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ABSTRACT 

This thesis contributes significantly to the advanced applications of scattering parameter 

sensitivity analysis including the design optimization of high-frequency printed structures 

and in microwave imaging. In both applications, the methods exploit the computational 

efficiency of the self-adjoint sensitivity analysis (SASA) approach where only one EM 

simulation suffices to obtain both the responses and their gradients with respect to the 

optimizable variables.  

An S-parameter self-adjoint sensitivity formula for multiport planar structures 

using the method of moments (MoM) current solution is proposed. It can be easily 

implemented with existing MoM solvers. The shape perturbation which is required in 

computing the system-matrix derivatives are accommodated by changing the material 

properties of the local mesh elements. The use of a pre-determined library system matrix 

further accelerates the design optimization because the writing/reading of the system 

matrix to/from the disk is avoided. The design optimization of a planar ultra-wide band 

(UWB) antenna and a double stub tuner are presented as validation examples.  

In the application of the sensitivity-based imaging, the SASA approach allows for 

real-time image reconstruction once the field distribution of the reference object (RO) is 

known. Here, the RO includes the known background medium of the object under test 
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(OUT) and the known antennas. The field distribution can be obtained using simulation or 

measurement. 

The spatial resolution is an important measure of the performance of an imaging 

technique. It represents the smallest detail that can be detected by a given imaging 

method. The resolution of the sensitivity-based imaging approach has not been studied 

before. In this thesis, the resolution limits are systematically studied with planar raster 

scanning and circular array data acquisition. In addition, the method’s robustness to noise 

is studied. A guideline is presented for an acceptable signal-to-noise ratio (SNR) versus 

the spatial and frequency sampling rates in designing a data-acquisition system for the 

method. 

This thesis validates the sensitivity-based imaging with measured data of human 

tissue phantoms for the first time. The differences in dielectric properties of the targets 

are qualitatively reflected in the reconstructed image. A preliminary study of imaging 

with inexact background information of the OUT is also presented.  
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Chapter 1 
 

INTRODUCTION 
 
 
 
 

1.1 MOTIVATION 

A variety of numerical algorithms for full-wave electromagnetic (EM) analysis emerged 

as computing resources became more powerful and widely available since the 1970s. 

Accurate and complete field representation has thus become available as long as the 

respective theoretical models could include all EM interactions. However, these 

algorithms require significant computer memory and time as opposed to equivalent-

circuit models. Even today, full-wave EM analysis appears very slow for modeling and 

design purposes of a complete microwave structure.  

The design sensitivity information is crucial in engineering problems such as 

optimization, statistical, yield and tolerance analysis. However, the efficient sensitivity 

analysis with full-wave EM simulations remains a challenge. Adjoint-based approaches to 

the evaluation of the gradient of microwave systems have been proposed recently [1]-[9]. 

The system response may be defined as the state variables directly, e.g., the voltages of a 

circuit, the field distribution or the current density distribution. These are examples of 

distributed responses. The response may also be in the form of network parameters, e.g., 
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S-parameters, which appear in the form of functionals of the state variables, e.g., 

functionals of the E  field solution. 

The adjoint-based approach yields the response and its sensitivity through two 

analyses: the original structure (or circuit); and the adjoint structure (or circuit). In 

general, two system analyses are sufficient regardless of the number of design variables. 

In high-frequency analysis, the adjoint variable method has been applied with the finite 

element method (FEM) [2][3], the method of moments (MoM) [4]-[6], the finite-

difference time-domain (FDTD) method [7], and the transmission-line matrix (TLM) 

method [8][9]. 

Since the advent of the self-adjoint EM sensitivity analysis methods [10]-[14], the 

estimation of the response gradient became more efficient because the analysis of the 

adjoint problem is avoided. This is achieved by formulating an adjoint-problem solution 

which can be obtained from the solution of the original problem by simple mathematical 

transformations. This is the major advantage of the self-adjoint formulations. There, the 

S-parameter sensitivity can be calculated from two types of state variables: surface 

current solution (or current density) [12] and volume field solution [13][14].  

The focus of our work is on the EM sensitivity analysis using: (i) MoM current 

solutions with applications in design optimization, and (ii) volume field solutions with 

applications in microwave imaging.  

In [11], a new S-parameter sensitivity analysis method for three dimensional high-

frequency structures is proposed. The advantage of the technique is that it is independent 

of the EM solver since it requires only the surface current and charge densities for 
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sensitivity computation. However, it cannot be implemented in the case of infinitesimally 

thin metallic structures due to the singularities of the current/charge densities.  

In [12], a self-adjoint approach to the S-parameter sensitivity analysis using MoM 

solution has been proposed from planar structures. It does not require solving the adjoint 

problem. To estimate the system-matrix derivatives with respect to shape parameters, the 

locations of the mesh nodes are changed in the perturbed structure, i.e., it is assumed that 

the surface MoM mesh can be “stretched” or “shrunk” to accommodate the shape 

perturbation. The overhead of the sensitivity computation is significant because N 

(number of design variables) additional matrix fills are performed for the N perturbed 

structures from which the finite-difference (FD) estimates of the matrix derivatives are 

computed. In addition, the technique proposed in [12] is not applied to real-world 

complex structures as it requires access to the MoM system matrix which is usually 

unavailable to the software users. Even if the system matrix is available, its size is so 

large for practical structures that the writing/reading of the system matrix to/from the disk 

is very time consuming.  

In [15], the concept of discrete perturbations of metallic structures is first 

proposed. It has been implemented in the design optimization of antennas. There, every 

new structure arising during the optimization is “constructed” by switching “on” and 

“off” patches of the previous iterate where the “on” state corresponds to a metallic patch 

while the “off” state corresponds to a dielectric surface. Note that these patches may not 

be as fine as the computational cells as they only serve as “bricks” in the construction of 
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the antenna. To our knowledge, this technique has not been implemented in response 

sensitivity analysis or in gradient-based optimization. 

In this thesis, an S-parameter self-adjoint sensitivity formula for multiport planar 

structures is proposed which can be easily implemented with existing MoM solvers. In 

contrast to [12], the mesh nodes are fixed. In this work, the shape perturbations are 

accommodated by changing the material properties of the local mesh elements. For 

example, a metallic surface patch in the nominal design can be “de-metalized” to a patch 

of a dielectric surface. The components that contain design variables are meshed with 

finer grid. This enables fine tuning during the design optimization and at the same time 

keeps the computational resources at reasonable levels. In our study, we propose the use 

of a pre-determined library structure which is large enough to contain all possible metallic 

shapes arise during the optimization. The corresponding system matrix then can be 

repeatedly used during design optimization in order to obtain the system matrices of each 

iterate. Therefore, the writing/reading of the system matrix to/from the disk [12] is 

avoided. The design optimization of complex structures is greatly accelerated. 

Methods to perform the self-adjoint S-parameter sensitivity analysis using volume 

field solutions have also been proposed before. FEM and FDTD field solutions have been 

used to calculate the S-parameter sensitivities in [13] and [14], respectively. The 

estimation of the sensitivities is efficient as the computation requires only one simulation 

of the original problem.  

In [16], the S-parameter sensitivity analysis is for the first time implemented in 

microwave imaging. There, a new general method for response-sensitivity analysis is 
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suggested. The method is independent of the forward model, i.e., the method of 

simulation. Its only restriction is that the problem must be reciprocal, i.e., the medium is 

linear with symmetric constitutive tensors, T=ε ε  and T=µ µ . 

The detection algorithm generates Jacobian maps. They are plots of the Fréchet 

derivatives, i.e., the derivatives of the response difference function with respect to the 

voxel permittivities and/or conductivities versus the voxel locations. The sensitivity maps 

can be interpreted as images showing areas in the background medium where the voxel 

permittivities differ significantly from those in the object under test (OUT). The method 

aims at obtaining a diagnostic conclusion of whether scatterers (e.g., defects in materials, 

abnormal tissues in organs, etc.) are likely to be present or not in the OUT.  

The method uses the following information to reconstruct the image: (i) the 

responses measured with the assumed normal state of the object, i.e., the reference object 

(RO); (ii) the responses measured with the OUT where there may be abnormalities; (iii) 

the E-field distribution in the RO under the known excitations (can be obtained via 

simulation or measurement). The differences in the responses acquired with the RO and 

the OUT are then formed. The derivatives of the RO responses with respect to the 

complex permittivity of each voxel in the RO are computed using the self-adjoint 

sensitivity analysis method [14]. Using the response derivatives of the RO, the response-

difference derivatives are computed and used to generate Jacobian maps (i.e., maps of the 

Fréchet derivatives). These maps represent the property difference between the RO and 

the OUT. Abnormalities are thus identified and localized by significant parameter 

differences (peaks and dips) in the image. 
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The advantage of the imaging method is that it does not involve the inversion of a 

matrix and the computations are fast. The method, on the other hand, requires 

electromagnetic (EM) simulation or measurement of the RO, which includes the known 

reference medium and the known antennas. Once the required data from the RO is 

available, the self-adjoint formulation of the response-sensitivity calculation allows for 

real-time image reconstruction from the measured microwave responses of any OUT. 

Multiple ROs can also be used if necessary as this is not going to have significant impact 

on the time required to obtain an image. 

An important measure of the performance of an imaging technique is its spatial 

resolution, i.e., the size of the smallest shape detail in the image. Its value can be defined 

as the width at the half-power level of the image of a small but detectable object. This 

value also represents the smallest distance between two small objects which are clearly 

discernible in the image [17]. If the two objects are close, so that the distance between 

them is smaller than the spatial resolution, they will appear as a single object in the 

image. Until now, the resolution of the sensitivity-based imaging approach has not been 

studied and this is the focus of the current study. 

In addition, the method’s noise robustness is important for its implementation with 

realistic microwave measurements. A guideline for an acceptable signal-to-noise ratio is 

needed in designing a data-acquisition system for the sensitivity-based method. Since the 

effect of noise has not been studied before, we focus on this problems as well and relate it 

to the spatial and frequency sampling rates. 

Finally, the imaging method is for the first time validated using measured data of 
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human-tissue phantoms. The phantoms are made to mimic human breast with double 

tumor simulants with different size and/or contrast. In addition, a preliminary study of 

imaging without the exact knowledge of the background medium of the OUT is presented 

based on simulated data of a human tissue model.  

 

1.2 CONTRIBUTIONS 

The author has contributed to a number of original developments presented in this thesis. 

These are briefly described next. 

(1) A computationally efficient way of calculating S-parameters sensitivities using 

MoM current solution; published in [18]-[22]. 

(2) An analytical EM model which allows for fast and accurate computation of the 

OUT and RO models in sensitivity-based imaging; published in [23][24]. 

(3) Spatial resolution limits and robustness to noise of the sensitivity-based imaging 

using data acquired with cylindrical sensor systems; published in [24][25]. 

(4) Spatial resolution limits and robustness to noise using data acquired with planar 

raster scanning systems [26]. 

(5) Image reconstruction using measured data of human-tissue phantom for the first 

time, published in [27]. 

(6) Preliminary study of image reconstruction without the exact knowledge of the 

heterogeneous background medium of the OUT. 
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1.3 OUTLINE OF THE THESIS 

This thesis presents advanced applications of the S-parameter sensitivity analysis in: (i) 

design optimization of high-frequency structures using MoM current solutions; (ii) 

performance study (resolution and robustness to noise) of the sensitivity-based 

microwave imaging method.  

Chapter 2 starts with the mathematical background of the sensitivity analysis 

using the self-adjoint approach. In order to formulate a response-sensitivity problem as 

self-adjoint, one needs the self-adjoint constant κ , which relates the original-problem 

solution to that of the adjoint problem. Since the EM solvers obtain a system response 

(such as a network parameter) from the state variables x  through a functional ( )f x . The 

self-adjoint constant κ  associated with ( )f x  can be found if the functional ( )f x  is 

known, which is always the case. The formulation of the sensitivity formula using MoM 

current solution, which is derived based on the specific EM solver FEKO, is given. 

In the study using sensitivity-based imaging method, the S-parameters are 

calculated using field distributions. The self-adjoint constant κ  is derived from the 

relations between the original field distribution E  and the adjoint field distributions Ê . 

The derivation of the self-adjoint constant has been shown in [14][16]. The final result of 

this theoretical derivation is briefly shown in Chapter 2. 

Chapter 3 presents the application of the sensitivity analysis with MoM current 

solution to design optimization. The self-adjoint approach is implemented with discrete 

shape perturbations on a non-uniform grid. The technique is illustrated through the S-
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parameter sensitivity analysis of a planar printed antenna and a microwave double-stub 

tuner. The computed sensitivities are validated by comparing with the central finite-

difference estimates at the response level. Gradient-based design optimization is 

performed using the sensitivity information. 

Chapter 4 studies the resolution and noise robustness of the sensitivity-based 

imaging method using data acquired with two common approaches: (i) planar raster 

scanning; and (ii) circular sensor array. The configuration of the data acquisition systems 

is first presented. The analytical models of the incident and the scattered field are then 

formulated. The former is exact [29] while the latter is based on the linear Born 

approximation [30]. The spatial resolution limits are derived from the analytical point-

spread function (PSF) of the method and are then validated with double-scatterer imaging 

examples. The method’s robustness to noise with respect to the spatial and frequency 

sampling rates is then studied.  

Chapter 5 presents the results obtained with the sensitivity-based imaging method 

from the measured and simulated data of tissue phantoms. The experimental validation of 

our imaging method is presented for the first time. The electrical properties and the size 

of the OUT phantoms are given. Two box-shaped OUT phantoms are used [31]: (i) two 

scatterers with different contrast and separated by a distance of 50 mm; (ii) two scatterers 

with the same contrast and separated by a distance of 15 mm. The RO phantom emulates 

the normal state of the OUT. It is the same as the respective OUT except that there are no 

embedded scatterers. Two TEM horn antennas are used as imaging sensors and they are 

placed on both sides of the phantom while facing each other. During the scan, they move 
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simultaneously over the acquisition plane. With our current system, the transmission 

coefficients are obtained in a wide frequency band and are used in 2D image 

reconstruction. In addition, preliminary study of imaging without the exact knowledge of 

the background medium of the OUT is also performed based on simulated data. 

The thesis concludes with Chapter 6 where conclusions and recommendations for 

the future work are given.  
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Chapter 2 
 

BACKGROUND  
 
 
 
 

2.1 INTRODUCTION 

The design sensitivity analysis of a distributed system is important when there is need to 

improve its performance and/or to know its uncertainties [1]. The design sensitivity is 

comprised of the derivatives of the responses with respect to the design variables, e.g., 

shape or material parameters. Engineering problems such as manufacturing and yield 

tolerances, design of experiments and models, and design optimization, can all benefit 

from the knowledge of the response sensitivities.  

The adjoint-variable method is known to be one of the most efficient approaches 

to design sensitivity analysis for problems of high complexity where the number of state 

variables is much larger than the required number of response derivatives. In high-

frequency analysis, the adjoint-variable method has been applied with the transmission-

line matrix (TLM) method [2][3], the finite-element method (FEM) [4][5], the method of 

moments (MoM) [6]-[8], and the finite-difference time-domain (FDTD) method [9]. 

The adjoint-variable approach to response-sensitivity analysis is significantly 

more efficient than the response-level approximations such as finite differences. This is 

because it requires two system analyses at the most, regardless of the number of the 
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system parameters. The accuracy of the adjoint-based sensitivity estimation is of the same 

order as that of the responses and it does not suffer from catastrophic cancellations. Note 

that the adjoint-variable sensitivity computation is exact when the derivatives of the 

system matrices with respect to the system variables are analytically available. However, 

since the computation uses field solutions of finite numerical accuracy, its output is not 

exact and some degradation of accuracy may be expected due to the errors in the EM 

simulations. 

Sensitivity analysis with a self-adjoint approach has been proposed with various 

EM numerical methods including the TLM method [10][11], the FEM method [12][13], 

the MoM [14], and the FDTD method [15]-[17]. Note that some of the methods based on 

volume field solution, e.g., [13][17], are applicable with any EM solver capable of 

producing the required field distributions since they are independent from the respective 

numerical methods.  

In the self-adjoint approach, the second (adjoint) system analysis is eliminated 

which further improves the efficiency of the sensitivity evaluation. This is achieved by 

formulating an adjoint-problem solution which can be obtained from the solution of the 

original problem by simple mathematical transformations. This is the major advantage of 

the self-adjoint formulations. The self-adjoint sensitivity analysis (SASA) is possible due 

to the reciprocity of the EM problem. The time required by the SASA computation is 

negligible compared with the simulation time of the EM problem.  

A SASA approach using MoM current solution has been proposed in [14]. The 

overhead of the sensitivity computation is reduced compared to the adjoint-variable 
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method [6]-[8]. However, the computation is still significant because N (number of design 

variables) additional matrix fills are performed for the N perturbed structures from which 

the finite-difference (FD) estimates of the matrix derivatives are computed. In addition, 

the size of the system matrix is usually very large for practical structures. Thus, the 

writing/reading of the system matrix to/from the disk is very time consuming. These 

drawbacks form the focus of our work which is discussed in detail in Chapter 3.  

In the formulation of the S-parameter sensitivity analysis with field solutions, the 

self-adjoint constant is obtained by relating the adjoint problem (adjoint field distribution) 

to the original problem (original field distribution). Substantial work has been done in this 

regard [12][16][17]. The final result of the derivation of the SASA formula using field 

solution is briefly summarized in this chapter.  

In the work presented in [17], the sensitivity-based imaging method has been 

implemented in numerical examples with circular-sensor array data-acquisition system. 

There, the concept of the method is shown to be valid in a preliminary study. However, a 

systematic study is still needed on the method’s resolution limit and its robustness to 

noise. In addition, the method has never been applied to image reconstruction using 

planar surface acquisition and measurements of tissue phantoms. All these problems will 

be addressed in Chapters 4 and 5.  

 



 18 

2.2 REVIEW OF S-PARAMETER SENSITIVITY ANALYSIS WITH 

METHOD OF MOMENTS SOLUTIONS 

Using the MoM, a time-harmonic EM problem involving linear materials can be reduced 

to a linear system of equations: 

 ( ) =A p x b . (2.1) 

The system matrix M M×∈A ℂ  is a function of the shape and material parameters 

1N×∈p ℝ . Here, M is the number of state variables and N is the number of design 

variables. 1M ×∈x ℂ  is the vector of state variables and 1M ×∈b ℂ  is the excitation vector. 

For now, we assume that x  represents the current solution, i.e., ≡x I . 

We define a general response function ( , ( ))f p x p  of the linear system satisfying 

(2.1). It depends on the design parameters p  implicitly through x  but may also have 

explicit dependence on p . The objective of the sensitivity analysis is to obtain the 

gradient of the system response, i.e., 

 , subject tof∇ =p Ax b   (2.2) 

where 

 
1 2

, ,...,
Np p p

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
p . (2.3) 

The gradient f∇ p  can be obtained as [6]: 

 ˆ ( )e Tf f  ∇ = ∇ + ⋅ ∇ − ∇ p p p px b Ax  (2.4) 

where e f∇ p  reflects the explicit dependence of f on p . x  is the solution to the system of 
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equations (2.1) and it is not subject to differentiation in ( )∇ p Ax . Here, it is assumed that 

the excitation vector b  is independent of p  because the network ports serve as a 

reference and are not subject to design changes. Therefore, we have ∇ =pb 0 .  

The adjoint state-variable vector x̂  satisfies the adjoint system: 

 ˆˆT =A x b . (2.5) 

Here, b̂  is the adjoint excitation, 

 [ ]ˆ T
f= ∇ xb . (2.6) 

We assume that the EM problem is reciprocal and, therefore, (2.1) can be cast in a 

symmetric form, i.e., 

 T=A A . (2.7) 

Note that the system matrices are exactly symmetric only if Galerkin’s discretization 

procedure is applied in the MoM. However, due to the reciprocity of the linear EM 

problem, even with other techniques, the system matrix tends to be symmetric when the 

mesh is sufficiently fine [14]. Here, we use the MoM based simulator Sonnet em [18] and 

FEKO [19] whose system matrices satisfy (2.7) exactly. 

Observing (2.1) and (2.5), if the adjoint system has the form 

 ˆ κ=Ax b , (2.8) 

then the adjoint solution can be obtained directly as  

 ˆ κ=x x . (2.9) 
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Here, the self-adjoint constant κ  is introduced to relate the adjoint and the original 

system solutions. 

In [14], the self-adjoint constant is derived based on the MoM-based EM solver 

FEKO and it is obtained as  

 0
( ) ( )

2
.jk j k

e e

Z

V V
κ = −  (2.10) 

Here, 0Z  is the system impedance, ( )
eV υ  ( ,j kυ = ) is the υ -th port voltage source. The 

subscript jk in jkκ  denotes that the self-adjoint constant relates to the particular response 

jkS . 

The final expression for calculating the S-parameter sensitivity is given as 

 
( )( ) ( )0

( ) ( )

2
,

, 1,2, , ;  1,2, , .

Tjk j k
j k

n e e n

S Z

p V V p

j k K n N

∂ ∂= ⋅ ⋅
∂ ∂

= =

A
I I

… …

 (2.11) 

Here, κ  denotes the number of ports and ( )ξI  ( ,j kξ = ) is the current distribution when 

the ξ -th port is excited. Note that (2.11) is derived for the specific MoM simulator in the 

FEKO software where the S-parameters are calculated from the current solution.  

In (2.11), the derivative of the system matrix with respect to the shape parameter 

is computed using the first-order finite-difference approximation [14] 

 n

n n np p p

−∂ ∆≈ =
∂ ∆ ∆

A AA A
. (2.12) 
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Here, ( )( )n
n np= + ∆ ⋅A A p u , where ( )nu  is a vector whose elements are all zero except 

the n-th one, 1nu = . Note that (2.12) is applicable only if nA  and A  are of the same size, 

i.e., the two respective meshes contain the same number of nodes and elements. 

Moreover, the numbering of the nodes and elements must correspond to the same 

locations (within the prescribed perturbation) in the original and perturbed structures, i.e., 

the mesh topology must be preserved [14].  

Specificaly, to estimate (2.12), the locations of the mesh nodes are changed in the 

perturbed structure, i.e., it is assumed that the surface MoM mesh can be “stretched” or 

“shrunk” to accommodate the shape perturbation. Thus, the overhead of the sensitivity 

computation is significant because N additional matrix fills are performed for the N-th 

perturbed structures to form ,  1,..., .n n N=A  In addition, the technique proposed in [14] is 

not applied to real-world complex structures as it requires access to the MoM system 

matrix which is usually unavailable to the software users. Even if the system matrix is 

available, its size is usually very large for practical structures, which makes the 

writing/reading of the system matrix to/from the disk prohibitive. 

 

2.3 REVIEW OF S-PARAMETER SENSITIVITY ANALYSIS WITH 

VOLUME FIELD SOLUTIONS 

The generic response in the frequency-domain EM sensitivity analysis is the functional 

 ( , ) ( , )F f d
Ω

= Ω∫∫∫E p E p  (2.13) 
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where Ω  is the computational volume, E is the field solution, and ( , )f E p  is the local 

response, which depends on the field solution E.  

The goal of sensitivity analysis is to compute the response gradient (response 

sensitivity) F∇ p . In this study, we focus on S-parameter sensitivity analysis with respect 

to the constitutive parameter ( ) ( ')mp r  of voxel at location 'r . Here, m denotes the m-th 

sampled frequency ( f1,...,m N= ), in the cases where the constitutive parameters are 

frequency-dependent. 

One application of the self-adjoint sensitivity analysis with volume field solutions 

is in microwave imaging [17]. For a receiving antenna of the dipole type, we can assume 

that the S-parameter can be computed using 

 ( ) ( )m m
jk jk jS = ⋅E ρ  (2.14) 

where jρ  is the polarization vector of the j-th receiving antenna and ( )m
jkE  is the E-field at 

position jr  when the transmitter at position kr  radiates at the m-th frequency 

( f1,...,m N= ). 

Having ( )m
jkF S≡  in (2.13), the derivative of ( )m

jkS  with respect to the voxels’ 

permittivities/conductivities can be written as [17]: 

 
( )( )

( ) ( )
( ) ( )

( ', )
( ', ) d

( ') ( ')

mm
kjk m m

j jm m

RS

p p
κ

Ω

 ∂∂  = − ⋅ Ω
∂ ∂∫∫∫

E
E

r r
r r

r r
. (2.15) 
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Here, ( ) ( ')mp r  = ( )
r ( ')mε r , ( ) ( ')mσ r ; where ( )

r ( ')mε r  and ( ) ( ')mσ r  are the relative 

permittivity and conductivity of the voxel at 'r . ( ) ( ', )m
ξE r r  ( ,j kξ = ) is the m-th 

frequency incident E-field at location 'r  when the transmitter is at ξr . Also, 

 

( ) ( )
2 ( ) ( )

r( ) ( )
0

( ) ( ) ( )
r

( ', ) ( ')
( ', ) ( ')

( ') ( ')

                                  ,

m m
k m m

m km m
m

m m m

R
k j

p p

p

σε
ω ε

ε σ

 ∂  ∂  = ⋅ − ∂ ∂  

=

E
E

r r r
r r r

r r  (2.16) 

where 0 0m mk ω µ ε=  is the wavenumber.  

In the case where the source is a current excitation, the self-adjoint constant in 

(2.15) is  

 ( )
( )

0

1

i
m

j m
j m jJ

κ
ω µ

= −
∆Ω

. (2.17) 

Here, ( )m
jJ  is the current density of the j-th point-like dipole antenna, 0µ  is the 

permeability of vacuum, and j∆Ω  is the volume of the antenna where ( )m
jJ  exists. 

For the completeness of this review, we also present the S-parameter self-adjoint 

sensitivity formula in the general case of port excitation. The general S-parameter is 

defined as [12] 

 

( )
( )

( ) ( )( )
0

( )( )

( ) ( )( )
,inc

1,           ,

0,          ,

j

k

m m w
k j

sm w
jk jkm m w

k k

s

jk

d

S
d

j k

j k

δ

δ

× ⋅

= −
× ⋅

=
=  ≠

∫∫

∫∫

E h

E h

s

s
 (2.18) 
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where w denotes the desired mode, ( )( )m whξ  ( ,j kξ = ) is the dual (or magnetic) port modal 

vector, ( )
0
m

kE  is the field resulting from exciting the k-th port, and ( )
,inc
m

kE  is the incident 

field at the k-th port. The port surfaces are js  and ks .  

The derivative of the S-parameter with respect to the voxels’ 

permittivies/conductivities is again calculated using (2.15) but the slef-adjoint constant 

which corresponds to the general S-parameter definition in (2.18) is now [12]: 

 ( )
( ) ( )

0

1

i2
m

j m m
j k mV V

κ
ω µ

= . (2.19) 

Here, ( )mVξ  ( ,j kξ = ) is the modal magnitude of the excitation at the ξ -th port. 

In summary, (2.15) is the sensitivity formula for computing the derivatives of the 

S-parameters with respect to a voxel’s constitutive properties. In the work presented in 

[17], point-like current source excitation is used and the sensitivity is calculated using 

(2.17). In [17], the concept of the sensitivity-based imaging has been validated through 

numerical examples with circular sensor-array data acquisition system. The target can be 

shown as peaks or dips in the image. However, the method’s resolution limits and the 

robustness to noise have never been systematically studied. In addition, the method has 

not been implemented using numerical models or measured phantoms with planar raster 

scanning data acquisition. These problems are in the focus of our work on the sensitivity-

based imaging method which is discussed in Chapters 4 and 5.  
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2.4 CONCLUSION 

The self-adjoint approach to sensitivity analysis improves significantly the computation 

since solving the adjoint problem is avoided. The mathematical background of the 

previous approaches to the S-parameters self-adjoint sensitivity analysis (SASA) 

derivation using MoM current solution is briefly presented. The sensitivity formula based 

on a specific MoM solver (FEKO) is also given. The drawbacks of the existing SASA 

technique have been stated; these form the focus of our work discussed in Chapter 3.  

A review of the S-parameter sensitivity analysis formulation with volume field 

solution is also briefly discussed. Its application to microwave imaging has been proven 

promising in previous preliminary studies. Yet, systematic evaluation of the method’s 

resolution limits and robustness to noise has not been performed. Also, its implementation 

with measured data has never been addressed before. Here, we address all these unsolved 

problems and for the first time validate the method with measured data acquired with 

tissue phantoms. 
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Chapter 3 
 

SENSITIVITY ANALYSIS WITH METHOD-OF-
MOMENT SOLUTIONS  
 
 
 
 

3.1 INTRODUCTION 

Adjoint-variable sensitivity analysis approaches have been developed before for the 

method of moments (MoM) [1]-[3]. Their computational speed is limited by performing 

an adjoint-system analysis and/or the need to estimate the derivative of the system matrix. 

The self-adjoint sensitivity analysis (SASA) technique using MoM solutions has been 

proposed in [4]. The sensitivity analysis is accelerated since solving the adjoint problem 

is avoided. However, the method proposed in [4] has had limited applications as 

explained next. 

The overhead of the sensitivity computation in [4] is still significant because N 

additional matrix fills are performed for the perturbed structures in order to compute the 

finite-difference (FD) estimates of the matrix derivatives. In addition, the method is not 

applied to real-world complex structures. This is because it requires access to the MoM 

system matrix which is usually unavailable to the software users. Even if the system 

matrix is available, its size is usually very large for practical structures; thus, it is very 

time consuming to write/read the system matrix to/from the disk during optimization. 
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To avoid the N additional matrix fills and the writing/reading of these matrices 

to/from the disk [4], discrete perturbations of the shape parameters on a pre-determined 

non-uniform MoM grid are proposed here and the grid is used repeatedly to perform 

sensitivity analysis. The shape perturbations are accommodated by changing the material 

properties of the local mesh elements. For example, a metallic surface patch in the 

nominal design can be “de-metalized” to a patch of a dielectric surface. The components 

that contain design variables are meshed with finer grid. This enables fine tuning during 

the design optimization and at the same time keeps the computational resources at 

reasonable levels. The pre-determined system matrix can be repeatedly used during 

design optimization.  The design optimization of complex structures is greatly accelerated 

as the matrix fills and the writing/reading of the system matrix to/from the disk [4] are 

avoided. 

To calculate the S-parameters sensitivities using the self-adjoint approach, the 

formula is derived for multi-port structures based on the MoM solver Sonnet em which 

can provide the system matrix to the user. In the self-adjoint sensitivity analysis (SASA) 

problem, the self-adjoint constant κ  is needed. It relates the original-problem excitation 

to that of the adjoint problem and, due to the linearity of the EM problem, it also relates 

the original and adjoint field solutions. A system response ( )f x  (such as a network 

parameter) is obtained from the EM state variables (representing the field solution) x . 

The self-adjoint constant κ  for a given response can be found once ( )f x  is known. In 

the formulation of the S-parameters sensitivity analysis with current solutions, we 

consider the MoM-based solver Sonnet em [5]. It calculates the S-parameters using the Y-
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parameters, which are computed from the current solution I  at the ports. Thus, the self-

adjoint constant is first derived for the Y-parameters. Then the S-parameter sensitivities 

are calculated from those of the Y-parameters. 

In this chapter, the S-parameter sensitivity formula is first derived from the 

sensitivities of the Y-parameters and is then implemented in the design optimization of a 

printed patch antenna and a stub tuner. 

 

3.2 SENSITIVITY FORMULA USING MOM CURRENT 

SOLUTIONS 

Here, our derivation of the self-adjoint sensitivity formula using MoM current solutions is 

presented. We use MoM solvers, e.g., Sonnet em, for planar microwave structures, that 

calculate first the Y-parameters from which the S-parameters are obtained. In order to 

obtain the self-adjoint constants for the S-parameters, those for the Y-parameters have to 

be obtained first.  

The derivatives of the S-parameters can be expressed through the derivatives of 

the Y-parameters using the chain rule: 

 
, 1

, 1, ,
,   

, 1, ,

K
jk jk rq

r qn rq n

S S Y j k K

r q Kp Y p=

 ∂ ∂ ∂ =
= ⋅   =∂ ∂ ∂ 
∑

…

…

 (3.1) 

where n = 1,…, N, and K is the number of ports. The S-parameters relate to the Y-

parameters as 

 ( )( ) 1

0 0

−= − +S Y Y Y Y  (3.2) 
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where 0Y  = diag[1/Z01, 1/Z02,…, 1/Z0K] is a diagonal matrix and 0sZ  (  = 1,...,s K ) is the s-

th port impedance. The derivatives jk rqS Y∂ ∂  are analytically available from (3.2). 

By definition, the Y-parameters relate the port currents and voltages as 

 
1

K

r rq q
r

I Y V
=

=∑ . (3.3) 

Here, rI  is the current at port r and qV  is the voltage at the port q. qV  takes the value of 1 

V or 0 V, depending on whether it is excited or not. Thus, (3.3) is rewritten as 

 ( )q
r rqI Y= . (3.4) 

The superscript q of ( )q
rI  denotes the excited port q. Assuming the edge of port r is 

discretized into rM  segments, ( )q
rI  is given by 

 ( ) ( )
,

1

rM
q q r

r r h h
h

I J d
=

= ⋅∑ . (3.5) 

Here, ( )
,
q

r hJ  is the surface current density normal to the h-th mesh segment (with length 

r
hd ) at port r when port q is excited. Note that the excitation of the original system (2.1) 

when port r is excited is: 

 
�

( )

 elements

[0, ,0, 1, ,1 ,0, ,0]
r

r T

M

=b … … … . (3.6) 

The derivatives of the Y-parameters with respect to a specific parameter np  are 

obtained by replacing the response function f in (2.4) with the Y-parameters: 

 ( )( ) ( ) , 1, ,
ˆ ,  

1, , .

e
Trq rq q q

r
n n n

Y Y r q K

n Np p p

∂ ∂ =∂= − ⋅ ⋅
=∂ ∂ ∂

A
x x

…

…

 (3.7) 
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Here, ( )qx  is the solution of (2.1) when port q is excited. ( )ˆ q
rx  is the adjoint solution for 

the sensitivity of the parameter rqY . The term e
rq nY p∂ ∂  is zero since there is no explicit 

dependence of rqY  on np .  

The derivatives of the system matrix are estimated as 

 
( ) ( )

2
n n n n

n n n

p p p p

p p p

+ ∆ − − ∆∂ ∆≈ =
∂ ∆ ∆

A AA A
 (3.8) 

where np∆  (n = 1,…, N) are the respective parameter perturbations.  

Note that the matrices np∂ ∂A  (n = 1,…, N) may be analytically available. 

However, their evaluation is not only solver specific but also it is far from trivial. In 

addition, the analytical evaluation of the system matrix derivatives does not improve the 

efficiency as compared to using the finite difference estimates np∆ ∆A . Therefore, it is 

often the case that the system matrix derivatives are approximated using finite 

differences.  

In using (3.8), the discrete approach based on a pre-determined library matrix can 

significantly accelerate the computations. This is explained in detail in Section 3.3.  

As per (2.5), the adjoint solution ( )ˆ q
rx  in (3.7) is the solution to the adjoint system 

of equations: 

 ( )( )
( )ˆ q

Tq
r rqY= ∇

x
Ax . (3.9) 

Here, ( )( )q

T
rqY∇

x
 is the adjoint excitation, which, according to (3.4), is 

 ( )( )
( )ˆ

q

Tq
rq rI= ∇

x
b . (3.10) 



 34

Since we assume that ≡x I  are the corresponding currents of the MoM solution, 

according to (3.5) and (3.10), the adjoint excitation is 

 
�

 elements

ˆ [0, ,0, 1, ,1 ,0, ,0]
r

T
rq

M

=b … … … . (3.11) 

This excitation is the same as the excitation of the original system when port r is 

excited. Thus, we have ( ) ( )ˆ q r
r =x x  and 1rqκ = , where ( )rx  is the solution of (2.1) when 

port r is excited. Note that the subscript rq  in rqκ  denotes that the self-adjoint constant is 

related to the particular response rqY . 

Thus, the respective derivatives of the Y-parameter in (3.7) are computed as 

 ( )( ) ( ) , 1, , ,
,  

1, , .

Trq r q

n n

Y r q K
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=∂ ∂
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…

 (3.12) 

Here, ( )rI  and ( )qI  are the current solution vectors, when the original system is excited at 

port r and port q, respectively.  

Now, (3.1) can be re-written as 
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 (3.13) 

This is the formula for the S-parameter sensitivity analysis and it is further applied to EM-

based design optimization.  

For the completeness of this study, the sensitivity formula is also discussed when 

the MoM solver may provide surface current density solutions. In this case, we have 

≡x J . We denote the system matrix as 'A  in this case, i.e., ' =A J b .  
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We assume a matrix whose diagonal elements consist of the discretization 

segment lengths as: 

 1 2[ , , , ]Mdiag d d d=B … . (3.14) 

Then, the current solution I  and the current density solution J  are related as  

 =I BJ . (3.15) 

It follows that 'A  and the system matrix A  of the current solution are related as 

1' −=A A B . Now, the S-parameter sensitivity (3.13) in the case of current-density solution 

is: 
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 (3.16) 

 

3.3 METHOD-OF-MOMENT GRID FOR SENSITIVITY ANALYSIS 

A meshing approach for the MoM-based sensitivity analysis is proposed which is 

particularly suitable for design optimization. It is based on computing first a large library 

matrix Alib for the so called library structure. The library structure is a pre-determined 

structure which is large enough to contain all possible metallic segments in the structure 

of interests that may arise during sensitivity analysis or design optimization. The 

corresponding library matrix is then repeatedly used to provide respective system 

matrices for all iterative structures. Non-uniform square mesh is used to discretize the 

planar structure. The structure components that are subject to optimization, i.e., they 

depend on the design variables, are discretized with finer mesh, while the “fixed” 
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structures (areas that are not changed during the design procedure) are discretized with 

coarser mesh. 

To illustrate the concept, two examples are presented (shown in Fig. 3.1). In Fig. 

3.1 (a), a planar antenna fed by a coplanar waveguide (CPW) is shown and the nominal 

design parameters are also given. The substrate material is FR4 with relative permittivity 

4.4rε =  and thickness 1.6 mm. The antenna consists of a slotted patch with the exterior 

length pL  and the exterior width pW . The length d4 and width 2W  of the stepped portion 

of the patch are set to 1 mm and 3.5 mm, respectively. fH  is the distance between the 

slotted patch and the feed. 

The T-shape tuning stub (grey patches) inside the rectangular ring is used here to 

create a band-notch characteristic. The design variables are W , D , and h , which tune the 

stub. W  is the width of the upper portion of the T-shape stub; D  is the width of the lower 

portion of the stub, and h  is the length of the lower portion of the stub. A large region 

around the T-shape stub, the stub itself and a small portion of the rectangular ring where 

the stub connects to it are meshed with a fine grid of step size 2 0.25 mmδ = . This fine 

grid in effect defines all patches which may change from metallic to dielectric or vice 

versa during the optimization process. Meanwhile, a coarser grid of step size 

1 0.50 mmδ =  is used to mesh the area where changes in the geometry are not allowed, 

for example, the CPW. All shown mesh patches are assumed to be metallic in the library 

structure (patches in both white and grey). A library matrix Alib is thus generated based on 

the library structure. Any new structure can be viewed as a subset of the library structure 
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indicated by the grey area. Each new system matrix A  can be obtained by switching 

off/on the corresponding elements of libA  by eliminating/adding the respective rows and 

columns. 
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(a) 

 

 
(b) 

Fig. 3.1 Demonstration of the library structure and its sub-set structure: (a) printed slot 

antenna and (b) double-stub tuner. Dimensions are shown in the insets. 
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In Fig. 3.1 (b), a double-stub tuner, which is built on a substrate of 4.4rε =  and 

thickness of 0.8 mm, is presented. The two stubs of length L are symmetrically located on 

both sides of the microstrip line. The distance between the two stubs is D. The widths of 

the stubs and the microstrip line are t  and w , respectively. The nominal design 

parameters are given in the figure inset. 

Three types of regions are meshed with a fine grid of step size 4 0.125 mmδ = : (i) 

the ends of the two stubs in order to perform the fine tuning of the stub length L ; (ii) the 

regions where the vertical portion of the two stubs may change during the design 

iterations; and (iii) the regions where the stubs connect to the transmission line. The areas 

that do not evolve during optimization are discretized with square patches of step size 

3 0.25 mmδ = . The library structure is built and can be used in a similar way as the 

previous example. 

To perform the derivative estimation in (3.8), ( )n np p+ ∆A  and ( )n np p− ∆A  are 

needed. These are the system matrices of the perturbed planar structures where the nth 

parameter is perturbed in the forward and backward directions. All these structures are 

subsets of the library structure. 

 

3.4 SENSITIVITY ANALYSIS VALIDATION  

The S-parameter sensitivity analysis of an antenna and a double-stub tuner are presented. 

In order to illustrate the accuracy of the proposed approach with non-uniform MoM grid, 

the S-parameter derivatives are calculated with three approaches: (i) the proposed 
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sensitivity formula (3.13) using the central finite-difference (CFD) estimates of the 

system matrix derivatives (3.8) on a non-uniform MoM grid; (ii) the proposed formula 

(3.13) using a fine uniform MoM grid (the step sizes are 2δ  and 4δ  in the antenna and the 

tuner example, respectively); and (iii) S-parameter derivatives estimation with CFD at the 

response level using the same meshing as (ii). Note that MoM grid are used in the first 

and the second approaches in order to have consistent library structures that will be used 

in the design optimization examples in Section 3.5 where the computational effort 

comparison among the three approaches are illustrated. 

The S11-parameter sensitivity analysis with respect to h in the printed antenna is 

presented. The non-uniform mesh used in the first approach is shown in Fig. 3.1 (a) with 

a perturbation of 2 0.25 mmδ = . In the second and third approaches, a fine uniform mesh 

is used with a step size of 2 0.25 mmδ = . The derivatives 11S h∂ ∂  are plotted against a 

frequency sweep from 3 GHz to 11 GHz in Fig. 3.2. The derivatives 11S h∂ ∂  are also 

plotted against a sweep of the parameter h in Fig. 3.3. The three sensitivity curves are in 

good agreement.  
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Fig. 3.2 11S  and its derivatives with respect to h against frequency (h = 2.0 mm, W = 

4.5 mm, and D = 1.5 mm). “SASA” stands for results with the proposed self-

adjoint sensitivity analysis. “CFD” stands for results with central finite 

differences at the response level. 
 

 
Fig. 3.3 11S h∂ ∂  plot against a sweep of h (W = 4.5 mm, D = 1.5 mm) at f = 4 GHz. 
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Fig. 3.4 |S21| and its derivatives with respect to D (D = 7.0 mm, L = 7.0 mm). 

 

 

The S21-parameter sensitivity analysis is carried out for the double-stub tuner 

shown in Fig. 3.1 (b). The derivatives of 21| |S  with respect to D  for a frequency sweep 

from 3 GHz to 8 GHz are plotted in Fig. 3.4. The derivatives 21S D∂ ∂  for a sweep of D 

are shown in Fig. 3.5. Again, good agreement is achieved among the three curves. We 

observe that the first approach requires the least computational effort due to the use of 

library matrix and self-adjoint sensitivity calculation. The efficiency comparison of the 

three approaches will be further discussed with design optimization examples in Section 

3.5. 

Note that the accuracy of the sensitivity computation is influenced by the size of 

the perturbed grid. As the grid size decreases the estimation of np∆ ∆A  tends to converge 

to its actual analytical value, which results in more accurate sensitivity analysis. 
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Fig. 3.5 Plot of the derivatives 21S D∂ ∂  for a sweep of D (L = 7.0 mm) at f = 4.5 GHz. 

 
 

3.5 DESIGN OPTIMIZATION EXAMPLES 

Gradient-based optimizations of the S-parameters of the two structures introduced in 

Section 3.3 are performed. The Matlab function fminimax [6] is used for the optimization. 

It minimizes the worst-case (largest) value of a set of multivariable objective (or cost) 

functions, starting at an initial estimate. During the optimization, the design variables are 

updated iteratively by a line search algorithm [6], which requires the response Jacobian 

( )T∇ pF  where F  is the vector of objective functions to be minimized. 

Three types of optimization are carried out in both examples. In type 1, the library 

structure with non-uniform MoM grid is used as shown in Fig. 3.1 (a). The S-parameter 
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derivatives are calculated with the proposed sensitivity formula (3.13) and using the CFD 

estimates of the system-matrix derivatives (3.8) on the non-uniform MoM grid. In type 2, 

the uniform fine-meshed library structure (the step sizes are 2δ  and 4δ  in the two 

examples, respectively) is used. The S-parameter derivatives are again calculated with 

(22). In type 3, no library structure or user-calculated derivative information are provided. 

The structure is discretized with fine uniform MoM grid (the same as type 2). The 

optimizer performs response-level finite-difference estimates to provide the sensitivity 

information.  

3.5.1 Planar ultra-wide band (UWB) printed antenna  

The goal is to design an UWB antenna as shown in Fig. 3.1 (a) with: i) impedance 

matched from 4 GHz to 10.5 GHz; ii) a rejection band from 5.4 GHz to 5.8 GHz with 

center frequency of 5.6 GHz. The objective function is defined as 

 { }1 2 0min max ( ), ( )mF f F f  (3.17) 

where  
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= − =

…
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 (3.18) 

1fN  is the number of sampling frequency points in the given frequency range. The design 

variables are [ , , ]Th W D=p , with initial values 0p  = [0.5, 1.5, 0.5]T mm. The other 

parameters are fixed at the values given in Fig. 3.1 (a).  
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TABLE 3.1 

COMPARISON OF THE THREE OPTIMIZATION PROCEDURES IN THE ANTENNA EXAMPLE. 

 Type 1 Type 2 Type 3 

number of iterations 8 8 14 

calls for EM solver 37 37 124 

system solving time (s) 37 185 620 

matrix fill time (s) 1 3 124 

total time (s) 38 188 744 

 

The type 1 optimization converges after eight iterations with the objective 

function being equal to 0.2. The EM solver is called 37 times. The optimized design 

variables are 1 [1.5,2.5,1.5]T=p *  mm. The type 2 optimization converges to the same 

result as in the Type 1 optimization with the same number of iterations. However, its 

computational overhead is about five times higher because of the fine uniform mesh of 

the entire structure. The type 3 optimization converges after fourteen iterations with a 

value of the objective function 0.35. The optimized design is given by 

2* [1.5,2.0,1.5]T=p  mm. However, the EM solver is called 124 times. The efficiency 

comparison of the three approaches is shown in Table 3.1. The Type 1 optimization is the 

most efficient among all three optimization types. The Type 3 optimization requires the 

most computational effort. The evolution of the objective function versus the iteration of 

the three types of optimization is shown in Fig. 3.6. 
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Fig. 3.6 Progress of the three optimization procedures in the printed antenna example. 
 

 
 
Fig. 3.7 Photo of the proposed antenna prototype. 
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Fig. 3.8 |S11| plot of the initial and the optimized antenna designs. 
 

An antenna is prototyped based on the parameters 1 *p . The photo of the 

prototype is shown in Fig 3.7. The measured as well as the simulated S11-parameter of the 

optimized design (simulated by Sonnet em and HFSS) are presented in Fig. 3.8. For 

comparison, the S11-parameter of the initial design is also shown. The measured and the 

simulated results show good agreement in the lower frequency band while there are some 

differences at higher frequencies. This may be due to the fact that the Subminiature Type 

A (SMA) connector and the coaxial cable are not modeled in the simulation. 

 
3.5.2 Planar double-stub tuner  

The goal is to design a double-stub tuner (shown in Fig. 3.1 (b)) with a stop band from 5 

GHz to 6 GHz. The objective function is minimized using a minimax optimizer as: 

 { }(1) (2)
1 2min max ( ), ( )u vF f F f  (3.19) 
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where  
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Here, 2fN  and 3fN  are the numbers of sampling frequency points in the respective 

frequency ranges. The design variables are [ , ]TL D=p , with initial values 

0 [9.0,  9.0]T=p  mm. The other parameters are fixed at the values given in Fig. 3.1 (b).  

The Type 1 and Type 2 optimization procedures converge after five iterations with 

the objective functions being equal to 0.09. They achieve the same optimized design 

[7.5,7.0]T=p  mm. The EM solver is called 21 times in both cases. The Type 2 

optimization takes more computational time than the Type 1 optimization due to the 

computational load caused by the fine mesh. The Type 3 optimization converges after 

nine iterations, giving the same optimized design as the other two types. However, the 

EM solver is called 54 times. The comparison of the three approaches is shown in Table 

3.2. Type 1 optimization requires the least overall computational time while Type 3 

optimization requires the largest. The simulated S21-parameters of the initial design and 

the optimized design are presented in Fig. 3.9 for comparison. The optimized design is 

simulated not only with Sonnet em but also with in HFSS. 
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TABLE 3.2 

COMPARISON OF THE THREE OPTIMIZATION PROCEDURES IN THE STUB TUNER EXAMPLE. 

 approach 1 approach 2 approach 3 

number of iterations 5 5 9 

calls for EM solver 21 21 54 

system solving time (s) 10.5 42 108 

 matrix fill time (s) 1 2 108 

total time (s) 11.5 44 216 

 

 

 
Fig. 3.9 |S21| plot of the initial and the optimized double-stub tuner design. 
 
 

In summary, the proposed approach reduces the computational load in gradient-

based optimization significantly. This is achieved due to three factors. (i) The mesh is 
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kept the same during the design optimization and the sensitivity analysis. Structural 

changes are achieved only by “metallization” and “de-metallization” of the patches in the 

library structure. Thus, re-meshing is avoided and the system matrices are obtained fast. 

(ii) There is no need to export the system matrices for every iteration because the library 

matrix is generated once at the beginning of the optimization. (iii) The computational 

resources are kept at a reasonable level during simulation due to the non-uniform mesh. 

 

3.6 CONCLUSION 

A self-adjoint approach using discrete perturbations on a non-uniform MoM grid is 

applied to the S-parameters sensitivity analysis of high-frequency structures and their 

design optimization. It provides fast matrix fills for optimization purposes and a 

computationally efficient way for calculating the sensitivity information. Results from the 

designs of an UWB antenna and a double-stub tuner validate the proposed method and its 

superior performance in reducing the computational effort. 
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Chapter 4 
 

SPATIAL RESOLUTION AND ROBUSTNESS 
TO NOISE OF THE SENSITIVITY-BASED 
IMAGING 
 
 
 
 

4.1 INTRODUCTION 

Image reconstruction with microwave responses is a promising methodology for 

noninvasive evaluation, testing, and diagnostics in medicine [1]-[7], nondestructive 

testing [8][9], geophysical prospecting, remote sensing and underground surveillance 

[10]-[13]. In microwave imaging, the ability of microwaves to penetrate optically opaque 

materials (e.g., tissue, soil, concrete, etc.) is being exploited. The goal is the 

reconstruction of the permittivity and/or conductivity distribution in the object under test 

(OUT). 

Microwave imaging can be generally categorized into quantitative imaging and 

qualitative imaging in terms of the dielectric profile in the reconstructed image. In the 

former, the actual values of the permittivities and/or conductivities of the OUT are 

estimated and plotted to produce an image. In the latter, targets are identified in the image 

only as locations of scattering sources, the brightness of which is representative of the 

overall permittivity/conductivity differences between the background medium and the 
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target.  

A microwave detection algorithm based on a response-sensitivity formulation has 

been proposed in [14]. It aims at qualitatively uncovering abnormalities in the OUT (e.g., 

structural flaws, cancerous tissue, or a hidden weapon) whose normal state (or 

background) is assumed known. Here, the normal state of the object is referred to as the 

reference object (RO). The RO need not be homogeneous. The technique yields an image 

of the contrast in the dielectric properties of the OUT and the RO. The method has been 

introduced in [14] has been validated with examples using electromagnetic (EM) 

simulations of circular-sensor array data acquisition. 

The method’s advantage is that it does not involve the inversion of a matrix and 

the computations are fast. The method, on the other hand, requires EM simulations of the 

RO, which includes the known reference medium and the known antennas. These 

simulations are performed off-line as part of the system calibration. Once the simulation 

of the RO is available, the self-adjoint formulation of the response-sensitivity calculation 

allows for real-time image reconstruction from the measured microwave responses of any 

OUT. Multiple ROs can also be used if necessary as this is not going to have significant 

impact on the time required to obtain an image. 

The spatial resolution, i.e., the smallest detail that represents truthfully a detail in 

the imaged object [15], is an important measure of the performance of an imaging 

technique. It can be defined as the width at the half-power level of a very small but 

detectable single object’s image, i.e., the width of the point-spread function (PSF) of the 

technique at the –3 dB level. If any two objects are closely spaced so that the distance 
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between them is smaller than the spatial resolution, they will appear as a single object in 

the image.  

Until now, the resolution of the sensitivity-based imaging approach has not been 

studied and this is the focus of the current work. In particular, we consider two cases of 

common wideband data acquisition approaches: i) planar raster scanning where the 

transmission/reception (Tx/Rx) sensors scan over the object; and ii) tomographic 

acquisition where the Tx/Rx sensors are arranged in a circular array. 

The resolution limit is first derived theoretically for both the planar and the 

circular acquisition cases and is then verified by imaging examples exploiting analytical 

EM models. In the evaluation of the method’s spatial resolution, the RO and the OUT are 

modeled analytically, where the RO model provides the incident field while the OUT 

model provides the total field, which is the superposition of the incident and the scattered 

field. The respective responses are also calculated. The use of analytical EM models in 

this study eliminates possible ambiguities in the evaluation of the spatial resolution which 

may be encountered if numerical simulation models are used.  

Finally, the effect of noise has not been studied before and yet the noise 

robustness is important for the method’s implementation with realistic microwave 

measurements. We focus on this problems as well and relate it to the spatial and 

frequency sampling rates. A guideline is also provided for an acceptable signal-to-noise 

ratio (SNR) versus the spatial and frequency sampling rates in designing a data-

acquisition system for the method.  
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4.2 CONFIGURATION OF THE DATA ACQUISITION SYSTEMS 

There are two common data acquisition approaches in microwave imaging. The first 

approach utilizes scanning where usually one or two sensors perform a scan over 

acquisition surfaces (e.g., see [1],[4],[5],[16]). In the second approach, a fixed array of Ne 

sensors is used to sample the scattered field (e.g., see [6]). In both cases, the scattered 

field is usually sampled on canonical surfaces such as planes, cylinders or spheres, or 

portions of those. Also, the scattered field can be sampled at the location of the 

transmitter (monostatic case), at a location different from that of the transmitter (bistatic 

case) or at multiple locations (multistatic case).  

4.2.1 Planar raster scanning  

An example of the system configuration of an OUT together with a planar-raster scanning 

arrangement is shown in Fig 4.1. Two Tx/Rx sensors are placed along each other’s 

boresight [17] on both sides of the object. These sensors together with the examined 

object form a two-port microwave network whose S-parameters are measured at the 

desired frequencies. The two sensors are scanned simultaneously over the two z = const 

planes. The data acquisition is performed in both the OUT and the RO to provide the 

required responses: ( )
OUT, ( , , )m

jk jS x y z  and ( )
RO, ( , , )m

jk jS x y z  ( , 1,2j k = ). Here, ( , , jx y z ) 

denotes the location where the S-parameters are sampled: sensor #1 is located at 

( , , / 2)x y D− , i.e., 1 / 2z D= − ; sensor #2 is located at ( , , / 2)x y D , i.e., 2 / 2z D= . Also, 

m = 1,…, Nf, where Nf is the number of frequency samples. 
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Fig. 4.1 Configuration of the raster scanning setup in an example involving two small 

scatterers. The two scanning planes are located at / 2z D= −  and / 2z D= . 

 

We refer to the z-direction as the range direction and the resolution in this 

direction is referred to as the range resolution. Similarly, we refer to the x-direction as the 

cross-range direction, and the respective resolution is referred to as the cross-range 

resolution. The y-direction is also a cross-range direction and its resolution is identical to 

that in the x-direction, provided that the aperture size and the sampling rate are the same 

as those in the x-direction. 

It should be emphasized that the two sensors are always placed along each other’s 

boresight (along z) in our study. This is because our focus is on the imaging of very lossy 

objects such as tissue. The signal attenuation in tissue is very high and the signal-to-noise 

ratio (SNR) for signals propagating away from the boresight is usually low. The boresight 

alignment of the sensors can provide the shortest path for the signals and, therefore, 

results in the strongest signal level.  

Raster-scan data acquisition is not limited to two-antenna systems (as shown in 
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Fig. 4.1). Antenna arrays can also be used to acquire data. Such systems can provide more 

responses and their resolution is expected to be better than the two-sensor scenario 

studied here. The current study is thus representative of the limitations in the worst-case 

scenario as far as the sensors number is concerned. 

At every measurement (shown in Fig. 4.1), one sensor transmits, e.g., the 

transmitter at ( , , )k kx y z=r , 1,2k = , and both sensors receive, i.e., the receivers at 

( , , )j jx y z=r , 1,2j = . The above acquisition is performed at every frequency mf  

( f1,...,m N= ). Note that for a small dipole acting as receiving antenna, the response at the 

receiver location jr  due to the transmitter at kr  is calculated as 

 ( ) ( )ˆ( , , ) ( , , )m m
jk j j jk jS x y z x y z≡ ⋅ρ E  (4.1) 

where ̂ jρ  is the antenna polarization vector and ( ) ( , , )m
jk jx y zE  is the E-field at jr  when 

the transmitter at kr  radiates. The expression in (4.1) holds for both the RO and the OUT 

measurements; this is why the respective subscripts (RO and OUT) are omitted in both 

the E-field and the S-parameters. 

In the planar acquisition described in Fig. 4.1, the acquisition coordinates jz  

( 1,2j = ) are constant and defined by 1 / 2z D= −  and 2 / 2z D= . Hereafter, in the raster 

scanning scenario, the coordinate jz  is omitted from the arguments of the responses ( )m
jkS  

for short notations as its value is implied by the subscript j. 

In our examples, the background medium is assumed to be vacuum. In the double-

scatterer imaging examples presented later, two voxel-size scatterers are placed around 
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the origin along the range direction or along the cross-range direction (refer to Fig. 4.1 for 

the range-alignment example). In the single-scatterer example, the OUT model setup is 

the same except that there is only one voxel-size scatterer positioned at the origin. The 

antennas are assumed to be oriented along y. The distance between the two sensors is D . 

The computational cell size is δ  and it defines the voxel volume 
3δ . We set the scanning 

steps along the x- and y- directions to be the same, i.e., x y h∆ = ∆ = ∆ . 

Wideband data are used in the image reconstruction. Note that data acquisition in 

an ultra-wide band (UWB) is preferred in the imaging of human tissues due to the 

following advantages. First, the inversion is more robust to noise since frequency-

dependent image artifacts are likely to cancel. Second, at low frequencies, the signal 

penetrates better and results in better signal-to-noise ratio. At high frequencies, the image 

spatial resolution is better due to the shorter wavelengths. Thus, employing UWB 

responses allows for taking advantage of both, good penetration and better resolution. 

Note that the E-field distribution in the OUT is the superposition of the incident 

field ( )
RO
mE  and the scattered field ( )

sc
mE . The field computation is discussed in Section 4.5. 

4.2.2 Circular array for tomographic acquisition  

The configuration of an OUT with the circular sensor array is shown in Fig. 4.2. eN  

Tx/Rx sensors are distributed uniformly along a circle. In 3D tomographic imaging, the 

scattered signals are acquired by the array in a given plane and processed to produce a 2D 

image in this plane after which the array is moved to the next vertical position. Such 
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tomographic data acquisition results in a vertical stack of 2D images which represent the 

3D OUT. 

The sensors together with the examined object form an Ne-port microwave 

network whose S-parameters are measured at the desired frequencies. Similarly to (4.1), 

when the receiving antennas are small dipoles the S-parameters are calculated as 

 ( ) ( )ˆm m
jk j jkS = ⋅ρ E . (4.2) 

The E-field and the S-parameters are functions of the location (, ,j j jx y z ) of the j-th 

receiver. However, the variable (, ,j j jx y z ) is omitted since it is implied by the subscript j 

in the S-parameter notation. 

 

 

Fig. 4.2 Configuration of the circular-sensor array acquisition setup in an OUT example 

involving two small scatterers. The black dots indicate the Tx/Rx antennas. 
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At every measurement, one sensor transmits (e.g., the transmitter at kr ) and all 

sensors receive (the receivers at jr , j = 1,…, Ne). The above acquisition is repeated for 

every transmitter at kr  (k = 1,…, Ne). A total number of 2
eN  responses are thus measured 

at every frequency mf  ( f1,...,m N= ) for every vertical (y = const) acquisition level.  

An example of the OUT model is shown in Fig. 4.2. The background medium is 

vacuum. In the example shown in the figure, two voxel-size scatterers are located in the 

plane of the sensor array. The computational cell size is δ , and it defines the voxel 

volume 3δ . The antennas are vertically oriented dipoles. Again, UWB responses are 

used. 

4.2.3 Reference Objects (RO) 

The choice of RO in the sensitivity-based method depends on the application. Typically, 

the RO would mimic as closely as possible the background (target-free) medium and 

would include an accurate representation of the antennas. In this analytical study, the RO 

is the same as the OUT except that there is no scatterer embedded. The RO is used to 

obtain the following information which is needed by the imaging method: 

• ( )
RO ( ')mE r : the (normalized) incident field distribution at 'r ; 

• ( )
RO, ( )m

jk jS r : the responses in the RO acquired with the receiver at ( , , )j j j jx y z=r  

when the k-th antenna transmits; 

• the derivatives of the RO responses with respect to the complex relative 

permittivity ( )
RO, r( ')mε rɶ  in the RO.  
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Here, f1, ,m N= … ; j, k = 1, 2 in the raster scanning example and j, k = 1,… Ne in the 

circular array example. Note that ( )
RO ( ')mE r  is usually obtained using simulations. It could 

also be acquired with measurements using field probes if the RO medium is mechanically 

penetrable. Here, it is obtained from analytical models. 

With the above data, the Fréchet derivatives in the RO are computed and plotted 

versus the coordinates of the voxels in the imaged region 'r . The obtained images are 

referred to as Jacobian maps. Note that in the tomographic circular array approach, 2D 

maps are obtained in each vertical plane where measurements are taken. In principle, the 

Jacobian maps can be generated in planes different from that of the sensor array. 

However, in this case, the signals may be weak and the images may be unreliable. 

Therefore, the Jacobian map is typically generated in the plane of the sensor array and it 

is obtained from the signals acquired in this plane only. The scattering by targets in this 

plane is usually strong, which results in high-fidelity images. In the planar raster scanning 

approach, 3D Jacobian maps are obtained directly. 

 

4.3 RESPONSE-DIFFERENCE FUNCTION AND ITS 

DERIVATIVES 

To reconstruct the image using the algorithm presented in [14], the following information 

is needed: (i) the responses measured in the RO; (ii) the E-field distribution in the RO 

under the known excitations (usually obtained via simulation); and (iii) the responses 

measured in the OUT where abnormalities may exist. The differences in the responses 
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acquired with the RO and the OUT are used to form a least-square response-difference 

function. The derivatives of the RO responses with respect to the complex relative 

permittivity of each voxel in the RO are computed using the self-adjoint sensitivity 

analysis (SASA) method [18]. The derivatives of the response-difference function are 

then computed using the RO response derivatives. These derivatives are then used to 

generate permittivity Jacobian maps, i.e., maps of the Fréchet derivatives. These maps 

represent the property difference between the RO and the OUT. Abnormalities are thus 

identified and localized by significant parameter differences (peaks and dips) in the 

image.  

The response-difference function is defined as the difference between the complex 

responses acquired with the OUT and those acquired with the RO. In the planar raster 

scanning approach, it can be written as [18] 

 ( ) ( )
2 2( ) ( ) ( )

RO, r
1 1 , 1

1
( ') ( , )

2

y x
N N

m m m
jk

u v j kx y

F S u v
N N

ε
= = =

= ∆∑∑∑r ρɶ  (4.3) 

where 

 ( ) ( ) ( )( ) ( ) ( )
RO, OUT,( , ) ( , ) ( , )m m m

jk jk jkS u v S u v S u v∆ = −ρ ρ ρ  (4.4) 

and ( , ) ( , )u vu v x y=ρ  with 0 ( 1)ux X x u= + ∆ ⋅ −  and 0 ( 1)vy Y y v= + ∆ ⋅ − . Here, x∆  and 

y∆  are the sampling intervals along x and y, respectively. The scan starts at position 

0 0( , )X Y . In (4.3), ( )
OUT,

m
jkS  and ( )

RO,
m

jkS  are the S-parameters acquired with the OUT and the 

RO, respectively. We denote ( )
RO, r( ')mε rɶ  = ( )

RO, r( ')mε r – ( )
RO 0i ( ') / (2 )m

mfσ π εr  as the complex 

relative permittivity distribution in the RO at the m-th frequency. Here, ( )
RO, r( ')mε r  is the 
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voxel relative permittivity, ( )
RO ( ')mσ r  is its conductivity, 0ε  is the permittivity of vacuum, 

and 'r  is the voxel location in the imaged region.  

Note that the response-difference functions ( )mF  depend implicitly on the value of 

( )
RO, r( ')mε rɶ  through the field distribution in the RO. Also, both ( )

RO,
m

jkS  and ( )
OUT,

m
jkS  are 

functions of their respective complex relative permittivities. Here, ( )
RO, r( ')mε rɶ  is the 

parameter of interest in the RO in which the derivative is calculated. Therefore, the 

derivatives of (4.3) with respect to the relative permittivities and the conductivities are: 

 

( ) ( )
r

( )
( )

( ),
RO

( )2 * RO,( )
( )

1 1 , 1 RO

( ')
( ')

( , )1
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y x

m
m

p mp

mN N
jkm

jk m
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F
D

p
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where [14] 
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( )
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0 RO, RO, ( ) ( ) ( , )
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with 

 
( ) ( )
RO RO,r

( ) ( )
RO RO

1                                 when ,

2                                when .

m m

m m

p
n

p

ε

σ

 == 
=

 (4.7) 

Here, (4.6) represents the derivatives of the RO responses ( )
RO,

m
jkS  acquired at ( , , )u v jx y z , j 

= 1, 2, with respect to the permittivities/conductivities of the RO at 'r . In (4.6), 

( )
RO, ( ')m

kE r  ( 1,2k = ) is the incident E-field at 'r  when the transmitter is at 

( , , )k u v kx y z=r , 1,2k = , in the RO model. ( ')∆Ω r  is the volume of the voxel located at 

'r ; ( )k∆Ω r  is the volume of the voxel where the current-density excitation ( ) ( )m
kJ r  is 
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located; ( ) ( )m
kJ r  is the current-density value at the k-th transmitting dipole. Hereafter, 

( ) ( )m
kJ r  is set to ( )

0( )m
kJ J=r  for all transmitters at all frequencies. Also, uniform 

volume discretization is assumed, which leads to ( ) ( ')k∆Ω = ∆Ω = Ωr r . Note that the 

current-density excitation is a vector defined by ( )
0 ˆ( )m

k kJ=J r ρ , where ˆkρ  is the 

transmitting antenna polarization vector. 

In the circular array acquisition, the response-difference function is defined 

similarly as  

 ( )
e e 2( ) ( ) ( )

RO, OUT, f2
1 1e

1
( ') ,    1,..., .

2

N N
m m m

jk jk
j k

F S S m N
N

ε
= =

= − =∑∑rɶ  (4.8) 

Similar to the raster scanning approach, in the circular array acquisition, the derivatives of 

( )( ) ( ')mF ε rɶ  with respect to the relative permittivities and the conductivities are obtained 

as: 

 ( )
e e

r

( )
* RO,( ) ( )

2 ( ),
1 1e RO

1
( ') Re

( ')

mN N
jkm m

p jk mp
j k

S
D S

N pε σ=
= =

 ∂
= ∆ ∂  

∑∑r
r

. (4.9) 

Here, ( ) ( )
RO, RO( ')m m

jkS p∂ ∂ r  is computed using (4.6). 

The derivatives in (4.5) and (4.9) are the Fréchet derivatives of the respective 

response-difference functions (4.3) or (4.8). They can be plotted versus the coordinates of 

the voxels 'r  in the imaged region. The image reconstruction is performed using (4.5) 

and (4.9), in the case of planar raster scanning and circular-sensor array data acquisition, 

respectively. 



 64

4.4 IMAGE FORMATION PROCEDURE  

In order to form an image, the following image formation procedure is applied in the case 

of planar raster scanning. 

Step 1 is map generation. The Jacobian map in (4.5) at each sampled frequency 

mf  ( f1,...,m N= ) is computed as a function of the voxel location 'r . 

Here, we re-write (4.5) as 

 ( ){ }
r

( ) 2 *( ) ( ) ( )

,
1 1 , 1

( ')  Re ( , ) ( ')
y x

N Nm
m m m

p jk pp
u v j kx y

c
D S u v P

N Nε σ=
= = =

 = ∆ ⋅ ∑∑∑r ρ r  (4.10) 

where 

 ( )2( ) 1
0 02

nm
mc f Jπ ε − −=  (4.11) 

and 

 ( )
rr

( ) ( ) ( )
RO, RO, 1, when , ( , )

2, when 

( ') i ( ') ( ')
nm m m

p j k n pp u v
n p

P
εε σ
σ

= ==
= =

 = − ⋅ E E
ρ

r r r . (4.12) 

Step 2 is map normalization. Maps ( ) ( ')m
pD r  at each frequency are normalized 

using energy normalization [14]: 

 
r

( )
( ) ( )

,
2( )

1 1 1

( , , )
( , , ) ( )

( , , )
yx z

m
pm m

p pp NN N
m

p a b c
a b c

D x y z
D x y z N D

D x y z
ε σ=

= = =

= =

∑∑∑

. (4.13) 

Two types of maps are obtained in this step. We refer to 
r
( ')Dε r  as normalized 

permittivity map and to ( ')Dσ r  as normalized conductivity map. The images represent the 

permittivity/effective-conductivity differences between the RO and the OUT at mf .  

To combine all normalized Jacobian maps, the following steps are performed. 
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Step 3 is normalized Jacobian map averaging. The maps obtained in step 2 at all 

sampled frequencies are summed and averaged to form the averaged frequency Jacobian 

map: 

 
f

r

( )

,
1f

1
( ') ( ')

N
m

p pp
m

M D
Nε σ=

=
= ∑r r . (4.14) 

Step 4 is image formatting. The averaged frequency Jacobian map can be 

normalized with respect to its maximum: 

 
r

,lin ,
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 ( ')

p

p p
p

M
M

Mε σ=
=

r
r

r
 (4.15) 

where 
max

( ')pM r  is the maximum value of ( ')pM r . The linear-scale map ,lin ( ')pM r  can 

be plotted as is or it can be plotted in a logarithmic scale: 

 ,dB 10 ,lin10log ( ').p pM M= r  (4.16) 

Note that the two types of maps ( ')pM r  obtained in step 3 can also be selected and 

combined as presented in [14] to form a final coherent diagnostic map. However, this is 

not the focus here because the obtained images are based on 
r
( ')Mε r . The imaging using 

( ')Mσ r  is analogous. 

The imaging procedure for the case of circular array data acquisition can be 

obtained following a similar procedure. Here, we only provide the final result for the 

averaged frequency map: 

 ( )
f f

r

( ) ( )

,
1 1f f

1 1
( ') ( ') ( ')

N N
m m

p p pp
m m

M D N D
N Nε σ=

= =
= =∑ ∑r r r . (4.17) 
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Here, 

 ( )
e e( )

*( ) ( ) ( )
2

1 1e

( ') Re ( ')
N Nm

m m m
p jk p

j k

c
D S P

N = =

 = ∆
  ∑∑r r  (4.18) 

where ( )mc is calculated using (4.11) and ( ) ( ')m
pP r  is calculated analogously to (4.12).  

 

4.5 ANALYTICAL MODELS OF THE INCIDENT AND 

SCATTERED FIELD 

The fundamental spatial resolution is obtained by considering the scattering from a very 

small (voxel-size) but detectable scatterer. Here, the background medium (i.e., the 

reference object) is set to be vacuum. The transmitters are assumed to be infinitesimal 

dipoles, which closely approximate an EM point source (or current element). Thus, the 

incident field can be calculated using known analytical expressions [19].  

The same infinitesimal dipole is used as a receiver, which closely approximates 

point-wise field sampling as described by (4.1). This is in contrast to the larger aperture 

antennas (e.g., horn antennas) where the antenna interacts with the field in a large volume 

in a much more complex manner. Thus, the choice of small dipoles used as sensors 

enables the analytical calculation of the scatterering parameters. 

4.5.1 Incident field  

The transmitting antenna is modeled by a current element oriented along the y axis (see 

Fig. 4.1 and 4.2). Thus, in our expression, the planes defined by θ  and φ  are the 
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elevation and the azimuth planes with respect to the y axis. The incident E-field, observed 

at location 'r  due to a single dipole radiating at kr  is [19]: 
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where 
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and 
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Here, ( ', )kd r r  is the distance between the observation point at 'r  and the center of the 

dipole at kr , i.e., ( ', ) | |k kd ′= −r r r r , ' ( ', ', ')x y z=r  and ( , , )k k kx y zξ =r . The length of the 

dipole is L δ= . 0I  is the current magnitude at the dipole’s feed point and it relates to the 

current density 0J  in (4.6) as 2
0 0I Jδ= . Also, η  is the wave impedance of the vacuum 
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and 0, 0 02m mk fπ µ ε=  is the wave number in the RO, where 0µ  is the permeability of 

the vacuum. 

4.5.2 Scattered field  

In the OUT, the total E-field (observed at 'r  when the transmitter is at kr ) is the 

superposition of the incident field ( )
RO, ( ')m

kE r  and the scattered field ( )
sc, ( ')m

kE r :  

 ( ) ( ) ( )
OUT, sc, RO, ( ') ( ') ( '),         1,2.m m m

k k k k= + =E E Er r r  (4.22) 

The response of the OUT is observed at ' j=r r , 1,2j = : 

 ( ) ( ) ( ) ( )
OUT, OUT, sc, RO, ˆ ˆ( ) ( ) ( ) ( ) .m m m m

jk j j k j j k j k jS  = ⋅ = ⋅ + ρ E ρ E Er r r r  (4.23) 

Analogously, the response of the RO at the same location is 

 ( ) ( )
RO, RO, ˆ( ) ( ).m m

jk j j k jS = ⋅ρ Er r  (4.24) 

Using the linear Born approximation [20], the scattered field when the k-th 

antenna transmits is calculated as: 

 
OUT

( ) 2 ( ) ( ) ( )
sc, 0, RO, ( ') ( '') ( '') ( ', '') ( '')d ,  1,2m m m m

k m kk kε
Ω

≈ ∆ Ω =∫∫∫E Er r r G r r rɶ  (4.25) 

where 
 ( ) ( ) ( )

r OUT, r RO, r( '') ( '') ( '')m m mε ε ε∆ = −r r rɶ ɶ ɶ . (4.26) 

Here, OUTΩ  is the volume and ''r  denotes the locations of the scattering point. In (4.25), 

( ) ( ', '')mG r r  is the dyadic Green’s function in the medium of the RO. It satisfies [20] 

 ( ) 2 ( ) ( )
0, RO, r( ', '') ( '') ( ', '') ( ' '')m m m

mk ε δ∇×∇× − = −G r r r G r r I r rɶ  (4.27) 

where I  is the identity matrix.  
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We assume that the complex relative permittivity is 1 for all voxels in the RO. The 

complex relative permittivity of the scatterer(s) in the OUT is denoted as ( )
OUT, r( '')mε rɶ . Note 

that the linear Born approximation is valid only when the constraints on the permittivity 

and the size δ  of the scatterer are satisfied [20]: 

 r ( '') 1ε∆ rɶ ≪  (4.28) 

and  

 0, r( '') 1mk δ ε∆ rɶ ≪  (4.29) 

where 

 OUT, r
r

RO, r

( '')
( '') 1

( '')

ε
ε

ε
∆ = −

r
r

r

ɶ
ɶ

ɶ
. (4.30) 

In our study, we set p 0( ) 0.05ε∆ =rɶ , so that the first constraint is satisfied. Since the size 

δ  of the scatterer is very small, the second constraint is also satisfied in both the near-

zone and the far-zone imaging examples. 

 

4.6 RESPONSE-DIFFERENCE DERIVATIVE TRANSFORMATION  

As follows from (4.25), the scattered field ( )
sc ( , )m

j kE r r  observed at jr , when the antenna 

at kr  transmits and when a very small scatterer of volume ∆Ω  is present, is 

 
( ) ( )
sc sc, 

2 ( ) ( ) ( )
0, RO, 

( , ) ( )

                ( '') ( '') ( , '') ( '') ,  1,2.

m m
j k k j

m m m
m j kk kε

≡

= ∆ ∆Ω =

E E

E

r r r

r r G r r rɶ

 (4.31) 
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By reciprocity, ( ) ( , '')m
jG r r  in (4.31) can be replaced by the incident field ( )

RO, ( '')m
jE r  as 

follows. First, note that the field ( )
RO, ( , '')m

j jE r r  at the location jr  due to a sufficiently small 

source at ''r  of volume ∆Ω  and current density ( ) ( '')mJ r  is determined through 

( ) ( , '')m
jG r r  as [20] 

 ( ) ( ) ( )
RO 0( , '') i2 ( , '') ( '').m m m

j m jfπ µ= ∆ΩE r r G r r J r  (4.32) 

In a reciprocal medium, ( ) ( )( , '') ( '', )
Tm m

j j =  G r r G r r  [20]. Then, the incident field at ''r  

due to a point source at jr  is: 

 

( ) ( )
RO RO, 

( ) ( ) ( ) ( )
0

( '', ) ( '')

                 i2 ( , '') ,  ( )

m m
j j

Tm m m m
m j j j jfπ µ

≡

 = ∆Ω ≡ 

E Er r r

G r r J J J r
 (4.33) 

which can also be written as 

 
( )

( ) ( )RO
0 0

0

( '')
( , '') ( '', ) .

i2

m
Tm m

j j j j
m

J J
fπ µ

  ⋅ ∆Ω = = ⋅ ∆Ω 
E

ρ ρ
r

G r r G r r  (4.34) 

The relation allows for the replacement of ( ) ( )( '', ) ( )m m
j j⋅G r r J r  by the incident field 

( )
RO, ( '')m

jE r  due to the source at jr , ( ) ( )m
j jJ r . 

On the other hand, from (4.23) and (4.24), it is evident that the response difference 

between the RO and the OUT relates to the scattered field as: 

 ( ) ( ) ( ) ( )
RO, OUT, sc( ) ( ) ( ) ( , )m m m m

jk jk jk j j kS S S∆ = − = − ⋅ρ Er r r r r  (4.35) 
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where ( )
sc ( , )m

j kE r r  is expressed by (4.31). Substituting (4.31) into (4.35), and making use 

of (4.34) leads to  

 ( ) ( ) 1 ( ) ( )
0 r 0 RO, RO, ( ) i2 ( '') ( '') ( '') .m m m m

jk m j kS f Jπ ε ε −  ∆ = ∆ ⋅ E Er r r rɶ  (4.36) 

Therefore, for a voxel-size scatterer embedded at 0'' =r r  in the background medium, the 

response difference in (4.35) becomes: 

 ( ) ( ) 1 ( ) ( )
0 r 0 0 RO, 0 RO, 0( ) i2 ( ) ( ) ( ) .m m m m

jk m j kS f Jπ ε ε −  ∆ = ∆ ⋅ E Er r r rɶ  (4.37) 

Note that in (4.12) and (4.37), the incident E-fields ( )
RO, ( )m

kE ζ , 0',=ζ r r , are computed 

using (4.19).  

In the case of planar raster scanning, the permittivity map can be obtained by the 

substitution of (4.37) into (4.10): 

 { }r

( ) ( ) 2 *( ) ( ) ( )r 0
0

1 1 , 1

( )
( ') Re ( ) ( ')

y x

y x

N Nm m
m m m

n n j kx y

c
D P P

N Nε
ε

= = =

∆
 = ⋅ − ⋅ ∑∑ ∑

r
r r r

ɶ
 (4.38) 

where 

 ( ) ( ) ( )
RO, RO, 0( ) i ( ) ( ),     , '.m m m

j kP = − ⋅ ⋅ ≡E Eρ ρ ρ ρ r r  (4.39) 

In summary, (4.38) represents the image that the algorithm produces when a point 

scatterer is located at position 0r  in the OUT at the frequency mf  ( f1,...,m N= ). 

Hereafter, the frequency index m is omitted for brevity. Also, the subscript rε  is omitted 

as it is always the default parameter of interest. Note that the Jacobian map in (4.38) is the 

PSF of the imaging algorithm at the m-th frequency. 
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The permittivity map expression in the case of circular array data acquisition is 

analogous to that of the planar raster scanning. Here, we present the final formula: 

 { }e e

r

( ) ( )
*( ) ( ) ( )0

02
1 1e

( )
( ') Re ( ) ( ') .

N Nm m
m m m

j k

c
D P P

Nε
ε

= =

∆
 = −  ∑∑

r
r r r

ɶ
 (4.40) 

 

4.7 FUNDAMENTAL RESOLUTION LIMITS IN PLANAR RASTER 

SCANNING 

The fundamental spatial resolution limit R∆  of an imaging method is its best possible 

resolution. This best result can be achieved under three conditions: (i) noise-free 

responses; (ii) continuous spatial and frequency sampling in their respective observation 

domains; and (iii) infinitely large data acquisition planes. In the chosen setup, the first 

requirement is satisfied due to the analytical models of the incident and the scattered 

fields; see (4.19) and (4.25). To satisfy the second requirement, we assume infinitesimal 

sampling steps in the spatial and frequency domains. Such continuous sampling implies 

an infinite number of samples. To satisfy the third requirement, we assume that the 

acquisition surfaces are infinite, i.e., they are squares of size H, where H → ∞ . At the 

same time, the frequency band is limited between minf  and maxf .  

To investigate the spatial resolution, a single small (point-like) scatterer is 

assumed at the position 0r . Under the sampling conditions stated above, the sums over the 

spatial and frequency samples in (4.14) can be transformed into integrals. Substituting 
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(4.38) into (4.14) and normalizing with respect to the length H of the scanning path along 

each direction, the normalized Jacobian map is obtained as: 

 ( )
max max

min min

1 1
( ') ( ')d ( ') d ,

f f

f f

M D f N D f
B B

= =∫ ∫r r r  (4.41) 

where 

 [ ]{ }
/2 /2( ) 2

*r 0
02

, 1/2 /2

( )
( ') Re ( ) ( ') d d

H Hm

j kH H

c
D P P x y

H

ε
=− −

∆= − ∑∫ ∫
r

r r r
ɶ

 (4.42) 

Here, max minB f f= − , where minf  and maxf  are the lower and upper limits of the 

frequency band, respectively. N denotes the energy normalization using (4.13). 

The final image is the plot of | ( ') |M r  where the maximum/minimum value 

indicates the location of the point scatterer. This image is in effect the point-spread 

function (PSF) of the algorithm. Obtaining an explicit closed-form expression for the 

resolution limits involves an analytical inversion of the function | ( ') |M r . To our best 

knowledge, this is not possible. Thus, by plotting a line cut of | ( ') |M r  along the desired 

direction, we evaluate the resolution in the chosen direction as the width of the PSF at the 

– 3 dB level. In the following examples, we set the scatterer location 0r  at the origin of 

the coordinate system. 

4.7.1 Fundamental spatial resolution limits with far-zone data 

In the far-zone imaging, the frequency band is in the range from max0.01f  to maxf , and the 

scanning plane distance is set to min100D λ= . Note that the lower frequency limit 

min max( 0.01 )f f=  is chosen to be much smaller (100 times) than maxf  so that min maxf f≪  
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and the center frequency cf  is about max0.5f .  

 

 
(a) 

 

 
(b) 

Fig. 4.3 Point-spread function in the range and the cross-range directions with far-zone 

wideband data: (a) range direction; (b) cross-range direction. The PSF width at 

–3 dB is RR∆ ≈ min0.4λ  in the range direction and CRR∆ ≈ min0.6λ  in the cross-

range direction. 
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The PSF is calculated using (4.41). Fig. 4.3 shows the obtained image cuts of the 

PSF. The resolution is about R min0.4R λ∆ ≈  (or about c0.2λ ) in the range direction and 

about CR
min0.6R λ∆ ≈  (or about c0.3λ ) in the cross-range direction. Here, minλ  is the 

wavelength at the maximum frequency maxf  and cλ  is the wavelength at the center 

frequency cf . 

Experiments based on the analytical EM models also show that varying D  (as 

long as D  is sufficiently (usually ten times) larger than the central wavelength in the 

frequency range) has little influence on the resolution (results not shown for brevity).  

4.7.2 Fundamental spatial resolution with near-zone data 

In the near-zone imaging, various frequencies in the frequency range from max0.01f  to 

maxf are sampled. Two distances between the scanned planes, 1D  = d0 and 2D  = 5d0, 

where d0 = min /100λ , are investigated. The PSF at a single frequency can be calculated 

using (4.42). We observe the image cuts of the single-frequency Jacobian maps 

( ) ( ')mM r . The maps are obtained with different D  at maxf f= , i.e., fm N= . From the 

results shown in Fig. 4.4(a)-(b), we observe that the resolution limit R∆  relates to the 

scanning plane distance D . It is about R 0.3R D∆ ≈  in the range direction and about 

CR 0.8R D∆ ≈  in the cross-range direction. It is expected that in the near-zone imaging, the 

spatial resolution is practically independent of the frequency. This is confirmed by further 

experiments with the PSF at various frequencies between max0.01f  and maxf . The results 
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are not shown for brevity. The averaged frequency maps at 1D  = d0 and 2D  = 5d0 are 

practically identical to the single-frequency maps shown in Fig. 4.4. 

 

 
(a) 

 
(b) 

 
Fig. 4.4 Point-spread function in the range and the cross-range directions with near-

zone data: (a) range direction; (b) cross-range direction. Here, 0 min /100d λ= . 
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In a noise-free environment, the resolution limits obtained above are not 

influenced by the variation of the following factors: i) the size of the scatterer; ii) the 

discretization of the scatterer, i.e., the number of voxels in the scatterer volume as long as 

it is very small; and iii) the contrast of the scatterer as long as it observes (4.28) and 

(4.29). 

It should also be noted that the resolution limits obtained above correspond to an 

ideal scenario where the spatial/frequency sampling is continuous and infinitely large 

scanning planes are used. The resolution may be affected by a limited number of spatial 

and frequency sampling points. This is valid particularly when noise is present since 

increasing the number of frequency and spatial samples in this imaging technique is a 

very efficient way to overcome noise through incoherent addition. The impact of the 

spatial sampling step on the image quality is discussed further through examples with 

noisy data in Section 4.11. 

 

4.8 FAR-ZONE RESOLUTION LIMITS WITH SCANNING ON 

FINITE ACQUISITION PLANES 

We first define an aperture angle max arctan( )H Dα = , which is the angle defined by the 

edge length of the scanning plane and the distance between the two scanned planes. The 

fundamental far-zone resolution limits in Section 4.7 corresponds to the case where 

max / 2α π→ . However, this is not practical in real-life scenarios where the size of the 
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scanning plane is usually limited.  

Here, we study the impact of varying maxα  on the resolution limits in far-zone 

imaging. Fig. 4.5 summarizes the variation of the cross-range resolution versus maxα . It is 

evident that the cross-range resolution CRR∆  improves as the aperture angle maxα  

increases. The relation between maxα  and CRR∆  can be approximately described by 

 
CR

CR O

max

( )
sin

R
R α

α
∆

∆ ≈  (4.43) 

where CR
OR∆  is the cross-range resolution obtained with infinite acquisition planes 

( max / 2α π= ). Further study also shows that maxα  has little influence on the range 

resolution. 

 

 
Fig. 4.5 Variation of the cross-range resolution versus maxα  and the approximated 

curve. 
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We emphasize that the above relationship holds as long as the constraints of the 

linear-Born approximation in (4.28) and (4.29) are satisfied. The result in (4.43) provides 

a theoretical guideline for determining the optimal size of the scanning plane for the 

required resolution limit.  

 

4.9 FAR-ZONE RESOLUTION LIMITS WITH LIMITED TYPES OF 

RESPONSES IN PLANAR RASTER SCANNING 

Here, we discuss the method’s capability to resolve targets along the range and cross-

range directions in the cases where only the reflection coefficients or only the 

transmission coefficients are available from planar-scan measurements. 

In the cases where the scanning plane is infinitely large, by solving the exact PSFs 

in (4.41) using only the reflection or transmission coefficients, we can obtain the 

following results in the far-zone imaging:  

• In the cases where only the reflection coefficients are used, both the range and 

cross-range resolution limits are well defined. The range resolution is about 

min0.4λ  and the cross-range resolution limit is about min0.6λ . The obtained results 

are identical to the fundamental range and cross-range resolution limits, 

respectively; see subsection 4.7.1. 

• In the cases where only the transmission coefficients are used, resolving a target 

along the range direction is not possible. Meanwhile, the cross-range resolution 

limit is finite and it is the same as the fundamental cross-range resolution limit 
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CR min0.6R λ∆ ≈ . 

Further numerical experiments show that, in both cases, the aperture angle maxα  

has little influence on the range resolution while its relation to the cross-range resolution 

observes (4.43) (or Fig 4.5).  

The above relationships also provide a guideline for the method’s resolving 

capability when limited responses (i.e., only reflection or transmission coefficients) are 

available in real-life applications.  

The exact inversion of the PSF in (4.41) is not possible, thus analytical expression 

for the above resolution limits are not available. However, an approximated inversion can 

be estimated under the assumption of maxα  being small, i.e., H D≪ . The detailed proof 

is presented in the Appendix. 

 

4.10 VALIDATION OF THE RESOLUTION LIMITS WITH DOUBLE 

SCATTERER TARGET IN PLANAR RASTER SCANNING  

The resolution limits obtained in the Section 4.7 are validated here with examples of a 

double-scatterer target imaging in both the far-zone and the near-zone scenarios. The 

setup for the OUT data acquisition has been illustrated in Fig 4.1. We set the voxel size to 

2 mmδ = . The distance between the two scatterers is denoted by l. In the range 

resolution example, the two scatterers are located at (0, 0, –l/2) and (0, 0, l/2). In the 

cross-range resolution example, the scatterers are located at (–l/2, 0, 0) and (l/2, 0, 0). The 

scanning step is set to 8 mmh∆ = . Note that further decrease in h∆  does not improve the 



 81

image quality. The length H of the scanning plane is set to 2.5H D=  in all examples. 

The aperture angle maxα  in this case is about 68˚. According to Fig 4.5, the cross-range 

resolution is expected to be practically the same as the fundamental cross-range resolution 

CR
min0.6R λ∆ ≈ . 

In the analytical models, the incident and scattered fields are computed as 

explained in Section 4.5. In particular, the incident field ( )
RO
mE  is calculated using (4.19); 

the S-parameters ( )
RO, 

m
jkS  are calculated using (4.24); and ( )

OUT, 
m

jkS  are calculated using 

(4.23).  

In this study, we consider the detection reliable when two criteria are met in the 

linear-scale maps: (i) the peaks that indicate the two scatterers are at least twice as large 

as all other local maxima in the reconstructed image; (ii) the minimum (dip) between the 

two maxima (peaks), as defined in (i) is at least twice smaller than these peaks. 

4.10.1 Range resolution limit with far-zone data 

In the far-zone imaging, we set min 3 GHzf =  and max 10 GHzf =  which is used in some 

microwave imaging systems [15][16]. Two scatterers are embedded in the OUT along the 

range direction (z-axis). The distance parameters used in the range resolution examples 

are listed in Table 4.1, cases 1 to 2.  
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TABLE 4.1 

DISTANCE PARAMETERS IN THE DOUBLE SCATTERER: FAR-ZONE RASTER SCANNING 

EXAMPLES. 

 case 1 case 2 case 3 case 4 

l (mm) 8.00 28.00 12.00 36.00 

D (mm) 200 200 200 200 

 
 

  
                  (a)                     (b) 

Fig. 4.6 Reconstructed images in cases 1 to 2 (see Table 4.1): (a) case 1, 

200 mmD = ( min7λ≈ ), 8 mml = ( min0.3λ≈ ); (b) case 2, 200 mmD =  

( min7λ≈ ), 28 mml =  ( minλ≈ ). 

 

Fig. 4.6 shows the reconstructed images. There, the two scatterers are discernible 

when l = 28 mm (about minλ  which is larger than R
min0.4R λ∆ = ). Here, minλ  is the 

minimum wavelength in the frequency band. However, the two scatterers merge into a 

single object when l = 8 mm (about min0.3λ  which is less than R
min0.4R λ∆ = ).  
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Further experiments show that, as expected, the variation of D  has little influence 

on the range resolution. This confirms that the range resolution is about R min0.4R λ∆ ≈  as 

obtained in Section 4.7.1. 

4.10.2 Cross-range resolution limit with far-zone data 

Two scatterers are embedded in the OUT along the cross-range direction (x-axis). The 

distance parameters used in the examples are listed in Table 4.1, cases 3 to 4. Fig. 4.7 

shows the reconstructed images. The two scatterers are discernible when their separation 

distance is l = 36 mm (about 1.2minλ  which is larger than CR
min0.6R λ∆ = ). However, the 

two scatterers merge into a single object when l = 12 mm (about min0.4λ , less than 

CR
min0.6R λ∆ = ). We observe that the cross-range resolution is about CR

min0.6R λ∆ ≈ .  

Further experiments show that the variation of 0D  has little influence on the 

resolution as expected. These examples confirm the cross-range resolution obtained in 

Section 4.7.  

Double-scatterer validation examples have also been carried out using small 

aperture angles maxα . The results (not shown for brevity) are consistent with the 

conclusions in Section 4.8. 
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                    (a)                     (b) 

Fig. 4.7 Reconstructed images in cases 3 to 4 (see Table 4.1): (a) case 3, 

200 mmD = ( min7λ≈ ), 14 mml = ( min0.5λ≈ ); (b) case 4, 200 mmD =  

( min7λ≈ ), 36 mml =  ( min1.2λ≈ ). 

 

 

TABLE 4.2 
DISTANCE PARAMETERS IN THE DOUBLE SCATTERER: NEAR-ZONE RASTER SCANNING 

EXAMPLES. 

 case 5 case 6 case 7 case 8 

l (mm) 100 500 240 1200 

D (mm) 200 1000 200 1000 
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                  (a)                     (b) 

Fig. 4.8 Reconstructed images in cases 5 and 6 (see Table 4.2): (a) case 5, 1D  = 200 

mm, 100 mml = ( 1 / 2D≈ ); (b) case 6, 2D  = 1000 mm, 500 mml =  ( 2 / 2D≈ ). 

  
(a) (b) 

Fig. 4.9 Reconstructed images of cases 7 and 8 (see Table 4.2): (a) case 7, 1D  = 200 

mm, 240 mml = ( 11.2D≈ ); (b) case 8, 1D  = 1000 mm, 1200 mml =  

( 21.2D≈ ). 
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4.10.3 Range and cross-range resolution limits with near-zone data 

Two scanning plane distances are used: 1D  = 200 mm and 2D  = 1000 mm. The OUT 

distance parameters are listed in Table 4.2, cases 5 to 8. The frequency range is from 0.6 

MHz to 6 MHz. The two scatterers are discernible in all the cases where they are placed 

at a distance above the theoretical resolution limits. The images are shown in Fig. 4.8 and 

4.9.  

Further experiments show that the two scatterers tend to merge into a single object 

when their separation distance l decreases (results not shown here). We observe that the 

resolution is about R 0.4R D∆ ≈  in the range direction, and it is about CR 0.8R D∆ ≈  in the 

cross-range direction. These limits are independent of the frequency. These examples 

confirm the theoretical resolution limits obtained in Section 4.7. 

 

4.11 EFFECT OF NOISE ON IMAGE RECONSTRUCTION IN 

PLANAR RASTER SCANNING 

In order to study the robustness to noise of the imaging algorithm, far-zone imaging 

examples with both the OUT and RO responses corrupted by Gaussian white noise 

(GWN) are used. The complex-valued GWN is generated as real plus imaginary part at 

given SNR level relative to the respective responses using Matlab function awgn [21]. 

Every example is repeated ten times in order to obtain a reliable observation.  

Here, in order to study the impact of the spatial sampling rate on the image 

reconstruction with noisy data, we re-visit the double-scatter imaging setup used in 
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Section 4.10. In the range resolution examples, the distance between the two voxel-size 

targets is minl λ≈  (larger than R
min0.4R λ∆ ≈ ). In the cross-range resolution examples, we 

set min1.2l λ=  (larger than CRR∆  ≈  min0.6 )λ . The target contrast is again p 0( )ε∆ rɶ  = 0.05. 

Fig. 4.10 summarizes the results in the case when the distance btween the acquisition 

planes is min7D λ≈  ( 200 mmD = ), minf =  3 GHz, and maxf  = 10 GHz. The scanning 

step h∆  decreases from 32 mm to 4 mm. And for each h∆  the minimum required SNR is 

determined such that the target is imaged reliably as per the criteria described in Section 

4.10. As expected, the minimum SNR decreases as the scanning step h∆  decreases. 

Reducing h∆  below 16 mm (about min / 2λ ) does not lead to further significant 

improvement in the image quality. Note that the same relation between the scanning step 

h∆  and the minimum SNR is obtained in examples of double scatterer in the cross-range 

direction. This result is not shown for brevity. 
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Fig. 4.10 Minimum SNR for resolving the two scatterers along the range direction at 

different scanning steps h∆ . All results are obtained in the cases where 

min7D λ= . 

 

 

(a) (b) (c) 

Fig. 4.11 Images in case 6 using noisy data: (a) h∆  = 32 mm; (b) h∆  = 8 mm; and (c) 

h∆  = 4 mm. Here, min28 mml λ= ≈ , min200 mm 7D λ= ≈ , SNR = 0 dB. 
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Further, note that the above general observation—minimum SNR decreases as 

spatial sampling rate increases—holds for any target contrast as long as it observes (4.28) 

as well as for any other distance D  that is sufficiently larger than the wavelength at the 

minimum frequency (far-zone data acquisition). However, as the size of the scatterer 

and/or the scatterer-to-background contrast increases, the minimum required SNR 

decreases for a given spatial sampling step h∆ .  

As an illustration of the impact of noise on the image quality, Fig. 4.11 shows the 

images obtained with SNR = 0 dB when min7D λ=  and p 0( ) 0.05ε∆ =rɶ . The two 

scatterers are placed along the range direction at a distance minl λ≈ . The frequency is 

from 3 GHz to 10 GHz. Three scanning steps are used in both the range and cross-range 

examples: 32 mmh∆ = , 8 mmh∆ = , and 4 mmh∆ = . The image quality visibly 

improves when the spatial sampling rate is higher (h∆  is smaller). However, this 

improvement becomes unnoticeable when h∆  is below about min / 2λ . Note that similar 

results (not shown for brevity) are also obtained in the cases where the two scatterers are 

placed along the cross-range direction. 

This study (see Fig. 4.10) also reveals that the sensitivity-based imaging technique 

is not fundamentally limited by the minimum Nyquist sampling rate of half-wavelength, 

which is typical for the imaging methods performing inversion in Fourier space. In fact, 

further experiments with analytical models and noise-free responses (SNR→ ∞ ) show 

reliable reconstruction even when the spatial sampling step h∆  is as large as min1.5λ . 

Analogous study has also been carried out with respect to the frequency sampling 

rate. As expected, increasing the number of frequency samples improves the noise 
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robustness and results in a reduced minimum SNR with which reliable target detection is 

obtained. 

 

4.12 FUNDAMENTAL RESOLUTION LIMITS IN CIRCULAR 

ARRAY DATA ACQUISITION 

Similar to the case of planar raster scanning in Section 4.7, the fundamental resolution 

limit is achieved under two conditions: (i) no noise or uncertainty in the responses; and 

(ii) continuous sampling in the observation domains (e.g., space and frequency). In the 

chosen setup, the first requirement is satisfied due to the analytical models of the incident 

and the scattered field. To satisfy the second requirement, the following conditions are 

imposed: (i) the number of the Tx/Rx antennas is infinite, i.e., eN → ∞ ; (ii) the number 

of frequency samples is infinite in the desired frequency band, i.e., fN → ∞ . In any other 

non-ideal case, the resolution limit can be expected to be larger than the fundamental 

limit R∆ . 

Under the above conditions, the sums over the spatial and frequency samples in 

(4.17) are transformed into integrals. Using (4.40) and normalizing with respect to the 

circle’s circumference 2C Rπ= , the averaged frequency Jacobian map is obtained as: 

 ( )
max

min

1
( ') ( ') d

f

f

M N D f
B

= ∫r r  (4.44) 
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(a) 

 

(b) 

Fig. 4.12 Image cuts at the frequencies 0f = 3 GHz, 6 GHz, and 9 GHz, obtained with 

different array radii: (a) 100 mmR = ; (b) 500 mmR = . The image cut is along 

the array diameter passing through the scatterer. 
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where max minB f f= −  is the bandwidth, N denotes energy normalization using (4.13) and 
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j k

c
D P P

π πε ϕ ϕ
π

∆= − ∫ ∫
r

r r r
ɶ

. (4.45) 

In this section, the resolution limits are obtained by solving (4.44) numerically. 

The obtained PSF is plotted along the diameter passing through the point scatterer and the 

resolution is estimated as its width at the –3 dB level. Here, we set the scatterer location 

at the origin of the coordinate system. 

4.12.1 Spatial resolution with far-zone data 

In the far-zone imaging, the frequency band is from 3 GHz to 10 GHz. The array radius 

R , which varies between 100 mm and 500 mm, is at least three times larger than minλ  in 

the frequency band. We first observe the PSF at the sampled frequencies mf  obtained by 

using (4.45). The double integral is calculated numerically and the maps ( ')M r  of the 

single scatterer (in dB) are obtained for two different array radii, R  = 100 mm and R  = 

500 mm, at various frequencies. Fig. 4.12 shows the variation of ( ')M r  (in dB) along 

the array diameter passing through the single-voxel scatterer. We observe that the 

resolution R∆  at the –3 dB level is subject to the diffraction limit and is about 

/ 3mR λ∆ ≈ . Here, mλ  is the wavelength of the sampled frequency mf . Comparing Fig. 

4.12 (a) and (b), we also observe that an increase in the array radius R  has little influence 

on the result.  
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Fig. 4.13 Image cuts obtained using wideband data from 3 GHz to 10 GHz with different 

array radii. The image cut is along the array diameter passing through the 

scatterer. 

 

Next, we obtain an image by evaluating the integral in (4.44) using wideband data 

in the frequency band from 3 GHz to 10 GHz: 

 ( )
10 GHz

3 GHz

1
( ') ( ') d .M N D f

B
= ∫r r  (4.46) 

Again, the array radius R  is set to 100 mm and 500 mm. The integral in (4.46) is 

calculated numerically and the results are shown in Fig 4.13. The resolution limit is about 

R∆  = 16 mm (about min / 2λ ) in both cases. It is evident that the spatial resolution is a 

function of wavelength (or frequency) and it decreases as sampled frequency increases. 

Again, the array radius has little influence on the spatial resolution. 



 94

 

(a) 

 

(b) 

Fig. 4.14 Image cuts obtained with different array radii at 0.6 MHz and 6 MHz: (a) 

100 mmR = ; (b) 500 mmR = . The image cut is along the array diameter 

passing through the scatterer. 
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4.12.2 Spatial resolution with near-zone data  

In the near-zone imaging, the frequency range is set from 0.6 MHz to 6 MHz. In this case, 

the array radius R  is at least a hundred times smaller than the shortest wavelength minλ .  

We first observe the image cuts obtained from the frequency Jacobian maps at 

single frequencies: 1 0.6 MHzf =  and 2 6 MHzf = . From the results shown in Fig. 4.14, 

we observe that the resolution limit R∆  is related to the array radius and is about 

2 / 3R R∆ ≈ . We also observe that in the near-zone imaging, the resolution limit is 

practically independent of the frequency. As a result, the averaged frequency Jacobian 

map shows a resolution limit R∆  which is the same as the one obtained from the single-

frequency maps. 

Note that similar to the case of planar raster scanning, in a noise-free environment, 

the resolution limits obtained with circular array data acquisition are not affected by the 

variation of the following factors: (i) the size of the small scatterer, (ii) the discretization 

of the scatterer, and (iii) the permittivity of the scatterer as long as it observes (4.28) and 

(4.29). 

Further, note that the fundamental resolution limits are obtained assuming that the 

spatial and frequency sampling are continuous. The resolution limits may be affected by 

the number Ne of the Tx/Rx antennas and the number fN  of the frequency points. In 

addition, the choice of eN  also depends on the expected noise level. The impact of eN  on 

the image quality is discussed through the examples with noisy data in Section 4.14. 
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TABLE 4.3 

DISTANCE PARAMETERS IN THE DOUBLE SCATTERER EXAMPLES WITH FAR-ZONE CIRCULAR 

ARRAY 

case l (mm) R (mm) true location (mm) estimated location (mm) 

1 10.00 100.00 1( 5,0)P − , 2(5,0)P  NA 

2 22.00 100.00 1( 11,0)P − , 2(11,0)P  
1 '( 13.5, 2.0)P − − , 

2 '(9.0, 1.9)P −  

3 22.00 250.00 1( 11,0)P − , 2(11,0)P  
1 '( 11.1, 1.9)P − − , 

2 '(10.8, 1.9)P −  

4 22.00 500.00 1( 11,0)P − , 2(11,0)P  
1 '( 8.8, 1.8)P − − , 

2 '(12.1, 1.8)P −  

 

4.13 VALIDATION OF THE RESOLUTION LIMITS WITH DOUBLE 

SCATTERER USING CIRCULAR ARRAY DATA 

ACQUISITION 

The resolution limits obtained in Section 4.12 are validated with examples of double-

scatterer imaging in the far-zone and the near-zone scenarios. The setups for the RO and 

the OUT data acquisitions have been illustrated in Fig 4.2. We set the voxel size to 

2 mmδ = . The number of Tx/Rx antennas is set to e 36N = . Note that further increase in 

Ne does not improve the image quality. The distance between the two scatterers is denoted 

by l. 

Note that the criteria of reliably detecting double scatterer are the same as those 

discussed in Section 4.9.  
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4.13.1 Far-zone imaging  

The parameters used in the examples are listed in Table 4.3 together with the true and 

predicted locations of the two scatterers. The frequency band is from 3 GHz to 10 GHz. 

In case 1, 100 mmR =  min(about 3 )λ  while 10 mml =  min(  / 2)λ< , which is 

smaller than R∆ . The two scatterers are not discernible. They have merged into a single 

bright spot in the image as shown in Fig. 4.15(a). In cases 2 to 4, where the scatterers are 

separated by a distance 22 mml =  min( / 2)λ> , the two scatterers are discernible 

regardless of the increase in the array radius; see Fig. 4.15(b) to (d). These results confirm 

the resolution limit obtained in Section 4.12.1. 

4.13.2 Near-zone imaging 

Here, the frequency band is set from 0.6 MHz to 6 MHz. Two array radii R =  100 mm 

and R =  500 mm are used in order to investigate the dependence of the results on this 

system parameter. The scatterers’ separation is set to l = 100 mm and l = 500 mm in two 

separate examples. The two scatterers are discernible and the images are shown in Fig. 

4.16. Further experiments also show that the two scatterers tend to merge into a single 

object as l decreases below 2 / 3R R∆ =  (results not shown here). The above examples 

confirm the resolution limit obtained in Section 4.12.2. 
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                               (a)                        (b) 

  
                              (c)                       (d) 

Fig. 4.15 Images obtained in the far-zone scenario with e 36N = : (a) case 1, l = 10.00 

mm min( /3)λ≈  and R = 100 mm min( 3 )λ≈ ; (b) case 2, l = 22.00 mm 

min( / 2)λ>  and R = 100 mm min( 3 )λ≈ ; (c) case 3, l = 22.00 mm min( / 2)λ>  

and R = 250 mm min( 8 )λ≈ ; (d) case 4, l = 22.00 mm min( / 2)λ>  and R = 500 

mm min( 16 )λ≈ . 

 

It should be noted that the spatial resolution limit is hardly influenced by the 

position of the scatterer(s) relative to the array in the far-zone imaging. However, this is 

not the case in the near-zone imaging where further experiments have shown that the 

resolution improves when the double-scatter pair is located off-center. The resolution 

limit obtained in Section 4.13.2 is the worst case scenario as far as the scatterer location is 

concerned. 
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                            (a)                             (b) 

Fig. 4.16 Images obtained in the near-zone scenario with e 36N = : (a) l = 100 mm 

( )R≈  and R = 100 mm; (b) l = 500 mm( )R≈  and R = 500 mm. 

 

4.14 EFFECT OF NOISE ON IMAGE RECONSTRUCTION IN 

CIRCULAR ARRAY DATA ACQUISITION  

Similar to Section 4.11 where the effect of noise is studied for the case of planar raster 

scan, here, far-zone imaging examples with responses in both the OUT and RO models 

corrupted by GWN are used in the cases of circular-sensor array data acquisition.  

For a given SNR, the image quality is influenced by the following factors: (i) the 

array radius R , (ii) the number eN  of Tx/Rx antennas, and (iii) the arc length t along the 

circumference between two adjacent receivers. These factors are inter-related. It is 

expected that the spatial sampling rate, which is reflected by the value of t, is the most 

relevant system parameter. 
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Here, we re-visit the double-scatterer imaging setup used in Section 4.12. The 

distance between the two voxel-size scatterers is fixed at min22 mm ( / 2)l λ= > . The 

target contrast is again p 0( ) 0.05ε∆ =rɶ . Fig. 4.17 summarizes the results in the case when 

the array radius is min16R λ≈  ( 500R =  mm, min 3f =  GHz and max 10f =  GHz). The 

number of Tx/Rx points eN  increases from 9 to 360 and for each eN  the minimum SNR 

is determined such that the target is imaged reliably as per the criteria described in 

Section 4.10. The spatial sampling step t is also shown. As expected, the minimum SNR 

decreases as the sensor number Ne increases (or the spatial sampling step t decreases). 

Reducing t below min / 2λ  does not lead to further significant improvement in the noise 

robustness.  

The above general relation, i.e., minimum SNR decreases as spatial sampling rate 

increases, holds for any target contrast as long as it observes (4.28) and (4.29) in the far-

zone imaging.  

As an illustration of the impact of noise on the image quality, Fig. 4.18 shows 

images obtained with SNR = 20 dB when min16R λ≈  and p 0( ) 0.05ε∆ =rɶ . Three images 

are shown for the cases of Ne = 18, Ne = 144, and Ne = 288. The image quality visibly 

improves when more spatial samples are used. However, this improvement becomes 

unnoticeable when Ne exceeds 288 (or t decreases below min / 3λ ).  

This study (see Fig. 4.17) also reveals that the sensitivity-based imaging technique 

is not fundamentally limited by the minimum Nyquist sampling rate of half a wavelength, 

which is typical for the imaging methods performing inversion in Fourier space. In fact, 
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further experiments with analytical models and noise-free responses (SNR→ ∞ ) show 

reliable reconstruction when the spatial sampling step t is as large as min10λ . 

Analogous study has also been carried out with respect to the frequency sampling 

rate. As expected, increase in the number Nf of the frequency samples improves the noise 

robustness and results in a reduced minimum SNR at which the reliable target detection is 

obtained. 

Comparing the results shown in Fig. 4.10 and 4.17, the minimum required SNR is 

lower in the case of planar raster scanning than that of the circular array. This is because 

the signal in the former case transmits and receives in a direct path and it allows 

maximum power coupled to the receiver which results in better robustness to noise.  

 

 

Fig. 4.17 Minimum SNR versus the number of Tx/Rx antennas required to resolve the 

two scatterers when min16R λ= and p 0( ) 0.05ε∆ =rɶ . 

 



 102

  

(a) (b)                         (c) 

Fig. 4.18 Images obtained with varying number of Tx/Rx antennas (SNR = 20 dB, 

min16R λ≈ ): (a) e 18N = , (b) e 144N = , and (c) e 288N = . 
 

4.15 CONCLUSION  

The spatial resolution of a promising microwave imaging technique based on response 

sensitivity analysis is studied. The technique features real-time image reconstruction from 

the measured microwave responses of an object under test once the electromagnetic 

simulation of the reference object is available.  

Here, regorous methodology is proposed to study the spatial resolution of the 

sensitivity-based imaging with a raster-scan and a circular-array data acquisitions. The 

fundamental spatial resolution limits are derived from the analytical point-spread function 

(PSF) of the method and are then validated with double-scatterer imaging examples. It is 

concluded that the resolution limits are fractions of the center frequency wavelength in 

the far-zone imaging, and they are fraction of the sensor-to-sensor distance in the near-

zone imaging.  

The analytical PSF of the method is derived under ideal conditions as follows: (i) 
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point-wise sources and point-wise field sampling which allow for analytically modeled 

noise-free responses, and (ii) infinitesimal spatial and frequency sampling steps. 

Therefore, the obtained resolution limits are fundamental, i.e., they describe the best 

possible performance of the method. The spatial resolution is expected to be poorer under 

realistic non-ideal conditions depending on factors such as spatial and frequency 

sampling rates, signal-to-noise ratio (SNR), and the fidelity of the EM model of the 

reference object. Note also that the method has been proven to rely on the linear Born 

approximation [20]; therefore, the contrast and size of the scatterer would impact the 

spatial resolution if the respective limits (4.28) and (4.29) are not observed. 

In the case of planar raster scanning, the method’s resolution limits are also 

studied in non-ideal cases. The cross-range resolution is affected by the aperture angle 

maxα  and it improves as maxα  increases. In the case where only the reflection coefficients 

are available, both the range and cross-range resolution limits are finite and identical to 

the fundamental limits. Meanwhile, in the case where only the transmission coefficients 

are available, range resolution cannot be achieved, i.e., it is infinite. The cross-range 

resolution is the same as that for the reflection coefficients. 

Further, the performance of the algorithm under various SNR levels in the 

measured responses is studied and related to the spatial and frequency sampling rates. As 

expected, the method’s robustness to noise improves as the spatial and frequency 

sampling rates increases. 

 

 



 104

REFERENCES 

[1] L. E. Larsen, and J. H. Jacobi, Medical Applications of Microwave Imaging. New 

York: IEEE Press, 1986. 

[2] A. B. Wolbarst, R. G. Zamenhof, and W. R. Hendee Advances in Medical Physics. 

Madison WI: Medical Physics Publishing, 2006. 

[3] R. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A 

clinical prototype for active microwave imaging of the breast,” IEEE Trans. 

Microwave Theory Tech., vol. 48, no. 11, pp. 1841–1853, 2000. 

[4] E. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, “Confocal microwave imaging 

for breast cancer detection: localization of tumours in three dimensions,” IEEE 

Trans. Biomed. Eng., vol. 49, no. 8, pp. 812–822, 2001. 

[5] Z. Q. Zhang, and Q. H. Liu, “Three-dimensional nonlinear image reconstruction 

for microwave biomedical imaging,” IEEE Trans. Biomed. Eng., vol. 51, no. 3, 

pp. 544–548, 2004. 

[6] T. Rubaek, P. M. Meaney, P. Meincke, and K. D. Paulsen, “Nonlinear microwave 

imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS 

inversion algorithm,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2320–

2331, 2007. 

[7] M. Pastorino, Microwave Imaging. USA: John Wiley & Sons, Inc., 2010. 

[8] R. Zoughi, Microwave Non-Destructive Testing and Evaluation. USA: Kluwer 

Academic Publishers, 2002. 

[9] M. Pastorino, A. Massa, and S. Caorsi, “A global optimization technique for 



 105

microwave nondestructive evaluation,” IEEE Trans. Instrum. Meas., vol. 51, no. 

4, pp. 666–673, 2002. 

[10] I. Aliferis, C. Pichot, J. Y. Dauvignac, and E. Guillanton, “Tomographic 

reconstructions of buried objects using a nonlinear and regularized inversion 

method,” Proc. Int. Non-Linear Electromagn. Syst. Symp., 1999. 

[11] T. K. Chan, Y. Kuga, and A. Ishimaru, “Subsurface detection of a buried object 

using angular correlation function measurement,” Waves in Random and Complex 

Media, vol. 7, pp. 457–465, 1997. 

[12] N. G. Paulter, Guide to the technologies of concealed weapon imaging and 

detection. Available online at: http://www.ncjrs.gov/pdffiles1 /nij/184432.pdf, 

2001. 

[13] A. Agurto, Y. Li, G. Y. Tian, N. Bowring and S. Lockwood, “A review of 

concealed weapon detection and research in perspective,” Proc. of the IEEE Int. 

Conf. on Networking, Sensing and Control, pp. 443–448, 2007. 

[14] L. Liu, A. Trehan, and N. K. Nikolova, “Near-field detection at microwave 

frequencies based on self-adjoint response sensitivity analysis,” Inverse Problems, 

vol. 26, 105001, 2010. 

[15] N. K. Nikolova, “Microwave imaging for breast cancer detection,” IEEE 

Microwave Magazine, vol. 12, no. 7, pp. 78–94, 2011. 

[16] R. K. Amineh, M. Ravan, A. Khalatpour, and N. K. Nikolova, “Three-dimensional 

near-field microwave holography using reflected and transmitted signals,” IEEE 

Trans. Antennas Propag., vol. 59, no. 12, pp. 4777−4789, 2011. 



 106

[17] IEEE standard board, IEEE standard definitions of terms for antennas, IEEE Std 

145-1993 (NY, USA: IEEE), 1993. 

[18] Y. Song, and N. K. Nikolova, “Memory efficient method for wideband self-

adjoint sensitivity analysis,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 8, 

pp. 1917–1927, 2008. 

[19] C. A. Balanis, Antenna Theory, 2nd ed. USA: WILEY, 1997.  

[20] W. C. Chew, Waves and Fields in Inhomogeneous Media. NY, USA: IEEE 

PRESS, 1995. 

[21] MATLAB (R2010a), The MathWorks, Inc., USA, 2010. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 107

Chapter 5 
 

APPLICATIONS TO IMAGING OF 
NUMERICAL AND PHYSICAL TISSUE 
PHANTOMS 

 

 
 

5.1 INTRODUCTION 

Preliminary study [1]-[4] has shown the promise of the sensitivity-based imaging using 

numerical examples. In this work, the resolution and robustness to noise of the 

sensitivity-based imaging method have been studied using data provided by analytical 

models in the cases of planar raster scan and circular array data acquisitions; see Chapter 

4. In this chapter, image reconstruction is performed utilizing the simulated and measured 

data obtained from raster scanning over human-tissue models/phantoms containing tumor 

simulant(s).  

In the sensitivity-based imaging, the choice of the reference object (RO) affects 

greatly the reconstructed image as it provides the incident field distribution and the RO 

responses to the algorithm. When imaging a given object under test (OUT), different ROs 

can be used, which will result in different images. Typically, the RO would mimic as 

closely as possible the background (target-free) medium and would include an accurate 

representation of the antennas. However, obtaining the simulated E-field distribution in 
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the RO requires significant computational effort when the background medium is highly 

heterogeneous, which is the case in human-tissue imaging. In addition, in human tissue 

imaging, the knowledge of the heterogeneous background of the OUT is usually not 

available. Thus, an exact RO, having the same background medium as that of the OUT, is 

usually not available. Therefore, based on numerical models, we present a preliminary 

study of image reconstruction using inexact ROs where the background medium differs 

from that in the OUT. 

Image reconstruction is also performed using measured data. The phantoms are 

box shaped to emulate the slightly compressed human tissue (e.g. breast) during 

examination. The background materials of the phantoms are made to mimic the human 

breast tissues1. The tumor simulants have similar dielectric properties to those of 

malignant tumors [6][7]. In the raster scanning data acquisition, two identical TEM horn 

antennas [8][9] are used. They are placed on the opposite sides of the imaged object while 

facing each other along boresight. This is because the signal attenuation in tissue is very 

high and the signal-to-noise ratio (SNR) for signals propagating away from the boresight 

is usually low. Such alignment of the sensors can provide the shortest path for the signals 

and, therefore, results in the strongest signal level. During the scanning over the xy-plane, 

they move simultaneously to scan the rectangular aperture at a pre-determined sampling 

step while one antenna transmits and the other receives. The scattering parameters (S-

parameters) are measured at all desired frequencies at each scan location. The raster 

scanning is performed twice to provide two data sets: (i) the S-parameters measured with 

                                                 
1 The background medium of the breast tissue phantom has the properties of the weighted average of the 
whole breast [6]. 
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the OUT; (ii) the S-parameters measured with the RO. Here, we choose the RO to be the 

same as the OUT except that there is no tumor simulant.  

The impedance of the two TEM horn antennas is well matched from 3 GHz to 10 

GHz. The antennas are filled with high permittivity low loss dielectric material, the 

permittivity of which is similar to the property of the phantom’s background material. 

The reflection at the interface between the antenna aperture and the phantom is thus 

reduced. 

 

5.2 IMAGE RECONSTRUCTION USING SIMULATED DATA 

Two types of models are presented: (i) simple layered structure model, and (ii) complex 

human breast model. Point-like Tx/Rx pair is used for the raster scanning in both models. 

During the scan, two antennas placed on the opposite sides of the imaged object move 

together to scan their respective (mutually parallel) planes. 

The OUT contains the tumor simulant embedded in a heterogeneous medium. The 

RO does not contain tumor simulants and the medium is assumed to be homogeneous. 

The dielectric properties of the homogeneous background are chosen to match one of 

dielectric materials in the OUT.  

5.2.1 Simple layered structure 

The 2D cross section which contains the center of the scatterer in the 3D structure of the 

OUT is shown in Fig. 5.1 (a). The scatterer is embedded in the fibroglandular tissue. In its 

turn, the fibroglandular tissue is embedded in the transitional tissue, which is surrounded 
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by fat. The thicknesses of the three types of tissue layers are d1, d2, and d3, respectively. 

The length of the model is H. The width (along x) of the model is W. The value of the 

shape parameters used in the models are listed in Table 5.1. The radius R of the scatterer 

is set to 2.0 mm. The Tx/Rx antennas (shown as black dots) are modeled with short 

dipoles which are oriented along z. The scanning step size is h = 3 mm. The constitutive 

parameters (relative permittivities and conductivities) of the scatterer (tumor simulant), 

fibroglandular tissue, transitional tissue, and fat are set to εsc = 20, σsc = 12 S/m; εfb = 

10.4, σfb = 6.1 S/m; εtran = 8.52, σtran = 4.5 S/m; and εfat = 1.09, σfat = 0.3 S/m, 

respectively.  

 

 

  
(a) (b) 

Fig. 5.1 2D cross section passing through the scatterer of the 3D model of the layered 

structure: (a) OUT; (b) RO. 
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TABLE 5.1 
PARAMETERS USED IN THE LAYERED STRUCTURE MODEL. 

parameter length (mm) parameter length (mm) 

H 120 mm d1 20 mm 

h 5 mm d2 16 mm 

W 60 mm d3 12 mm 

 

 

 

The RO has the same dimensions as the OUT and its homogeneous background 

medium properties are chosen to match one of the tissues in the OUT: i) fibroglandular 

tissue; ii) transitional tissue; iii) fat tissue; or iv) malignant tissue. Both the OUT and the 

RO models are simulated using the full-wave EM simulator FEKO [10]. The frequency 

range is from 3 GHz to 10 GHz with a sampling interval of 0.5 GHz. 

The reconstructed images using different RO models are shown in Fig. 5.2. The 

target is detected in the first three RO scenarios and detection fails in the tumor-tissue 

background RO scenario. The image obtained with a fibroglandular-tissue background 

has the least localization error. This is consistent with the fact that in the OUT the target 

is indeed embedded in the fibroglandular-tissue layer. 
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        (a)                (b) 

  
   (c)                  (d) 

Fig. 5.2 Reconstructed images of the layered structure with a spherical tumor simulant 

using ROs of different homogeneous backgrounds: (a) fibroglandular tissue, 

sP ′ (6.5, 89.0) mm; (b) transitional tissue, sP ′  (9.0, 88.0) mm; (c) fat tissue, 

sP ′ (10.0, 84.0) mm; and (d) tumor. Here, sP ′  denotes the estimated location of 

the target. The true location of the target: Ps(7.5, 90.0) mm. 

z (mm) z (mm) 

z (mm) z (mm) 
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(a) (b) 

Fig. 5.3 Heterogeneous human breast tissue model with tumor simulant (i.e., the OUT): 

(a) xy-view; (b) yz-view. 

 

5.2.2 Complex breast tissue structure 

In this example, a magnetic resonance imaging (MRI) based numerical model of the 

breast (as shown in Fig. 5.3) is simulated using the FDTD based EM software QW-3D 

[11]. The thickness (along the z-direction) of the breast model is 22 mm. A tumor 

simulant with radius of R = 2.0 mm is embedded in the fibroglandular tissue. The 

constitutive parameters based on those reported in [1] are also shown in Fig. 5.3. These 

constitutive parameters are scaled down from the actual values of the respective tissues; 

however, the contrast in these values is preserved. The lower permittivities allow for 

larger FDTD discretization cells which results in faster computation. Also, in order to 

keep the computational resources at a reasonable level, the skin layer is not included in 

the model since it requires a very thin layer surrounding the breast tissue.  
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The frequency band is from 3.0 GHz to 10.0 GHz with a sampling step of 0.1 

GHz. The FDTD mesh is 0.5 mm for the air background. The step size of the raster 

scanning is 5 mm along the y-axis. 

Similar to the previous example (subsection 5.2.1), four types of homogeneous 

background ROs are used in this example: i) fibroglandular-tissue RO; ii) transitional-

tissue RO; iii) fat-tissue RO; and iv) tumor-tissue RO. 

The reconstructed images are shown in Fig 5.4. The target is detected in the 

images obtained with fibroglandular and transitional-tissue ROs. The localization error is 

the least in the former scenario as shown in Fig. 5.4 (a). Note that the tumor simulant in 

the OUT is indeed embedded in the fibroglandular tissue. The image is less reliable with 

significant localization errors in the images obtained with the fat and the tumor 

background ROs.  
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(a) (b) 

  

(c) (d) 

Fig. 5.4 Reconstructed images of the breast tumor using homogeneous background RO 

with four types of material properties: (a) fibroglandular tissue, sP ′  (10.0, 41.5) 

mm; (b) transitional tissue, sP ′ (8.5, 45.5) mm; (c) fat, sP ′ (12.0, 52.5) mm; and 

(d) tumour, sP ′ (4.0, 48.0) mm. The true location is Ps(10.0, 40.0) mm. 
 

 

 

z (mm) z (mm) 

z (mm) z (mm) 
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In both examples presented above, we observe that the reconstructed image is the 

most reliable (least localization error) when the homogeneous background of the RO is 

assumed to be fibroglandular tissue, i.e., the medium in the OUT that the scatterer is 

actually embedded in. In other homogeneous-background ROs, the image becomes less 

reliable as its assumed permittivities/conductivities deviate significantly from those of the 

fibroglandular tissue. 

It is important to note that the preliminary study presented in this section only 

provides initial observations based on comparing visually the image quality. Significant 

and systematic future work is needed to uncover a conclusive guideline of a proper 

selection of the RO background medium.  

 

5.3 PHYSICAL HUMAN-TISSUE PHANTOM 

The box-shaped phantom with two identical horn antennas and their scanning route are 

shown in Fig 5.5. During scanning, the two antennas move together over the data 

acquisition plane (xy-plane). The thickness of the phantom is denoted as t. 

 

 

 



 117

y

z

t

air

air

phantom

tumor 

simulants

antennas

 
y

x
...

2
0
 m

m

30 mm

antennas

 

(a) (b) 
Fig. 5.5 The planar raster scanning setup with two antenna where an example phantom 

contains two embedded tumor simulants [9]: (a) side view, (b) top view. 

Dashed lines represent the route of the scan (not to scale). 

 
5.3.1 Object under test 1: double target with separation l ≈ 50 mm. 

Here, a homogeneous flat phantom made of glycerin-based material with thickness t = 30 

mm is used. Two cubical tumor simulants are embedded in the phantom. We denote the 

two targets as Scatterer 1 and Scatterer 2. Their edges are 10 mm and 15 mm long, 

respectively. The separation is l ≈ 50 mm and they are located at (25, 75, 15) mm and (35, 

30, 15) mm. Scatterer 1 is made of alginate powder and Scatterer 2 is made of glycerin. 

The dispersive constitutive parameters of the two tumor simulants and the background 

medium are given in Fig. 5.6 (see curves denoted as Sc1 and Sc2) [6]. 
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(b) 

Fig. 5.6 Constitutive parameters of phantoms: (a) dielectric constant; and (b) effective 

conductivity. (Figures is from [6].) 
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5.3.2 Object under test 2: double target with distance l = 15 mm. 

In this example, a homogeneous flat phantom is made of the same background material 

(see “Background” curve in Fig. 5.6). Its thickness is t = 50 mm. Two identical cubical 

tumor simulants made of alginate powder are embedded in the phantom. Their edge 

lengths are 10 mm. The center-to-center separation is l ≈ 15 mm (or 'l  = 5 mm from 

surface to surface). The dispersive constitutive parameters of the two tumor simulants are 

given in Fig. 5.6 (see curves denoted as Scatterer1). 

5.3.3 Reference object 

As has been stated in Chapter 4, two types of data are needed from the RO: (i) the 

responses ROS , and (ii) the incident field ROE . In this study, we choose the RO to be the 

same as their respective OUT with the same setup except that there is no embedded 

scatterer(s). The responses ROS  are measured from the RO.  

The incident field distribution can be obtained in two ways: i) through simulation; 

or ii) through measurement with a field probe if the object is mechanically penetrable. To 

perform the measurement, field probes mounted on robot are used. However, this is not 

practical in human tissue imaging which is our ultimate goal of this study. Therefore, in 

this thesis, we use full wave EM simulator FEKO [10] to obtain the E-field distribution in 

the RO.  
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5.4 RASTER SCANNING SYSTEM SETUP 

5.4.1 Imaging sensor: antenna 

In both the OUT and the RO, two identical TEM horn antennas [8][9] are used as a 

transmitting and a receiving antenna. The input impedance is matched from 3 GHz to 10 

GHz. The antenna is covered with copper sheets to ensure the coupling of all available 

power into tissue. This also eliminates interference from the outside environement and 

minimizes leakage of power away from the tissue.  

The antenna is filled with high-permittivity low-loss dielectric material, the 

permittivity of which ( r 10ε =  and tan 0.002δ ≤ )  is similar to that of the background 

medium of the phantoms. Thus, the reflection at the interface between the antenna 

aperture and the phantom is reduced. 

5.4.2 Scanning aperture setup 

The photo of the scanning system and the phantom is shown in Fig. 5.7 [12]. The two 

TEM horn antennas are used to perform a 2D scan of the phantom slightly compressed 

with two thin plexiglass sheets. A slight compression of the breast phantom between two 

rigid parallel plates would prevent undesired movement during the microwave 

measurements. The S-parameters at the two antenna terminals are measured with 

Advantest R3770 vector network analyzer on an area of 100 mm ×  60 mm in the OUT 1 

and 70 mm ×  70 mm in the OUT 2. The sampling step is 5 mmh =  in both x and y 

directions. 
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Fig. 5.7 Photo of the raster scanning measurement system. (Figure is from [12].) 

 

5.5 RECONSTRUCTED IMAGES USING MEASURED DATA 

Due to limited SNR in the reflection coefficients with our current data acquisition system, 

we use only the transmission coefficients for image reconstruction. As discussed in 

Chapter 4, the range resolution cannot be achieved when only the transmission 

coefficients are available. Therefore, in this chapter, the reconstructed images are 2D in 

nature showing the projection of the targets on the scanning plane.  

Here, to obtain the image value at a certain pixel at ( , )x y , we only use the 

responses acquired at that pixel and at its adjacent pixels; i.e., we use the responses at 
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( , )x y , ( , )x h y− , ( , )x h y+ , ( , )x y h− , ( , )x y h+ , ( , )x h y h− − , ( , )x h y h− + , 

( , )x h y h+ + , and ( , )x h y h+ − . This forms a 3 by 3 “window” in the scanning plane as 

illustrated in Fig. 5.8. The size of the window affects the image quality, i.e., as the size 

becomes larger, the targets become less resolvable. This is because the value of the 

response Jacobian at a given voxel becomes less accurate due to noise when using 

responses far from the imaged pixel.  

 
 

( , )x y

 
Fig. 5.8 Illustration of the 3 by 3 “window” for choosing the responses used to form the 

image value at the (x, y) pixel. 
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Fig. 5.9 Reconstructed image of OUT 1 (l = 50 mm). 

 

5.5.1 Imaging object under test 1 (l = 50 mm) 

The image of the double-tumor simulant is shown in Fig. 5.9. It is a 2D image slice at z = 

15 mm, i.e., to obtain this image the incident field at z = 15 mm has been used. 

It is observed that Scatterer 1 is significantly brighter (more observable) than 

Scatterer 2 in Fig. 5.9. This reflects the fact that the permittivity/conductivity contrast 

between Scatterer 1 and the background medium is stronger than that of Scatterer 2. It 

also reveals that the imaging method is more sensitive to the target-background contrast 

than to the size of the target. 
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5.5.2 Imaging object under test 2 (l = 15 mm) 

The double-tumor simulant is successfully detected and the image is shown in Fig. 5.10 

as a 2D image slice at z = 25 mm. The result also demonstrates the capability of the 

imaging method to resolve details the size of which is about l = 15 mm c( 1.1 )λ≈ . This 

result is expected according to the theoretical derivation in Chapter 4 where the cross-

range resolution is obtained as CR
c0.6R λ∆ = . However, in this imaging example, the 

method’s performance is limited by the following factors: (i) measurement noise from the 

environment and the instrument; (ii) uncertainties in the scanning system due to 

mechanical vibration and sensor positioning; (iii) limited sensitivity of the sensor due to 

its large aperture. The performance of the sensitivity-based method is expected to 

improve by improving the hardware and addressing the problems stated above.  

 

Fig. 5.10 Reconstructed image of OUT 2 (l = 15 mm). 
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It should also be noted that with simulated data, the sensitivity-based imaging 

method is able to detect tumor simulants with low tumor-to-background contrast (about 

1.1:1) which has been reported in [13][14]. Due to the fact that our data acquisition 

system does not have sufficient sensitivity to obtain reliable strong signals with such low 

contrast, we work with higher contrast targets in measurements. The typical contrast of 

the tumor simulants used in our measurement are about 4:1 in permittivity and 

conductivity at the center frequency.  

 

5.6 CONCLUSION 

Imaging results using measured and simulated microwave signals (frequency-sweep) are 

presented. The data acquisition uses planar raster scanning. The technique features real-

time image reconstruction because the required incident-field information from the 

electromagnetic simulations of the RO is already available. 

The preliminary study of the image reconstruction using inexact ROs is performed 

based on numerical models. The background medium of the OUT is heterogeneous 

containing three different tissue layers. We observe that the image is the most reliable 

when the homogeneous-background RO is chosen to have the properties of the medium 

(material) in which the tumor simulant in the OUT is actually embedded.  

In the image reconstruction with measured data of tissue phantoms, the technique 

has shown promise in detecting targets as small as 1 cm3 with contrast from about 2:1 to 

4:1. The difference in contrast between targets is also qualitatively reflected in the 

reconstructed image. The cross-range resolution of the imaging method with the current 
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data acquisition system and with simulated incident field information is about 15 mm. 

The results further confirm that range resolution is not achievable when only transmission 

coefficients are available in planar scanning.  

The performance of the imaging method using measured data is expected to 

improve by reducing the noise and uncertainties of the measurements as well as 

improving of the sensor sensitivity. 
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Chapter 6 
 

CONCLUSIONS 
 
 
 
This thesis presents advanced applications of the self-adjoint S-parameter sensitivity 

analysis. In the application to antenna design optimization based on the method of 

moments (MoM), the proposed technique aims at providing fast and accurate response 

sensitivities. In the sensitivity-based imaging, the technique allows for real-time image 

reconstruction. The studies of the method’s resolution limits and robustness to noise are 

performed here for the first time. Also, our first attempts at image reconstruction using 

measured microwave data are reported.  

In Chapter 2, the mathematical basis of S-parameters sensitivity analysis based on 

a self-adjoint approach is presented. The formulation of the sensitivity expression using 

the MoM current solution based on specific EM solver (FEKO) is given. Then, the 

sensitivity formula using volumetric field solution is presented. In both formulations, the 

computation of the sensitivity information is accelerated significantly because the 

analysis of the adjoint problem is avoided. This becomes possible due to the self-adjoint 

nature of the linear electromagnetic problem, which allows for a simple linear 

relationship between the original and the adjoint problems in the case of network-

parameter responses such as S-parameters.  
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Chapter 3 presents the application of the S-parameters sensitivity analysis with 

MoM solutions to design optimization. The self-adjoint approach is implemented with 

discrete shape perturbations on a non-uniform grid. The design optimization of a planar 

printed antenna and a microwave double-stub tuner are used as validation examples. The 

gradient-based optimization is accelerated due to the use of discrete shape perturbations 

and the availability of computationally cheap sensitivity information.  

In Chapter 4, the resolution limits and the noise robustness of a new sensitivity-

based imaging method are studied using data acquired with two common approaches: (i) 

planar raster scanning; and (ii) circular sensor array. The analytical EM models of the 

incident and the scattered field are derived where the latter is based on the linear Born 

approximation. The spatial resolution limits are derived from the analytical point-spread 

function (PSF) of the method and are then validated with double-scatterer imaging 

examples. In both data acquisition approaches, the far-zone resolution limits are related to 

the minimum wavelength, while the near-zone resolution limits are related to the distance 

between transmitting and receiving sensors. In addition, in the case of planar raster 

scanning, the cross-range resolution limit is also a function of the aperture angle. Finally, 

the method’s robustness to noise with respect to spatial and frequency sampling rates is 

studied. The image quality improves as the spatial and frequency sampling rates increase, 

which is expected.  

Chapter 5 presents the imaging of numerical and physical tissue phantoms. 

Preliminary study on imaging without the exact knowledge of the normal state of the 

object is also performed with simulated data. Reference objects (RO) with various 
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homogeneous background media are tested. We observe that the image of the object 

under test (OUT) is visually the best when the RO is assumed to be made of the 

homogeneous medium where the scatterer is actually embedded. Further, the imaging is 

for the first time tested with measured data of tissue phantoms. The technique has shown 

promise in detecting targets of size 1 cm3 with the target-to-background contrast from 

about 2:1 to 4:1. It is able to resolve targets at separation of 15 mm with the current raster 

scanning acquisition system. In addition, it is observed that the difference in contrast 

between targets is qualitatively reflected in the reconstructed images.  

From the experience gained during the course of this work, the author suggests the 

following research topics to be addressed in future developments. 

(1) Enhancing the sensitivity-based imaging technique using iterative updates of the 

incident field information, thus, overcoming the limitations of the linear Born 

approximation. 

(2) Developing methods for noise suppression in the microwave measured data. 

(3) Investigating algorithms for data fusion of the images reconstructed at various 

sampled frequencies. Data fusion algorithms can also be used to combine the 

outcome of the sensitivity-based reconstruction method (which operates directly in 

the spatial domain) and the holography reconstruction (which operates in k-space) 

[1].  

(4) Building circular and hemi-spherical sensor-array acquisition systems which allow 

for obtaining more responses from varying viewing angles. 
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(5) Investigating the possibility to acquire the incident field and the Green tensor via 

measurements instead of simulations of the RO. 

(6) Designing an antenna able to acquire reliable reflected signal by further reducing 

the reflection at the interface between the antenna and phantom. Improving the 

antenna sensitivity by reducing the effective area. 

(7) Systematic study of imaging without exact background medium information of the 

OUT. 
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APPENDIX 
 

A1. SIMPLIFICATION OF POINT SPREAD FUNCTION (PSF)  

To simplify the discussion, we observe the image reconstructed in the xz plane defined by 

the 1-D scanning route of the two sensors. The target is located at the origin of this plane 

(see Fig. A.1). Now, the imaging formula (4.41) in Chapter 4 using single frequency data 

can be re-written as 

 ( ) ( ) ( ){ }2/2 *( ) ( ) ( )
0/2

, 1

' Re ' d ,  1,..., .
Hm m m

fH
i j

D P P x m N
+

−
=

 = − = ∑∫r r r  (A.1) 

Here, 

 ( ) ( ) ( )
RO, RO, 0( ) i ( ) ( ),    , '.m m m

j kP = − ⋅ ⋅ ≡E Eρ ρ ρ ρ r r  (A.2) 

We first assume the distance between the two scanning plane is infinite, i.e., 

D → ∞ , the wave propagation factor can be simplified as 

 i( ) ( ) mk rmE r e−
∼ . (A.3) 

Here, r is the distance between the transmitting antenna and the observation point. Using 

(A.3), (A.1) can be obtained as 

 ( ) ( ) ( )0 0

2 */2 i ii i( )

/2
, 1

' Re d .m j m Pjm k m Pk
H k r k rk r k rm

H
j k

D e e e e x
+ − −− −

−
=

 = −   
∑∫r  (A.4) 

Here, 0 ,  ,r j kξ ξ =  are the distances between the scatterer and the j-th/k-th antenna; 

,  ,Pr j kξ ξ =  are the distances between the observation point and the j-th/k-th antenna. 
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The above equation is then used in the derivation of the PSFs when only reflection or 

transmission coefficients are available. 

 

A2. POINT SPREAD FUNCTION IN THE RANGE DIRECTION 

OBTAINED USING REFLECTION COEFFICIENTS 

In the case where only reflection coefficients are available, i.e., we use the response 

differences 11S∆  and 22S∆ , the PSF in (A.4) can be written as 
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 (A.5) 

Since the target is located at the origin of the coordinate system, we have  

 01 02r r= . (A.6) 

Substituting (A.6) into (A.5), we have 
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Fig. A.1 Observing along the range direction. 

 

Since the scanning antennas are very far from the target, we have (see Fig. A.1) 

 1 2 01 022 2P Pr r r r+ ≈ =  (A.8) 

and 

 1 2 2 'cosP Pr r z α− ≈ . (A.9) 

Substituting (A.8) and (A.9) into (A.7), we have  

 ( ) ( )/2( )
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(A.10) can also be written as 
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The solution of (A.11) becomes trivial by assuming very small scanning angle 

where 

 ( )max max max,  ,       0α α α α∈ − → . (A.12) 

Using (A.12) and Taylor expansion, (A.11) can be obtained as 
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 (A.13) 

This is the PSF in the range direction when using only the reflection coefficients 

at a single frequency.  

The resolution is defined as the width at half of the maximum value (indicating 

center of the scatterer) of the PSF, thus we have the following relation: 

 
( )( )
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(0) 2

m

m

D z
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= . (A.14) 

Solving (A.14), we have 

 2 ' ,     0,1,...,
3mk z n n N
π π= ± ± =  (A.15) 

and 

 R
1 2 ' ,   when 0

6
mR z n

λ
∆ = = = . (A.16) 

The obtained range resolution is consistent with the theoretical resolution limit 

obtained by calculating (4.41) at a single sampled frequency when maxα  is very small. 
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(A.16) also shows that when using small scanning planes, the range resolution is not a 

function of maxα  but of the wavelength which is also consistent with our observations in 

Section 4.8. 

 

A3. POINT SPREAD FUNCTION IN THE CROSS-RANGE 

DIRECTION OBTAINED USING REFLECTION 

COEFFICIENTS 

In this case, we have (see Fig. A.2) 

 1 2 012 2 'sinP Pr r r x α+ ≈ −  (A.17) 

and 

 1 2 0P Pr r− = . (A.18) 

Substituting (A.17) and (A.18) into (A.7), we have 
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(A.19) can also be written as  
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α α
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= − ∫  (A.20) 

This is the PSF in the cross-range direction when using only reflection coefficients at 

single frequency.  
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Fig. A.2 Observing along the cross-range direction. 

 

By using (A.12) and Taylor expansion, (A.20) can be obtained as 
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 (A.21) 

From the definition of the resolution limit, we have the following relation 
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Solving (A.22), we have 
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 CR
1 2

max

3
2 ' 2.

2
mR x

λ
π α∆ = = +  (A.23) 

The above equation shows that when a small scanning plane is used, the cross-range 

resolution is not only proportional to the wavelength but also is a function of maxα . 

Again, the conclusion is consistent with the theoretical resolution limit at single 

frequency when max 0.1 radα < . The resolution improves as maxα  increases, which is 

expected and it is consistent with conclusion in Section 4.8. 

Note that the PSF in (A.21) and the cross-range resolution in (A.23) are identical 

to those obtained in the cross-range resolution using the transmission coefficients. Thus, 

the PSF in the latter case is not shown for brevity. 

 

A4. POINT SPREAD FUNCTION IN THE RANGE DIRECTION 

OBTAINED USING TRANSMISSION COEFFICIENTS 

In this case, the response difference 12S∆  and 21S∆  are used. As per (A.4), we have 

 ( ) ( )/2( )

/2
' 2 cos d ,

Hm
mH

D k r x
+

−
= − ∆∫r  (A.24) 

where 

 01 02 1 2( ) ( ).P Pr r r r r∆ = + − +  (A.25) 

It is calculated using (refer to Appendix 5) 

 
2

2

0

'
sin cos .

z
r

d
α α∆ ≈ −  (A.26) 
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Substituting (A.26) into (A.24), we have 
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2
/2( ) 2

/2
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2
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0 2
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' 2 cos sin cos d
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        2 cos sin cos d .

cos

Hm m

H

m

k z
D z x

d

k z
d

d

α

α

α α

α α α
α

+

−

−

 
= −  

 

 
= −  

 

∫

∫

 (A.27) 

This is the PSF in the cross-range direction when using only the transmission coefficients 

at single frequency. Since max 0α → , we have 

 
2

2

0

'
sin cos 0mk z

d
α α → . (A.28) 

Now, using Taylor expansion, (A.27) becomes 
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2

( ) 2 2
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2 4
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α αα α
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 ≈ − −  
   

  = − + − +  
  

∫
 (A.29) 

By definition, the resolution limits is defined as the width of the PSF at half of the 

maximum value (indicating center of target), we have the following relationship: 

 
( )( )

( )

' 1

(0) 2

m

m

D z

D
= . (A.30) 

Solving (A.30), we have 

 ( )
2
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4
2

max max max

2 tan
' 2

12 8sin 2 sin 4m

d
z

k

α
α α α
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− +

. (A.31) 

Since  
 ( )max max max12 8sin 2 sin 4 0,      0,  / 2mα α α α π− + > ∈ , (A.32) 
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the solution of (A.31) does not lead to a real value which indicates that the PSF with 

transmission coefficients does not provide range resolution. This conclusion is consistent 

with our results in Section 4.9 where the exact PSF is solved numerically.  

 

A5. DISTANCE PARAMETERS USED IN CALCULATING THE PSF 

USING ONLY TRANSMISSION COEFFICIENTS 

First, the normalized distance between antenna 1 and the observation point is calculated 

using 

 

2 2
1 01 01

2

01 2
01 01

' 2 ' cos

' '
   1 2 cos .

Pr z r z r

z z
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r r

α

α

= + −
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 (A.33) 

Using Taylor expansion, (A.33) becomes 

22 2

1 01
01 01 01 01

2 2 3 4

2
01

01 01 01 01 01

1 ' ' 1 ' '
1 2 cos 2 cos

2 8
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2 2 2 8
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z z z z
r r

r r r r

z z z z z
r

r r r r r

α α

α α α

        
   ≈ + − − −    
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 (A.34) 

Since 

 0
01 cos

d
r

α
= → ∞ , (A.35) 

and 

 
01

'
0

z

r
→ ,  (A.36) 
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(A.34) can be further simplified as 
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2
1 01

01 01

' 1 '
1 cos sin
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. (A.37) 

Similarly, we obtain the formula for computing 2Pr : 
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2 01

01 01
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Therefore, from (A.37) and (A.38), we have  

 
2

2
01 1 2

01
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2 ( ) sinP P
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Substituting (A.35) into (A.39), we have 

 
2

2

0

'
sin cos .

z
r

d
α α∆ = −  (A.40) 

The above expression is used in calculating the distance in the case of the range-

resolution study using transmission coefficients in Appendix 4. 
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