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Abstract 

Previous studies suggest that nicotine impairs pancreatic function, which may explain the 

increased risk of T2DM in smokers. We have previously shown that nicotine exposure results in 

decreased beta cell function, an effect which appears to be mediated via increased beta cell 

oxidative stress. The goal of this study is to determine whether folic acid, an antioxidant, can 

prevent nicotine-induced beta cell dysfunction in the beta cell.   

INS 1E cells, a rat pancreatic beta cell line, were treated with nicotine or vehicle ± 10µM 

folic acid for 48 hours. Nicotine treatment decreased both basal and glucose stimulated insulin 

secretion, but had no effect on insulin content, mitochondrial function or markers of apoptosis. 

Expression of oxidative stress/damage markers (HSP70 and 4-HNE), antioxidant enzymes 

(Cu/ZnSOD, MnSOD and CAT), insulin gene transcription factor PDX1 and KATP channel 

subunit kir6.2 were determined by western blot analysis. Expression of HSP70, 4-HNE and 

MnSOD were significantly increased with nicotine treatment (p=0.002, 0.05 and 0.03 

respectively). Cu/ZnSOD and CAT expression remained unchanged with nicotine treatment. The 

addition of folic acid significantly reduced HSP70 expression, 4-HNE expression, CAT 

expression, but did not alter the expression of MnSOD. There was a significant (p<0.0001) 

increase in expression of PDX1 following treatment with nicotine and folic acid, coinciding with 

a significant increase in insulin content in this treatment group (p=0.027).Nicotine treatment 

significantly increased kir6.2 expression (p=0.019) which showed a trend toward reduced 

expression following treatment with folic acid (p=0.067).  

Nicotine treatment significantly increases markers of oxidative stress and oxidative 

damage in pancreatic beta cells; an effect which was reversed by folic acid administration. 

Nicotine and folic acid treatment increased insulin content, likely mediated through an increase 
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in the insulin gene transcription factor, PDX1. Furthermore, nicotine treatment increased 

expression of kir6.2, suggesting a defect in the insulin secretory mechanism. This effect was 

reversed with folic acid treatment.  Although many studies suggest that Canadians are meeting or 

exceeding recommended folate levels, this is not true in smokers. Our data suggest that 

additional folate supplementation in smokers may prevent nicotine-induced damage to the 

pancreas and thus reduce the risk of type 2 diabetes.  
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1.0 Introduction 

1.1 Type 2 Diabetes 

1.1.1 Prevalence  

According to the World Health Organization approximately 285 million people 

worldwide have diabetes; approximately 90% of patients with diabetes have non-insulin 

dependent diabetes mellitus otherwise known as type 2 diabetes (WHO 2012). The number of 

people with diabetes is expected to balloon to 7.7% of the population or 439 million adults by 

2030 (Shaw et al 2010). In Canada, about 1 in 4 people have either diabetes or pre-diabetes 

(approximately 9 million), and the number of people with diabetes is rapidly rising due to an 

aging population, rising obesity rates and sedentary lifestyles (Canadian Diabetes Association). 

The other types of diabetes are Type 1 or juvenile onset diabetes and gestational diabetes which 

will not be discussed here.  

 

1.1.2 Pathology 

Type 2 diabetes is characterized by a fasting circulating blood glucose level in excess of 

7mmol/l (The expert committee on the diagnosis and classification of Diabetes Mellitus, 2003), 

or with a blood glucose level >11.1 mmol/l after an oral glucose tolerance test (OGTT). In the 

pre-diabetes stage, fasting blood glucose levels are 6.1 – 6.9mmol/l with a 2 hour OGTT levels 

between 7.8 and 11.1mmol/l (Canadian Diabetes Association). This increase in blood glucose is 

caused by dysfunction of the insulin producing beta cells (inability to produce/secrete insulin in 

response to a glucose signal) in the endocrine pancreas and/or peripheral insulin resistance (i.e. 

decreased glucose uptake in skeletal muscle). To maintain glucose homeostasis beta cells 
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produce and secrete insulin in response to increasing blood glucose levels (i.e. after a meal). 

Type 2 diabetes is predominantly associated with obesity and inactivity (Prentki and Nolan 

2006). Long term consequences of diabetes include cardiovascular complications, retinopathy, 

kidney failure, and limb amputations (Amos 1997).  

 

1.1.3 Etiology 

 There are multiple causes of type 2 diabetes, which may involve a combination of beta 

cell dysfunction and insulin resistance. Dysfunction of beta cells and insulin resistance can occur 

through both genetic and environmental factors, such as obesity (Kahn, Hull and Utzschneider, 

2006), smoking (Ding and Hu, 2007, Wannamethee, Shaper and Perry 2001), single nucleotide 

polymorphisms (SNP’s) (Vassy and Meigs, 2012), and/or fetal insults during pregnancy 

(Godfrey and Barker 2001, Bertram and Hanson 2001).  

The majority of type 2 diabetes cases are associated with a combination of obesity and 

inactivity. Adipose tissue is able to modulate metabolism by releasing non-esterified fatty acids, 

glycerol, hormones, namely leptin and adiponectin as well as inflammatory cytokines. When an 

individual is obese, production of these products (with the exception of adiponectin) is increased. 

Increased levels of circulating fatty acids are associated with hypertension and may contribute to 

the pathophysiology of type 2 diabetes, particularly insulin resistance (Boden and Shulman 2002, 

Kahn et al 2006). Furthermore, chronically elevated fatty acid levels are toxic to the pancreas (i.e 

lipotoxicity). Elevated lipid levels inhibit glucose stimulated insulin secretion and in addition, 

inhibits insulin gene expression in the presence of elevated glucose, leading to an increase in beta 

cell death (Poitout and Robertson 2002, Boden and Shulman 2002, Robertson et al 2004). 
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In addition to the adverse effects of lipids on beta cell function, chronically elevated 

glucose levels which are often associated with obesity also have detrimental effects on the 

pancreatic beta cell (i.e. glucotoxicity). Furthermore, chronically elevated glucose levels lead to 

some of the secondary complications that occur with diabetes (vascular, retinal and renal tissue 

abnormalities) (Robertson et al 2007). A chronically high glucose environment leads to 

significant reduction in insulin secretion (Wallace et al. 2012), an effect likely mediated through 

oxidative stress (Prentki and Nolan 2006). Lifestyle modifications (weight loss, exercise) can 

improve the adverse beta cell effects associated with elevated lipids and glucose.    

The primary role of the insulin secreted by the pancreatic beta cell is to maintain glucose 

homeostasis. Glucose homeostasis is achieved by insulin acting on peripheral tissues namely 

muscle and adipose cells, to stimulate glucose uptake into these tissues while simultaneously 

reducing hepatic glucose production which occurs through gluconeogenesis. To exert its effects, 

insulin binds to its receptor (insulin receptor; IR) which is a member of the tyrosine kinase 

family. Autophosphorylation of IR as a result of insulin binding causes a signaling cascade. One 

of the most important signals of insulin receptor binding is translocation of the glucose 

transporter GLUT4 to the cell membrane. Glucose uptake in peripheral tissues occurs through 

GLUT4, which are highly expressed in skeletal muscle and adipose tissues (Rains and Jain 2011, 

Saltiel and Pessin 2002 and Choi and Kim 2010). 

Insulin resistance occurs when the amount of insulin produced is insufficient to suppress 

glucose production in the liver and stimulate glucose disposal in skeletal muscle (Strumvoll et al, 

2005) Beta cells respond to peripheral insulin resistance by increasing basal and postprandial 

insulin secretion to compensate for the insulin resistant state (Olefsky and Saltiel, 1996). Once 



MSc Thesis - C.J. Nicholson                                                                             McMaster – Medical Science 

 

4 
 

insulin resistance occurs, glucose levels start to rise giving way to hyperglycemia and its 

associated complications.  

 

1.1.4 Beta Cell Function  

 In healthy individuals, beta cells secrete insulin to maintain glucose homeostasis; in 

normoglycemia plasma glucose concentrations range from 4-8mmol/l non-fasting, 3.9 - <5.5 

mmol/l fasting. The ability of the beta cell to secrete insulin at levels which maintain 

normoglycemia is the result of  2 factors; 1) the responsiveness of the beta cell to a glucose 

stimulus and 2) the number of beta cells present in the pancreas (i.e. beta cell mass (Kahn et al, 

2006).   

 In a normally functioning beta cell, insulin is released in response to a glucose stimulus. 

Glucose enters the beta cell via glucose transporters. In humans, this occurs through the glucose 

transporter GLUT1, in rodents, GLUT2 (De Vos et al, 1995). After entry in to the beta cell, 

glucose is phosphorylated by glucokinase into glucose-6-phosphate. Via glycolysis, glucose-6-

phosphate is converted into pyruvate. Pyruvate enters the mitochondria, is metabolized by the 

tricarboxylic (TCA) cycle to form NADH and FADH2. Electron transfer from the TCA cycle, by 

NADH and FADH2, to the respiratory chain promotes the formation of ATP. The production of 

ATP requires 2 important steps, 1) oxidation of NADH (or FADH2) and 2) phosphorylation of 

ADP to ATP; these 2 processes are known as oxidative phosphorylation. The NADH and/or 

FADH2 generated by glycolysis and the TCA cycle are oxidized to NAD
+ 

or FAD while protons 

are pumped into the inner mitochondrial membrane through complexes, I, III and IV. Electrons 

from NADH and FADH2 are pumped through the complexes to O2, ultimately forming H2O.  
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The proton gradients produced by the hydrogen ions are the driving force of ATP synthase to 

produce ATP from ADP (Kim et al, 2008).  In this fashion, oxidative metabolism links the 

glucose stimulus to subsequent insulin release (Machler and Wollheim, 2001). The formation of 

ATP leads to an increase in the ATP/ADP ratio, which leads to closure of the ATP sensitive 

potassium channels (KATP). KATP channel closure results in a slow membrane depolarization 

leading to calcium (Ca
2+

) influx, rapid membrane depolarization and secretion of insulin 

granules.   

 Beta cell mass is a balance between an increase in beta cell number (replication and 

neogenesis), and increase in beta cell size (hypertrophy) and beta cell death (apoptosis) and a 

decrease in beta cell size (atrophy) (Butler et al, 2003). An increase in beta cell mass would lead 

to a potential increase in insulin production and secretion. It appears that beta cell mass increases 

over a lifetime; in a longitudinal study of Lewis rats, beta cell mass increased into adulthood 

initially by an increase in cell number, and then by hypertrophy (Bonner-Weir, 2000). It appears 

that the best stimulus for beta cell mass regulation is glucose. If glucose uptake into peripheral 

tissues decreases due to inadequate plasma insulin or insulin resistance, then the mild 

hyperglycemia signals the beta cells that more insulin is needed (Rhodes, 2005). Beta cells then 

compensate by increasing in number and/or size (increase of beta cell mass) to overcome the 

increase in glucose. This mild hyperglycemia has beneficial effects, however, chronic or severe 

hyperglycemia can have detrimental effects (Prentki and Nolan 2006).  
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1.1.5 Beta Cell Dysfunction in T2DM 

 In people with type 2 diabetes, beta cell dysfunction is clearly present. Indeed, evidence 

suggests that beta cell dysfunction is present well in advance of the diagnosis of frank type 2 

diabetes (Kahn, 2003). Weir and Bonner-Weir (2004) have proposed 5 stages of beta cell 

dysfunction during the progression of type 2 diabetes: 1) beta cell compensation, 2) stable 

adaptation, 3) unstable early decompensation, 4) stable decompensation and 5) severe 

decompensation. Stage 1 is characterized by an increase in insulin secretion in response to higher 

circulating blood glucose levels. The increase in insulin secretion can either be a result of 

increased insulin secretion per cell or from an increase in beta cell number (i.e. increased beta 

cell mass). During stage 1, blood glucose levels are maintained within the normal range 

(<6mmol/l fasting). In stage 2, known as ‘pre-diabetes’,  the insulin secreted from the beta cell is 

no longer able to maintain glucose within the normal range; however, individuals are able to 

maintain constantly higher glucose levels (6.1-6.9mmol/l fasting glucose) without progressing to 

diabetes for years. During this stage, there is an increase in oxidative stress, antioxidant and 

apoptotic markers, as found in rats which have undergone a partial pancreatectomy (Laybutt et 

al, 2002). Oxidative glucose metabolism leads to the production of reactive oxygen species 

(ROS), which while necessary for cellular signaling, can be damaging in large quantities. 

Hyperglycemia is thought to produce large amount of ROS, which overcome the antioxidant 

defense mechanism, which is low in beta cells (Strumvoll et al, 2005). As previously stated, 

stage 2 can be maintained for long periods of time, however, at some point the beta cells will be 

unable to maintain the increased insulin secretion in response to high glucose; this leads to a 

rapid decline in beta cell mass, due to apoptosis, in conjunction with insulin resistance. This 

rapid decline in beta cell mass results in even higher glucose levels (i.e. glucotoxicity). This 

change is stage 3, which is an unstable period and progresses fairly rapidly to stage 4. Stage 4 is 
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a more stable stage than stage 3. Individuals in stage 4 are still secreting insulin, but at a lower 

rate due to decreased beta cell mass, which can be as much as 50% reduced. This decrease in 

beta cell mass is evident by a marked reduction in insulin release in response to a glucose 

stimulus in diabetic people compared to healthy controls (Kahn, 2000). This stage can last many 

years, without ever progressing to stage 5, which is complete beta cell failure resulting in 

dependence on exogenous insulin.     

 

1.1.6 Mechanisms of beta cell dysfunction 

 Pancreatic beta cell dysfunction results in blood glucose homeostasis that is out of the 

normal range; this can occur if the beta cells are not responding to the glucose signal (resulting in 

a high blood glucose level), or conversely, there could be over activity of the beta cell (resulting 

in a low blood glucose level). The mechanisms leading to beta cell dysfunction leading to 

hyperglycemia will be discussed here.  

The first step for beta cells to secrete insulin is to have glucose transported into the beta 

cell via the glucose transporter GLUT-2. Potentially, if there are fewer glucose transporters then 

less glucose will be brought into the beta cell, and less glucose will be metabolized and therefore 

less insulin will be released. Indeed, it has been shown that in diabetic animal models there is a 

reduction in the expression of GLUT2 (Thorens et al 1990, Unger 1991, Johnson et al 1990). 

Conversely, dysfunctional beta cells could have reduced glucose uptake even in the presence of 

similar glucose transporter expression.    

 In patients with type 2 diabetes, pancreatic beta cells cannot produce enough insulin to 

maintain glucose homeostasis. In order for the beta cell to release insulin, there needs to be an 
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increase in energy production within the beta cell which occurs via the mitochondria. The 

mitochondria metabolize glucose via glucose oxidation to produce ATP. The production of ATP 

increases the ratio of ATP/ADP. The increased ATP leads to inhibition of KATP channels, 

membrane depolarization, calcium influx and insulin secretion. Therefore, mitochondrial 

function is linked to insulin secretion via the production of ATP. Mitochondrial dysfunction, has 

been linked to the development of diabetes (Kim, Wei and Sowers, 2008). Part of this 

dysfunction has been attributed to reduced cytochrome c oxidase (complex IV) activity 

(Woynillowicz et al. 2012 and Bruin et al. 2008c) coinciding with increased mitochondrial 

apoptosis (Bruin et al 2008a).  

Hyperglycemia can increase cellular reactive oxygen species (ROS) which negatively 

impacts cellular functions. But mitochondrial are themselves a source of ROS resulting from 

imperfectly coupled electron transport. During normal metabolism, superoxide anions are 

produced but are eliminated by antioxidant defense mechanisms, such as mitochondrial 

superoxide dismutase (MnSOD). In a hyperglycemic state, it is thought that hyperglycemia 

increases the electron transfer donors (NADH and FADH2) which in turn increases electron flux 

through the mitochondrial complexes (Brownlee, 2001). This leads to an increase in the 

ATP/ADP ratio and hyperpolarization of the inner mitochondrial membrane. The 

hyperpolarization of the membrane leads to partial inhibition of complex III, which leads to an 

accumulation of electrons, and generation of superoxide in greater quantities (Rolo and Palmeira 

2006).     

 KATP channels are located in the plasma membrane of the beta cell and play a key role in 

linking beta cell metabolism to electrical activity of the membrane, and therefore insulin release. 

KATP channels are hetero-octameric complexes containing four pore-forming units (Kir6.x) 
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surrounded by four regulatory units (SURX) (Ashcroft, 2006). The KATP channel in pancreatic 

beta cells are composed of Kir6.2 and SUR1 isomers (MacDonald et al, 2005). In humans, both 

subunits are located on chromosome 11 relatively close together (Kir6.2 is just 4,500 base pairs 3’ 

of the SUR1 gene) (Aguilar-Bryan et al, 1998). ATP, produced by the mitochondria, closes the 

channel by binding to the kir6.2 subunit at an ATP-binding site located just below the plasma 

membrane. It is still unclear how ATP binding results in closure the pore (Ashcroft, 2006). 

 Genetic mutations of the genes encoding Kir6.2 and SUR1 (KCNJ11 and ABCC8 

respectively) have been shown to cause insulin secretion disorders, such as hyperinsulinemia and 

type 2 diabetes (Gloyn et al, 2003). These genetic mutations result in gain of function or loss of 

function of the channel. Loss of function mutations result in hyperinsulinemia, where there is an 

oversecretion of insulin despite low glucose levels (Flanagan et al, 2009).  Loss of function 

mutations can occur in either ABCC8 or KCNJ11. Conversely, gain of function mutations of 

either subunit cause diabetes by reducing the responsiveness of the channel to increasing ATP 

concentrations. This results in an increased potassium efflux from the cell, hyperpolarization of 

the cell membrane thereby reducing insulin secretion (Flanagan et al, 2007).  Although mutations 

can occur in both subunits, mutations in the KCNJ11 gene are the most common cause of 

neonatal diabetes and a common polymorphism in KCNJ11 (E23K) is associated with type 2 

diabetes in large scale studies (Hattersley and Ashcroft 2005, Flanagan et al 2007). The 

mutations of KCNJ11 reduce the ability of ATP to inhibit the KATP channel while simultaneously 

enhancing channel activity (Ashcroft 2006).   

In cases of chronic hyperglycemia, the resulting oxidative stress can lead to apoptosis of 

the beta cells resulting in a reduction of beta cell mass (Bonner-Weir 2000). Apoptosis is the 

process of programmed cell death, and typically occurs through two distinct pathways; the 
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extrinsic (‘death-receptor’) or intrinsic (mitochondrial mediated) pathway. Both pathways need 

proteins that are involved in triggering and affecting the apoptotic process; these include the 

caspases and members of the Bcl-2 family. Caspases are cysteine proteases, each having distinct 

substrate specificities.  The caspases can be divided into groups, the initiator caspases (which 

start the avalanche of caspase activity) and the effector caspases (which cleave and inactivate 

vital cell proteins). The Bcl-2 proteins contain pro (Bax, Bak, Bid) and anti-apoptotic (Bcl2, Bcl-

xl) members (Cory and Adams 2002, Stasser, O’Conner and Dixit 2000). 

The extrinsic pathway involves a death signal binding to a death receptor (Fas/Fas 

ligand). Ligand binding to the receptor on the cell membrane causes the assembly of a number of 

proteins in a death-inducing-signaling-complex (DISC). DISC then activates an initiator caspase, 

caspase-8 and/or caspase-10. What then follows is a Caspase activation cascade, ultimately 

leading to caspase-3, an effector caspase, activation, (Chandra et al., 2001). Caspase-3 is the 

central caspase responsible for proteolytic cascade leading to cell death (Ly, Grubb and Lawen 

2003)      

The intrinsic pathway involves the mitochondria without involving cell surface receptors. 

The anti-apoptotic members (Bcl-2 and Bcl-xl) work to maintain mitochondrial membrane 

integrity until they are inactivated by Bid. When there is an apoptotic signal, such as stress, pro-

apoptotic members of the Bcl2 family undergo a conformational change (Bax and Bak form 

homo-oligomers) which allows them to associate with and integrate into the mitochondrial outer 

membrane causing release of cytochrome c in to the cytosol (Cory and Adams 2002, Gross, 

McDonnell and Korsmeyer 1999). Released cytochrome c binds to apoptotic protease activating 

factor 1 (Apaf-1) known as the ‘apoptosome’. Apaf-1 which activates once cytochrome c binding 
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occurs, then binds procaspase-9. Mature caspase-9 is released and then activates the more distal 

caspase-3 and caspase-7 (Chandra et al., 2001) leading to cell death.   

1.2 Smoking 

1.2.1 Prevalence 

 The World Health Organization (WHO) states that the global prevalence of cigarette 

smoking is 22% of people aged 15 and older (WHO 2012). In the United States, approximately 

21% of men and 17% of women smoke. The percentage of individuals who smoke declines with 

age (9.5% of people aged 65 and older compared with 20% of people aged 18-24), but also 

declines with educational level (45.2% of adults with a general educational development (GED) 

smoke compared with 6.3% of adults with a postgraduate degree) (Centre for Disease Control, 

2012). In Canada, about 43% of the population were current or former smokers in 2011. While 

this number has decreased from 51% of the population in 1999, the number of smokers has 

remained the same, while the population has increased (Health Canada, 2012). Of these smokers, 

approximately 18% are women who reported smoking during pregnancy. 

 

1.2.2 Smoking and type 2 diabetes 

 Epidemiological studies have shown that heavy cigarette smokers are at an increased risk 

for the development of type 2 diabetes (Xie et al, 2009, Willi et al 2007 and Haire-Joshu et al 

1999). Smoking, and more importantly nicotine itself, has been shown to decrease insulin 

sensitivity due to impaired glucose uptake in peripheral organs independent of other factors 

which influence insulin sensitivity (Eliasson et al. 1994, Axelsson et al. 2001). This decrease in 

insulin sensitivity (a decrease by approximately 10 – 40%) leads to impaired metabolic control in 
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diabetic patients since more insulin is needed to achieve metabolic control in smokers than non-

smokers (Xie et al 2009, Chiolero et al 2008, Eliasson 2003 and Attvall et al 1993) Furthermore, 

in an animal model of nicotine exposure, nicotine exposed animals were dysglycemic and had an 

increase in apoptosis of beta cells (Holloway et al., 2005, Bruin et al 2007, 2008a,b and c), this 

effect is likely through an increase in oxidative stress. Woynillowicz et al (2012) saw an increase 

in MnSOD expression in an in vitro model of nicotine exposure on pancreatic beta cells.  

Nicotine is a lipid soluble compound that is metabolized in the liver by cytochrome P450 

enzymes CYP2A6 and CYB2B6 and has a half-life of 1-2 hours (Tweed et al, 2012). The 

primary metabolite of nicotine is cotinine (approximately 70-80% of nicotine is converted to 

cotinine), which has a half-life of 15-20 hours and serum concentrations are generally 10 times 

higher in the serum making it a better indicator of nicotine exposure (Lambers and Clark 1996, 

Benowitz 1996).  Nicotine is the main alkaloid found in tobacco and exerts its effects via direct 

stimulation of neuronal nicotinic acetylcholine receptors (nAChRs). Neuronal acetylcholine 

receptors are composed of α and β subunits, which can be arranged in a diverse way with α2 to α9 

and β2 to β4 subunits found in brain tissues. The majority of nicotine’s effects involve the α4β2, 

α2β2, and α7 subunits (Narahashi et al 2000, Benowitz 1996).  Nicotine increases synaptic 

neurotransmission of neurotransmitters such as dopamine, which results in the rewarding and 

reinforcing effects of nicotine and therefore plays a key role in its highly addictive nature 

(Tweed et al, 2012).  
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1.2.3 Nicotine and Oxidative Stress 

 Cigarette smoke contains both oxidants and pro-oxidants, including nicotine, which are 

capable of producing reactive oxygen species (ROS) and therefore enhancing oxidative stress 

(Kosecik et al 2005). Oxidative stress is an imbalance between endogenous and exogenous 

antioxidants and reactive oxygen species or reactive nitrogen species (RNS). Under some 

conditions, an increase in oxidants cannot be prevented by antioxidants and, consequently, 

oxidative stress ensues. Oxidative stress has been implicated in over 100 conditions, including 

type 2 diabetes. (Kosecik et al 2005, Sies 1997). Oxidants and free radicals stemming from 

cigarette smoke are capable of directly and indirectly inducing oxidative stress in the body 

(Aycicek et al 2011). A single puff of cigarette smoke contains 10
15

 free radicals (Alberg 2002). 

In addition to cigarette smoke causing oxidative stress, nicotine alone also leads to 

oxidative stress and damage in tissues (Yildiz et al., 1998, Guan et al., 2003, Suleyman et al., 

2002, Zhao and Reece 2005). Chronic exposure to pro-oxidants promotes oxidative injury in 

tissues and organs leading to disease. Oxidative stress is minimized in cells by exogenous 

antioxidants (vitamins E and C) and by endogenous antioxidants (super-oxide dismutase and 

glutathione peroxidase) (Tollefson et al 2010). 

 In pancreatic beta cells, the levels of antioxidant enzymes are considerably lower than 

other tissues (Robertson, 2004). Lenzen et al (1996) sought to determine the levels of antioxidant 

enzymes in various mouse tissues. They found that pancreatic levels of the cytosolic superoxide 

dismutase and the mitochondrial superoxide dismutase (Cu/ZnSOD and MnSOD) were 38% and 

30% that of liver respectively. Levels of glutathione peroxidase (GPx) and catalase (CAT) were 

even lower, with GPx levels only 15% that of liver and CAT levels were undetectable.  These 
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lower levels of defensive mechanisms can potentially pose problems for the pancreatic beta cell, 

if exposed to oxidative stress (Lenzen, 2008).  

 Due to the pro-oxidant effects of nicotine, it is plausible to suggest that treatment with an 

anti-oxidant might prevent nicotine-induced oxidative stress and damage. Indeed, studies have 

looked at the effects of antioxidants in nicotine treated tissue and found beneficial effects (Helen 

et al. 2003, Kalpana and Menon 2004). In a recent study by Bruin et al (2012), a diet enriched in 

anti-oxidants (Vitamin E, coenzyme Q10 and α-lipoic acid) was given to nicotine-exposed rats 

throughout pregnancy and lactation. The anti-oxidant intervention was able to decrease beta cell 

apoptosis and therefore preserve beta cell mass of the offspring. However, the pups exposed to 

anti-oxidants were significantly smaller. This could, in part, be due to the addition of vitamin E 

in the diet. There is some discrepancy in the literature regarding vitamin E as to its effectiveness 

as an anti-oxidant (in higher doses vitamin E tends to act as a pro-oxidant) (Pearson et al, 2006). 

Due to the promising effect of the antioxidant cocktail on preserving beta cell mass in nicotine 

exposed animals, finding a different antioxidant that will preserve beta cell function without the 

adverse effects on growth, could be a viable option to negate the adverse effects of nicotine 

exposure on beta cell function. One such anti-oxidant is folic acid, a vitamin which is essential 

during pregnancy. Furthermore, folic acid had been shown to decrease markers of oxidative 

stress and damage (Lazalde-Ramos et al, 2012).       

 

1.3 Folic Acid 

1.3.1 Folic Acid 

Folate or folic acid is an essential B vitamin that is found in green vegetables, fruits and 

whole grains. (Mannino et al 2003) It is has been known for some time the importance of 
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supplementing the diet with folic acid during pregnancy, as dietary folate intake alone may not 

meet the folate requirements in pregnancy. The need for folate increases dramatically during 

times of rapid tissue growth, such as pregnancy, where the uterus enlarges and there is growth of 

the placenta and fetus. Folate deficiency during pregnancy has been associated with an increased 

risk of neural tube defects (NTD), placental abruption and preeclampsia (Tamura and Piccano, 

2006).  

Folic acid is involved in nucleic acid synthesis and therefore is required for cell division. 

Folic acid, in the form of 5-methyltetrahydrofolate, donates a methyl group via the enzyme 

methionine synthase to form methionine from homocysteine. Methionine then acts a substrate to 

form s-adenosylmethionine (SAM). SAM is then used to transfer carbon units to purine and 

pyrimidine bases (Achon et al, 2007). Furthermore, folate is required to metabolize the amino 

acids methionine, serine, glycine and histidine, which are required in the formation of proteins. 

Folate deficiency can impair cellular growth and repair in the fetus and/or placenta, increasing 

the risk for low birth weight and pre-term delivery. (Czeizel et al 1996, Scholl et al 1996, Scholl 

and Johnson 2006, Duthie and Hawdon 1998 and Jauniaux et al 2007, Wei et al 2003).  

 

1.3.2 Antioxidant properties  

Folic acid is not only a co-factor for nucleic acid biosynthesis, but an anti-oxidant as 

well. Folic acid has been shown to be beneficial in the risk reduction of certain cancers (notably, 

pancreatic and breast), one such mechanism is the ability for folic acid to scavenge free radicals. 

(Joshi et al 2001, Stroes et al 2000) It has been shown that folic acid has a potent antioxidant 
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capacity higher even than Trolox, a derivative of vitamin E, used to reduce oxidative stress or 

damage (Cano et al, 2001).  

Strong evidence shows that cigarette smoking is directly responsible for the lower levels 

of antioxidant micronutrients, such as folic acid (Alberg 2002). Organic nitrites, nitrous oxide, 

cyanates found in cigarette smoke interact with folate and convert it to an inactive compound, 

which could account for the decreased folate level in smokers. (Northrop-Clewes and Thurnham 

2007)   

It has been shown that folic acid supplementation increases total serum antioxidant 

capacity (Aghamohammadi et al 2011 and Delfino et al 2007) which could be beneficial in 

people, such as smokers, who have increased markers of oxidative stress and damage than non-

smokers. Furthermore, smokers (as well as individuals exposed to second-hand smoke) have 

decreased levels of folate than non-smokers (Okumura and Tsukamoto 2011). Because of this, 

folate supplementation could be a good candidate for the prevention of beta cell damage caused 

by cigarette smoking.  

 

1.3.3 Use in clinical trials  

 Numerous clinical trials involving folic acid have been completed, or are ongoing. These 

clinical trials have looked at outcomes such as stroke (Tighe et al, 2011), rheumatoid arthritis 

(Morgan et al 1994), cardiovascular events (Albert et al, 2008), renal disease (Wrone et al, 

2004), preeclampsia prevention (FACT study, currently recruiting) and cancer prevention (Kim 

2004). The doses and length of the trials have varied considerably, which could account for some 

of the conflicting trial results. The most controversial evidence is with regard to cancer 
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prevention. Due to the role of folate in de novo DNA synthesis, cancer pharmaco-therapies 

include anti-folate drugs (i.e. methotrexate). The basis for this therapy is that interruption of 

folate metabolism causes ineffective DNA synthesis, which results in inhibition of cancer tumor 

growth. Despite the requirement of folate for tumor progression, folate supplementation appears 

to prevent cancer in people without pre-existing pre-malignant lesions. While, in people who do 

have these lesions, folate supplementation can accelerate their progression (Kim, 2004). Despite 

these results, beneficial results have been seen, specifically, folic acid supplementation was 

shown to reduce the chance of stroke by 18% (Tighe et al, 2011).  

 In addition, it has been shown by animal data that folic acid supplementation decreases 

both oxidative stress and damage. In a study investigating the pro-oxidant effect of maternal 

ethanol administration, it was found that when dams were exposed to ethanol in conjunction with 

dietary folic acid supplementation, pups were protected against oxidative stress caused by the 

ethanol treatment. This decrease in oxidative stress was seen as a decrease in thiobarbituric acid 

reactive substances (TBARS, a byproduct of lipid peroxidation) and protein carbonyl groups in 

the liver and pancreas in the offspring (Cano et al, 2001). Furthermore, in a human study looking 

at the effect of folic acid on oxidative stress in individuals with hyperlipidemia and 

hyperhomocysteinaemia, it was found that folic acid supplementation reduced the oxidative 

damage marker malondialdehyde (MDA), a marker of lipid peroxidation (Racek, et al 2005). 

These studies have shown folic acid is able to alleviate oxidative stress and damage in a variety 

of tissues. Due to this, it is plausible that folic acid will also be able to counteract the negative 

effects of nicotine on pancreatic beta cells and preserve beta cell function.  
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1.4 Hypothesis 

I hypothesize that since in vitro exposure to nicotine leads to impaired pancreatic beta 

cell function via increased oxidative stress that supplementation with the antioxidant folic acid 

will prevent nicotine-induced beta cell damage. 

1.5 Objectives    

 

1. To determine in vitro whether co-supplementation of folic acid can decrease markers of 

oxidative stress caused by nicotine treatment  

2. To determine the mechanism(s) by which folic acid can reduce oxidative stress in 

pancreatic beta cells 

3. To determine whether or not  folic acid supplementation can improve beta cell function in 

nicotine treated beta cells in vitro 
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Figure 1.1: Methionine Cycle 

This diagram illustrates how folate is involved in methyl donation. 5-methyltetrahydrofolate 

donates a methyl group with the assistance of methionine transferase for the formation of 

methionine from homocysteine. Methionine then acts a substrate for the formation of S-

Adenosylmethionine (SAM) which is used as a methyl donor or a range of reactions. After the 

donation of a methyl group, SAM is converted to S-adenosylhomocysteine (SAH), which is then 

hydrolysed back to homocysteine and adenosine. Figure taken from Achon et al, British Journal 

of Nutrition, 2007, 98:490-496. 
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Figure 1.2: Folic acid Structure 

Figure taken from Toronto Research Chemicals (TRC), http://www.trc-

canada.com/detail.php?CatNum=F680300&CAS=59-30-3&Chemical_Name=Folic 

Acid&Mol_Formula=C19H19N7O6&Synonym=N-[4-[[(2-Amino-3,4-dihydro-4-oxo-6-

pteridinyl)methyl]amino]benzoyl]-L-glutamic Acid; Acifolic; Aspol; Cytofol; Folacid; Folacin; 

Folbal; Folcidin; Foldine; Folettes; Foliamin; Folicet; Folipac; Folovit; Folsan; Folsaure; Folsav; 

Folvite; Incafolic; Millafol; Pteroyl-L-monoglutamic Acid; Pteroylglutamic Acid; 

Pteroylmonoglutamic Acid; Vitamin Bc; Vitamin Be; Vitamin M; NSC 3073; 
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2.0 Methods 

2.1 Effect of nicotine and folic acid treatment on markers of oxidative stress  

2.1.1 Cell Culture Maintenance 

All studies were conducted using INS 1E cells, a rat insulinoma beta cell line generously 

donated by Dr. Claes Wollheim (Geneva, Switzerland). This cell line is one of the few beta cell 

lines which secretes insulin in response to insulin within the physiological range (Skelin et al. 

2010) Cells were plated in 10 cm non-pyrogenic tissue culture dishes (BD Biosciences, 

Mississauga, Ontario) and cultured in RPMI 1640 medium (Hyclone, Logan, Utah) 

supplemented with 10% heat inactivated fetal bovine serum (Hyclone), 1mM Na
+
-pyruvate, 

50µM β-mercaptoethanol, and 1U/ml penicillin, 1µg/ml streptomycin (Invitrogen, Burlington, 

ON) and incubated in a humidified atmosphere of 95% O2 and 5% CO2. Cells were passaged 1:3 

at a confluence of 80% by trypsinization. Briefly, cells were washed with calcium and 

magnesium free Dulbecco’s Phosphate buffered solution (DPBS, Hyclone) and then incubated 

with 1x trypsin (Invitrogen) with EDTA and NaCl (Invitrogen) for approximately 5 minutes. 

Trypsin was neutralized with media, and media transferred to 3 new plates and allowed to 

equilibrate for 24 hours. 

 

2.1.2 Western Blotting 

INS1E cells were treated for 48 hours with media alone (control), media containing 10 µM 

folic acid (Sigma Aldrich) or media containing 1µM nicotine alone (Sigma Aldrich, Oakville, 

ON) or 1µM nicotine 10µM folic acid . This dose of folic acid was chosen to be 4x the amount 

of folic acid in the media (2.2µM) which is similar to the predicted rise in serum folate levels in 

women who increase their folate intake (Wald et al., 2001). After treatment, plates were washed 
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twice with DPBS (Hyclone), then scraped, centrifuged and resuspended in 

radioimmunoprecipitation assay (RIPA) buffer (15mM Tris-HCl (Bioshop, Burlington, ON), 1% 

(v/v) Triton X-100 (BDH Lab Reagents, Toronto, ON), 0.1% (w/v) SDS (Bioshop), 167mM 

NaCl (Bioshop), 0.5% (w/v) sodium deoxycholic acid (Sigma Aldrich)) containing protease 

inhibitors (Roche, Laval QC). Lysed cells were sonicated at 7Hz for 15 seconds and stored at -

80°C until use. 

 

2.1.3 Folate Receptor and Reduced Folate Carrier Expression  

Folate is able to reach target cells by two methods of transportation; a folate receptor (FR) and 

a folate carrier known as reduced folate carrier (RFC). To determine if treatment with folic acid 

can have a beneficial effect on INS 1E cells, I first needed to identify whether a) the receptor and 

transporter are present in the INS 1E cell line and b) whether nicotine treatment affects the 

expression level of either FR or RFC. 

Protein (20µg) from each treatment group was subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford IL) then electrotransferred to a PVDF membrane (at 40V for 90 

minutes, BioRad Laboratories). Membranes were blocked overnight in 5% (w/v) skim milk in 

TBST (Tris buffered saline (50mM Tris (Bioshop), 150mM NaCl (Bioshop), pH=7.5), 0.5% 

Tween 20) at 4°C under gentle agitation. Folate receptor primary antibody (1:450, Santa Cruz 

Biotechnologies, Santa Cruz, CA) and reduced folate carrier (1:200, Santa Cruz Biotechnologies) 

were incubated for 1 hour at room temperature, followed by 10 washes in TBST. Membranes 

were then incubated for 1 hour peroxidase conjugated anti-rabbit antibody (1:10,000, Amersham 

Biosciences, Little Chalfont, Buckinghamshire) on a rocking platform. Membranes were 
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thoroughly washed in TBST followed by TBS (Tris buffered saline, recipe above). Protein was 

detected using ECL Plus chemiluminescence (Amersham) and Hyperfilm ECL film 

(Amersham). Densitometry analysis was performed using Image J 1.45v software. All proteins 

were quantified relative to beta actin loading control. Briefly, membranes were incubated in 

stripping buffer (Thermo Scientific, Rockford, IL) for half an hour on a rocking platform. 

Membranes were quickly washed, and blocked with 1% (w/v) BSA (EMD Chemicals Inc., 

Gibbstown, NJ) in TBST. Following an hour incubation, blocking solution was removed, and β-

actin primary antibody was added (1:4000 in 1% BSA (w/v) in TBST (Abcam, Cambridge, MA). 

Membranes were incubated for another hour, washed in TBST (10 times) and rabbit peroxidase 

conjugated antibody was added for a further hour incubation (1:2000 in 1% BSA (w/v) in TBST 

(Amersham). Following incubation, membranes were washed thoroughly washed in TBST 

followed by TBS. Protein was detected by ECL Plus Chemiluminescence (Amersham) and 

Hyperfilm ECL film (Amersham).        

 

2.1.4 Oxidative Stress Markers 

To determine whether folic acid supplementation could prevent nicotine-induced cellular 

stress, the expression of heat shock protein 70 (HSP70) was determined. HSP70 acts to protect 

cells from oxidative stress. Cellular stresses damage proteins which causes protein unfolding. 

HSP70 temporarily binds to partially denatured proteins allowing them to refold (Beere et al., 

2000). We also determined whether or not folic acid could prevent oxidative damage. This was 

assessed by measuring protein expression of 4-hydroxy-2-nonenal (4-HNE). 4-HNE is produced 
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by lipid peroxidation in cells and is seen in high quantities in cells under conditions of oxidative 

stress (Mattson, 2009). 

Protein (20µg) from each treatment group was subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford, IL) then electrotransferred to a PVDF membrane (at 40V for 90 

minutes; BioRad Laboratories). Membranes were blocked for either 1 hour with 5% (w/v) skim 

milk in TBST (Tris buffered saline, 0.5% Tween 20) at room temperature (HSP70) or in 5% 

(w/v) BSA in TBST overnight (4-HNE) on a rocking platform and then incubated with HSP70 

primary antibody (1:1000, Cell Signaling Technology, Danvers, MA) or 4-HNE primary 

antibody (1:2000, R&D Systems). After washing with TBST, membranes were incubated for 1 

hour with peroxidase conjugated anti-rabbit secondary antibody (HSP70) (1:10,000 Amersham 

Biosciences, NJ) or peroxidase conjugated anti-mouse secondary anybody (1:10,000 Amersham 

Biosciences, NJ) on a rocking platform. Membranes were thoroughly washed in TBST followed 

by TBS washes. Protein was detected using ECL Plus chemiluminescence (Amersham 

Biosciences, NJ) and Hyperfilm ECL film (Amersham Biosciences, NJ). Densitometry analysis 

was performed using Image J 1.45v software. All proteins were quantified relative to beta actin 

loading control.  Briefly, membranes were incubated in stripping buffer (Thermo Scientific, 

Rockford, IL) for half an hour on a rocking platform. Membranes were quickly washed, and 

blocked with 1% (w/v) BSA (EMD Chemicals Inc., Gibbstown, NJ) in TBST. Following an hour 

incubation, blocking solution was removed, and β-actin primary antibody was added (1:4000 in 

1% BSA (w/v) in TBST (Abcam, Cambridge, MA). Membranes were incubated for another hour, 

washed in TBST (10 times) and rabbit peroxidase conjugated antibody was added for a further 

hour incubation (1:2000 in 1% BSA (w/v) in TBST (Amersham). Following incubation, 
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membranes were washed thoroughly washed in TBST followed by TBS. Protein was detected by 

ECL Plus Chemiluminescence (Amersham) and Hyperfilm ECL film (Amersham).        

 

2.2 Effect of Nicotine and Folic Acid on Endogenous Antioxidant Enzymes  

2.2.1 Cell Culture Maintenance  

All studies were conducted using INS 1E cells, a rat insulinoma beta cell line generously 

donated by Dr. Claes Wollheim (Geneva, Switzerland). Cells were maintained as described 

above. 

2.2.2 Western Blotting  

INS1E cells were treated for 48 hours with media alone (control), media containing 10 

µM folic acid (Sigma Aldrich) or media containing 1µM nicotine alone (Sigma Aldrich) or 1µM 

nicotine with 10µM folic acid . This dose of folic acid was chosen to be 4x the amount of folic 

acid in the media (2.2µM) which is similar to the predicted rise in serum folate levels in women 

who increase their folate intake. After treatment, plates were washed twice with DPBS 

(Hyclone), then scraped, centrifuged and resuspended in radioimmunoprecipitation assay (RIPA) 

buffer (15mM Tris-HCl, 1% (v/v) Triton X-100, 0.1% (w/v) SDS, 167mM NaCl, 0.5% (w/v) 

sodium deoxycholic acid) containing protease inhibitors (Roche). Lysed cells were sonicated at 

7Hz for 15 seconds.  
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2.2.3 Expression of Endogenous Antioxidant Enzymes  

To determine if nicotine treatment up-regulated endogenous antioxidants, western blots were 

performed to determine expression level of MnSOD, Cu/ZnSOD and Catalase. Protein (20µg for 

MnSOD and Cu/ZnSOD and 40µg for Catalase) were subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford IL) then electrotransferred to a PVDF membrane (at 40V for 90 

minutes, BioRad Laboratories). Membranes were blocked overnight in 5% (w/v) skim milk in 

TBST (Tris buffered saline, 0.5% Tween 20) (MnSOD) or 5% BSA in TBST (Cu/ZnSOD and 

Catalase) at 4°C under gentle agitation. Primary antibodies (1:5000 and 1:250 for MnSOD and 

Cu/ZnSOD respectively, Santa Cruz Biotechnologies and 1:500 for Catalase, Abcam) were 

incubated for 1 hour at room temperature, followed by several washes in TBST. Membranes 

were then incubated for 1 hour peroxidase conjugated anti-rabbit antibody (1: 20,000, 1:10,000 

and 1:5000 for MnSOD, Cu/ZnSOD and Catalase respectively, Amersham Biosciences NJ) on a 

rocking platform. Membranes were thoroughly washed in TBST followed by TBS. Protein was 

detected using ECL Plus chemiluminescence (Amersham, NJ) and Hyperfilm ECL film 

(Amersham, NJ). Densitometry analysis was performed using Image J 1.45v software. All 

proteins were quantified relative to beta actin or alpha tubulin loading control.  Briefly, 

membranes were incubated in stripping buffer (Thermo Scientific, Rockford, IL) for half an hour 

on a rocking platform. Membranes were quickly washed, and blocked with 1% (w/v) BSA (EMD 

Chemicals Inc., Gibbstown, NJ) in TBST. Following an hour incubation, blocking solution was 

removed, and β-actin primary antibody was added (1:4000 in 1% BSA (w/v) in TBST (Abcam, 

Cambridge, MA). Membranes were incubated for another hour, washed in TBST (10 times) and 

rabbit peroxidase conjugated antibody was added for a further hour incubation (1:2000 in 1% 

BSA (w/v) in TBST (Amersham). Following incubation, membranes were washed thoroughly 
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washed in TBST followed by TBS. Protein was detected by ECL Plus Chemiluminescence 

(Amersham) and Hyperfilm ECL film (Amersham).        

 

2.3 Effect of nicotine and folic acid treatment of beta cell function 

2.3.1 Cell Culture Maintenance  

All studies were conducted using INS 1E cells, a rat insulinoma beta cell line generously 

donated by Dr. Claes Wollheim (Geneva, Switzerland). Cells were maintained as described 

above. 

2.3.2 Glucose Stimulated Insulin Secretion 

Cells were seeded to a density of 20,000 cells /well in a 96 well plate (BD Biosciences). After 24 

hours to allow cells to adhere; cells were treated for 48 hours with vehicle (control) ± 10µm folic 

acid or 1µM nicotine ± 10µM folic acid in normal RPMI media. Following treatment, media was 

removed, plates were washed and glucose free media (Invitrogen) was added. Following a 2 hour 

incubation period, media was removed and KRBH (Krebs Ringer Buffer with HEPES, 135mM 

NaCl, 3.6mM KCl, 5mM NaHCO3, 0.5mM CaCl2, 10mM HEPES, 0.1% bovine serum albumin 

(BSA) at a pH of 7.4) with low (3.3µM) or high (16.7µM) glucose was added and allowed to 

incubate for 2 hours. This experiment was done in triplicate and assayed in duplicate 
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2.3.3 Rat Insulin ELISA 

The amount of insulin secreted in response to a glucose stimulus was assessed in spent 

media samples from treated INS 1E cells using a commercially available Ultra-Sensitive Rat 

Insulin ELISA kit (Chrystal Chem, Downers Grove, IL). Standards and samples were prepared 

according to manufacturer’s instructions. Briefly, standards, samples and sample diluent were 

added to a 96-well plate pre-coated with guinea pig anti-insulin antibody and incubated for 2 

hours at 4°C. The bound insulin in the standards and samples are then bound with a horse-radish 

peroxidase anti-insulin antibody followed by a detection with 3,3’,5,5’-tetramethylbenzidine 

(TMB) solution. Absorbance was determined at 450nm (primary wavelength) and 630nm 

(background wavelength). The amounts of insulin in the samples were determined by comparing 

sample values to the standard curve. 

 

2.3.4 Basal Insulin Secretion  

INS 1E cells were seeded to a density of 250,000 cells per well in 12-well plates (BD 

Biosciences). After allowing 24 hours to equilibrate, cells were treated with vehicle (control) ± 

10 µM folic acid or nicotine ± 10µM folic acid in duplicate for 48 hours. After treatment, media 

was removed, and cells were washed with 2.8mM glucose in KRBH (Krebs Ringer Bicarbonate 

buffer with HEPES, 135mM NaCl, 3.6mM KCl, 5mM NaHCO3, 0.5mM CaCl2, 10mM HEPES, 

0.1% bovine serum albumin (BSA) at a pH of 7.4,) then incubated for 30 minutes with 2.8mM 

glucose in KRBH. 500 µL of media was removed and stored at -20°C for assay by RIA. 
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2.3.5 Insulin Content 

INS 1E cells were seeded to a density of 250,000 cells per well in 12-well plates (BD 

Biosciences). After allowing 24 hours to equilibrate, cells were treated as control ± 10µM folic 

acid or nicotine ± 10µM folic acid in duplicate for 48 hours. After treatment, media was 

removed, and cells were washed with 2.8mM glucose in KRBH (Krebs Ringer Bicarbonate 

buffer with HEPES, 135mM NaCl, 3.6mM KCl, 5mM NaHCO3, 0.5mM CaCl2, 10mM HEPES, 

0.1% bovine serum albumin (BSA) at a pH of 7.4,) then incubated for 30 minutes with 2.8mM 

glucose in KRBH. Media was removed, and 1ml of acid ethanol (0.18M HCl in 70% Ethanol) 

was added to each well to lyse cells and release intracellular insulin. Following an overnight 

incubation at 4°C, media was removed and stored at -20°C for analysis by RIA. 

 

2.3.6 Radioimmunoassay (RIA) 

Insulin secretion was measured from spent media samples using a Sensitive Rat Insulin 

RIA Kit (Millipore, Billerica, MA) according to manufacturer’s instructions. Briefly, insulin 

samples collected from spent media were diluted 1:20 in assay buffer in 12x75mm glass test 

tubes in order to ensure that insulin concentrations fell within the linear portion of the standard 

curve. The following were added to all test tubes (with the exception of total counts tubes and 

non-specific binding tubes) for a final reaction volume of 300μl: 100μl spent media sample in 

duplicate (diluted 1:20) or 100μl standard insulin (known concentration) in duplicate; 100μl 

radiolabelled insulin; and 100μl insulin antibody. The total counts tubes only contained 100μl in 

duplicate of radiolabelled insulin; the non-specific binding tubes contained 200μl in duplicate of 

assay buffer. All tubes were incubated at 4°C for 20-24 hours. Following incubation, 1.0mL of 
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precipitating reagent was added to all tubes (except total counts tubes); tubes were incubated at 

4°C for an additional 20 minutes. The test tubes were then centrifuged for 40 minutes at 2,500 

rpm in 4°C (except total counts tubes). Following centrifugation, the supernatant was 

immediately decanted and all tubes were added to a gamma counter. All samples were read using 

the Wizard 1470 Automatic Gamma Counter (Perkin Elmer, Montreal, QC, CA). Samples were 

counted for 1 minute. The concentration (ng/ml) of rat insulin was automatically calculated by 

RIACalc (Perkin Elmer, Montreal, QC) from the standard curve. 

2.3.7 Western Blotting 

INS1E cells were treated for 48 hours with media alone (control), media containing 

10µM folic acid (Sigma Aldrich) or media containing 1µM nicotine alone (Sigma Aldrich) or 

1µM nicotine with 10µM folic acid . This dose of folic acid was chosen to be 4x the amount of 

folic acid in the media (2.2µM) which is similar to the predicted rise in serum folate levels in 

women who increase their folate intake. After treatment, plates were washed twice with DPBS 

(Hyclone), then scraped, centrifuged and resuspended in radioimmunoprecipitation assay (RIPA) 

buffer (15mM Tris-HCl, 1% (v/v) Triton X-100, 0.1% (w/v) SDS, 167mM NaCl, 0.5% (w/v) 

sodium deoxycholic acid) containing protease inhibitors (Roche). Lysed cells were sonicated at 

7Hz for 15 seconds.  

 

2.3.8 Insulin Regulation  

PDX-1 (pancreatic and duodenal homeobox 1) is a transcription factor that is necessary 

for the development of the pancreas and islets but also for the regulation of insulin gene 

expression (Fujimoto and Polonsky, 2009). Since nicotine treatment in vivo impaired insulin 



MSc Thesis - C.J. Nicholson                                                                             McMaster – Medical Science 

 

31 
 

secretion, it is conceivable that the nicotine treatment is leading to a down regulation of PDX-1 

which could in part, account for the decrease in insulin. In addition, the transcription factor 

Foxa2 is also responsible for insulin expression in mature beta cells and is a regulator of PDX-1 

(Lee et al., 2002). For this reason, expression of Foxa2 will also be assessed.    

Proteins (30µg for PDX-1 and 40µg for Foxa2) from control and nicotine treatment groups 

were subjected to SDS-PAGE (at 150V for 45 minutes, Pierce, Rockford IL) then 

electrotransferred to a PVDF membrane (at 40V for 90 minutes, BioRad Laboratories). 

Membranes were blocked for 3 hours at room temperature in 5% (w/v) skim milk in TBST (Tris 

buffered saline, 0.5% Tween 20) for PDX-1 and 3x 20 minutes in 10% skim milk at room 

temperature for foxa2 under gentle agitation. PDX-1 primary antibody (1:500, Santa Cruz 

Biotechnologies) and Foxa2 primary antibody (1:5000, Abcam) were incubated overnight at 4°C 

under gentle agitation, followed by several washes in TBST. Membranes were then incubated for 

1 hour peroxidase conjugated anti-rabbit antibody (1:70,000 for PDX-1 and 1:4000 for Foxa2, 

Amersham Biosciences NJ) on a rocking platform. Membranes were thoroughly washed in 

TBST followed by TBS. Protein was detected using ECL Plus chemiluminescence (Amersham, 

NJ) and Hyperfilm ECL film (Amersham, NJ). Densitometry analysis was performed using 

Image J 1.45v software. All proteins were quantified relative to alpha tubulin loading control. 

Briefly, membranes were incubated in stripping buffer (Thermo Scientific, Rockford, IL) for half 

an hour on a rocking platform. Membranes were quickly washed, and blocked with 1% (w/v) 

BSA (EMD Chemicals Inc., Gibbstown, NJ) in TBST. Following an hour incubation, blocking 

solution was removed, and α-tubulin primary antibody was added (1:10,000 in 1% BSA (w/v) in 

TBST (Abcam, Cambridge, MA). Membranes were incubated for another hour, washed in TBST 

(10 times) and rabbit peroxidase conjugated antibody was added for a further hour incubation 
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(1:4000 in 1% BSA (w/v) in TBST (Amersham). Following incubation, membranes were washed 

thoroughly washed in TBST followed by TBS. Protein was detected by ECL Plus 

Chemiluminescence (Amersham) and Hyperfilm ECL film (Amersham).        

 

2.3.9 MTS cell viability 

Cell viability was done to determine whether nicotine treatment lead to a decrease in cell 

survival which could indicate an increase in beta cell apoptosis.  

INS 1E cells were seeded to a density of 10,000 cells per well in 96-well plates and 

allowed to equilibrate for 24 hours. The cells were treated as control or 1µM, 10µM, 50µM or 

100µM nicotine dissolved in regular cell media. An MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed according to 

manufacturers’ instructions at 48 hours post treatment. 

 

2.3.10 Apoptosis 

To determine if the decreased glucose-stimulated insulin secretion was due to due a 

decrease in beta cell number, the expression level of Caspase 3 was assessed. Caspase 3 is 

activated by all three apoptotic pathways (Intrinsic and extrinsic).  

Protein (20µg) from each treatment group was subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford, IL) then electrotransferred to a PVDF membrane (at 40V for 90 

minutes; BioRad Laboratories). Membranes were blocked overnight with 5% (w/v) BSA in 

TBST (Tris buffered saline, 0.5% Tween 20) on a rocking platform and then incubated with 
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Caspase 3 primary antibody (1:250, Santa Cruz). After washing with TBST, membranes were 

incubated for 1 hour with peroxidase conjugated anti-rabbit secondary antibody (1:10,000 

Amersham Biosciences, NJ) on a rocking platform. Membranes were thoroughly washed in 

TBST followed by TBS washes. Protein was detected using ECL Plus chemiluminescence 

(Amersham Biosciences, NJ) and Hyperfilm ECL film (Amersham Biosciences, NJ). 

Densitometry analysis was performed using Image J 1.45v software. All proteins were quantified 

relative to alpha tubulin loading control.  Briefly, membranes were incubated in stripping buffer 

(Thermo Scientific, Rockford, IL) for half an hour on a rocking platform. Membranes were 

quickly washed, and blocked with 1% (w/v) BSA (EMD Chemicals Inc., Gibbstown, NJ) in 

TBST. Following an hour incubation, blocking solution was removed, and α-tubulin primary 

antibody was added (1:10,000 in 1% BSA (w/v) in TBST (Abcam, Cambridge, MA). Membranes 

were incubated for another hour, washed in TBST (10 times) and rabbit peroxidase conjugated 

antibody was added for a further 1 hour incubation (1:4000 in 1% BSA (w/v) in TBST 

(Amersham). Following incubation, membranes were washed thoroughly washed in TBST 

followed by TBS. Protein was detected by ECL Plus Chemiluminescence (Amersham) and 

Hyperfilm ECL film (Amersham).        

 

2.3.11 Glucose Uptake 

To determine if the decrease in insulin secretion is due to decreased glucose uptake in to 

the beta cell, expression of the glucose transport GLUT2 was measured.  

Protein (20µg) from each treatment group was subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford, IL) then electrotransferred to a PVDF membrane (at 40V for 90 
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minutes; BioRad Laboratories). Membranes were blocked overnight with 5% (w/v) skim milk in 

TBST (Tris buffered saline, 0.5% Tween 20) for Kir6.2 or 5% (w/v) BSA in TBST for GLUT2 

on a rocking platform and then incubated with primary antibody concentrations of 1:1000 

(GLUT2, Millipore), 1:200 (Kir6.2, Almone Labs). After washing with TBST, membranes were 

incubated for 1 hour with peroxidase conjugated anti-rabbit secondary antibody (1:10,000 and 

1:5000 for GLUT2 and Kir6.2 respectively, Amersham Biosciences, NJ) on a rocking platform. 

Membranes were thoroughly washed in TBST followed by TBS washes. Protein was detected 

using ECL Plus chemiluminescence (Amersham Biosciences, NJ) and Hyperfilm ECL film 

(Amersham Biosciences, NJ). Densitometry analysis was performed using Image J 1.45v 

software. All proteins were quantified relative to alpha tubulin loading control.  Briefly, 

membranes were incubated in stripping buffer (Thermo Scientific, Rockford, IL) for half an hour 

on a rocking platform. Membranes were quickly washed, and blocked with 1% (w/v) BSA (EMD 

Chemicals Inc., Gibbstown, NJ) in TBST. Following an hour incubation, blocking solution was 

removed, and α-tubulin primary antibody was added (1:10,000 in 1% BSA (w/v) in TBST 

(Abcam, Cambridge, MA). Membranes were incubated for another hour, washed in TBST (10 

times) and rabbit peroxidase conjugated antibody was added for a further hour incubation 

(1:4000 in 1% BSA (w/v) in TBST (Amersham). Following incubation, membranes were washed 

thoroughly washed in TBST followed by TBS. Protein was detected by ECL Plus 

Chemiluminescence (Amersham) and Hyperfilm ECL film (Amersham).        
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2.3.12 Glucose Consumption  

To determine if the reduction of glucose-stimulated insulin secretion was due to a 

reduction in glucose uptake into INS 1E cells, glucose consumption was assessed. 

INS 1E cells were seeded to a density of 100,000 cells per well in a 24-well cell culture 

plate (BD Biosciences). Following 24 hours to allow cells to equilibrate, cells were treated for 48 

hours as no cell control (contains the maximal amount of glucose in the media), control ± 10µM 

folic acid or 1µM nicotine ± 10µM folic acid in normal cell culture media (RPMI-1640). 

Following treatment, media was removed and cells were washed with DPBS followed by a 1 

hour incubation with normal (11.1mM) and high (16.7mM) glucose in KRBH. This media was 

removed and stored at -20°C until assay.  

 

2.3.13 Glucose Oxidase Assay 

Glucose consumption was measured by glucose oxidase assay (Point Scientific, Canton 

MI) according to manufactures instructions, briefly; 2.5µl of sample media was added to 250µl 

glucose oxidase reagent in a 96-well microplate and incubated at 37°C for 10 minutes. Following 

incubation, absorbance was measured at 492nm. Glucose consumption was determined by 

comparing the amount of glucose in the no cell control media to the treated cell media and 

normalizing it to the amount of protein in that well.   
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2.3.14 Mitochondrial Isolation  

To assess whether the decrease in insulin secretion was due to mitochondrial dysfunction, 

I measured mitochondrial electron transport chain activity. To generate mitochondrial fractions, 

INS 1E cells were treated for 48 hours with media containing vehicle (control) 10µmol/l folic 

acid or nicotine ± 10µmol/l folic acid, in 4 independent experiments. Five plates per treatment 

group were used to ensure adequate protein concentrations for analysis. After treatment, cells 

were washed with Ca
2+

 and Mg
2+

 free DPBS, scraped and collected in DPBS. Cells were pelleted 

by centrifugation (2,000 rpm for 5 minutes) and the pellet resuspended in HEPES buffer 

(100mM KCl, 70mM Sucrose, 220 mM mannitol, 1mM EGTA, 5mM HEPES, pH 7.4) 

supplemented with BSA and EDTA-free protease inhibitors (Roche, Laval, QC). Cells were 

manually homogenized in a glass Teflon dounce homogenizer and centrifuged at 3000 rpm for 

10 minutes to spin out nuclei. The supernatants were then centrifuged at 12,000 rpm for 10 

minutes. The resultant pellets were resuspended in HEPES buffer without BSA, spun twice more 

at 11,000 rpm for 10 minutes then snap frozen in liquid nitrogen and stored at -80°C until 

analysis. 

 

2.3.15 Mitochondrial Function 

Activity of the electron transport chain (ETC) was analyzed to determine mitochondrial 

function. All samples were analyzed in duplicate on a UV spectrophotometer (Varian Inc. Palo 

Alto, CA). Complex IV activity was determined by measuring the oxidation of cytochrome c by 

cytochrome c oxidase. Briefly, 15µl reduced cytochrome c (2µM, from equine heart, Sigma 

Aldrich) was added to 1ml of potassium phosphate (K2HPO4) buffer, pH 7.4, and mixed then 
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10µl of mitochondrial homogenate was added and allowed to equilibrate for 30 seconds and then 

measured. Reduced cytochrome c has a strong absorbance at 550nm. Once oxidized to 

ferricytochrome c by cytochrome c oxidase in the sample there is a decreased absorbance 

resulting in a negative slope. To determine the amount of mitochondria in the sample, 

mitochondrial sample were also analyzed for citrate synthase (a marker of mitochondrial mass). 

Briefly, 20µl of mitochondrial homogenate was added to 850µl Tris buffer (0.1M, pH 8.0), 

100µl DNTB (1mg/2.5ml in Tris buffer), and 10µl acetyl CoA in a cuvette and mixed. After an 

equilibration period 30µlof oxaloacetate was added to start the reaction. Citrate synthase in the 

sample catalyzes the conversion of acetyl CoA by oxaloacetate to form citrate and regenerate 

coenzyme A. An increase in absorbance is measured at 412 nm with a positive slope obtained.    

 

2.3.16 Expression of KATP channels   

Protein (20µg) from each treatment group was subjected to SDS-PAGE (at 150V for 45 

minutes, Pierce, Rockford, IL) then electrotransferred to a PVDF membrane (at 40V for 90 

minutes; BioRad Laboratories). The membrane was blocked overnight with 5% (w/v) skim milk 

in TBST (Tris buffered saline, 0.5% Tween 20) on a rocking platform and then incubated with 

primary antibody (1:200 in 5% skim milk (w/v) in TBST (Almone Labs, Jerusalem, Isreal) for 2 

hours. After washing with TBST, membranes were incubated for 1 hour with peroxidase 

conjugated anti-rabbit secondary antibody (1:5000, Amersham Biosciences, NJ) on a rocking 

platform. The membrane was thoroughly washed in TBST followed by TBS washes. Protein was 

detected using ECL Plus chemiluminescence (Amersham Biosciences, NJ) and Hyperfilm ECL 

film (Amersham Biosciences, NJ). Densitometry analysis was performed using Image J 1.45v 
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software. All proteins were quantified relative to alpha tubulin loading control. Briefly, 

membranes were incubated in stripping buffer (Thermo Scientific, Rockford, IL) for half an hour 

on a rocking platform. Membranes were quickly washed, and blocked with 1% (w/v) BSA (EMD 

Chemicals Inc., Gibbstown, NJ) in TBST. Following an hour incubation, blocking solution was 

removed, and α-tubulin primary antibody was added (1:10,000 in 1% BSA (w/v) in TBST 

(Abcam, Cambridge, MA). Membranes were incubated for another hour, washed in TBST (10 

times) and rabbit peroxidase conjugated antibody was added for a further hour incubation 

(1:4000 in 1% BSA (w/v) in TBST (Amersham). Following incubation, membranes were washed 

thoroughly washed in TBST followed by TBS. Protein was detected by ECL Plus 

Chemiluminescence (Amersham) and Hyperfilm ECL film (Amersham).         

 

2.3.17 Statistical Analysis 

All statistical analyses were performed using GraphPad Prism 5.0. With the exception of 

expression of FR and RFC (students t test), analysis was performed using one way ANOVA. 

When significance was indicated by ANOVA, Tukey post hoc comparison tests were 

applied. All data were tested for normality as well as equal variance. Outliers were 

calculated using GraphPad online outlier calculator 

(http://www.graphpad.com/quickcalcs/grubbsl.cfm). Values that were calculated to be 

outliers were excluded from analysis. Values are presented as mean ± SEM. A p value of 

less than 0.05 was considered significant. 

 

 

http://www.graphpad.com/quickcalcs/grubbsl.cfm
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3.0 Results 

3.1 Effect of Nicotine and folic acid treatment on markers of oxidative stress 

3.1.1 Folate Transporters  

Folate receptor and reduced folate carrier are present in the INS 1E cell line (figures 1.2 and 

1.3); nicotine treatment did not significantly alter expression of either protein (p= 0.83 and p= 

0.39, respectively, n=3). 

 

3.1.2 Oxidative stress 

Cells treated with nicotine had significantly higher expression of heat shock protein 70 

(HSP70) relative to control cells (p=0.0021, n=3, figure 1.4). In INS 1E cells treated with 1µM 

nicotine and 10µM folic acid, there was a significant decrease in HSP70 compared to nicotine 

treated cells (p=0.0047, n=3, figure 1.5)  

4-HNE was significantly up-regulated (p= 0.05, n=2) in nicotine treated INS 1E cells (figure 

1.6). In INS 1E cells treated with nicotine and 10µM folic acid, there was a significant decrease 

in 4-HNE expression (p= 0.01, n=2); in addition, folic acid treatment restored 4-HNE levels back 

to control levels. The addition of 10µM folic acid to control INS IE cells had no effect on 4-HNE 

levels. 

 

3.2 Effect of Nicotine and folic acid treatment on endogenous antioxidants 

3.2.1 MnSOD 

Expression of MnSOD was significantly increased with treatment of 1µM nicotine (p=0.028, 

n=3) compared to control (figure 2.1). The addition of 10µM folic acid to the control media did 
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not alter expression versus control. The addition of 10µM folic acid did not reduce expression 

levels of MnSOD compared with control, and remained at the same level as the nicotine 

treatment alone.  

3.2.2 Cu/ZnSOD 

Expression of Cu/ZnSOD did not change with nicotine treatment compared with control 

(p=0.40, n=3). There was a significant (p=0.047) decrease in expression in the nicotine + 10µm 

folic acid group versus nicotine treatment only (figure 2.2). 

 

3.2.3 Catalase 

Expression of Catalase was unchanged with treatment of nicotine compared with control; 

likewise, the control + 10µm folic acid treatment group remained unchanged. There was a 

significant decrease with the addition of 10µm folic acid in the nicotine treated group compared 

to nicotine treatment alone (p=0.0023, n=3), figure 2.3.  

 

3.3 Effect of nicotine and folic acid treatment on beta cell function 

3.3.1 Glucose Stimulated Insulin Secretion 

There was a significant increase in insulin secretion following high glucose stimulation in 

control INS 1E cells (p=0.0056, n=3, figure 3.1). In cells treated with folic acid, nicotine or 

nicotine plus folic acid (i.e., control + 10µm folic acid, nicotine, and nicotine + 10µm folic acid), 

the insulin secretion in response to high glucose was not significantly different than that seen 

under low (i.e. 3.3mM) glucose conditions.  
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3.3.2 Basal Insulin secretion 

There was a significant decrease in basal insulin secretion following nicotine treatment 

compared with control (p=0.023, n=5, figure 3.2).  

 

3.3.3 Insulin Content  

There was a significant increase in insulin content in the 1µm nicotine + 10µm folic acid 

compared to control and control + 10µm folic acid (p=0.027 and p=0.008 respectively, n=5). 

There was no change in insulin content in the nicotine group compared with any other treatment 

group, Figure 3.3. 

 

3.3.4 Insulin Regulation  

There was no change in expression of PDX-1 between control, control + 10µm folic acid and 

nicotine treatment groups. There was a significant increase of expression when comparing PDX1 

expression in cells treated with 1µm nicotine + 10µm folic acid (p<0.0001, n=3, figure 3.4) 

relative to all other groups.  

There was no significant effect of any treatment on fox a2 (p=0.75, n=3, figure 3.5).  

 

3.3.5 MTS Cell Viability 

  Nicotine, at concentrations up to 100µM had no effect on INS 1E cell viability (p= 0.77, 

figure 3.6). 
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3.3.6 Apoptosis 

Expression of Caspase 3 between the 4 treatment groups was not significantly different  

(p=0.43). See figure 3.8.  

 

3.3.7 Glucose Uptake  

Expression of GLUT2 between the 4 treatment groups was not significantly different 

(p=0.34).  

 

3.3.8 Glucose Consumption  

There was no change in the amount of glucose consumed at normal (11.1mM) or high 

(16.7mM) glucose concentrations (p= 0.23 and 0.57 respectively , n=5), figure 3.9 A, B and C 

 

3.3.9 Mitochondrial Function 

Nicotine treatment alone or in combination with folic acid did not significantly alter 

Complex IV activity (p=0.71, n=4). Moreover, there was no effect of any treatment on citrate 

synthase activity (p=0.85, n=4) or the ratio of complex IV to citrate synthase activity (p=0.84, 

n=4, figures 3.10A, B and C) 
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 3.3.10 Glucose Signaling  

Expression of Kir6.2 was significantly increased in INS 1E cells treated with 1µm nicotine 

compared to control (p=0.019, n=3, figure 3.11). There was a trend toward decreasing expression 

with the addition of folic acid (p=0.067). 
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Figure 1.2 Effect of nicotine treatment on folate receptor expression 

Folate receptor expression in INS 1E cells 48 hours post treatment with saline or 1µM nicotine. 

Data are expressed as optical density relative to beta actin loading control and represented as 

mean ± SEM, n=3. The above panels are a representative band for each treatment group from the 

western blot. Each graph is a quantification of all samples. 
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Figure 1.3 Effect of nicotine treatment on reduced folate carrier expression 

Reduced folate carrier expression in INS 1E cells 48 hours post treatment with saline or 1µM 

nicotine. Data are expressed as optical density relative to beta actin loading control as 

represented as mean ± SEM, n=3. The above panels are a representative band for each treatment 

group from the western blot. Each graph is a quantification of all samples. 
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Figure 1.4 Effect of nicotine treatment on HSP70 Expression 

HSP70 expression in INS 1E cells 48 hours post treatment with saline or 1µM nicotine. Data are  

expressed as optical density relative to beta actin loading control and represented as mean ± 

SEM, n=3. A double asterisk denotes a p value <0.01. The above panels are a representative 

band for each treatment group from the western blot. Each graph is a quantification of all 

samples. 
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Figure 1.5 Effect of nicotine and folic acid treatment on HSP70 Expression 

HSP70 expression in INS IE cells 48 hours post treatment with 1µM nicotine ± 5 or 10µM folic 

acid. Data are expressed as optical density relative to beta actin loading control and represented 

as mean ± SEM, n=3. An asterisk denotes a p value <0.05. The above panels are a representative 

band for each treatment group from the western blot. Each graph is a quantification of all 

samples. 



MSc Thesis - C.J. Nicholson                                                                             McMaster – Medical Science 

 

48 
 

4-HNE

C
ontr

ol

C
ontr

ol +
 F

A

N
ic

otin
e

N
ic

otin
e 

+ 
FA

0

5

10

15

20

a

b

a

ab

O
D

 R
e
la

ti
v
e
 t

o


 A
c
ti

n

4-HNE

β Actin 40 kDA

48 kDA

 

Figure 1.6 Effect of nicotine and folic acid on 4-HNE expression  

4-HNE expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 1µM 

nicotine ± 10µM folic acid. Data are expressed as optical density relative to beta actin loading 

control and represented as mean ± SEM, n=3. Bars with different superscripts are significantly 

(p<0.05) different. The above panels are a representative band for each treatment group from the 

western blot. Each graph is a quantification of all samples. 
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Figure 2.1 Effect of nicotine and folic acid on MnSOD expression 

MnSOD expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. Data are expressed as optical density relative to beta actin 

loading control and represented as mean ± SEM, n=3. Bars with different superscripts are 

significantly (p<0.05) different. The above panels are a representative band for each treatment 

group from the western blot. Each graph is a quantification of all samples. 
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Figure 2.2 Effect of nicotine and folic acid on Cu/ZnSOD expression 

Cu/ZnSOD expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. Data are expressed as optical density relative to beta actin 

loading control and represented as mean ± SEM, n=3. Bars with different superscripts are 

significantly (p<0.05) different. The above panels are a representative band for each treatment 

group from the western blot. Each graph is a quantification of all samples. 
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Figure 2.3 Effect of nicotine and folic acid on catalase expression 

Catalase expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. Data are expressed as optical density relative to alpha tubulin 

loading control and represent as mean ± SEM, n=3. Bars with different superscripts are 

significantly (p<0.05) different. The above panels are a representative band for each treatment 

group from the western blot. Each graph is a quantification of all samples. 
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Figure 3.1 Effect of nicotine and folic acid on glucose stimulated insulin secretion 

Glucose stimulated insulin secretion in INS 1E cells 48 hours post treatment with saline ± 10µM 

folic acid or 1µM nicotine ± 10µM folic acid. Data are expressed as a percentage of the low 

glucose control, n=3. An asterisk denotes a p value <0.05.  
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Figure 3.2 Effect of nicotine and folic acid on basal insulin secretion 

Basal Insulin secretion inn INS 1E cells 48 hours post treatment with saline or 1µM nicotine ± 5 

or 10µM nicotine. Data are expressed as a percentage of the control, n=5. Bars with different 

superscripts are significantly (p<0.05) different.  
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Figure 3.3 Effect of nicotine and folic acid on insulin content  

Insulin content in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 1µ 

nicotine ± 10µM folic acid. Data are expressed as ng insulin per 250,000 cells, n=5. Bars with 

different superscripts are significantly (p<0.05) different. 
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Figure 3.4 Effect of nicotine and folic acid on PDX-1 expression 

PDX-1 expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 1µM 

nicotine ± 10µM folic acid. Data are expressed as optical density relative to alpha tubulin 

loading control and represented as mean ± SEM, n=3. A triple asterisk denotes a p value 

<0.0001. The above panels are a representative band for each treatment group from the western 

blot. Each graph is a quantification of all samples. 
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Figure 3.5 Effect of nicotine and folic acid on foxa2 expression 

Foxa2 expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 1µM 

nicotine ± 10µM folic acid. Data are expressed as optical density relative to alpha tubulin 

loading control and represented as mean ± SEM, n=3. The above panels are a representative 

band for each treatment group from the western blot. Each graph is a quantification of all 

samples. 
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Figure 3.6 Effect of nicotine treatment on cell viability 

MTS cell viability 48 hours post treatment with saline or 1, 10, 50 or 100µM nicotine. Data are 

expressed as a percentage of the control. 
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Figure 3.7 Effect of nicotine and folic acid on Caspase 3 expression  

Caspase 3 expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. Data are expressed as optical density relative to beta actin 

loading control and represented as mean ± SEM, n=3. The above panels are a representative 

band for each treatment group from the western blot. Each graph is a quantification of all 

samples. 
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Figure 3.8 Effect of nicotine and folic acid on GLUT2 expression  

GLUT2 expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. Data are expressed as optical density relative to alpha tubulin 

loading control and represented as mean ± SEM, n=3. The above panels are a representative 

band for each treatment group from the western blot. Each graph is a quantification of all 

samples. 
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Figure 3.9 Effect of nicotine and folic acid on glucose consumption at normal and high 

glucose concentrations     

Glucose consumption in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid at A) normal (11.1mM) glucose or B) high (16.7mM)  glucose 

concentrations. Data are presented as µg glucose consumed per µg protein, n=5.                
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Figure 3.10 Effect of nicotine and folic acid on mitochondrial function 

Mitochondrial function in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 

1µM nicotine ± 10µM folic acid. A) Effect on cytochrome c oxidase (complex IV), B) effect on 

citrate synthase and C) effect on ratio of cytochrome c oxidase to citrate synthase. Data are 

expressed as a percentage of the control, n=4.                
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Figure 3.11 Effect of nicotine and folic acid on kir6.2 expression 

Kir6.2 expression in INS 1E cells 48 hours post treatment with saline ± 10µM folic acid or 1µM 

nicotine ± 10µM folic acid. Data are expressed as optical density relative to alpha tubulin 

loading control and represented as mean ± SEM, n=3. Bars with different superscripts are 

significantly (p<0.05) different. The above panels are a representative band for each treatment 

group from the western blot. Each graph is a quantification of all samples. 
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4.0 Discussion  

4.1 Effect of nicotine and folic acid treatments on markers of oxidative stress 

4.1.1 Maternal smoking 

Approximately 10-20% of Canadian women smoke during pregnancy (The Source 2011), 

although this number varies widely according to ethnic and geographical regions reaching as 

high as 85% (Mehaffey K, 2010). Smoking during pregnancy causes several adverse obstetrical 

outcomes including risk of low birthweight, perinatal mortality and sudden infant death 

syndrome (Castles A, 1999). The nicotine found in tobacco smoke is readily able to cross the 

placental barrier and fetal concentrations can generally be 15% higher than maternal levels. 

(Lambers and Clark 1996) In developed countries cigarette smoke is the most modifiable 

chemical insult encountered during pregnancy (Gruslin A et al. 2009 and Lambers DS 1996). 

Furthermore, mounting epidemiological evidence demonstrates that fetal exposure to cigarette 

smoke increases the risk of developing type 2 diabetes during adulthood (Behl M et at. 2012). 

Animal data suggest that nicotine, the major addictive component of cigarette smoke, maybe 

responsible, in part, for this increased risk of diabetes. Indeed, animal studies have demonstrated 

that fetal and neonatal exposure to nicotine results in dysglycemia in rodents (Bruin et al. 2007). 

It has also been shown that nicotine induces oxidative stress in beta cells of neonates, which 

subsequently triggers beta cell death and the onset of dysglycemia in early adulthood (Bruin 

2008b, 2008c).  Previous work from our lab has demonstrated that an antioxidant intervention 

during pregnancy preserves beta cell mass, however the antioxidant cocktail used in this study 

(i.e., vitamin E, alpha lipoic acid and COQ10) had adverse effects on fetal growth (Bruin et al. 

2012).  Therefore the goal of this study was to identify in vitro whether or not a different 



MSc Thesis - C.J. Nicholson                                                                             McMaster – Medical Science 

 

64 
 

antioxidant, namely folic acid, could preserve beta cell function.  We selected folic acid as our 

antioxidant for this study because of: a) its safety in pregnancy; b) its widespread acceptance 

amongst both care providers and women for its beneficial effects on preventing neural tube 

defects; c) its ability to improve glucose tolerance in adult rats (Buettner et al. 2010) and d) the 

fact that folate levels are lower in smokers vs. non-smokers (van Wersch et al 2002, Cogswell et 

al 2003, Stark et al 2005, Jauniaux et al 2007). 

 

4.1.2 Smoking and folate status 

It is well established that smokers have decreased levels of serum antioxidants and in 

particular, the level of folate is decreased in smokers vs non-smokers  (22.7 vs 29.4nM) (van 

Wersch et al. 2002, Cogswell et al. 2003, Stark et al. 2005 and Jauniaux et al. 2007).  

Although it has been suggested that difference seen in folate levels in smokers vs non-

smokers is due to dietary differences (smokers tend to eat less vegetables than non-smokers), 

evidence suggests that this is not the case. It has been found that the dietary folate intake is not 

significantly different between smokers and non-smokers (McDonald et al 2002, Mansoor et al 

1997). However, some socio-economic factors could also account for the discrepancy. An 

epidemiological study from Norway suggested that the mean supplemental folic acid intake was 

higher in women who did not smoke, were married or co-habiting, and had a higher education 

(Nilsen et al 2010). The discrepancy in levels of folate supplementation between smokers and 

non-smokers suggests that this group might be at risk for the complications of folate deficiency; 

and could benefit from additional folate.  
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Recent studies (Wani et al., 2011) have shown that ethanol exposure can reduce 

expression of folate transporters in the rat pancreas. This reduction in folate transporters leads to 

reduced uptake folate within the pancreas. To date, no such studies have been done to determine 

whether nicotine exposure has an effect on folate transporter expression in the pancreas, and 

specifically, in the beta cell. If chemical exposures are able to disrupt the expression levels of 

folate transporters, then this could explain the decreased levels of folate that are seen in smokers. 

Our studies showed no effect of nicotine treatment on the folate transporters FR and RFC in 

pancreatic beta cells. But, it is possible that there could still be decreased folate uptake. Indeed, 

in placental tissue, high glucose (30mM), nicotine (0.1 and 10µM) and other drugs of abuse 

reduced folate uptake in human cytotrophoblasts in vitro (Keating et al, 2009).  If this is true for 

beta cells as well, then the reduced folate uptake could contribute to disrupted one carbon 

metabolism (i.e. could affect beta cell mass through reduction in beta cell proliferation). 

 

4.1.3 Effect of nicotine and folic acid on oxidative stress 

Both nicotine and low folate are associated with oxidative stress (Wetscher et al 1995, 

Huang et al, 2004, Chern et al. 2001, Barr et al. 2007). Nicotine exposure has been shown to 

increase levels of HSP70 (a marker of oxidative stress), protein carbonyls (a marker of oxidative 

damage) and antioxidant enzymes in pancreatic tissue in vitro and in vivo (Ermis et al 2004, 

Woynillowicz et al 2012, Bruin et al 2008b). Indeed, in a study of folate depletion, low folate 

decreased Cu/ZnSOD and GPx and increased lipid peroxidation in rat livers (Huang et al 2001). 

Like low folic acid, nicotine also negatively affects tissues, and most importantly, adversely 

affects endocrine pancreas tissue (Bruin et al. 2008b, Holloway et al. 2005, Wetscher et a. 1995). 
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Low folate status is associated with increased homocysteine levels (Gupta et al, 1998) 

and increasing homocysteine levels have been implicated in a number of disease states including 

diabetes (Elias and Eng 2005). Folate supplementation has been shown to improve both 

oxidative stress and increased homocysteine levels in various tissues (Torrens et al. 2006, 

Delfino et al. 2007, Al-Maskari et al. 2012), making it a viable option as an antioxidant therapy. 

In particular, folate supplementation has been shown to improve endothelial dysfunction 

associated with T2DM (Title et al., 2006) and reduce the risk of developing T2DM according to 

the Pune Maternal Nutrition Study (PMNS) (Yajnik et al., 2008).  

The goal of my study was to determine if folic acid supplementation could reduce or 

prevent nicotine-induced damage to pancreatic beta cells in vitro. 

With nicotine treatment there was increase in expression of the chaperone protein HSP70, 

which is a marker of overall cellular stress, including oxidative stress. This finding is consistent 

with data from the literature showing the stress-inducing nature of nicotine (Woynillowicz et al 

2012). The function of HSP70 is to prevent cellular apoptosis by associating with Apaf-1 (part of 

the apoptotic complex, the apoptosome) (Beere et al. 2000 and Saleh et al. 2000). Furthermore, 

nicotine treatment also caused an increase in the oxidative damage marker 4-HNE. In this 

instance oxidative damage is in the form of lipid peroxidation and is the oxidative degradation of 

lipids, where free radicals remove electrons in cellular membranes which results in cellular 

damage (Uchida 2003, Blokhina et al. 2003). Destruction to cellular membranes by lipid 

peroxidation can result in significant tissue damage, since lipid peroxidation is a self-propagating 

reaction (Mylonas and Kouretas, 1999).  4-HNE damages fatty acids by initiating a free radical 

attack on the unsaturated bonds of membrane fatty acids. If 4-HNE levels are increased 

excessively, cellular function can be compromised resulting in death of the cell (Mattson, 2009). 
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I have shown that with nicotine treatment in INS 1E cells of 1uM for 48 hours, there is a 

significant increase in the overall cellular stress marker HSP 70 and oxidative damage marker 4-

HNE. This data are consistent with the adverse effects of nicotine found by others (Helen et al. 

1999, Bruin et al. 2008b, Chattopadhyay and Chattopadhyay 2008) Furthermore, co-treatment 

INS1 E cells with nicotine and folic acid (10uM) significantly reduced the up-regulation of 

HSP70 and 4 HNE. This suggests that folic acid treatment is able to counteract the damaging 

effects of nicotine administration. In both instances, the addition of folic acid reduced the 

expression of both proteins significantly.   

Individuals with low folate status have higher concentrations of homocysteine. 

Hyperhomocysteinaemia is associated with adverse health outcomes, including impaired insulin 

secretion by pancreatic beta cells. However, exposure to homocysteine did not alter cellular 

insulin content, cell viability or apoptosis (Patterson et al. 2006). Furthermore, increasing levels 

of homocysteine impaired the secretory response to the drug tolbutamide. Tolbutamide interacts 

with the SUR1 subunit of the KATP channel, causing channel closure and insulin release. In 

addition, increasing levels of homocysteine caused an inhibition of insulin secretion to beta cells 

undergoing direct membrane depolarization (Patterson et al, 2006). Since smoking leads to 

decreasing folate levels, increased homocysteine associated with low folate could be how 

smoking/nicotine exposure increases the risk for developing diabetes.  Indeed, Maloney et al 

(2011) have examined glucose homeostasis in the offspring exposed to a low folate maternal 

diet. The low folate diet had no initial effect of body mass of the offspring compared with control 

pups, although the litters were smaller in number. At the end of the study males exposed to the 

low folate diet in utero were significantly heavier than controls, were insulin resistant and had 

elevated fasting glucose levels. Therefore, the offspring born to women who smoke which have 
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low folate levels could be at risk for the development of type 2 diabetes. It is possible that the 

adverse effects seen with nicotine treatment in vitro would be more pronounced in folate-

deficient media, but this would have to be the focus of future studies.           

 

4.2 Effect of nicotine and folic acid treatment on antioxidants 

All eukaryotic cells contain antioxidant enzymes which function to offset the negative 

effects of oxidative stress. One of the major families of antioxidant enzymes are the superoxide 

dismutases (SOD). The primary function of SOD is the conversion of superoxide to oxygen and 

hydrogen peroxide (Tollefson et al, 2010).The antioxidant catalase (CAT) functions to convert 

hydrogen peroxide to water and oxygen. These antioxidants are an important defense mechanism 

to protect cells from the damaging effects of reactive oxygen species (ROS). This is especially 

true for the pancreatic beta cell, which is particularly vulnerable to ROS (Xu et al. 1999, 

Robertson 2004). Compared to other tissue types (i.e. liver, kidney, brain), pancreatic islets have 

the lowest levels of endogenous antioxidants (i.e. SOD, CAT and GPx) (Lenzen et al., 1996). 

ROS are necessary molecules for cellular signaling (i.e. conveying extracellular and intracellular 

signals to the nucleus), however, an overproduction of ROS can be detrimental to cells (Poli et 

al. 2004, Martin and Barrett 2002).  

There have been several studies linking cigarette smoking and/or nicotine exposure to 

increased oxidative stress (Aycicek et al, 2010, Menon et al, 2011 and Crowley-Weber et al, 

2003). Datum from my experiments has shown that treatment with 1µm nicotine causes a 

significant increase in the mitochondrial SOD, MnSOD compared with vehicle treated cells. 

There was no increase in the cytosolic SOD, Cu/ZnSOD nor was there an increase in catalase. 
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With the addition of 10µm folic acid to the nicotine group, there was a significant decrease in 

expression in both Cu/ZnSOD and catalase compared to the nicotine only treatment group. 

Interestingly, the addition of folic acid failed to reduce the expression of MnSOD which 

remained at the same level as the nicotine only group. It is possible that the oxidative stress 

caused by the nicotine is affecting the mitochondria within the beta cell more than the cell as a 

whole. Indeed, it has been shown that mitochondria are sensitive to the damaging effects of ROS 

(Duprez et al, 2012).  Crowley-Weber et al. (2003) showed that 0.8µM of nicotine is sufficient to 

decrease the mitochondrial membrane potential which could lead to mitochondrial dysfunction. 

In an in vivo model of fetal nicotine exposure, nicotine treatment caused mitochondrial 

dysfunction in the pancreas of the offspring (Bruin et al., 2008c).  It is therefore possible that the 

nicotine-induced reduction in insulin secretion from INS1E cells reported by Woynillowicz et al. 

(2012) and in this study (Figure 3.1) is a result of mitochondrial stress. 

Pi et al. suggest that while an increase in the endogenous anti-oxidant expression is 

beneficial for preventing oxidative damage and possible cell death (2010), it could be a double-

edged sword. The group also suggests that the increase in endogenous anti-oxidant expression 

decrease the signals needed for adequate glucose stimulated insulin secretion (GSIS), thereby 

reducing insulin secretion in the INS 1(823/13) cell line (2007). Although the addition of folic 

acid to the nicotine group did not reduce expression of MnSOD, there was a reduction of both 

oxidative stress in this treatment group (as seen with reduced expression of HSP70 and 4-HNE). 

Perhaps the consistent elevation of MnSOD, even though there is a decrease in oxidative stress, 

could account for persistent decrease In GSIS seen in this group.  

 



MSc Thesis - C.J. Nicholson                                                                             McMaster – Medical Science 

 

70 
 

4.3Effect of nicotine and folic acid treatment on beta cell function 

4.3.1 Effect on insulin secretion 

Yoshikawa et al (2005) and Bruin et al (2008b), showed that the nicotinic acetylcholine 

receptors (nAChR’s) are present within both the pancreas and the beta cell. Results from my 

study and Woynillowicz et al. (2012) have demonstrated that nicotine can have a direct negative 

affect on the beta cell to reduce GSIS; an effect which is likely mediated through an increase in 

oxidative stress. 

Results from my work have shown that treatment of INS 1E cells with 1µm nicotine for 

48 hours caused a significant decrease in basal insulin secretion and an ablation of GSIS. We 

wanted to determine if an antioxidant intervention would preserve insulin secretion  

With the addition of 10µm folic acid, there was a trend toward increased basal and 

glucose stimulated insulin secretion in nicotine-treated cells. While the basal insulin secretion in 

the nicotine plus folic acid treated cells was not significantly different from that seen in cells 

treated with nicotine alone, it was also not significantly decreased from the control group, 

suggesting that the addition of 10µm folic acid returned basal insulin secretion in nicotine treated 

cells to normal levels. It is interesting to note that control cells treated with folic acid also failed 

to produce an insulin response to high glucose (i.e. ablation of GSIS). A possible explanation 

could be that in healthy individuals, the administration of antioxidants can have a negative 

impact on health (i.e. high doses of vitamin E can increase mortality), whereas someone in a 

disease state would find beneficial effects of antioxidant administration (Anderson et al, 2010, 

Miller et al. 2005). Indeed, in clinical studies the effects of antioxidant interventions are not 

always beneficial. For example, folic acid has been shown to be effective for stroke prevention 
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(Wang et al, 2007), whereas other studies have shown no effect or dual effects (Wrone et al, 

2004, Mullin 2011, Ly et al 2011, Kim 2004). It should be noted, however, that the best possible 

candidates may not have been chosen to participate in the clinical trials, which could lead to the 

confounding results seen with antioxidant intervention (Collins 2005). Although the adverse 

effects of excessive ROS have been well documented, ROS at physiological concentrations serve 

as cellular signals, and are therefore essential. The addition of additional antioxidants where 

none are needed may also have detrimental effects to the cell, as its signals to function have 

diminished (Thannickal and Fanburg 2000).  

 

4.3.2 Effect on Glucose uptake 

Patients with T2D show a marked reduction in the glucose transporter GLUT2 (Del 

Guerra et al, 2005), which could be partially responsible for the decrease in insulin secretion in 

diabetes.  

In the Zucker diabetic rat model, it has been found that the expression of GLUT 2 is 

normal in pre-diabetic rats, but is vastly reduced (75%) once blood glucose levels exceed 11mM 

(Unger 1991). This reduction in GLUT-2 could be partially responsible for the reduced GSIS 

seen with this model. Similar to this, Thorens et al (1990 and 1992) showed that the reduction in 

GLUT2 expression was proportional to the severity of hyperglycemia (i.e. the more severe the 

hyperglycemia the more profound the reduction in GLUT2 expression). Furthermore, they found 

the loss of GLUT2 is induced by the diabetic environment and can be reversed by transplanting 

islets from diabetic db/db mice to non-diabetic db/+ mice.  To determine if treatment with 

nicotine reduced GLUT-2 in the INS 1E cells, we determined the expression of GLUT-2 by 
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western blot and found no change, leading us to the assumption that the reduced GSIS is 

occurring through another mechanism.   

To determine if there is a decreased activity of the glucose transporter we quantified the 

amount of glucose that was taken up by the cells from the cell culture media. If less glucose is 

being consumed by nicotine treated cells; then less ATP will produced from the glucose and 

ultimately, less insulin released. We determined that at both normal (11.1mM) and high 

(16.7mM) glucose concentrations, there was no change in glucose consumption. Studies have 

shown that cigarette smoke can decrease peripheral glucose uptake (Attvall et al. 1993), however 

this is the first study showing the effects of nicotine exposure on beta cell glucose uptake.  

 

4.3.3 Effect on insulin content  

To determine if the reduced GSIS in nicotine treated cells was due to an overall reduction 

in the amount of insulin within the cell, we quantified the amount of insulin in treated INS 1E 

cells. We found that there was no reduction in insulin content with nicotine treatment, suggesting 

that the reduction in GSIS is not due to less insulin present within the cell (and therefore less 

insulin to secrete). Interestingly, we found a significant increase in the amount of insulin in the 

nicotine plus folic acid group, which is consistent with the increased expression of the 

transcription factor pancreatic and duodenal homeobox 1 (PDX1).   

PDX-1 is an important transcription factor required for early pancreatic development. 

Indeed, studies have shown that PDX1 null mice show pancreatic agenesis (Fujimoto and 

Polonsky 2009, Kim and Hebrok 2001). In the mature pancreas, PDX1 becomes restricted to 

mature β cells where it regulates β cell specific genes, namely insulin, where it binds directly to 
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A/T rich elements of the Ins promoter (Melloul 2004 and Chakrabarti and Mirmira 2003). PDX1 

is essential is mature β-cell function; missense and frameshift mutations within the Pdx1 gene 

result in defective insulin secretion (Fujimoto and Polonsky, 2009 and Brissova et al 2002). In 

vivo studies of both intrauterine growth restriction and nicotine exposure show a reduction in 

expression of the transcription factor PDX-1 (Xu et al, 2011 and Somm E et al, 2008). 

Furthermore, progressive epigenetic silencing of pdx1 leads to type 2 diabetes in adulthood (Park 

et al, 2008). I found no such reduction in PDX -1 expression with nicotine treatment alone, 

however, it maybe that in my in vitro model the exposure time wasn’t long enough to see such 

changes. 

The transcription factor Foxa2 (formerly known as HNF3β), like PDX1, is necessary for 

proper pancreas formation. In addition, β-cell specific deletion of Foxa2 results in attenuation of 

the genes encoding PDX1 and KATP channels resulting in profound hypoglycemia (Sund et al 

2001, Chakrabarti and Mirmira 2003), showing that Foxa2 is an important regulator of these two 

genes. Furthermore, Foxa2 is also required in the mature β cell for insulin secretion (Gao et al, 

2007). Due to its function as an activator of PDX1, we determined if, like PDX1, expression of 

foxa2 was increased in INS 1E cells treated with nicotine and folic acid. We found that although 

PDX1 was significantly increased, there was no similar increase in Foxa2, suggesting that the 

increase in PDX1 was occurring through another pathway. To date, this is the first study which 

shows that folate supplementation may alter PDX-1 expression. Poor maternal nutrition leads to 

decreased expression of PDX-1 through decreased histone acetylation at the PDX-1 promoter 

coinciding with increased DNA methylation. These changes result in epigenetic silencing of 

PDX-1 and the progression toward type 2 diabetes of the offspring (Simmons, 2007). It is 

possible that folate supplementation (a methyl donor) is increasing H3K4 methylation on the 
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PDX-1 promoter leading to an increase in expression (as opposed to increased H3Kp 

methylation which is consistent with gene silencing (Park et al. 2008).   

 

4.3.4 Effect on apoptosis 

Patients with type 2 diabetes have reduced beta cell mass (Rhodes, 2005). In the initial 

stages of diabetes, the pancreas is able to initially increase beta cell mass to compensate for the 

increasing glucose levels (Weir et al 2001, Weir and Bonner-Weir 2004 and Kahn 2001). 

However, increased beta cell mass is unable to be sustained indefinitely. The end result is 

reduced beta cell mass, an effect which occurs through beta cell apoptosis (Butler et al, 2003). 

Animal studies of fetal and neonatal nicotine exposure show a reduction in serum insulin levels 

coinciding with an increase in apoptosis at birth (Holloway et al, 2005), an effect which was later 

shown to be mediated via the mitochondrial apoptotic pathway (Bruin et al, 2008a).  

I had previously found an increase in expression of 4-HNE, a marker of lipid 

peroxidation. Lipid peroxidation of cellular membranes can affect cellular function and cause 

apoptosis (Mattson, 2009). To determine if the reduction in insulin release was due to a reduction 

in beta cell number (due to apoptosis) expression of Caspase 3 was assessed. Caspase 3 is the last 

Caspase to be activated in the Caspase signaling cascade. Caspase 3 is the only Caspase to be 

activated by all apoptotic pathways (intrinsic and extrinsic); because of this we chose to 

determine the expression level of Caspase 3. I found no increase in Caspase 3. This suggests that 

the reduction in insulin secretion in vitro in the nicotine treated cells is unlikely to be occurring 

through apoptosis in vitro. This is consistent with MTS data (used to show effects on cell 

viability/proliferation) where nicotine treatment had no effect. Other studies have looked at the 
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effects of nicotine exposure on the effects of apoptosis. These studies showed an increase in 

Caspase 3 activation, however, the doses were considerably higher than the dose we used (5mM 

and 50uM) (Kang et al. 2011, Ramlochansingh et al. 2011). Due to the low concentration of the 

nicotine in the present study (1µM), it is likely that we would not see an increase in apoptosis at 

the time point tested (48 hours).  

 

4.3.5 Effect on mitochondrial function (glucose sensing)  

There is considerable evidence linking mitochondrial dysfunction to the development of 

type 2 diabetes (Lowell et al 2005). The role of mitochondria in the beta cell is to link glucose 

uptake to insulin secretion. If the mitochondria are not working properly then there will be a 

decrease in the amount of ATP produced and therefore a reduction in the amount of insulin 

released. Studies have shown in vivo and in vitro, that nicotine has a negative impact on 

mitochondrial function within the beta cell (Bruin et al 2008, Bruin et al 2010, Woynillowicz et 

al 2012). Data from my experiments, however, has shown that in vitro nicotine exposure to the 

INS 1E beta cell line does not result in mitochondrial dysfunction, despite the reduction in basal 

and glucose stimulated insulin secretion. This is in disagreement with Woynilowicz et al (2012); 

who found that in vitro nicotine exposure lead to dysfunction of complex IV in the mitochondria. 

It has been noted that passage number of a cell line can affect its function (American Type 

Culture Collection (ATCC) 2007), where the stress of cell culturing can create phenotypic 

changes in the cells.  In addition, the INS 1E cell line tends to be particularly sensitive to 

temperature and humidity changes (personal observation). This could account for the 

discrepancy of findings seen in this experiment and in those of Woynilowitcz et al.. It is then 
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likely that the reduction in insulin release, at least initially, is occurring through another 

mechanism.  

Since there was no effect of nicotine treatment on GLUT2 expression and on 

mitochondrial function, then therefore we assume that there would be no change in the amount of 

ATP produced in control and nicotine treated beta cells. Therefore, the impairment of insulin 

secretion seen with nicotine treatment could be due to a defect in the secretory mechanism of 

insulin secretion.  

 

4.3.6 KATP Channels 

An important part of insulin secretion is the ATP sensitive potassium channel (KATP). 

KATP channels are inhibited by ATP, resulting in closure of the channel and subsequent insulin 

release. In the absence of glucose, there is a reduction in the ATP/ADP ratio and the channels are 

open and no insulin is released (Huopio et al 2002). KATP channels are octomers composed of a 

pore-forming unit (Kir6.2) surrounded by a regulatory unit (SUR1) which associate in a 4:4 ratio 

(Ashcroft FM, 2007 and Hiliart M, 2008).  

Genetic studies have shown that mutations in either subunit of the KATP channel, Kir6.2 or 

SUR1, causes defects in insulin secretion resulting in hyperinsulinism or diabetes. These defects 

in insulin secretion are due to gain of function mutations (leading to a reduction in insulin 

release) or loss of function mutations (leading to an over-stimulation of insulin release) (Ashcroft 

FM, 2006). 
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I have shown that nicotine treatment significantly increases the expression of the KATP 

subunit Kir6.2. In nicotine only treatment group there was a reduction in glucose stimulated and 

basal insulin secretion. If the increase in expression of Kir6.2 is similar to gain of function 

mutations, then this could be a possible explanation why there is a reduction in insulin secretion 

with nicotine exposure. The addition of folic acid did reduce this expression, but not to levels 

seen with the control. This reduction on kir6.2 expression coincides with an increase in basal 

insulin secretion and glucose-stimulated insulin secretion (although not significant). In a review 

of KATP channels by Ashcroft 2005, it was stated that a total loss of protein (of both subunits) 

would result in loss of channel activity and therefore hyperinsulinism. Therefore, it is 

conceivable that an increase in in KATP subunits would result in more channel activity leading to 

hypoinsulinism. Indeed, it has been shown that increased expression of KATP subunits stabilizes 

the beta cell near its resting membrane potential of -70mV which raises the concentration of 

glucose needed to elicit an insulin response (Chen et al, 2011 and Ashcroft 2006). Therefore, 

nicotine treatment appears to affect the secretory mechanism of beta cells which precedes 

mitochondrial dysfunction and increased apoptosis seen in in vivo models (Bruin et al., 2008c 

and a, respectfully). 

 

4.4 Future Directions 

The next step in determining whether folic acid supplementation would have beneficial 

effects on pancreatic beta cells would be an animal study. Bruin et al., (2007, 2008a, b and c) 

showed that fetal nicotine exposure increased pancreatic oxidative stress, apoptosis and 

mitochondrial dysfunction. The combination of these factors resulted in impaired glucose 
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homeostasis. These data give support to the fetal origins hypothesis, where offspring are 

‘programmed’ in utero for a certain lifestyle, which if not met in adult life can lead to disease. 

 

 

4.4.1 Fetal origins of adult disease 

The causes of the rise in the metabolic syndrome seen throughout the world are not entirely 

clear. A common hypothesis for this is the ‘fetal origins’, ‘fetal programming’, ‘developmental 

origins of adult disease’ or ‘thrifty phenotype’ theory. The premise of this theory is that utero-

insufficiency combined with modern day lifestyles (inactivity, abundant food) leads to disease 

(hypertension, diabetes, coronary heart disease, and kidney disease) later in life. (Yajnik and 

Deshmukh 2008, Simmons 2004).  Utero-insufficiency can be in the form of maternal smoking, 

pre-eclampsia, maternal undernutrition, or toxic exposure among others (Hendrix and Berghella 

2008, Ong 2006). Placental insufficiency leads to a reduction in birth weight, which when 

coupled with catch-up growth in childhood, increases the risk of developing disease. For 

example, those at the highest risk for the development of T2D were born small and became 

overweight as children (Simmons, 2004, Hales and Ozanne 2003). 

   How intra-uterine growth restriction leads to disease later in life is not entirely clear, 

however, it is likely that the developing fetus will put most nutrients toward the development of 

vital organs (i.e. brain) at the expense of less vital organs (i.e. pancreas). The effect of this is a 

reduction in both β-cell mass, and function shortly after birth, with an age-related decline in β-

cell mass (in an intrauterine growth restriction (IUGR) rat model  there is a 50% reduction 
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compared to controls at 15weeks of age and at 26 weeks a 65% reduction) (Simmons 2009, 

Martin-Gronert and Ozanne 2007)  

It has been shown that smoking during pregnancy leads to intra-uterine growth restriction 

(Wang et al., 2009). Both smoking during pregnancy and IUGR alone lead to the development of 

type 2 diabetes (Dennery, 2012), a growing concern worldwide.  

The results of my experiments show that folic acid supplementation may be a viable 

option to protect the pancreatic beta cell from the adverse effects of nicotine. In addition, I have 

shown the potential for new mechanisms to explore (effects of PDX1 and kir6.2). Indeed, recent 

human studies have shown the promising effects of folate supplementation in patients with 

T2DM. Aghamohammadi et al (2011) showed that folate supplementation (5mg/d for eight 

weeks) in a diabetic population increased antioxidant capacity and decreased MDA (a marker of 

oxidative damage). Furthermore, Gargari et al (2011) showed that folate supplementation (5mg/d 

for eight weeks) lowered plasma homocysteine levels, improved glycemic control and insulin 

resistance in male patients with T2DM. 
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5.0 Conclusions 

The epidemic of type 2 diabetes worldwide has led to a vast amount of research being 

done to try and determine how and why this is occurring. Our research group has focused on 

fetal programming of the endocrine pancreas through chemical insults during pregnancy and 

lactation. One of these chemicals is nicotine, a chemical which can affect the fetal pancreas 

through cigarette smoking and nicotine replacement therapy use.  Approximately 20% of 

Canadian women smoke during pregnancy, possibly making nicotine exposure a major player in 

the diabetes epidemic. Due to this, determining an antioxidant intervention that would alleviate 

nicotine-induced pancreatic damage could reduce the numbers of diabetes in the future.  

To try and elucidate how nicotine and folic acid exposure can affect insulin secretion of 

pancreatic beta cells, we used an in vitro model to determine the pathways in which 

nicotine/folic acid can affect insulin secretion.  We found that folic acid is a viable option as an 

antioxidant to prevent oxidative stress and damage due to its beneficial effects on nicotine 

exposed beta cells.  

In conclusion, it appears that in vitro nicotine exposure to beta cells leads to a reduction 

in insulin release through increased KATP channel expression and not through a reduction in 

insulin content. With the addition of folic acid, there is an increase in insulin release likely 

mediated through an increased insulin availability which may be a result of increased gene 

expression of insulin mediated via the transcription factor PDX-1.   
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