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Abstract

This thesis presents a new linear programming approach for re-optimizing a intensity mod-

ulated radiation therapy (IMRT) treatment plan, in order to compensate for inter-fraction

tissue deformations. Different formulations of the problem involve different constraints,

but a common constraint that is difficult to handle mathematically is the constraint that the

dose be deliverable using a small number of multi-leaf collimator positions. MLC leaves

are tungsten alloy attenuators which can be moved in and out to shape of the radiation aper-

ture. Since leaves are solid, photon fluence profiles will follow a staircase function and this

constraint is not convex, and difficult to formulate. In this thesis, we propose a relaxation

of this constraint to the `1-norm of the differences between adjacent radiation fluxes. With

the appropriate bound, this constraint encourages the dose to be deliverable with a series of

shrinking or growing openings between the leaves. Such a solution can be made realizable

by rounding, which is beyond the scope of this thesis.

This approach has been tested on an anonymized prostate cancer treatment plan with

simulated deformations. Without rounding, solutions were obtained in five of nine cases,

in less than 4 to 5 seconds of computation on a NEOS server. Solved cases demonstrated

excellent target coverage (minimum dose in the target was 95% of the prescribed dose) and

organ sparing (mean dose in normal tissues was below 25% of the prescribed dose).
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Notation and abbreviations

IMRT Intensity Modulated Radiation Therapy

MLC Multi-leaf Collimator

CTV Clinical Target Volume

PTV Planning Target Volume

OAR Organs at Risk

DVC Dose-volume Constraint

CT Computed tomography

AMPL A Mathematical Programming Language

ODM Opening Density Matrix

CBCT Cone-beam Computed Tomography

ISL Inverse Square Law

Gy Gray

LP Linear Programming

KNITRO Nonlinear Interior point Trust Region Optimization

TERMA Total Energy Released per Unit Mass
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Chapter 1

Introduction to IMRT

Prior to introducing the proposed optimization method, first the motivation for prostate

cancer radiotherapy is clarified. This includes statistics from various references which

shows the importance of this work. Having motivation explained, the basic principles of

Intensity Modulated Radiation Therapy(IMRT) process are introduced. This involves a

brief introduction to IMRT for prostate cancer treatment, as well as explaining the concept

of inverse planning, IMRT delivery and tumour localization. The goal of this chapter is to

ensure the reader will gave a good understanding of why and how IMRT is being used for

treatment of prostate cancer.

1.1 Prostate Cancer

Other than skin cancer, prostate cancer is the most common cancer in American men. The

American Cancer Society estimates for prostate cancer in the United States for 2013 are:

• About 238,590 new diagnoses
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• About 29,720 deaths

Prostate cancer can be a serious disease, but most men diagnosed with prostate cancer

do not die from it. In fact, more than 2.5 million men in the United States who have been

diagnosed with prostate cancer at some point are still alive today [21]. Fortunately, devel-

opment of new methods in radiotherapy improved treatment success rate while reducing

side effects [24].

1.2 Prostate Cancer Radiation Therapy

The entire radiotherapy chain maybe summarized as follows:

• Patient is diagnosed

• CT scan is performed

• Tumour volume and radiosensitive organs are delineated

• A radiotherapy treatment plan is created

• The same treatment is delivered daily over six to eight weeks

• Patient attends follow up appintments

An ideal radiotherapy treatment plan delivers a high dose of radiation to the tumour while

minimizing the dose delivered to the surrounding normal tissues such as the rectum, bladder

and femoral heads. Typically, there is a direct relationship between the amount of radiation

delivered to tumour and probability of tumour control. Practically, the deliverable tumour

dose is often limited by the radiation tolerance of sensitive organs around it.
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Intensity-Modulated Radiation Therapy(IMRT) enables the delivery of a highly-conformal

dose of radiation to the target volume. This is achieved by modulating the intensity of radi-

ation throughout the patient, improving the normal tissue sparing compared to conventional

radiation therapy. Because of this, an increased dose of radiation can be delivered to the

tumour using IMRT[25].

Conventional treatment-planning is performed using a trial and error approach. For

example, a radiation treatment field is placed on the patient and the computed dose is

evaluated by the radiation oncologist. If the dose is not acceptable, a new field or other

modifications are made. This trial-and-error process is repeated until an acceptable dose

distribution and coverage is achieved. This is time-consuming and does not result in an

optimal plan.

IMRT combines two advanced concepts to deliver dose distribution that conforms tightly

to the target [23]:

• Non-uniform intensity of the radiation beams

• Inverse treatment planning via computerized optimization

1.2.1 Tumour Localisation

To perform inverse planning, a CT image is first acquired. Critical organs and the tumour

volume is then contoured on this image. The clinical target volume(CTV) is the gross

tumour volume plus all areas that might be at an increased risk of subclinical involvement.

The CTV for early stage prostate cancer includes the prostate gland and may extend into

the seminal vesicles.

The planning target volume (PTV) is obtained by geometrically expanding the CTV
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[17]. During planning, the PTV will be covered by the prescribed dose. This will en-

sure that the CTV receives the full dose even if there is motion between the planning

CT geometry and the geometry during IMRT delivery. Such motion can occur due to

set up errors and anatomical movement during organ filling. At Juravinski Cancer Centre,

PTV = CTV +10mm expansion in all directions except in the posterior where the expan-

sion is 7mm.

The next phase of treatment planning is to contour the organs at risk(OAR). These

healthy organs or tissues are in close proximity to the treatment volume and sensitive to

radiation. For prostate cancer, the OARs are the bladder, rectum and femoral heads. Figure

1.1 shows this anatomy for one patient. Once the anatomy is contoured, the planner places

beams to strategically irradiate the volume of interest and defines the appropriate doses to

be achieved in the targets and OARs, including their relative importance factors.

Figure 1.1: This is a transverse slice of a CT image. The coloured contours are as follows,

red: CTV, blue: PTV, orange: bladder, green: rectum, remaining two regions: right and left

femoral heads
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1.2.2 Intensity Modulation

Variable radiation intensity is generated by subdividing each beam into many beamlets,

each with an individual intensity level. This enables the delivery of a complex dose distri-

bution. Figure 1.2 shows an example cross section of a beam, where the lowest intensity

is shown in black and highest in white. This example demonstrates the complexity of the

delivered intensities. Typically, low intensities correspond to sensitive tissue that should

receive minimum amount of radiation and the high intensities correspond to the location of

the tumour.

Figure 1.2: IMRT fluence map, divided into multiple beamlets with variable intensities.

White and black corresponds to high and low fluence, respectively.

The use of several beams, each directed at the patient from a different angle, can build

up a precise conformal dose distribution. Figure 1.3 illustrates the dose distribution achiev-

able with IMRT.
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Figure 1.3: IMRT dose distribution. The blue colorwash is the PTV. Red lines indicate

the beams, each directed at the isocentre(yellow point), Various isodose lines are shown

corresponding to the doses indicated in the top left corner

1.2.3 Inverse Planning

As already mentioned, one important problem with conformal radiotherapy is that it is

forward planned. The planner decides the number, shape, and orientation of the beams.

Clearly, the outcome of this approach depends heavily on the planner’s experience level.

Furthermore, there is a limited number of degrees of freedom that a human can manually

optimize. The result is a relatively simple plan with at most three-four beam directions

and poor target volume conformality. Additional parameters can be included, but increased

complexity increases planning time.

In inverse planning, a computerized optimization technique will determine the opti-

mal treatment fields. For example, the Pinnacle Treatment Planning System(TPS)(Philips,

7
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OAR Dose to 30% of
Volume(Gy)

Dose to 50% of
Volume(Gy)

Dose to 5% of
Volume(Gy)

Rectal Wall < 71 < 53
Bladder Wall < 71 < 53
Right Femoral Head < 53
Left Femoral Head < 53

Table 1.1: OARs dose constraints used for prostate IMRT at Juravinski Cancer Centre

Amsterdam, Netherlands) employs a simulated annealing heuristic to optimize beam in-

tensities [10]. The planner provides the beam directions, prescribed tumour dose and lim-

iting doses for normal tissue. At the Juravinski Cancer Centre, seven beams with angles

θ = {0,40,80,110,250,280,320} are used for prostate cancer. The prescribed dose for

early stage cancer is typically 76 to 78 Gy in 38 or 39 fractions. An acceptable plan deliv-

ers ≥ 95% of the prescribed dose to ≥ 99% of the PTV with the max dose ≤ 105%. The

OAR dose limits employed at the Juraviski Cancer Centre are shown in table1.1. Having

these inputs, the computer system adjusts the beam intensities to find a configuration which

best matches the input parameters. The dose distribution is assessed and input parameters

modified if the plan is not acceptable. The process is also time consuming but enables

simultaneous optimization of many parameters. With experience, total planning time is

reduced as centres develop standard procedures.

The optimization process maybe summarize as follows. Each beamlet that is traced

through the patient produces an initial dose distribution. A small change is then made

in the weight of a single beamlet and if it improves the distribution, it will be accepted.

This process is repeated for all beamlets during a single iteration and should result in an

improved plan. The iterative process is repeated for many cycles until improvements in

the distribution are bellow tolerance. At this point optimal intensity across each beam that

8
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produces the specified dose distribution was obtained.

As discussed, in IMRT inverse planning, fluence profiles are optimized to produce a

desired dose distribution. These profiles are then converted to machine deliverable settings,

with a possible degradation of plan quality. With the direct machine parameter optimization

approach used in Pinnacle, machine settings are produced directly within the optimization

process. Therefore, there is no need for conversion, filtering, weight optimizations or other

kinds of post processing, and the plan quality will not degrade [10].

1.2.4 IMRT Delivery

A linear accelerator equipped with a multi-leaf collimator (MLC) is used for IMRT de-

livery. The MLC consists of movable tungsten leaves that can reduce the dose to 2% of

the unshielded field. Figure 1.4 illustrates an example MLC configuration used during a

prostate cancer case. At Juravinski Cancer Centre the Varian (Varian Inc, Palo Alto, USA)

Millennium 120 MLC is used. The system consists of two banks of 60 leaves. The cen-

tral 40 leaf pairs are 5mm wide for increased precision, while the remaining 20 pairs are

10mm wide. Leaves are positioned under computer control to create an irregular field that

conforms to the tumour shape and shields normal tissues.

During delivery, the gantry rotates to each of the seven angles around the patient . At

each angle, the MLC leaves are moved to create the first arrangement(control point) and

the linear accelerator beam is turned on. The leaves are then repositioned and the second

control point, or segment, is delivered. This process is repeated for all planned apertures

and the treatment continues with the next gantry angle. The positions of the MLC and

the amounts of radiation delivered by each control point are the same as obtained during

treatment planning.

9
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1.2.5 Tumour and Patient Movement

The PTV ensures acceptable coverage of the CTV throughout the treatment and as a re-

sult, takes into account all internal organ motions. The PTV margin also allows for daily

variation in patient setup and machine precision. Large margins will ensure coverage but

over-irradiate OARs while small margins will spare OARs but increase the risk of under-

dosing the CTV. The appropriate choice of margin is especially important in IMRT due to

the high dose gradient created away from the PTV. Any internal motion leads to significant

CTV under-dosage and increases the chance of treatment failure.

Studies on prostate cancer have shown that the prostate can move up to 2 cm between

treatments and the position is dependent on rectal filling [16]. Therefore, prostate IMRT

is delivered under image guidance. At Juravinski Cancer Centre, two orthogonal projec-

tion images of the patient are acquired following patient setup for treatment. Radiopaque

markers in the prostate gland are easily identifiable on the radiographs and their locations

reconstructed in 3D. Marker locations on treatment are compared to the locations observed

during treatment planning. Any difference indicated CTV motion. This is corrected by

shifting the patient on the treatment couch in 3D and delivering the original treatment as

planned. The limitation of this approach is the fact that deformable organ motion in the

patient is corrected using a simple rigid couch shift.

Another approach involves the use of a linear accelerator with an on-board CBCT sys-

tem. In this scenario, many projections of the patient are acquired and reconstructed into a

3D image. The CBCT image is then registered with the reference image, either manually or

automatically. Again the problem is that a rigid couch shift is used to correct CTV motion

caused by the internal anatomical deformations.

10
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Figure 1.4: MLC configuration for the anterior-posterior beam(angle 0◦)used during a

prostate cancer case at Juravinski Cancer Centre. The blue surface is the PTV, white bars

represent MLC leaves.

1.3 Thesis Goal

As discussed, the current approach to IMRT involves setting the patient for treatment, imag-

ing(e.g. CBCT), rigidly shifting the couch and delivering the original treatment plan. The

problem is that internal patient motion is non-rigid. Currently, the incompatibility between

the anatomical deformations and rigid couch corrections is addressed by increasing the

size of the PTV margin. This leads to an increased dose to sensitive organs. A method for

11



1.3. THESIS GOAL Master’s. - M. Khalaji - McMaster

correcting IMRT treatments in response to anatomical deformation would enable the use

of smaller PTV margins. This would reduce the volume of normal tissue exposed to high

doses.

Daily motion can be accounted for by deformably registering the planning CT with

the daily CBCT. The resulting transformation would then be used to obtain the daily rep-

resentations of the PTV and OARs[26]. Once the contours corresponding to the current

treatment fraction are known, a full IMRT re-optimization procedure can be undertaken.

Therefore the goal of this thesis was to to develop a fast technique for re-optimizing a

prostate IMRT plan based on the motion observed on daily CBCT imaging.

To achieve this goal, a linear programming approach is used in this thesis to minimize

the number of MLC leaf movements, hence, increasing the speed of the optimization pro-

cess. A fast re-optimization method is necessary since this will occur after the patient is

setup for treatment. Thus computational efficiency is the primary concern as following

imaging, the patient anatomy will continue to change.

To perform this development, data from the treatment of a prostate cancer patient were

analyzed. The data comprised a planning CT and CTV, PTV and OAR contours. As dis-

cussed, there is no precise control over the internal anatomical motion. The proposed

linear programming-based re-optimization method for prostate IMRT treatment planning,

is meant to provide fast and precise control over treatment targeting on a daily base. Treat-

ment modification in response to daily motion enables the use of a smaller PTV, reducing

dose to nearby OARs and therefore, decreasing the probability of side effects.

12
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Chapter 2

IMRT Optimization

2.1 Introduction

As mentioned in the first chapter, the goal of IMRT is to deliver the prescribed dose to

the tumour. At the same time, the amount of radiation that is absorbed by healthy tissues

should be limited. This is complicated by the fact that patient anatomy changes between

treatment fractions. This thesis addresses the problem of re-optimization of prostate cancer

IMRT in response to anatomical motion. As discussed, IMRT at the Juravinski Cancer

Centre is delivered using a set of seven beam angles, θ = {0,40,80,110,250,280,320}.

To re-optimize the treatment, fluence maps for each of these seven directions have to be

obtained for each treatment fraction.

A fluence map consists of many beamlets intensities and results in a complex dose dis-

tribution in the patient. Determining this map is difficult, since the PTV must receive the

prescribed dose, while dose to critical organs should be minimized. Each critical organ has

a specific tolerance level for the amount of radiation it can receive, and based on these lev-

els, dose-volume constraints(DVCs), are defined. Usually DVCs are stated as a percentage

13
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describing the portion of the organ that is allowed to receive a higher dose.

The DVCs represent the goals of the radiotherapy. They are used in an optimization

procedure to obtain beam fluences that best achieve these goals. The fluence map may be

represented mathematically using wθ ,t , where θ is the beam angle, t is the spatial offset

from the beam edge, and w represents the amount of photon fluence to be delivered. This

notation represents a simplification of the 2D fluence map into 1D and therefore the reduc-

tion of the 3D patient to a single 2D slice. This simplification was considered acceptable

given the initial development work described in this thesis.

Finally, having fluence maps wθ ,t calculated, a conversion into MLC leaf positions is

required. For example, high fluence corresponds to MLC leaves staying open for a longer

duration of the beam on time. The process of converting the fluence maps into the opening

and closing movements of leaves is called leaf sequencing.

One last component required to re-optimize an IMRT treatment is the method of com-

puting dose to the patient given the current beam fluence maps. This ties the parameters of

the problem (wθ ,t) with the DVCs.

2.2 Dose-Volume Constraints

Multiple beam angles are used in IMRT to concentrate the dose in the PTV, while sparing

critical organs as best as possible. Despite this multi-beam strategy, non-negligible doses

are delivered to healthy tissues. As a result, one important objective in this problem is to

control the volume of healthy tissues that will be exposed to high doses. DVCs employed at

the Juravinski Cancer Centre for prostate cancer are shown in table 1.1. The minimum dose

constraint for PTV ensures the CTV will be irradiated to the prescribed dose and therefore

ensures sufficient number of tumour cells will be erradicated. The maximum constraint on

14
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the PTV avoids tissue necrosis in this region. This is important since, despite containing

cancerous cells, the PTV also contains functional tissue. DVCs for rectum, bladder and

femoral heads keep the risk of serious side effects below 5%. Possible side effects include

rectal fistulae, bladder constiction and bone necrosis. [1]

2.3 Fluence Map Optimization

The first step in IMRT fluence map generation is to discretize the beam aperture for each

angle into many beamlets. The fluence is represented as wθ ,t for each angle θ and beam

edge offset t. Ideally, one would set the size of the beamlet to the width of the MLC leaf (in

the direction perpendicular to t) and to 1mm along the t axis. One mm would be appropriate

since the MLC specification allows the leaf to be positioned within 1mm of the desired

location. This would result in a beamlet size of 5mm (leaf width) × 1mm for the Varian

Millennium 120 MLC. However such a dense representation of the fluence map results in

significantly increased dose computation times. Typically, the beamlet is 5×5mm2 during

optimization[10] to reasonably balance computation speed with complexity.

The number of elements also depends on the number of gantry angles and the geometry

of the patient. If it is detected that a ray from the source to a point in the patient does not

have a significant effect on the treatment region (i.e. no intersection with the treatment

region), it can be ignored during discretization. The total number of beamlets in a fluence

map optimization problem is n, the sum of all beamlets from all gantry angles. The beamlet

intensities that are to be obtained can be denoted using vector w ∈ Rn instead of using wθ ,t

for each beamlet. Also, since intensities cannot be negatives, w ∈ Rn
+.

In addition to discretizing the beam aperture, the patient must also be discretized. This

three-dimensional volume of interest contains the PTV and nearby healthy tissues. As
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already discussed, for the initial development discussed in this thesis, only a single 2D slice

of the patient is considered(fluence maps are 1D). This 2D slice is a transverse section of

the patient(slice axis is perpendicular to the patient’s long axis). An example of a transverse

slice obtained using CT imaging is shown in Figure1.1. This 2D slice is broken down into

elements called voxels. Typically, the size of such an element is 2.5× 2.5mm2 for dose

computation, and in general, differs from the voxel size of the CT image. Each voxel has

coordinates (i, j) ∈ R2 and the total number of voxels is m. The doses computed for each

voxel are denoted by vector d ∈ Rm
+.

2.4 Dose Calculation

A common approach in IMRT for computing dose at each voxel is the pencil beam algo-

rithm denoted as[11],

di, j = ∑
θ ,t

Dθ ,t,i, jwθ ,t , (2.1)

where Dθ ,t,i, j represents the amount of dose (di, j) deposited in voxel i, j per unit weight of

beamlet θ , t. The values, Dθ ,t,i, j are normally obtained by convolving the photon fluence

per beamlet weight with a dose deposit kernel(units of Gy/ fluence). There are additional

corrections that are required such as the decrease in fluence with increasing distance from

the source, changes in fluence due to photon attenuation and variability in fluence across

the beam due to linear accelerator factors(due to design, the fluence corss section of an

open beam is not uniform). Figure 2.1 shows how each element Dθ ,t,i, j relates a fluence

map beamlet with a voxel in the discretized region of interest.

It is been assumed that D has no zero rows or columns. This means that all voxels

receive some nonzero amount of radiation and every beamlet affects at least one voxel
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Figure 2.1: Fluence map beamlet and voxels in the discretized region of interest. The
arrows labeled Dθ ,t,i, j do not indicate a direct path of radiation but rather that the off-axis
contribution is due to photon-electron transport and radiation scatter.

dose. Typically, m� n with m on the order of 105 or larger and n around 300. Note that

Dθ ,t,i, j are always positive. Typically, for the prostate cancer IMRT, D would be very dense

due to significant scattering of high energy photon beams.

The pencil beam dose calculation model can be considered as a first- order approxima-

tion. Radiation absorption as a function of the beamlet intensities can be modelled with

linear Boltzmann transport equations [13]. Solving these equations is expensive, compli-

cating implementation in the inner-most loop of an optimization procedure.

Monte Carlo photon transport is another accurate dose computation technique. How-

ever, this method is very slow prohibiting implementation in IMRT optimization. Some

commercial treatment planning systems employ dose calculation engines with different

levels of accuracy. In this way, dose calculations in early iterations, which are usually

not required to be highly accurate, can be made less expensive [28], while more accurate

(and more expensive) schemes can be used in later iterations. For example the Pinnacle
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treatment planning system employs the convolution superpostion algorithm. In this ap-

proach, dose is computed by convolving the total energy released per unit mass (TERMA),

which depends on photon fluence and patient attenuation, with a local dose deposition ker-

nel, which is precomputed using Monto Carlo simulation. The collapsed cone convolution

implementation in Pinnacle speeds up computation by collapsing the energy within some

specified solid angle into a line[2].

2.5 Current Research

The fluence map optimization problem can be viewed as an inverse problem as a desirable

dose distribution is required and one tries to determine the beamlet intensity vectors that

give this distribution. There are different ways to formulate this into an optimization prob-

lem using various objective functions. At present, a common formulation is the “weighted

least squares” model. If it is needed to have an objective function for each anatomical

structure, then this problem would be a multi-objective optimization problem (for example

[3], [12]). For multi-objective problems it is more likely that a single function does not

exist but rather a finite set or even an infinite set of optima exist. The problem is thus trans-

formed from an optimization problem to a decision making problem. Even if there is such

a utility function, it is difficult to find this solution, since it is unknown what parameters

and weights or even objective functions should be used to find the optimal beam fluences.

The problem is that treatment planning systems try to be as simple as possible and having

a large number of solutions is something that makes the planning more difficult.

Due to the difficulties in solving multi-objective optimization problems, the common
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approach in IMRT fluence map optimization is to use a weighted least squares fitting strat-

egy. There are many variations, but the typical form of the weighted least squares formula-

tion is as follows [31].

For each voxel (i, j), try to fit the calculated dose value di, j to some desirable value bi, j.

For a target voxel, this desirable value is the prescribed dose. If a calculated dose for a voxel

representing healthy tissue, is less than its desirable value, then the corresponding error

term is set to zero. This way, only doses higher than their desirable values are penalized.

Each target and critical structure, is assigned a weight parameter that represents the priority

of fitting its calculated doses to the desired dose. Different tradeoffs between structures can

be made by adjusting these weights. For example, suppose there are four structures Sl ,

l ∈ {0,1,2,3}, where S0 is the target structure and the other three are healthy tissues. The

objective function in the weighted least squares formulation takes the form:

f (d) = ∑
3
l=0 ωl fl(d) (2.2)

Where ωl is the weight assigned to structure l and fl(d) are the objective functions for

each structure defined as:

f0(d) = ∑(i, j)∈S0
(di, j−bi, j)

2, (2.3)

fl(d) = ∑(i, j)∈sl
max(0,di, j−bi, j)

2, l = 1,2,3 (2.4)

In this case, the resulting error function f (d) is a convex piece-wise quadratic func-

tion of d. The goal is to minimize f (d) subject to the non-negativity of the doses di, j

[31]. Clearly, solutions to this weighted least squares model vary with different priority of
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weights.

The challenging aspect of weighted least squares modelling is that it does not guarantee

the solution will satisfy the prescribed DVCs. One approach to enforce DVCs is to by trial

and error identify a set of weights that results in an acceptable solution. This trial and error

process is time-consuming and operator dependent.

In addition to manipulating the weights, the other approach is to add some penalty to

the weighted least squares objective to encourage but not impose the dose-volume con-

straint feasibility. For example[27], proposed a method to quickly modify a treatment

plan in adaptive radiotherapy. The method is based on a Cimmino-type algorithm in lin-

ear programming. The fast convergence speed is achieved by over-relaxing the algorithm

relaxation parameters, so that the over-relaxed Cimmino (ORC) algorithm can effectively

approximate an unconstrained re-optimization process in adaptive radiotherapy.

However these penalty terms are non-convex and one has to deal with local minima. To

address this problem, some formulations(e.g.[29]) add the option of using stochastic global

optimization techniques to escape from the local minima such as genetic algorithms and

simulated annealing. Their clinical objectives have been defined in terms of dose limits or

in terms of limits on volumes receiving certain specified dose. The advantage of variant of

Newtons methods they have adopted for optimizing the objective function is its speed of

convergence.

However, the Pinnacle treatment planning system, uses a sequential quadratic program-

ming algorithm instead of weighted least squares model. The approach is a gradient based

algorithm. The process starts with pencil beam algorithm and simple intensity fluence map

optimization. Results are then converted to leaf positions, hence then the parameters of the

problem are segment weights and leaf positions. In each iteration, these are tweaked and
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the change in the objective function is observed[10].

Quadratic objective functions have been accepted as a standard due to some important

benefits. For example, as it is stated in [22], it can be proven that simple least square objec-

tive function will not result in a local minima. Despite benefits like what mentioned, there

are also disadvantages for this types of functions which makes clinical planning based on

them, more difficult and time-consuming. The most important weakness is mainly due

to the fact that the weight factor in these functions, w, does not have any clinical mean-

ing which makes it completely arbitrary. As a result it is required to try multiple clinical

planning to select the final plan.

On the other hand, the gradient-based algorithms are able to deliver the optimum plan

quite fast and satisfactory. Although these functions might result in local optima, they

demonstrate better overall performance and seem to be a better choice for beam intensity

optimization due to their fast response.

The fluence map optimization problem also attracts researchers attention in mathemat-

ical programming to formulate the problem into linear or mixed-linear program. For ex-

ample [20] presents a novel LP model for solving the fluence-map optimization problem

in IMRT treatment planning. Their approach to this problem overcomes the apparent lim-

itations of LP by using linearizations of nonlinear convex penalty functions. In addition,

they employ a new type of DVC that bounds the mean value of the tail of the differen-

tial dosevolume histogram of a structure. Also [9] presents computational approaches for

optimizing beam angles and fluence maps in IMRT assuming that the number of angles

to be used for the treatment is given by the treatment planner. In their approach mixed

integer programming model and a linear programming model are used to find an optimal

set of beam angles and their corresponding fluence maps. The mixed integer programming
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model is solved using a branch and bound method while the linear programming model is

solved using the interior point method.

A stated in the first chapter, in IMRT inverse planning, the planner provides the pre-

scribed tumour dose and limiting dose for OARs and then a computerized technique will

be used to optimize the fluence distributions in the beams. The problem arises when this

resulting dose can not directly be delivered to the region of interest and a this distribu-

tions need to be converted to the control points. This conversion is done without taking

the physicians preferences into account, and the resulting dose distribution may not be de-

sirable. One method proposed to solve this problem is to calculate fluence directly from

a set of control points described by leaf positions and segment weights. This method that

is called direct machine parameter optimization (DMPO), basically skips one intermediate

step and directly optimize machine parameters based on physician suggested dose distribu-

tion. However, DMPO has a greater degree of nonlinearity to be a convex problem. This

will make this method subject to numerous linear constraints. As a result, a non-DMPO

method was selected for the work described in this thesis.
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Chapter 3

Proposed Optimization Approach

3.1 Introduction

In IMRT not only is the shape of the beam controlled, but combinations of open and closed

MLC leaves modulate the intensity as well. In this section, a linear programming(LP) ap-

proach is proposed which allows optimization over beamlet fluence weights. The proposed

method is a multi-step process. The difficulty is that the full problem is mixed-integer since

the solution (fluence weights) must be realizable using a certain number of leaf movements.

If it is been chosen to vary the number of angles the problem becomes large and also

not convex. In this problem, seven coplanar beams intersected at the iso-centre have been

employed. Similar to the previous approaches, beamlets variables have been introduced

that are not in the original problem, because this relaxed problem will be convex. Having

a convex problem makes it much easier to solve. However, one drawback of using this

approach is that the resulting solution will not be a solution to the original problem. What

will happen is that it will give a solution that could be used only if there is no limits on

the number of leaf positions. A tradeoff between solvability and deliverability exists. To
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understand why the relaxed problem is so much easier to solve, consider that if the leaves

are in a certain position, then changing the leaves only affects the tissues that are near the

edges of the beam with little effect elsewhere. So if you look at it from a point of view of a

gradient-based method, what derivatives indicate is that there is no way to change the dose

for a voxel which is not near the leaf edge. Of course, with eight control points per beam,

there exists a good chance that all areas in the PTV are sufficiently close to a leaf edge for

the gradient methods. However, the nearby control point may not be the best to modify.

With beamlets, the dose at every voxel is sensitive to changes in the appropriate beam-

let. It should be noted that even after this conversion, it still may be impossible to solve the

problem, such that sufficient radiation is delivered to the tumour and OAR limits are not

violated. However, even if there is no solution to the problem, the optimization results may

tell how to replace constraints with penalties to find a solution.

Having relaxed the problem using beamlets and possibly penalties in place of con-

straints, it would be a rapidly solvable problem, but one which is not necessarily deliver-

able. Now that the radiation has been converted into beamlets, the next step is to translate

these into leaf positions. Basically, try to find a beamlet solution which is easier to turn into

leaf positions. The way doing that is that it’s been observed if a set of beamlets comes from

leaf positions, then the resulting fluence map would be piece-wise constant and the number

of steps going up or down would be, at most, two times the number of leaf positions. This

is because if by moving the leaves between every shot, will end up with two fluence steps,

one for the leaf to the left and one for the leaf to the right, assuming that both left and right

leaves never return to the same position. Although requiring at most a certain number of

fluence steps would result in the mixed-integer problem tried to avoid, introducing regular-

ization would favour fewer steps. For some choices of regularizer, the convex property of
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the relaxed beamlet problem will be preserved, while trying to find the solution which is

closer to something that is realizable with leaves.

Another way of saying a small number of steps is wanted is to say that a piece-wise

constant fluence map is desired. Such a solution can be favoured by penalizing changes

in neighbouring beamlet intensity using a difference norm, thereby indirectly penalizing

required changes in the leaf positions. To make the problem as easy as possible to solve,

an `2 difference norm can be used which is sum of the square of differences because it

would be quadratic penalty. One problem with this approach is that it will penalize the

large fluence changes more than small changes. There is no reason to to do this, because

changing leaf positions is what is important and not the amount of the intensity change.

Alternatively, the `1 difference norm can be used. This way, the total of all intensity changes

will be penalized independent of how they spread out.

The last point to note is that although there is no constraint on the total dose, there

is no reason to ever have more dose from any angle than the target dose in the tumour

(after adjusting for attenuation and loses due to beam spread). A stronger constraint is

chosen based on the `1 difference norms. If the radiation at a given angle is formed by

nested(leaves moving monotonically toward centre) leaf positions, which corresponds to

there being two intervals of beamlet intensities: a monotonically increasing interval fol-

lowed by a monotonically decreasing interval, then the `1 difference must be less than two

times the intensity required to produce the maximum dose in the tumour from the beam.

If, however, the radiation has multiple maxima, corresponding to non-nested leaf positions,

then this constraint may be stricter than necessary. So this one constraint which has been

imposed, enforces both maximum radiation per angle and prevents excessive variation.

Most importantly, it is convex. It is actually linear, so by formulating other constraints in
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terms of simple inequalities, it still can be solved using a linear solver.

Although the l1 and l2 norms have computational advantages, being linear and quadratic,

respectively, they are not the only norms available for penalty construction. For example,

an `1/2 difference norm can be added. The `p norms are convex between `1 and `∞, while

those with the order less than one, are not convex. The non-convex norms have the property

that they are smaller for a smaller number of large fluence steps compared to small fluence

steps. If the number of steps was sufficiently reduced, the large steps would correspond

to the desired number of leaf positions without actually imposing it. The rounding step

could be avoided to produce piecewise-constant intensity profiles. To summarize, the `1/2

norm should favour solutions with small numbers of discontinuities, but it is non-convex

and may require significantly more computation.

Non-convex objectives and constraints may cause solvers to get stuck near an unac-

ceptable local minimum. The `1/2 norm can be added if it is in the right neighbourhood of

solution, which can reasonably be assumed to be the case after solving a convex problem

first. An additional problem is that adding a new constraint will reduce the feasible region,

possibly making the solution to the convex problem infeasible. Adding a penalty will not

cause this to happen. Since the relaxed problem is still being solved, it may still be infea-

sible in terms of the mixed-integer problem. However, by solving the convex problem and

then adding another norm, such as `1/2 difference norm, hopefully it will cause the solution

to get closer to the desired solution, realizable by a finding number of leaf positions.

The new norm(s) would be in addition to the `1 difference norms. Because the `1

difference norms remain, new unwanted solutions are not allowed, because, for example,

more radiation than the target dose is not wanted for the tumour anywhere.

Eventually, in the last step, which is left as future work, the resulting fluence maps
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must be rounded, since a limited number of leaf movements is allowed to deliver these

fluence maps. One can think of this step as a more restricted version of the original prob-

lem including integer constraints, but with the addition of some inequalities or objective

functions which are defined to us as continuous functions. There are two approaches to

rounding relaxed problems to obtain integer solutions:

Random Rounding is looking at all of the variables in this problem that are supposed to

be integers and start by rounding them all down or up randomly. So if there are N

variables, there would be 2N different ways of rounding up and down. That might

give us a better solution, but it is too time consuming to test all possible roundings,

or even most of them.

Branch and Bound is a way of solving general mixed-integer problems without testing

every rounding possibility of the relaxed continuous problem. In this method, first

one variable is picked and one say different integer values are going to be defined

for that one variable and going to solve the continuous problem in the other variables

keeping that one fixed. It might be possible to show that for some values, the solution

can never be as good as some feasible solution that already exits, so that possibility

is eliminated, and the others are kept. For each value kept, another variable is cho-

sen and the integer values it could take is considered. Continuing in this way, all

possibilities are tested or eliminated.

Applying the latter to a leaf identification method, one would pick one fluence variable at a

time, fix it and then (re)solve the smaller continuous problem containing one less variable,

thereby constraining the position of one leaf at a time. If solutions are needed quickly, it

does not need to follow exactly this prescription for branch and bound. One could pick

leaves directly effect the tumour or critical tissue doses, and use branch and bound, and
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later resort to a few tests of random rounding. It would not be practical to pick all the

possible leaves one at a time, try to fix in the leaves and then re-optimize and fix another

leaf and so on. In this way, one could use the structure of the problem to round individual

fluence values until the solution is realizable via leaves.

Although the proposed algorithm will not necessarily result in the optimum solution for

most cases, hopefully, that the solution obtained by rounding is within a small fraction of

the optimal solution. In practice, what the optimal solution to the mixed-integer problem is

never known. However, for the re-optimization problem, when one have a solution from a

“gold-standard” solver, and it is known that the patient has changed, due to inflammation,

or natural body processes, one can re-solve both the original problem, and the deformed

problem, using the gold-standard and the rapid methods. A comparison of the two solutions

for the original case and then the deformed case would provide evidence that the proposed

method obtains near-optimal solutions.

3.2 Proposed Approach

3.2.1 Implementation

Because an iterative solution method is being proposed(including some branch and bound

steps), it is important to know the problem can be sovled very quickly. Convex continuous

optimization problems are fast, but no equally fast. In order to try different formulations

(notably, with different norms `1/2, `1, `2), The basic model has been implemented in the

modelling language AMPL(a mathematical programming language)[Bell Labs, Madison,

Wisconsin], which can interface with multiple solvers, which support different types of

constraints and objectives. The disadvantage to using AMPL is that it does not support
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recursive data structures (e.g. trees) which would make it easier to implement recursive al-

gorithms suited to final rounding, although AMPL does support iteration, and enumeration

over sets which simplify the specification of operations research problems.

Figure 3.1: Panel (a) shows the beam’s eye view with the irregular radiation aperture in the

centre formed by several leaves. Panel (b) shows the positions of a single leaf pair over

time and the resulting fluence profile.

As discussed, the `2 norm penalizes the large differences in the fluence. The `1 norm

penalizes all the differences and the `1/2 norm penalizes small differences. The equations

for `2, `1, `1/2, respectively,

`2 =‖ w ‖2=
√

∑wi2 (3.1)
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`1 =‖ w ‖1= ∑ | wi | (3.2)

`1/2 =‖ w ‖1/2= (∑
√
| wi |)2 (3.3)

Note that the maximum of the `2 norm is also the maximum of the `2 norm squared, and, in

fact, the square of the `2 norm is being used in optimization because it is a quadratic prob-

lem. Quadratic objectives are computationally easier to handle, as evidenced by the fact

that many solvers only support quadratic objectives. Similarly, one would optimize with

the square root of the `1/2 norm, but this does not change the fact that `1/2 difference norms

are non-convex, so using only this type of norm is likely to result in a not good solution or

no solution. The `1 norm does not need to be raised to a power, but it does contain a non-

differentiable point at 0. Instead, the `1 norm can be replaced with an auxiliary variable

and two inequalities, bounding the argument of the norm above and below. Thus problems

with `1 norms are problem with linear constraints. Problems with only linear constraints

are Linear Programs, which can be most easily solved among constrained problems.

3.2.2 LP Formulation and Variables

The possible use of multiple norms has been described. In this section, the formula for the

`1-norm will be discussed in detail, because it was the most successful. Then, modifications

to incorporate other norms will be discussed.
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The general form of a linear problem is given by:

min cT x

s.t. Ax = b

x≥ 0.

(3.4)

Where cT x is the cost function to be minimized, Ax = b and x ≥ 0 are the constraints for

the objective function and x holds the variables to be determined. Before declaring the

constraints for the linear problem, one needed to define the set of variables and parameters

applied for this problem. The variables are listed in the following description.

wθ ,t beamlet weight, proportional to photon fluence measured at a line of isocentre for a

beam angle θ . t is the offset along the line.

di, j dose, the radiation dose delivered to voxel (i, j)

Dθ ,t,i, j finite size pencil beam dose distribution, represents the dose deposits in voxel i, j

per unit weight of a beamlet θ , t

τ auxiliary variable, used to construct the `1-norm using only inequalities

where the relationship between the beamlets and dose in voxel (i, j) was described by

equation (2.1) in chapter 2, which is restated here for convenience:

di, j = ∑
θ

∑
t

Dθ ,t,i, jwθ ,t (3.5)

In (2.1), θ ∈{10,50,90,130,170,200,340} the set of gantry angles. Coordinates (i, j)∈

{(-53, -75), ..., (53, 75)}, are also voxel indices into the 2D slab representing the patient,
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which has a 106-mm height and 150-mm width. For this development angles were modi-

fied from {0,40,80,110,250,280,320} to {10,50,90,130,170,200,340}. Because seven

angles are employed around the patient and, their directions are not critical from the opti-

mization point of view, as long as they are well spread over 360◦. In the future, the clinical

angles should be used.

Now, the optimization problem can be defined, using the variables defined in this sec-

tion. As already discussed the use of penalties, but not the objective. In fact, all of the

clinical requirements are constraints, and the penalty is the only objective. The `1 norm is

replaced by two inequalities, and the auxiliary variables τθ ,t .

min ∑
θ ,t

τθ ,t

s.t. wθ ,t−wθ ,t+1 ≤ τθ ,t , ∀θ , t

−wθ ,t +wθ ,t+1 ≤ τθ ,t , ∀θ , t

di, j = ∑
t

Di, j,t,θ wθ ,t , ∀i, j

0≤ wθ ,t ≤ wmax, ∀θ , t

wθ ,tmax = 0, ∀θ

wθ ,tmin = 0, ∀θ

95≤ di j ≤ 105,∀(i, j) ∈ T

∑
{(i, j)∈R}

di j ≤Mr|R|

∑
{(i, j)∈H}

di j ≤Mh|H|

∑
{(i, j)∈B}

di j ≤Mb|B|

(3.6)

32



3.2. PROPOSED APPROACH Master’s. - M. Khalaji - McMaster

Additional indices on the constraints are:

T is the set of voxels belonging to the PTV;

R is the set of rectum voxels, with Mr maximum average dose;

H is the set of femoral heads voxels, with Mh maximum average dose;

B is the set of bladder voxels, with Mb maximum average dose.

Figure 3.2 illustrates a simplified tumour and critical structures around it. The tumour

is coloured in red and sensitive tissues in green and blue, resulting in constraints

95%≤ di, j ≤ 105%, ∀(i, j) ∈ {(4,4),(4,5),(4,6),(5,5),(5,6)},

∑
(i, j)∈{(3,4),(3,5)}

di, j ≤ 2Mblue,

∑
(i, j)∈{(5,4),(6,4)}

di, j ≤ 2Mgreen.

Figure 3.2: Simpler version of tumour and critical tissue sets
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3.3 Dose Matrix

Since the propsed approach relies heavily on computed dosages, providing an accurate

method for calculating dose will undoubtedly be an important research direction. Any

questions of efficiency will almost certainly involve considering how the dose matrix D is

computed and how accurately it is computed. For example, the current method ignores the

effects of scattering or tissue attenuation.

A simple dose matrix is being used for these experiments which can be stored and

rotated to obtain dose matrices for various angles around the phantom. Real people are,

however, much more irregular and inhomogeneous which forces dose calculations to be

even more expensive and makes the matrix D so large it typically cannot be stored ahead

of time.

To circumvent this, many commercial IMRT planning systems calculate dose on the

fly, requiring various levels of accuracy at different stages in the optimization to reduce

computational cost. Although, it is not been considered how and when to compute approx-

imations to D in this thesis, having a solid understanding of how this is done and how to

improve its interface with the optimization algorithm will undoubtedly be a key factor in

increasing algorithm performance.

3.3.1 Calculation Method

Radiation originates at the source. The position of the source is given by (100×cos(θ),100×

sin(θ)), because the source is 100cm away from the iso-center (where reference measure-

ments are made). It has been treated as a point source and from the point source, rays

diverge in all directions isotropically. As the radiation spreads out, the concentration of

radiation will decrease. Since it is in three dimensions, the radiation decreases with one
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over distance squared. Since the problem is modelled with beamlets, those beamlets are

representing the radiation that would go through a plane at iso-center, that is perpendicular

to the beam. The plane at isocentre is referred to as the opening density matrix (ODM).

Figure 3.3 depicts this geometry.

Now, the dose is at each voxel has to be figured out. The photon fluence as a function of

offset, depends on the ODM value but voxels are at different distances from the radiation

source. So one needed to adjust the dose for voxels, which depends on the position of

each voxel and its distance from iso-center. This can be figured out by solving a set of

linear equations. It should be noted that the ray which leaves the source, goes through a

position on the ODM before reaching the target voxel. The intersection of the source-target

voxel line and the ODM can be obtained geometrically. This value can be corrected for

inverse square law and then stored in the target voxel as the dose. This is a first order

approximation of the dose that ignores scatter, beam attenuation, and the conversion of

photons to electrons before dose is deposited in the tissue.

3.3.2 Geometric Factors

Figure 3.3 shows, the volume of interest in three dimensions (x,y,z). The isocentre is as-

sumed to be at (0,0,0) of the volume of interest and the source 100cm away from it. The

ODM considered a (u,v) plane going through the iso-center. This plane which rotates in

the same direction as the source, helps us finding dose values in other voxels in the volume

of interest. Based on this, one needs the coordinates of (x,y,z) on the box of interest to be

in terms of coordinates on the plane (u,v) which is the intersection of the beamlet with the

ODM.
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Figure 3.3: A simple view of ODM, source and region of interest which shows the conver-

sion of 3D coordinates into 2D coordinates

The three points, (x,y,z), the ODM intersection and the source, are all on a line. There-

fore the vector from the source to (x,y,z) is a scaling of the vector from the source to the
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ODM intersection by the factor α as seen in the following equation,




x

y

z

−


a

b

c


×α =


x′

y′

z′

−


a

b

c

 (3.7)

x′−a = (x−a)×α (3.8)

y′−b = (y−b)×α (3.9)

z′− c = (z− c)×α (3.10)

α can be eliminated from (3.8),

α =

(
ucosθ

x−a

)
(3.11)

Then (3.11) is plugged into (3.9) and (3.10),

u = 100×
(
−cosθ(x−100sinθ)+ sinθ

sinθ(x−100sinθ)− cosθ

)
(3.12)

v =−z×
(

ucosθ −100sinθ)

x−100sinθ

)
(3.13)

Once (u,v) are known in terms of (x,y,z), the raw photon fluence at the target voxel can
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be obtained using:

intensity(x,y,z) = ODM(u,v) (3.14)

Since the coordinates (u,v) generated by the above equations, are not necessarily inte-

gers, bilinear interpolation is used to obtain ODM(u,v).

Also the intensity has been corrected by considering the fact that radiation intensity will

decrease on its path from source to the voxels using Inverse Square Law,

ISL =

(
1002

(x−a)2 +(y−b)2 +(z− c)2

)
(3.15)

So equation (3.14) in more precise form is:

intensity(x,y,z) = ISL(x,y,z)×ODM(u,v) (3.16)

The proposed method in this thesis is 2D(z = 0). The intensity obtained for a pixel (x,y)

will be used in (2.1) as below:

Dθ ,t,i, j = intensity(i, j,0) (3.17)

where i represents x, j represents y, t represents u, and θ dependence is explicitly

included. It should be noted again that, this is a first order approximation that ignores beam

attenuation, photon scatter, and conversion of photons to electrons.
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Chapter 4

Validation

4.1 Input Data

To test the optimization program, data from the treatment of an anonymized prostate cancer

patient were analyzed. The data comprised a planning CT, PTV and OAR contours. Figure

4.1 shows a screenshot of the anatomy with a 1cm grid overlaid. In this figure, the green

circle at the bottom indicates the rectum, the blue oval is the PTV and the orange oval is

the bladder. Also the two femoral heads are shown in blue/green colour. To simplify the

problem, the volume of interest has been assumed as a rectangle. The goal is to deliver the

prescribed dose to the PTV while all other organs receive the minimum dose. This is not a

trivial task since all the organs surround the target area, and the bladder overlaps the PTV

as shown in Figure 4.1.
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Figure 4.1: Transverse CT slice and contours corresponding to PTV(blue), blad-

der(orange), rectum(green) and femoral heads(green/blue). The volume of interest has

been assumed as described in chapter 3.

4.2 Methods

As explained in the previous chapter, the requirements of treatment planning are captured

as constraints in the linear programming approach. The constraints are specified as per-

centages of the target dose in the PTV. The PTV dose is constrained to the prescribed range

of 95% to 105%, so that it would be effective in killing tumour cells. On the other hand,

the rectum, bladder and femoral heads need to be spared. Since OARs and PTV have an

overlap area, there is a trade-off between minimizing radiation dose to the OARs and max-

imizing the dose in the PTV at the same time. For this development, the mean dose in the
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OARs was kept below 25%.

It should be noted that in this method of treatment, seven fixed angles are employed.

As previously explained, in this optimization method, radiation angle will not be included

as one of the parameters and, so only fluence maps representing the intensity of radiation

coming from each angle will be reported as results. Figure 1.1 in chapter 1 shows radiation

beams from seven clinically employed angles. Angles are θ = {0,40,80,110,250,280,320}

which ensure the dose is concentrated in the PTV. A higher number of angles results in

greater flexibility which makes the optimization problem’s constraints easier to satisfy, but

extend the treatment time.

4.2.1 Modelling Software

For modelling the optimization problem, NEOS online server is used [4, 8, 5]. It pro-

vides a web interface to different solvers. In this optimization two different solvers were

used for the linear and the non-linear problem. The `1 problem is solved using MOSEK (

software package for optimization problems, version 6.0) and the non-linear problem ob-

tained by adding `1/2 was solved using KINTRO (Nonlinear Interior point Trust Region

Optimization, version 8.0) which are efficient and powerful environments for solving an

optimization problem in AMPL format. To localize the contours, the geometry in Figure

4.1 was converted to a black and white image and then converted to a text file with several

integer numbers demonstrating different tissue margins. This text file was loaded to the

online server together with the AMPL modelling file. The computation of Di, j,θ ,t was also

included in the AMPL code.
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Case 1 Rectum is shifted down by 5mm, bladder size is reduced by 5mm
Case 2 Rectum is shifted down by 5mm, bladder is enlarged by 5mm
Case 3 Rectum is shifted up by5mm, bladder size is reduced by 5mm
Case 4 Rectum is shifted up by5mm, bladder is enlarged by 5mm
Case 5 Rectum is shifted left by 5mm, bladder size is reduced by 5mm
Case 6 Rectum is shifted left by 5mm, bladder is enlarged by 5mm
Case 7 Rectum is shifted right by5mm, bladder size is reduced by 5mm
Case 8 Rectum is shifted right by 5mm, bladder is enlarged by 5mm

Table 4.1: Eight different type of movements are indicated by eight case numbers.

4.2.2 Tissue Motion

Since the motivation for plan re-optimization comes from concerns about anatomical mo-

tion between treatment fractions, eight cases were optimized representing typical patient

motion/deformation. These included both increases and decreases in bladder size (contour

changed by 5 mm in the anterior/posterior direction), and displacements of the rectum by

5mm in anterior, posterior, left and right directions. As discussed in chapter 1, the maxi-

mum displacement of the prostate target is 20mm, so 5 mm was considered appropriate for

this analysis. Deformations during treatment result from normal physiological function (in-

cluding varying amounts of intestinal gas) and changes due to treatment (including swelling

as a result of radiation damage). Table 4.1 enumerates the eight deformation experiments,

For all cases, the parameters for the optimization problem (3.6) were set up. The PTV

and critical tissues were localized and also the information needed to define the constraints

was extracted, namely the sets, T , B, R, and H for voxels in the PTV, bladder, rectum, and

femoral heads, respectively. The modified data were sent to the NEOS online server .
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4.2.3 Norm Analysis

In this section the effect of adding the `1/2-difference norm as a penalty to the linear prob-

lem was investigated. As discussed, finding a small number of fluence steps is desired. So

by adding `1/2-difference norm, it is possible to get closer to the desired solution. Since

by adding this norm as a constraint, the problem becomes non-convex, the `1 norm has

been kept and the `1/2 is added as a penalty to it. In theory, if current state is in a small

neighbourhood of solution, addition of non-linear term should help to improve results.

4.3 Results

In addition to the one-dimensional radiation profiles for each angle, two-dimensional dose

distributions are presented. Dose distributions, show the relative dose at all voxels in the

region of interest. Both plots are expressed as percent of target dose in Gy, as were the

constraints. The radiation oncologist sets the target dose in, however this does not change

the problem from the point of view of evaluating this method, since relative dose is assumed

to be proportional to Gy.

The plots are very useful for understanding the method and qualitatively evaluating it.

Three numerical measures of performance are also presented. First, the calculated dosage

at the the PTV and whether the radiation conforms to the target area. This parameter shows

the effectiveness of this approach. Secondly, it is interesting to see whether the dosage at

other body organs is below what is considered a safe limit. Finally the third parameter is

the time that it takes for the solver to find an optimum solution. Basically this parameter

shows whether this approach can practically be used for plan re-optimization while the

patient waits in treatment position.
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4.3.1 Original Data

Figure 4.2 shows the results obtained under the original patient geometry. As Figure 4.2

demonstrates, the LP approach conforms the dose to the PTV with little exposure of the

critical tissues.

Figure 4.2: Top left: Input data. Top right: Optimizer output with the relative dose scale

on the right. Low dose corresponds to black, high dose to white. Bottom: Overlay of dose

with contours to visually verify the solution.

Although these plots show qualitative results where one can say that radiation is di-

rected toward the PTV and fluence maps are determined correctly, to verify the proposed
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Contour Min Mean Max
PTV 95.0 99.6 105
Rectum 3.6 25.0 93.2
Bladder 0 25.0 97.1
Right Femoral Head 9.3 25.0 44.9
Left Femoral head 9.3 25.0 44.9

Table 4.2: Relative doses achieved by the optimizer for the original data. This informa-
tion is shown in terms of minimum, mean and maximum doses received by the contour
indicated.

approach, and eventually compare it to other approaches, numerical evaluations are re-

quired. Table 4.2 demonstrates the numbers that were obtained as output of the code and

compares them to the minimum or maximum allowed for each contour.

Finally, the amount of time it takes for the solver to generate outputs is measured to

show the practicality of this approach. The average time measured for a number of itera-

tions made was between 4 to 5s using the NEOS online server.

Now that dose distribution is verified to be in the acceptable range for both the PTV and

critical tissues, the next step in this approach is to generate radiation profiles for the multi-

leaf collimator to setup the sequence of leaves. As there are seven different angles used in

this project, the code should generate seven different sets of radiation profile instructions

for these angles. Figure 4.3 graphs the radiation profiles of seven co-planar beams obtained

using the proposed LP approach. In this figure the horizontal axis shows the offset which

means the distance from the beam edge, and the vertical axis shows the amount of radiation

that should be sent through each offset for the respective angle. It should be mentioned that

these radiation profiles do no have to be generated in one iteration and they may be the

result of multi-step collimator configurations that are summed.
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Figure 4.3: ODM profiles for the seven beam angles, 10 (top), 50, 90, 130, 170, 200, 340

(bottom)

4.3.2 Tissue Motion

Table 4.3 presents the numerical summaries of the eight treatment plans. Figures 4.4 and

4.5, use the same scheme as Figure 4.2 to demonstrate delivered dosage to each contour.

In each figure, the top left part shows the dose distribution for the original case, the top

right shows the distribution when an organ moves and the bottom part shows the difference

in dose distribution between the top two. The difference is added mainly to illustrate the

effectiveness of this method visually. In the difference plots, warm colours (red, orange,

yellow) shows where the original dosage is larger than the one after the movement and the
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# PTV Rectum Bladder R Femoral L Femoral
min/mean/max min/mean/max min/mean/max min/mean/max min/mean/max

1 95/98.46/105 4.9/25/51.26 0/25.6/98 11.2/24.6/47.2 11.1/24.6/48.3
2 95/98.43/105 4.94/25/51.35 0/24.4/97.9 11.2/24.6/47.16 11.1/24.6/48.3
3? 0/4.46/10 0/25.43/142.2 0/58/144.7 0/27.9/65.19 0/27.9/65.3
4? 0/4.34/10 0/25.51/142.2 0/53.24/143 0/27.9/65.2 0/27.93/65.3
5? 0/3.15/10 0/30.7/120.1 0/36.4/137.4 0/21.34/64.85 0/21.3/64.9
6? 0/2.16/10 0/31/120.42 0/32.7/137.4 0/21.3/64.85 0/21.3/64.9
7 95/98.3/105 1.8/20.42/51.3 0/24.4/89.2 3.18/24.8/53.7 3.1/24.73/53.5
8 95/98.24/105 1.8/20.52/51.6 0/24.6/98 3.2/24.8/53.5 3.1/24.73/53.4

Table 4.3: Relative doses for all tissues in terms of minimum, mean and maximum received.
This table demonstrates good coverage for the PTV in case of rectum moving down and
right, while sparing the normal tissues. The cases marked by a star have failed in the
optimization process. As numbers for dose amounts indicates, when the PTV overlaps
with the rectum, the DVCs can not be satisfied and the optimization problem failed.

cold colours (blue, green) show the opposite. As figure 4.4 demonstrates, in the case rectum

shifted down, there is a decrease in radiation from down because rectum moves down, and

an increase in radiation from bottom right that just hits the PTV above the rectum)

4.3.3 Norm Analysis

For the non-linear analysis, solver states might not be in the final solution neighbourhood

and the program returned almost the same dose distribution and even increased the number

of leaf positions required. It also took the solver more time (about 14s)and iterations to

solve the new non-linear problem. Figure 4.6 is the KNITRO output demonstrating that the

solver could not solve it within 50 iterations.
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Figure 4.4: (a) Results
obtained when the blad-
der size decreases. The
top left picture shows the
original dose while the
top right shows the dose
obtained when the rec-
tum moves posteriorly.
The bottom picture is the
difference between the
top two. Warm colours
indicate the original dose
was higher while cold
colours indicate the op-
posite case. (b) Same
results as in (a) but ob-
tained when the bladder
size increases.

48



4.3. RESULTS Master’s. - M. Khalaji - McMaster

Figure 4.5: (a) Results
obtained when the blad-
der size decreases. The
top left picture shows the
original dose while the
top right shows the dose
obtained when the rec-
tum moves to the right.
The bottom picture is the
difference between the
top two. Warm colours
indicate the original dose
was higher while cold
colours indicate the op-
posite case. (b) Same
results as in (a) but ob-
tained when the bladder
size increases.
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Figure 4.6: KNITRO solution for the non-linear problem. It demonstrates it is not able to

solve the problem within the given iterations.

Adding `2 difference norm to the problem gave smoother fluence maps as expected
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and did not seem to affect the final dose distribution. Figure 4.7 demonstrates the dose

distribution resulting from using `2 difference norm.

edge.jpg

Figure 4.7: Relative dose obtained using `2 difference norm. The dose distribution is almost

the same except that the doses at the edges are smoother which requires more MLC control

points to deliver.

4.4 Discussion

The proposed method using the `1 norm requires up to 5 s for the original data to produce

the acceptable results shown in figure 4.2. As shown in table 4.2, the average dosage that is

received by the tumour area is above the minimum required which shows the effectiveness
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of this approach. Also the average dosage that is received by the other organs are all in the

prescribed safe range. The only thing that should be noted in practical experiment is that

the patient movement should be minimized during the 5 s processing time. In other words,

after each movement, it takes the same amount of time to calculate radiation doses at each

point. Finally, It should be mentioned that as an online solver is used, this time basically

includes all the delays that are involved in that process as well as printing the results which

would not be the case when a solver is embedded into a treatment planning system.

Although it was mentioned that the resulting dose can be generated in several steps, it is

preferred to have a minimum number of leaf movements, or change in leaf configurations.

This is basically what has been targeted in the optimization problem. In other words, it is

tried to generate radiation profiles that are not only realizable using multi-leaf collimator

leaves, but also require a minimum number of leaf movements to realize them. To do this,

it is necessary to make sure that the fluence maps are piece-wise constant for each angle.

Local maximum and minimums in the profile will result in a very high number of iterations

of leaf configurations being required to generate such profile. As shown in Figure 4.3, all

the profiles for each angle are appear piece-wise constant. The optimization method has

resulted in profiles that may be generated using a few iterations in leaf configurations.

Since the motivation for plan re-optimization comes from concerns about patient mo-

tion between treatment fractions, eight cases were optimized representing typical patient

deformations. The difference plots in figure 4.4 and figure 4.5 clearly shows that there is

always a strip of intense warm or cold colour right at the edge of the organ that is moving

which shows the change that is made by the program to re-optimized the treatment plan.

It is interesting to note that when the rectum moves down (and away from the tumour),

although the new plan reduces the maximum dose to the rectum, the average dose remains
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constant. As the relative doses in table 4.3 demonstrates, the LP proposed approach per-

forms well for shifting down and right cases, however failed in the other two motions. In

the case the rectum is shifted up, it overlaps with the PTV area and satisfying both tissue

constraints will be impossible and the optimizer will not be able to solve it. The reason

that the shifting left case has been failed is likely due to the non-clinical angles employed

in this analysis

Also rather than `1 difference norm, `1/2 and `2 norms also were used to improve the

solution. As shown in figure 4.6, using `1/2 as a penalty to the `1 difference did not result

in better solutions. As figure 4.7 shows, `2 norm also gave the same dose map as the `1

norm with smoother fluence profiles which requires smaller gradients and subsequently,

less OAR sparing. Also more segments are required to realize this solution using the linear

accelerator.
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Chapter 5

Conclusion

As discussed, the current approach to IMRT involves setting the patient for treatment, imag-

ing, rigidly shifting the couch and delivering the original treatment plan. The problem is

that internal patient motion is non-rigid. Currently, the problem of internal deformations is

addressed by increasing the size of the PTV margin which leads to delivering more radi-

ation to sensitive organs. A fast method of re-optimizing IMRT treatments in response to

anatomical deformation detected just prior to each treatment fraction would allow the PTV

margin to be reduced. Therefore the goal of this thesis was to prototype a fast technique for

re-optimizing a prostate IMRT plan based on the motion observed on daily CBCT imaging.

To achieve this goal, a rapid linear programming approach using was proposed in this

thesis. The novelty in this approach was the use of regularization to minimize the necessary

number of MLC leaf movements. Of the methods tried, `1-difference regularization was

the most effective and was readily solvable. This case corresponds to a linear program.

Other norms, including the `2 and `1/2 in combination with the `1 norm, produced inferior

solutions in longer solution times. As the numerical and graphical results indicate, the LP

solution conforms radiation to the tumour shape, as expected, in the test problem.
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Since the motivation for plan re-optimization comes from concerns about patient mo-

tion between treatment fractions, eight cases were optimized representing typical patient

deformations. In the case when rectum is shifted up and has an overlapped area with the

PTV, the re-optimziation plan failed and could not satisfy the DVCs. Although this op-

timization method could fail, one can always fall back to the original optimization plan

provided by the currently-used software.

For full implementation on a linear accelerator, the resulting fluence profiles need to

be rounded to get a piece-wise constant function that is realizable with a small number

of leaf movements. Qualitatively, the LP solution satisfies this condition without requiring

excessive processing time. However the l1/2 difference norm which was expected to reduce

the number of fluence steps to make it easier to round to leaves, did not work very well.

The resulting non-linear problem was harder for KNITRO to solve and the quality of the

solution was not as good.
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Appendix A

AMPL Code

param size := 11;

param max_rad := 1000;

param pi := acos(-1);

param max_angl := 17;

param max_odm := 35;

adding an array of arbitrary angles

param odm_per_cm := 4;

param dose_per_cm := 4;

param odm_radius_cm := 35;

param odm_per_cm := 4;

param dose_per_cm := 4;

param max_odm := odm_per_cm * odm_radius_cm*2; to avoid error
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param source_distance_cm := 100;

param n := 7;

set ANGLES := {10, 50, 90, 130, 170, 200,340};

var rad{angle in ANGLES, offset in {-max_odm..max_odm}} >= 0;

param max_at_risk := 6;

param min_at_tumor := 10;

param t{i in {-53..53},j in {-75..75}, angle in ANGLES} =

(i/dose_per_cm*cos(angle*pi/180)+j/dose_per_cm*sin(angle*pi/180))/

(i/dose_per_cm*cos(angle*pi/180)+j/dose_per_cm*sin(angle*pi/180)-

source_distance_cm);

param s {i in{-53..53}, j in {-75..75}, angle in ANGLES} :=

odm_per_cm * (-sin(angle*pi/180)*(i/dose_per_cm+t[i,j,angle]*

(source_distance_cm*cos(angle*pi/180)-i/dose_per_cm)) +

cos(angle*pi/180)*(j/dose_per_cm+t[i,j,angle]*

(source_distance_cm*sin(angle*pi/180)-j/dose_per_cm)));

param s_int {i in{-53..53}, j in {-75..75}, angle in ANGLES} :=

floor(s[i,j,angle]);

param s_frac {i in{-53..53}, j in {-75..75}, angle in ANGLES} :=

s[i,j,angle]- s_int[i,j,angle];

param s_frac1 {i in{-53..53}, j in {-75..75}, angle in ANGLES} :=

1 - s_frac[i,j,angle];
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var dose {i in {-53..53}, j in {-75..75}};

param geom {i in {-53..53}, j in {-75..75}, angle in ANGLES} :=

source_distance_cm*source_distance_cm/

(((source_distance_cm*cos(angle*pi/180)- i/dose_per_cm)^2)+

(source_distance_cm*sin(angle*pi/180)-j/dose_per_cm)^2);

var t1{angle in ANGLES, offset in{-max_odm..max_odm}} >= 0;

subject to constT1 {{angle in ANGLES, offset in {-max_odm..max_odm}}:

t1[angle,offset] >= rad[k,offset] - rad[k-1,offset];

subject to constT2 {angle in {ANGLES+1}, offset in {-max_odm..max_odm}}:

-t1[angle,offset] <= rad[angle,offset] - rad[angle-1,offset];

var t2{angle in ANGLES, offset in {-max_odm+1..max_odm}} >= 0;

subject to constT12 {angle in ANGLES, offset in{-max_odm+1..max_odm}}:

t2[angle,offset] >= rad[angle,offset] - rad[angle,offset-1];

subject to constT21 {angle in ANGLES, offset in {-max_odm+1..max_odm}}:

-t2[angle,offset] <= rad[angle,offset] - rad[angle,offset-1];

subject to const3 {i in {-53..53}, j in {-75..75}}:

dose[i,j] =sum {angle in ANGLES}geom[i,j,angle]*

((s_frac1[i,j,angle])*rad[angle,s_int[i,j,angle]]+(s_frac[i,j,angle])*

rad[angle,1+s_int[i, j, angle]]);
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//======================================

param max_tumor;

let max_tumor := {(i,j) in T} dose[i,j];

//========================================

subject to const_68 {(i,j) in {

(-2,-4),(-2,-3),(-2,-2),(-2,-1),(-2,0), ...

}}: dose[i,j] >= 95;

//===========================================

subject to const1_68 {(i,j) in {

(-2,-4),(-2,-3),(-2,-2),(-2,-1),(-2,0), ...}}: dose[i,j] <= 105;

subject to const1_68 {(i,j) in {

(-24,18),(-24,19),(-24,20),(-24,21),(-24,22), ...

}}: dose[i,j] >= 105;

param max_s := 25;

subject to const_2:(sum {(i,j) in {

(-25,-2),(-25,-1),(-24,-9),(-24,-8),(-24,-7), ...

}}dose[i,j])*(0.00179856115) <= max_s;

subject to const_3:(sum {(i,j) in {

(-8,-35),(-8,-34),(-8,-33),(-8,-32),(-8,-31), ...

}} dose[i,j])*(0.00321543408) <= max_s;
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subject to const_4:(sum {(i,j) in {

(-7,28),(-7,29),(-7,30),(-7,31),(-7,32), ...

}} dose[i,j])*(0.00355871886) <= max_s;

subject to const_5:(sum {(i,j) in {

(19,-4),(19,-3),(19,-2),(19,-1), ...

}} dose[i,j])*(0.00534759358) <= max_s;

subject to l1odm{angle in ANGLES}:rad[angle,-max_odm] +

rad[angle,max_odm] +

sum{off in {-max_odm+1..max_odm}}t2[angle,off] <= 2*max_rad;

minimize amount:

( sum {angle in ANGLES, off in {-max_odm+1..max_odm}} t2[angle,off]) +

( sum {angle in ANGLES} (rad[angle,-max_odm] + rad[angle,max_odm])) ;

solve;
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