodstream to the ovary. 

Indeed, cigarette smoke constituents including BaP can be measured in serum and 

follicular fluid of smokers [56], and its metabolites are present in the ovary [429]. 

Consequently we chose to employ the use of an in vivo cigarette smoke exposure system 

to more closely emulate the effects of smoking on human ovaries in our animals.  

5.3.2 Dose and route of exposure 

In our animal model, female C57BL/6 mice received a whole body smoke exposure of 12 

reference cigarettes/hour twice daily for 5 days/week. Prior to the commencement of our 

studies, Dr. Stämpfli and his laboratory had worked out that this protocol worked well for 

obtaining serum cotinine and carboxyhaemoglobin (a measure of haemoglobin CO 

saturation) levels within the range of an average smoker [430]. For example, levels 

measured in exposed mice were consistent with those of moderate to heavy smokers 

[430-432]. In contrast, other ovarian toxicity studies use high doses ranging from 12.5 

nM - 500 mg/kg of cigarette smoke components, including BaP and DMBA, and 

administer these doses via injection, ingestion and in culture media in in vitro studies 
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[66;217;218;230;231;264;267;297]. These doses are not analogous to those seen by the 

ovary in human exposures. Additionally, the aforementioned methods of administration 

are not representative of human routes of ingestion of cigarette smoke and its 

components. Thus, we chose to employ a whole body exposure; however, we recognize 

that there is the potential for additional oral exposure to mice during coat grooming 

following exposure. To address this, we considered the potential confounding results this 

could cause and found that although true, humans also consume cigarette smoke 

components during inhalation and their metabolites can be measured in oral cells [433]. 

Thus, humans do have the potential to ingest cigarette smoke components as well.  

 

5.3.3 Reproducibility 

Reproducibility is fundamental to the strength of any scientific endeavour. Results from 

this thesis have been reliably reproduced in several animal cohorts. For instance, the 

observed loss of ovarian follicles in the absence of increased apoptosis were replicated in 

three separate treatment cohorts [434;435]. Moreover, two independent cohorts were 

assessed for changes in autophagy markers and oxidative stress [435;436]. In addition, 

similar results were obtained in other models of cigarette smoke exposure. For example, 

Hwang et al. found that in vivo exposure of murine lung epithelial cells to cigarette 

smoke resulted in autophagy that could be attenuated by pre-treatment with resveratrol 

[355]. Similarly, in vitro treatment of human lung epithelial cells with CSE produced 

profound autophagosome formation and upregulation of LC3 processing [391]. However, 

contrary to our results, in vitro treatment with CSE also resulted in an upregulation in 
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extrinsic apoptosis markers, the expression of which was partially dependent upon the 

autophagy proteins BECN1 and LC3 [391]. The apparent differences between these 

findings could be the product of the differences in species and cell type studied, in vitro 

vs. in vivo models (direct exposure of CSE vs. indirect exposure following systemic 

intake and metabolism), dose and duration of the experiment. In Chinese hamster ovary 

(CHO) cell cultures, autophagy was found to be protective against toxicant-induced cell 

death by preferentially inducing mitophagy to remove damaged mitochondria [420]. It is 

entirely possible that the dose and/or duration were not sufficient to induce autophagy-

mediated cell death. Conversely, given that the chemical used was different, the 

mechanism of cell death could likewise differ. It is interesting to note though, that despite 

differences in activation of autophagy and apoptosis, mitochondrial damage was evident 

in these treated cells, suggesting that there may be a threshold for mitochondrial damage 

beyond which mitophagy leads to death. 

5.4 Limitations of the thesis 

5.4.1 Murine model of a human condition 

While in vivo animal models are preferable to in vitro models for assessing the effects of 

a challenge on a particular system, they remain far from ideal. There are a number of 

challenges associated with utilizing an animal model to study the effects of a chemical on 

the human condition. In the case of this thesis, we endeavoured to mimic the effects of 

daily cigarette smoke exposure on the ovary using an in vivo mouse model of cigarette 

smoke exposure. We chose a murine model for several reasons. First, the model for 
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cigarette smoke exposure had been optimized for the mouse, allowing for the generation 

of data without the long lead-up time associated with optimizing a model system. Second, 

the reagents and tools have been extensively developed for this species. Third, mice have 

a short reproductive cycle, allowing for multiple cycles to take place over the course of 

the experiment, lending itself well to the recapitulation of long-term smoking over a 

much shorter time-frame. Lastly, from a practicality perspective, mice are relatively 

inexpensive to house, allowing for larger cohorts of animals to be used to increase the 

power of our studies. Despite the aforementioned reasons, it is important to bear in mind 

the limitations of employing a mouse model for the study of cigarette smoke exposure-

induced follicle loss, as mice and humans display anatomic and physiologic differences in 

their reproductive tracts, as well as in their xenobiotic metabolism. First and foremost, 

mice are a litter-bearing species while humans are not, meaning that multiple follicles are 

selected for dominance and ovulation in mice while typically only one is in the human 

ovary. Second, the estrus cycle in the mouse is 4-6 days [437] in duration while humans 

have a highly variable menstrual cycle ranging between 26-35 days [83], meaning that 

growing follicles would be exposed to cigarette smoke for longer periods of time in the 

human than in the mouse, potentially resulting in a more pronounced phenotype in 

humans. Third, to control for the differences in smoking patterns – that being that each 

time a cigarette is puffed, the depth of inhalation, dilution of cigarette smoke with room 

air, rate and intensity of puffing differs – we used a cigarette smoke machine which is 

calibrated to ensure delivery of a controlled, consistent dose of cigarette smoke in each 

puff and measured serum cotinine levels, the most important mammalian metabolite of 
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nicotine, following treatment in our mice. However, to further confound the dose 

measurement, cotinine has a significantly shorter half life in mice (20.1 ± 2.3 min for 

C57BL/6 mice) [438] than it does in humans (10-16 hr) [438;439] due to its rapid 

metabolism. Thus, collection of serum had to be done immediately following treatment to 

ensure accurate measurements. Finally, it cannot be assumed that what happens in one 

species will occur to the same degree in another, thus direct comparison is not possible. 

While these limitations will likely restrict the degree to which we can determine how 

much cigarette smoking will affect human ovarian follicle survival, the model 

nonetheless provides significant insight into the likely mechanisms driving ovarian 

follicle loss following cigarette smoke exposure and may lead to the development of 

potential therapeutic interventions for fertility preservation in patients exposed not only to 

cigarette smoke, but potentially to a multitude of reproductive toxicants. 

 

5.4.2 Technical challenges 

There were numerous technical challenges that limited the depth to which certain 

questions could be answered in this thesis. One of the consistent challenges throughout 

my thesis was the issue of using whole ovarian homogenates to gain insight into follicle- 

and granulosa cell-specific questions. While the use of immunohistochemistry (IHC) 

allows for the determination of the localization of a protein of interest, it is not a sensitive 

enough method to use to determine the quantity of a protein. As such, I coupled IHC with 

real time PCR and Western blotting to determine the localization and relative abundance 
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of a gene and its protein compared with an appropriate loading control. However, both 

the real time PCR and Western blots were completed using whole ovarian homogenates, 

which meant that stromal tissue expression of any gene or protein was also included in 

the final analysis. Alternative tests using laser capture microdissection (LCM) would 

circumvent this issue, however, at the time of these studies, were not available to me. 

Future studies employing the use of LCM would be able to further illuminate the degree 

to which the tested genes and proteins are altered by cigarette smoke. It is possible that 

where we saw no significant difference between treated and control ovaries using whole 

ovarian homogenates (i.e.: markers of apoptosis, markers of oxidative damage), that the 

effects were masked by stromal cells in the ovary. Conversely, where there was a 

significant difference between treated and control ovaries at the whole ovary level (i.e.: 

SOD2, markers of autophagy signaling cascade, markers of mitochondrial repair 

mechanism), I propose that the observed effect is more modest than would be in an 

isolated follicle preparation. We do not, however, anticipate that these tests would alter 

our main findings; chiefly that autophagy and not apoptosis is the mechanism by which 

ovarian follicle loss occurs following chronic cigarette smoke exposure. This is because 

although we used whole ovarian homogenates for our real time PCR and Western blotting 

experiments, those were complimented by the use of TUNEL, IHC and EM to show that 

autophagy and not apoptosis was increased in treated ovaries. 

 

Based on results from previous studies in our laboratory, the aryl hydrocarbon receptor 

(AhR) was identified as a probable candidate for mediating the effects of BaP on follicles 
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in vitro [300]. Moreover, given that similar effects were seen in CSC- and BaP-treated 

follicles [57;58;299;300], it is not unreasonable to postulate that BaP within cigarette 

smoke is largely responsible for the adverse effects seen in the CSC-treated cultures and 

by extension in our in vivo cigarette smoke exposed mice. Therefore, in an attempt to 

identify the pathway chiefly responsible for mediating the loss of ovarian follicles in our 

smoke exposure model, I designed an experiment using the aryl hydrocarbon receptor 

knockout (ARKO) mouse to determine the degree to which a functional AhR is required 

for follicle loss. The planned study was to complement the existing WT in vivo cigarette 

smoke exposure model – treating ARKO mice with cigarette smoke for 8 weeks and 

comparing them to age-matched ARKO sham controls. The study encountered several 

difficulties. Initially, the plan was to use homozygous breeding pairs and use the female 

offspring for the in vivo experiments. The heterozygous knockout mice were ordered and 

it took 10 months to receive four homozygous breeding pairs. Once they arrived, 

however, there were multiple problems: the dams produced very small litters (1-4 pups 

on average), were cannibalizing their young and those that weren’t cannibalized were not 

female (the ratio of male:female was approximately 5:1); consequently I was unable to 

obtain sufficient numbers of mice for experimentation. Suspecting that it was the 

genotype of the dams that was the issue, I backcrossed the mice to a heterozygous 

genotype and began breeding heterozygous females with homozygous males to optimize 

the number of homozygous offspring. The change in genotype of the dam helped with 

cannibalizing tremendously, and I began genotyping the offspring. Genotyping proved 

successful, but the number of homozygous female mice was inevitably too small to run 
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experiments. The decision was made to retire the colony in favour of finishing the project 

with the data I had to date and attempt the ARKO study at a later date. Interestingly, with 

the availability of an AhR deletion mutant (AhR
d
), I was able to obtain some preliminary 

data on BECN1 expression in WT and AhR
d 

following cigarette smoke exposure 

(Appendix II, Figure S6) and it appears that the AhR does indeed play a role in mediating 

the response of cigarette smoke in the ovary. Expression was significantly different 

between all groups (p = 0.007), as measured by one way analysis of variance (ANOVA). 

Sham WT was significantly lower than both sham AhR
d
 (<d>) (p = 0.02) and smoke WT 

(p=0.001) but not different from smoke <d>. AhR
d 

treated ovaries were not different from 

control AhR
d
 ovaries. These preliminary data suggest that similar levels of autophagy are 

occurring in WT untreated controls and AhR
d
 smoke exposed ovaries, potentially owing 

to the requirement for a functional AhR for autophagy-induced follicle loss. It is not clear 

at present why AhR
d
 controls would have greater BECN1 expression than WT controls. 

Future work in this vein will be necessary to further elucidate the degree to which the 

AhR is required. 

5.5 Future directions 

Although this thesis presents a strong, evidence-based theory on the mechanism 

regulating ovarian follicle loss following cigarette smoke exposure, a number of 

questions remain unanswered. In order to answer these questions, several additional 

studies requiring considerable work must be undertaken. Thus, the work presented here 

provides an excellent foundation for future directions using this model. 
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5.5.1 Aryl hydrocarbon receptor knockout mice 

In an effort to further elucidate the mechanistic pathway through which cigarette smoke 

elicits its effects, it is imperative that studies be done using the aryl hydrocarbon receptor 

knockout mouse. The AhR has been implicated in the metabolism of a number of 

compounds found within cigarette smoke, including BaP. In previous studies, antagonists 

of the AhR have been shown to mediate the adverse effects of cigarette smoke 

condensate in human bronchial epithelial cells [421] and of BaP on isolated rat follicles 

[300] in vitro, making it important to be able to show that the AhR is playing a similar 

role in mediating the in vivo actions of cigarette smoke on the ovary. 

5.5.1.1 The Aryl Hydrocarbon Receptor 

Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds formed by the 

incomplete combustion of fossil fuels and organic matter. Previous studies have revealed 

that of the more than 4,000 chemicals present in cigarette smoke, levels of PAHs 

(especially BaP) are present in levels that are 10-fold higher in sidestream than 

mainstream smoke [440]. BaP possesses mutagenic properties and is known to cause the 

formation of DNA adducts and is primarily activated by the cytochrome P450 (CYP) 

enzymes, most notably CYP1A1, CYP1A2, CYP1B1 [294], which are regulated by the 

aryl hydrocarbon receptor pathway. The AhR, a cytosolic ligand-activated receptor [427], 

is a member of a highly conserved family of transcription factors known as the basic 

helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family. The AhR, which is localized in 

numerous tissues throughout the body including oocytes and granulosa cells, mediates the 

effects of multiple xenobiotics including a number of compounds collectively known as 
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PAHs, persistent environmental contaminants whose effects are widespread throughout 

the body [441] and are constituents in cigarette smoke. Although no endogenous ligand 

has been found for the AhR to date, its conservation throughout a vast number of animal 

species indicates a physiologic role in addition to its mediation of xenobiotics [426]. As 

shown in figure 10, under normal physiological conditions, the AhR resides in the 

cytoplasm, bound to HSP90 and XAP2 [426]. Upon binding to its ligand, the AhR 

translocates to the nucleus where it forms a dimer with ARNT, the aryl hydrocarbon 

receptor nuclear translocator, and binds to xenobiotic/dioxin response elements 

(XRE/DRE) in the promoter regions of xenobiotic metabolizing enzymes and genes 

involved in cellular function, upregulating their transcription [441]. Previous work has 

shown that the ovotoxic effect of PAHs appear to be compound-specific [262], likely a 

consequence of their diverse affinities for the AhR as well as the action of the 

downstream enzymes that are activated. 
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Figure 10: The aryl hydrocarbon receptor pathway. 

Under physiological conditions, the AhR resides in the cytoplasm, bound to HSP90 and 

XAP2. Upon binding to its ligand (i.e.: BaP), the AhR translocates to the nucleus where it 

forms a dimer with ARNT, the aryl hydrocarbon receptor nuclear translocator. HSP90 

and XAP2 are subsequently degraded in the proteasome. The AhR/ARNT/ligand 

complex then binds to dioxin response elements (DRE) in the promoter regions of 

xenobiotic metabolizing enzymes (i.e.: CYP1A1) and genes involved in cellular function, 

upregulating their transcription, translation and ensuing toxic response. 

 

5.5.1.2 Benzo(a)pyrene 

Cigarette smoke is composed of 4,000 chemicals including benzo(a)pyrene, a 

prototypical PAH. While many of the consitiutents in cigarette smoke are toxic, only BaP 

has been measured in the follicular fluid of women who smoke. Therefore, of the 

chemicals present in cigarette smoke, BaP is potentially the most relevant with respect to 

ovarian follicle loss. BaP is a product of incomplete combustion of fossil fuels and is 

found in coal tar, exhaust fumes, cereals, char-broiled foods, and cigarette smoke. High 
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concentrations have been measured in indoor air where wood-fired stoves are used for 

cooking and in homes near coal-burning plants. Consequently, BaP is a ubiquitous 

environmental toxicant, exposure to which is widespread and unavoidable. BaP is a five-

ring polycyclic aromatic hydrocarbon that is highly mutagenic and carcinogenic and acts 

through the AhR. Exposure to BaP leads to the activation of the AhR pathway and 

subsequently to increased cytochrome P450 enzyme expression (CYP1A1, 1A2, 1B1) 

[265] and the metabolic breakdown of BaP into its active metabolite, benzo(a)pyrene diol 

epoxide (BPDE; Figure 11). BPDE then intercalates with DNA forming adducts resulting 

in carcinogenic mutations [442]. BaP-induced ovarian toxicity has been documented in in 

vitro studies and animal models [8;57;218;230;262;297;443;444]; however, few have 

investigated the effects of treatment using concentrations relevant to human exposure. 

Our lab found that BaP exposure, at levels representative of those measured in human 

follicular fluid of women exposed to smoke, results in impaired cumulus expansion and 

attenuated FSH-stimulated growth in a dose-dependent manner in isolated rat follicles 

[56;57]. Similarly, using a mouse isolated follicle culture system, follicle survival was 

significantly lower in 13 day cultures of follicles exposed to BaP, at concentrations 

equivalent to those measured in human ovarian follicular fluid of smokers, compared to 

control follicles [58]. In addition, follicles had significantly reduced estradiol (E2) 

secretion at day 8 of culture and significantly higher relative average increase in estradiol 

secretion between days 8 and 12, compared to controls while progesterone levels were 

unchanged with respect to controls.  
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Figure 11: The metabolic pathway of benzo(a)pyrene. 

Benzo(a)pyrene is metabolized in a three-step pathway. First, BaP is oxidized by 

cytochrome p450 enzymes to BaP 7,8-oxide. Next epoxide hydrolase 1 metabolises BaP 

7,8-oxide to BaP 7,8-diol which is then converted to BaP 7,8-diol epoxide via interaction 

with the cytochrome p450 enzymes. BPDE is then capable of intercalating with DNA to 

form covalent bonds with guanine residues and inducing mutations. 

 

5.5.1.3 Proposed studies using ARKO mice 

Knowing that the effects of both CSC and BaP are attenuated following treatment with 

AhR antagonists [300;421], and that in vitro treatment with either of these compounds 

results in effects similar to those seen in female smokers experiencing infertility [56-

58;299;300], it is important to determine if an in vivo model of cigarette smoke exposure 

in the absence of the AhR itself likewise attenuates the adverse effects of smoke 

exposure. Specifically, age-matched WT and ARKO mice would be randomly assigned to 

sham or treatment group and exposed to room air or cigarette smoke for 8 weeks (as per 

the established protocol). At the end of the treatment, outcome measures to be tested 

would include serum cotinine, AMH, E2 and FSH levels, follicle counts and analysis of 

gene and protein expression for markers of mitochondrial dysfunction, apoptosis and 

autophagy. If the absence of the AhR results in fewer follicles lost to cigarette smoke 

exposure, as we believe it will, then AhR targeted therapies could be designed aimed at 

decreasing the downstream oxidative damage that activation of this pathway causes.  
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5.5.2 Autophagy blockage 

In order to further verify that cigarette smoke exposure causes autophagy which in turn 

results in loss of follicles, attenuation experiments must be carried out. To achieve this, it 

would be necessary to inject mice with the specific inhibitor of autophagy, 3-

methyladenine (3-MA), prior to and during cigarette smoke treatment. 3-methyladenine is 

a pharmacological inhibitor of autophagy. Specifically, it is a class III 

phosphatidylinositol 3-kinase (PI3K) inhibitor that functions by blocking the initial 

autophagic sequestration and autophagosome formation, thereby inhibiting autophagy 

[445]. Experiments previously conducted in mice indicate that a dose of 30 mg/kg of 3-

MA are necessary to inhibit autophagy [445]; however, these experiments were short-

term (48 hour treatments) and thus a single treatment of 3-MA would likely not be 

sufficient to mitigate follicle loss. Thus, continued treatment with 3-MA throughout the 8 

week smoke exposure would be necessary. At the end of the 8 week exposure, ovaries 

would be collected and assessed for markers of autophagy, including EM analysis for 

visual confirmation of successful inhibition. Previous experiments using 3-MA to inhibit 

autophagy in lung ischemia-reperfusion injury confirm that it is effective in preventing 

autophagy-induced injury in tissue prone to autophagy-mediated cell death [446;447]. 

Alternatively, in vitro gene knockdown experiments utilizing small interfering RNA 

(siRNA) directed against Becn1 could be employed in CSC treated whole ovary cultures 

to mitigate autophagy-induced follicle loss [445]. siRNA prevent the expression of the 

gene against which they are directed. Thus, prevention of Becn1 expression would inhibit 

membrane nucleation and thereby prevent autophagosome formation.  
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5.5.3 Mitochondrial and ER involvement 

Although we have shown that cigarette smoke exposure increases the number of 

autophagosomes and expression of autophagy cascade members, it is not known if the 

adverse effects are primarily mitochondrial specific or if multiple organelles undergo 

autophagy. Therefore, it would be prudent to investigate the role of mitochondria and the 

potential involvement of other organelles, primarily the ER, in increased autophagy 

following cigarette smoke exposure. Thus an experiment designed to elucidate 

mitochondrial (and potentially ER) involvement in cigarette smoke-induced autophagy by 

visualizing the change in mitochondrial membrane potential, followed by formation of 

autophagosomes and autophagy of damaged mitochondria would be required. An in vitro 

system would perhaps be the best method in which to initially test this, as it would permit 

the monitoring of the formation of autophagosomes and the incorporation of 

mitochondria or other organelles into them in large numbers of follicles in a relatively 

short time-frame (13 days) compared to an 8 week in vivo experiment. To achieve this, 

mice expressing green fluorescent protein (GFP) fused to LC3 (GFP-LC3) could be used 

for isolated follicle culture experiments. In these mice, GFP-LC3 is expressed in tissues 

throughout the body including the reproductive tract and the ovary. To maximize the 

number of follicles retrieved, mice would need to be treated with recombinant FSH and 

human chorionic gonadotropin (hCG) prior to ovary collection, a procedure previously 

optimized in our lab [58;299]. Each follicle would be treated with vehicle control 

(dimethyl sulfoxide), or with increasing concentrations of cigarette smoke condensate (0-

90 g/ml) or BaP (0-90 ng/ml) ± 5 µM of 3’,4’-dimethoxy flavone (3,4-DMF), an AhR 
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antagonist, and cultured for 13 days. Following treatment, cells would be incubated with 

tetramethylrhodamine methylester (TMRM; a mitochondria membrane potential-

indicating fluorophore), and MitoFluor Far Red (MFFR; a fluorophore specific for 

mitochondria) and visualized using confocal microscopy. Knowing that ROS have the 

capability of altering MMP and that both CSC and BaP produce ROS, it is expected that 

treated follicles would display mitochondria with altered MMP and that those 

mitochondria damaged by oxidative stress would be incorporated into autophagosomes 

labeled with GFP-LC3; a process that should be attenuated by co-treatment with 3,4-

DMF. I believe that the number of mitochondria engulfed by autophagosomes would be 

greater in treated vs. vehicle control cultures demonstrating that mitophagy (GFP-LC3 + 

MFFR) and not bulk autophagy (GFP-LC3 only) is occurring preferentially in these 

cultures.  

 

It is also possible that mitochondria may not prove to be the sole targets of autophagy in 

our treated follicles. To test this, I propose that red fluorescent protein (RFP)-labelled ER 

(RFP-ER) markers also be employed in the above experiment. RFP-ER molecular probes 

are available that incorporate both the calreticulin ER insertion and KDEL sequences for 

specific visualization of the ER. The ER is responsible for the synthesis and folding of 

secreted and membrane-bound proteins. Optimal protein folding requires an oxidative 

environment, the exacerbation of which can lead to the unfolded protein response (UPR). 

The UPR in turn induces the expression of a number of proteins including 

CCAAT/enhancer-binding protein-homologous protein (CHOP), an early indicator of ER 

stress and a potent inhibitor of BCL2 expression [294]. Additionally, BCL2 is closely 
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associated with promoting a lower resting state ER calcium (Ca
2+

) content and with 

reducing Ca
2+

 release during stress by blocking inositol 1,4,5-triphosphate (IP3)-mediated 

opening of the IP3 receptor (IP3R) [339]. However, this regulatory role is potentially 

compromised by the localization of BAX and BAK to the ER, which interact with BCL2, 

thereby preventing it from interacting with IP3R. Additionally, BCL2 is phosphorylated 

by JNK in the UPR pathway and is thus targeted for proteasomal degradation [339]. 

Because we have seen a decrease in BCL2 expression in our smoke exposed ovaries, and 

the ER is also a site of BCL2 localization, we cannot rule out the involvement of the ER 

in cigarette smoke-mediated autophagy. Therefore, the inclusion of an ER marker would 

strengthen our findings and shed more light on the molecular mechanisms governing the 

loss of follicles in cigarette smoke-exposed ovaries. 

5.5.4 Reversibility/cessation studies 

Cigarette smoking reduces fertility [37]. As such, it is common practice for physicians to 

advise women attending their clinics to discontinue smoking prior to conception attempts. 

However, it is not known whether and if smoking cessation improves fertility or the time 

interval required.  Therefore, studies investigating the potential for fertility improvement 

and the timeline required for that improvement are needed. I believe that although not 

reversible, cigarette smoke-induced damage can be mitigated by decreasing exposure to 

toxic chemicals in cigarette smoke which will decrease oxidative stress and return 

autophagy to normal reparative levels in the ovary leading to improved fertility. To 

achieve this, mice would be exposed to the established 8 week protocol (this exposure 
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period is ≈ 1 year of cigarette smoke exposure in a woman, based on a 4-6 day cycle in 

mice and a 28-35 day cycle in women) and then subsets allowed to recover for varying 

periods of time, representing months (4 weeks ≈ 6 months) to several years (10 months ≈ 

5 years) in women. Blood and tissue would be collected from a subset from each 

treatment group for analysis of oxidative stress, mitochondrial dysfunction, and 

autophagy. The remaining subset would be housed with proven male breeders to 

determine the effect of smoking cessation on fertility. Outcome measures for this 

experiment would be time to pregnancy, number of pups/litter, number of implantation 

sites (uterus) vs. number of corpora lutea (ovary). Results from these studies would 

enhance physician counselling regarding duration of smoking cessation and potentially 

increase the successful pregnancy rates among female smokers. 

5.6 Summary 

 

Collectively, the data presented in this thesis provide greater insight into the mechanism 

of ovarian follicle loss following exposure to cigarette smoke. Our data expand the 

literature by challenging the long-held belief that ovarian follicle destruction is mediated 

by apoptosis following chemical exposure and highlighting a novel alternative cell death 

pathway employed by ovarian follicles when exposed to chronic, low doses of cigarette 

smoke. Our findings further highlight the importance of mitochondria and of autophagy 

in the health and maintenance of the ovarian follicles and ultimately fertility preservation. 

Our results could be important in a number of other pathways including loss of ovarian 

follicles exposed to other environmental toxicants, particularly chemotherapeutic drugs or 
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chronic occupational exposure to ovarian toxicants, other causes of infertility that have 

been linked to the production of ROS and/or mitochondrial dysfunction. Autophagy has 

been correlated with increased oxidative stress in older age and obese women [448], and 

autophagy disruption has been observed in women receiving assisted reproductive 

therapy; thus, dysregulation of mitochondrial dynamics and mitophagy in granulosa cells 

may be central to obesity and age-related decreased fertility as well as the response to 

environmental stressors. 
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Appendix I 

Supplemental Information for Paper 2 

 

Figure S1: AhR gene expression.  

Cigarette smoke exposure results in an upregulation of the Ahr gene following 8 weeks of 

treatment compared with age-matched controls. p < 0.001, n = 6. 
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Figure S2: Cyp1A1 gene expression.  

An 8 week exposure to cigarette smoke leads to upregulated Cyp1A1 expression, a 

downstream target of the AhR, compared to sham controls. p <0.001, n = 6.  
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Figure S3: Cyp1A1 and Cyp1B1 protein expression. 

Immunohistochemical staining of sham and smoke exposed ovaries show an increase in 

cytochrome P450 enzymes regulated by activation of the AhR. 
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Figure S4: Inhibitors of apoptosis protein expression. 

Several IAPs were studied using IHC to determine localization and potential changes in 

expression following cigarette smoke exposure. All IAPs were present in sham ovaries, 

although cIAP2 expression was very low. XIAP and cIAP1 were present in the oocyte 

and granulosa cells of follicles at all stages of development and in the corpora lutea (CL) 

and some stromal cells of sham ovaries, but appeared to be primarily present in the 

oocytes and CL of smoke exposed ovaries. cIAP1 also stained positively in granulosa 

cells of smoke exposed ovaries. cIAP2 was very lowly expressed in sham ovaries, with 

only faint staining apparent in some oocytes and few cells of the CL and was absent in 

smoke exposed ovaries. PA = preantral follicle, A = antral follicle, arrow = positively 

staining cells. 
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Figure S5: cIAP2 protein expression.  

Protein expression of the inhibitor of apoptosis cIAP2 was not different in sham versus 

treated ovaries following an 8 week exposure.   
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Appendix II 

Figure S6: Beclin 1 ELISA.  

Changes in BECN1 expression following 8 weeks of sham or cigarette smoke exposure in 

WT and AhR
d
 (<d>) mouse ovaries. There was a significant treatment effect (p = 0.007). 

Sham WT was significantly lower than both sham <d> (p = 0.02) and smoke WT 

(p=0.001) but not different from smoke <d>. Smoke WT was different from smoke <d> 

(p = 0.047). AhR
d
 treated ovaries were not different from control AhR

d
 ovaries. One-way 

ANOVA was performed with a Holm-Sidak post hoc test and a p value of less than or 

equal to 0.05 being considered significant. n = 15 WT, 5 <d> per treatment group.  
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Figure 4: Folliculogenesis 
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