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Abstract

Selfish routing is frequently discussed. The general framework of a system

of non-cooperative users can be used to model many different optimization

problems such as network routing, traffic or transportation problems.

It is well known that the Wardrop user equilibria (i.e. the user optima)

generally do not optimize the overall system cost in a traffic routing problem.

In order to induce the equilibrium flow to be as close to the optimal flow as

possible, the term “toll” is introduced. With the addition of tolls, a traffic

system does not show the actual cost to the users but the displayed cost of

users, which is the summation of the actual cost and the toll. A common

behavioral assumption in traffic network modeling is that every user chooses a

path which is perceived as the shortest path, then the whole system achieves the

equilibrium of the displayed cost. It is proved that there exists an optimal toll

which can induce the equilibrium flow under displayed cost to be the optimal

flow in reality.

However, this conclusion holds only if the selfish routing executes only

once. If the game is played repeatedly, the users will detect the difference

between the actual and displayed costs. Then, they will not completely trust

the information given by the system and calculate the cost. The purpose of

this thesis is to find out the optimal strategy given by the system–how to set

tolls in order to maintain the flow as close to the optimal flow as possible.
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Chapter 1

Introduction and Background
Knowledge

1.1 Motivation

In daily life, people often come across such a situation: plenty of entities or

data are transported from side to side in a network, which happens frequently

in logistics management, urban transportation, distribution network system;

etc. Multiple users use such networks of edges and nodes. In general, there

are two kinds of nodes: some nodes denote special points such as terminals of

bus systems, network terminals and cargo dispatch centers, from which traffic

flow outflows, or to which traffic flow inflows. These nodes are called source

nodes or destination nodes. Other nodes denote ordinary flow inflows and

outflows from different edges. Each user travels from her own origin nodes to

destination nodes, and they share the edges in the network; some of them may

use the same origin and destination nodes, so they are grouped together as

a homogeneous commodity, and such origin and destination nodes are called

“origin and destination” pairs.
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Each user wants to pick up the optimal route for herself to maximize the

utility, or minimize her cost, and she does not take others’ action and benefit

into account. After a period of chaos, the flow achieves a stable state gradually,

in which no one wants to change her route unilaterally. In other words, no user

can get a better utility by changing her route when the other users remain the

same. This state is an equilibrium.

However, at equilibrium, the performance of the network may not be

optimal. At optimum, the total utility of the network is as large as possible. In

order to optimize the efficiency of the network, the first instinct is introducing

a central governor to control the flow directly. Nevertheless, this is unrealistic

and the cost may be very high in practice. For example, the manager of an

urban transportation system cannot order drivers what to do. Therefore, only

selfish routing is applicable, where each user maximizes her own payoff and

there is no coordination.

If the efficiency of a network in equilibrium is much lower than the opti-

mum (which could be expected), the network is a “bad” network. In [21], Kout-

soupias and Papadimitriou defined the term “price of anarchy” to describe the

ratio of the total cost of the network between equilibrium and optimum state.

Then we can try to improve the network by reducing the price of anarchy.

Roughgarden proved that the price of anarchy is independent of the network

topology[31]. In [31], he showed that the price of anarchy is determined only

by the simplest network, and under some weak hypotheses, the worst price of

anarchy is achieved by very simple networks.

Although selfish routing is the mode of operation, we can introduce a

manager to impact the user of the network indirectly. She can improve the

2
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efficiency of the network by manipulating the information about the network

status delivered to the selfish users. This is the motivation for this thesis.

In addition, we should notice that in reality the selfish routing scenario

is not executed only once, but repeatedly. Some methods listed above may not

apply to repeated selfish routing because users can discover hidden information

from their previous experience. Therefore, we extend the research into repeated

selfish routing.

1.2 Our Results

First, we build a model of general network with finite edges and nodes. There

are special nodes paired as source and destination pairs. For each pair, infinite

users travel from the source to the destination, and they make up a single

commodity. Different commodities can share edges and nodes and each user

in any commodity carries an infinitesimal amount of flow. They travel in this

network repeatedly and will take a latency time to traverse each used edge.

There is a manager in charge of this network, who wants to minimize the social

cost (total latency time) of the network. She can induce the flow by giving

to the users an artificial latency time for each edge. We also assume that the

users can retain some information from past plays in this repeated games, which

influence their current behavior. We prove the optimum state for the manager

under various conditions and the corresponding behavior in optimum state for

the manager.

Furthermore, we extend our model to the case where users in the same

commodity perceive random latency time for identical edges, and the latency

time obeys some known probability distribution. We prove that the optimal

3
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flow can be kept in repeated games under certain conditions.

Finally, we build a similar model for users, each of whom carries an in-

negligible amount of flow. We prove that the optimal strategy for the manager

is similar to the case of users with infinitesimal amounts of flow.

1.3 Application

Our model has application in reality. In real life, there are systems containing

different kinds of networks. Mostly, these networks are shared by selfish users.

It is easy to see that, in general, the network state induced by these selfish users

is not optimum. Therefore, improving the efficiency of the network is always a

big problem. The method of centralized control has several deficiencies: there

are lots of technical difficulties and each selfish individual does not want to

obey the rules. However, the manager can use artificial “tolls” (time, money,

etc) to optimize the selfish routing network repeatedly. Our model gives an

efficient method for using artificial tolls repeatedly. For example, in urban

transportation, a municipality can use our methods to display artificial delays

in major road crossings to maintain a better traffic condition everyday. For a

service system with multiple service windows in restaurants, pubs, banks, etc,

the model can be applied to control the waiting time of people. For example,

plenty of users go to a restaurant with several service windows. Each user

chooses the window with the shortest latency. The manager can tell artificial

delays to users to enhance the efficiency of the service system.

1.4 Introduction to Game Theory

From above we can see that selfish routing satisfies the following characteristics:

4
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1. it contains multiple users each of which wants to maximize her own payoff;

2. each user has several choices;

3. each user competes with other users;

4. each user’s payoff depends on not only her own choice, but also other

users’ choices.

The above characteristics can easily make us associate our situation to

“games” and “game theory”. Game theory reflects environments where an

individual’s payoff depends on the choices of others, and is applied in economics,

political science, psychology, logic and biology.

Game theory became an independent discipline since John von Neumann

published his paper in 1928[37]. Games come in a variety of forms, but most

of them have the following common attributes:

1. at least two players;

2. alternation of moves;

3. a possible lack of complete knowledge;

4. a payoff function to be maximized.

In addition, the moves chosen by one player may be unknown to others;

sometimes, a probability distribution can be given over several moves. We use

R, R+ and R++ to denote reals, and nonnegative and positive reals, respectively.

From above, we have

Definition 1.4.1 A game consists of

5
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1. n players, numbered 1, ..., n;

2. a strategy set Si for each player i, i = 1, ..., n, which consists of all her

choices;

3. a payoff function for each player i, i = 1, ..., n, pi(s1, ..., sn) : ΠiSi 7→ R.

Players will make their choices, and the mechanism for each player to

make her choice is her strategy. The intuitive meaning of a strategy is a plan

for playing a game. Namely, in the player’s mind, she is saying to herself, “If

such and such happen, I will act in such a manner”[28]. The strategies defined

in definition 1.1 are also called pure strategy. If a player uses a pure strategy,

her action will be deterministic. In addition, players can also use strategies

randomly, which leads to the idea of a mixed strategy.

Definition 1.4.2 A mixed strategy for a player is a probability distribution

over the set of her pure strategies.

!"# $"!

#"$ %"%&

'

(

)

%

!

Figure 1.1: The Product-Choice Game

Figure 1.1 is an example of a game, the product-choice game. Player 1 is

a firm which can exert either high effort(H) or low effort(L) in the production

6



M.Sc. Thesis - He Yu McMaster - Computing and Software

of a product; Player 2 is a consumer who can buy either a high-priced product,

h, or a low-priced product, l. Therefore, S1 = {H,L}, S2 = {h, l}. Each

entry in Figure 1.1 denotes the payoff for both players, for example, p1(H, l) =

0, p2(H, l) = 2.

As each player can choose what she wants, the game can have plenty of

states according to different strategies chosen by the players. We are mostly

interested in a very stable state – the equilibrium. In this state, no player wants

to change her strategy unilaterally. The intuition is that in this situation, every

player will lose payoff if she changes her strategy unilaterally.

Definition 1.4.3 [25]

A strategy vector (s∗1, . . . , s
∗
n) ∈ S1 × . . . × Sn is said to be in Nash equi-

librium, if and only if, for any i = 1, . . . , n, and si ∈ Si,

pi(s
∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
n) ≤ pi(s

∗
1, . . . , s

∗
n).

The product-choice game in Figure 1.1 has a unique equilibrium (L, l).

A game is said to be a zero-sum game if and only if the payoff function

satisfies
n∑
i=0

pi = 0.

For any player i, we say a strategy ŝ dominates s, where ŝ, s ∈ Si, if and only if

pi(ŝ, s−i) ≥ pi(s, s−i) for all s−i (s−i denotes an action profile of all the players

other than i). A strategy ŝ strictly dominates s, where ŝ, s ∈ Si, if and only if

ŝ dominates s and there is at least one s−i such that pi(ŝ, s−i) > pi(s, s−i).

7



M.Sc. Thesis - He Yu McMaster - Computing and Software

1.5 Stackelberg Games

In some games, players do not move simultaneously, but sequentially. There-

fore, players can be divided into leaders and followers. This kind of game is

called a Stackelberg game. The Stackelberg game is a strategic game in which

leaders move first and followers move sequentially, and have some knowledge

about the leaders’ actions.

In the following example, we use P1 and P2 to denote the leader and

follower, respectively. In each stage, P1 moves first and she does not know

the move of P2; she guesses the potential strategy of P2 in order to choose

the strategy which can maximize her payoff at the worst condition, which is

determined by P2.

The strength of P1 is priority of moving. Her weakness is the lack of

information of her opponent’s move. Conversely, the strength of P2 is that

she can observe P1’s behavior in order to respond with her best strategy. Her

weakness is that she should follow her opponent’s move.

For example, let P1 and P2 be two companies, which produce a homo-

geneous product in the same market. What follows is an example from [23].

Their strategy is about the quantity of product. P1 produces the product in

Q1 quantity and the unit cost of the product for P1 is B1, while the quantity

produced by P2 is Q2. Moving after P1, P2 knows all the information about

P1. However, P1 does not know the unit cost of P2’s product. It just knows

that P2’s unit cost is BH
2 with probability Y H and BL

2 with probability Y L,

and they satisfy BH
2 ≥ BL

2 , Y H + Y L = 1, and B1 = Y HBH
2 + Y LBL

2 . We

also assume that the unit market price of this product is MP . Then, we define

α = MP +Q1 +Q2.

8
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Accordingly, P1’s utility function is

U1 = Q1(α−Q1 −Q2 −B1),

and P2’s utility function is

UH
2 = Q2(α−Q1 −Q2 −BH

2 )

or

UL
2 = Q2(α−Q1 −Q2 −BL

2 ).

If we want to find the equilibrium for this problem, we need to apply

backwards induction: we solve P2 first. As P2 wants to maximize its profit

when playing against P1, it chooses Q2 to be

QH∗
2 =

1

2
(α−Q1 −BH

2 )

or

QL∗
2 =

1

2
(α−Q1 −BL

2 ).

Now, P1 maximizes her profit under the condition of P2’s optimal response. It

takes into account P2’s strategy. Therefore, it chooses the quantity which can

maximizes the utility function:

Y HU1(Q1, Q
H∗
2 ) + Y LU1(Q1, Q

L∗
2 ).

It is easy to see that

Q∗1 = α−B1 − 1/2[Y H(α−BH
2 ) + Y L(α−BL

2 )].

Let τ = α − B1, τ
L = α − BL

2 and τH = α − BH
2 . Therefore, we have

τ = Y HτH + Y LτL. Then, we can get that the optimal solution is:

Q∗1 =
1

2
τ,Q∗L1 =

1

2
(τL − τ

2
) and QH∗

2 =
1

2
(τH − τ

2
).

9
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The corresponding optimal utility is

U∗1 =
1

8
τ 2, UH∗

2 = 14(τH − τ

2
)2, and UL∗

2 =
1

4
(τL − τ

2
)2.

Then, P2’s average profit function is

U∗2 =
1

4
Y H(τH − τ

2
)2 +

1

4
Y L(τL − τ

2
)2.

We can see that if U∗1 < U∗2 , P1 may lose the advantage of moving first.

1.6 Repeated Games with Incomplete Infor-

mation and Reputation

In this section we discuss repeated games with incomplete information. A

repeated game refers to the game defined in definition 1.1, which is called stage

game, being played round by round, either finitely or infinitely. In repeated

games, we use action to denote the choice of players in stage game and strategy

to denote the behavior of players in repeated game. At the end of a stage game,

each player discovers some information, which may be incomplete, about her

payoff and her opponents’ actions in that stage. This information is used by

her during future plays. In other words, a player may be uncertain about the

payoffs related to some of her actions before playing the stage game[15].

We use a probability distribution to describe this uncertainty. For exam-

ple, there are two players, P1 and P2, and two zero-sum games, GA and GB,

denoted by matrices in Figure 1.2. P1 is the row player picking the best row

for her and P2 is the column player picking the best column for her. In each

game, each player has two strategies, “L” and “R”. The numbers in each entry

denote the payoffs which P2 gives to P1. There is only one game being played.

10
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However, if any player does not know which game is actually being played, she

is uncertain about the payoffs related to her actions. What she can do is give a

probability distribution over GA and GB. If she gives a probability distribution

(1
2
, 1
2
) to GA and GB, she thinks she is playing the game in Figure 1.3 in her

mind.

! "

" "

" "

" !

#$

%&

''

' '

((

((

%! %!

%&

#)

Figure 1.2: An Example of Chance Move
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Figure 1.3: The Game as Seen by P2

If one player has private information which is unknown by the opponents,

repetition of a single stage game deeply changes her behavior. We give an ex-

ample from [3], where the game is still Figure 1.2. In the example, P1 knows

which game is actually being played but P2 does not. In GA, “L” strictly dom-

inates “R” for P1. Therefore, (“L”, “R”) is in equilibrium and the equilibrium

11
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payoff is (0, 0). Similarly, in GB, (“R”, “L”) is in equilibrium and the equi-

librium payoff is (0, 0). If the stage game (Figure 1.2) is played once, we call

it Γ1, if it is played infinite rounds, we call it Γ∞. If P1 completely uses her

information, she will always choose “L” when GA is actually being played, or

“R” when GB is actually being played. For P2, because the game seen by her is

Figure 1.3, meaning that either choosing “L” or “R” gives the same expected

payoff to her, thus, any pure or mixed strategy is optimal. We assume that P2

chooses “L” with probability η, where 0 ≤ η ≤ 1. Then, if GA is being played,

the equilibrium payoff of Γ1 is (η,−η); if GB is being played, the equilibrium

payoff of Γ1 is (1− η,−1 + η). In either case, the equilibrium payoff of P1 in Γ1

is higher than in GA or GB, which means, P1 can take advantage of her private

information in one stage game Γ1.

However, if GA or GB is played infinitely, P2 can discover which game is

actually being played from her opponent’s action. If P1 always chooses “L”, P2

knows that GA is being played; if P1 always chooses “R”, P2 knows that GB is

being played. Thus, P2 can respond by choosing “R” or “L”, respectively. This

implies that P1 only gets a payoff of 0 in each stage.

But P1 can guarantee herself more than 1 in Γ∞. She can play as if she

does not know which game is actually being played by playing an infinite game

∆∞, whose single stage ∆1 is defined by the matrix in Figure 1.3.

In both ∆1 and ∆∞, the optimal strategies of each player is giving “L”,

“R” a probability distribution (1
2
, 1
2
). Then P1 gets a payoff of 0.25, which is

higher than the payoff of P1 in Γ∞. In this case, P1 can gain more than using

her private information. Thus, we can conclude that the optimal strategy of

P1 in the repeated game is different from the single stage game.

12
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However, if P1 is myopic, meaning that she has a discounted payoff, she

will try to maximize her payoffs in the initial stages and not care about that

P2 will discover which game is actually being played. Then, we can see that

whether P1 is patient or myopic ,her strategy is quite different. P1’s intention

is her private information, which is not known by P2. Therefore, P2 assigns

one “type” to each possibility of P1. From this example, we know that for

a player, her type represents her private information. Then, her opponents’

uncertainty about her is described by a probability distribution over her types.

This probability distribution is her reputation.

Definition 1.6.1 If Player A is assigned a type set {Ti}ji=1 by other players,

her reputation is the probability distribution over all the types {µ(Ti)}ji=1, where

µ(Ti) ≥ 0 and
∑j

i=1 µ(Ti) = 1.

1.7 Thesis Outline

In Chapter 2, we describe the general model of the selfish routing with a man-

ager and specify the action of the manager. Then we extend the model to

repeated games and explain the problems encountered in repeated games, but

which do not arise in a single repetition. We introduce reputation mechanisms

and estimation mechanisms to specify the problem accurately, and we general-

ize the model to a stochastic game. Then we show the properties of our game

as a stochastic game and prove that certain kind of behaviors of the manager

can be maintained in equilibrium paths. Then, we get optimal strategies for the

manager under different conditions and the lower bound of the payoff for her.

We show the influence of past actions on the current play and how reputation

13
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and estimation mechanisms work in repeated games. We also give examples to

describe the whole procedure of a repeated selfish routing.

In Chapter 3, we modify the model defined in Chapter 2 to adapt stochas-

tic user selfish routing. In stochastic user selfish routing, for any given flow,

any edge cost perceived by users is not identical, so we treat it as a random

variable. We give the definition of stochastic user equilibrium and optimal toll,

which can induce the equilibrium flow to the optimal flow. Then we prove that

in certain conditions, the social optimum can be maintained in the correspond-

ing repeated game by using optimal tolls. Similar to Chapter 2, we give an

example to illustrate the result in this chapter.

In Chapter 4, we modify the model defined in Chapter 2 again, but in an-

other direction. We assume that users in each commodity are finite, and each

user carries an innegligible amount of flow, which can be split into different

paths. We introduce the same reputation mechanisms and estimation mecha-

nisms described in Chapter 2 and show that the result proved in Chapter 2 can

be maintained in this atomic splittable model if there are more restrictions on

the cost function.

14



Chapter 2

Repeated Non-atomic Selfish
Routing

2.1 Selfish Routing with Tolls and User Equi-

librium

Selfish routing is a special kind of game. Selfish routing occurs in a multi-

commodity flow network. The network is defined by a directed graph G =

(V , E), with vertex set V and directed edge set E . In the vertex set V , there are

some special vertex pairs called origin-destination(O-D) pairs. The set of all O-

D pairs is denoted byW . An acyclic sequence of edges connecting one origin to

the corresponding destination is called a path, and for each O-D pair w ∈ W ,

there is a corresponding non-empty path set Pw, which consists of all paths

connecting the given O-D pair. Then we define the path set P =
⋃
w∈W Pw.

The cardinalities of V , E , P , W and Pw are defined as V , E, P , W and Pw,

respectively.

In this game, there are two kinds of players: users and a manager. Users

are divided into W commodities and there is a one to one correspondence from
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commodities to O-D pairs. Each commodity contains a class of infinite users,

each of whom travels with an infinitesimal amount of flow from the origin to

the destination. The demand rate of commodity w ∈ W is rw, which is fixed.

The responsibility of the manager will be stated in following paragraphs.

!

"! #! $!

% &! '!

()*+*,! -./0*,10*(,!

Figure 2.1: A General Network

Figure 2.1 is an example of a network containing one origin-destination

pair and 6 other nodes, with 12 edges and 8 paths, so each user has 8 choices

to travel from source to destination.

There are two kinds of selfish routing: atomic selfish routing and non-

atomic selfish routing. In atomic selfish routing, each user carries a non-

negligible amount of flow and if she changes her path, the total flow will be influ-

enced; in non-atomic selfish routing, each user carries an infinitesimal amount

of flow and an individual’s change of strategy will not influence the total flow.

In this chapter we discuss non-atomic selfish routing and we will discuss atomic

selfish routing in Chapter 4.

We assume that all vectors are column vectors unless otherwise stated.

We describe the routes chosen by users using a path flow vector h, each path

flow vector can be denoted by h = [hp : p ∈ P ] ∈ RP
+, and each component of
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h denotes the flow on path p. We use the vector hw = [hp : p ∈ Pw] to denote

the path flow vector for O − D pair w, then h can be written in partitioned

form as h = [hT1 , ..., h
T
W ]T , where hTw is the transposed matrix of hw. For each

path flow vector h, there is a corresponding edge flow vector, f , which is a

E-dimension vector. We define an edge-path incidence matrix to describe the

relationship between edges and paths, the edge-path incidence matrix Θ is a

E × P dimensional matrix and its entries are:

1. Θep = 1, if edge e is contained in path p;

2. Θep = 0 otherwise.

Of course, ΣpΘep > 0 for each e ∈ E , indicating each edge is a part of

some paths.

Therefore, the relationship between f and its corresponding h is:

f = f(h) = Θh = [Θ1, ...,ΘW ] · [h1, ..., hW ]T =
∑
w∈W

Θwhw.

Notice that the edge-path incidence matrix, Θ, is expressed in partitioned form.

As the demand rate of commodity w is rw, we have Σp∈Pwhp = rw for all w ∈ W .

Also, we define the demand rate vector r = [rw, w ∈ W ] ∈ R++
W .

In selfish routing, we discuss the opposite function of the payoff function,

which is the “cost function”. The cost for each user is the latency time for her

to travel from the origin to the destination. The edge cost function is defined

by cedge(f) : RE
+ 7→ RE

+. We assume that cost functions are always nonnegative,

continuous and nondecreasing. The corresponding path cost function c is c(f) =

ΘT cedge(h), meaning that the cost of a path is the summation of the costs of the

constituent edges. Notice that users discussed in this thesis are all homogeneous
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users, meaning that users in different commodities have the same sensitivity

about the edge costs.

Then, we can define non-atomic selfish routing by a triple of the form

(G, r, c). We denote the amount of flow using paths that contain the edge e.

Definition 2.1.1 A feasible flow satisfies:

1. fe ≥ 0,∀e ∈ E;

2. Σp∈Pwhp = rw,∀w ∈ W.

Since we expect that each user attempts to minimize her cost, we arrive

at the following definition[26],

Definition 2.1.2 Let h be a feasible path flow for (G,r,c). The flow h is an

equilibrium flow if, for each w ∈ W and every pair p, p∗ ∈ Pw with hp > 0,

cp(h) ≤ cp∗(h).

In other words, all paths used by users in an equilibrium flow h have

minimum-possible cost[26]. In particular, all paths of a given commodity used

in an equilibrium flow have equal cost. Beckmann et al. proved that every

non-atomic instance admits at least one equilibrium flow and all equilibrium

flows of a non-atomic instance have equal cost and identical edge flow vector[4].

The equilibrium strategy implies that no user can decrease her cost by

changing her strategy unilaterally, thus, the cost of all paths for the same

origin-destination pair are equal.

The total cost for (G, r, c) is C(h) =
∑

p∈P cp(h)hp. In the edge flow form,

we can express it as: C(f) =
∑

e∈E c
edge
e (fe)fe. For an instance (G, r, c), we call
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a feasible flow an optimal flow if it minimizes the social cost over all feasible

flows. Then we can have the definition of price of anarchy of non-atomic selfish

routing.

Definition 2.1.3 Price of anarchy of non-atomic selfish routing is the ratio

between the cost of an equilibrium flow and that of an optimal flow.

Roughgarden and Tardos proved that if the cost function of each edge is

a linear function of edge flow, the price of anarchy is at most 4/3; if the cost

functions are assumed only to be continuous and nondecreasing in the edge

flow, the price of anarchy is at most 2[32].

It is easy to see that the equilibrium flow is not equal to optimal flow in

general. Recall that there is another player, the manager, playing this game.

She is in charge of displaying the cost of each edge to users. The manager can

add nonnegative artificial delays to the actual costs of all edges. The artificial

delays for all edges are denoted by an edge toll vector. Then, the displayed

cost of each edge for users is the summation of the actual cost and the toll. It

needs emphasizing that the users do not experience the “toll” latency time, it

is just a “trick” by the manager. A common behavioral assumption in traffic

network modeling is that every user chooses a path that she perceives as being

the shortest under the prevailing traffic conditions. The whole system achieves

the equilibrium flow of the displayed cost. Karakostas, and Kolliopoulos[20],

and Fleischer et al.[10] proved that this can be the optimal flow of the actual

costs by adding a suitable nonnegative edge toll vector if the cost functions are

nonnegative and nondecreasing. The edge toll vector inducing the optimal flow

is the optimal edge toll vector.
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The optimal edge toll vector can be calculated by (System 1)[20]. We use

u = [uw : w ∈ W ] to denote the least costs for all commodities, ĥ to denote the

optimal path flow vector. Notice that tedge = Θt and f̂ = Θĥ.

hp(cp(ĥ) + tp − uw) = 0 p ∈ Pw, w ∈ W (System 1)

cp(ĥ) + tp − uw ≥ 0 p ∈ Pw, w ∈ W

uw(
∑
p∈Pw

hp − rw) = 0 w ∈ W∑
p∈Pw

fp − rw ≥ 0 w ∈ W

tedgee (fe − f̂e) = 0 e ∈ E

fe ≤ f̂e e ∈ E

hp, t
edge
e , rw ≥ 0 p ∈ P , e ∈ E , w ∈ W

Different commodities may have various sensitivites to the tolls. In this

thesis, we assume that all commodities have the same sensitivity. In other

words, they are homogeneous, meaning that users in different commodities

have the same toll for the same edge. We denote the optimal edge toll vector

by tedge∗. We also give an assumption about the manager’s behavior.

Assumption 1 The feasible edge toll vector set is T = {tedge : tedge = θtedge∗, 0 ≤

θ ≤ q}, where q ≥ 1. θ is the toll factor, and q is the upper bound of the toll

factor.

Assumption 1 implies that any feasible edge toll vector is in the same

direction of the optimal toll vector, the only difference between them is the

scale. Then we can say that the manager cannot increase the toll on one edge
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faster than any other edges. Therefore, we can discuss tolls in a one-dimension

space. Given a feasible edge flow vector f , the displayed edge cost vector is

cd,edge = cedge(f) + tedge. Similarly, the feasible path toll vector set is given by

U = {t : t = ΘT ·tedge, tedge ∈ T }. The optimal path toll vector is t∗ = ΘT ·tedge∗.

So we can use a vector ub = q · t∗ to denote the upper bound of the path toll

vectors. The displayed path cost vector is cd = c(h) + t. The feasible displayed

path cost vector set is given by Q = {cd : cd = c(h) + t, t ∈ U}. If each element

of a path toll vector is 0, we use 0 to denote it. We define a tiny threshold

0 < ω << 1, such that, if t < ω t∗, the virtual players treat the path toll vector

as 0.

For each w ∈ W , we can create a corresponding virtual player q(w) to

represent the behavior of all users in w. Given a path flow vector h, we define the

set of paths with largest cost by B(h) = {p̃ : p̃ = argmaxp:p∈Pw,hp>0 cp(h)}, and

the set of other paths with positive flow by A(h) = {p : p ∈ Pw−B(h), hp > 0}.

Let

M(h) = max
p:p∈Pw,hp>0

cp(h). (2.1.1)

The cost of q(w) is given by cq(w) = M(h) +
∑

p:p∈Pw,hp>0(M(h)− cp(h)).

Lemma 2.1.1 ∀w ∈ W, all p ∈ Pw satisfying hp > 0 have equal cost when the

cost of q(w) is minimized over all possible path flow vectors.

Proof:

We assume that when the cost of q(w) is minimized over all possible path flow

vectors, the path flow vector is h∗ and not all p : p ∈ Pw, hp > 0 have equal

cost. Therefore, there exists some p ∈ A(h), such that M(h) > cp(h
∗). Let

p∗ ∈ B(h∗) and ε be a small enough positive number. A path flow vector is

given by h = [hp∗ = h∗p∗ − ε, hp = h∗p + ε, hp = h∗p,∀p ∈ Pw − {p∗, p}].
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Let f ∗ = Θh∗, f = Θh. There is at least one edge e∗ being used by path

p∗ but not used by path p, thus, f e∗ = f ∗e∗ − ε. Because the edge cost function

is nondecreasing, ce∗(f e) ≤ ce∗(f
∗
e ), therefore, cp∗(h) ≤ cp∗(h

∗). Similarly,

cp(h) ≥ cp(h
∗).

1. If either cp∗(h) < cp∗(h
∗) or cp(h) > cp(h

∗) holds, M(h) ≤M(h∗);

2. If cp∗(h) = cp∗(h
∗) and cp(h) = cp(h

∗), we can increase ε to make either

cp∗(h) < cp∗(h
∗) or cp(h) > cp(h

∗);

3. If when ε is increased to h∗p∗ , cp∗(h) = cp∗(h
∗) and cp(h) = cp(h

∗) still

hold, which means cp∗ > cp holds during this procedure. Then we can

say that all flow on p∗ should be moved to p when cq is minimized and p∗

should be deleted from B(h∗).

Because p∗ is arbitrarily selected from B(h∗), the above conclusion holds

for each p∗ ∈ B(h∗), meaning that the cost of q(w) has not been minimized yet,

which contradicts our assumption.

Therefore, the state where the cost of virtual player q(w) is minimized is

equivalent to the equilibrium for users. Then we can use virtual player q(w) to

simulate the behavior of users in commodity w.�

A pure action of q(w) is a feasible path flow vector hw. The feasible path

flow vector for commodity w is given by Yw. Thus the action profile set is

A = Πw∈WYw ×Q, where each element is denoted by a = (h1, ..., hW , c
d(h)).

Therefore, we can specialize Definition 1.4.1 for our stage selfish routing,

Definition 2.1.4 The stage selfish routing consists of

1. W + 1 players, q(w), w ∈ W and manager m;
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2. the action set for q(w) Yw, and the action set for m Q;

3. the cost function for q(w) cq(w) = M(h) +
∑

p:p∈Pw,hp>0(M(h) − cp(h)),

where M(h) is defined in (2.1.1), and the cost function for m C(h) =

Σp∈Pcp(h)hp.

2.2 Repeated Selfish Routing and Reputation

If the game is extended to a repeated game, the virtual players will discover

that the actual cost is not equal to the displayed cost after several stages. Then,

they will not fully trust the manager anymore, and work out the costs which

are supposed to be the most possibly correct by themselves.

This is quite common in real life. Imagine that plenty of users go to a bank

for deals. The bank has several service windows. Each user chooses the window

for which the waiting time is the shortest, namely, choose the “shortest” path.

According to the Wardrope principle[32], the costs of all used paths are equal

and less or equal than unused paths at equilibrium. If the bank manager uses

the “optimal toll” technology, she can keep the efficiency of the bank in the

optimal status in the first few days. However, after the users discover that the

displayed cost is not always equal to the actual cost, they will not fully trust

the manager.

In this game, the manager has complete information: she knows the re-

sponse of the virtual players to whatever alternative she chooses and the costs

in any case, she knows the optimal flow, and she can use the optimal toll vector

in the initial stages or not. If she always uses the optimal toll vector or the toll

vector near it, she can maintain the network in a very efficient state during the
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initial stages. However, because the differences between the actual costs and

the displayed costs are large, the manager will not be trusted and the virtual

players will not follow her. Then the efficiency of network will decrease quickly.

If the manager chooses the opposite strategy–not add tolls on the edges

or add tiny tolls, she cannot maintain the network in an efficient state in the

initial stages but can make the virtual players always trust her strategy, which

gives a profit to her in the future. Thus, our purpose is to find the optimal

strategy of the manager.

Because the action sets of the virtual players and the manager are all

continuous spaces, we can always treat their actions as pure actions[24]. In

repeated games, some players are long-run players who play in all the stages,

and some players are short-run players who play only once but observe some

previous plays. The manager and the virtual players are all long-run players.

However, because each user only carries an infinitesimal amount of flow, her

behavior can be neglected in the total flow, and cannot affect the future behav-

ior of any player (including herself). For this reason, users, whose individual

behaviors are unobserved, are also called anonymous[24]. As there is no link

between the current action of a user and her future treatment, she cannot make

a higher payoff in the future stages by sacrificing her current payoff. Therefore,

every user just wants to minimize her cost in the current stage. Consequently,

any virtual player can be deemed as a short-run player[24].

We assume that the virtual players only remember the actions of the

manager in the last K stages. The virtual players cannot remember their

previous actions: if they could, they could infer the actions of the manager

more than the last K stages[22]. A history set for virtual players is Hn =
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Un, n = 0, . . . , K, where Un is the n-fold product of U . We use the toll vector

set U instead of the displayed cost vector set Q because virtual players can

discover the toll vectors in history, so they only need remember the toll vectors.

A history bn ∈ Hn is a list of n action profiles of the manager. Then we have

that the set of all possible histories is

H =
K⋃
n=0

Hn.

A strategy for virtual player q(w) is a mapping

sw : H 7→ Yw.

We assume that the manager has a full history of the previous plays.

However, in the following, we can see that only the history remembered by the

virtual players can influence this repeated game. Therefore, a strategy for the

manager is a mapping

sm : H 7→ Q,

and the strategy set for the manager is denoted by Sm.

For any history bn ∈ H, we define the continuation game to be the in-

finitely repeated game that begins in period n, following history bn. For any

strategy profile s, the continuation strategies of the virtual players and the

manager induced by bn, are

sw|bn(bτ ) = sw(bnbτ ),∀bτ ∈ H, w ∈ W ,

and

sm|bn(bτ ) = sm(bnbτ ),∀bτ ∈ H,
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respectively, where bnbτ is the concatenation of the history bn followed by the

history bτ .

In stage n, a strategy profile s = s1, ..., sW , sm yields an action profile

an(s), which implies a cost C(an(s)) for the manager. The normalized dis-

counted cost for the manager from the infinite sequence of plays is

C(s) = (1− δ)
∞∑
n=0

δnC(an(s)).

Given history bi, the continuation cost for the manager is

(1− δ)
∞∑
n=i

δnC(an(s)).

As the virtual players myopically optimize in every single stage, the game played

by them is still the stage game in Definition 2.1.4. Therefore, we can still use the

concept of “Nash equilibrium” in Definition 1.4.3 for them. Nevertheless, the

manager, who is a long-run player, should consider the scope of the infinitely

repeated game. We give the definition of Nash equilibrium in repeated games:

Definition 2.2.1 The strategy profile s = (s1, ..., sW , sm) is a Nash equilibrium

of the repeated game for the manager if for all ŝm ∈ Sm,

C(s1, ..., sW , sm) ≤ C(s1, ..., sW , ŝm).

A Nash equilibrium path is an infinite sequence of action profiles induced

by a Nash equilibrium. In repeated games, the Nash equilibrium is too permis-

sive. If the players are given a truncated history which cannot appear in a Nash

equilibrium path, this Nash equilibrium may not give the optimal behavior for

following plays in this circumstance[24]. Therefore, we need a “stronger” equi-

librium, which requires behavior to be optimal in all circumstances, both those
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which appear in equilibrium and those which appear out of equilibrium. We

give the definition of “subgame perfect equilibrium” to describe the sequential

rationality of the manager:

Definition 2.2.2 A strategy profile s is a subgame perfect equilibrium for the

manager if for all histories bn ∈ H, s|bn is a Nash equilibrium of the repeated

game.

Similarly, a subgame perfect equilibrium path is an infinite sequence of

action profiles induced by a subgame perfect equilibrium. Because the virtual

players are myopic, given the actions of the manager, they should play a Nash

equilibrium of the stage game. We define

B : Q 7→ Πw∈WYw

to be the correspondence that maps pure actions of the manager to the corre-

sponding set of static Nash equilibrium for the virtual players, which can also

be deemed as the mapping from pure actions of the manager to the correspond-

ing best responses of the virtual players. Notice that given a displayed cost, the

equilibrium flow under this cost is unique. Then, we can get the manager’s

Stackelberg cost

C∗ = min
cd(h)∈Q

max
h∈B(cd(h))

C(h, cd(h)),

and the manager’s Stackelberg action

cd∗(h) = arg min
cd(h)∈Q

max
h∈B(cd(h))

C(h, cd(h)),

where cd(h) is the displayed cost vector given by the manager when the flow is

h.
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Because the virtual players move after the manager, our game is a Stack-

elberg game. However, they still have uncertainties about the game. They do

not know the actual cost function of each path and they cannot predict what

tolls the manager adds to each path in the current stage. As we said, in this

repeated game, the manager should choose a balance between current and fu-

ture benefits: she can use the optimal tolls or the approximate optimal tolls in

the current stage to make a high profit, but build a bad reputation and damage

the profit in the future, or not use tolls in the current stage to build a good

reputation. The manager’s type set is given by X = {T1, T2}, where T1 is the

honest type that shows the actual cost and T2 is the dishonest type that shows

the cost with tolls.

2.3 Reputation and Estimation Mechanisms

In this section, we give the reputation mechanism for the manager and the

estimation mechanism about the actual cost for the virtual players. We assume

that these mechanisms are known by the manager. We use a superscript to

denote the number of stages. In stage n, virtual player q(w) learns history

bnw = {tkw = [tkp : p ∈ Pw]}n−1k=n−K . In stage n, the reputation (Definition 1.6.1) of

the manager given by virtual player q(w) is {µ(T1|bnw), µnw(T2|bnw)}. Especially,

the prior probabilities are µ(T1|b0) = 1 and µ(T2|b0) = 0, where b0 = ∅, for

all virtual players, meaning that the manager is trusted by virtual players at

the beginning of the game. The reputation for the manager is a function of

the history, which consists of toll vectors in past K stages. Therefore, the

virtual players use toll vectors in the history to predict the probability of types

in the current stage. Because the virtual players cannot predict exactly the
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probability distribution of the tolls, they use the nonparametric estimation to

estimate the probability of types[1]. The Gaussian kernel estimator, which uses

a smooth weight function to estimate the distribution of random variables from

previous data, is the most popular estimator[1]. So we assume that the virtual

players use the Gaussian kernel estimator. The Gaussian kernel[1] is:

K(u) =
1√
π
exp

(
−u

2

2

)
.

We define a discriminant factor ρnw for each commodity in each stage. If

tnw < ωt∗, ρnw = 1; otherwise, ρnw = 0 (ω is defined in Page 21). Then we

define two discriminant functions, g1(bw) for T1, and g2(bw) for T2, respectively.

g1(b)(g2(b)) describes the possibility of T1(T2) in virtual player q(w)′s mind if

receiving history bw. We have

g1(b
n
w) =

n−2∑
k=n−K

K(
tn−1w − tkw

t∗
)ρkw,1 +

1∑n−1
k=n−K K(ub−t

k
w

t∗
)(1− ρkw,1)

, (2.3.2)

g2(b
n
w) =

n−2∑
k=n−K

K(
tn−1w − tkw

t∗
)(1− ρkw,1). (2.3.3)

Then,

µ(T1|bnw) =
g1(b

n
w)

g1(bnw) + g2(bnw)
,

µ(T2|bnw) =
g2(b

n
w)

g1(bnw) + g2(bnw)
.

We have following properties about the reputation mechanism.

1. If b0 = {0, . . . ,0︸ ︷︷ ︸
K”0”s

}, µ(T1|b0) = 1.

2. If tn > t̂n, µ(T1|{bn−1, tn}) < µ(T1|{bn−1, t̂n}).
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The first property shows that if the manager is honest in the history,

she will be trusted; the second property shows that if she uses a smaller toll

vector, she will have a better reputation. In general, the virtual players do not

fully trust the displayed cost vector, but they cannot observe the actual cost

vector. Therefore, after receiving a history b ∈ HK and the current displayed

cost vector cd, they calculate the perceived cost vector cr = cr(cd, b) and they

believe that the perceived cost vector is the actual cost vector. For each path

p ∈ Pw, the virtual player q(w) learns the tolls added on p in history, which are

{tkp}n−1k=n−K . Similarly, the virtual players still use the Gaussian kernel estimator

to estimate the density of the tolls. Therefore, the estimated density function

of tnp is

p̂(tnp ) =
1

KdK(tp)

n−1∑
k=n−K

K

(
tnp − tkp
dK(tnp )

)
, (2.3.4)

where dK = maxk |tkp − tnp |. The expectation of tnp is

εnp =

∫ +∞

−∞
tnp p̂(t

n
p ) dtnp . (2.3.5)

Because p̂(tnp ) is the average of K independent normal distributed ran-

dom variables, the expectation of p̂(tnp ) is the average of expectations of all

the normal distributed variables, which are tkp, k = n − K, ..., n − 1, so εnp =

1
K

∑n−1
k=n−K t

k
p.

If virtual player q(w) believes that the manager is of T2, she subtracts

the expectation of tnp , ∀p ∈ Pw from the displayed costs. Therefore, in stage n,

the perceived cost of path p ∈ Pw is cr,np = µ(T1|bn)cd,np + µ(T2|bn)(cd,np − εnp ) =

cd,np − µ(T2|bn)εnp .
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We define βnw = [βnp : p ∈ Pw], where βnp = µ(T2|bn)εnp , and n = 0, 1, . . ..

Then, we define the signal vector corresponding to history bn:

βn = [βnT1 , . . . , βnTW ]T (2.3.6)

(if we need not specify the stage, we just use β). Therefore, we can conclude

that the perceived cost vector at stage n is

cr,n = cd,n − βn. (2.3.7)

Notice that in the initial stages, the length of memory is less than K,

so we should specify the estimation mechanism in this situation. We set εnp =

1
K

∑n−1
k=0 t

k
p in the initial stages n < K.

2.4 Stochastic Games

From Section 2.3, we can see that before playing each stage game, virtual

players always receive a signal β (2.3.6), and the signal varies from stage to

stage. In other words, stage games are no longer the same, and the players

no longer simply play the identical stage game repeatedly. In the stage game,

some events are deterministic and some are random. This kind of game is called

“stochastic game”. In a stochastic game, players repeatedly play games from

a set of normal-form games defined in Definition 1.4.1. The game played at

any stage depends on the previous game played and the action taken by all

players in that game. Notice that the stochastic game is a generalization of the

identical-stage repeated games discussed in previous sections.

The formal definition of a stochastic game is

Definition 2.4.1 A stochastic game is a tuple (Q,N,A, P,R), where
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1. Q is a finite set of states.

2. N is a finite set of players.

3. A is the available action set.

4. L : Q × A × Q 7→ [0, 1] is the transition probability function. L(q1, a, q2)

is the probability of transitioning from sate q1 to state q2 after action a.

5. R is the payoff function.

From Definition 2.4.1, we know that in a stochastic game the play pro-

ceeds by steps from position to position, according to transition probabilities

controlled jointly by the two players[34]. Then, we can transform our repeated

game to a stochastic game. What we should add to the existing model are the

state set and transition probability function.

Because any difference in histories may lead to different state transitions,

the state set is the history set H. Notice that in our model, the transition

rule from the current state to the subsequent state is deterministic, which is a

special kind of stochastic game. So we can use a successor function suc(b, t) :

H× U 7→ H to replace the transition probability function.

Then, we can have

Definition 2.4.2 Our stochastic game model at stage n, n = 0, 1, . . . consists

of

1. a set of states H;

2. W + 1 players, q(w), w ∈ W, and manager m;
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3. the action sets for q(w) Yw, and the action set for m Q;

4. the transition probability function, which is the successor function suc(b, t) =

{tn−K+1, . . . , tn−1, t}, where b = {tn−K , tn−K+1, . . . , tn−1};

5. the cost function for q(w) cq(w) = M(h) +
∑

p:p∈Pw,hp>0(M(h) − cdp(h) −

βnp )(M(h) is defined in (2.1.1)), and the cost function for m C(h) =

Σp∈Pcp(h)hp.

At each stage, as the manager knows the actual cost of each path, she

plays the same stage game, but for virtual players, they play a different selfish

routing at each stage. The cost of selfish routing for the virtual players is

cd,n − βn, n = 0, 1, 2, · · · . We use hNE(c) to denote the equilibrium flow for

the cost vector c. Therefore, receiving a displayed cost vector cd,n, the best

response for virtual players is

B(cd,n) = hNE(cd,n − βn), n = 0, 1, 2, · · · .

Then, the Stackelberg cost for the manager is

Cn∗ = min
cd,n(h)∈Q

C(hNE(cd,n − βn)).

And the Stackelberg action is

cd,n∗ = arg min
cd,n∈Q

C(hNE(cd,n − βn)).

Because tn = cd,n − cn,

min
tn∈U

C(hNE(cn + tn − βn)) = min
cd,n(h)∈Q

C(hNE(cd,n − βn)).

Therefore, the optimal toll vector for the manager in stage n is

tn∗ = argmin
tn∈U

C(hNE(cn + tn − βn)).
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We define CNE = C(hNE(c)) and CSO = C(hNE(c+ t∗)). If (t∗ + βn) ∈ U , the

optimal flow can be maintained, so tn∗ = t∗ + βn and Cn∗ = CSO.

Notice that the transition rule just changes the stage cost for the virtual

players and only the manager’s action influences the transition rule. The virtual

players always use the best response to the manager’s stage action. Then the

normalized discounted cost of the manager is

C = (1− δ)
∞∑
n=0

δnC(B(cd,n − βn), cd,n).

2.5 Existence of Perfect Equilibrium in Markov

Strategies

We introduce a special kind of strategy, Markov strategy. The action for the

manager induced by the Markov strategy only depends on the state, no matter

in which stage she is playing. Markov strategy is defined as

Definition 2.5.1 A strategy, s�m, for the manager is called a Markov strategy

if s�m(b, n) = s�m(b, n′), where b ∈ H and n, n′ = 0, 1, . . ..

We want to know the behavior of the manager in equilibrium paths. The

“simplest” strategy we can imagine is the Markov strategy. If we can prove the

existence of perfect equilibrium when the manager commits to Markov strate-

gies, we can have an understanding of the manager’s behavior in equilibrium

paths.

[16], [27], [29], and [30] proved the existence of Markov equilibrium strate-

gies in stochastic games, but their model does not contain short-run players.

However, we can prove the same result in stochastic games with short-run

players and limited history.
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Theorem 2.5.1 The manager has a Markov perfect equilibrium strategy in the

stochastic game defined in Definition 2.4.2.

Proof:

We use F = {f : H 7→ R} to denote the set of all possible costs for the manager.

Then, given f ∈ F and b ∈ H, we define a one-shot game Gf (b), where the cost

to the manager is given by

(1− δ)C(B(cd − β), cd) + δf(suc(b)). (2.5.8)

Notice that virtual players always give best response to manager’s action,

the current state is b and the corresponding signal is β.

In the one-shot game Gf (b), f specifies the cost of the continuation game.

For each b ∈ H, Equation (2.5.8) has a Nash equilibrium point[30]. Let z(b)

be the corresponding Nash equilibrium cost. Then we can define a mapping set

Nf = {b 7→ z(b) : b ∈ H}.

Lemma 3 in [30] proved that there exists a f ∗ such that f ∗ ∈ Nf∗ , which

means f ∗(b) is the equilibrium cost for each b ∈ H in the one-shot game Gf∗(b).

Then we can show that f ∗ is an equilibrium cost in the stochastic game and

find the corresponding Markov strategy for the manager.

[30] proved the existence of action profile γ∗(b,P) yielding payoff P at

state b. Then we have that γ∗(b, f ∗(b)) yields the Nash equilibrium cost f ∗(b)

in Gf∗(b), and it is easy to see that γ∗(b, f ∗(b)) is a Markov strategy. Because

γ∗(b, f ∗(b)) is an equilibrium strategy for the one-shot game Gf∗(·) at any

state, and the continuation cost is also induced by this Markov strategy, we

can conclude that it is a perfect equilibrium strategy for the manager in this

stochastic game. �
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Notice that in our proof, H only contains truncated histories.

2.6 The Upper Bound of Perfect Equilibrium

Costs and the Optimal Strategy for the

Manager

Our purpose in this section is to find out the upper bound of normalized dis-

counted costs in subgame perfect equilibrium and the corresponding optimal

strategy for the manager. If there is not any bound for toll vectors, the manager

can always maintain the optimal flow by adding suitable (maybe quite large)

toll vectors. However, with the bound, the manager’s action is restricted, so

we want to get the scope of possible costs the manager can achieve. There

is a class of theorems which states that in repeated games, any outcome can

be a feasible solution concept for equilibrium if certain conditions are satisfied.

This class of theorems is called “folk theorems”. In [14], Fudenberg and Maskin

proved that any individually rational and feasible payoff can be maintained as

an equilibrium outcome in repeated games with particular incomplete informa-

tion. In [11], Fudenberg, Kreps, and Maskin proved a folk theorem for repeated

games with short-run players. In [9], Dutta proved the folk theorem for general

stochastic games with long-run players. He proved that under some weak con-

ditions, any feasible and individually rational payoff can almost be a subgame

perfect equilibrium payoff if the discount factor is sufficiently near to 1. In [17],

Hörner et al. extended this result to a stochastic game with short-run players

and presented a recursive algorithm to calculate the set of perfect equilibrium

payoffs as the discount factor tends to 1. To get a similar result in our model,

we give several relevant definitions.
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If the initial state (history) is b, the total cost for the manager is

C(b) = (1− δ)
∞∑
n=0

δnCn(b, s),

where s = [B(sm, b
n), sm], sm ∈ Sm, meaning that virtual players’ actions in s

are always the static best responses to sm in each stage. The maxmin cost for

the manager is

C = max
sw:w∈W

min
sm

(1− δ)
∞∑
n=0

δnC(s).

If the manager adds no tolls in any state, then C(s) = CNE (the stage

cost for the manager with equilibrium flow), so C = CNE. This gives an upper

bound of the manager’s cost. What we are interested in is the minimal cost

the manager can obtain during repeated games.

The Markov strategy set of the manager is denoted by S�m, the set of total

costs for the manager generated by Markov strategies is

F = {C(s),∃s = [s1, ..., sW , sm], s.t.sm ∈ S�m}.

Let F † be the set of feasible total costs for the manager. Lemma 1 in [9]

says that all feasible payoffs can be realized by one-shot public randomization

over pure Markov strategies. Therefore, we obtain that

F † = coF ,

meaning that the set of feasible total costs is the convex hull of F (the convex

hull of F is the smallest convex set containing F).

Then we can define the set of feasible and individually rational costs for

the manager,

F∗ = {C ∈ F † : C ≤ C}.
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Theorem 2 in [17] says that if players have the full history, any element

in F∗ can be reached by the perfect equilibrium cost as δ → 1. However, in

our model, limited history makes some parts in F∗ unreachable. Therefore, we

cannot prove a similar folk theorem, but we can prove the existence of a cost

of the manager smaller than CNE in a network of parallel links.

Assumption 2 In the network discussed in Section 2.6, each path contains

only one edge, meaning that E = P and Θ is a diagonal matrix
1 0 · · · 0

0
. . . · · · ...

... · · · . . . 0
0 · · · 0 1

 ,
where

Θi,j =

{
1 if i = j
0 if i 6= j

, and 0 ≤ i, j ≤ E.

Definition 2.6.1 Suppose that A ⊆ U . ∀t1, t2 ∈ A and t1 ≤ t2, if C(t1) ≤

C(t2), C(t) is a weakly increasing function in A; if C(t1) ≥ C(t2), C(t) is a

weakly increasing function in A.

Lemma 2.6.1 and Lemma 2.6.2 specify relationships between the man-

ager’s cost and her action.

Lemma 2.6.1 If t∗+β ≤ ub, C(t) is a weakly decreasing function in [0, t∗+β]

and a weakly increasing function in (t∗+β, ub]; if t∗+β > ub, C(t) is a weakly

decreasing function in [0, ub].

Proof: Let t1 = θ1t
∗, t2 = θ2t

∗, where 0 ≤ θ1 ≤ θ2 ≤ q and t1, t2 ≤ t∗ + β.

Therefore, t1− β ≤ t2− β ≤ t∗. Because of Assumption 2, we have C(hNE(c+

t1 − β)) ≥ C(hNE(c+ t2 − β)) ≥ CSO. Similarly, let t1 = θ3t
∗, t2 = θ4t

∗, where
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0 ≤ θ3 ≤ θ4 ≤ q and t3, t4 > t∗ + β. Therefore, t∗ ≤ t3 − β ≤ t4 − β. Then we

have CSO ≤ C(hNE(c+ t3 − β)) ≤ C(hNE(c+ t4 − β).�

Figure 2.2 and Figure 2.3 are general curves illustrating the properties of

tolls proved in Lemma 2.6.1. From Lemma 2.6.1, we can directly have

Lemma 2.6.2 In every subgame perfect equilibrium path,

C(suc(b, t1)) ≤ C(suc(b, t2))

for any t1 ≤ t2.

Lemma 2.6.2 says that using a smaller toll vector at the current stage

must give an equal or better continuation payoff.

!

"

#$

"%&'

()

*+ &,

Figure 2.2: The Curve of C when t∗ + β ≤ ub

Notice that when t∗+ β ≤ ub, the manager will never use tolls in interval

(t∗ + β, ub]. To demonstrate this, we have Lemma 2.6.3:

Lemma 2.6.3 In the stage game with signal β ≤ ub−t∗ and the corresponding

state(history) b, the action t∗+β strictly dominates every action t ∈ (t∗+β, ub].
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Figure 2.3: The Curve of C when t∗ + β > ub

Proof:

For every action t ∈ (t∗+β, ub], the cost for the manager is C1 = (1−δ)C(B(c+

t−β), t)+δC(suc(b, t)); for t∗+β, the cost for the manager is C2 = (1−δ)C(B(c+

t∗), t∗ + β) + δC(suc(b, t∗ + β)). Because t > t∗ + β and Lemma 2.6.1, we have

C(B(c + t − β), t) > C(B(c + t∗), t∗ + β) and C(suc(b, t)) ≥ C(suc(b, t∗ + β)),

so C1 > C2. �

Therefore, if t∗+ β ≤ ub, the manager only uses toll vectors in [0, t∗+ β].

We have

Definition 2.6.2 The rational space for the manager is [0, t∗+β] if t∗+β ≤ ub,

or [0, ub] otherwise.

We can conclude that given any signal β, the cost function for the manager

is always a decreasing function of t. This result shows the myopic incentive of

the manager: using t∗ + β (if possible) or ub is a strict dominant action in a

single repetition.
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Now we show why reputation is valuable in each stage. Suppose at a

given stage, the manager has the best reputation (µ(T1) = 1), then β =

µ(T2) · ε = 0 · ε = 0, so the optimal action is t∗ and the corresponding cost

is C(B(c + t∗), t∗) = CSO. In contrast, if the manager has the worst reputa-

tion (µ(T1) = 0), then β meets its maximum ε(defined in (2.3.5)), the optimal

action is t∗ + ε (if t∗ + ε ≤ ub) or ub (if t∗ + ε > ub), and the corresponding

cost is C(B(c + t∗), t∗ + ε) or C(B(c + ub − ε)). Therefore, the stage cost for

the manager with better reputation is less or equal than with worse reputation.

From Lemma 2.6.2, the manager with better reputation has less continuation

cost because C(suc(b, t∗)) < C(suc(b, t∗ + ε))(C(suc(b, ub))).

In most repeated games, such as games discussed in [11], [12], [13], [14],

[22], and [24], the perfect equilibrium payoff attained by long-run players is

always equal to or higher than the equilibrium payoff attained in a single stage

game because she can build a good reputation for some “friendly” action. Then

the short-run players will give the best response to the “friendly” action, which

is better than the static equilibrium action. However, our game is different, the

manager can do better in a single repetition because she can have the optimum

in stage game, but if she commits to any action in the repeated game, she

can only reach the equilibrium flow cost. Nevertheless, the manager can still

get a profit by building a good reputation as we showed above. In addition,

virtual players get not only reputation but also signal β(defined in (2.3.6))

from history, which is another difference between our model and the models

discussed by others before.

A clean history is given by b0 and a clean phase denotes the K stages

where no tolls are used. Similarly, an exploit phase denotes the stages where
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tolls are used. The behavior of using no tolls for K stages is denoted by clean

the history.

Definition 2.6.3 A strategy s is a cycle strategy if the manager plays as fol-

lowing repeatedly : using tolls induced by s for L(s) stages and does not use

tolls for K stages.

Notice that a cycle strategy is a Markov strategy. To make the cycle

strategy useful, we add another assumption to the reputation mechanism,

Assumption 3 C increases faster when the signal is larger, which is

|C(t1, β1)− C(t2, β1)| > |C(t1, β2)− C(t2, β2)|,

where β1 > β2 and t1, t2 are in the rational space.

We define a cycle strategy s∗(Figure 2.6), with which the manager keeps

using t∗ + β for L(s∗) stages to maintain the optimal flow as long as possible,

then keep using no tolls for K stages. Among all the cycle strategies hitting ub

during the exploit phase, s∗ has the shortest exploit phase. We should set that

the shortest exploit phase is still longer than K, in other words, L(s∗) > K.

We assume that when the manager uses s∗, the signals during the exploit phase

are β∗0, β∗1, . . . , β∗L(s
∗). ∀0 ≤ n ≤ L(s∗), we have

β∗n =
1

K
(Kt∗ +

n−1∑
i=n−K

β∗i) = t∗ +
1

K

n−1∑
i=n−K

β∗i < t∗ + β∗n−1.

Therefore, β∗n − β∗n−1 < t∗, and β∗L(s
∗) < L(s∗)t∗. Because β∗L(s

∗) > ub,

q = ub
t∗
< L(s∗). Therefore, we have

Assumption 4 K < q.

Notice that after using tolls for some stages, the manager can also use

very small toll vectors, such as ω t∗, to increase µ(T1). However, we can prove

42



M.Sc. Thesis - He Yu McMaster - Computing and Software

that in any subgame perfect equilibrium, the manager must use 0 other than

ω t∗ increase µ(T1).

Lemma 2.6.4 If the manager wants to increase µ(T1), she must clean the

history.

Proof: If the manager uses 0 to increase µ(T1), then

g1(b0) = 1 and g2(b0) = 0.

Therefore,

µ(T1|b0) = 1 and µ(T2|b0) = 0.

The signal corresponding to b0 is β0 = 0.

If the manager does not use 0 to increase µ(T1), the smallest toll vector

she can choose is ωt∗. We define b1 = {ω t∗, . . . , ω t∗︸ ︷︷ ︸
K”ω t∗”s

}. Then we have

g1(b1) =
1

KK(q − ω)
and g2(b1) = (K − 1)K(0) = K − 1.

Therefore,

µ(T1|b1) =

1
KK(q−ω)

1
KK(q−ω) +K − 1

=
1

1 + (K2 −K)K(q − ω)
,

and

µ(T2|b1) =
(K2 −K)K(q − ω)

1 + (K2 −K)K(q − ω)
.

And the corresponding signal is

β1 = µ(T2|b1)ω t∗ =
(K2 −K)K(q − ω)ω t∗

1 + (K2 −K)K(q − ω)
.

Because K < q, b0 and b1 only affect the following K stages. Suppose

that in any stage of the following K stages, the manager uses toll vector t. For
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any β in the clean phase, we have C(hNE(c+ t− β1))− C(hNE(c+ t− β0)) >

C(hNE(c+ 0− β))− C(hNE(c+ ω t∗ − β)). �

Lemma 2.6.5 If the manager wants to increase µ(T1), she must use the cycle

strategy.

Proof:

We assume that in stage 0, the manager uses toll vector t1 and the displayed

cost vector is cd1. Therefore, ∀t2 ∈ U − {t1} (the corresponding displayed cost

vector is cd2), we have

(1− δ)C(B(cd1), c
d
1) + δC(suc(b0, t1)) > (1− δ)C(B(cd2), c

d
2) + δC(suc(b0, t2)).

(2.6.9)

Lemma 2.6.4 implies that if the manager decides to rebuild her reputation(increase

µ(T1)) after some stages of using tolls, she must clean the history. Therefore,

after the clean phase, the history is b0. (2.6.9) implies that the manager should

use t1 when have a history b0. Similarly, the manager should repeat each action

played before.�

However, there is still one case where the manager should not use the cycle

strategy. If the manager uses strategy s4 (Figure 2.4), which is using some tolls

in the initial stages and keeping using ub after hitting ub, she reaches the cost

C(s4) = (1−δ)(
L(s4)−1∑
i=0

δiCi(s4)+
∞∑

i=L(s4)

δiCNE) = (1−δL(s4))C ′(s4)+δL(s
4)CNE,

where CNE < Ci(s4) ≤ CSO and C ′(s4) = (1 − δ)
∑K

i=0 δ
iCi(s4). When the

manager is patient enough (δ → 1), C((s4))→ CNE.
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Figure 2.4: Strategy s4

If the manager uses the cycle strategy (Figure 2.5), the cost for the man-

ager in the first cycle is

Ccycle(s) = (1−δ)(
L(s)−1∑
i=0

δiCSO+

L(s)+K−1∑
i=L(s)

δiCi(s)) = (1−δL(s))CSO+δL(s)(1−δK)C ′(s).

Because the manager has the same cost in all cycles, we have

C(s) =
(1− δL(s))CSO + δL(s)(1− δK)C ′(s)

1− δL(s)+K
.

If

C ′(s) <
1

δL(s) − δL(s)+K
CNE − 1− δL(s)

δL(s) − δ(L(s)+K)
CSO,

then C(s) < CNE, and the best strategy is s.

Therefore, we can conclude that if

C ′(s) >
1

δL(s) − δL(s)+K
CNE − 1− δL(s)

δL(s) − δ(L(s)+K)
CSO,

the manager should not use the cycle strategy. The optimal strategy for her is

s4, this case is called Case 1.
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Figure 2.5: A General Cycle Strategy s

Stage Toll Cost for Manager

0 to L(s1)− 1 t∗ + β CSO

L(s1) to L(s1) + J − 1 ub CNE

L(s1) + J to L(s1) + J +K − 1 0 CNE−

Table 2.1: Strategy s1 and the Corresponding Cost for the Manager

In Case 2, we have

C ′(s) <
1

δL(s) − δL(s)+K
CNE − 1− δL(s)

δL(s) − δ(L(s)+K)
CSO,

under which the manager should use the cycle strategy. We want to figure out

her optimal behavior in the exploit phase. We know that t∗ + β increases if

the manager wants to maintain the optimal flow, and we wonder whether the

manager should keep using ub for a period after hitting ub. So we define a

cycle strategy s1, such that, in a cycle, the manager uses t∗ + β from the stage

when the history is clean until hitting ub and uses ub for J stages (J > 0), then

cleans history. s1 is showed in Table 2.7 and Figure 2.7.
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Figure 2.6: Strategy s∗
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Figure 2.7: Strategy s1
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Lemma 2.6.6 In Case 2, s∗ strictly dominates s1.

Proof:

Ccycle(s1) = (1− δ)(
L(s1)−1∑
i=0

δiCSO +

L(s)+J−1∑
i=L(s)

δiCNE +

L(s)+J+K−1∑
i=L(s)+J

Ci(s1))

= (1− δL(s1))CSO + δL(s1)(1− δJ)CNE + δL(s1)+J(1− δK)C ′(s1).

Then,

C(s1) =
(1− δL(s1))CSO + δL(s1)(1− δJ)CNE + δL(s1)+J(1− δK)C ′(s1)

1− δL(s)+J+K
.

Because before the clean phase the tolls used by s1, ub, are greater than

the tolls used by s∗, we have C ′(s1) > C(s∗). In addition, L(s1) = L(s∗) and

C ′(s1) <
1

δL(s1) − δL(s1)+K
CNE − 1− δL(s1)

δL(s1) − δ(L(s1)+K)
CSO,

therefore
C(s1)
C(s∗)

> 1.�

The stage cost for the manager in s∗ and s1 are illustrated in Figure 2.8

and Figure 2.9, respectively. Lemma 2.6.6 says that if keeping using ub after

hitting ub is not good for the manager, then maintaining ub for any length of

stages is not good for the manager. Therefore, after hitting ub, the manager

should begin the clean phase immediately.

Then, we consider whether the manager should begin the clean phase

before hitting ub. So we define a cycle strategy s2, such that, in a cycle, the

manager uses t∗ + β from the stage when the history is clean for L stages

(L < L(s1) = L(s∗)), then begins the clean phase. s2 is showed in Table 2.2

and Figure 2.10.
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Figure 2.8: Stage Cost Curve of Strategy s∗
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Figure 2.9: Stage Cost Curve of Strategy s1

Stage Toll Cost for Manager

0 to L− 1 t∗ + β CSO

L to L+K − 1 0 CNE−

Table 2.2: Strategy s2 and the Corresponding Cost for the Manager
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Lemma 2.6.7 In Case 2, s∗ strictly dominates s2.

Proof:

Ccycle(s2) = (1− δ)(
L−1∑
i=0

δiCSO +
L+K−1∑
i=L

δiCi(s2))

= (1− δL)CSO + δL(1− δK)C ′(s2),

then,

C(s2) =
(1− δL)CSO + δL(1− δK)C ′(s2)

1− δL+K
.

Because L < L(s∗),

1− δL

1− δL+K
<

1− δL(s∗)

1− δL(s∗)+K
.

In addition,

C ′(s2) <
1

δL(s2) − δL(s2)+K
CNE − 1− δL(s2)

δL(s2)− δ(L(s2)+K)
CSO,

and because of Assumption 3, we have C ′(s2)−CSO > C ′(s∗)−C ′(s2). Therefore

C(s2)
C(s∗)

> 1.�

Lemma 2.6.7 says that if keeping using ub after hitting ub is not good for

the manager, the manager should maintain the optimal flow as long as possible,

the stage cost of s2 is illustrated in Figure 2.11.

We define a cycle strategy s3 such that, in s3, the manager deviates from

keeping using t∗+ β in some stage before the L(s3)-th stage, but still increases

tolls until hitting ub, then begins the clean phase. Therefore, the cost of s3 is

C(s3) =
(1− δL(s3))CSO + δL(s3)(1− δK)C ′(s3)

1− δL(s)+K
,

where L(s3) > L(s∗) and C ′(s3) < C ′(s∗). Just as in Lemma 2.6.7, we have
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Figure 2.10: Strategy s2
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Figure 2.11: Stage Cost Curve of Strategy s2
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Lemma 2.6.8 In Case 2, s∗ strictly dominates s3.

s1, s2 and s3 cover all possible cycle strategies deviating from s∗. Then,

from Lemma 2.6.6, Lemma 2.6.7 and Lemma 2.6.8, we can conclude the follow-

ing theorem,

Theorem 2.6.9

1. in Case 1, the optimal strategy for the manager is s4 and the upper bound

of cost is CNE;

2. in Case 2, the optimal strategy for the manager is s∗ and the upper bound

of cost is C(s∗).

2.7 An Example for the Optimal Strategy of

the Manager

Now we use an example containing a simple network with one commodity and

linear cost functions (Figure 2.12) to explain the result in Section 2.6. We

assume that the demand of commodity is r = 1, so the optimal toll for stage

game is t∗ = [0, 0.5]T and the optimal flow is h∗ = [0.5, 0.5]T . In the repeated

game, we make following assumptions:

1. number of stages in history is K = 1;

2. the upper bound of the toll factor is q = 4, so ub = [0, 2]T ;

3. if any toll is realized in history, µ2 becomes 1.

Then, we have the optimal strategy and the flow induced by it in Table 2.3,

and we have following observations:
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Figure 2.12: The Network in Example

Stage Toll Flow µ2 β Perceived Cost

0 [0, 0.5]T [0.5, 0.5]T 0 [0, 0]T [1, 1]T

1 [0, 1]T [0.5, 0.5]T 1 [0, 0.5]T [1, 1]T

2 [0, 1.5]T [0.5, 0.5]T 1 [0, 1]T [1, 1]T

3 [0, 2]T [0.5, 0.5]T 1 [0, 1.5]T [1, 1]T

4 [0, 0]T [0, 1]T 1 [0, 2]T [1, 0]T

5 [0, 0.5]T [0.5, 0.5]T 0 [0, 0]T [1, 1]T

Table 2.3: Optimal Flow Pattern with K = 1

1. At stage 0, virtual player completely trusts the manager and give 0 to µ2,

then the manager gets the optimal flow.

2. At stage 1, µ2 becomes 1, which means the virtual player does not believe

what manager shows at all, however, the manager can still maintain the

optimal flow from stage 1 to stage 3.

3. At stage 4, [0, 2.5]T exceeds the upper bound of U , so the manager cannot

use it to maintain the optimal flow. Then she decides to tell the truth

to the virtual player, making her get a “bad” flow [0, 1]T . But by doing
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this, the manager rebuilds her reputation for the next stage.

4. At stage 5, the situation is identical with stage 0. In this round of loop,

the manager can get the optimal flow all the time except one stage.

As action of each stage only depends on states(history of virtual players),

this is a Markov strategy for manager. We can prove that it is the optimal

strategy for the manager.

Lemma 2.7.1 The strategy described in Table 2.3 is a subgame perfect equi-

librium(Definition 2.2.2 on Page 27).

Proof:

At each stage, if the manager uses a toll on P2 smaller than the toll specified in

Table 2.3, the cost of P2 will always be greater or equal than 1; if the manager

uses a toll on P2 greater than the toll specified in Table 2.3, the cost of P2

will always be less than 1. In other words, any one-shot deviation from the

strategy described in Table 2.3 will induce a flow [0, 1]T or [1, 0]T , which means

there are no profitable one-shot deviation. Proposition 2.2.1 in [24] says that a

strategy profile is subgame perfect if and only if there are no profitable one-short

deviations. Then we can conclude that this is a subgame perfect equilibrium

strategy.�
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Chapter 3

Stochastic User Equilibrium

3.1 Repeated Stochastic Selfish Routing and

Stochastic User Equilibrium

In the model described in Chapter 2, the costs of paths and edges are deter-

ministic, meaning that although the displayed cost may be different from the

actual cost, it can be observed or measured directly. However, this may not

be the case in some application and furthermore, many of the attributes that

influence the users’ costs cannot be observed and must therefore be treated as

random. Consequently, the costs are modeled as random, meaning that choice

models can give only the probability with which alternatives are chosen, not the

choice itself[35]. Because the real psychological process is quite complicated, it

is reasonable to treat the perceived costs as random variables. From the second

stage, users get some information from previous play, and different users may

get different information because of different experiences. Therefore, although

receiving the same displayed costs, the perceived costs for different users are

different. To incorporate the effect of this attribute, we do not use the estima-

tion mechanism described in Section 2.3 to get a number vector from history.
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At stage n, we express the perceived cost as a random variable consisting of

a deterministic component cd,n, and an additive random variable vector: the

“error term” ξn = [ξn1 , ..., ξ
n
W ]T . So the perceived path cost vector at stage n is

cr,n = cd,n(hn) + ξn = [cr,n1 (hn), ..., cr,nW (hn)]T .

The distribution of the perceived cost is a function of the flow h. There-

fore, the probability that path p will be chosen, Prp, can be related to the path

flow vector h. The function relating Prp to h is known as the choice function.

The probability that path p is chosen by a given flow h is the fraction of individ-

uals in a large population who choose path p. At stage n, the choice probability

is the probability that cp(h) is lower than the cost of any other paths for the

same O-D pairs, when flow h is given, which is

Prp(h
n) = Pr[cr,np (hn) < cr,np∗ (hn), p∗ ∈ Pw − {p}], p ∈ Pw, w ∈ W ,

and Prp(h) satisfies,

1. 0 < Prp(h) ≤ 1, p ∈ P ;

2. Σp∈PwPrp(h) = 1, w ∈ W .

The first property means that the probability for each path to be chosen

is positive, this is the positive assumption on choice probabilities; the second

property means that the summation of the probabilities for all the paths in

every commodity is 1. At equilibrium, the flow satisfies hnp = rwPrp(h
n), p ∈

Pw, w ∈ W . We set Prw = [Prp, p ∈ Pw]T , w ∈ W .

Definition 3.1.1 A feasible path flow vector hn satisfying hnw = rwPrw(hn), w ∈

W is called stochastic user equilibrium.
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Once the distribution of the error term ξ is specified, the distribution of

the cost can be determined, and the choice function can be calculated explicitly.

3.2 Existence of Optimal Tolls in Stochastic

Selfish Routing

From (2.3.7) in Section 2.3, we know that the expectation of ξn is −βn. Let

δn = −βn. The expectation vector of cr,n is cd,n+δn. We assume that the choice

probabilities for the paths are given by the logit model defined in (3.2.1),

Prp(h
n) =

exp(−cd,np − δnp )

Σp∗∈Pwexp(−c
d,n
p∗ − δnp∗)

, p ∈ Pw, w ∈ W . (3.2.1)

If we can prove the existence of a suitable toll which can lead the optimal

flow to be a stochastic user equilibrium flow, we can conclude that the manager

can maintain the optimal flow status in this stochastic user selfish routing

model. We call the suitable toll “optimal toll”.

Our discussion applies to each stage in this repeated game. For the latter

part in this chapter, we omit the superscript n for convenience. Proving the

existence of the optimal toll is equivalent to proving the existence of the solution

t in (3.2.2).

ĥw = rwPrw(ĥ+ t), w ∈ W . (3.2.2)

To express (3.2.2) in edge form, we have

f̂ = Σw∈W rwΘwPrw[ΘT
w(cedge(f̂) + tedge)], (3.2.3)

where f̂ = Θĥ.

57



M.Sc. Thesis - He Yu McMaster - Computing and Software

We define Sw, w ∈ W as the satisfaction function, which is the expectation

of the minimum cost,

Sw = E(min
p∈Pw

(crp)), w ∈ W .

For our logit model, from [35], we have

Sw = lnΣp∈Pwexp(c
d
p + δp) = lnΣp∈Pwexp(cp + δp + tp)

= lnΣp∈Pwexp(cp + δp + ΘT
,pt

edge),

(Θ,p is the row vector denoting path p).

If tp = tp̃,∀p, p̃ ∈ Pw, the path choice probability of commodity w does

not change. Similarly, if t has already been given, adding or subtracting the

same increment to each p ∈ Pw does not change the path choice probability[19].

We introduce the uniform unit-vectors 1w = (1, . . . , 1)T ∈ RPw for all w ∈ W ,

and vector q = [qw : w ∈ W ] ∈ RW , which satisfies

ΘT
wt
edge = qw1w. (3.2.4)

(3.2.4) means that tedge gives the same path toll for each commodity. Then we

have

Definition 3.2.1 A neutral toll space is

Ω = {tedge ∈ RE : (3.2.4) holds for some α ∈ RW}.

In order to prove the existence of optimal tolls, we give the definition of

the direction of recession [direction of constancy], which comes from [19]:

Definition 3.2.2 For any convex function, g : RE 7→ R, a vector d ∈ RE is

designated as a direction of recession [direction of constancy] for g iff (g(x +

λd) ≤ g(x))[g(x+ λd) = g(x)] for all x ∈ RE and scalars λ > 0.
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Now we prove the existence of the optimal tolls:

Theorem 3.2.1 For the optimal flow ĥ, there exists a solution to (3.2.3), iff

ĥ ∈ RP
++, which means ĥ is a fully positive vector.

Proof:

The positivity assumption on choice probabilities implies that solution to (3.2.3)

can only exist for fully positive path flow vectors. So it suffices to establish the

converse. Adapting Proposition 3.6 in [19] to our model, we can conclude that

there exists a optimal toll for f̂ iff the function

D(tedge) = −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge) + f̂T tedge achieves a

minimum.

From lemma 3.7 in [19] we know that a convex function g : RE 7→ R,

achieves its minimum if the only directions of recession for g are directions of

constancy. First, we prove that each d ∈ Ω is a direction of constancy for

D(tedge). Given λ > 0, we have
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D(tedge + λd) = −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,p(t

edge + λd)) + f̂T (tedge + λd)

= −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge + ΘT
,pλd) + f̂T tedge + f̂Tλd

= −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge) · exp(ΘT
,pλd) + f̂T tedge + f̂Tλd

= −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge) · exp(λqw) + f̂T tedge + f̂Tλd

= −Σw∈Wrwlnexp(λqw)Σp∈Pwexp(cp + δp + ΘT
,pt

edge) + f̂T tedge + f̂Tλd

= −Σw∈Wrw[λqw + lnΣp∈Pwexp(cp + δp + ΘT
,pt

edge)] + f̂T tedge + f̂Tλd

= −Σw∈Wλrwqw − Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge) + f̂T tedge + f̂Tλd

= −Σw∈WrwlnΣp∈Pwexp(cp + δp + ΘT
,pt

edge) + f̂T tedge − Σw∈Wλrwqw + f̂Tλd

= D(tedge)− Σw∈Wλrwqw + f̂Tλd

Notice that

f̂Tλd = Σw∈Wh
T
wΘT

wλd = Σw∈Wλĥ
T
wqw1w = Σw∈Wλqwĥ

T
w1w = Σw∈Wλrwqw.

Therefore, we can conclude that

D(tedge + λd) = D(tedge), (3.2.5)

which means every d ∈ Ω is a direction of constancy for D(tedge). There-

fore, it remains to show that no d ∈ RE −Ω can be a direction of recession for

D(tedge). From the proof of Theorem 3.8 in [19], we know that it suffices to

show that for sufficiently large λ we must have

D(tedge + 2λd) > D(tedge + λd). (3.2.6)
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Applying the method in the proof of Theorem 3.8 in [19], we need to show

that

λ−1D(λd) = λ−1[−Σw∈WrwlnΣp∈Pwexp(cp + δp + Θ,pλd) + f̂Tλd]

= −Σw∈WrwlnΣp∈Pwexp[λ
−1(cp + δp) + Θ,pd] + f̂Td.

As λ→∞, λ−1(cp + δp)→ 0, we have

limλ→∞ λ
−1D(λd) = −Σw∈WrwΣp∈Pwexp(Θ

T
,pd) + f̂Td.

Since d ∈ RE −Ω, we have f̂Td−Σw∈WrwΣp∈Pwexp(Θ
T
,pd) > 0, therefore,

lim
λ→∞

D(2λd)

λd
= lim

λ→∞

[
2λ−1D(2λd)

(λ)−1D(λd)
· 2λ

λ

]
=

f̂Td− Σw∈WrwΣp∈Pwexp(Θ
T
,pd)

f̂Td− Σw∈WrwΣp∈Pwexp(Θ
T
,pd)
· 2 = 2.

Therefore, (3.2.6) holds for sufficiently large λ. Together with (3.2.5), we

proved the existence of optimal tolls.�

3.3 An Example for Stochastic User Equilib-

rium

In this example, we still consider the network defined in Figure 2.2. There is

still one commodity with demand r = 1 using this network. The probabilities

to choose paths in the users’ mind are

Prp1 =
exp(−cdp1 − δp1)

exp(−cdp1 − δp1) + exp(−cdp2 − δp2)
,

and

Prp2 =
exp(−cdp2 − δp2)

exp(−cdp1 − δp1) + exp(−cdp2 − δp2)
.
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Let the toll vector added by manager denoted by [tp1 , tp2 ]. Therefore,

Prp1 =
exp(−1− tp1 − δp1)

exp(−1− tp1 − δp1) + exp(−hp2 − tp2 − δp2)
,

and

Prp2 =
exp(−hp2 − tp2 − δp2)

exp(−1− tp1 − δp1) + exp(−hp2 − tp2 − δp2)
.

At stochastic user equilibrium, the manager uses the optimal toll vector

t∗, therefore,

h∗p1 = Prp1 =
exp(−1− t∗p1 − δp1)

exp(−1− t∗p1 − δp1) + exp(−h∗p2 − t∗p2 − δp2)
,

and

h∗p2 = Prp2 =
exp(−h∗p2 − t

∗
p2
− δp2)

exp(−1− t∗p1 − δp1) + exp(−h∗p2 − t∗p2 − δp2)
.

As we know, h∗p1 = 1− h∗p2 , and because the cost of p1 is a constant, the

manager only needs add toll on p2, so we can assume that t∗p1 = 0. Then, we

can have the following equation:

h∗p2 =
exp(−h∗p2 − t

∗
p2
− δp2)

exp(−1− δp1) + exp(−hp2 − t∗p2 − δp2)
. (3.3.7)

The only unknown number in (3.3.7) is t∗p2 , and it is can be solved by

Newton’s method.
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Chapter 4

Repeated Atomic Splittable
Selfish Routing

4.1 Atomic Splittable Selfish Routing

In Chapter 2 we discussed non-atomic selfish routing, now we turn to discuss

atomic selfish routing. We discuss the stage game at first. Atomic selfish

routing is defined as a non-atomic one: a directed graph G = (V , E) with W

O-D pairs, a demand rate vector r ∈ RW
++, a nonnegative, continuous, nonde-

creasing edge cost vector cedge : RE
+ 7→ RE

+ and the corresponding path cost

vector c : RP
+ 7→ RP

+. The difference is that in the non-atomic selfish routing,

each commodity represents a large population of users, each of whom controls

a negligible amount of traffic; in the atomic selfish routing, each commodity

represents a single user who must route a significant amount of traffic and

different commodities can share O-D pairs. In non-atomic selfish routing, if

different commodity share O-D pair, we combine them to a single commod-

ity, but for commodities w, ŵ ∈ W sharing the same O-D pair, we still use

different path sets Pw,Pŵ to distinguish them. For example, for the network
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described in Figure 2.1, we assume that w and ŵ share the origin-destination

pair, therefore, origin→ A→ B → C → destination can be treated as a path

p ∈ Pw and a path p̂ ∈ Pŵ, that is to say, hp denotes the flow assigned by w to

origin → A → B → C → destination and hp̂ denotes the flow assigned by ŵ

to origin→ A→ B → C → destination.

The atomic selfish routing discussed in [26] requires that each commodity

routes all her traffic on a single path. In our model, we permit commodity w

to route traffic fractionally over all paths in Pw. This kind of atomic selfish

routing is called atomic splittable selfish routing. Therefore, moving from a

non-atomic model to an atomic splittable one can be viewed as identifying

groups of previous independent and noncooperative traffic into single strategic

agents[33]. It is easy to see that non-atomic selfish routing is a special case of

atomic splittable selfish routing, when W → ∞ and rw → 0 for all w ∈ W .

Atomic splittable selfish routing becomes non-atomic selfish routing.

For an instance (G, r, c) in atomic splittable selfish routing, the relation-

ship between edge cost and path cost remains the same as in non-atomic selfish

routing. Cost for commodity w is Cw =
∑

p∈Pw
hpcp(h). The social cost of flow

h, which is still the cost for manager, is defined by
∑

w∈W Cw or, equivalently,∑
e∈E c

edge
e (fe)fe.

The definition of a feasible flow in the atomic splittable selfish routing

is the same as definition 2.1.1, and we define the feasible path flow set for

(G, r, c) as F and the feasible path flow set for commodity w as Fw, respec-

tively. At equilibrium, no commodity can decrease her cost when flows of other

commodities are held fixed:

Definition 4.1.1 Let h = [h1, ..., hw, ..., hW ] ∈ F for (G,r,c), the flow h is an
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equilibrium flow if, for each w ∈ W,

Cw(h) ≤ Cw(h∗), where h∗ ∈ F satisfying h∗ = [h1, ..., h
∗
w, ..., hW ].

In [5], Bhaskar et al. proved that the equilibria of an atomic splittable

selfish routing is not unique in general. In [2], Altman et al. proved the

uniqueness of the equilibria of an atomic splittable selfish routing if the edge

cost functions are all monomials of the same degree, or they are all polynomials

of degree ≤ 3. Therefore, we assume that the condition holds in our model. In

[36], C. Swamy proved the existence of optimal tolls in atomic splittable selfish

routing. Therefore, the manager can maintain the optimal flow in stage game.

Similar to the model in Chapter 2, the available edge toll vector set, path

toll vector set and action set of manager are still T , U and Q, respectively.

Then we can define our stage game for atomic splittable selfish routing,

Definition 4.1.2 The stage selfish routing consists of

1. W + 1 players, w,w ∈ W and manager m;

2. the action set for w Fw and the action set for m Q;

3. the cost function for w Cw =
∑

p∈Pw
hpcp(h) and the cost function for m∑

w∈W Cw.

4.2 Repeated Atomic Splittable Selfish Rout-

ing with Limited History

As demonstrated in Chapter 2, if followers can observe the full history of the

repeated game. Finally they will form the actual equilibrium flow, which is bad

for the manager. So we assume that each commodity remembers the action of
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the manager in the last K stages and cannot observe the action of previous

followers at all. The history set for the commodities at stage n is Hn = Qn,

and the set of all possible histories is

H =
K⋃
n=0

Hn.

A strategy for the manager is a mapping

sm : H 7→ Q.

A strategy for commodity w is a mapping

sw : H 7→ Fw.

At stage n, a strategy profile s = {s1, ..., sW , sm} yields an action profile

an(s), which implies cost Cn(an(s)) for the manager. The normalized dis-

counted cost of manager from the infinite sequence of plays is

(1− δ)
∞∑
n=0

δnCn(an(s)).

We suppose that commodities still use the estimation method described

in section 2.3, which means they can get a signal β at each stage, then give

the best response B(cd − β). As β varies by stages, this repeated game is

also a stochastic game. The results of Chapter 2 still hold in this atomic

splittable case. Then, we can conclude that the manager can always use a

Markov(stationary) strategy as a sub-game perfect equilibrium. The manager

should also use the cycle strategy defined in Section 2.6 to minimize her cost

in Case 2.
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Figure 4.1: The Network for Atomic Splittable Selfish Routing Model

4.3 An Example for Repeated Atomic Split-

table Selfish Routing

We use the following example to explain the result in Section 4.2. The network

is defined in Figure 4.1. Notice that if there is only one player (commodity) w

in the game, cost for manager is
∑

p∈Pw
hpcp(h), which is equal to the cost for

commodity w, and the manager need not add tolls. Therefore, there must be at

least two commodities in the game. We assume that there are two commodities,

w1 and w2, they share the origin node s1(s2), and the destination nodes are t1

and t2, respectively. In addition, rw1 = rw2 = 1. The cost functions of all edges

are illustrated in Figure 4.1.

For commodity w1, Pw1 = {p1, p2}, where p1 = {e1} and p2 = {e2};

for commodity w2, Pw2 = {p3, p4, p5}, where p3 = {e1, e4}, p4 = {e2, e4} and
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p5 = {e3}. Then we can have the cost of each path:
cp1 = 1 · hp1
cp2 = (hp2 + hp4) · hp2
cp3 = 1 · hp3 + (hp3 + hp4) · hp3
cp4 = (hp2 + hp4) · hp4 + (hp3 + hp4) · hp4
cp5 = 2 · hp5 .

Therefore,

Cw1 = cp1 + cp2 = hp1 + (hp2 + hp4)hp2 = 1− hp2 + (hp2 + hp4)hp2 .

If hw1 = [
1+hp4

2
,
1−hp4

2
]T , Cw1 reaches its minimum.

Similarly,

Cw2 = hp3 + (hp3 + hp4)
2 +

hp4(1 + hp4)

2
+ 2− 2(hp3 + hp4).

Because hSOp2 =
1−hp4

2
, we have

cSOp3 = hSOp3 + (hSOp3 + hSOp4 )hSOp3 ,

and

cSOp4 = (
1− hp4

2
+ hSOp4 )hSOp4 + (hSOp3 + hSOp4 )hSOp4 .

If hw2 = [0, 1, 0]T , Cw2 reaches its minimum.

Thus, the equilibrium flow is hNEw1
= [1, 0]T , hNEw2

[0, 1, 0]T and CNE =

1 + 2 = 3. However, the optimal flow is hSOw1
= [0.5, 0.5]T , hSOw2

= [0, 0, 1]T

and CSO = 0.75 + 2 = 2.75. Thus, manager needs to add tolls to optimize

the network. It is easy to see that the optimal edge toll vector is tedge∗ =

[0, 0.5, 0, 0]T , so t∗ = [0, 0.5, 0, 0.5, 0]T .

We assume that the upper bound of the toll factor is q = 4. Therefore,

the upper bound of the toll vector is ub = [0, 2, 0, 2, 0]T . Similar to Section
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Stage Toll Flow µ2 β Perceived Cost

0 [0, 0.5, 0, 0.5, 0]T [0.5, 0.5, 0, 0, 1]T 0 [0, 0, 0, 0, 0]T [1, 0, 0, 1, 0]T

1 [0, 1, 0, 1, 0]T [0.5, 0.5, 0, 0, 1]T 1 [0, 0.5, 0, 0.5, 0]T [1, 0, 0, 1, 0]T

2 [0, 1.5, 0, 1.5, 0]T [0.5, 0.5, 0, 0, 1]T 1 [0, 1, 0, 1, 0]T [1, 0, 0, 1, 0]T

3 [0, 2, 0, 2, 0]T [0.5, 0.5, 0, 0, 1]T 1 [0, 1.5, 0, 1.5, 0]T [1, 0, 0, 1, 0]T

4 [0, 0, 0, 0, 0]T [1, 0, 0, 1, 0]T 1 [0, 2, 0, 2, 0]T [0, 1, 0, 1, 0]T

5 [0, 0.5, 0, 0.5, 0]T [0.5, 0.5, 0, 0, 1]T 0 [0, 0, 0, 0, 0]T [1, 0, 0, 1, 0]T

Table 4.1: Optimal Flow Pattern with K = 1

2.7, the optimal strategy for the manager and the flow pattern are shown in

Table 4.1. The manager reaches the social optimum in all exploit stages. In

the clean phase, she only achieves the Nash equilibrium flow for one stage.
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Chapter 5

Conclusions and Future work

5.1 Conclusion

This thesis deals with the repeated selfish routing with incomplete information.

In this kind of game, there are two kinds of players: users and a manager. In

the network, users travels from sources to destinations, each of whom carries

some flow. They are grouped by commodities. We introduce a virtual player

to simulate the behavior of users in a commodity. The manager, who wants to

minimize the social cost in all stages, is in charge of the network. The manager

can show artificial costs of paths (but with some restrictions) and predict the

users’ behavior. But the users cannot predict the manager’s behavior accurately

because the manager has private information.

First, we assume that there are infinite users in one commodity and each

user carries an infinitesimal amount of flow. If such a game played once, the

manager can always keep the flow to be the optimal flow by giving proper

tolls. However, this does not happen when the selfish routing is played re-

peatedly because the users can discover the actual costs in history and change

their strategies, not just play according to the current action of the manager.
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In order to find the optimal strategy for the manager, we build a reputation

mechanism for her. The reputation mechanism describes how much users trust

the manager by her previous actions. Then we build an estimation mecha-

nism for the users, by which the users can choose their best response to the

manager’s current action. The manager knows the reputation mechanism, the

estimation mechanism and the users’ strategy, so she can make a decision upon

all previous actions and the potential actions of the users in the current stage.

Then we find out her optimal strategies in different cases.

Second, we change the model to make the cost function of each edge

more complicated: we assume that even if the flow is fixed, the cost of each

edge is not a deterministic number, but a random variable, which obeys a given

probability distribution. This kind of game is called stochastic selfish routing.

We give the definition of stochastic user equilibrium in our model. Then we

prove that if each path flow is positive, the manager can always maintain the

optimal flow by showing proper artificial costs.

Finally, we return to the deterministic selfish routing and assume that the

number of users is finite and each of them carries an unnegligible amount of

flow. Therefore, a single user should be denoted by one commodity. We prove

that in this situation, the manager’s optimal strategy is similar to the situation

with infinite users.

5.2 Future Work

The model applied in repeated selfish routing can be improved in the following

aspects:

1. We give several assumptions on the reputation mechanism in this thesis.
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People can remove some assumptions and prove the optimal strategy

for the manager for certain topology of the network and certain cost

functions.

2. People can set the lower bound of tolls less than 0 in the model in Chapter

2. In other words, negative tolls are admitted. Negative tolls will some-

times make reputation useless because even with very bad reputation, the

manager can use negative tolls to maintain the optimal flow. People can

find out the optimal strategy for the manager in this case.

3. The model discussed in Chapter 3 for stochastic user equilibrium is sim-

pler than Chapter 2 because we do not introduce the reputation and

estimation mechanisms into it. People can build the same reputation

mechanism for stochastic selfish routing and use the probability distribu-

tion in Equation 2.3.3 as the result of the estimation mechanism. After-

wards, people can find out the best response for the users and the optimal

strategy for the manager.

4. For the model in Chapter 4, as each user carries an unnegligibe amount

of flow, people can extend them to be long-run players. This extension is

useless for the model in Chapter 2 as we explained in Section 2.2. Then,

people can also build a reputation mechanism for the users. Therefore, the

users should also consider their long-run payoff and will not be myopic.

We guess that in order to build a good reputation, users should pretend

to trust the manager and do what the manager wants for some stages.

People can find out the optimal strategies for both sides.

5. The network discussed in this thesis just contains edges without capacity
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(an upper bound of flow). One can extend all the discussion to capacitated

networks[7].
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